ThensManual
(formerly nsNotes and Documentatioh)

The VINT Project

A Collaboration between researchers at
UC Berkeley, LBL, USC/ISI, and Xerox PARC.

Kevin Fall (kfall@ee.Ibl.goy, Editor
Kannan Varadhatkannan@catarina.usc.edé&ditor

October 10, 2006

ns © is LBNL's Network Smulator [24]. The simulator is written in C++; it uses OTd a command and configuration
interface.nsv2 has three substantial changes fregvl: (1) the more complex objects imsv1 have been decomposed into
simpler components for greater flexibility and compos#&il{2) the configuration interface is now OTcl, an objeceoted
version of Tcl; and (3) the interface code to the OTcl inteter is separate from the main simulator.

Ns documentation is available in html, Postscript, and Ridfméats. Sebttp://www.isi.edu/nsnam/ns/ns-documentation.
html for pointers to these.

1The VINT project is a joint effort by people from UC BerkeldySC/ISI, LBL, and Xerox PARC. The project is supported by Brefense Advanced
Research Projects Agency (DARPA) at LBL under DARPA granB&3-96-C-0105, at USC/ISI under DARPA grant ABT63-96-050, at Xerox PARC
under DARPA grant DABT63-96-C-0105. Any opinions, findingad conclusions or recommendations expressed in thigiadatee those of the author(s)
and do not necessarily reflect the views of the DARPA.

Contents

1

2

3

Introduction 2
Undocumented Facilities 6
Interface to the Interpreter 8
OTcl Linkage 9
3.1 ConCeptOVEIVIEW o e e e e e e e e e e e 9
3.2 Code OVEIVIEW o i e e e e e e e e 10
3.3 Class TCl e e 10
3.3.1 Obtaina Referencetotheclass Tclinstance 11
3.3.2 Invoking OTcl Procedures e 11
3.3.3 Passing Results to/fromthe Interpreter 11
3.3.4 ErrorReportingand EXit e e 12
3.3.5 Hash Functions within the Interpreter 12
3.3.6 Other Operations onthe Interpreter i o i 13
3.4 ClassTclObject e 13
3.4.1 Creatingand Destroying TclObjects 14
3.4.2 Variable Bindings e e e e e 15
3.4.3 Variable Tracing o e e e e e e 17
3.4.4 commandMethods: Definition and Invocation 18
35 ClassTclClass e e e e e 20
3.5.1 Howto Bind Static C++ Class Member Variables 21
3.6 ClassTclCommand e e e e e 23
3.7 ClassEmbeddedTcl e e e e 24
3.8 ClassInstVar e e e 25
Simulator Basics 27
The Class Simulator 28
4.1 Simulator Initialization e e e e e 28
4.2 Schedulersand Events L e e e e e e 28
4.2.1 ThelistScheduler e e e e 29
4.2.2 theheapscheduler e 30
4.2.3 TheCalendar Queue Scheduler 30
4.2.4 TheReal-Time Scheduler e e 30
4.2.5 Precision of the schedulerclockusedinns 30
4.3 OtherMethods e e e e 30
4.4 Commandsataglance e e 32

10

Nodes and Packet Forwarding
5.1 NodeBasSiCS o o e e
5.2 Node Methods: Configuringthe Node i
5.3 Node Configuration Interface e
5.4 TheClassifier e e e e
5.4.1 AddressClassifiers e
5.4.2 MulticastClassifiers e e e
5.4.3 MultiPath Classifier
5.4.4 HashClassifier e e
545 Replicator.
5.5 Routing Module and Classifier Organization o 0 0 e
55.1 RoutingModule e
5.5.2 Nodelnterface e e
56 Commandsataglance e

Links: Simple Links

6.1 Instance Procedures for Links and SimpleLinks L
6.2 CONNECIOIS o e e e e e e
6.3 Objecthierarchy. e e
6.4 Commandsataglance e e

Queue Management and Packet Scheduling

7.1 TheC++Queue Class e e e
7.1.1 Queueblocking e e e e
7.1.2 PacketQueue Class e e e

7.2 Example:DropTail e e e e e

7.3 Differenttypes of Queue objects L e

7.4 CommandsataglanCce e e

7.5 QueuelJoBS e e
7.5.1 TheJoBSalgorithm e e e e
7.5.2 Configuration e e e e
7.5.3 TraCing o o e
7.5.4 Variables L e e
755 Commandsataglance e e

Delays and Links
8.1 ThelLinkDelay Class e
8.2 Commandsataglance e

Differentiated Services Module inns

9.1 OVEIVIEW . . . o o e e e

9.2 Implementation e e e e e
9.2.1 REDqueueinDiffServmodule e e
9.2.2 EdgeandcorerOUters. i e e e e e e
9.2.3 Policy e e

9.3 Configuration e e

9.4 CommandsataglanCce e

Agents

10.1 Agentstate e e

10.2 Agentmethods L e e e

10.3 ProtocOl AgENLS o e e e e e

10.4 OTclLinkage e e e e e
10.4.1 Creating and Manipulating Agents i e e
10.4.2 DefaultValues e e

11

12

13

14

10.4.3 OTclMethods e e e e e e 89

10.5 Examples: Tcp, TCP SINK AQENtS o i e e e 89
10.5.1 Creatingthe Agent e e 89
10.5.2 Startingthe Agent L e e 90
10.5.3 Processing Inputat Receiver L e e 91
10.5.4 Processing Responsesatthe Sender o e 92
10.5.5 Implementing TIMers e e e e e e e 93

10.6 Creatinga New Agent. e e e e e 93
10.6.1 Example: A “ping” requestor (Inheritance Strucjure. 93
10.6.2 Theecv () andtimeout ()Methods 94
10.6.3 Linkingthe “ping” Agentwith OTcl 0. . 94
10.6.4 Usingthe agentthrough OTcl e e 96

10.7 The Agent APl e e e e 96

10.8 Differentagentobjects L e e e e 96

10.9 Commandsataglance L e e 99

Timers 101

11.1 C++abstractbase class TimerHandler 101
11.1.1 Definition ofanewtimer L e e e 102
11.1.2 Example: Tcpretransmissiontimer it i e e e 102

11.2 OTclTimerclass e e e e e e e 105

11.3 Commandsataglance e e e e e e 105

Packet Headers and Formats 106

12.1 A Protocol-Specific Packet Header e 106
12.1.1 Addinga New Packet Header Type @ i i i e e e e e e e 108
12.1.2 Selectively Including Packet Headers in Your Siioiter. 108

12.2 Packet Classes o e e 109
12.2.1 ThePacketClass e e e 109
12.2.2 p_infoClass e e e e e e 112
12.2.3 Thehdr_cmnClass e e e 112
12.2.4 The PacketHeaderManagerClass wuu i i 113

12.3 Commandsataglance e e e 114

Error Model 116

13.1 Implementation L e 116

13.2 Configuration e 117

13.3 Multi-state errormodel L e e e 118

13.4 Commandsataglance e e e e 119

Local Area Networks 121

14.1 Tcleonfiguration e e e e e e e 121

14.2 Componentsof a LAN e e 122

14.3 Channel Class e e e e 123
14.3.1 ChannelState e e e 123
14.3.2 Example: Channel and classifier of the physicallayer 123
14.3.3 ChannelClassin C++ e e 123

14.4 MacClassifier Class o o e e 124

145 MACCIasS o o o e 125
1451 MacState e e e 125
1452 MacMethods e e 125
1453 MacClassin C++ e e e 125
145.4 CSMA-based MAC e 126

14.6 LL (link-layer) Class e e e e e e 127
14.6.1 LLCIassSiNCH+ o e e e 127

15

16

17

14.6.2 Example: Link Layer configuration 127

14.7 LanRouter Class e e e 128
14.8 Other COomponents 0 e e e e e 128
14.9 LANsanchsrouting o o e e e e 128
14.10Commandsataglance L e e e 130
The (Revised) Addressing Structure in NS 131
15.1 The Default Address Format e e e 131
15.2 The Hierarchical Address Format i e 131
15.2.1 Default Hierarchical Setting e 132
15.2.2 Specific Hierarchical Setting e e 132
15.3 The Expanded Node-Address Format o i e 132
15.4 Expandingport-idfield 132
15.5 Errorsin setting addressformat L e 133
15.6 Commandsataglance e e e e e e e 133
Mobile Networking in ns 134
16.1 The basicwirelessmodelinns L e 134
16.1.1 Mobilenode: creating wirelesstopology 134
16.1.2 Creating Node mOVEMENtS i e e e e e e e e 138
16.1.3 Network Componentsinamobilenode. Lo 139
16.1.4 Different MAC layer protocols for mobile networking L. 142
16.1.5 Different types of Routing Agentsin mobile netwandsi 143
16.1.6 Trace SUPPOIT o o o e e e e e e 144
16.1.7 Revised formatforwirelesstraces il e 148
16.1.8 Generation of node-movement and traffic-conneétiowireless scenarios 150
16.2 Extensions madeto CMU'swirelessmodel L o 151
16.2.1 wired-cum-wirelesSS SCeNAarios e e e 151
16.2.2 MobilelP e 152
16.3 Lists of changes for merging code developed in oldesigarof ns (2.1b5 or later) into the current version
(2.108) . . e 155
16.4 Commandsataglance L e e 157
Satellite Networking inns 160
17.1 Overview of satellite models 160
17.1.1 Geostationarysatellites L e 160
17.1.2 Low-earth-orbitingsatellites 161
17.2 Using the satellite extensions L 163
17.2.1 Nodesand node poSitioNS e e e e e e 163
17.2.2 Satellite links L e e e 164
17.2.3 Handoffs e e e 166
17.2.4 ROULING o e 167
17.2.5 TraCce sUuPPOrt o o e e e e e e 168
17.2.6 Errormodels e 169
17.2.7 Otherconfiguration options e e e e 170
17.2.8 nam SUPPOIT o e e e e e 170
17.2.9 Integration with wired and wirelesscode oL 170
17.2. 10 Example sCriptsS e e 171
17.3 Implementation e e e e e 171
17.3.1 Useoflinked lists. e 172
17.3.2 NOeSIrUCIUre e e e e 172
17.3.3 Detailed look at satellite links L 173
17.4 Commandsataglance e e 175

18 Radio Propagation Models 177

19

20

21

22

23

18.1 Freespace model e e e 177
18.2 Two-ray ground reflection model L 178
18.3 Shadowingmodel e e 178
18.3.1 Backgroud e 178
18.3.2 Using shadowingmodel e e 180
18.4 Communication range v o e e e e e e e e e e e 180
18.5 Commandsataglance e e e e 181
Energy Model in ns 182
19.1 The C++ EnergyModel Class e e e e 182
19.2 The OTclinterface e e 183
Directed Diffusion 184
20.1 Whatis Directed Diffusion? e e 184
20.2 Thediffusionmodelinns L 184
20.3 Some macissues fordiffusioninns e 185
20.4 APIsforusingfiltersindiffusion L 186
20.5 Ping: an example diffusion application implementatio. 186
20.5.1 Ping Applicationas implementedin C++ e 186
20.5.2 Tcl APIs forthe ping application oo 187
20.6 Changes required to add yr diffusion applicationtons..., 187
20.7 Test-suites fordiffusion L e 189
20.8 Commandsataglance e e e e e 189
XCP: eXplicit Congestion control Protocol 191
21.1 Whatis XCP? e e e 191
21.2 Implementationof XCP IN NS e 192
21.2.1 Endpointsin XCP e e e e e 192
21.2.2 XCP ROULEN o o e e e e e e e e e e e e e 193
21.2.3 XCP QUBUE o e e 193
21.3 XCPexample sCript e e 194
21.4 Test-suitesfor XCP L e e e e 197
21.5 Commandsataglance e e e e 197
DelayBox: Per-Flow Delay and Loss 198
22.1 Implementation Details e e e e 198
22.2 Example e e e e e e 199
22.3 CommandsataGlance e 200
Support 202
Debugging ns 203
23.1 Tcl-level Debugging e e e e 203
23.2 C++-Level Debugging e e e 203
23.3 Mixing Tcland Cdebugging 204
23.4 Memory Debugging e e 205
23.4.1 Usingdmalloc e e 205
23.4.2 Memory Conservation TIPS o . v v i i e e e e e e e e 206
23.4.3 Some statistics collectedbydmalloc 206
23.5 Memory Leaks e e e e e e e 206
23.5.1 OTCl . . . e e 207
23.5.2 CICH+ . . o 207

24 Mathematical Support 208

24.1 Random Number Generation L e e e e 208
24.1.1 Seeding The RNG e e 209
24.1.2 OTCISUPPOITt . . . o o e e e e e e 211
24.1.3 CHHSUPPOIT . . . o o e e e e e 212
24.2 Random Variables e e 213
243 Integrals e e 214
244 ns-random . L L L e e 215
24.5 Some mathematical-supportrelated objects o oL 216
24.6 Commandsataglance e e 216
25 Trace and Monitoring Support 218
25.1 Trace SUPPOIt o o e e e e e 218
25.1.1 OTclHelper Functions e e e 219
25.2 Library supportand examples e e e 220
253 The C++Trace Class o i e e e e e 222
254 Trace File Format L e e 223
25.5 Packet TYpeS o o o e 225
25.6 Queue MONItOriNG o o o e e 226
25.7 Per-Flow Monitoring e e e e e e 228
25.7.1 TheFlow Monitor e e e 228
25.7.2 Flow Monitor Trace Format e 228
25.7.3 TheFlow Class e e e e 229
25.8 Commandsataglance e e 229
26 Test Suite Support 232
26.1 TestSuite COMPONENTS o ot e e e e 232
26.2 WriteaTeStSUIte e e e 232
27 ns Code Styles 235
27.1 Indentation style L L e e 235
27.2 Variable Naming Conventions L e e e 235
27.3 Miscellaneous L e e 235
IV Routing 237
28 Unicast Routing 238
28.1 The Interface to the Simulation Operator (The API) 238
28.2 Other Configuration Mechanisms for Specialised Rgutin 239
28.3 Protocol Specific Configuration Parameters o o 240
28.4 Internals and Architecture of Routing L. e 241
28.4.1 ThecClasses o e e e 241
28.4.2 Interface to Network Dynamics and Multicast L 245
28.5 ProtocolInternals L L e 246
28.6 Unicastroutingobjects e e e e e e 247
28.7 Commandsataglance e e e e 247
29 Multicast Routing 249
29.1 Multicast APl o e e 249
29.1.1 Multicast Behavior Monitor Configuration, 250
29.1.2 Protocol Specificconfiguration e 251
29.2 Internals of Multicast Routing 252
29.2.1 ThecClasses o o i e e 252
29.2.2 Extensionstootherclasses. 254

29.2.3 ProtocolInternals L e e e e 257

29.2.4 Theinternalvariables. e 259
29.3 Commandsataglance e e 259
30 Network Dynamics 262
30.1 Theuserlevel APl e 262
30.2 The lnternal Architecture e 264
30.2.1 TheclassrtModel. e e e 264
30.2.2 class rtQUEUE e 265
30.3 Interactionwith Unicast Routing e 266
30.3.1 Extensionsto Other Classes o i i e e 266
30.4 Deficencies in the Current Network Dynamics APlo o o 000 oo 267
30.5 Commandsataglance e e 267
31 Hierarchical Routing 269
31.1 Overview of Hierarchical Routing o e 269
31.2 Usage of Hierarchicalrouting e 269
31.3 Creating large Hierarchicaltopologies o 271
31.4 Hierarchical Routing with SessionSim a 272
31.5 Commandsataglance e e e 272
V Transport 273
32 UDP Agents 274
32.1 UDP AQENES . . . o . o e e e e e e e 274
32.2 Commandsataglance e e e 275
33 TCP Agents 276
33.1 One-Way TCP Senders 0 e e e e e e e e e e e 277
33.1.1 The Base TCP Sender (Tahoe TCP) @ e e e e e e e e 277
33.1.2 Configuration L e e e e e 277
33.1.3 Simple Configuration e e 277
33.1.4 Other Configuration Parameters e 278
33.1.5 OtherOne-Way TCP Senders i i e e e e e e 279
33.2 TCP Receivers (SINKS) o o e e e e 279
33.2.1 TheBase TCP SINK e e e e e e 280
33.2.2 Delayed-ACK TCP Sink e 280
33.2.3 Sack TCP SINK e e e 280
33.3 Two-Way TCP Agents (FUllTCp) o e e e e e e 280
33.3.1 Simple Configuration e e e 281
33.3.2 BayFullTep o o o e e 282
33.4 Architectureand Internals. L e e e e 282
33.5 Tracing TCP DYNamIiCS o o e e e e e e e e 284
33.6 One-Way Trace TCP Trace DynamiCS o o i v i e e e e e e e e e e e 284
33.7 One-Way Trace TCP Trace DynamiCs i i o e e e e e e e e e e 284
33.8 Commandsataglance e e e e e 284
34 SCTP Agents 286
34.1 TheBase SCTP Agent e e s e i e 286
34.1.1 Configuration Parameters. e e e e 287
34.1.2 Commands e e e 289
34.2 EXENSIONS e e e 290
34.2.1 HbAfterRto SCTP e e 290
34.2.2 MultipleFastRIX SCTP e e e 290

35

36

Vi

37

34.2.3 Timestamp SCTP e e e e 291

34.2.4 MfrHbAfterRtO SCTP e e e 291
34.2.5 MfrHbAfterRtO SCTP e e e e e 291
34.3 Tracing SCTP DYNamiCS o e e e e e e 291
34.4 SCTP Applications e e 292
34.5 Example SCripts e e e 293
34.5.1 SingledHomed Example L e e e e e 293
34.5.2 Multihomed Example e e e 294
Agent/SRM 296
35.1 Configuration e e e e e 296
35.1.1 Trivial Configuration L e 296
35.1.2 Other Configuration Parameters e 298
35.1.3 Statistics e e e e 299
35.1.4 Tracing e e e e 300
35.2 Architectureand Internals. L e e e e e e 302
35.3 Packet Handling: Processing received MesSagesc.oovv v v v v i i e i e e e e e e 302
35.4 Loss Detection—The Class SRMinfo o e 304
35.5 Loss Recovery ObJeCtS o e e 304
35.6 Session Objects e e e 306
35.7 Extendingthe Base Class Agent e e e 307
35.7.1 Fixed TIMEIS o e e e e e e 307
35.7.2 Adaptive TIMErS e 307
35.8 SRMODJECES o o e 308
35.9 Commandsataglance e 309
PLM 311
36.1 Configuration e e 311
36.2 The Packet Pair Source Generator i i i i e e e 313
36.3 Architecture of the PLM Protocol e 314
36.3.1 Instantiationof a PLM Source e e e 314
36.3.2 Instantiationof a PLM Receiver e e e e 314
36.3.3 ReceptionofaPacket. e 315
36.3.4 Detectionof aL0SS L e e e e e 316
36.3.5 JoiningorLeavingalayer e e e e 316
36.4 CommandsataGlance e e 316
Application 318
Applications and transport agent API 319
37.1 Theclass Application e e 319
37.2 Thetransportagent APl e e e e e 320
37.2.1 Attachingtransportagentstonodes a i e 320
37.2.2 Attaching applicationstoagents 321
37.2.3 Usingtransportagentsviasystemcalls L L o 321
37.2.4 Agentupcallsto applications 321
37.25 Anexample e e e e e e e 322
37.3 Theclass TrafficGenerator e e e e 323
37.3.1 Anexample e e e e e e e 325
37.4 Simulated applications: Telnetand FTP i o 326
37.5 Applications objects. e 326
37.6 Commandsataglance e e e 328

38 Web cache as an application

38.1 Using application-leveldatanms.
38.1.1 ADU e
38.1.2 Passing data between applications
38.1.3 Transmitting userdataoverUDP
38.1.4 TransmittinguserdataoverTCP
38.1.5 Class hierarchy related to user data handling

38.2 Overview of web cacheclasses,
38.2.1 Managing HTTP connections
38.2.2 Managingwebpages L
38.2.3 Debugging

38.3 Representingwebpages e

38.4 Pagepools. e
38.4.1 PagePool/Math
38.4.2 PagePool/CompMath
38.4.3 PagePool/ProxyTrace. i
38.4.4 PagePool/Client.
38.4.5 PagePool/WebTraf

385 Webclient

38.6 Webserver

38.7 Webcache
38.7.1 Http/Cache e

38.8 Putting together: asimpleexample,

38.9 Httptraceformat

38.10Commandsataglance

39 Worm Model

39.1 OVEIVIEW o o e e
39.2 Configuration
39.3 Commandsataglance

40 PackMime-HTTP: Web Traffic Generation in NS-2

40.1 ImplementationDetails
40.1.1 PackMimeHTTP Client Application
40.1.2 PackMimeHTTP Server Application

40.2 PackMimeHTTP Random Variables

40.3 Use of DelayBox with PackMime-HTTP

40.4 Example

40.5 CommandsataGlance

VIl Scale

41 Session-level Packet Distribution

41.1 Configuration
41.1.1 Basic Configuration
41.1.2 InsertingalossModule

41.2 Architecture

413 Internals
41.3.1 ObjectLinkage
41.3.2 PacketForwarding

41.4 Commandsataglance

42 Asim: approximate analytical simulation

VIl Emulation 369

43 Emulation 370
43.1 IntroducCtion L e e e e e e 370
43.2 Real-Time Scheduler e 371
43.3 Tap AQENtS L e e e e e 371
43.4 Network Objects e e 372

43.4.1 Pcap/BPF Network Objects e 372
43.4.2 IPNetwork Objects e e 373
43.4.3 IP/UDP Network Objects e e e 373
435 AnEXample e e 374
43.6 Commandsataglance e 375

IX Visualization with Nam - The Network Animator 376

44 Nam 377
441 IntrodUCtion L e e e e e 377
44.2 Nam Command Line Options e e e e e 377
44.3 UseriInterface L e e e 378
44.4 Keyboard Commands e e 379
44.5 Generating External AnimationsfromNam L. 380
44.6 Network Layout e e e e e e e 380
44.7 Animation Objects e e 381

45 Nam Trace 382
45.1 Nam Trace Format e e e 382

45.1.1 Initialization EVents L e e e e e 383
45.1.2 NOdeS e e e 384
45.1.3 LINKS e e e 384
45.1.4 QUEUES o o i i e e e e e 385
4515 Packets e 385
45.1.6 NodeMarking e e 386
45.1.7 AgentTracing e e e e e e 387
45.1.8 Variable Tracing o e 387
45.1.9 Executing Tcl Procedures and External Code fromiwktam 387
45.1.10 Using Streams for Realtime Applications 389
45.1.11 Nam Trace File FormatLookup Tableo . o 392
45.2 Ns commands for creating and controlling nam animation 398
4521 Node e 398
45.2.2 LINK/IQUEUE e e 398
45.2.3 Agentand Features e e e 399
45.2.4 Some Generic Commandso e e e e e e e e 399

X Other 400

46 Educational use of NS and NAM 401
46.1 Using NS for educational purposes e e 401

46.1.1 Installing/building/runnings L 401
46.1.2 The educational scripts’ inventory page: ciir o i e e e 401
46.2 Using NAM for educational purposes e e e e 402

10

Chapter 1

Introduction

Let’s start at the very beginning,

a very nice place to start,

when you sing, you begin with A, B, C,

when you simulate, you begin with the topology,

This documentr{s Notes and Documentatipprovides reference documentation for ns. Although we hegth a simple
simulation script, resources like Marc Greis’s tutorialbmgages (originally at his web site, now latp://www.isi.
edu/nsnam/ns/tutorial/) or the slides from one of the ns tutorials are problably dretiaces to begin for the ns
novice.

We first begin by showing a simple simulation script. Thidgds also available in the sources ingtcl/ex/simple.tcl.

This script defines a simple topology of four nodes, and twenégy a UDP agent with a CBR traffic generator, and a TCP
agent. The simulation runs f8s. The output is two trace filegut.tr ~ andout.nam . When the simulation completes at
the end of3s, it will attempt to run a nam visualisation of the simulatiom your screen.

The preamble
set ns [new Simulator] # initialise the simulation

Predefine tracing

set f [open out.tr w]
$ns trace-all $f

set nf [open out.nam w]
$ns namtrace-all $nf

lwith apologies to Rodgers and Hammerstein

11

so, we lied. now, we define the topology

#

9[0]

\

5Mb \

2ms |\

\

n2 --------- n3
/ 1.5Mb
5Mb / 10ms
2ms /

/

nl

#

set n0 [$ns node]
set nl [$ns node]
set n2 [$ns node]
set n3 [$ns node]

$ns duplex-link $n0 $n2 5Mb 2ms DropTail
$ns duplex-link $n1 $n2 5Mb 2ms DropTail
$ns duplex-link $n2 $n3 1.5Mb 10ms DropTail

Some agents.

set udpO [new Agent/UDP]

$ns attach-agent $n0 $udpO

set cbrO [new Application/Traffic/CBR] #
$cbr0 attach-agent $udpO

$udp0 set class_ 0

set null0 [new Agent/Null]
$ns attach-agent $n3 $nullo

$ns connect $udpO $null0
$ns at 1.0 "$cbrO start"

puts [$cbrO set packetSize]
puts [$cbr0 set interval_]

A FTP over TCP/Tahoe from $n1 to $n3, flowid 2
set tcp [new Agent/TCP]

$tcp set class_ 1

$ns attach-agent $nl S$tcp

set sink [new Agent/TCPSink]
$ns attach-agent $n3 $sink

set ftp [new Application/FTP] H#
$ftp attach-agent $tcp
$ns at 1.2 "$ftp start"

$ns connect $tcp $sink
$ns at 1.35 "$ns detach-agent $n0 $tcp ; $ns detach-agent $n3

12

A UDP agent
;# on node $n0
A CBR traffic generator agent
;# attached to the UDP agent
;# actually, the default, but. ..

Its sink
on node $n3

TCP does not generate its own traffic

$sink"

13

The simulation runs fo3s.
The simulation comes to an end when the scheduler invo&édimtbh{} procedure below.
This procedure closes all trace files, and invokes nam iizt@n on one of the trace files.

$ns at 3.0 “finish"

proc finish {} {
global ns f nf
$ns flush-trace
close $f
close $nf

puts “running nam..."
exec nam out.nam &
exit 0

}

Finally, start the simulation.
$ns run

14

Chapter 2

Undocumented Facilities

Ns is often growing to include new protocols. Unfortunatélg documention doesn't grow quite as often. This sectiis li
what remains to be documented, or what needs to be improved.

(The documentation is in the doc subdirectory of the ns sooode if you want to add to it. :-)

Interface to the Interpreter e nothing currently

Simulator Basics e LANSs need to be updated for new wired/wireless support (Mpdated this?)
e wireless support needs to be added (done)
e should explicitly list queueing options in the queue mgtputke?

Support e should pick a single list mgt package and document it
e should document the trace-post-processing utilitiesn bi
Routing e The usage and design of link state and MPLS routing modutesatrdocumented at all. (Note: link state and
MPLS appeared only in daily snapshots and releases afte&4/2%00.)
¢ need to document hierarchical routing/addressing (Padmeabne)
e need a chapter on supported ad-hoc routing protocols
Queueing e CBQ needs documentation (can maybe build offtpf/ftp.ee.lbl.gov/papers/cbgsims.
ps.Z ?)
Transport e needto document MFTP
e need to document RTP (session-rtp.cc, etc.)
¢ need to document multicast building blocks
e should repair and document snoop and tcp-int

Traffic and scenarios (new section)

¢ should add a description of how to drive the simulator froatés
¢ should add discussion of the scenario generator
e should add discussion of http traffic sources

Application e is the non-Haobo http stuff documented? no.

15

Scale e should add disucssion of mixed mode (pending)
Emulation e nothing currently

Other e should document admission control policies?
e should add a validation chapter and snarf up the contents-tésts.html
e should snarf up Marc Greis’ tutorial rather than just refegrto it?

16

Part |

Interface to the Interpreter

17

Chapter 3

OTcl Linkage

nsis an object oriented simulator, written in C++, with an OTrdlerpreter as a frontend. The simulator supports a class
hierarchy in C++ (also called the compiled hierarchy in #hi€ument), and a similar class hierarchy within the OTaiint
preter (also called the interpreted hierarchy in this doenth The two hierarchies are closely related to each oftwm the
user’s perspective, there is a one-to-one correspondestagbn a class in the interpreted hierarchy and one in theitedn
hierarchy. The root of this hierarchy is the class TclOhj&tgers create new simulator objects through the interpréttese
objects are instantiated within the interpreter, and aoeadly mirrored by a corresponding object in the compileddrizhy.
The interpreted class hierarchy is automatically estabtithrough methods defined in the class TcIClass. usenirestied
objects are mirrored through methods defined in the clagSfjekct. There are other hierarchies in the C++ code and OTcl
scripts; these other hierarchies are not mirrored in themaraof TclObject.

3.1 Concept Overview

Why two languages? nsses two languages because simulator has two differens kifithings it needs to do. On one hand,
detailed simulations of protocols requires a systems @nogning language which can efficiently manipulate bytesketac
headers, and implement algorithms that run over large dd$a Bor these tasks run-time speed is important and tunnAar
time (run simulation, find bug, fix bug, recompile, re-run)dss important.

On the other hand, a large part of network research involigistly varying parameters or configurations, or quicklyéxting

a number of scenarios. In these cases, iteration time (eh#megmodel and re-run) is more important. Since configunatio
runs once (at the beginning of the simulation), run-timeh$ part of the task is less important.

nsmeets both of these needs with two languages, C++ and OTel.i<Cfast to run but slower to change, making it suitable
for detailed protocol implementation. OTcl runs much slolet can be changed very quickly (and interactively), mgkin
ideal for simulation configuratioms(viatclcl) provides glue to make objects and variables appear on bogaliges.

For more information about the idea of scripting languagessplit-language programming, see Ousterhout’s articlEEE
Computer [26]. For more information about split level pragming for network simulation, see the ns paper [2].

Which language for what®laving two languages raises the question of which langulageld be used for what purpose.

Our basic advice is to use OTcl:
o for configuration, setup, and “one-time” stuff

18

e if you can do what you want by manipulating existing C++ olgec

and use C++:

o if you are doinganythingthat requires processing each packet of a flow

o if you have to change the behavior of an existing C++ classapsthat weren’t anticipated

For example, links are OTcl objects that assemble delayy@jng, and possibly loss modules. If your experiment can be
done with those pieces, great. If instead you want do somgfaincier (a special queueing dicipline or model of logsgnt
you'll need a new C++ object.

There are certainly grey areas in this spectrum: most rgusidone in OTcl (although the core Dijkstra algorithm is iR+J.
We've had HTTP simulations where each flow was started in @fmdlper-packet processing was all in C++. This approache
worked OK until we had 100s of flows starting per second of itedl time. In general, if you're ever having to invoke Tcl
many times per second, you problably should move that co@s-to

3.2 Code Overview

In this document, we use the term “interpreter” to be synooyswith the OTcl interpreter. The code to interface with the
interpreter resides in a separate directtelgl . The rest of the simulator code resides in the directasy? . We will use
the notation tclcl/(file) to refer to a particulatfile) in the Tcl directory. Similarly, we will use the notationnd(file) to
refer to a particulatfile) in thens-2 directory.

There are a number of classes definedticict/. We only focus on the six that are usedna The Class Tcl (Section 3.3)
contains the methods that C++ code will use to access thieter. The class TclObject (Section 3.4) is the base étass
all simulator objects that are also mirrored in the comphetarchy. The class TclClass (Section 3.5) defines thegreted
class hierarchy, and the methods to permit the user to itigtarT clObjects. The class TclICommand (Section 3.6) isl tise
define simple global interpreter commands. The class EndzEl (Section 3.7) contains the methods to load highet leve
builtin commands that make configuring simulations easiirally, the class InstVar (Section 3.8) contains methodstess
C++ member variables as OTcl instance variables.

The procedures and functions described in this chapter edaund in +clcl/Tcl.{cc, h}, ~tclcl/Tcl2.cc, +clcl/tcl-object.tcl,
and, ~clcl/tracedvar.{cc, h}. The file telcl/tcl2c++.c is used in buildings, and is mentioned briefly in this chapter.

3.3 Class Tcl

Theclass Tcl encapsulates the actual instance of the OTcl interpratdrpeovides the methods to access and communi-
cate with that interpreter. The methods described in thi§@® are relevant to thes programmer who is writing C++ code.
The class provides methods for the following operations:

obtain a reference to the Tcl instance;

invoke OTcl procedures through the interpreter;

retrieve, or pass back results to the interpreter;

report error situations and exit in an uniform manner; and

19

e store and lookup “TclObjects”.
e acquire direct access to the interpreter.

We describe each of the methods in the following subsections

3.3.1 Obtain a Reference to the class Tcl instance

A single instance of the class is declared tolel/Tcl.cc as a static member variable; the programmer mustimbtreference
to this instance to access other methods described in ttii®seThe statement required to access this instance is:

Tcl& tcl = Tcl::instance();

3.3.2 Invoking OTcl Procedures

There are four different methods to invoke an OTcl commamdugh the instancagcl . They differ essentially in their
calling arguments. Each function passes a string to theprater, that then evaluates the string in a global contékese
methods will return to the caller if the interpreter retuiifGL_ OK. On the other hand, if the interpreter returns TCL REIR,
the methods will caltkerror {}. The user can overload this procedure to selectivelyelysrd certain types of errors. Such
intricacies of OTcl programming are outside the scope o tlicument. The next section (Section 3.3.3) describesaudgth
to access the result returned by the interpreter.

e tcl.eval (char*s) invokesTcl_GlobalEval () to executes through the interpreter.

e tcl.evalc (const char*) preserves the argument strigglt copies the string into its internal buffer; it then invokes
the previousval (char*s) on the internal buffer.

e tcl.eval () assumesthatthe commandis already stored in the clasmaibp_; it directly invokedcl.eval ~ (char*
bp_). A handle to the buffer itself is available through thethodtcl.buffer (void).

e tcl.evalf (const char*s, ...) is aPrintf (3) like equivalent. It usessprintf (3) internally to create the input
string.

As an example, here are some of the ways of using the abovedweth

Tcl& tcl = Tcl ::instanceg);

char wrk[128];

strepy(wrk, "Simulator set Numberinterfaces_ 1");
tcl . eval (wrk);

sprintf(tcl . buffer(), "Agent/SRM set requestFunction_ %s", "Fixed");
tcl.eval();

tcl . eval ¢("puts stdout hello world");
tcl . eval f("%s request %d %d", name_, sender, msgid);

3.3.3 Passing Results to/from the Interpreter

When the interpreter invokes a C++ method, it expects thdtrback in the private member variabtel_->result . Two
methods are available to set this variable.

20

e tcl.result (const char*s)
Pass the result stringback to the interpreter.

o tcl.resultf (constchar* fmt, ...)
varargs (3) variant of above to format the result usimgprintf (3), pass the result string back to the interpreter.

if (strcmp(argv[l], "now") == 0) {
tcl.resultf("%.17g", clock());
return TCL_OK;

}

tcl . resul t("Invalid operation specified");
return TCL_ERROR;

Likewise, when a C++ method invokes an OTcl command, thepnéger returns the result itel_->result

e tcl.result (void) must be used to retrieve the result. Note that thelrésa string, that must be converted into an
internal format appropriate to the type of result.

tcl.evalc("Simulator set Numberinterfaces_");
char = ni = tcl.result();
if (atoi(ni) != 1)
tcl.evalc("Simulator set Numberinterfaces_ 1");

3.3.4 Error Reporting and Exit
This method provides a uniform way to report errors in the poed code.

e tcl.error (const char*s) performs the following functions: write to stdout; writetcl_->result to stdout; exit
with error code 1.

tcl.resultf("emd = %s", cmd);
tcl. error('invalid command specified");
/ * NOTREACHEB/

Note that there are minor differences between returning TERROR as we did in the previous subsection (Section 3.3.3),
and callingTcl::error (). The former generates an exception within the interpreéte user can trap the exception and
possibly recover from the error. If the user has not specéiggdtraps, the interpreter will print a stack trace and extawever,

if the code invokegrror (), then the simulation user cannot trap the error; in addjtaiswill not print any stack trace.

3.3.5 Hash Functions within the Interpreter

nsstores a reference to every TclObject in the compiled hidnain a hash table; this permits quick access to the objects.
The hash table is internal to the interpretes uses the name of tHEclObject as the key to enter, lookup, or delete the
TclObject in the hash table.

21

e tcl.enter (TclObject* o) will insert a pointer to the TclObjectinto the hash table.
Itis used byTclClass::.create_shadow () to insert an object into the table, when that object is te@a

e tcl.lookup (char*s) will retrieve the TclObject with the name
It is used byTclObject::lookup 0.

e tcl.remove (TclObject*o) will delete references to the TclObjegcfrom the hash table.

It is used byTclClass::delete_shadow () to remove an existing entry from the hash table, when th@at is
deleted.

These functions are used internally by the class TclObjedtcdass TclClass.

3.3.6 Other Operations on the Interpreter
If the above methods are not sufficient, then we must acquiréandle to the interpreter, and write our own functions.

e tcl.interp (void) returns the handle to the interpreter that is stor@tiwthe class Tcl.

3.4 Class TclObject

class TclObject is the base class for most of the other classes in the intepasd compiled hierarchies. Every object
in the class TclObject is created by the user from within therpreter. An equivalent shadow object is created in tinegiled
hierarchy. The two objects are closely associated with e#toér. The class TclClass, described in the next sectiartaats
the mechanisms that perform this shadowing.

In the rest of this document, we often refer to an object asl@fject. By this, we refer to a particular object that is either
in the class TclObject, or in a class that is derived from tlass TclObject. If it is necessary, we will explicitly quigli
whether that object is an object within the interpreter, moaject within the compiled code. In such cases, we will hee t
abbreviations “interpreted object”, and “compiled objeotdistinguish the two. and within the compiled code regjppety.

Differences fromnsvl Unlike nsvl, the class TclObject subsumes the earlier functionseoNObject class. It therefore
stores the interface variable bindings (Section 3.4.2)tte®Tcl instance variables in the interpreted object twesponding
C++ member variables in the compiled object. The bindingranger than imsvl in that any changes to the OTcl variables
are trapped, and the current C++ and OTcl values are madéstamtsafter each access through the interpreter. The sonsi
tency is done through the class InstVar (Section 3.8). Atldike nsv1, objects in the class TclObject are no longer stored as
a global link list. Instead, they are stored in a hash tabtbénclass Tcl (Section 3.3.5).

Example configuration of a TclObject The following example illustrates the configuration of anMbRgent €lass
Agent/SRM/Adaptive).

set srm [new Agent/SRM/Adaptive]
$srm set packetSize_ 1024
$srm traffic-source $s0

1in the latest release asandnsitclcl this object has been renamed3plitObjefct , Which more accurately reflects its nature of existence. él@y
for the moment, we will continue to use the term TclObjectefer to these objects and this class.

22

By convention inns the class Agent/SRM/Adaptive is a subclass of Agent/SRM, subclass of Agent, is a subclass of
TclObject. The corresponding compiled class hierarchhésASRMAgent, derived from SRMAgent, derived from Agent,
derived from TclObject respectively. The first line of theoab example shows how a TclObject is created (or destroyed)
(Section 3.4.1); the next line configures a bound variabée{iBn 3.4.2); and finally, the last line illustrates theeiptreted
object invoking a C++ method as if they were an instance ghoee(Section 3.4.4).

3.4.1 Creating and Destroying TclObjects

When the user creates a new TclObject, using the proced@e§} and delete {}; these procedures are defined in
~tclcl/tcl-object.tcl. They can be used to create and destroyctibja all classes, including TclObjects.In this section,
we describe the internal actions executed when a TclOljentiated.

Creating TclObjects By usingnew{}, the user creates an interpreted TclObject. the intetigmill execute the constructor
for that object,init {}, passing it any arguments provided by the uses is responsible for automatically creating the
compiled object. The shadow object gets created by the Base TclObject's constructor. Therefore, the construtdor
the new TclObject must call the parent class constructdr fiesa{} returns a handle to the object, that can then be used for
further operations upon that object.

The following example illustrates the Agent/SRM/Adaptoanstructor:

Agent/SRM/Adaptive instproc init args {
eval $self next $args
$self array set closest_ "requestor O repairor 0"
$self set eps_ [$class set eps_]

The following sequence of actions are performed by the jmé&ter as part of instantiating a new TclObject. For ease of
exposition, we describe the steps that are executed teecaeadgent/SRM/Adaptive object. The steps are:

1. Obtain an unique handle for the new object from the TclGtjame space. The handle is returned to the user. Most
handles inns have the form_o(NNN, where(NNN) is an integer. This handle is created dgtid {}. It can be
retrieved from C++ with thmame() {} method.

2. Execute the constructor for the new object. Any userifipdcarguments are passed as arguments to the constructor.
This constructor must invoke the constructor associateid id parent class.
In our example above, the Agent/SRM/Adaptive calls its pactass in the very first line.

Note that each constructor, in turn invokes its parent tlemsstructorad nauseumThe last constructor insis the
TclObject constructor. This constructor is responsiblesfetting up the shadow object, and performing other initial
izations and bindings, as we explain beldwis preferable to call the parent constructors first bef@erforming the
initializations required in this classThis allows the shadow objects to be set up, and the variahdiiys established.

3. The TclObject constructor invokes the instance procedigate-shadow {} for the class Agent/SRM/Adaptive.

4. When the shadow object is creatadgalls all of the constructors for the compiled object, eafctlvltich may establish
variable bindings for objects in that class, and perforneotiecessary initializations. Hence our earlier injunctioat
it is preferable to invoke the parent constructors prioréof@rming the class initializations.

5. After the shadow object is successfully creatzdate_shadow (void)

2As an example, the classes Simulator, Node, Link, or rtQpfae classes that anetderived from the class TclObject. Objects in these classenat,
therefore, TclObjects. However, a Simulator, Node, Linkiaute Object is also instantiated using tiew procedure ims

23

(a) adds the new object to hash table of TclObjects descabdibr (Section 3.3.5).

(b) makecmd{} an instance procedure of the newly created interpretg@atb This instance procedure invokes the
command)) method of the compiled object. In a later subsection (Br@&.4.4), we describe how tlrwmmand
method is defined, and invoked.

Note that all of the above shadowing mechanisms only worknahe user creates a new TclObject through the interpreter.
It will not work if the programmer creates a compiled TclOddjenilaterally. Therefore, the programmer is enjoined tioot
use the C++ new method to create compiled objects directly.

Deletion of TclObjects Thedelete operation destroys the interpreted object, and the cooredipg shadow object. For
exampleuse-scheduler {(schedulef} uses thedelete procedure to remove the default list scheduler, and inistint

an alternate scheduler in its place.

Simulator instproc use-scheduler type {
$self instvar scheduler_

delete scheduler_ H# first delete the existing list scheduler
set scheduler_ [new Scheduler/$type]

As with the constructor, the object destructor must calldhstructor for the parent class explicitly as the very lsstesnent
of the destructor. The TclObject destructor will invoke thetance procedurgelete-shadow , that in turn invokes the
equivalent compiled method to destroy the shadow objea.ifiterpreter itself will destroy the interpreted object.

3.4.2 Variable Bindings

In most cases, access to compiled member variables isctestto compiled code, and access to interpreted membablasi

is likewise confined to access via interpreted code; howdvisrpossible to establish bi-directional bindings sulcattboth

the interpreted member variable and the compiled membégiblaraccess the same data, and changing the value of either
variable changes the value of the corresponding pairedhbigrto same value.

The binding is established by the compiled constructor wthahobject is instantiated; it is automatically accessly) the
interpreted object as an instance varialblesupports five different data types: reals, bandwidth vakasbles, time valued
variables, integers, and booleans. The syntax of how thedses can be specified in OTcl is different for each variaygbet

e Real and Integer valued variables are specified in the “nBrimian. For example,

$object set realvar 1.2e3
$object set intvar 12

e Bandwidth is specified as a real value, optionally suffixed ¥y or ‘K’ to mean kilo-quantities, or ‘m’ or ‘M’ to mean
mega-quantities. A final optional suffix of ‘B’ indicates thhe quantity expressed is in Bytes per second. The default
is bandwidth expressed in bits per second. For examplef tibdollowing are equivalent:

$object set bwvar 1.5m

$object set bwvar 1.5mb
$object set bwvar 1500k

24

$object set bwvar 1500kb

$object set bwvar .1875MB
$object set bwvar 187.5kB
$object set bwvar 1.5e6

e Time is specified as a real value, optionally suffixed by a ‘mékpress time in milli-seconds, ‘n’ to express time in
nano-seconds, or ‘p’ to express time in pico-seconds. TFauttés time expressed in seconds. For example, all of the
following are equivalent:

$object set timevar 1500m
$object set timevar 1.5
$object set timevar 1.5e9n
$object set timevar 1500e9p

Note that we can also safely ada #o reflect the time unit of secondsswill ignore anything other than a valid real

number specification, or a trailing ‘m’, ‘n’, or ‘p’.

e Booleans can be expressed either as an integer, or as ‘T’for true. Subsequent characters after the first letter are
ignored. If the value is neither an integer, nor a true vatlkien it is assumed to be false. For example,

$object set boolvar t # setto true
$object set boolvar true

$object set boolvar 1 ;# or any non-zero value
$object set boolvar false # setto false

$object set boolvar junk
$object set boolvar 0

The following example shows the constructor for the ASRMAGe

ASRMAgent::ASRMAgent() {

bind("pdistance_", &pdistance); / * real variablex /
bind("requestor_", &requestor_); / * integer variablex /
bind_time("lastSent_", &lastSessSent); / * time variablex /
bind_bw("ctrlLimit_", &ctrIBWLimit); / * bandwidth variable-/
bind_bool("running_", &running_); / * boolean variable-/

Note that all of the functions above take two arguments, graenof an OTcl variable, and the address of the corresponding
compiled member variable that is linked. While it is oftee #ase that these bindings are established by the constaicto
the object, it need not always be done in this manner. We vgliuss such alternate methods when we describe the class
InstVar (Section 3.8) in detail later.

Each of the variables that is bound is automatically ing&d with default values when the object is created. Theultefa
values are specified as interpreted class variables. Titisligation is done by the routinigit-instvar {}, invoked by
methods in the class Instvar, described later (Section Bu8jnstvar {} checks the class of the interpreted object, and
all of the parent class of that object, to find the first claswliich the variable is defined. It uses the value of the vagiaibl
that class to initialise the object. Most of the bind inigation values are defined imstcl/lib/ns-default.tcl.

For example, if the following class variables are definedfier ASRMAgent:

SNote that this constructor is embellished to illustrate fésmtures of the variable binding mechanism.

25

Agent/SRM/Adaptive set pdistance_ 15.0
Agent/SRM set pdistance_ 10.0
Agent/SRM set lastSent_ 8.345m

Agent set ctrlLimit_ 1.44M
Agent/SRM/Adaptive set running_ f

Therefore, every new Agent/SRM/Adaptive object will hgndistance_ set to 15.0JastSent_ is set to 8.345m from
the setting of the class variable of the parent clag$,imit_ is set to 1.44M using the class variable of the parent class
twice removedrunning is setto false; the instance variapldistance_ is notinitialised, because no class variable exists
in any of the class hierarchy of the interpreted object. kehsnstanceinit-instvar {} will invoke warn-instvar {3},

to print out a warning about such a variable. The user carctbeddy override this procedure in their simulation scsipto
elide this warning.

Note that the actual binding is done by instantiating olsj@ttthe class InstVar. Each object in the class InstVar bords
compiled member variable to one interpreted member vagiabITclObject stores a list of InstVar objects correspogdm
each of its member variable that is bound in this fashion. fideed of this list is stored in its member variabistvar_ of

the TclObject.

One last point to consider is thas will guarantee that the actual values of the variable, bothé interpreted object and the
compiled object, will be identical at all times. Howeveritiere are methods and other variables of the compiled otfjatt
track the value of this variable, they must be explicitlydked or changed whenever the value of this variable is clthnge
This usually requires additional primitives that the udesdd invoke. One way of providing such primitivesrisis through
thecommand) method described in the next section.

3.4.3 Variable Tracing

In addition to variable bindings, TclObject also supporéing of both C++ and Tcl instance variables. A traced \deia
can be created and configured either in C++ or Tcl. To estallisiable tracing at the Tcl level, the variable must bebleési

in Tcl, which means that it must be a bounded C++/Tcl or a pwileiristance variable. In addition, the object that owns
the traced variable is also required to establish tracimgguihe Tcltrace method of TclObject. The first argument to the
trace method must be the name of the variable. The optional seagareent specifies the trace object that is responsible
for tracing that variable. If the trace object is not spedifidhe object that own the variable is responsible for trgdin

For a TclObject to trace variables, it must extend the @ra€e method that is virtually defined in TclObject. The Trace
class implements a simpleace method, thereby, it can act as a generic tracer for variables

class Trace : public Connector {

virtual void trace(TracedVar *);

Below is a simple example for setting up variable tracingéft T
\$tcp tracing its own variable cwnd_
\$tcp trace cwnd_
the variable ssthresh_ of \$tcp is traced by a generic \$tra cer

set tracer [new Trace/Var]
\$tcp trace ssthresh_ \$tracer

26

For a C++ variable to be traceable, it must belong to a clasisdérives from TracedVar. The virtual base class TracedVar
keeps track of the variable’s name, owner, and tracer. E&tbat derives from TracedVar must implement the virtuaghoe
value , that takes a character buffer as an argument and writesatbe of the variable into that buffer.

class TracedVar {

virtual char * value(char = buf) = 0;

protected:
TracedVar(const char * name);
const char * name_; /I name of the variable
TclObject * owner_; /I the object that owns this variable
TclObject =+ tracer_; /I callback when the variable is changed
h

The TcICL library exports two classes of TracedVdmracedint andTracedDouble . These classes can be used in
place of the basic type int and double respectively. Botrcd@dint and TracedDouble overload all the operators that can
change the value of the variable such as assignment, inatearel decrement. These overloaded operators usesHign
method to assign the new value to the variable and call tleettifithe new value is different from the old one. Tracedimi a
TracedDouble also implement the@lue methods that output the value of the variable into stringe Width and precision

of the output can be pre-specified.

3.4.4 command Methods: Definition and Invocation

For every TclObject that is createus establishes the instance procedaragf{}, as a hook to executing methods through the
compiled shadow object. The procederad{} invokes the methoccommand) of the shadow object automatically, passing
the arguments tomd{} as an argument vector to theommand) method.

The user can invoke themd{} method in one of two ways: by explicitly invoking the prodere, specifying the desired
operation as the first argument, or implicitly, as if theraevan instance procedure of the same name as the desirediopera
Most simulation scripts will use the latter form, hence, wi# describe that mode of invocation first.

Consider the that the distance computationin SRM is donbdédgdmpiled object; however, it is often used by the intagate
object. It is usually invoked as:

$srmObject distance? (agentAddress)

If there is no instance procedure calididtance? , the interpreter will invoke the instance procedurd&nown {}, defined
in the base class TclObject. The unknown procedure therk@s/o

$srmObject cmd distance? (agentAddress)

to execute the operation through the compiled objeximmand) procedure.

Ofcourse, the user could explicitly invoke the operatioredily. One reason for this might be to overload the openabip
using an instance procedure of the same name. For example,

Agent/SRM/Adaptive instproc distance? addr {

27

$self instvar distanceCache_
if I[info exists distanceCache_($addr)] {

set distanceCache_($addr) | $sel f cnd di stance? $addi
}

set distanceCache_($addr)

We now illustrate how theommand) method usinlASRMAgent::command () as an example.

int ASRMAgent::command(int argc, const char +xconst *argv) {
Tcl& tcl = Tcl::instance();
if (argc == 3) {

if (strcmp(argv[l], "distance?") == 0) {
int sender = atoi(argv[2]);
SRMinfo * sp = get_state(sender);
tcl.tesultf("%f", sp->distance_);
return TCL_OK;

}
}

return (SRMAgent::command(argc, argv));

We can make the following observations from this piece ofecod

e The function is called with two arguments:
The first argumentgrgc) indicates the number of arguments specified in the commaadd the interpreter.
The command line arguments vectardv) consists of
—argv[0] contains the name of the methodmd’.
—argv[l] specifies the desired operation.
— If the user specified any arguments, then they are placagwi2...(argc - 1)]
The arguments are passed as strings; they must be convettexldppropriate data type.

e If the operation is successfully matched, the match shaatlatm the result of the operation using methods described
earlier (Section 3.3.3).

¢ command) itself must return eithef CL_OKor TCL_ERRORo indicate success or failure as its return code.
o Ifthe operationis not matched in this method, it must inviedkparent’s command method, and return the corresponding
result.

This permits the user to concieve of operations as havingdnee inheritance properties as instance procedures or
compiled methods.

In the event that thisommandmethod is defined for a class with multiple inheritance, tregpammer has the liberty
to choose one of two implementations:

1) Either they can invoke one of the parem@@mmandmethod, and return the result of that invocation, or

2) They can each of the parenftemmandmethods in some sequence, and return the result of the fastation that
is successful. If none of them are successful, then theyldieturn an error.

In our document, we call operations executed througlttremand)) instproc-likes. This reflects the usage of these opera-
tions as if they were OTcl instance procedures of an objettcén be very subtly different in their realisation and wesag

28

3.5 Class TclIClass

This compiled classcfass TclClass) is a pure virtual class. Classes derived from this base glasvide two functions:
construct the interpreted class hierarchy to mirror the gited class hierarchy; and provide methods to instantiate n
TclObjects. Each such derived class is associated withtacplar compiled class in the compiled class hierarchy, eaual
instantiate new objects in the associated class.

As an example, consider a class such as the &tas®TcpClass . Itis derived from clas3clClass , and is associated
with the classRenoTcpAgent . It will instantiate new objects in the claBenoTcpAgent . The compiled class hierarchy
for RenoTcpAgent is that it derives fronTcpAgent |, that in turn derives fronigent , that in turn derives (roughly) from
TclObject . RenoTcpClass is defined as

static class RenoTcpClass: public TclClass {

public:
RenoTcpClass() : TclClass("Agent/TCP/Reno”) {}
TclObject * create(int argc, const char xconst * argv) {
return (new RenoTcpAgent());
}
} class_reno;

We can make the following observations from this definition:

1. The class defines only the constructor, and one additioa#iiod, tacreate instances of the associated TclObject.

2. nswill execute theRenoTcpClass constructor for the static variabtdass_reno , whenit is first started. This sets
up the appropriate methods and the interpreted class bigrar

3. The constructor specifies the interpreted class exiyliag Agent/TCP/Reno . This also specifies the interpreted
class hierarchy implicitly.
Recall that the convention insis to use the character slash (/") is a separator. For angrgalassA/B/C/D , the
classA/B/C/D is a sub-class oA/B/C , that is itself a sub-class &{/B , that, in turn, is a sub-class éf Aitself is a
sub-class off clObject
In our case above, the TclClass constructor creates thaseesdAgent/TCP/Reno sub-class oAgent/TCP sub-
class ofAgent sub-class off clObject

4. This class is associated with the cl&noTcpAgent ; it creats new objects in this associated class.
5. TheRenoTcpClass::create method returns TclObjects in the cld8snoTcpAgent .

6. When the user specifieew Agent/TCP/Reno ,the routineRenoTcpClass::create is invoked.
7

. The arguments vectoalgv) consists of
—argv[0] contains the name of the object.

— argVv[1...3] contain$self , $class , and$proc .Sincecreate is called through the instance procedure
create-shadow ,argv[3] containscreate-shadow

—argv[4] contain any additional arguments (passed as a string) ged\by the user.
Theclass Trace illustrates argument handling by TclClass methods.

class TraceClass : public TcIClass {
public:

29

TraceClass() : TclClass("Trace") {}
TclObject * create(int args, const char xconst * argv) {
if (args >= b)
return (new Trace(+argv[4]));
else
return NULL;
}

} trace_class;

A new Trace object is created as

new Trace "X"

Finally, the nitty-gritty details of how the interpretedask hierarchy is constructed:

ga A W N P

»

. The object constructor is executed whesfirst starts.

. This constructor calls the TclClass constructor withrihene of the interpreted class as its argument.

. The TclClass constructor stores the name of the clasgpaads this object into a linked list of the TclClass obgect
. During initialization of the simulatoffcl_Applnit (void) invokesTclClass::bind (void)

. For each object in the list of TcIClass objedig)d () invokesregister {}, specifying the name of the interpreted

class as its argument.

. register {} establishes the class hierarchy, creating the classasate required, and not yet created.

. Finally,bind () defines instance procedurggate-shadow anddelete-shadow for this new class.

3.5.1 How to Bind Static C++ Class Member Variables

In Section 3.4, we have seen how to expose member variabée€ 6+ object into OTcl space. This, however, does not apply
to static member variables of a C++ class. Of course, one metecan OTcl variable for the static member variable ofyver
C++ object; obviously this defeats the whole meaning ofstaembers.

We cannot solve this binding problem using a similar solutis binding in TclObject, which is based on InstVar, because
InstVars in TcICL require the presence of a TclObject. Hogrewe can create a method of the corresponding TclClass and
access static members of a C++ class through the methodsamfriesponding TclClass. The procedure is as follows:

1.
2.

Create your own derived TclClass as described above;

Declare methodsind () andmethod () in your derived class;

3. Create your binding methods in the implementation of yaod () with add_method("your_method") , then

implement the handler imethod () in a similar way as you would do ificlObject::command (). Notice that the
number of arguments passedicClass::method () are different from those passedfolObject::command ().
The former has two more arguments in the front.

As an example, we show a simplified versiorRefcketHeaderClass in ~ngpacket.cc. Suppose we have the following
classPacket which has a static variabledrlen_ that we want to access from OTcl:

30

class Packet {

static int hdrlen_;

Then we do the following to construct an accessor for thisabde:

class PacketHeaderClass : public TcIClass {
protected:
PacketHeaderClass(const char * classname, int hdrsize);
TclObject * create(int argc, const char *Const * argv);
/ * These two implements OTcl class access methbds
virtual void bind();
virtual int method(int argc, const char *Cconst * argv);

k

void PacketHeaderClass::bind()
{

/ * Call to base class bind() must precede add_metheot()
TclClass::bind();

add_method("hdrlen™);
}

int PacketHeaderClass::method(int ac, const char *Const * av)
{
Tcl& tcl = Tcl::instance();
/ = Notice this argument translation; we can then handle thenif iasTclObject::command(3 /
int argc = ac - 2;
const char =+const * argv = av + 2;
if (argc == 2) {
if (strcmp(argv[l], "hdrlen”) == 0) {
tcl.resultf("%d", Packet::hdrlen_);
return (TCL_OK);

}
} else if (argc == 3) {
if (strcmp(argv[l], "hdrlen”) == 0) {
Packet::hdrlen_ = atoi(argv[2]);
return (TCL_OK);
}
}

return TclClass::method(ac, av);
After this, we can then use the following OTcl command to as@nd change valuesBacket::hdrlen_

PacketHeader hdrlen 120
set i [PacketHeader hdrlen]

31

3.6 Class TclCommand

This class€lass TclCommand) provides just the mechanism fosto export simple commands to the interpreter, that can
then be executed within a global context by the interpr@teere are two functions defined imgmisc.cc:ns-random and
ns-version . These two functions are initialized by the functiait_misc (void), defined in agmisc.cc;init_misc

is invoked byTcl_Applnit (void) during startup.

e class VersionCommand defines the commanas-version . It takes no argument, and returns the curmest
version string.

% ns-version ;# get the current version
2.0a12

e class RandomCommand defines the commanus-random . With no argumenths-random returns an integer,
uniformly distributed in the intervdD, 23! — 1].

When specified an argument, it takes that argument as the Habds seed value is 0, the command uses a heuristic
seed value; otherwise, it sets the seed for the random nugelnerator to the specified value.

% ns-random ;# return a random number

2078917053

% ns-random O ;# set the seed heuristically
858190129

% ns-random 23786 # set seed to specified value
23786

Note that, it is generally not advisable to construct topelecommands that are available to the usafe now describe how
to define a new command using the exangiéess say_hello . The example defines the commanid to print the string
“hello world”, followed by any command line arguments sgied by the user. For example,

% hi this is ns [ns-version]
hello world, this is ns 2.0al2

1. The command must be defined within a class derived froroldss TclCommand . The class definition is:
class say hello : public TclCommand {
public:

say_hello();
int command(int argc, const char *const * argv);

2. The constructor for the class must invoke the TclCommamdzuctor with the command as argumeérn;

say_hello() : TclCommand("hi") {}

TheTclCommand constructor sets up "hi" as a global procedure that invdk@€ommand::dispatch_cmd 0.

3. The methoddommand) must perform the desired action.

The method is passed two arguments. The first argunaegt, , contains the number of actual arguments passed by
the user.

32

The actual arguments passed by the user are passed as arargegior &rgv) and contains the following:
—argv[0] contains the name of the commaihnd §.

—argv[l...(argc - 1)] contains additional arguments specified on the commandbiiribe user.
command) is invoked bydispatch_cmd ().

#include <streams.h> / * because we are using stream FQ
int say_hello::command(int argc, const char xconst * argv) {
cout << "hello world:";
for (int i = 1; i < argc; i++)
cout << '’ << argvli;

cout << '\ n}
return TCL_OK;
}

4. Finally, we require an instance of this cla¥slCommand instances are created in the routingé_misc (void).

new say_hello;

Note that there used to be more functions suchsaat andns-now that were accessible in this manner. Most of these
functions have been subsumed into existing classes. licplam ns-at andns-now are accessible through the scheduler
TclObject. These functions are defined imsftcl/lib/ns-lib.tcl.

% set ns [new Simulator] # get new instance of simulator
ol

% $ns now ;# query simulator for current time
0

% %$ns at ... # specify at operations for simulator

3.7 Class EmbeddedTcl

nspermits the development of functionality in either comgit®de, or through interpreter code, that is evaluated talizia-
tion. For example, the scriptdetcl/tcl-object.tcl or the scripts inagtcl/lib. Such loading and evaluation of scripts is done
through objects in thelass EmbeddedTcl

The easiest way to extemis to add OTcl code to eithertelcl/tcl-object.tcl or through scripts in thengtcl/lib directory.
Note that, in the latter casessources fngtcl/lib/ns-lib.tcl automatically, and hence the progmaer must add a couple of lines

to this file so that their script will also get automaticalbusced bynsat startup. As an example, the filagitcl/mcast/srm.tcl
defines some of the instance procedures to run SRMn#tict/lib/ns-lib.tcl, we have the lines:

source tcl/mcast/srm.tcl

to automatically get srm.tcl sourced hgat startup.

Three points to note with EmbeddedTcl code are that firgttiie code has an error that is caught during the eval, tissvill
not run. Secondly, the user can explicitly override any &f ¢ode in the scripts. In particular, they can re-source thieee

33

script after making their own changes. Finally, after addime scripts to rdtcl/lib/ns-lib.tcl, and every time thereafter that
they change their script, the user must recompgéor their changes to take effect. Of course, in most cagbs user can
source their script to override the embedded code.

The rest of this subsection illustrate how to integratevittlial scripts directly intos The first step is convert the script into
an EmbeddedTcl object. The lines below expand ns-lib.dlarate the EmbeddedTcl object instance cadkedis_lib

tclsh bin/tcl-expand.tcl tcl/lib/ns-lib.tcl | \
.[Tcl/tcl2c++ et_ns_lib > gen/ns_tcl.cc

The script, Agbin/tcl-expand.tcl expandss-lib.tcl by replacing alsource lines with the corresponding source files.
The program, telcl/tcl2cc.c, converts the OTcl code into an equivalent Embedda! objectet_ns_lib

During initialization, invoking the methoEmbeddedTcl::load explicitly evaluates the array.

— ~tclcl/tcl-object.tcl is evaluated by the methddl::init (void); Tcl_Applnit () invokesTcl::Init (). The
exact command syntax for the load is:

et _tclobject.load();

— Similarly, ~ndtcl/lib/ns-lib.tcl is evaluated directly bycl_Applnit in ~ngns_tclsh.cc.

et_ns_lib.load();

3.8 Class InstVar

This section describes the internals of thass InstVar . This class defines the methods and mechanisms to bind a C++
member variable in the compiled shadow object to a specified @stance variable in the equivalent interpreted objébe
binding is set up such that the value of the variable can bersatcessed either from within the interpreter, or from with

the compiled code at all times.

There are five instance variable classdass InstVarReal ,class InstVarTime ,class InstVarBandwidth ,
class InstVarint , andclass InstVarBool , corresponding to bindings for real, time, bandwidth, gee and
boolean valued variables respectively.

We now describe the mechanism by which instance variabéesaup. We use theass InstVarReal to illustrate the
concept. However, this mechanism is applicable to all fipesyof instance variables.

When setting up an interpreted variable to access a membabig the member functions of the class InstVar assumme tha
they are executing in the appropriate method executiorestirtherefore, they do not query the interpreter to deteenthe
context in which this variable must exist.

In order to guarantee the correct method execution corgevadriable must only be bound if its class is already estabds
within the interpreter, and the interpreter is currentheggting on an object in that class. Note that the former reguhat
when a method in a given class is going to make its variablessaible via the interpreter, there must be an associated

4The few places where this might not work are when certairaizeis might have to be defined or undefined, or otherwise tig sontains code other
than procedure and variable definitions and executes aotivectly that might not be reversible.

34

class TclIClass (Section 3.5) defined that identifies the@pjate class hierarchy to the interpreter. The appropnagthod
execution context can therefore be created in one of two ways

An implicit solution occurs whenever a new TclObject is d¢eshwithin the interpreter. This sets up the method exeoutio
context within the interpreter. When the compiled shadoyedtof the interpreted TclObject is created, the constnufuir
that compiled object can bind its member variables of thggailio interpreted instance variables in the context ofinely
created interpreted object.

An explicit solution is to define &dind-variables operation within acommand function, that can then be invoked
via thecmd method. The correct method execution context is estaldigherder to execute themd method. Likewise,

the compiled code is now operating on the appropriate shaiject, and can therefore safely bind the required member
variables.

An instance variable is created by specifying the name ofrttegpreted variable, and the address of the member variabl
the compiled object. The constructor for the base clas¥énstreates an instance of the variable in the interpretetthen
sets up a trap routine to catch all accesses to the variaiolegh the interpreter.

Whenever the variable is read through the interpreter,rédgeroutine is invoked just prior to the occurrence of thedtebhe
routine invokes the appropriageet function that returns the current value of the variable.sTWalue is then used to set the
value of the interpreted variable that is then read by therpreter.

Likewise, whenever the variable is set through the intagsréhe trap routine is invoked just after to the write is qdeted.

The routine gets the current value set by the interpreter,mvokes the appropriatet function that sets the value of the
compiled member to the current value set within the intdegre

35

Part Il

Simulator Basics

36

Chapter 4

The Class Simulator

The overall simulator is described by a Tathss Simulator . It provides a set of interfaces for configuring a simulation
and for choosing the type of event scheduler used to driveithelation. A simulation script generally begins by craegtan
instance of this class and calling various methods to creades, topologies, and configure other aspects of the diimula
A subclass of Simulator calle@ldSim is used to supporisvl backward compatibility.

The procedures and functions described in this chapter eafolind in ndtcl/lib/ns-lib.tcl, ~ngscheduler.{cc,h}, and,
~ngheap.h.

4.1 Simulator Initialization

When a new simulation object is created in tcl, the initiaian procedure performs the following operations:

e initialize the packet format (callsreate_packetformat)
e create a scheduler (defaults to a calendar scheduler)

e create a “null agent” (a discard sink used in various places)

The packet format initialization sets up field offsets witpackets used by the entire simulation. It is described irerdetail

in the following chapter on packets (Chapter 12). The scleduns the simulation in an event-driven manner and may be
replaced by alternative schedulers which provide somewiffgrent semantics (see the following section for moreadgt
The null agent is created with the following call:

set nullAgent_ [new Agent/Null]

This agent is generally useful as a sink for dropped packeds a destination for packets that are not counted or redorde

4.2 Schedulers and Events

The simulator is an event-driven simulator. There are pridggdéour schedulers available in the simulator, each ofalihis
implemented using a different data structure: a simpledéikst, heap, calendar queue (default), and a specialdzibed

37

“real-time”. Each of these are described below. The scheduins by selecting the next earliest event, executing it to
completion, and returning to execute the next event.Unttroé used by scheduler is seconds. Presently, the simugator
single-threaded, and only one event in execution at anyndivee. If more than one event are scheduled to execute at the
same time, their execution is performed on the first schedulérst dispatched manner. Simultaneous events are not re-
ordered anymore by schedulers (as it was in earlier versimmd all schedulers should yeild the same order of dispagchi
given the same input.

No partial execution of events or pre-emption is supported.

An evengenerally comprises a “firing time” and a handler functiohe®ctual definition of an eventis found ingscheduler.h:

class Event {

public:
Event * next_; [* event list/
Handler * handler_; /= handler to call when event ready
double time_; / = time at which event is ready/
int uid_; / = unique ID*/
Event() : time_(0), uid_(0) {}

h

| *

* The base class for all event handlers. When an event’s stétedu
* time arrives, it is passed to handle which must consume it.
* j.e., if it needs to be freed it, it must be freed by the handler.
*/
class Handler {
public:
virtual void handle(Event * event);

3

Two types of objects are derived from the bat#ss Event : packets and “at-events”. Packets are described in datail i
the next chapter (Chapter 12.2.1). An at-event is a tcl ptomeexecution scheduled to occur at a particular time. iBhis
frequently used in simulation scripts. A simple example @it is used is as follows:

set ns_ [new Simulator]
$ns_ use-scheduler Heap
$ns_ at 300.5 "$self complete_sim"

This tcl code fragment first creates a simulation object ttlganges the default scheduler implementation to be haspdb
(see below), and finally schedules the funct&self complete_sim to be executed at time 300.5 (seconds)(Note that
this particular code fragment expects to be encapsulatad wbject instance procedure, where the appropriate refer®
$self is correctly defined.). At-events are implemented as ewshtese the handler is effectively an execution of the tcl
interpreter.

4.2.1 The List Scheduler

The list schedulerdlass Scheduler/List) implements the scheduler using a simple linked-list $tmec The list is
kept in time-order (earliest to latest), so event inseraod deletion require scanning the list to find the appropréattry.
Choosing the next event for execution requires trimmindfitise entry off the head of the list. This implementation me®s
event execution in a FIFO manner for simultaneous events.

38

4.2.2 the heap scheduler

The heap scheduleclgss Scheduler/Heap) implements the scheduler using a heap structure. Thistamelis su-
perior to the list structure for a large number of events,res®ition and deletion times are @(logn) for n events. This
implementation imsv2 is borrowed from the MaRS-2.0 simulator [1]; it is belieMbat MaRS itself borrowed the code from
NetSim [14], although this lineage has not been completetified.

4.2.3 The Calendar Queue Scheduler

The calendar queue schedulelas Scheduler/Calendar) uses a data structure analogous to a one-year desk cal-
endar, in which events on the same month/day of multiplesyean be recorded in one day. It is formally described in [6],
and informally described in Jain (p. 410) [15]. The implenaion of Calendar queues itsv2 was contributed by David
Wetherall (presently at MIT/LCS).

4.2.4 The Real-Time Scheduler

The real-time scheduleclass Scheduler/RealTime) attempts to synchronize the execution of events with tiead-

It is currently implemented as a subclass of the list schexdulhe real-time capability in ns is still under developmen
but is used to introduce ams simulated network into a real-world topology to experimesith easily-configured network
topologies, cross-traffic, etc. This only works for relali slow network traffic data rates, as the simulator musthde &
keep pace with the real-world packet arrival rate, and thanekronization is not presently enforced.

4.2.5 Precision of the scheduler clock used in ns

Precision of the scheduler clock can be defined as the smftesscale of the simulator that can be correctly represign
The clock variable for ns is represented by a double. As pelEEE std for floating numbers, a double, consisting of 64 bit
must allocate the following bits between its sign, exporernt mantissa fields.

sign exponent mantissa
1 bit 11 bits 52 bits

Any floating number can be represented in the foAnQ™) where X is the mantissa and n is the exponent. Thus the pyacis
of timeclock in ns can be defined as/2(52)). As simulation runs for longer times the number of remagrtiits to represent
the time educes thus reducing the accuracy. Given 52 bitawsafely say time upto arour2f¢0)) can be represented with
considerable accuracy. Anything greater than that mighbeovery accurate as you have remaining 12 bits to reprelsent t
time change. Howeve(40)) is a very large number and we donot anticipate any problgarténg precision of time in ns.

4.3 Other Methods

TheSimulator class provides a number of methods used to set up the sionldthey generally fall into three categories:
methods to create and manage the topology (which in turnstsred managing the nodes (Chapter 5) and managing the links
(Chapter 6)), methods to perform tracing (Chapter 25), axigdr functions to deal with the scheduler. The following igst

of the non-topology related simulator methods:

39

Simulator
Simulator
Simulator
Simulator
Simulator
Simulator
Simulator
Simulator

instproc
instproc
instproc
instproc
instproc
instproc
instproc
instproc

now
at args

cancel args

run args

halt

flush-trace

create-trace type files src dst
create_packetformat

40

;# return scheduler’s notion of current time
schedule execution of code at specified time
cancel event
;# start scheduler
;# stop (pause) the scheduler
flush all trace object write buffers
create trace object
set up the simulator’s packet format

4.4 Commands at a glance

Synopsis:

ns <otclfile> <arg> <arg>..

Description:

Basic command to run a simulation script in ns.

The simulator (ns) is invoked via the ns interpreter, an exte
vanilla otclsh command shell. A simulation is defined by a OT

(file). Several examples of OTcl scripts can be found under
directory.

The following is a list of simulator commands commonly used i
scripts:
set ns_ [new Simulator]

This command creates an instance of the simulator object.

set now [$ns_ now]

The scheduler keeps track of time in a simulation. This retur
notion of current time.

$ns_ halt

This stops or pauses the scheduler.

$ns_ run

This starts the scheduler.

$ns_ at <time> <event>

This schedules an <event> (which is normally a piece of code)
at the specified <time>.

e.g $ns_ at $opt(stop) "puts NS EXITING..” ; $ns_ halt"
or, $ns_ at 10.0 "$ftp start"

41

nsion of the
cl script
ns/tcl/ex

n simulation

ns scheduler’s

to be executed

$ns_ cancel <event>

Cancels the event. In effect, event is removed from schedule
ready to run events.

$ns_ create-trace <type> <file> <src> <dst> <optional arg:
This creates a trace-object of type <type> between <src> and
and attaches trace-object to <file> for writing trace-outp

as "nam", this creates nam tracefiles; otherwise if op is not
tracefiles are created on default.

$ns_ flush-trace

Flushes all trace object write buffers.

$ns_ gen-map

This dumps information like nodes, node components, links e
given simulation. This may be broken for some scenarios (lik
$ns_ at-now <args>

This is in effect like command "$ns_ at $now $args". Note that
may not work because of tcl's string number resolution.

These are additional simulator (internal) helper function

for developing/changing the ns core code) :

$ns_ use-scheduler <type>

Used to specify the type of scheduler to be used for simulatio
types of scheduler available are List, Calendar, Heap and Re
Calendar is used as default.

$ns_ after <delay> <event>

Scheduling an <event> to be executed after the lapse of time <

$ns_ clearMemTrace

Used for memory debugging purposes.

$ns_ is-started

This returns true if simulator has started to run and false if

42

r's list of

op>

<dst> objects
uts. If op is defined
defined, ns

tc created for a
e wireless).

this function

s (normally used

n. The different

alTime. Currently

delay>.

not.

$ns_ dumpg

Command for dumping events queued in scheduler while schedu ler is halted.

$ns_ create_packetformat

This sets up simulator's packet format.

43

Chapter 5

Nodes and Packet Forwarding

This chapter describes one aspect of creating a topologg ine., creating the nodes. In the next chapter (Chapter 6), we
will describe second aspect of creating the topolagy,connecting the nodes to form links.

Recall that each simulation requires a single instance etldss Simulator to control and operate that simulation.
The class provides instance procedures to create and méragmpology, and internally stores references to eacheém
of the topology. We begin by describing the procedures incthes Simulator (Section 5.1). We then describe the instanc
procedures in the class Node (Section 5.2) to access andtegar individual nodes. We conclude with detailed desorist

of the Classifier (Section 5.4) from which the more compledenobjects are formed.

The procedures and functions described in this chapter edound in -ngtcl/lib/ns-lib.tcl, ~ngtcl/lib/ns-node.tcl,
~ngtcl/lib/ns-rtmodule.tcl, ngrtmodule.{cc,h}, ndclassifier.{cc, h}, ndclassifier-addr.cc,rdclassifier-mcast.cc,ngclassifier-
mpath.cc, and, rSreplicator.cc.

5.1 Node Basics

The basic primitive for creating a node is

set ns [new Simulator]
$ns node

The instance proceduregode constructs a node out of more simple classifier objects (@eé&t4). The Node itself is a
standalone class in OTcl. However, most of the componenteeohode are themselves TclObjects. The typical struc-
ture of a (unicast) node is as shown in Figure 5.1. This sirsplgcture consists of two TclObjects: an address classifer
(classifer_) and a port classifierdfnux_). The function of these classifiers is to distribute incognpackets to the
correct agent or outgoing link.

All nodes contain at least the following components:
e an address ad_ , monotonically increasing by 1 (from initial value 0) acsdbe simulation namespace as nodes are
created,

e alist of neighborsrfeighbor_),

44

Port
Classifier

Addr
Classifier
Node entry O
entry
classifier_

Figure 5.1: Structure of a Unicast Node. Notice that entiy simply a label variable instead of a real object, e.g., the
classifier_.

e alist of agentsdgent_),
e a node type identifiemodetype_), and

e arouting module (described in Section 5.5 below)

By default, nodes imsare constructed for unicast simulations. In order to enaticast simulation, the simulation should
be created with an option “-multicast on”, e.g.:

set ns [new Simulator -multicast on]

The internal structure of a typical multicast node is showhkigure 5.2.
When a simulation uses multicast routing, the highest bihefaddress indicates whether the particular address isteast

address or an unicast address. If the bit is 0, the addresssexgis a unicast address, else the address representscashul
address.

45

IMULTICAST dmux @
INODE . J
| classifier

Replicators

Multicast
Classifier

<§2,G2>

Figure 5.2: Internal Structure of a Multicast Node.

5.2 Node Methods: Configuring the Node

Procedures to configure an individual node can be classifted i
— Control functions
— Address and Port number management, unicast routingitunsct
— Agent management

— Adding neighbors

We describe each of the functions in the following paragsaph

Control functions

1. $node entry returns the entry point for a node. This is the first elementtviwill handle packets arriving at that
node.

46

The Node instance variablentry_ , stores the reference this element. For unicast nodessttiis address classifier
that looks at the higher bits of the destination address. if$tance variableslassifier_ contains the reference
to this classifier. However, for multicast nodes, the enwinpis theswitch_ which looks at the first bit to decide
whether it should forward the packet to the unicast classiiethe multicast classifier as appropriate.

2. $node reset will reset all agents at the node.

Address and Port number management The procedur&node id returns the node number of the node. This number
is automatically incremented and assigned to each nodesati@n by the class Simulator methdkhs node .The class
Simulator also stores an instance variable drradpde , indexed by the node id, and contains a reference to the nitle w
that id.

The procedur&node agent (port) returns the handle of the agent at the specified port. If natesgehe specified port
number is available, the procedure returns the null string.

The proceduralloc-port returns the next available port number. It uses an instandable,np_, to track the next
unallocated port number.

The proceduresadd-route andadd-routes , are used by unicast routing (Chapter 28) to add routes talptgpthe
classifier_ The usage syntax $node add-route (destination id y (TclObject). TclObject is the
entry ofdmux_, the port demultiplexer at the node, if the destination ithesssame as this node’s id, it is often the head of a
link to send packets for that destination to, but could als¢he the entry for other classifiers or types of classifiers.

$node add-routes (destination id) (TclObjects) is used to add multiple routes to the same destination that
must be used simultaneously in round robin manner to spteathandwidth used to reach that destination across all links
equally. Itis used only if the instance varialheltiPath_ is setto 1, and detailed dynamic routing strategies areg@tef
and requires the use of a multiPath classifier. We describétplementation of the multiPath classifier later in thigoter
(Section 5.4); however, we defer the discussion of multipauting (Chapter 28) to the chapter on unicast routing.

The dual ofadd-routes {} is delete-routes {}. It takes the id, a list ofTclObjects , and a reference to the simula-
tor's nullagent . Itremoves the TclObjects in the list from the installedtesuin the multipath classifier. If the route entry
in the classifier does not point to a multipath classifierrthgine simply clears the entry froplassifier_ , and installs
thenullagent inits place.

Detailed dynamic routing also uses two additional methdls: instance proceduigit-routing {} sets the instance
variablemultiPath_ to be equal to the class variable of the same name. It alsoadeference to the route controller
object at that node in the instance variabt€bject . The proceduretObject? {} returns the handle for the route
object at the node.

Finally, the proceduratf-changed {} is invoked by the network dynamics code if a link incident the node changes
state. Additional details on how this procedure is used aeudsed later in the chapter on network dynamics (Chapfer 3

Agent management Given an(agen}, the procedurattach {} will add the agent to its list ofagents_ , assign a port
number the agent and set its source address, set the tatgetagent to be itd.€., the node’sentry {}, and add a pointer
to the port demultiplexer at the noddniux_) to the agent at the corresponding slot in timeux__ classifier.

Converselydetach {}will remove the agent fromagents_ , and point the agent’s target, and the entry in the rdvdax_
to nullagent

li.e, an instance variable of a class that is also an array variabl

47

Tracking Neighbors Each node keeps a list of its adjacent neighbors in its iestaariableneighbor_ . The procedure
add-neighbor {} adds a neighbor to the list. The procedureighbors {} returns this list.

5.3 Node Configuration Interface

NOTE: This API, especially its internal implementation whichmgssy at this point, is still a moving target. It may undergo
significant changes in the near future. However, we will dolmst to maintain the same interface as described in thigteha
In addition, this API currently does not cover all existingdes in the old format, namely, nodes built using inheritgaand
parts of mobile IP. It is principally oriented towards wiesk and satellite simulation. [Sep 15, 2000; updated JubE] 20

Simulator::node-config {} accommodates flexible and modular construction of diffiernode definitions within the
same base Node class. For instance, to create a mobile npdbleaf wireless communication, one no longer needs a
specialized node creation command, edsgv-create-mobile-node {}; instead, one changes default configuration

parameters, such as

$ns node-config -adhocRouting dsdv

before actually creating the node with the comma$ids node . Together with routing modules, this allows one to com-
bine “arbitrary” routing functionalities within a singleode without resorting to multiple inheritance and othercfanbject
gimmicks. We will describe this in more detail in Section .5The functions and procedures relevant to the new node APIs
may be found in agtcl/lib/ns-node.tcl.

The node configuration interface consists of two parts. Tits¢ fiiart deals with node configuration, while the second part
actually creates nodes of the specified type. We have alssstythe latter in Section 5.1, in this section we will désxthe
configuration part.

Node configuration essentially consists of defining thesd#fit node characteristics before creating them. They roagist

of the type of addressing structure used in the simulatiefinohg the network components for mobilenodes, turning on o
off the trace options at Agent/Router/MAC levels, selegtine type of adhoc routing protocol for wireless nodes ontiegj
their energy model.

As an example, node-configuration for a wireless, mobileerthdt runs AODV as its adhoc routing protocol in a hierarahic
topology would be as shown below. We decide to turn tracingtdhe agent and router level only. Also we assume a topology
has been instantiated with "set topo [new Topography]". idwe-config command would look like the following:

$ns_ node-config -addressType hierarchical \
-adhocRouting AODV \
-lIType LL \
-macType Mac/802_11 \
-ifqType Queue/DropTail/PriQueue \
-ifgLen 50 '\
-antType Antenna/OmniAntenna \
-propType Propagation/TwoRayGround \
-phyType Phy/WirelessPhy \
-topologylnstance $topo \
-channel Channel/WirelessChannel \

-agentTrace ON \
-routerTrace ON \
-macTrace OFF \

-movementTrace OFF

48

The default values for all the above options are NULL exceptressingType whose default value is flat. The option
-reset can be used to reset all node-config parameters to their it gédue.

Note that the config command can be broken down into sepématelike

$ns_ node-config -addressingType hier
$ns_ node-config -macTrace ON

The options that need to be changed may only be called. Fon@raafter configuring for AODV mobilenodes as shown
above (and after creating AODV mobilenodes), we may condidor AODV base-station nodes in the following way:

$ns_ node-config -wiredRouting ON

While all other features for base-station nodes and mobden are same, the base-station nodes are capable of witauro
while mobilenodes are not. In this way we can change nodé&gwation only when it is required.

All node instances created after a given node-configurationmand will have the same property unless a part or all of the

node-config command is executed with different parametielega And all parameter values remain unchanged unless they
are expicitly changed. So after creation of the AODV bas¢iad and mobilenodes, if we want to create simple nodes, we

will use the following node-configuration command:

$ns_ node-config -reset

This will set all parameter values to their default settingiet basically defines configuration of a simple node.

Currently, this type of node configuration is oriented tosgawireless and satellite nodes. Table 5.1 lists the aveilaj-
tions for these kinds of nodes. The example scripistel/ex/simple-wireless.tcl andndtcl/ex/sat-mixed.tcl provide usage
examples.

5.4 The Classifier

The function of a node when it receives a packet is to exantiaetcket'’s fields, usually its destination address, and on
occasion, its source address. It should then map the vatuas putgoing interface object that is the next downstream
recipient of this packet.

In ns this task is performed by a simpdtassifierobject. Multiple classifier objects, each looking at a sfiegortion of the
packet forward the packet through the node. A nodesinses many different types of classifiers for different pse® This
section describes some of the more common, or simpler,ifitasshjects inns

We begin with a description of the base class in this sectibhe next subsections describe the address classifier (Sec-
tion 5.4.1), the multicast classifier (Section 5.4.2), thdtipath classifier (Section 5.4.3), the hash classifiec(i8e 5.4.4),
and finally, the replicator (Section 5.4.5).

A classifier provides a way to match a packet against somedogtiteria and retrieve a reference to another simulation
object based on the match results. Each classifier contdaideof simulation objects indexed Blot number The job of

a classifier is to determine the slot number associated witc@ived packet and forward that packet to the object retee

by that particular slot. The C+e¢lass Classifier (defined in ndclassifier.h) provides a base class from which other
classifiers are derived.

49

class Classifier :

public:

option available values default
general

addressType flat, hierarchical flat

MPLS ON, OFF OFF
both satellite- and wireless-oriented

wiredRouting ON, OFF OFF

IType LL, LL/Sat

macType Mac/802_11, Mac/Csma/Ca, Mac/Sat,

Mac/Sat/UnslottedAloha, Mac/Tdma
ifgType Queue/DropTail, Queue/DropTail/PriQueue
phyType Phy/WirelessPhy, Phy/Sat

wireless-oriented
adhocRouting DIFFUSION/RATE, DIFFUSION/PROB, DSDV,

DSR, FLOODING, OMNIMCAST, AODV, TORA
propType Propagation/TwoRayGround, Propagation/Shadow|ng§"
proplnstance Propagation/TwoRayGround, Propagation/Shadow|ng"
antType Antenna/OmniAntenna
channel Channel/WirelessChannel, Channel/Sat
topolnstance <topology file>
mobilelP ON, OFF OFF
energyModel EnergyModel
initialEnergy <value in Joules>
rxPower <value in W>
txPower <value in W>
idlePower <value in W>
agentTrace ON, OFF OFF
routerTrace ON, OFF OFF
macTrace ON, OFF OFF
movementTrace | ON, OFF OFF
errProc UniformErrorProc
FECProc ? ?
toraDebug ON, OFF OFF

satellite-oriented
satNodeType polar, geo, terminal, geo-repeater
downlinkBW <bandwidth value, e.g. "2Mb">

Table 5.1: Available options for node configuration (se8ib¢hs-lib.tcl).

protected:

public NsObject {

~Classifier();
void recv(Packet * Handler = h = 0);
Classifier();
void install(int slot, NsObject *);

void clear(int slot);

virtual int command(int argc, const char
virtual int classify(Packet
void alloc(int);

NsObject **
int nslot_;
int maxslot_;

slot_; /

xconst) = O;

* table that

50

*const * argv);

maps slot number to a NsObjett

Theclassify () method is pure virtual, indicating the claStassifier is to be used only as a base class. @hec ()
method dynamically allocates enough space in the tableltbthe specified number of slots. Thestall () andclear ()
methods add or remove objects from the table. Téwy () method and the OTcl interface are implemented as follaws i
~ngclassifier.cc:

| *
* objects only ever see "packet" events, which come either
* from an incoming link or a local agent (i.e., packet source).

* |
void Classifier::recv(Packet * p, Handler =)
{
NsObject * node;
int cl = classify(p);
if (c| < 0 || cl >= nslot_ || (hode = slot_[cl]) == 0) {
Tcl::instance().evalf("%s no-slot %d", name(), cl);
Packet::free(p);
return;
}
node->recv(p);
}
int Classifier::command(int argc, const char *Cconst * argv)
{
Tcl& tcl = Tcl::instance();
if (argc == 3) {
| *
* S$classifier clear $slot
*/

if (strcmp(argv[l], "clear") == 0) {
int slot = atoi(argv[2]);
clear(slot);
return (TCL_OK);
}
[x
* $classifier installNext $node
* [
if (strcmp(argv[l], "installNext") == 0) {
int slot = maxslot_ + 1,
NsObject * node = (NsObject =)TclObject::lookup(argv[2]);
install(slot, node);
tcl.resultf("%u", slot);
return TCL_OK;
}
if (strcmp(argv[l], "slot") == 0) {
int slot = atoi(argv[2]);
if ((slot >= 0) || (slot < nslot)) {
tcl.resultf("%s", slot_[slot]->name());
return TCL_OK;

tcl.resultf("Classifier: no object at slot %d", slot);
return (TCL_ERROR);

}
} else if (argc == 4) {
| x

51

* $classifier install $slot $node
*/
if (strcmp(argv[l], "install") == 0) {
int slot = atoi(argv[2]);
NsObject * node = (NsObject =*)TclObject::lookup(argv[3]);
install(slot, node);
return (TCL_OK);
}
}

return (NsObject::command(argc, argv));

When a classifierecv ()’s a packet, it hands it to thelassify () method. This is defined differently in each type of
classifier derived from the base class. The usual formatithfeclassify () method to determine and return a slot index
into the table of slots. If the index is valid, and points toadidl TclObject, the classifier will hand the packet to thajeah
using that object'secv () method. If the index is not valid, the classifier will inkhe instance procedune-slot {} to
attempt to populate the table correctly. However, in theebidassClassifier::no-slot {} prints and error message
and terminates execution.

Thecommand)) method provides the following instproc-likes to the ipeter:

e clear {(slot} clears the entry in a particular slot.
e installNext { (object} installs the object in the next available slot, and retutresslot number.

Note that this instproc-like is overloaded by an instan@epdure of the same name that stores a reference to the object
stored. This then helps quick query of the objects instatigtie classifier from OTcl.

e slot {(index} returns the object stored in the specified slot.
e install {(index), (objec}} installs the specifiedobject at the slot(indeX.

Note that this instproc-like too is overloaded by an inseapmcedure of the same name that stores a reference to the
object stored. This is also to quickly query of the objectatied in the classifier from OTcl.

5.4.1 Address Classifiers

An address classifier is used in supporting unicast packetafaling. It applies a bitwise shift and mask operation to a
packet’s destination address to produce a slot number. [Bhésmber is returned from thelassify () method. The
class AddressClassifier (defined in -ndclassifier-addr.cc) ide defined as follows:

class AddressClassifier : public Classifier {

public:

AddressClassifier() : mask_(~0), shift_(0) {
bind("mask_", (int *)&mask_);
bind("shift_", &shift);

}

protected:

int classify(Packet xconst p) {

IPHeader =*h = IPHeader::access(p->bits());
return ((h->dst() >> shift) & mask_);

}

nsaddr_t mask_;

int shift_;

52

The class imposes no direct semantic meaning on a packstisaton address field. Rather, it returns some numbertsf bi
from the packet'sist_ field as the slot number used in tldassifier::recv () method. Themask_ andshift_
values are set through OTcl.

5.4.2 Multicast Classifiers

The multicast classifier classifies packets according th botirce and destination (group) addresses. It maintaicisadnged
hash) table mapping source/group pairs to slot numbers.nveheacket arrives containing a source/group unknown to the
classifier, it invokes an Otcl proceduxmde::new-group {}to add an entry to its table. This OTcl procedure may use the
methodset-hash to add new (source, group, slot) 3-tuples to the classiftabide. The multicast classifier is defined in
~ng'classifier-mcast.cc as follows:

static class MCastClassifierClass : public TcIClass {
public:
MCastClassifierClass() : TclClass("Classifier/Multica st) {}
TclObject = create(int argc, const char *const * argv) {
return (new MCastClassifier());

}

} class_mcast_classifier;

class MCastClassifier : public Classifier {

public:
MCastClassifier();
~MCastClassifier();
protected:
int command(int argc, const char *const * argv);
int classify(Packet *const p);
int findslot();
void set_hash(nsaddr_t src, nsaddr_t dst, int slot);
int hash(nsaddr_t src, nsaddr_t dst) const {
u_int32_t s = src " dst;
s A= s >> 16;
s A= s >> §;
return (s & O0xff);
}
struct hashnode {
int slot;
nsaddr_t src;
nsaddr_t dst;
hashnode * next;
2
hashnode * ht_[256];
const hashnode =+ lookup(nsaddr_t src, nsaddr_t dst) const;
h
int MCastClassifier::classify(Packet *const pkt)
{

IPHeader =*h = IPHeader::access(pkt->bits());
nsaddr_t src = h->src() >> 8; / * XX /

53

nsaddr_t dst = h->dst();
const hashnode =* p = lookup(src, dst);

if (p ==0) {
| x

+ Didn’'t find an entry.
* Call tcl exactly once to install one.
* |f tcl doesn’t come through then fail.

*/
Tcl::instance().evalf("%s new-group %u %u", name(), Src, dst);
p = lookup(src, dst);
if (p == 0)
return (-1);
return (p->slot);
}
The class MCastClassifier mplements a chained hash table and applies a hash functibotbrthe packet source

and destination addresses. The hash function returnsdahawginber to index thelot_ table in the underlying object. A
hash miss implies packet delivery to a previously-unknovaug; OTcl is called to handle the situation. The OTcl code is
expected to insert an appropriate entry into the hash table.

5.4.3 MultiPath Classifier

This object is devised to support equal cost multipath fodivey, where the node has multiple equal cost routes to thesa
destination, and would like to use all of them simultanepudlhis object does not look at any field in the packet. With
every succeeding packet, it simply returns the next filled isi round robin fashion. The definitions for this classifiee in
~ng'classifier-mpath.cc, and are shown below:

class MultiPathForwarder : public Classifier {

public:
MultiPathForwarder() : ns_(0), Classifier() {}
virtual int classify(Packet * const) {
int cl;
int fail = ns_;
do {
cl = ns_++;
ns_ %= (maxslot_ + 1);
} while (slot_[cl] == 0 && ns_ != fail);
return cl;
_ }
private:
int ns_; / * next slot to be used. Probably a misnomef?
h

5.4.4 Hash Classifier

This object is used to classify a packet as a member of a pkatifow. As their name indicates, hash classifiers use a
hash table internally to assign packets to flows. These tthge used where flow-level information is required (e.g. in

54

flow-specific queuing disciplines and statistics collet}ioSeveral “flow granularities” are available. In partiaylpack-

ets may be assigned to flows based on flow ID, destination ssldseurce/destination addresses, or the combination of
source/destination addresses plus flow ID. The fields aeddssthe hash classifier are limited to fipe header:src(),

dst(), flowid() (seeip.h).

The hash classifier is created with an integer argument fsfregithe initial size of its hash table. The current hashdab
size may be subsequently altered with tkeize method (see below). When created, the instance varishiis and
mask__ are initialized with the simulator’s curreModeShift andNodeMask values, respectively. These values are retrieved
from theAddrParams object when the hash classifier is instantiated. The hasifier will fail to operate properly if the
AddrParams structure is not initialized. The following constructorgaised for the various hash classifiers:

Classifier/Hash/SrcDest
Classifier/Hash/Dest
Classifier/Hash/Fid
Classifier/Hash/SrcDestFid

The hash classifier receives packets, classifies them aongdaitheir flow criteria, and retrieves the classifsotindicating

the next node that should receive the packet. In severalroistances with hash classifiers, most packets should beiatezb
with a single slot, while only a few flows should be directeseglhere. The hash classifier includedediault_ instance
variable indicating which slot is to be used for packets ttmhot match any of the per-flow criteria. THefault . may be
set optionally.

The methods for a hash classifier are as follows:

$hashcl set-hash buck src dst fid slot
$hashcl lookup buck src dst fid
$hashcl del-hash src dst fid

$hashcl resize nbuck

The set-hash () method inserts a new entry into the hash table within thehhdassifier. Théduck argument specifies
the hash table bucket number to use for the insertion of thisze When the bucket number is not knowbyck may be
specified aquto . Thesrc, dst andfid arguments specify the IP source, destination, and flow IDxetmatched for
flow classification. Fields not used by a particular class{ieg. specifyingrc for a flow-id classifier) is ignored. Thaot
argument indicates the index into the underlying slot tabkbe baseClassifier object from which the hash classifier is
derived. Thdookup function returns the name of the object associated with Wenduck/src/dst/fid tuple. The
buck argument may bauto , as forset-hash . Thedel-hash function removes the specified entry from the hash table.
Currently, this is done by simply marking the entry as inagtso it is possible to populate the hash table with unusetken
Theresize function resizes the hash table to include the number ofdtiscdpecified by the argumeantuck .

Provided no default is defined, a hash classifier will perfaroall into OTcl when it receives a packet which matches no flow
criteria. The call takes the following form:

$obj unknown-flow src dst flowid buck

Thus, when a packet matching no flow criteria is received nile¢hodunknown-flow of the instantiated hash classifier
objectis invoked with the source, destination, and flow iltlEérom the packet. In addition, theick field indicates the hash
bucket which should contain this flow if it were inserted gsget-hash . This arrangement avoids another hash lookup
when performing insertions into the classifier when the letickalready known.

55

5.4.5 Replicator

The replicator is different from the other classifiers we éaescribed earlier, in that it does not use the classifytfanc
Rather, it simply uses the classifier as a table sfots; it overloads theecv () method to produce copies of a packet, that
are delivered to alh objects referenced in the table.

To support multicast packet forwarding, a classifier reiogja multicast packet from sourdedestined for grouggs computes

a hash functio (.S, G) giving a “slot number” in the classifier's object table. In licast delivery, the packet must be copied
once for each link leading to nodes subscribe@tminus one. Production of additional copies of the packeeisggmed by
aReplicator class, defined ineplicator.cc

A replicator is not really a packet classifier but

we simply find convenience in leveraging its slot table.
(this object used to implement fan-out on a multicast
* router as well as broadcast LANS)

* F X F

* |
class Replicator : public Classifier {
public:
Replicator();
void recv(Packet *, Handler = h = 0);
virtual int classify(Packet * const) {};
protected:
int ignore_;
h
void Replicator::recv(Packet * p, Handler =)
{
IPHeader =iph = IPHeader::access(p->bits());
if (maxslot_ < 0) {
if (lignore_)
Tcl::instance().evalf("%s drop %u %u", name(),
iph->src(), iph->dst());
Packet::free(p);
return;
}
for (int i = 0; i < maxslot_; ++i) {
NsObject * o = slot_]i];
if (0 !=0)
0->recv(p->copy());
}
[* we know that maxslot is non-nu/
slot_[maxslot_]->recv(p);
}

As we can see from the code, this class does not really ojgsadkets. Rather, it replicates a packet, one for each @ntry
its table, and delivers the copies to each of the nodes listdtk table. The last entry in the table gets the “originaltket.
Since theclassify () method is pure virtual in the base class, the replicatfinde an emptglassify () method.

56

5.5 Routing Module and Classifier Organization

As we have seen, asnode is essentially a collection of classifiers. The sintptesle (unicast) contains only one address
classifier and one port classifier, as shown in Figure 5.1. Wime extends the functionality of the node, more classiéiszs
added into the base node, for instance, the multicast nawersim Figure 5.2. As more function blocks is added, and edéch o
these blocks requires its own classifier(s), it becomes rtapbfor the node to provide @niforminterface to organize these
classifiers and to bridge these classifiers to the route ctatipo blocks.

The classical method to handle this case is through classitahce. For instance, if one wants a node that suppontariola-

cal routing, one simply derive a Node/Hier from the base rextboverride the classifier setup methods to insert hieigath
classifiers. This method works well when the new functiorck#oare independent and cannot be “arbitrarily” mixed. For
instance, both hierarchical routing and ad hoc routing heé bwn set of classifiers. Inheritance would require thathave
Node/Hier that supports the former, and Node/Mobile forl#titer. This becomes slightly problematic when one wantadin
hoc routing node that supports hierarchical routing. Is giinple case one may use multiple inheritance to solve thtdgm,

but this quickly becomes infeasible as the number of suchbtiomn blocks increases.

The only method to solve this problem is object compositibime base node needs to define a set of interfaces for classifier
access and organization. These interfaces should

¢ allow individual routing modules that implement their owlagsifiers to insert their classifiers into the node;
¢ allow route computation blocks to populate routes to cfassiin all routing modules that need this information,

e provide a single point of management for existing routingioles.

In addition, we should also define a uniform interface fortigimodules to connect to the node interfaces, so as togovi
a systematic approach to extending node functionalityhimgection we will describe the design of routing modulewal
as that of the corresponding node interfaces.

5.5.1 Routing Module
In general, every routing implementationris consists of three function blocks:

e Routing agenéxchanges routing packet with neighbors,

e Route logiauses the information gathered by routing agents (or theggtopology database in the case of static routing)
to perform the actual route computation,

e Classifierssit inside a Node. They use the computed routing table tmparpacket forwarding.

Notice that when implementing a new routing protocol, onesdoot necessarily implement all of these three blocks. For
instance, when one implements a link state routing protaea simply implement a routing agent that exchanges irdtion

in the link state manner, and a route logic that does Dijkstrahe resulting topology database. It can then use the same
classifiers as other unicast routing protocols.

When a new routing protocol implementation includes moentbne function blocks, especially when it contains its own
classifier, it is desirable to have another object, which aleacrouting modulethat manages all these function blocks and to
interface with node to organize its classifiers. Figure Hhi@s functional relation among these objects. Notice thating
modules may have direct relationship with route computalilocks, i.e., route logic and/or routing agents. Howexaute
computation MAY not install their routes directly throughr@uting module, because there may exists other modules that

57

Routing

Modules
RtModule/Base <«———| Base :J Node J
routing add-route (routing add-route < Route
J i > S Computation

delete-route Hier i delete-route P
transport . transport A ~ User

attac Mcast >la—> attac < Simulation

detach detach
Management Classifier

geme MPLS - !
register insert-entry
unregister install-entry
. \ install-demux

Figure 5.3: Interaction among node, routing module, andimgu The dashed line shows the details of one routing module

are interested in learning about the new routes. This is mejairement, however, because it is possible that some rout
computation is specific to one particular routing module jiistance, label installation in the MPLS module.

A routing module contains three major functionalities:

1. A routing module initializes its connection to a node tigh register {}, and tears the connection down via
unregister {}. Usually, in register {} a routing module (1) tells the node whether it interestkimowing route
updates and transport agent attachments, and (2) creaidagsifiers and install them in the node (details described
in the next subsection). lanregister {} a routing module does the exact opposite: it deletes itssifiers and
removes its hooks on routing update in the node.

2. If arouting module is interested in knowing routing upgathe node will inform the module via
RtModule::add-route {dst, target} andRtModule::delete-route {dst, nullagent}.

3. If a routing module is interested in learning about tramspgent attachment and detachment in a node, the node will
inform the module via
RtModule::attach {agent, port} andRtModule::detach {agent, nullagent}.

There are two steps to write your own routing module:

1. You need to declare the C++ part of your routing module (se#rtmodule.{cc,h}). For many modules this only
means to declare a virtual methadme() which returns a string descriptor of the module. Howevey gee free
to implement as much functionality as you like in C++; if nesary you may later move functionality from OTcl into
C++ for better performance.

2. You need to look at the above interfaces implemented im#se routing module (seegtcl/lib/ns-rtmodule.tcl) and
decide which one you'll inherit, which one you'll overridend put them in OTcl interfaces of your own module.

There are several derived routing module examplesngtel/lib/ns-rtmodule.tcl, which may serve as templates your
modules.

Currently, there are six routing modules implementedsn

58

Module Name | Functionality

RtModule/Base | Interface to unicast routing protocols. Provide basic fiomality to add/delete route and
attach/detach agents.

RtModule/Mcast | Interface to multicast routing protocols. Its only purp@sestablishes multicast classifier
All other multicast functionalities are implemented astjimecs of Node. This should bg
converted in the future.

RtModule/Hier | Hierarchical routing. It's a wrapper for managing hierdoeth classifiers and route insta|
lation. Can be combined with other routing protocols, ead.hoc routing.

RtModule/Manual| Manual routing.
RtModule/VC Uses virtual classifier instead of vanilla classifier.

RtModule/MPLS | Implements MPLS functionality. This is the only existing dube that is completely selft
contained and does not pollute the Node namespace.

2

Table 5.2: Available routing modules

5.5.2 Node Interface
To connect to the above interfaces of routing module, a nookdges a similar set of interfaces:

e In order to know which module to register during creatiorg ttiode class keeps a list of modules as a class variable.
The default value of this list contains only the base routirgfule. The Node class provides the following tprocs
to manipulate this module list:

Node::enable-module {[name]} If module RtModule/[name] exists, this proc puts [name] into the module
list.
Node::disable-module {[name]} If [name]is in the module list, remove it from thesti

When a node is created, it goes through the module list of thaeMtlass, creates all modules included in the list, and
register these modules at the node.

After a node is created, one may use the following instprodist modules registered at the node, or to get a handle of
a module with a particular name:

Node::list-modules {} Return a list of the handles (shadow objects) of all regietd modules.

Node::get-module {[name]} Return a handle of the registered module whose narathes the given one. Notice
that any routing module can only have a single instancetexgid at any node.

e To allow routing modules register their interests of rogtupdates, a node object provide the following instprocs:

Node::route-notify {module} Add module into route update notification list.
Node::unreg-route-notify {module} Removemodule from route update naotification list.
Similarly, the following instprocs provide hooks on thea&ttment of transport agents:
Node::port-notify {module} Add module into agent attachment notification list.
Node::unreg-port-notify {module} Removemodule from agent attachment notification list.

Notice that in all of these instprocs, parameterdule should be a module handle instead of a module name.
e Node provides the following instprocs to manipulate itsr@dd and port classifiers:

— Node:insert-entry {module, clsfr, hook} inserts classifiesfr into the entry point of the node. It also
associates the new classifier wittodule so that if this classifier is removed latenpdule will be unregistered.
If hook is specified as a number, the existing classifier will be ireskinto slothook of the new classifier. In
this way, one may establish a “chain” of classifiers; see leigu2 for an exampleNOTE: clsfr needs NOT

59

to be a classifier. In some cases one may want to put an agerty @lass derived from Connector, at the entry
point of a node. In such cases, one simply supphieget to parametehook .

— Node:install-entry {module, clsfr, hook} differs fromNode::insert-entry in that it deletes the
existing classifier at the node entry point, unregistersamspciated routing module, and installs the new classifier
at that point. Ifhook is given, and the old classifier is connected into a clasgifiain, it will connect the chain
into slothook of the new classifier. As above,lifbook equals taarget |, clsfr will be treated as an object
derived from Connector instead of a classifier.

— Node::install-demux {demux, port} places the given classifidemux as the default demultiplexer. If
port is given, it plugs the existing demultiplexer into spmirt of the new one. Notice that in either case it does
not delete the existing demultiplexer.

5.6 Commands at a glance

Following is a list of common node commands used in simutesicripts:

$ns_ node [<hier_addr>]

Command to create and return a node instance. If <hier_dddjiwen, assign the node address to be <hier_addr>. Nate tha
the latter MUST only be used when hierarchical addressieg#bled via eitheset-address-format

hierarchical {} or node-config -addressType hierarchical {1

$ns_ node-config -<config-parameter> <optional-val>

This command is used to configure nodes. The different cqydigmeters are addressingType, different type of the mktwo
stack components, whether tracing will be turned on or nobifelP flag is truned or not, energy model is being used or not
etc. An option -reset maybe used to set the node configuritibs default state. The default setting of node-configf in®
values are specified, creates a simple node (base class Witkléat addressing/routing. For the syntax details see

Section 5.3.

$node id
Returns the id number of the node.

$node node-addr
Returns the address of the node. In case of flat addressengote address is same as its node-id. In case of hierarchical
addressing, the node address in the form of a string (viz.31) is returned.

$node reset
Resets all agent attached to this node.

$node agent <port_num>
Returns the handle of the agent at the specified port. If notagéound at the given port, a null string is returned.

$node entry
Returns the entry point for the node. This is first object thextdles packet receiving at this node.

$node attach <agent> <optional:port_num>
Attaches the <agent> to this node. Incase no specific porbeuis passed, the node allocates a port number and binds the
agent to this port. Thus once the agent is attached, it res@iackets destined for this host (node) and port.

$node detach <agent> <null_agent>

This is the dual of "attach" described above. It detacheag®at from this node and installs a null-agent to the post thi
agent was attached. This is done to handle transit paclkatetdy be destined to the detached agent. These on-the-fly
packets are then sinked at the null-agent.

60

$node neighbors
This returns the list of neighbors for the node.

$node add-neighbor <neighbor_node>
This is a command to adcheighbor_node> to the list of neighbors maintained by the node.

Following is a list of internal node methods:

$node add-route <destination_id> <target>

This is used in unicast routing to populate the classifiee fnget is a Tcl object, which may be the entrydafux_ (port
demultiplexer in the node) incase tkdestination_id> is same as this node-id. Otherwise it is usually the headeof th
link for that destination. It could also be the entry for atbkassifiers.

$node alloc-port <null_agent>
This returns the next available port number.

$node incr-rtgtable-size
The instance variablgsize is used to keep track of size of routing-table in each nodés ddmmand is used to
increase the routing-table size every time an routingyaetadded to the classifiers.

There are other node commands that supports hierarchigiihgp detailed dynamic routing, equal cost multipath nogit

manual routing, and energy model for mobile nodes. Thesetret methods described earlier can be found in
~ngtcl/lib/ns-node.tcl and r'tcl/lib/ns-mobilenode.tcl.

61

Chapter 6

Links: Simple Links

This is the second aspect of defining the topology. In theipus/chapter (Chapter 5), we had described how to create the
nodes in the topology ins We now describe how to create the links to connect the naugs@mplete the topology. In this
chapter, we restrict ourselves to describing the simplatdoipoint links.nssupports a variety of other media, including an
emulation of a multi-access LAN using a mesh of simple lirdesd other true simulation of wireless and broadcast media.
They will be described in a separate chapter. The CBQlinleisvdd from simple links and is a considerably more complex
form of link that is also not described in this chapter.

We begin by describing the commands to create a link in tlis@® As with the node being composed of classifiers, a #mpl
link is built up from a sequence of connectors. We also bridégcribe some of the connectors in a simple link. We then
describe the instance procedures that operate on the gsarimaponents of defined by some of these connectors (Sectipn 6
We conclude the chapter with a description the connectealfSection 6.2), including brief descriptions of the coomm
link connectors.

Theclass Link is a standalone class in OTcl, that provides a few simpleifivies. Theclass SimpleLink provides
the ability to connect two nodes with a point to point lims provides the instance procedwienplex-link {} to form a
unidirectional link from one node to another. The link is lretclass SimpleLink. The following describes the syntaxhef t
simplex link:

set ns [new Simulator]
$ns simplex-link (node0) (nodel) (bandwidth) (delay) (queue_type)

The command creates a link frofnode0) to (nodel), with specified(bandwidth) and(delay) characteristics. The
link uses a queue of typgueue_type). The procedure also adds a TTL checker to the link. Five ntgtavariables define
the link:
head_ Entry point to the link, it points to the first object in the kin
queue_ Reference to the main queue element of the link. Simple ludslly
have one queue per link. Other more complex types of links hewe
multiple queue elements in the link.

link_ A reference to the element that actually models the linkeimss of the
delay and bandwidth characteristics of the link.
ttl_ Reference to the element that manipulates the ttl in everkgia
drophead_ Reference to an object thatis the head of a queue of elentet{zrbcess
link drops.
In addition, if the simulator instance variab®traceAllFile_ , is defined, the procedure will add trace elements that

62

head
—9—|enqT_[—"|queue_ * deqT_— > >
I
| N\
I
I drophead__ » drpT
|
|

|
|
|
|
I
link ttl rcvT ——T———*
|
|
|
|
|
|

Figure 6.1: Composite Construction of a Unidirectionalliin

track when a packet is enqueued and dequeuedduoene_ . Furthermore, tracing interposes a drop trace elementihie
drophead_ . The following instance variables track the trace elements

enqT_ Reference to the element that traces packets entgtiage_ .

deqT_ Reference to the element that traces packets leayiege_ .

drpT_ Reference to the element that traces packets droppediuame_ .

rcvT_ Reference to the element that traces packets received meiti@ode.

Note however, that if the user enable tracing multiple timeshe link, these instance variables will only store a rexfiee to
the last elements inserted.

Other configuration mechanisms that add components to desiiing are network interfaces (used in multicast routing),
link dynamics models, and tracing and monitors. We give aftoverview of the related objects at the end of this chapter
(Section 6.2), and discuss their functionality/implenagioin in other chapters.

The instance procedutiplex-link {} constructs a bi-directional link from two simplex links.

6.1 Instance Procedures for Links and SimpleLinks

Link procedures The class Link is implemented entirely in Otcl. The OT@&impleLink class uses the C++
LinkDelay class to simulate packet delivery delays. The instancegghares in the class Link are:

63

head {}
queue {}
link {}
up{}

down{}

up?{}
all-connectors {

returns the handle fohead_ .
returns the handle foqueue_ .
returns the handle for the delay elemetihk_

set link status to “up” in thedynamics_ element. Also, writes out a trace line to each file
specified through the procedurace-dynamics {}.

As with up{}, set link status to “down” in thedynamics_ element. Also, writes out a trace
line to each file specified through the procedueee-dynamics {}.

returns status of the link. Status is “up” or “down”; statis “up” if link dynamics is not enabled.

Apply specified operation to all connectors on the link.m &xample of such usage ligk
all-connectors reset

cost {} setlink costto value specified.
cost? {} returnsthe cost of the link. Default cost of link is 1, if rawst has been specified earlier.
SimpleLink Procedures The Otclclass SimpleLink implements a simple point-to-point link with an associated

gueue and deldy It is derived from the base Otcl class Link as follows:

Class SimpleLink -superclass Link

SimpleLink instproc init { src dst bw delay q { litype "DelayL ink" } } {
$self next $src $dst
$self instvar link_ queue_ head_ toNode_ ttl_

set queue_ $q

set link_ [new Delay/Link]
$link_ set bandwidth_ $bw
$link_ set delay_ $delay

$queue_ target $link
$link_ target [$toNode_ entry]

SR

XXX

put the ttl checker after the delay

so we don't have to worry about accounting
for ttl-drops within the trace and/or monitor
fabric

set ttl_ [new TTLChecker]
$ttl_ target [$link_ target]
$link_ target $ttl_

Notice that when &impleLink object is created, ne®elay/Link andTTLChecker objects are also created. Note
also that, th&@ueue object must have already been created.

There are two additional methods implemented (in OTcl) asgfahe SimpleLink class:trace andinit-monitor
These functions are described in further detail in the saati tracing (Chapter 25).

1The current version also includes an object to examine theark layer “ttl” field and discard packets if the field reasteero.

64

6.2 Connectors

Connectors, unlink classifiers, only generate data for eagrent; either the packet is delivered to taeget . neighbor,
or it is sent to halrop-target_

A connector will receive a packet, perform some functiord deliver the packet to its neighbor, or drop the packet. &her
are a number of different types of connectoraf Each connector performs a different function.

networkinterface

DynaLink

DelayLink

Queues

TTLChecker

labels packets with incoming interfadenitifier—it is used by some multicast routing protocolseTh
class variable “Simulator Numberinterfaces_ 1" teilsto add these interfaces, and then, it is added
to either end of the simplex link. Multicast routing protée@re discussed in a separate chapter
(Chapter 29).

Object that gates traffic depending on whetheritilei up or down. It expects to be at the head of the
link, and is inserted on the link just prior to simulationrstdt’s status_ variable control whether
the link is up or down. The description of how the DynalLinkedtjis used is in a separate chapter
(Chapter 30).

Object that models the link’s delay and bandwictlaracteristics. If the link is not dynamic, then this
object simply schedules receive events for the downstrelajecbfor each packet it receives at the
appropriate time for that packet. However, if the link is dymic, then it queues the packets internally,
and schedules one receives event for itself for the nextgiabiat must be delivered. Thus, if the
link goes down at some point, this objeat&set () method is invoked, and the object will drop all
packets in transit at the instant of link failure. We disctissspecifics of this class in another chapter
(Chapter 8).

model the output buffers attached to a link in a “nealter in a network. Ims, they are attached to,
and are considered as part of the link. We discuss the defagseues and different types of queues
in ndn another chapter (Chapter 7).

will decrement the ttl in each packet that it reeg. If that ttl then has a positive value, the packet is

forwarded to the next element on the link. In the simple lifKELCheckers are automatically added,
and are placed as the last element on the link, between thg diElment, and the entry for the next
node.

6.3 Object hierarchy

The base class used to represent links is called Link. Matfartthis class are listed in the next section. Other linlkeoty
derived from the base class are given as follows:

e SimpleLink Object A SimpleLink object is used to represestraple unidirectional link. There are no state variables
or configuration parameters associated with this objecthblis for this class arésimplelink enable-mcast

<src> <dst>

This turns on multicast for the link by creating an incomiregwork interface for the destination and adds an outgoing
interface for the source.

$simplelink trace <ns> <file> <optional:op>
Build trace objects for this link and update object linkalj@p is specified as "nam" create nam trace files.

$simplelink nam-trace <ns> <file>
Sets up nam tracing in the link.

$simplelink trace-dynamics <ns> <file> <optional:op>
This sets up tracing specially for dynamic links. <op> akosetting up of nam tracing as well.

65

$simplelink init-monitor <ns> <qtrace> <samplelnterval>
Insert objects that allow us to monitor the queue size oflthis Return the name of the object that can be queried to
determine the average queue size.

$simplelink attach-monitors <insnoop> <outsnoop> <drops noop> <gmon>
This is similar to init-monitor, but allows for specificati@f more of the items.

$simplelink dynamic
Sets up the dynamic flag for this link.

$simplelink errormodule <args>
Inserts an error module before the queue.

$simpleilnk insert-linkloss <args>
Inserts the error module after the queue.

//Other link objects derived from class SimpleLink are FQi,iCBQLIink and IntServLink.
Configuration parameters for FQLink are:

queueManagement_The type of queue management used in the link. Default valDeopTail.
No configuration parameters are specified for CBQLink an8émLink objects.

e DelayLink Object The DelayLink Objects determine the antafrtime required for a packet to traverse a link. This is
defined to be size/bw + delay where size is the packet sizes bweilink bandwidth and delay is the link propagation
delay. There are no methods or state variables associatiedhig object.

Configuration Parameters are:

bandwidth_ Link bandwidth in bits per second.
delay_ Link propagation delay in seconds.

6.4 Commands at a glance

Following is a list of common link commands used in simulatseripts:

$ns_ simplex-link <nodel> <node2> <bw> <delay> <qtype> <ar gs>

This command creates an unidirectional link between noddlnade?2 with specified bandwidth (BW) and delay
characteristics. The link uses a queue type of <qtype> apdra#ing on the queue type different arguments are passed
through <args>.

$ns_ duplex-link <nodel> <node2> <bw> <delay> <qtype> <arg s>

This creates a bi-directional link between nodel and nodib procedure essentially creates a duplex-link from two
simplex links, one from nodel to node2 and the other from Aadeodel. The syntax for duplex-link is same as that of
simplex-link described above.

$ns_ duplex-intserv-link <n1> <n2> <bw> <dly> <sched> <sig nal> <adc> <args>

This creates a duplex-link between nl1 and n2 with queue typeserv, with specified BW and delay. This type of queue
implements a scheduler with two level services prioritye Type of intserv queue is given by <sched>, with admission
control unit type of <adc> and signal module of type <signal>

$ns_ simplex-link-op <nl> <n2> <op> <args>
This is used to set attributes for a simplex link. The atti@sunay be the orientation, color, label, or queue-position

$ns_ duplex-link-op <nl> <n2> <op> <args>
This command is used to set link attributes (like orientatbthe links, color, label, or queue-position) for duplexk.

66

$ns_ link-lossmodel <lossobj> <from> <to>
This function generates losses (using the loss model dbgssaserted in the link between <from> node and <to> node) in
the link that can be visualized by nam.

$ns_ lossmodel <lossobj> <from> <to>
This is used to insert a loss module in regular links.

Following is a list of internal link-related procedures:

$ns_ register-nam-linkconfig <link>
This is an internal procedure used 1$link orient" to register/update the order in which links should be crtate
nam.

$ns_ remove-nam-linkconfig <id1> <id2>
This procedure is used to remove any duplicate links (dafditinks may be created by GT-ITM topology generator).

$link head
Returns the instance varialilead_ for the link. Thehead_ is the entry pont to the link and it points to the first object in
the link.

$link add-to-head <connector>
This allows the <connector> object to be now pointed byhtead__ element in the link, i.e, <connector> now becomes the
first object in the link.

$link link
Returns the instance variabliek_ . Thelink_ is the element in the link that actually models the link immsrof delay
and bandwidth characteristics of the link.

$link queue
Returns the instance varialdleeue_ . queue_ is queue elementin the link. There may be one or more queuneeeles in
a particular link.

$link cost <c>
This sets a link cost of <c>.

$link cost?
Returns the cost value for the link. Default cost of link isteel.

$link if-label?
Returns the network interfaces associated with the linkrffolticast routing).

$link up
This sets the link status to "up". This command is a part ofvogt dynamics support ins

$link down
Similar to up, this command marks the link status as "down".

$link up?
Returns the link status. The status is always "up" as defililtk dynamics is not enabled.

$link all-connectors op

This command applies the specified operation <op> to all eotars in the link. Like$link all-connectors
reset or$link all-connectors isDynamic

67

$link install-error <errmodel>
This installs an error module after thiek_ element.

In addition to the Link and link-related commands listedadhere are other procedures to support the specific
requirements of different types of links derived from tha®alass "Link" like simple-link (SimpleLink), integrataérvice
(IntServLink), class-based queue (CBQLIink), fair queudl(fhk) and procedures to support multicast routing, sessi,
nam etc. These and the above procedures may be fourgtdllib(ns-lib.tcl, ns-link.tcl, ns-intserv.tcl, nsamsupp.tcl,
ns-queue.tchngtcl/mcast/(McastMonitor.tcl, ns-mcast.talig/tcl/session/session.tcl.

68

Chapter 7

Queue Management and Packet Scheduling

Queues represent locations where packets may be held (opehlp. Packet scheduling refers to the decision procesk use
to choose which packets should be serviced or dropped. Bofémagement refers to any particular discipline used to
regulate the occupancy of a particular queue. At presemipat is included for drop-tail (FIFO) queueing, RED buffer
management, CBQ (including a priority and round-robin sither), and variants of Fair Queueing including, Fair Quege
(FQ), Stochastic Fair Queueing (SFQ), and Deficit RoundiR@DRR). In the common case wheredalay element is
downstream from a queue, the queue maploekeduntil it is re-enabled by its downstream neighbor. This estiechanism

by which transmission delay is simulated. In addition, gegemay be forcibly blocked or unblocked at arbitrary times by
their neighbors (which is used to implement multi-queueraggte queues with inter-queue flow control). Packet drops a
implemented in such a way that queues contain a “drop déistiniathat is, an object that receives all packets droppgd b
queue. This can be useful to (for example) keep statistictropped packets.

7.1 The C++ Queue Class

The Queue class is derived from &onnector base class. It provides a base class used by particular ofgderived)
gqueue classes, as well as a call-back function to implemecking (see next section). The following definitions areypded
in queue.h :

class Queue : public Connector {
public:
virtual void enque(Packet *) = 0;
virtual Packet * deque() = O;
void recv(Packet *, Handler =);
void resume();
int blocked();
void unblock();
void block();
protected:
Queue();
int command(int argc, const char *const * argv);
int glim_; / * maximum allowed pkts in queué
int blocked_;
int unblock_on_resume_; / * unblock q on idle%/
QueueHandler gh_;

69

Theenque anddeque functions are pure virtual, indicating tli@ueue class is to be used as a base class; particular queues
are derived fromQueue and implement these two functions as necessary. Partiquiares do not, in general, override the
recv function because it invokes the the particldague anddeque .

TheQueue class does not contain much internal state. Often thesgaoges monitoring objects (Chapter 25). Thlém_
member is constructed to dictate a bound on the maximum qgoeeigancy, but this is not enforced by tQeieue class
itself; it must be used by the particular queue subclasst®if need this value. Thielocked_ member is a boolean
indicating whether the queue is able to send a packet imnedylta its downstream neighbor. When a queue is blocked, it i
able to enqueue packets but not send them.

7.1.1 Queue blocking

A queue may be either blocked or unblocked at any given timenegally, a queue is blocked when a packet is in transit
between it and its downstream neighbor (most of the timedifitheue is occupied). A blocked queue will remain blocked as
long as it downstream link is busy and the queue has at leaspacket to send. A queue becomes unblocked only when its
resume function is invoked (by means of a downstream neighbor saliveglit via a callback), usually when no packets are
queued. The callback is implemented by using the followiagsand methods:

class QueueHandler : public Handler {

public:
inline QueueHandler(Queue& q) : queue_(q) {}
void handle(Event *); [= calls queue_.resume() */
private:
Queue& queue_;
2
void QueueHandler::handle(Event *)
{
queue_.resume();
}
Queue::Queue() : drop_(0), blocked (0), gh_(* this)
{
Tcl& tcl = Tcl::instance();
bind("limit_", &glim_);
}
void Queue::recv(Packet * p, Handler)
{
enque(p);
if ('blocked_) {
| *
* We're not block. Get a packet and send it on.
* We perform an extra check because the queue
* might drop the packet even if it was
* previously empty! (e.g., RED can do this.)
*/
p = deque();
if (p!'=0) {
blocked = 1,

target_->recv(p, &gh_);

70

}
}
void Queue::resume()
{
Packet * p = deque();
if (p!=0)
target_->recv(p, &gh));
else {
if (unblock_on_resume)
blocked_ = 0;
else
blocked_ = 1;
}
}

The handler management here is somewhat subtle. When &newe object is created, it includes@ueueHandler
object @h_) which is initialized to contain a reference to the n@ueue object Queue& QueueHandler::queue_).

This is performed by th@ueue constructor using the expressigh_(*this) . When a Queue receives a packet it calls
the subclass (i.e. queueing discipline-specific) versioth@enque function with the packet. If the queue is not blocked,
it is allowed to send a packet and calls the spedfque function which determines which packet to send, blocks the
queue (because a packet is now in transit), and sends thetgadke queue’s downstream neighbor. Note that any future
packets received from upstream neighbors will arrive toackéd queue. When a downstream neighbor wishes to cause
the queue to become unblocked it schedules the QueueHardiaedle function by passinggh_ to the simulator sched-
uler. Thehandle function invokesesume , which will send the next-scheduled packet downstream [@ank the queue
blocked), or unblock the queue when no packet is ready to tie $&is process is made more clear by also referring to the
LinkDelay::recv () method (Section 8.1).

7.1.2 PacketQueue Class

The Queue class may implement buffer management and scheduling bubtdanplement the low-level operations on a
particular queue. ThPacketQueue class is used for this purpose, and is defined as followsqsese.h):

class PacketQueue {
public:
PacketQueue();
int length(); / * queue length in packets */
void enque(Packet * p);
Packet * deque();
Packet * lookup(int n);
/* remove a specific packet, which must be in the queue */
void remove(Packet *);
protected:
Packet * head_;
Packet ** tail_;
int len_; /I packet count

This class maintains a linked-list of packets, and is comynased by particular scheduling and buffer management dis-
ciplines to hold an ordered set of packets. Particular saliveglor buffer management schemes may make use of several

71

PacketQueue objects. ThePacketQueue class maintains current counts of the number of packetsihelde queue
which is returned by théength () method. Theenque function places the specified packet at the end of the quedie an
updates théen_ member variable. Thdeque function returns the packet at the head of the queue and resribfrom

the queue (and updates the counters), or returns NULL if theig is empty. Thewokup function returns thexith packet
from the head of the queue, or NULL otherwise. Teenove function deletes the packet stored in the given address from
the queue (and updates the counters). It causes an abnaogedim termination if the packet does not exist.

7.2 Example: Drop Tail

The following example illustrates the implementation af @ueue/DropTail ~ object, which implements FIFO scheduling
and drop-on-overflow buffer management typical of most @néslay Internet routers. The following definitions deeltre
class and its OTcl linkage:

| *

* A bounded, drop-tail queue

* |

class DropTail : public Queue {

protected:
void enque(Packet *);
Packet * deque();
PacketQueue g_;

The base clas®ueue, from whichDropTail is derived, provides most of the needed functionality. Thapetail queue
maintains exactly one FIFO queue, implemented by includimgbject of thePacketQueue class. Drop-tail implements
its own versions oénque anddeque as follows:

| *
* drop-tail
*/
void DropTail::enque(Packet * p)
{
q_.enque(p);
if (q_.length() >= qglim_) {
g_.remove(p);
drop(p);
}
}
Packet * DropTail::deque()
{
return (q_.deque());
}

Here, theenque function first stores the packet in the internal packet quednéch has no size restrictions), and then checks
the size of the packet queue vergllisn_ . Drop-on-overflow is implemented by dropping the packet tmesently added

to the packet queue if the limit is reached or exceed¢aote: in the implementation oénque above, settingllim_ ton
actually means a queue sizersil . Simple FIFO scheduling is implemented in dheque function by always returning the
first packet in the packet queue.

72

7.3 Different types of Queue objects

A queue object is a general class of object capable of holdimypossibly marking or discarding packets as they travel
through the simulated topology. Configuration Parametsesldior queue objects are:

limit_ The queue size in packets.
blocked_ Set to false by default, this is true if the queue is blockethfile to send a packet to its downstream neighbor).

unblock_on_resume_Set to true by default, indicates a queue should unblocK as¢he time the last packet packet sent
has been transmitted (but not necessarily received).

Other queue objects derived from the base class Queue graaltd=Q, SFQ, DRR, RED and CBQ queue objects. Each are
described as follows:

o Drop-tail objects: Drop-tail objects are a subclass of Quebjects that implement simple FIFO queue. There are no
methods, configuration parameter, or state variables teatpecific to drop-tail objects.

e FQ objects: FQ objects are a subclass of Queue objects tp&rment Fair queuing. There are no methods that are
specific to FQ objects. Configuration Parameters are:

secsPerByte
There are no state variables associated with this object.

e SFQ objects: SFQ objects are a subclass of Queue objectsrthiement Stochastic Fair queuing. There are no
methods that are specific to SFQ objects. Configuration Reteamare:
maxqueue_
buckets

There are no state variables associated with this object.

¢ DRR objects: DRR objects are a subclass of Queue objectsntiptgment deficit round robin scheduling. These
objects implement deficit round robin scheduling amondé&tint flows (A particular flow is one which has packets
with the same node and port id OR packets which have the sadeidialone). Also unlike other multi-queue objects,
this queue object implements a single shared buffer spaces fdifferent flows. Configuration Parameters are:
buckets_ Indicates the total number of buckets to be used for hastanh ef the flows.
blimit_ Indicates the shared buffer size in bytes.
quantum__ Indicates (in bytes) how much each flow can send during its tur
mask_ mask_, when set to 1, means that a particular flow consista@kgts having the same node id (and possibly

different port ids), otherwise a flow consists of packetsifigthe same node and port ids.

e RED objects: RED objects are a subclass of Queue objecténtipbdment random early-detection gateways. The
object can be configured to either drop or “mark” packets. rélere no methods that are specific to RED objects.
Configuration Parameters are:

bytes_ Set to "true" to enable “byte-mode” RED, where the size oivarg packets affect the likelihood of marking
(dropping) packets.

queue-in-bytes_Set to "true" to measure the average queue size in bytes thttrepackets. Enabling this option also
causes thresh_ and maxthresh_ to be automatically scaleday_pktsize (see below).

thresh_ The minimum threshold for the average queue size in packets.

73

maxthresh_ The maximum threshold for the average queue size in packets.

mean_pktsize_ A rough estimate of the average packet size in bytes. Usegdating the calculated average queue
size after an idle period.

g_weight_ The queue weight, used in the exponential-weighted mowagpge for calculating the average queue size.
wait_ Set to true to maintain an interval between dropped packets.

linterm_ As the average queue size varies between "thresh_" andlneakt ", the packet dropping probability varies
between 0 and "1/linterm".

sethit_ Setto "true" to mark packets by setting the congestion atéha bit in packet headers rather than drop packets.

drop-tail_ Set to true to use drop-tail rather than randomdrop when tleaig overflows or the average queue size
exceeds "maxthresh_". For a further explanation of thesahlas, see [2].

None of the state variables of the RED implementation aressible.

e CBQ objects: CBQ objects are a subclass of Queue objectsriplment class-based queueing.

$cbq insert <class>

Insert traffic class class into the link-sharing structussaeiated with link object cbg.

$cbg bind <cbqclass> <id1> [$id2]

Cause packets containing flow id id1 (or those in the rangeddd? inclusive) to be associated with the traffic class
cbqclass.

$cbg algorithm <alg>
Select the CBQ internal algorithm. <alg> may be set to onéasfcestor-only", "top-level”, or "formal”.

¢ CBQ/WRR objects: CBQ/WRR objects are a subclass of CBQ tdifleat implement weighted round-robin scheduling
among classes of the same priority level. In contrast, CB@adimplement packet-by-packet round-robin scheduling
among classes of the same priority level. ConfigurationfRatars are:

maxpkt_ The maximum size of a packet in bytes. This is used only by BRI objects in computing maximum
bandwidth allocations for the weighted round-robin schedu

CBQcLASS OBJECTS
CBQClass objects implement the traffic classes associataddBQ objects.

$cbgclass setparams <parent> <okborrow> <allot> <maxidle > <prio> <level>
Sets several of the configuration parameters for the CBQdiaéss (see below).

$cbgclass parent <cbqgcl|none>
specify the parent of this class in the link-sharing treee Pparent may be specified as “none” to indicate this classdsta r

$cbqgclass newallot <a>

Change the link allocation of this class to the specified am¢in range 0.0 to 1.0). Note that only the specified class is
affected.

$cbgclass install-queue <g>

Install a Queue object into the compound CBQ or CBQ/WRR littkcture. When a CBQ object is initially created, it
includes no internal queue (only a packet classifier anddsdie).

Configuration Parameters are:

okborrow_ is a boolean indicating the class is permitted to borrow badth from its parent.

allot_ is the maximum fraction of link bandwidth allocated to thasd expressed as a real number between 0.0 and 1.0.

74

maxidle_ is the maximum amount of time a class may be required to haymaitkets queued before they are permitted to be
forwarded

priority_ is the class’ priority level with respect to other classesisvalue may range from 0 to 10, and more than one class
may exist at the same priority. Priority O is the highest ptyo

level_is the level of this class in the link-sharing tree. Leaf nodethe tree are considered to be at level 1; their parents are
at level 2, etc.

extradelay_ increase the delay experienced by a delayed class by thiisgeicne

QUEUE-MONITOR OBJECTS
QueueMonitor Objects are used to monitor a set of packet gteldrrival, departure and drop counters. It also includes
support for aggregate statistics such as average queyesize

$queuemonitor
reset all the cumulative counters described below (agjwdépartures, and drops) to zero. Also, reset the integratod
delay sampler, if defined.

$gueuemonitor set-delay-samples <delaySamp_>
Set up the Samples object delaySamp_ to record statista#t glieue delays. delaySamp_is a handle to a Samples object
i.e the Samples object should have already been created.

$gueuemonitor get-bytes-integrator
Returns an Integrator object that can be used to find theratefithe queue size in bytes.

$gueuemonitor get-pkts-integrator
Returns an Integrator object that can be used to find theraitefithe queue size in packets.

$gueuemonitor get-delay-samples

Returns a Samples object delaySamp_ to record statistieg gheue delays.
There are no configuration parameters specific to this abject

State Variables are:

size_ Instantaneous queue size in bytes.

pkts_ Instantaneous queue size in packets.

parrivals_ Running total of packets that have arrived.

barrivals_ Running total of bytes contained in packets that have atrive

pdepartures_ Running total of packets that have departed (not dropped).
bdepartures_ Running total of bytes contained in packets that have degdnot dropped).
pdrops_ Total number of packets dropped.

bdrops_ Total number of bytes dropped.

bytesint_ Integrator object that computes the integral of the quere isi bytes. The sum_ variable of this object has the
running sum (integral) of the queue size in bytes.

pktsint_ Integrator object that computes the integral of the queze isi packets. The sum_ variable of this object has the
running sum (integral) of the queue size in packets.

75

QUEUEMONITOR/ED BJECTS

This derived object is capable of differentiating regulacket drops from early drops. Some queues distinguishaedubps
(e.g. drops due to buffer exhaustion) from other drops (egdom drops in RED queues). Under some circumstances, it is
useful to distinguish these two types of drops.

State Variables are:

epdrops_ The number of packets that have been dropped “early”.

ebdrops_ The number of bytes comprising packets that have been ddojeaely”.

Note: because this class is a subclass of QueueMonitortshyé this type also have fields such as pdrops_ and bdrops_.
These fields describe the total number of dropped packetbyed, including both early and non-early drops.

QUEUEMONITOR/ED/FLOWMON OBJECTS
These objects may be used in the place of a conventional Menir object when wishing to collect per-flow counts and
statistics in addition to the aggregate counts and stdiptiovided by the basic QueueMonitor.

$fmon classifier <cl>
This inserts (read) the specified classifier into (from) tbe/finonitor object. This is used to map incoming packets tatvhi
flows they are associated with.

$fmon dump
Dump the current per-flow counters and statistics to the H@&noel specified in a previous attach operation.

$fmon flows
Return a character string containing the names of all flovectsjknown by this flow monitor. Each of these objects are of
type QueueMonitor/ED/Flow.

$fmon attach <chan>
Attach a tcl I/0O channel to the flow monitor. Flow statistiee aritten to the channel when the dump operation is executed

Configuration Parameters are:

enable_in_ Set to true by default, indicates that per-flow arrival stiteuld be kept by the flow monitor. If set to false, only
the aggregate arrival information is kept.

enable_out_ Set to true by default, indicates that per-flow departureeghould be kept by the flow monitor. If set to false,
only the aggregate departure information is kept.

enable_drop_ Set to true by default, indicates that per-flow drop stateukhbe kept by the flow monitor. If set to false,
only the aggregate drop information is kept.

enable_edrop_Set to true by default, indicates that per-flow early dropesthould be kept by the flow monitor. If set to
false, only the aggregate early drop information is kept.

QUEUEMONITOR/ED/FLOW OBJECTS

These objects contain per-flow counts and statistics mahlaga QueueMonitor/ED/Flowmon object. They are generally
created in an OTcl callback procedure when a flow monitonismgia packet it cannot map on to a known flow. Note that the
flow monitor’s classifier is responsible for mapping packetfiows in some arbitrary way. Thus, depending on the type of
classifier used, not all of the state variables may be retgeag. one may classify packets based only on flow id, in which
case the source and destination addresses may not be sigt)ifistate Variables are:

src_ The source address of packets belonging to this flow.

76

dst_ The destination address of packets belonging to this flow.

flowid_ The flow id of packets belonging to this flow.

7.4 Commands at a glance

Following is a list of queue commands used in simulatiorpgsri

$ns_ queue-limit <nl> <n2> <limit>
This sets a limit on the maximum buffer size of the queue ifitilebetween nodes <n1>and <n2>.

$ns_ trace-queue <nl> <n2> <optional:file>
This sets up trace objects to log events in the queue. Iffifai® not passed, it usesaceAllFile_ to write the events.

$ns_ namtrace-queue <nl> <n2> <optional:file>
Similar to trace-queue above, this sets up nham-tracingarmytleue.

$ns_ monitor-queue <nl> <n2> <optional:gtrace> <optional :sampleinterval>

This command inserts objects that allows us to monitor theugusize. This returns a handle to the object that may be
queried to determine the average queue size. The default fat sampleinterval is 0.1.

7.5 Queue/JoBS

JoBS is developed and contributed by Nicolas Christin <lais@cs.virginia.edu>

This chapter describes the implementation of the Jointéufanagement and Scheduling (JoBS) algorithmmsn This
chapter is in three parts. The first part summarizes the tbgscof the JoBS algorithm. The second part explains how to
configure a JOBS queue irs The third part focuses on the tracing mechanisms impleeaior JOBS.

The procedures and functions described in this chapter edound inngjobs.{cc, h}, ngmarker.{cc, h},ngdemarker.{cc,
h}. Example scripts can be found im¥'tcl/ex/jobs-{lossdel, cn2002}.tcl.

Additional information can be found at http://qosbox.agwia.edu.

7.5.1 The JoBS algorithm

This section gives an overview of the objectives the JoBSralym aims at achieving, and of the mechanisms employed to
reach these objectives. The original JOBS algorithm, asridesl in [20], was using the solution to a non-linear optation
problem. Thisns-2implementation uses the feedback-control based heudieticribed in [8].

Important Note:This ns-2implementation results from the merge between old codege2.1b5and code derived from the
BSD kernel-level implementation of the JoBS algorithiris still considered experimental. Due to the absence of binding
facilities for arrays between Tcl and C++ticlcl at the momenthe number of traffic classes is statically set to 4 and cannot
be changed without modifying the C++ code.

77

Objective

The objective of the JoBS algorithm is to provide absoluted eglative (proportional) loss and delay differentiatiomlé-
pendently at each node fotassesof traffic. JoBS therefore provides service guarantees perehopbasis. The set of
performance requirements are specified to the algorithmset af per-class Qualtiy of Service (QoS) constraints. As an
example, for three classes, the QoS constraints could edbtm:

e Class-1 Delay~ 2 - Class-2 Delay,
e Class-2 Loss Rater 10~ ! - Class-3 Loss Rate, or

e Class-3 Delay< 5 ms.

Here, the first two constraints are relative constraintstaedast one is an absolute constraint. The set of consdreamt be
any mix of relative and absolute constraints. More spedificdoBS supports the five following types of constraints:

o Relative delay constraints (RDC)specify a proportional delay differentiation between sk As an example, for
two classed and2, the RDC enforces a relationship

Delay of Class 2| constant
Delay of Class 1~

e Absolute delay constraints (ADC) An ADC on classi requires that the delays of classatisfy a worst-case bound
d;.

o Relative loss constraints (RLC)specify a proportional loss differentiation between otsss

e Absolute loss constraints (ALC) An ALC on classi requires that the loss rate of clasbe bounded by an upper
boundL;.

e Absolute rate constraints (ARC)Y An ARC on classi means that the throughput of classs bounded by a lower
boundy;.

JoBS does not rely on admission control or traffic policingy, does it make any assumption on traffic arrivals. Therefare
system of constraints may become infeasible, and someragrtstmay need to be relaxed. QoS constraints are priediiz
the following order.

ALC > ADC, ARC > Relative Constraints

Thatis, if JOBS is unable to satisfy both absolute and redatonstraints, it will give preference to the absolute t@sts.

Mechanisms

JoBS performs scheduling and buffer management in a sirags. pJoBS dynamically allocates service rates to classes in
order to satisfy the delay constraints. The service ratedefor enforcing absolute delay constraints are alldospen each
packet arrival, while service rates derived from relatietay constraints are computed only evé¥ypacket arrivals. If no
feasible service rate allocation exister if the packet buffer overflows, packets are dropped atingrto the loss constraints.

The service rates are translated into packet schedulinigides by an algorithm resembling Deficit Round Robin. Tisat i
the scheduler tries to achieve the desired service ratesdyig track of the difference between the actual transomsate
for each class and the desired service rate for each claked8ling in JoBS is work-conserving.

IFor instance, if the sum of the service rates needed is grtsate the output link capacity.

78

7.5.2 Configuration

Running a JoBS simulation requires to create and configuereldBS “link(s)”, to create and configure the Markers and
Demarkers in charge of marking/demarking the traffic, tacttan application-level data source (traffic generaton), ta
start the traffic generator.

Initial Setup

set ns [new Simulator] # preamble initialization
Queue/ JoBS set drop_front_ false # use drop-tail
Queue/ JOBS set trace_hop_ true ;# enable statistic traces
Queue/ JoBS set adc_resolution_type_ O # see ‘commands at a glance”
Queue/ JoBS set shared buffer 1 # all classes share a common buffer
Queue/ JOBS set nmean_pkt _size_ 4000 # we expect to receive 500-Byte pkts
Queue/ Demar ker set demarker_arrvsl O # reset arrivals everywhere

Queue/ Demar ker set demarker_arrvs2_ 0
Queue/ Demar ker set demarker _arrvs3_ 0
Queue/ Demar ker set demarker _arrvs4_ 0
Queue/ Marker set marker_arrvsl_ O
Queue/ Marker set marker_arrvs2_ 0
Queue/ Marker set marker_arrvs3_ 0
Queue/ Marker set marker _arrvs4_ 0

set router(1l) [$ns node] # set first router
set router(2) [$ns node] # set second router
set source [$ns node] # set source
set sink [$ns node] # set traffic sink
set bw 10000000 # 10 Mbps
set delay 0.001 # 1ms
set buff 500 ;# 500 packets

Creating the JoBS links

$ns dupl ex-1ink $router(1l) $router(2) $bw $del ay JoBS # Creates the JoBS link
$ns_ queue-limit $router(1) $router(2) Sbuff

set | [$ns_ get-link $router(1) $router(2)]

set q [$l queue]

$g init-rdcs -1 2 2 2 # Classes 2, 3 and 4 are bound by proportional delay diffeadinth with a factor of 2

$g init-rlcs -1 2 2 2 # Classes 2, 3 and 4 are bound by proportional loss differdiatiewith a factor of 2
$g init-alcs 0.01 -1 -1 -1 # Class 1 is provided with a loss rate bound of 1%
$g init-adcs 0.005 -1 -1 -1 # Class 1is provided with a delay bound of 5 ms
$g init-arcs -1 -1 -1 500000 # Class 4 is provided with a minimumthroughput of 500 Kbps
$g link [$I 1ink] ;# The link is attached to the queue (required)
$q trace-file jobstrace ;# Trace per-hop, per-class metrics to the file jobstrace
$q sanpling-period 1 ;# Reevaluate rate allocation upon each arrival
$g id 1 ;# Assigns an ID of 1 to the JOBS queue
$g initialize ;# Proceed with the initialization

79

Marking the traffic

Marking the traffic is handled by Marker objects. Markers BHEO queues that set the class index of each packet. To ensure
accuracy of the simulations, it is best to configure theseigsi¢o have a very large buffer, so that no packets are drdpped
the Marker. Demarkers are used to gather end-to-end deligtits.

$ns_ sinplex-1ink $source $router(1l) $bw $del ay Marker # set-up marker
$ns_ queue-limit $source $router(l) [expr $buff *10] ;# Select huge buffers for markers
$ns_ queue-limit $router(1) $source [expr $buff *10] # to avoid traffic drops
set g [$ns_ get-queue $source $router(1)] ;# in the marker
$g marker _type 2 ;# Statistical marker
$qg marker _frc 0.1 0.2 0.3 0.4 # 10% Class 1, 20% Class 2, 30% Class 3, 40% Class 4.
$ns_ sinplex-link $router(2) $sink $bw $del ay Demarker # set-up demarker
$ns_ queue-limit $router(2) $sink [expr $buff *10]

$q trace-file e2e # trace end-to-end delays to file e2e

The remaining steps (attaching agents and traffic generataapplications to the nodes) are explained in ChaptersxdiO a
37, and are handled as usual. We refer to these chaptersapgample scripts provided with yoosdistribution.

7.5.3 Tracing

Tracing in JoBS is handled internally, by the scheduler.[E&BS queue can generate a trace file containing the folgpwin
information. Each line of the tracefile consists of 17 colgmrhe first column is the simulation time, columns 2 to 5 repre

the loss rates over the current busy period for classes 1doldmns 6 to 9 represent the delays for each class (average ov
a 0.5 seconds sliding window), columns 10 to 13 represerditkeage service rates allocated to each class over thefast 0
seconds, and columns 14 to 17 represent the instantaneeus tangth in packets. Additionally, Demarkers can be used t
trace end-to-end delays.

7.5.4 Variables

This section summarizes the variables that are used by MB&er and Demarker objects.

JoBS objects

trace_hop_ Can be true or false. If set to true, per-hop, per-class owwill be traced. (Trace files have then to be specified,
using<JoBS object> trace-file <filename> .) Defaults to false.

drop_front_ Can be true or false. If set to true, traffic will be droppednfréhe front of the queue. Defaults to false
(drop-tail).

adc_resolution_type_Can be 0 or 1. If set to 0, traffic will be dropped from classes trave an ADC if the ADC cannot
be met by adjusting the service rates. If set to 1, traffic bélldropped from all classes. A resolution mode setto 1 is
therefore fairer, in the sense that the pain is shared byadbkes, but can lead to more deadline violations. Defaults t
0.

shared_buffer Canbe 0 or 1. If set to 0, all classes use a separate per-cifiss(which is required if only rate guarantees
are to provided). All per-class buffers have the same siz®tlto 1, all classes share the same buffer (which is require
if loss differentiation is to be provided). Defaults to 1.

80

mean_pkt_size_Used to set the expected mean packet size of packets araindpBS link. Setting this variable is required
to ensure proper delay differentiation.

Marker objects

marker_arrvsl_ Number of Class-1 packets to have entered a Marker link.
marker_arrvs2_ Number of Class-2 packets to have entered a Marker link.
marker_arrvs3_ Number of Class-3 packets to have entered a Marker link.

marker_arrvs4_ Number of Class-4 packets to have entered a Marker link.

Demarker objects

demarker_arrvsl_ Number of Class-1 packets to have entered a Demarker link.
demarker_arrvs2_ Number of Class-2 packets to have entered a Demarker link.
demarker_arrvs3_ Number of Class-3 packets to have entered a Demarker link.

demarker_arrvs4_ Number of Class-4 packets to have entered a Demarker link.

7.5.5 Commands at a glance

The following is a list of commands used to configure the JdB&ker and Demarker objects.

JoBS objects

set q [new Queue/JoBS]
This creates an instance of the JOBS queue.

$q init-rdcs <k1> <k2> <k3> <k4>
This assigns the RDCs for the four JOBS classes. For instaso® a value of 4 for k2 means that Class-3 delays will be
roughly equal to four times Class-2 delays. A value of -1éatks that the class is not concerned by RDCs.

Important Note:Since RDCs bound two classes, one would expect only thresners to be passed (k1, k2, and k3, since
k4 theoretically binds Classes 4 and 5, and Class 5 does isb}. étowever, in this prototype implementation, it is
imperative to specify a value different from 0 and -1 to k4 &€ 4 is to be concerned by RDCs.

Examples$q init-rdcs -1 2 1 -1 specifies that classes 2 and 3 are bound by a delay diffetientfactor of 2,$q
init-rdcs 4 4 4 4 specifies that all classes are bound by a delay differentiditictor of 4 and is equivalent &y
init-rdcs 4 4 4 1 , since the last coefficient is only used to specify that Claissto be bound by proportional

differentiation.

$q init-rlcs <k'1> <k'2> <k'3> <k'4>

This assigns the RLCs for the four JOBS classes. For instaisagg a value of 3 for k1 means that Class-2 loss rates will be
roughly equal to four times Class-2 loss rates. A value ohdidates that the class is not concerned by RLCs. As with
RDCs, each RLC binds two classes, thus, one would expectlordg parameters to be passed (k'1, k'2, and k'3, since k'4

81

theoretically bounds Classes 4 and 5, and Class 5 does stk &g explained above, it is imperative to specify a value
different from 0 and -1 to k'4 if Class 4 is to be concerned byd3L

$q init-alcs <L1> <L2> <L3> <L4>

This assigns the absolute loss guarantees (ALCs) to alidasses. L1 to L4 are given in fraction of 1. For instancejregt

L1 to 0.05 means that Class-1 loss rate will be guarantees kesls than 5%. A value of -1 indicates that the corresponding
class is not subject to an ALC.

$qg init-adcs <D1> <D2> <D3> <D4>
This assigns the absolute loss guarantees (ADCSs) to altfasses. D1 to D4 are given in milliseconds. A value of -1
indicates that the corresponding class is not subject toR2G.A

$q trace-file <filename>
This specifies the trace file for all per-hop metrics. JoBSwseinternal module to trace loss and delays, service iabels,
per-class queue lengths in packets. If filename is setiig no trace will be provided.

$qg link [<link-object> link]
This command is required to bind a link to a JOBS queue. N@eXbBS needs to know the capacity of the link. Thus, this
commanchas tobe issued before the simulation is started.

$g sampling-period <sampling-interval>

This command specifies the sampling interval (in packeta)héth the service rate adjustments for proportional
differentiation will be performed. The default is a samplinterval of 1 packet, meaning that the rate allocation is
reevaluated upon each packet arrival. Larger samplingviakespeed up the simulations, but typically result in goor
proportional differentiation.

$q id <num_id>
This command affects a numerical ID to the JoBS queue.

$q initialize
This command is required, and should be run after all conditiom operations have been performed. This command will
perform the final checks and configuration of the JoBS queue.

$q copyright-info
Displays authors and copyright information.

A simple example script (with nam output), fully annotated @ommented can be foundrng'tcl/ex/jobs-lossdel.tcl. A
more realistic example of a simulation with JOBS queues egiobnd inngtcl/ex/jobs-cn2002.tcl. This script is very
similar to what was used in a simulation presented in [21k0&sated tracefiles arghuplotscripts for visualization (in case
you favorgnuplotoverxgraphcan be found imgtcl/ex/jobs-lossdel, andgtcl/ex/jobs-cn2002.

Marker objects

$q marker_type <1|2>
Selects the type of marker. 1 is DETERMINISTIC, 2 is STATISAL.

$q marker_class <1[2|3|4>
For a deterministic marker, selects which class packetsldize marked with.

$q marker_frc <fl> <f2> <f3> <f4>

For a statistical marker, gives the fraction of packets #atuld be marked from each class. For instance, using 0fl for
means that 10 percent of the traffic coming to the Marker liilklve marked as Class 1.

82

Demarker objects

$q trace-file <filename>

This command specifies the trace file used for the demarkecbbfilename.1 will contain the end-to-end delays of each
Class-1 packet to have reached the Demarker link, filenami#.2ontain the end-to-end delays of each Class-2 packet to
have reached the Demarker link, and so forth. (There willoafree be 4 trace files, one for each class.)

83

Chapter 8

Delays and Links

Delays represent the time required for a packet to traveliséaA special form of this object (“dynamic link”) also capes
the possibility of a link failure. The amount of time requdrior a packet to traverse a link is defined to4y® + d wheres

is the packet size (as recorded in its IP headeig,the speed of the link in bits/sec, adds the link delay in seconds. The
implementation of link delays is closely associated with tfocking procedures described for Queues in Section7.1.1

8.1 The LinkDelay Class

Theclass LinkDelay is derived from the baselass Connector . Its definition is in agdelay.cc, and is briefly
excerpted below:

class LinkDelay : public Connector {

public:
LinkDelay();
void recv(Packet = p, Handler =),
void send(Packet * p, Handler =);
void handle(Event * e);
double delay(); / * line latency on this link /
double bandwidth(); / * bandwidth on this link /
inline double txtime(Packet * p) { [* time to send pkt p on this link/
hdr_cmn = hdr = (hdr_cmn +) p->access(off_cmn_);
return (hdr->size() * 8. / bandwidth_);
}
protected:
double bandwidth_; / * bandwidth of underlying link (bits/see)
double delay_; / * line latency* /
int dynamic_; / = indicates whether or not link is »/
Event inTransit_;
PacketQueue * itg_; /= internal packet queue for dynamic links
Packet » nextPacket_; [* to be delivered for a dynamic link/
Event intr_;

84

Therecv () method overrides the base class Connector version. #finetl as follows:

void LinkDelay::recv(Packet * p, Handler * h)
{
double txt = txtime(p);
Scheduler& s = Scheduler::instance();
if (dynamic_) {
Event + e = (Event *)p;
e->time_ = s.clock() + txt + delay_;
itq_->enque(p);
schedule_next();
} else {
s.schedule(target_, p, txt + delay);

}

[* XXX only need one intr_ since upstream object should

block until it's handler is called

This only holds if the link is not dynamic. Ifitis, then
the link itself will hold the packet, and call the upstream
object at the appropriate time. This second interrupt is
* calledi nTransi t _, andis invoked througbchedul e_next ()
*/
s.schedule(h, &intr_, txt);

*
*
*
*
*
*

This object supports one instproc-liképbject dynamic , to set its variabledynamic_ . This variable determines
whether the link is dynamic or not.¢., prone to fail/recover at appropriate times). The intebethavior of the link in each
case is different.

For “non-dynamic” links, this method operates by receivngacketp, and scheduling two events. Assume these two events
are calledF;, andE,, and that evenE; is scheduled to occur befote,. F; is scheduled to occur when the upstream node
attached to this delay element has completed sending thentyracket (which takes time equal to the packet size divide
by the link bandwidth) £, is usually associated with@ueue object, and will cause it to (possibly) become unblockeé (se
section 7.1.1).E> represents the packet arrival event at the downstream beigif the delay element. Everit, occurs a
number of seconds later thdfy equal to the link delay.

Alternately, when the link is dynamic, and receiygshen it will schedule?; to possibly unblock the queue at the appropriate
time. However,FE, is scheduled only ip is the only packet currently in transit. Otherwise, theratiteast one packet in
transit on the link that must be delivered befgrat £>. Therefore, packet is held in the object’s inTransit queuigg_ .
When the packet just befogein transit on the link is delivered at the neighbor node, tledapLink object will schedule an
event for itself to fire af,. At that appropriate time then, ittsandle () method will directly sengb to its target. The object’s
internalschedule_next () method will schedule these events for packet sin transiteaappropriate time.

8.2 Commands at a glance

The LinkDelay object represents the time required by a pattkéransverse the link and is used internally within a Link.
Hence we donot list any linkdelay related commands suitgvlsimulation scripts here.

85

Chapter 9

Differentiated Services Module inns

Note: The Differentiated Services module described in thishapter has been integrated into ns-2.1b8.

Differentiated Services, or DiffServ, is an IP QoS architee based on packet marking that allows packets to be fiziedi
according to user requirements. During the time of congastinore low priority packets are discarded than high pryori
packets. This chapter describes the DiffServ module thatakiginally implemented by the Advanced IP Networks graup i
Nortel Networks [28].

9.1 Overview

The DiffServ architecture provides QoS by dividing traffita different categories, marking each packet with a codetpo
that indicates its category, and scheduling packets aoapestcordingly. The DiffServ module inscan support four classes
of traffic, each of which has three dropping precedencewailpdifferential treatment of traffic within a single clagackets
in a single class of traffic are enqueued into one correspgnutiysical RED queue, which contains three virtual queaes (
for each drop precedence).

Different RED parameters can be configured for virtual ggegausing packets from one virtual queue to be dropped more
frequently than packets from another. A packet with a lowepging precedence is given better treatment in times of
congestion because it is assigned a code point that corrdspo a virtual queue with relatively lenient RED parameter

The DiffServ module imshas three major components:

Policy: Policy is specified by network administrator about the I@federvice a class of traffic should receive in the network.
Edge router: Edge router marks packets with a code point according to ¢hieypspecified.

Core router: Core router examines packets’ code point marking and fatimgrthem accordingly.

DiffServ attempts to restrict complexity to only the edgeters.

86

9.2 Implementation

The procedures and functions described in this section edioind in nddiffserv/dsred, dsredq, dsEdge, dsCore, dsPol-
icy.{cc, h}.

9.2.1 RED queue in DiffServ module

A DiffServ queue (in clasdsREDQueue) derived from the base clagueue is implemented in DiffServ module to provide
the basic DiffServ router functionality, selsred.{h,cc}). dsREDQueuehas the following abilities:

to implement multiple physical RED queues along a single lin

to implement multiple virtual queues within a physical qaewith individual set of parameters for each virtual queue;

to determine in which physical and virtual queue a packen@ueued according to its code point;

to determine in from which physical and virtual queue a paiskdequeued according to the scheduling scheme chosen.

The classiIsREDQueueconsists of four physical RED queues, each containing tiraeal queues. The number of physical
and virtual queues are definedriomPrec andnumQueues_. Each combination of physical and virtual queue number is
associated with a code point (or a drop preference), whiekifips a certain level of service.

The physical queue is defined in clagzlQueue , which enables traffic differentiation by defining virtualeues with
independent configuration and state parametersdsesiq.{h,cc} . For example, the length of each virtual queue is
calculated only on packets mapped to that queue. Thus, pdoikeping decisions can be applied based on the state and
configuration parameters of that virtual queues. Ctagfueue is not equivalent to claglREDQueue which was already
present ims Instead, it is a modified version of RED implementation wiite notion of virtual queues and is only used by
classredQueue to realize physical queues. All user interaction with cles$Queue is handled through the command
interface of classsREDQueue.

ClassdsREDQueue contains a data structure known as the Per Hop Behavior (HEBIE In DiffServ, edge routers mark
packets with code points and core routers simply respongistireg code points; both of them use PHB table to map a code
point to a particular physical and virtual queue. The PHBI&abdefined as an array with three fields:

struct phbParam {
int codePt_; // corresponding code point
int queue_; /I physical queue
int prec_; // virtual queue (drop precedence)

k

9.2.2 Edge and core routers

The DiffServ edge and core routers are defined in cedgeQueue and classcoreQueue , which are derived from
classdsREDQueue seedsEdge, dsCore.{h,cc}

Packet marking is implemented in clastgeQueue . A packet is marked with a code point according to the polpscified

before it is put into the corresponding physical and virtgatue. ClasedgeQueue has a reference to an instance of
classPolicyClassifier , Which contains policies for packet marking.

87

9.2.3 Policy

ClassPolicy and its sub-classes (sdsPolicy.{cc, h}) define the policies used by edge routers to mark incoming
packets. A policy is established between a source and déstimode. All flows matching that source-destination padr
treated as a single traffic aggregate. Policy for each d@iffetraffic aggregate has an associated policer type, nygter and
initial code point. The meter type specifies the method foasneing the state variables needed by the policer. For ebeamp
the TSW Tagger is a meter that measures the average trafficusihg a specified time window.

When a packet arrives at an edge router, it is examined tordete to which aggregate it belongs. The meter specified by
the corresponding policy is invoked to update all statealdés. The policer is invoked to determine how to mark the&kehac
depending on the aggregate’s state variables: the speirified code point or a downgraded code point. Then the piiske
enqueued accordingly.

Currently, six different policy models are defined:

1. Time Sliding Window with 2 Color Marking (TSW2CMPolicerjses a CIR and two drop precedences. The lower
precedence is used probabilistically when the CIR is exeged

2. Time Sliding Window with 3 Color Marking (TSW3CMPolicenises a CIR, a PIR, and three drop precedences. The
medium drop precedence is used probabilistically when tiiei€ exceeded and the lowest drop precedence is used
probabilistic ally when the PIR is exceeded.

3. Token Bucket (tokenBucketPolicer): uses a CIR and a CRSwao drop precedences. An arriving packet is marked
with the lower precedence if and only if it is larger than thken bucket.

4. Single Rate Three Color Marker (srTCMPolicer): uses a,@RS, and an EBS to choose from three drop precedences.

5. Two Rate Three Color Marker (trTCMPolicer): uses a CIR,SCPRIR, and a PBS to choose from three drop prece-
dences.

6. NullPolicer: does not downgrade any packets

The policies above are defined as a sub-classdsblicy . The specific meter and policer are implemented in functions
applyMeter andapplyPolicer , which are defined as virtual functions in clatPolicy . User specified policy can
be added in the similar way. Please refeNtlIPolicy as the simplest example.

All policies are stored in the policy table in claBslicyClassifier . This table is an array that includes fields for the
source and destination nodes, a policer type, a meter typsitel code point, and various state information as shoeiow:

The rates CIR and PIR are specified in bits per second:
CIR: committed information rate

PIR: peak information rate

The buckets CBS, EBS, and PBS are specified in bytes:
CBS: committed burst size

EBS: excess burst size

PBS: peak burst size

C bucket: current size of the committed bucket

E bucket: current size of the excess bucket

P bucket: current size of the peak bucket

Arrival time of last packet

88

Average sending rate
TSW window length

ClassPolicyClassifier also contains a Policer Table to store the mappings from igyptylpe and initial code point
pair to its associated downgraded code point(s).

9.3 Configuration

The number of physical and virtual queues can be configured as

$dsredg set numQueues_ 1

$dsredq setNumPrec 2

VariablenumQueues_ in classdsREDQueue specifies the number of physical queues. It has a defaule\adut defined
in ~ngdtcl/lib/ns-default.tcl and can be changed as shown in ¥aenple above. VariablsetNumPrec sets the number of
virtual queues within one physical queue.

RED parameters can be configured for each virtual queue lasvial

$dsredq configQ 0 1 10 20 0.10

The mean packet size (in bytes) is also needed for the avB@&Bequeue length calculation.

$dsredq meanPktSize 1500

The variant of MRED used to calculate queue sizes can be cwatig

$dsredq setMREDMode RIO-C 0

The above command sets the MRED mode of physical queue 0 t&RIf2he second argument was not included, all queues
would be set to RIO-C which is the default.

The various MRED modes supported in DiffServ module are:

RIO-C (RIO Coupled): The probability of dropping an out-of-profile packet is béisa the weighted average lengths of all
virtual queues; while the probability of dropping an in-pl@packet is based solely on the weighted average length of
its virtual queue.

RIO-D (RIO De-coupled): Similar to RIO-C; except the probability of dropping an aftprofile packet is based on the
size of its virtual queue.

WRED (Weighted RED): All probabilities are based on a single queue length.

DROP: Same as a drop tail queue with queue limit set by RED minimurastiold: when the queue size reaches the
minimum threshold, all packets are dropped regardless dfin

The following command adds an entry to the PHB Table and maghe point 11 to physical queue 0 and virtual queue 1.

$dsredq addPHBEntry 11 0 1

89

In ns packets are defaulted to a code point of zero. Therefoes,rasist add a PHB entry for the zero code point in order to
handle best effort traffic.

In addition, commands are available to allow the user to sadbe scheduling mode between physical queues. For example
$dsredq setSchedularMode WRR
$dsredq addQueueWeights 1 5

The above pair of commands sets the scheduling mode to Veéeidgtwund Robin and the weight for queue 1 to 5. Other
scheduling modes supported are Weighted Interleaved RBobih (WIRR), Round Robin (RR), and Priority (PRI). The
default scheduling mode is Round Robin.

For Priority scheduling, priority is arranged in sequeliaer with queue 0 having the highest priority. Also, ona sat the
a limit on the maximum bandwidth a particular queue can gieiguss follows:

$dsredq setSchedularMode PRI
$dsredq addQueueRate 0 5000000
These commands specify the maximum bandwidth that queue €ocesume is 5Mb.

The addPolicyEntry command is used to add an entry to the Policy Table. It takésreint parameters depending on
what policer type is used. The first two parameters after ttrernand name are always the source and destination node IDs,
and the next parameter is the policer type. Following thé&potype are the parameters needed by that policer as sunsdar
below:

Null Initial code point

TSW2CM Initial code point CIR

TSW3CM Initial code point CIR PIR

TokenBucket Initial code point CIR CBS

SITCM Initial code point CIR CBS EBS

trTCM Initial code point CIR CBS PIR PBS

Note that the Null policer requires only the initial codepiviSince this policer does not downgrade packets, othemimdtion
is not necessary. Consider a Tcl script for whithis a variable for an edge queue, @sland$d are source and destination
nodes. The following command adds a TSW2CM policer for wafbing from the source to the destination:

$q addPolicyEntry [$s id] [$d id] TSW2CM 10 2000000

Other parameters could be used for different policers icgtx "TSW2CM":
Null 10
TSW3CM 10 2000000 3000000
TokenBucket 10 2000000 10000

SITCM 10 2000000 10000 20000
trTCM 10 2000000 10000 3000000 10000

Note, however, that only one policy can be applied to anyc®destination pair.

90

The following command adds an entry to the Policer Tableci§piag that the trTCM has initial (green) code point 10,
downgraded (yellow) code point 11 and further downgraded)(code point 12:

$dsredq addPolicerEntry trTCM 10 11 12

There must be a Policer Table entry in place for every poligpe and initial code point pair. It should be noticed that th
Null policer is added in the following way:

$dsredq addPolicerEntry Null 10
Downgrade code points are not specified because the Nudiyadies not meter traffic characteristics.

Queries supported:

Output entires in Policy Table, one line at a time:
$dsredq printPolicyTable

Output entires in Policer Table, one line at a time:
$dsredq printPolicerTable

Output entries in PHB table, one line at a time:
$dsredq printPHBTable

Packets statistic results:
$dsredq printStats
Sample output:

Packets Statistics

CP TotPkts TxPkts Idrops edrops
All 249126 249090 21 15

10 150305 150300 O 5

20 98821 98790 21 10

CP: code point

TotPkts: packets received

TxPkts: packets sent

Idrops: packets are dropped due to link overflow
edrops: RED early dropping).

Returns the RED weighted average size of the specified pdlygpieue:
$dsredq getAverage 0

Returns the current size of the C Bucket (in bytes):
$dsredq getCBucket

9.4 Commands at a glance

The following is a list of related commands commonly usednmsation scripts:

91

$ns simplex-link $edge $core 10Mb 5ms dsRED/edge
$ns simplex-link $core $edge 10Mb 5ms dsRED/core

These two commands create the queues along the link betwesdga router and a core router.

set qEC [[$ns link $edge $core] queue]

Set DS RED parameters from Edge to Core:

$gEC meanPktSize $packetSize

$gEC set numQueues_ 1

$gEC setNumPrec 2

$gEC addPolicyEntry [$s1 id] [$dest id] TokenBucket 10 $cir 0 $cbsO
$gEC addPolicyEntry [$s2 id] [$dest id] TokenBucket 10 $cir 1 $cbsl
$gEC addPolicerEntry TokenBucket 10 11

$gEC addPHBEnNtry 10 0 0

$gEC addPHBEntry 11 0 1

$gEC configQ 0 0 20 40 0.02

$gEC configQ 0 1 10 20 0.10

This block of code obtains handle to the DiffServ queue framedge router to a core router and configures all of the
parameters for it.

The meanPktSize command is required for the RED state Vas&bbe calculated accurately. Setting the number of ghi/si
queues and precedence levels is optional, but it aids eftigieBecause neither the scheduling or MRED mode type are set
they default to Round Robin scheduling and RIO-C Active Quigldanagement.

The addPolicyEntry commands establish two policies at tiyge@ueue: one between nodes S1 and Dest and one between
nodes S2 and Dest. Note that f$s1 id] command returns the ID value neededauidPolicyEntry . The CIR and
CBS values used in the policies are the ones set at the bagiohthe script.

TheaddPolicerEntry line is required because each policer type and initial cadetppair requires an entry in the Policer
Table. Each of the policies uses the same policer and icihidé point, so only one entry is needed.

TheaddPHBEnNtry commands map each code point to a combination of physicaviaiual queue. Although each code
point in this example maps to a unique combination of physied virtual queue, multiple code points could receive taeh
treatment.

Finally, theconfigQ commands set the RED parameters for each virtual queue.etif@gs the virtual queue by first
two parameters, for example, 0 and 1. The next three parasnate the minimum threshold, maximum threshold, and the
maximum dropping probability. Note that as the precedembgaiincreases, the RED parameters become harsher.

set qCE [[$ns link $core $el] queue]

Set DS RED parameters from Core to Edge:
$qgCE meanPktSize $packetSize

$qCE set numQueues_ 1

$qCE setNumPrec 2
$qCE addPHBEntry 10 0 0
$qCE addPHBEntry 11 0 1
$qCE configQ 0 0 20 40 0.02

92

$qCE configQ 0 1 10 20 0.10

Note that the configuration of a core queue matches that dd@e gueue, except that there is no Policy Table or PolicdeTab
to configure at a core router. A core router’s chief requiratigthat it has a PHB entry for all code points that it will see

$qELC printPolicyTable
$qCE2 printCoreStats

These methods output the policy or policer tables on linkdiffdrent statistics.

For further information, please refer to the example seriptder xgtcl/ex/diffserv.

93

%

94

Chapter 10

Agents

Agents represent endpoints where network-layer packets@mstructed or consumed, and are used in the implemeantatio
of protocols at various layers. Thdass Agent has an implementation partly in OTcl and partly in C++. The+tC+
implementation is contained imsagent.cc andrsagent.h, and the OTcl support is ingtcl/lib/ns-agent.tcl.

10.1 Agent state

The C++class Agent includes enough internal state to assign various fields tmalated packet before it is sent. This
state includes the following:

addr_ node address of myself (source address in packets)
dst_ where | am sending packets to

size packet size in bytes (placed into the common packet header)
type_ type of packet (in the common header, see packet.h)
fid_ the IP flow identifier (formerhclassin ns-1)
prio_ the IP priority field
flags_ packet flags (similar to ns-1)
defttl default IP ttl value

These variables may be modified by any class derived #kgent , although not all of them may be needed by any particular
agent.

10.2 Agent methods

Theclass Agent supports packet generation and reception. The followinglrer functions are implemented by the
C++ Agent class, and are generaligt over-ridden by derived classes:

Packet * allocpkt () allocate new packet and assign its fields
Packet *= allocpkt (int) allocate new packet with a data payload of n bytes as@asts fields

95

The following member functions are also defined by the clagem, butare intended to be over-ridden by classes deriving
from Agent:

void timeout (timeout number)
void recv (Packet*, Handler*)

subclass-specific time out method

receiving agent main receive path

Theallocpkt () method is used by derived classes to create packets to 3éwmdfunction fills in the following fields in
the common packet header (Section 1@, ptype, size , and the following fields in the IP headesrc, dst,
flowid, prio, ttl . It also zero-fills in the following fields of the Flags headecn, pri, usrl, usr2 . Any
packet header information not included in these lists mashhst be handled in the classes derived fhagent .

Therecv () method is the main entry point for an Agent which receivaskets, and is invoked by upstream nodes when
sending a packet. In most cases, Agents make no use of thedsagument (the handler defined by upstream nodes).

10.3 Protocol Agents

There are several agents supported in the simulator. Thesbeir names in OTcl:

TCP a*“Tahoe” TCP sender (cwnd =1 on any loss)

TCP/Reno
TCP/Newreno
TCP/Sackl
TCP/Fack
TCP/FullTcp
TCP/Vegas
TCP/Vegas/RBP
TCP/Vegas/RBP
TCP/Asym
TCP/Reno/Asym
TCP/Newreno/Asym
TCPSink
TCPSink/DelAck
TCPSink/Asym
TCPSink/Sack1
TCPSink/Sack1/DelAck

UDP

RTP
RTCP

LossMonitor

IVS/Source
IVS/Receiver

a “Reno” TCP sender (with fast recovery)

a modified Reno TCP sender (changes fast rggover
a SACK TCP sender

a “forward” SACK sender TCP
a more full-functioned TCP with 2-way traffic

a “Vegas” TCP sender

a Vegas TCP with “rate based pacing”

a Reno TCP with “rate based pacing”
an experimental Tahoe TCP for asymmetric links

an experimental Reno TCP for asymmetrislink

an experimental Newreno TCP for asymimiks
a Reno or Tahoe TCP receiver (not used for FullTcp)
a TCP delayed-ACK receiver

an experimental TCP sink for asymmetric links

a SACK TCP receiver

a delayed-ACK SACK TCP receiver

a basic UDP agent

an RTP sender and receiver
an RTCP sender and receiver

a packet sink which checks for losses
an IVS source

an IVS receiver

96

CtrMcast/Encap a “centralised multicast” encapsulator
CtrMcast/Decap a “centralised multicast” de-encapsulato
Message a protocol to carry textual messages
Message/Prune processes multicast routing prune messages

SRM an SRM agent with non-adaptive timers
SRM/Adaptive an SRM agent with adaptive timers

Tap interfaces the simulator to a live network
Null a degenerate agent which discards packets

rtProto/DV distance-vector routing protocol agent

Agents are used in the implementation of protocols at variayers. Thus, for some transport protocols (e.g. UDP) the
distribution of packet sizes and/or inter-departure timesgy be dictated by some separate object representing thandism
of an application. To this end, agents expose an applicatiogramming interface (API) to the application. For agerssd

in the implementation of lower-layer protocols (e.g. rogtiagents), size and departure timing is generally dictbjethe
agent’s own processing of protocol messages.

10.4 OfTcl Linkage

Agents may be created within OTcl and an agent’s intern& stan be modified by use of Tcket function and any Tcl
functions an Agent (or its base classes) implements. Natesttime of an Agent’s internal state may exist only within DTc
and is thus is not directly accessible from C++.

10.4.1 Creating and Manipulating Agents

The following example illustrates the creation and modtfaaof an Agentin OTcl:

set newtcp [new Agent/TCP] H create new object (and C++ shadow object)
$newtcp set window_ 20 # sets the tcp agent’s window to 20
$newtcp target $dest H# target is implemented in Connector class
$newtcp set portiD_ 1 # exists only in OTcl, notin C++

10.4.2 Default Values

Default values for member variables, those visible in OTrdycand those linked between OTcl and C++ witind are
initialized in the +ndtcl/lib/ns-default.tcl file. For exampléygent is initialized as follows:

Agent set fid_ 0
Agent set prio_ O
Agent set addr_ O

97

Agent set dst_ O
Agent set flags_ 0

Generally these initializations are placed in the OTcl nsppage before any objects of these types are created. Thas,avh
Agent objectis created, the calls bind in the objects’ constructors will causes the correspondiegqber variables to be
set to these specified defaults.

10.4.3 OTcl Methods

The instance procedures defined for the QAgént class are currently found imd/tcl/lib/ns-agent.tcl. They are as follows:
port the agent’s port identifier
dst-port the destination’s port identifier
attach-source (stype) create and attach a Source object to an agent

10.5 Examples: Tcp, TCP Sink Agents

Theclass TCP represents a simplified TCP sender. It sends datal'toRSink agent and processes its acknowledgments.
It has a separate object associated with it which represenggpplication’s demand. By looking at thiass TCPAgent
andclass TCPSinkAgent ,we may see how relatively complex agents are constructe@xample from the Tahoe TCP
agenfTCPAgent is also given to illustrate the use of timers.

10.5.1 Creating the Agent

The following OTcl code fragment create§ &Pagent and sets it up:

set tcp [new Agent/TCP] # create sender agent
$tcp set fid_ 2 # set IP-layer flow ID

set sink [new Agent/TCPSink] # create receiver agent
$ns attach-agent $n0 S$tcp ;# put sender on node $n0
$ns attach-agent $n3 $sink ;# put receiver on node $n3
$ns connect $tcp $sink ;# establish TCP connection
set ftp [new Application/FTP] # create an FTP source "application”
$ftp attach-agent $tcp H associate FTP with the TCP sender
$ns at 1.2 "$ftp start" # arrange for FTP to start at time 1.2 sec

The OTclinstructiomew Agent/TCP results in the creation of a C+icpAgent class object. Its constructor first invokes
the constructor of thAgent base class and then performs its own bindings. These twdrootts's appear as follows:

The TcpSimpleAgent constructorrfgtcp.cc):

TcpAgent::TcpAgent() : Agent(PT_TCP), rtt_active_(0), r tt_seq_(-1),
rtx_timer_(this), delsnd_timer_(this)
{
bind("window_", &wnd_);
bind("windowlnit_", &wnd_init_);

98

bind("windowOption_", &wnd_option_);
bind("windowConstant_", &wnd_const_);

bind("off_ip_", &off ip);
bind("off_tcp_", &off tcp);

}
The Agent constructor figagent.cc):
Agent::Agent(int pkttype) :

addr_(-1), dst_(-1), size_(0), type_(pkttype), fid_(-1) ,
prio_(-1), flags_(0)

{
memset(pending_, 0, sizeof(pending)); / * timers*/
/I thisis really an IP agent, so set up
/I for generating the appropriate IP fields. ..
bind("addr_", (int *)&addr_);
bind("dst_", (int *)&dst);
bind("fid_", (int *)&fid_);
bind("prio_", (int *)&prio_);
bind("flags_", (int *)&flags_);
}

These code fragments illustrate the common case where atsagenstructor passes a packet type identifier toApent
constructor. The values for the various packet types aré bgeahe packet tracing facility (Section 25.5) and are defiime
~ngdtrace.h. The variables which are bound in fepAgent constructor are ordinary instance/member variables fer th
class with the exception of the special integer valoiéstcp andoff_ip_ . These are needed in order to access a TCP
header and IP header, respectively. Additional detailsratiee section on packet headers (Section 12.1).

Note that theTcpAgent constructor contains initializations for two timersg_timer_ anddelsnd_timer_

TimerHandler objects are initialized by providing a pointer (tthés pointer) to the relevant agent.

10.5.2 Starting the Agent

TheTcpAgent agent is started in the example when its FTP source recdieestadrt directive at time 1.2. Thetart
operation is an instance procedure defined on the class@gipin/FTP (Section 37.4). Itis defined ingtcl/lib/ns-source.tcl
as follows:

Application/FTP instproc start {} {
[$self agent] send -1

}

In this caseagent refers to our simple TCP agent agend -1 is analogous to sending an arbitrarily large file.

The call tosend eventually results in the simple TCP sender generatinggtackhe following functiomutput performs
this:

void TcpAgent::output(int seqno, int reason)

99

Packet = p = allocpkt();

hdr_tcp *tcph = (hdr_tcp *)p->access(off _tcp);
double now = Scheduler:instance().clock();
tcph->seqno() = seqno;

tcph->ts() = now;

tcph->reason() = reason;

Connector::send(p, 0);

if (!(rtx_timer_.status() == TIMER_PENDING))
[* No timer pending. Schedule one/
set_rtx_timer();

Here we see an illustration of the use of thgent::allocpkt () method. This output routine first allocates a new packet
(with its common and IP headers already filled in), but therstfill in the appropriate TCP-layer header fields. To find
the TCP header in a packet (assuming it has been enableib{S&2t2.4)) theoff tcp_ must be properly initialized, as
illustrated in the constructor. The paclatcess () method returns a pointer to the TCP header, its sequenodeuand
time stamp fields are filled in, and tBend () method of the class Connector is called to send the packatstream one hop.
Note that the C++: scoping operator is used here to avoid callifgpSimpleAgent::send () (which is also defined).
The check for a pending timer uses the timer metstadus () which is defined in the base class TimerHandler. It is used
here to set a retransmission timer if one is not already s€C(sender only sets one timer per window of packets on each
connection).

10.5.3 Processing Input at Receiver

Many of the TCP agents can be used with diess TCPSink as the peer. This class defines tieev () andack ()
methods as follows:

void TcpSink::recv(Packet * pkt, Handler =)
{
hdr_tcp *th = (hdr_tcp *)pkt->access(off_tcp_);
acker_->update(th->seqno());
ack(pkt);
Packet::free(pkt);
}

void TcpSink::ack(Packet * opkt)

{
Packet = npkt = allocpkt();

hdr_tcp *otcp (hdr_tcp *)opkt->access(off_tcp_);
hdr_tcp *ntcp (hdr_tcp *)npkt->access(off_tcp);
ntcp->seqno() = acker_->Seqno();

ntcp->ts() = otcp->ts();

hdr_ip * oip (hdr_ip *)opkt->access(off_ip_);
hdr_ip * nip = (hdr_ip *)npkt->access(off_ip_);
nip->flowid() = oip->flowid();

hdr_flags * of = (hdr_flags * Jopkt->access(off_flags_);

100

hdr_flags * nf = (hdr_flags *)npkt->access(off_flags_);
nf->ecn_ = of->ecn_;

acker_->append_ack((hdr_cmn *)npkt->access(off_cmn_),
ntcp, otcp->seqno());
send(npkt, 0);

Therecv () method overrides thAgent::recv () method (which merely discards the received packet). dtatigs some
internal state with the sequence number of the receivedgbdakd therefore requires tioff_tcp_ variable to be properly
initialized. It then generates an acknowledgment for theikeed packet. Thack () method makes liberal use of access to
packet header fields including separate accesses to the d&leh P header, Flags header, and common header. The call t
send () invokes theConnector::send () method.

10.5.4 Processing Responses at the Sender

Once the simple TCP’s peer receives data and generates an #v€ksender must (usually) process the ACK. In the
TcpAgent agent, this is done as follows:

| *
* main reception path - should only see acks, otherwise the
* network connections are misconfigured
*/

void TcpAgent::recv(Packet +pkt, Handler *)

{
hdr_tcp *tcph = (hdr_tcp *)pkt->access(off_tcp);

hdr_ip * iph (hdr_ip =)pkt->access(off_ip);
if (((hdr_flags *)pkt->access(off_flags))->ecn_)
quench(l);
if (tcph->seqno() > last_ack) {
newack(pkt);
opencwnd();
} else if (tcph->seqno() == last_ack) {
if (++dupacks_ == NUMDUPACKS) {
}

}
Packet::free(pkt);

send(0, 0, maxburst);

This routine is invoked when an ACK arrives at the senderhls tase, once the information in the ACK is processed (by
newack) the packet is no longer needed and is returned to the pacak®ny allocator. In addition, the receipt of the ACK
indicates the possibility of sending additional data, soltbpSimpleAgent::send () method is invoked which attempts
to send more data if the TCP window allows.

101

10.5.5 Implementing Timers

As described in the following chapter (Chapter 11), spedifieer classes must be derived from an abstract loéesss
TimerHandler defined in agtimer-handler.h. Instances of these subclasses can thasdu as various agent timers. An
agent may wish to override th&gent::timeout () method (which does nothing). In the case of the Tahoe T@&htag
two timers are used: a delayed send tirdetsnd_timer_ and a retransmission timeix_timer_ . We describe the
retransmission timer in TCP (Section 11.1.2) as an exanfflmer usage.

10.6 Creating a New Agent

To create a new agent, one has to do the following:

. decide its inheritance structure (Section 10.6.1), aedte the appropriate class definitions,
. define theecv () andtimeout () methods (Section 10.6.2),

. define any necessary timer classes,

. define OTcl linkage functions (Section 10.6.3),

. write the necessary OTcl code to access the agent (Sa€ti6rm).

ga b~ W N P

The action required to create and agent can be illustrateddgns of a very simple example. Suppose we wish to construct
an agent which performs the ICMP ECHO REQUEST/REPLY (or gfjroperations.

10.6.1 Example: A “ping” requestor (Inheritance Structure)

Deciding on the inheritance structure is a matter of persomaice, but is likely to be related to the layer at which tigeist
will operate and its assumptions on lower layer functidgallhe simplest type of Agent, connectionless datagraiented
transport, is thégent/UDP base class. Traffic generators can easily be connected toAdBRts. For protocols wishing to
use a connection-oriented stream transport (like TCP)y#hieus TCP Agents could be used. Finally, if a new transport
“sub-transport” protocol is to be developed, usigent as the base class would likely be the best choice. In our ebeamp
we’ll use Agent as the base class, given that we are constguan agent logically belonging to the IP layer (or just abddy.

We may use the following class definitions:

class ECHO_Timer;

class ECHO_Agent : public Agent {
public:

ECHO_Agent();

int command(int argc, const char *Cconst * argv);
protected:

void timeout(int);

void sendit();

double interval_;

ECHO_Timer echo_timer_;

h

class ECHO_Timer : public TimerHandler {

102

public:

ECHO_Timer(ECHO_Agent *a) : TimerHandler() { a_ = a; }
protected:

virtual void expire(Event *e);

ECHO_Agent *a_;

10.6.2 Therecv()andti meout() Methods

Therecv () method is not defined here, as this agent represents agstfguetion and will generally not be receiving events
or packet$. By not defining theecv () method, the base class versiorreév () (i.e., Connector::recv ())isused. The
timeout () method is used to periodically send request packets. dlaning timeout () method is used, along with a
helper methodsendit ():

void ECHO_Agent::timeout(int)

{
sendit();
echo_timer_.resched(interval_);

}

void ECHO_Agent::sendit()

{
Packet = p = allocpkt();
ECHOHeader *eh = ECHOHeader::access(p->bits());
eh->timestamp() = Scheduler::instance().clock();
send(p, 0); I Connector::send()

}

void ECHO_Timer::expire(Event *e)

{
a_->timeout(0);

}

Thetimeout () method simply arranges feendit () to be executed eveipterval _ seconds. Theendit () method

creates a new packet with most of its header fields alreadypskeyallocpkt (). The packet is only lacks the current time
stamp. The call taccess () provides for a structured interface to the packet headtdj and is used to set the timestamp
field. Note that this agent uses its own special header (“EBeBler”). The creation and use of packet headers is dedcribe
in later chapter (Chapter 12); to send the packet to the rexhdtream nodeConnector::send () is invoked without a
handler.

10.6.3 Linking the “ping” Agent with OTcl

We have the methods and mechanisms for establishing OTkabmearlier (Chapter 3). This section is a brief review ef th
essential features of that earlier chapter, and desctilsaiinimum functionality required to create the ping agent.

There are three items we must handle to properly link our taiggéh Otcl. First we need to establish a mapping between the
OTcl name for our class and the actual object created whenstaritiation of the class is requested in OTcl. This is dane a
follows:

1This is perhaps unrealistically simple. An ICMP ECHO REQUEgent would likely wish to process ECHO REPLY messages.

103

static class ECHOClass : public TclClass {
public:
ECHOCIass() : TclClass("Agent/ECHO") {}
TclObject = create(int argc, const char *const * argv) {
return (new ECHO_Agent());
}

} class_echo;

Here, astatic object “class_echo” is created. It's constructor (exedutemediately when the simulator is executed) places
the class hame “Agent/ECHQO” into the OTcl name space. Théngiof case is by convention; recall from Section 3.5 in the
earlier chapters that the “/” character is a hierarchy didinfor the interpreted hierarchy. The definition of tbeate ()
method specifies how a C++ shadow object should be created thieeOTcl interpreter is instructed to create an object
of class “Agent/ECHQO?”. In this case, a dynamically-all@zhbtbject is returned. This is the normal way new C++ shadow
objects are created.

Once we have the object creation set up, we will want to link @¥ember variables with corresponding variables in the OTcl

nname space, so that accesses to OTcl variables are adinakgd by member variables in C++. Assume we would like
OTcl to be able to adjust the sending interval and the padcket $his is accomplished in the class’s constructor:

ECHO_Agent::ECHO_Agent() : Agent(PT_ECHO)

{
bind_time("interval ", &interval);
bind("packetSize_", &size_);
}
Here, the C++variablaaterval andsize_ arelinked tothe OTclinstance variablaterval _ andpacketSize

respectively. Any read or modify operation to the Otcl vates will result in a corresponding access to the underlgmeg
variables. The details of theind () methods are described elsewhere (Section 3.4.2). TheedefionstanPT_ECHQs
passed to thdgent () constuctor so that th&gent::allocpkt () method may set the packet type field used by the trace
support (Section 25.5). In this cas¥l _ECHOepresents a new packet type and must be definedditrace.h (Section 25.4).

Once object creation and variable binding is set up, we may ¥eacreate methods implemented in C++ but which can be
invoked from OTcl (Section 3.4.4). These are often conuaktions that initiate, terminate or modify behavior. Irr ptesent
example, we may wish to be able to start the ping query agent @Tcl using a “start” directive. This may be implemented
as follows:

int ECHO_Agent::command(int argc, const char *const * argv)
{
if (argc == 2) {
if (strcmp(argv[l], "start") == 0) {
timeout(0);

return (TCL_OK);
}
}

return (Agent::command(argc, argv));

Here, thestart () method available to OTcl simply calls the C++ member fiorctimeout () which initiates the first
packet generation and schedules the next. Note this classsimple it does not even include a way to be stopped.

104

10.6.4 Using the agent through OTcl

The agent we have created will have to be instantiated aadhattl to a node. Note that a node and simulator object is
assumed to have already been created. The following OTe pedorms these functions:

set echoagent [new Agent/ECHO]
$simulator attach-agent $node $echoagent

To set the interval and packet size, and start packet gemer#te following OTcl code is executed:

$echoagent set dst_ $dest
$echoagent set fid_ 0
$echoagent set prio_ 0
$echoagent set flags_ 0
$echoagent set interval_ 1.5
$echoagent set packetSize_ 1024
$echoagent start

This will cause our agent to generate one 1024-byte pacletinde for nodebdest every 1.5 seconds.

10.7 The Agent API

Simulated applications may be implemented on top of prdtagents. Chapter 37 describes the API used by applications t
access the services provided by the protocol agent.

10.8 Different agent objects

Class Agent forms the base class from which different typebpects like Nullobject, TCP etc are derived. The methais f
Agent class are described in the next section. Configurgidoameters for:

fid_ Flowid.

prio_ Priority.

agent_addr_ Address of this agent.

agent_port_ Port adress of this agent.

dst_addr_ Destination address for the agent.
dst_port_ Destination port address for the agent.
flags_

ttl_ TTL defaults to 32.

There are no state variables specific to the generic agese.dzther objects derived from Agent are given below:

105

Null Objects Null objects are a subclass of agent objects that implemaaffec sink. They inherit all of the generic agent
object functionality. There are no methods specific to thigcot. The state variables are:
e sport_
e dport_
LossMonitor Objects LossMonitor objects are a subclass of agent objects thdemmmnt a traffic sink which also maintains

some statistics about the received data e.g., number of bgteived, number of packets lost etc. They inherit all of
the generic agent object functionality.

$lossmonitor clear
Resets the expected sequence numberto -1.

State Variables are:

nlost_ Number of packets lost.

npkts_ Number of packets received.

bytes Number of bytes received.

lastPktTime_ Time at which the last packet was received.
expected_The expected sequence number of the next packet.

TCP objects TCP objects are a subclass of agent objects that implemerB8D Tahoe TCP transport protocol as de-
scribed in paper: "Fall, K., and Floyd, S. Comparisons ofcegiReno, and Sack TCP. December 1995." URL ftp://
ftp.ee.Ibl.gov/papers/sacks.ps.Z. They inherit all & generic agent functionality. Configuration Parametegs ar
window_ The upper bound on the advertised window for the TCP conorecti

maxcwnd_ The upper bound on the congestion window for the TCP conmrectset to zero to ignore. (This is the
default.)

windowlnit_ The initial size of the congestion window on slow-start.
windowOption_ The algorithm to use for managing the congestion window.

windowThresh_ Gain constant to exponential averaging filter used to compuind (see below). For investigations
of different window-increase algorithms.

overhead_ The range of a uniform random variable used to delay eachubpipcket. The idea is to insert random
delays at the source in order to avoid phase effects, wheredgsee Floyd, S., and Jacobson, V. On Traffic Phase
Effects in Packet-Switched Gateways. Internetworkingsd@ech and Experience, V.3 N.3, September 1992. pp.
115-156]. This has only been implemented for the Tahoe '(J'teprsion of tcp, not for tcp-reno. This is not
intended to be a realistic model of CPU processing overhead.

ecn_ Set to true to use explicit congestion notification in additio packet drops to signal congestion. This allows a
Fast Retransmit after a quench() due to an ECN (explicit estign notification) bit.

packetSize_The size in bytes to use for all packets from this source.

tcpTick_ The TCP clock granularity for measuring roundtrip times.té&that it is set by default to the non-standard
value of 100ms.

bugFix_ Set to true to remove a bug when multiple fast retransmitaltoeved for packets dropped in a single window
of data.

maxburst_ Set to zero to ignore. Otherwise, the maximum number of padkat the source can send in response to
a single incoming ACK.

slow_start_restart_ Set to 1 to slow-start after the connection goes idle. On igude
Defined Constants are:

MWS The Maximum Window Size in packets for a TCP connection. MVé&rnines the size of an array in tcp-
sink.cc. The default for MWS is 1024 packets. For Tahoe T8®,"tvindow" parameter, representing the re-
ceiver’s advertised window, should be less than MWS-1. Femd:TCP, the "window" parameter should be less
than (MWS-1)/2.

106

State Variables are:

dupacks_ Number of duplicate acks seen since any new data was ackigede

seqgno_ Highest sequence number for data from data source to TCP.

t_segno_ Current transmit sequence number.

ack_ Highest acknowledgment seen from receiver. cwnd_ Curraloievof the congestion window.

awnd_ Current value of a low-pass filtered version of the congestimdow. For investigations of different window-
increase algorithms.

ssthresh_ Current value of the slow-start threshold.
rtt_ Round-trip time estimate.
srtt_ Smoothed round-trip time estimate.
ritvar_ Round-trip time mean deviation estimate.
backoff _ Round-trip time exponential backoff constant.
TCP/Reno Objects TCP/Reno objects are a subclass of TCP objects that impletmefReno TCP transport protocol de-
scribed in paper: "Fall, K., and Floyd, S. Comparisons ofcegiReno, and Sack TCP. December 1995." URL ftp://

ftp.ee.lbl.gov/papers/sacks.ps.Z. There are no mettooadiguration parameters or state variables specific toaiis
ject.

TCP/Newreno Objects TCP/Newreno objects are a subclass of TCP objects that imgriea modified version of the BSD
Reno TCP transport protocol. There are no methods or staleas specific to this object.

Configuration Parameters are:

newreno_changes_Set to zero for the default New Reno described in "Fall, Kd Bloyd, S. Comparisons of Tahoe,
Reno, and Sack TCP. December 1995". Set to 1 for additionalRkeno algorithms [see Hoe, J., Improving the
Start-up Behavior of a Congestion Control Scheme for TCBIGBCOMM 96, August 1996, pp. 270-280. URL
http://lwww.acm.org/sigcomm/sigcomm96/papers/hoel.fitthis includes the estimation of the ssthresh parame-
ter during slow-start.

TCP/Vegas Objects There are no methods or configuration parameters specificgs@bject. State variables are:

v_alpha_
e vV beta
e V_gamma_
o v _rtt_
TCP/Sackl Objects TCP/Sack1 objects are a subclass of TCP objects that implehreeBSD Reno TCP transport protocol
with Selective Acknowledgement Extensions described ≪'IK., and Floyd, S. Comparisons of Tahoe, Reno, and

Sack TCP. December 1995". URL ftp:// ftp.ee.Ibl.gov/papsacks.ps.Z. They inherit all of the TCP object functienal
ity. There are no methods, configuration parameters or gtatables specific to this object.

TCP/FACK Objects TCP/Fack objects are a subclass of TCP objects that impleiimeBSD Reno TCP transport protocol
with Forward Acknowledgement congestion control. Theyeirihall of the TCP object functionality. There are no
methods or state variables specific to this object.

Configuration Parameters are:

ss-div4 Overdamping algorithm. Divides ssthresh by 4 (instead off 2pngestion is detected within 1/2 RTT of
slow-start. (1=Enable, 0=Disable)

rampdown Rampdown data smoothing algorithm. Slowly reduces comgestindow rather than instantly halving it.
(1=Enable, O=Disable)

TCP/FULLTCP Objects This section has not yet been added here. The implementatidithe configuration parameters
are described in paper: "Fall, K., Floyd, S., and Hender§gmNs Simulator Tests for Reno FullTCP. July, 1997." URL
ftp://ftp.ee.Ibl.gov/papers/fulltcp.ps.

107

TCPSINK Objects TCPSink objects are a subclass of agent objects that implemeceiver for TCP packets. The simu-
lator only implements "one-way" TCP connections, whereTtG® source sends data packets and the TCP sink sends
ACK packets. TCPSink objects inherit all of the generic ddenctionality. There are no methods or state variables
specific to the TCPSink object. Configuration Parameters are

packetSize_The size in bytes to use for all acknowledgment packets.

maxSackBlocks_The maximum number of blocks of data that can be acknowlentige&ACK option. For a receiver
that is also using the time stamp option [RFC 1323], the SA@Hom specified in RFC 2018 has room to include
three SACK blocks. This is only used by the TCPSink/SackXiags. This value may not be increased within
any particular TCPSink object after that object has beestated. (Once a TCPSink object has been allocated,
the value of this parameter may be decreased but not inaease

TCPSINK/DELACK Objects DelAck objects are a subclass of TCPSink that implement ayeéel ACK receiver for TCP
packets. They inherit all of the TCPSink object functiotyaliThere are no methods or state variables specific to the
DelAck object. Configuration Parameters are:

interval_ The amount of time to delay before generating an acknowlesigifior a single packet. If another packet
arrives before this time expires, generate an acknowledgjimamediately.

TCPSINK/SACK1 Objects TCPSink/Sackl objects are a subclass of TCPSink that imgriea SACK receiver for TCP
packets. They inherit all of the TCPSink object functiohallThere are no methods, configuration parameters or state
variables specific to this object.

TCPSINK/SACK1/DELACK Objects TCPSink/Sackl/DelAck objects are a subclass of TCPSik/Sthat implement a
delayed-SACK receiver for TCP packets. They inherit allted TCPSink/Sackl object functionality. There are no
methods or state variables specific to this object. Configurdarameters are:

interval_ The amount of time to delay before generating an acknowlesigifior a single packet. If another packet
arrives before this time expires, generate an acknowledgimenediately.

10.9 Commands at a glance

Following are the agent related commands used in simulatidpts:

ns_ attach-agent <node> <agent>

This command attaches the <agent> to the <node>. We assumthhethe <agent> has already been created. An agent is
typically created byset agent [new Agent/AgentType] where Agent/AgentType defines the class definiton of the
specified agent type.

$agent port
This returns the port number to which the agent is attached.

$agent dst-port
This returns the port number of the destination. When anyeotion is setup between 2 nodes, each agent stores the
destination port in its instance variable callést port_

$agent attach-app <s_type>
This commands attaches an application of typetype> to the agent. A handle to the application object is returidsb
note that the application type must be defined as a packetrygaecket.h.

$agent attach-source <s_type>

This used to be the procedure to attach source of §gpdype> to the agent. But this is obsolete now. Use attach-app
(described above) instead.

108

$agent attach-tbf <tbf>
Attaches a token bucket filter (tbf) to the agent.

$ns_ connect <src> <dst>
Sets up a connection between the src and dst agents.

$ns_ create-connection <srctype> <src> <dsttype> <dst> <p ktclass>

This sets up a complete connection between two agents.cFéates a source of type <srctype> and binds it to <src>. Then
creates a destination of type <dsttype> and binds it to <ddtrally connects the src and dst agents and returns a hendle
the source agent.

$ns_ create-connection-list <srctype> <src> <dsttype> <d st> <pktclass>
This command is exactly similar to create-connection deedrabove. But instead of returning only the source-adhbist,
returns a list of source and destination agents.

Internal procedures:

$ns_ simplex-connect <src> <dst>

This is an internal method that actually sets up an unidiveat connection between the <src> agent and <dst> agent. It
simply sets the destination address and destination ptineofsrc> as <dst>'s agent-address and agent-port. Th@éctih
described above calls this method twice to set up a bi-dieat connection between the src and dst.

$agent set <args>
This is an internal procedure used to inform users of the Wwaott compatibility issues resulting from the upgrade tob®2-
addressing space currently used

$agent attach-trace <file>
This attaches the <file> to the agent to allow nam-tracingpefagent events.

In addition to the agent related procedures described tteee are additional methods that support different ty pagents
like Agent/Null, Agent/TCP, Agent/CBR, Agent/TORA, Agémicast etc. These additional methods along with the
procedures described here can be founadicl/lib/(ns-agent.tcl, ns-lib.tcl, ns-mip.tcl, ns-m@node.tcl, ns-namsupp.tcl,
ns-queue.tcl, ns-route.tcl, ns-sat.tcl, ns-source Tty are also described in the previous section.

109

Chapter 11

Timers

Timers may be implemented in C++ or OTcl. In C++, timers argdobon an abstract base class definedhsftimer-handler.h.
They are most often used in agents, but the framework is gearough to be used by other objects. The discussion below is
oriented towards the use of timers in agents.

The procedures and functions described in this chapter edound in ngtcl/ex/timer.tcl, and Agtimer-handler.{cc, h}.

In OTcl, a simple timer class is defined imgtcl/ex/timer.tcl. Subclasses can be derived to providegple mechanism for
scheduling events at the OTcl level.

11.1 C++ abstract base class TimerHandler

The abstract base clasgnerHandler contains the following public member functions:

void sched (doubledelay) schedule atimer to expire delay secondsifutiure
void resched (doubledelay) reschedule a timer (similarsthed (), but timer may be pending)
void cancel () cancela pendingtimer

int status () returns timer status (either TIMER_IDLE, TIMER_PENDING or
TIMER_HANDLING)

The abstract base clasgnerHandler contains the following protected members:

virtual void expire (Event*e) =0 this method must be filled in by the timer client
virtual void handle (Event* e) consumes an event; invokegire()and setsstatus_of the timer appro-
priately
int status_ keeps track of the current timer status
Event event_ event to be consumed upon timer expiration

The pure virtual functiorxpire()must be defined by the timer classes deriving from this atishase class.

Finally, two private inline functions are defined:

inline void _sched(double delay) {

110

(void)Scheduler::instance().schedule(this, &event_, d elay);

}

inline void _cancel() {
(void)Scheduler::instance().cancel(&event);

}

From this code we can see that timers make use of methods 8ttieduler class.

11.1.1 Definition of a new timer
To define a new timer, subclass this function and ddieradle () if needed fandle () is not always required):

class MyTimer : public TimerHandler {

public:
MyTimer(MyAgentClass *a) . TimerHandler() { a_ = a; }
virtual double expire(Event *e);

protected:
MyAgentClass *a_;

h

Then define expire:

double
MyTimer::expire(Event *e)
{
/I do the work
/I return TIMER_HANDLED; I => do not reschedule timer
/I return delay; I =>reschedule timer after delay
}

Note thatexpire () can return either the flag TIMER_HANDLED or a delay valuepénding on the requirements for this
timer.

OftenMyTimer will be a friend ofMyAgentClass , orexpire () will only call a public function ofMyAgentClass .

Timers are not directly accessible from the OTcl level, althh users are free to establish method bindings if they sivede

11.1.2 Example: Tcp retransmission timer

TCP is an example of an agent which requires timers. Therthege timers defined in the basic Tahoe TCP agent defined in
tcp.cc

rtx_timer_; / * Retransmission times/

delsnd_timer_; / * Delays sending of packets by a small random amount of ihe,
/ * to avoid phase effectd

burstsnd_timer_; / * Helps TCP to stagger the transmission of a large winddw

/ = into several smaller bursts/

111

In ~ngdtcp.h, three classes are derived from the base class TimerHandler

class RtxTimer : public TimerHandler {

public:
RtxTimer(TcpAgent *a) : TimerHandler() { a_ = a; }
protected:
virtual void expire(Event *e);
TcpAgent +*a_;
h
class DelSndTimer : public TimerHandler {
public:
DelSndTimer(TcpAgent xa) . TimerHandler() { a_ = a; }
protected:
virtual void expire(Event *e);
TcpAgent xa_;
h
class BurstSndTimer : public TimerHandler {
public:
BurstSndTimer(TcpAgent xa) : TimerHandler() { a_ = a; }
protected:
virtual void expire(Event *e);

TcpAgent +a_;

In the constructor fofcpAgent intcp.cc , each of these timers is initialized with tki@s pointer, which is assigned to
the pointera_.

TcpAgent::TcpAgent() : Agent(PT_TCP), rtt_active_(0), r tt_seq_(-1),
rtx_timer_(this), delsnd_timer_(this), burstsnd_timer _(this)

{

}

In the following, we will focus only on the retransmissiomgr. Various helper methods may be defined to schedule timer
eventse.g,

| *
* Set retransmit timer using current rtt estimate. By callirgsched()
* it does not matter whether the timer was already running.
*/

void TcpAgent::set_rtx_timer()

{
}

| *
* Set new retransmission timer if not all outstanding
* data has been acked. Otherwise, if a timer is still

rtx_timer_.resched(rtt_timeout());

112

* outstanding, cancel it.

* [
void TcpAgent::newtimer(Packet * pkt)
{
hdr_tcp *tcph = (hdr_tcp *)pkt->access(off_tcp);
if (t_segno_ > tcph->seqno())
set_rtx_timer();
else if (rtx_timer_.status() == TIMER_PENDING)
rtx_timer_.cancel();
}
Inthe above code, theet_rtx_timer () method reschedules the retransmission timer by cattingimer_.resched 0.

Note thatifitis unclear whether or not the timer is alreadyming, callingesched () eliminates the need to explicitly cancel
the timer. In the second function, examples are given of #eeafi thestatus () andcancel (void) methods.

Finally, theexpire (void) method for clasRtxTimer mustbe defined. Inthis casxpire (void) calls theimeout (void)

method forTcpAgent . This is possible becausieneout () is a public member function; if it were not, th&txTimer
would have had to have been declared a friend cla3spAgent .

void TcpAgent::timeout(int tno)

{
[= retransmit timer */
if (tno == TCP_TIMER_RTX) {
if (highest_ack == maxseq_ && !slow_start_restart) {
| *
* TCP option:
* If no outstanding data, then don’t do anything.
*/
return;
h
recover_ = maxseq_;
recover_cause_ = 2;
closecwnd(0);
reset_rtx_timer(0,1);
send_much(0, TCP_REASON_TIMEOUT, maxburst_);
} else {
| *
* delayed-send timer, with random overhead
* to avoid phase effects
* |
send_much(1, TCP_REASON_TIMEOUT, maxburst_);
}
}
void RtxTimer::expire(Event xe) {
a_->timeout(TCP_TIMER_RTX);
}

The various TCP agents contain additional examples of imer

113

11.2 OTcl Timer class

A simple timer class is defined imdgtcl/mcast/timer.tcl. Subclasses Bimer can be defined as needed. Unlike the C++
timer API, where asched () aborts if the timer is already setched () andresched () are the same; i.e., no state is kept for
the OTcl timers. The following methods are defined inTimer base class:

$self sched $delay # causes "$self timeout" to be called $delay seconds in thegfut
$self resched $delay ;# same as "$self sched $delay”
$self cancel ;# cancels any pending scheduled callback
$self destroy ;# same as "$self cancel"
$self expire ;# calls "$self timeout" immediately

11.3 Commands at a glance

Following is a list of methods for the class Timer. Note thatny different types of timers have been derived from thisbas
class (viz. LogTimer, Timer/Iface, Timer/Iface/Prune cBaTimer, Timer/Scuba etc).

$timer sched <delay>
This command cancels any other event that may have beenwetethd re-schedules another event after time <delay>.

$timer resched <delay>
Similar to "sched" described above. Added to have similais4R that of the C++ timers.

$timer cancel
This cancels any scheduled event.

$timer destroy
This is similar to cancel. Cancels any scheduled event.

$timer expire
This command calls for a time-out. However the time-out pohae needs to be defined in the sub-classes.

All these procedures can be foundrigtcl/mcast/timer.tcl.

114

Chapter 12

Packet Headers and Formats

The procedures and functions described in this chapter eafound in +ndtcl/lib/ns-lib.tcl, ~ngtcl/lib/ns-packet.tcl, and
~ngpacket.{cc, h}.

Objects in theclass Packet are the fundamental unit of exchange between objects inrtidation. The clas®acket
provides enough information to link a packet on to a lig.(in aPacketQueue or on a free list of packets), refer to a buffer
containing packet headers that are defined on a per-prdtastd, and to refer to a buffer of packet data. New protocaig m
define their own packet headers or may extend existing headtr additional fields.

New packet headers are introduced into the simulator by idgfia C++ structure with the needed fields, defining a static
class to provide OTcl linkage, and then modifying some ofdimeulator initialization code to assign a byte offset inteac
packet where the new header is to be located relative tosther

When the simulator is initialized through OTcl, a user magas$e to enable only a subset of the compiled-in packet famat
resulting in a modest savings of memory during the execuifdhe simulation. Presently, most configured-in packenfatis

are enabled. The management of which packet formats arentlyrenabled in a simulation is handled by a special packet
header manager object described below. This object supporOTcl method used to specify which packet headers will be
used in a simulation. If an object in the simulator makes dsefteld in a header which has not been enabled, a run-time
fatal program abort occurs.

12.1 A Protocol-Specific Packet Header

Protocol developers will often wish to provide a specific deratype to be used in packets. Doing so allows a new protocol
implementation to avoid overloading already-existingderdields. We consider a simplified version of RTP as an exampl
The RTP header will require a sequence number fields and aesalentifier field. The following classes create the needed
header (seend'rtp.h and xdrtp.cc):

From rtp.h:
[= rtp packet. For now, just have srcid + seqne/
struct hdr_rtp {
u_int32_t srcid_;
int seqno_;
[+ per-field member functionst/
u_int32_t& srcid() { return (srcid); }

115

int& seqgno() { return (segno); }

[Packet header access functiorg
static int offset_;
inline static int& offset() { return offset_; }
inline static hdr_rtp * access(const Packet * p) {
return (hdr_rtp *) p->access(offset);
}
h

From rtp.cc:

class RTPHeaderClass : public PacketHeaderClass {
public:
RTPHeaderClass() : PacketHeaderClass("PacketHeader/RT P,
sizeof(hdr_rtp)) {
bind_offset(&hdr_rtp::offset);

} class_rtphdr;

void RTPAgent::sendpkt()

{
Packet = p = allocpkt();
hdr_rtp *rh = hdr_rtp::access(p);
lastpkttime_ = Scheduler::instance().clock();
[+ Fillin srcid_ and seqno=*/
rh->seqno() = segno_++;
rh->srcid() = session_->srcid();
target_->recv(p, 0);

}

RTPAgent::RTPAgent()
. session_(0), lastpkttime_(-1e6)
{

type_ = PT_RTP;
bind("seqno_", &seqno_);

The first structurehdr_rtp , defines the layout of the RTP packet header (in terms of wandisstheir placement): which
fields are needed and how big they are. This structure definis only used by the compiler to compute byte offsets of
fields; no objects of this structure type are ever directlgaated. The structure also provides member functions kwviric
turn provide a layer of data hiding for objects wishing todea modify header fields of packets. Note that the staticsclas
variableoffset_ is used to find the byte offset at which the rtp header is latatean arbitraryngacket. Two methods
are provided to utilize this variable to access this headamy packet.offset() andaccess() . The latter is what
most users should choose to access this particular headgvacket; the former is used by the packet header management
class and should seldom be used. For example, to access Ehpd®ket header in a packet pointeddyone simply says
hdr_rtp::access(p) . The actual binding obffset_ to the position of this header in a packet is done by routines
inside ndtcl/lib/ns-packet.tcl and rgpacket.cc. Theonst in access() ’'s argument provides (presumably) read-only
access to aonst Packet, Ithough read-only is enforced since the returntpois notconst . One correct way to do this is

to provide two methods, one for write access, the other fad+enly access. However, this is not currently implemented

IMPORTANT : Notice that this is completely different from ttogiginal (and obsolete) method to access a packet header,
which requires that an integer variabt#f_ (hdrname)_, be defined for any packet header that one needs to access. Thi

116

method is now obsolete; its usage is tricky and its misusébearery difficult to detect.

The static objectlass_rtphdr of class RTPHeaderClass is used to provide linkage to OTcl when the RTP header
is enabled at configuration time. When the simulator exextités static object calls tHeacketHeaderClass constructor

with argumentsPacketHeader/RTP" andsizeof(hdr_rtp) . This causes the size of the RTP header to be stored and
made available to the packet header manager at configutatierfsee below, Section 12.2.4). Notice thatd_offset()

MUST be called in the constructor of this class, so that the paokatier manager knows where to store the offset for this
particular packet header.

The sample member functisgendpkt () method ofRTPAgent creates a new packet to send by calledpcpkt (),
which handles assignment of all the network-layer packatkefields (in this case, IP). Headers other than IP are &dndl
separately. In this case, the agent usesRi@Header defined above. Thacket::access (void) member function
returns the address of the first byte in a buffer used to haddibeinformation (see below). Its return value is cast astgo
to the header of interest, after which member functions eRfmPHeader object are used to access individual fields.

12.1.1 Adding a New Packet Header Type

Assuming we wish to create a new header catledthdr the following steps are performed:

1. create a new structure defining the raw fields (caliéd newhdr), defineoffset and access methods.
2. define member functions for needed fields.

3. create a static class to perform OTcl linkage (defirasketHeader/Newhdr), dobind_offset() in its con-
structor.

4. edit ndtcl/lib/ns-packet.tcl to enable new packet format (se@12 12.2.4).

This is the recommended way to add your packet headers. dgaot follow this method, your simulation may still work,
but it may behave in a unpredictable way when more protoa@sdded into your simulation. The reason is that the BOB
(Bag of Bits, Section 12.2.1) impacket is a large sparse space, assigning one wrong packeteheffset may not trigger
failure immediately.

12.1.2 Selectively Including Packet Headers in Your Simulson

By default, ns includesLL packet headers GALL protocols in ns irEVERYpacket in your simulation. This is a LOT of
overhead, and will increase as more protocols are addechgtd-or “packet-intensive” simulations, this could be adug
overhead. For instance, as of now (Aug 30, 2000), the sizadfqt headers of all protocols in ns is about 1.9KB; however,
if you turn on only the common header, the IP header and the Ae&@ier, they add up to about 100 bytes. If you are doing
large-scale web traffic simulation with many big fat pipegjucing unused packet headers can lead to major memongsavin

To include only the packet headers that are of interest tarygour specific simulation, follow this pattern (e.g., yoant to
remove AODV and ARP headers from your simulation):

remove-packet-header AODV ARP

set ns [new Simulator]

Notice tharemove-packet-header MUST go before the simulator is created. All packet headeremare in the forms
of PacketHeader/[hdr] . You only need to supply thiladr] part, not the prefix. To find the names of packet headers,
you may either look them up inng'tcl/lib/ns-packet.tcl, or run the following simple comnus inns

117

foreach cl [PacketHeader info subclass] {
puts $cl
}

To include only a specific set of headers in your simulatiog., P and TCP, follow this pattern:

remove-all-packet-headers
add-packet-header IP TCP

set ns [new Simulator]

IMPORTANT: You MUST never remove common header from yourwdation. As you can see inngtcl/lib/ns-packet.tcl,
this is enforced by these header manipulation procs.

Notice that by default, all packet headers are included

12.2 Packet Classes

There are four C++ classes relevant to the handling of paciet packet headers in genefeédicket , p_info PacketHeader
andPacketHeaderManager . Theclass Packet defines the type for all packets in the simulation; it is a sagscof
Event so that packets may be scheduled (e.g. for later arrivalraesgueue). Thelass packet_info holds all text
representations for packet names. Thaess PacketHeader provides a base class for any packet header configured into
the simulation. It essentially provides enough internalesto locate any particular packet header in the colleaifqracket
headers present in any given packet. Thess PacketHeaderManager defines a class used to collect and manage
currently-configured headers. It is invoked by a methodlaieée to OTcl at simulation configuration time to enable some
subset of the compiled-in packet headers.

12.2.1 The Packet Class

The class Packet defines the structure of a packet and psavidmber functions to handle a free list for objects of thiety
Itis illustrated in Figure 12.1 and defined as followsiacket.h

class Packet : public Event {

private:
friend class PacketQueue;
u_char * bits_;
u_char = data_; / = variable size buffer for 'data* /
u_int datalen_; / = length of variable size buffet/
protected:
static Packet * free_;
public:

Packet * next_; / = for queues and the free list
static int hdrlen_;

Packet() : bits_(0), datalen_(0), next_(0) {}

u_char = const bits() { return (bits); }

Packet = copy() const;

static Packet * alloc();

118

Packet points to next packet in either

hdrsize

free list or in a PacketQueue

Size Determined -

Time, stored in hdrsize .

next_
accessdata() packet data
bits)
size determined .
)/ at compile time ip header body

size determined

at Simulator Config { at compile time tcp header body
\ size determined
'\ at compile time rtp header body
size determined
\ at compile time trace header body

static
inline
static
inline

}

inline

This class holds a pointer to a generic array of unsignecbatars (commonly called the “bag of bits” or BOB for short)evé
packet header fields are stored. It also holds a pointer thegpadata” (which is often not used in simulations). Tiies_
variable contains the address of the first byte of the BOBediffely BOB is (currently implemented as) a concatenadibn

all the structures defined for each packet header (by colrerihe structures with names beginnindy_ (something))

that have been configured in. BOB generally remains a fixesl thioughout a simulation, and the size is recorded in the

Figure 12.1: A Packet Object

Packet + alloc(int);
void allocdata(int);

void free(Packet *);
u_char + access(int off) {
if (off < 0)
abort();

return (&bits_[off]);

u_char * accessdata() { return data_; }

Packet::hdrlen_ member variable. This size is updated during simulator goméition by OTc}.

The other methods of the class Packet are for creating nelepsand storing old (unused) ones on a private free listhSuc

allocation and deallocation is performed by the followirngle (in ~ngpacket.h):

inline Packet * Packet:alloc()
{
Packet * p = free_;
if (p !'= 0)
free_ = p->next_;

1itis not intended to be updated after configuration time.naioshouldbe possible, but is currently untested.

119

else {
p = new Packet;

p->bits_ = new u_char[hdrsize_];
if (p == 0 || p->bits_ == 0)
abort();
}
return (p);

}

/ = allocate a packet with an n byte data buffer
inline Packet * Packet::alloc(int n)

{
Packet = p = alloc();
if (n > 0)
p->allocdata(n);
return (p);
}

/ = allocate an n byte data buffer to an existing packgt
inline void Packet::allocdata(int n)

{
datalen_ = n;
data_ = new u_char[n];
if (data_ == 0)
abort();
}
inline void Packet::free(Packet * D)
{
p->next_ = free_;
free_ = p;
if (p->datalen_) {
delete p->data_;
p->datalen_ = 0;
}
}
inline Packet * Packet::copy() const
{
Packet » p = alloc();
memcpy(p->bits(), bits_, hdrlen_);
if (datalen_) {
p->datalen_ = datalen_;
p->data_ = new u_char[datalen_];
memcpy(p->data_, data_, datalen_);
}
return (p);
}
Thealloc () method is a support function commonly used to create neskgia. It is called byAgent::allocpkt 0

method on behalf of agents and is thus not normally invokezttly by most objects. It first attempts to locate an old gack
on the free list and if this fails allocates a new one usinglfe new operator. Note the®acket class objects and BOBs are
allocated separately. Thieee () method frees a packet by returning it to the free list. Nb#&packets are never returned to

120

the system’s memory allocatdnstead, they are stored on a free list wikatket::free () is called. Thecopy () member
creates a new, identical copy of a packet with the exceptfadheuid_ field, which is unique. This function is used by
Replicator objects to support multicast distribution and LANSs.

12.2.2 p_info Class

This class is used as a “glue” to bind numeric packet typeesith their symbolic names. When a new packet type is
defined, its numeric code should be added to the enumeradicket_t (see -ngpacket.hy and its symbolic name should
be added to the constructorpfinfo

enum packet_t {
PT_TCP,

PT_NTYPE /I This MUST be the LAST one

h
class p_info {
public:
p_info() {
name_[PT_TCP]= "tcp";
}
}

12.2.3 The hdr_cmn Class
Every packet in the simulator has a “common” header whiclefinéd in -ngpacket.h as follows:

struct hdr_cmn {

double ts_; [* timestamp: for g-delay measuremeirit
packet t ptype_; / = packet type (see above)
int uid_; [* unique id+/
int size_; / = simulated packet size¢/
int iface_; | * receiving interface (labeR /

/ = Packet header access functiong

static int offset_;

inline static int& offset() { return offset_; }

inline static hdr_cmn * access(Packet * p) {
return (hdr_cmn) p->access(offset);

}

[= per-field member functions/
int& ptype() { return (ptype); }
int& uid() { return (uid_); }
int& size() { return (size); }
int& iface() { return (iface); }

2Note: PT_NTYPEshould remain the last element of this enumeration.

121

double& timestamp() { return (ts); }

This structure primarily defines fields used for tracing tloafbf packets or measuring other quantities. The time staehgp fi

is used to measure queuing delay at switch nodes.ptyge_ field is used to identify the type of packets, which makes
reading traces simpler. Thed_ field is used by the scheduler in scheduling packet arrividigesize_ field is of general
use and gives the simulated packet’s size in bytes. Notdhbaictual number of bytes consumed in the simulation may not
relate to the value of this field (i.esjze_ hasno relationship tosizeof(struct hdr_cmn) or other ns structures).
Rather, it is used most often in computing the time requiggdaf packet to be delivered along a network link. As such it
should be set to the sum of the application data size and#épsport-, and application-level headers for the simdlptcket.
Theiface_ field is used by the simulator when performing multicastribistion tree computations. It is a label indicating
(typically) on which link a packet was received.

12.2.4 The PacketHeaderManager Class

An object of theclass PacketHeaderManager is used to manage the set of currently-active packet hegges tand
assign each of them unique offsets in the BOB. It is defineath the C++ and OTcl code:

From tcl/lib/ns-packet.tcl:
PacketHeaderManager set hdrlen_ 0
foreach prot {
AODV
ARP
aSRM
Common
CtrMcast
Diffusion

H
}

Simulator instproc create_packetformat {} {
PacketHeaderManager instvar tab_
set pm [new PacketHeaderManager]
foreach cl [PacketHeader info subclass] {
if [info exists tab_($cl)] {
set off [$pm allochdr $cl]
$cl offset $off

add-packet-header $prot

}
}
$self set packetManager_ $pm
}
PacketHeaderManager instproc allochdr cl {
set size [$cl set hdrlen_]
$self instvar hdrlen_
set NS_ALIGN 8 ;# round up to nearest NS_ALIGN bytes, (needed on sparc/splari
set incr [expr ($size + ($NS_ALIGN-1)) & ~($NS_ALIGN-1)]
set base $hdrlen_

122

incr hdrlen_ S$incr
return $base

}

From packet.cc:
/ * manages active packet header typek
class PacketHeaderManager : public TclObject {
public:
PacketHeaderManager() {
bind("hdrlen_", &Packet::hdrlen_);

}

The code in fadtcl/lib/ns-packet.tcl is executed when the simulatotiatizes. Thus, théoreach statement is executed
before the simulation begins, and initializes the OTcllagaytab_ to contain the mapping between class the name and
the names of the currently active packet header classesiségsded above (12.1), packet headers should be accessgd us
hdr_ (hdrname)::access()

Thecreate_packetformat {} instance procedure is part of the basic Simulator class iarcalled one time during sim-
ulator configuration. It first creates a singlacketHeaderManager object. The C++ constructor links the OTcl instance
variablehdrlen_ (of classPacketHeaderManager)to the C++ variabléacket::hdrlen_ (a static member of the
Packet class). This has the effect of settiffgcket::hdrlen_ to zero. Note that binding across class types in this
fashion is unusual.

After creating the packet manager, tfereach loop enables each of the packet headers of interest. Thisiterates
through the list of defined packet headers of the foh 0;) whereh; is the name of théth header and; is the name of the
variable containing the location of tlie header in BOB. The placement of headers is performed bgltbehdr instproc

of thePacketHeaderManager OTcl class. The procedure keeps a running vari@ldiden_ with the current length of
BOB as new packet headers are enabled. It also arrangedbgie&lignment for any newly-enabled packet header. This
is needed to ensure that when double-world length quasttie used in packet headers on machines where double-word
alignment is required, access faults are not prodidced.

12.3 Commands at a glance

Following is a list of packet-header related procedures:

Simulator::create_packetformat

This is an internal simulator procedure and is called onaénduhe simulator configuration to setup a
packetHeaderManager object.

PacketHeaderManager::allochdr

This is another internal procedure of Class PacketHeadealyer that keeps track of a variable calletilen_ as new
packet-headers are enabled. It also allows 8-byte allignifioe any newly-enabled pkt header.

add-packet-header takes a list of arguments, each of which is a packet headee ifaithoutPacketHeader/
prefix). This global proc will tell simulator to include theecified packet header(s) in your simulation.

3In some processer architectures, including the Sparc an@AJRlouble-word access must be performed on a double-wouthdary (i.e. addresses
ending in 0 mod 8). Attempting to perform unaligned accesssslt in an abnormal program termination.

123

remove-packet-header operates in the same syntax, but it removes the specifiectheftdm your simulation; notice
that it does not remove the common header even it is instiuotdo so.

remove-all-packet-headers is a global Tcl proc. It takes no argument and removes all pidokaders, except the
common header, from your simulatioadd-all-packet-headers is its counterpart.

124

Chapter 13

Error Model

This chapter describes the implementation and configurafierror models, which introduces packet losses into alsitioun.

In addition to the basic class ErrorModel described in detaélow, there are several other types of error modules eioigh
completely documented yet, which include:

e SRMErrorModel, PGMErrorModel: error model for SRM and PGM.
e ErrorModel/Trace: error model that reads a loss tracedmsbf a math/computed model)
e MrouteErrorModel: error model for multicast routing, nomhierits from trace.

e ErrorModel/Periodic: models periodic packet drops (dreprg nth packet we see). This model can be conveniently
combined with a flow-based classifier to achieve drops inqdar flows

e SelectErrorModel: for Selective packet drop.

e ErrorModel/TwoState: Two-State: error-free and error

e ErrorModel/TwoStateMarkov, ErrorModel/Expo, ErrorMdiempirical: inerit from ErrorModel/TwoState.
e ErrorModel/List: specify a list of packets/bytes to drofieh could be in any order.

Their definitions can be found im3gqueue/errmodel.{cc, h} andngtcl/lib/ns-errmodel.tcl, ns-default.tcl.

13.1 Implementation

The procedures and functions described in this section edaund in -ngerrmodel.{cc, h}.

Error model simulates link-level errors or loss by eitherrkiag the packet’s error flag or dumping the packet to a drop
target. In simulations, errors can be generated from a eimqudel such as the packet error rate, or from more compticate
statistical and empirical models. To support a wide varigtynodels, the unit of error can be specified in term of padhié,

or time-based.

TheErrorModel class is derived from th€onnector base class. As the result, it inherits some methods for imgakp
objectssuch asmrget anddrop-target . If the drop target exists, it will received corrupted paideomErrorModel

125

Otherwise ErrorModel just marks theerror_ flag of the packet’s common header, thereby, allowing agentsndle
the loss. Thé&rrorModel also defines additional Tcl methaoait to specify the unit of error andanvar to specify the
random variable for generating errors. If not specified,uhé& of error will be in packets, and the random variable \#
uniform distributed from 0 to 1. Below is a simple example ating an error model with the packet error rate of 1 percent
(0.01):

create a loss_module and set its packet error rate to 1 perce nt
set loss_module [new ErrorModel]
$loss_module set rate_ 0.01

optional: setthe unitand random variable
$loss_module unit pkt ;# error unit: packets (the default)
$loss_module ranvar [new RandomVariable/Uniform]

settarget for dropped packets
$loss_module drop-target [new Agent/Null]

In C++, theErrorModel contains both the mechanism and policy for dropping packete packet dropping mechanism
is handled by theecv method, and packet corrupting policy is handled bydbeupt method.

enum ErrorUnit { EU_PKT=0, EU_BIT, EU_TIME },

class ErrorModel : public Connector {
public:
ErrorModel();
void recv(Packet *, Handler =);
virtual int corrupt(Packet *);
inline double rate() { return rate_; }
protected:
int command(int argc, const char *const * argv);
ErrorUnit eu_; [* error unit in pkt, bit, or timex/
RandomVariable * ranvar_;
double rate_;

TheErrorModel only implements a simple policy based on a single error gitker in packets of bits. More sophisticated
dropping policy can be implemented in C++ by deriving fr&amorModel and redefining itgorrupt method.

13.2 Configuration

The previous section talked about error model, in this sactie discuss how to use error models in ns over either wired
networks or wireless ones.

To use an error model for wired networks, at first it has to kseited into a SimpleLink object. Because a SimpleLink is a

composite object (Chapter 6), an error model can be ins¢otathny places. Currently we provide the following methamls t
insert an error module into three different places.

e Insert an error module in a SimpleLink BEFORE the queue maddihis is provided by the following two OTcl
methods:

126

SimpleLink::errormodule args When an error model is givenagparameter, it inserts the error module into
the simple link, right after the queue module, and set thg@-danget of the er-
ror model to be the drop trace object of the simple link. Nt this requires
the following configuration ordems namtrace-all followed by link con-
figurations, followed by error model insertion. When no argant is given, it
returns the current error model in the link, if there’s anhidmethod is defined
in ngtcl/lib/ns-link.tcl

Simulator::lossmodelem) (sro) (dst Call SimpleLink::errormodule to insert the given error nodel into the simple

link (src, dst). It's simply a wrapper for the above methodisimethod is defined
in ngtcl/lib/ns-lib.tcl.

e Insertan error module in a SimpleLink AFTER the queue but BRIE the delay link. This is provided by the following
two methods:

SimpleLink::insert-linkloss args ~ This method’s behavior is identical to that of
SimpleLink::errormodule , except that it inserts an error mod-
ule immediately after the queue object. It's defineddicl/lib/ns-link.tcl

Simulator::link-lossmodelem) (src) (dst This is a wrapper foSimpleLink::insert-linkloss . It's defined

in ngtcl/lib/ns-lib.tcl

The nam traces generated by error models inserted using tivesmethods do not require special treatment and can
be visualized using an older version of nam.

e Insert an error module in a Link AFTER the delay link modulehisTcan be done biink::install-error
Currently this API doesn’t produce any trace. It only seraes placeholder for possible future extensions.

To add an error model over wireless networks, each node cantia given statistical error model either over outgoing or
incoming wireless channels. Precisely, the instanciatex enodel would be stuck between mac and netif modules tieghic

in Figure 16.2. For the outgoing link, the error module wolpointed by downtarget_ of the above mac module while for
the incoming link it would be linked by uptaget_ pointer oéthelow netif module. And in each case the target_ of the error
module points to either the netif or the mac respectivelye diiference of placing over the two different locationshattthe
outgoing causes all the receivers to receive the packetringfthe same degree of errors since the error is deternbiefxie
wireless channel module copies the packet. On the other, tlamdhcoming error module lets each receiver get the packet
corrupted with different degree of error since the errongdapendently computed in each error module.

The insertion into the wireless protocol stack can be donesdlling node-config command explained in Sectk®with the

two options IncomingErrrProc and OutgoingErrProc. We ca@ these two options at the same time or each one separately.
The argument of the two option is the name of the global promeavhich creates an error model object, feeds it with
necessary initial values appropriate for the new error nedand finally returns the object pointer. The following wisoa
simple TCL example script to add an error module into the l@gg protocol stack.

$ns node-config -IncomingErrProc UniformErr -OutgoingEr rProc UniformErr

proc UniformErr

set err [new ErrorModel]
$err unit packet

return $err

13.3 Multi-state error model

Contributed by Jianping Pan (jpan@bbcr.uwaterloo.ca).

127

The multi-state error model implements time-based eratedransitions. Transitions to the next error state octtheaend
of the duration of the current state. The next error statbés tselected using the transition state matrix.

To create a multi-state error model, the following paramseshould be supplied (as definedigtcl/lib/ns-errmodel.tcl):

e states : an array of states (error models).

e periods : an array of state durations.

e trans : the transition state model matrix.

e transunit : one of[pkt|byte|time]

e sttype : type of state transitions to use: eithigne or pkt .
e nstates : number of states.

e start :the start state.
Here is a simple example script to create a multi-state enaatel:

set tmp [new ErrorModel/Uniform O pkt]
set tmpl [new ErrorModel/Uniform .9 pkt]
set tmp2 [new ErrorModel/Uniform .5 pki]

Array of states (error models)
set m_states [list $tmp $tmpl $tmp2]
Durations for each of the states, tmp, tmp1 and tmp2, respdygt
set m_periods [list 0 .0075 .00375]
Transition state model matrix
set m_transmx { {0.95 0.05 0}
{0 0 1}
{t 0 0}
set m_trunit pkt
Use time-based transition
set m_sttype time
set m_nstates 3
set m_nstart [lindex $m_states 0]

set em [new ErrorModel/MultiState $m_states $m_periods $m _transmx

$m_trunit $m_sttype $m_nstates $m_nstart]

13.4 Commands at a glance

The following is a list of error-model related commands coomty used in simulation scripts:

set em [new ErrorModel]

$em unit pkt

$em set rate_ 0.02

$em ranvar [new RandomVariable/Uniform]
$em drop-target [new Agent/Null]

128

This is a simple example of how to create and configure an eroatel. The commands to place the error-model in a simple
link will be shown next.

$simplelink errormodule <args>
This commands inserts the error-model before the queueibjeimple link. However in this case the error-model’s
drop-target points to the linkdrophead_ element.

$ns_ lossmodel <src> <dst>
This command places the error-model before the queue in@idimk defined by the <src> and <dst> nodes. This is
basically a wrapper for the above method.

$simplelink insert-linkloss <args>

This inserts a loss-module after the queue, but right beferelelaylink_ element in the simple link. This is because nam
can visualize a packet drop only if the packet is on the linindhe queue. The error-module’s drop-target points to the
link’s drophead_ element.

$ns_ link-lossmodel <src> <dst>

This too is a wrapper method for insert-linkloss method dbsd above. That is this inserts the error-module righeratie
queue element in a simple link (src-dst).

129

Chapter 14

Local Area Networks

The characteristics of the wireless and local area netw@rksl) are inherently different from those of point-to-poiimks.

A network consisting of multiple point-to-point links camincapture the sharing and contention properties of a LAN. To
simulate these properties, we created a new type of a Notledd¢anNode. The OTcl configurations and interfaces for
LanNode reside in the following two files in the mamsdirectory:

tcl/lan/vlan.tcl
tcl/lan/ns-ll.tcl
tcl/lan/ns-mac.tcl

14.1 Tcl configuration

The interface for creating and configuring a LAN slightlyfdis from those of point-to-point link. At the top level, the
OTcl classSimulator exports a new method calledake-lan . The parameters to this method are similar to the method

duplex-link , except thamake-lan only accepts a list of nodes as a single parameter insteacpaféneters as in
duplex-link
Simulator instproc make-lan {nodes bw delay lltype ifgtype mactype chantype}

The optional parameters toake-lan specify the type of objects to be created for the link layer)(the interface queue,
the MAC layer Mac), and the physical layeQhannel). Below is an example of how a new CSMA/CD (Ethernet) LAN is
created.

Example:

$ns make-lan "$nl $n2" $bw $delay LL Queue/DropTail Mac/Csm a/Cd

creates a LAN with basic link-layer, drop-tail queue, andM28CD MAC.

130

i Higher Layers

_ Queue Queue Queue
(4]
&)
- n [[
4
c
£
LL LL LL
3]
&)
- Mac Mac . e Mac
5
=
9]
)
i | |
8
2 Channel Classifier/Mac
<
o

| !

Figure 14.1: Connectivity within a LAN

14.2 Components of a LAN

LanLink captures the functionality of the three lowest leyi@ the network stack:

1. Link Layer (LL)
2. Medium Access Control (MAC) Layer
3. Physical (PHY) Layer

Figure 14.1 illustrates the extended network stack thatesakmulations of local area network possibleg A packet sent
down the stack flows through the link laye@pigeue andLL), the MAC layer Mac), and the physical layeQhannel to
Classifier/Mac). The packet then makes its way up the stack throughvdag and thel L.

At the bottom of the stack, the physical layer is composedofdimulation objects: th€hannel andClassifier/Mac
TheChannel object simulates the shared medium and supports the medicessmechanisms of the MAC objects on the
sending side of the transmission. On the receiving sideCthssifier/Mac is responsible for delivering and optionally
replicating packets to the receiving MAC objects.

Depending on the type of physical layer, the MAC layer musttam a certain set of functionalities such as: carrier sens
collision detection, collision avoidance, etc. Since ghesictionalities affect both the sending and receivingsidhey are

131

implemented in a singl&ac object. For sending, thMac object must follow a certain medium access protocol before
transmitting the packet on the channel. For receiving, tA&Nhyer is responsible for delivering the packet to the liaker.

Above the MAC layer, the link layer can potentially have mémyctionalities such as queuing and link-level retransiois.
The need of having a wide variety of link-level schemes Idadse division of functionality into two componeni@ueue
andLL (link-layer). TheQueue object, simulating the interface queue, belongs to the SQueue class that is described
in Chapter 7. Thé.L object implements a particular data link protocol, such &QABy combining both the sending and
receiving functionalities into one module, the object can also support other mechanisms such as piggytzacki

14.3 Channel Class

The Channel class simulates the actual transmission of the packet gitth&ical layer. The basi€hannel implements

a shared medium with support for contention mechanismslioiva the MAC to carry out carrier sense, contention, and
collision detection. If more than one transmissions oyesia time, a channel raises the collision flag. By checkiigftag,
the MAC object can implement collision detection and hamglli

Since the transmission time is a function of the number of lnitthe packet and the modulation speed of each individual

interface (MAC), theChannel object only sets its busy signal for the duration requestgedhle MAC object. It also
schedules the packets to be delivered to the destination btA€xts after the transmission time plus the propagatitayde

14.3.1 Channel State

The C++class Channel includes enough internal state to schedule packet delaedydetect collisions. It exports the
following OTcl configuration parameter:

delay_ propagation delay on the channel

14.3.2 Example: Channel and classifier of the physical layer

set channel_ [new Channel]
$channel_ set delay_ 4us # propagation delay

set mcl_ [new Classifier/Mac]

$channel_ target $mcl_
$mcl_ install $mac_DA $recv_iface

14.3.3 Channel Class in C++

In C++, the class Channel extends the Connector object withral new methods to support a variety of MAC protocols.
The class is defined as follow imschannel.h:

class Channel : public Connector {
public:
Channel();

132

void recv(Packet * p, Handler =*);

virtual int send(Packet * p, double txtime);
virtual void contention(Packet * Handler «);
int hold(double txtime);

virtual int collision() { return numtx_ > 1; }

virtual double txstop() { return txstop_; }

The important methods of the claG&annel are:

e txstop() method returns the time when the channel will become idléchvban be used by the MAC to implement
carrier sense.

e contention() method allows the MAC to contend for the channel before sendipacket. The channel then use
this packet to signal the correspondiM@c object at the end of each contention period.

e collision() method indicates whether a collision occurs during theeatin period. When th€hannel signal
the end of the contention period, the MAC can usedbiéision() method to detect collision.

e send() method allows the MAC object to transmit a packet on the chbfun a specified duration of time.

e hold() method allows the MAC object to hold the channel for a spettifieration of time without actually transmit-
ting any packets. This is useful in simulating the jamminghanism of some MAC protocols.

14.4 MacClassifier Class

The MacClassifier class extends th€lassifier class to implement a simple broadcasting mechanism. Itfiesdi
therecv() method in the following way: since the replication of a pdciseexpensive, normally a unicast packet will
be classified by the MAC destination addresacDA _and delivered directly to the MAC object with such an address
However, if the destination object cannot be found or if the@/Adestination address is explicitly set to the broadcadtess
BCAST_ADDRhe packet will be replicated and sent to all MACs on the keleding the one that is the source of the packet.
Finally, by setting the bound variabMacClassifier::bcast_ to a non—zero value, will cauddacClassifier

always to replicate packets.

class MacClassifier : public Classifier {

public:
void recv(Packet *, Handler =);
h
void MacClassifier::recv(Packet * p, Handler =)
{
Macx mac;
hdr_mac * mh = hdr_mac::access(p);
if (bcast_ || mh->macDA() == BCAST_ADDR || (mac = (Mac +)find(p)) == 0) {
/I Replicate packets to all slots (broadcast)
return;
}
mac->recv(p);
}

133

14.5 MAC Class

The Mac object simulates the medium access protocols that are segeis the shared medium environment such as the
wireless and local area networks. Since the sending andviegenechanisms are tightly coupled in most types of MAC
layers, it is essential for thdac object to be duplex.

On the sending side, thdac object is responsible for adding the MAC header and trarisigithe packet onto the channel.

On the receiving side, thiglac object asynchronously receives packets from the classifihre physical layer. After MAC
protocol processing, it passes the data packet to the lyrc.la

14.5.1 Mac State

The C++class Mac class contains enough internal state to simulate the péati¢AC protocol. It also exports the
following OTcl configuration parameter:

bandwidth__ modulation rate of the MAC
hlen_ additional bytes added to packet for MAC header
label_ MAC address

14.5.2 Mac Methods

Theclass Mac class added several Tcl methods for configuration, in paeclinking with other simulation objects:

channel specify the channel for transmission
classifier the classifier that deliver packets to receiving MAC
maclist a link list of MAC interfaces on the same node

14.5.3 Mac Class in C++

In C++, theMac class derives fron€Connector . When therecv() method gets a packet, it identifies the direction of
the packet based on the presence of a callback handler.ré itha callback handler, the packet is outgoing, othentise,
incoming.

class Mac : public Connector {

public:
Mac();
virtual void recv(Packet * p, Handler = h);
virtual void send(Packet * p);
virtual void resume(Packet * p = 0)
3

When aMac object receives a packet via itecv() method, it checks whether the packet is outgoing or incomkay
an outgoing packet, it assumes that the link-layer of thelsehas obtained the destination MAC address and filled in the
macDA _field of the MAC headehdr_mac . TheMacobjectfills in the rest of the MAC header with the source MAQgebs

134

and the frame type. It then passes the packet teeitgl() method, which carries out the medium access protocol. For th
basicMac object, thesend method callgxtime() to compute the transmission time, then invok#®nnel::send to
transmit the packet. Finally, it schedules itself to reswafter the transmission time has elapsed.

For an incoming packet, the MAC object does its protocol pssing and passes the packet to the link-layer.

14.5.4 CSMA-based MAC

Theclass CsmaMac extends theMac class with new methods that implements carrier sense arkbfianechanisms.
The CsmaMac::send() method detects when the channel becomes idle uSimannel::txtime() . If the chan-
nel is busy, the MAC schedules the next carrier sense at thrmembthe channel turns idle. Once the channel is idle,
the CsmaMacobiject initiates the contention period wi@hannel::contention() . At the end of the contention pe-
riod, the endofContention() method is invoked. At this time, the baditssmaMacjust transmits the packet using
Channel::send

class CsmaMac : public Mac {
public:

CsmaMac();

void send(Packet = p);

void resume(Packet * p = 0);

virtual void endofContention(Packet * p);
virtual void backoff(Handler * h, Packet =* p, double delay=0);
h
class CsmaCdMac : public CsmaMac {
public:
CsmaCdMac();
void endofContention(Packet *);
3
class CsmaCaMac : public CsmaMac {
public:
CsmaCaMac();
virtual void send(Packet *);
3

The CsmaCdMacextendsCsmaMacto carry out collision detection procedure of the CSMA/CRh@&net) protocol. When

the channel signals the end of contention periodetiofContention method checks for collision using tihannel::collision()
method. If there is a collision, the MAC invokes kisickoff method to schedule the next carrier sense to retransmit the
packet.

The CsmaCaMacextends thesend method ofCsmaMacto carry out the collision avoidance (CSMA/CA) procedure- |

stead of transmitting immediately when the channel is itleCsmaCaMaabject backs off a random number of slots, then
transmits if the channel remains idle until the end of thekbéqeriod.

135

14.6 LL (link-layer) Class

The link-layer object is responsible for simulating theadlnk protocols. Many protocols can be implemented wittiis t
layer such as packet fragmentation and reassembly, aadblelink protocol.

Another important function of the link layer is setting theAka destination address in the MAC header of the packet. In the
currentimplementation this task involves two separatggssfinding the next—hop—node’s IP address (routing) asalvimg

this IP address into the correct MAC address (ARP). For siitpl the default mapping between MAC and IP addresses is
one—to—one, which means that IP addresses are re—usedvA@&ayer.

14.6.1 LL Classin C++

The C++ clasd L derives from theLinkDelay class. Since it is a duplex object, it keeps a separate pdortéhe send
target,sendtarget , and the receive targagcvtarget . It also defines the methodscvfrom() andsendto() to
handle the incoming and outgoing packets respectively.

class LL : public LinkDelay {
public:
LLO);
virtual void recv(Packet * p, Handler = h);
virtual Packet * sendto(Packet * p, Handler * h = 0);
virtual Packet * recvfrom(Packet * p);

inline int segno() return seqno_;

inline int ackno() return ackno_;

inline int macDA() return macDA_;

inline Queue +ifq() return ifg_;

inline NsObject * sendtarget() return sendtarget_;
inline NsObject * recvtarget() return recvtarget_;

protected:
int command(int argc, const char *Cconst * argv);
void handle(Event * @) recv((Packet *)e, 0);
inline virtual int arp (int ip_addr) return ip_addr;
int seqno_; // link-layer sequence number
int ackno_; // ACK received so far
int macDA _; // destination MAC address
Queuex ifg_; /I interface queue
NsObject * sendtarget ; // for outgoing packet
NsObject * recvtarget ; // for incoming packet

LanRouter * lanrouter_; // for lookups of the next hop

14.6.2 Example: Link Layer configuration

set Il [new LL]
set ifg_ [new Queue/DropTail]
$l_ lanrouter [new LanRouter $ns $lan] # LanRouter is one ob ject

136

per LAN

$Il_ set delay_ $delay # link-level overhead

$Il_ set bandwidth_ $hw # bandwidth

$Il_ sendtarget $mac # interface queue at the sender side
$Il_ recvtarget $iif # input interface of the receiver

14.7 LanRout er class

By default, there is just oneanRouter object per LAN, which is created when a né&anNode is initialized. For every
node on the LAN, the link layer object) has a pointer to theanRouter , so it is able to find the next hop for the packet
that is sent on the LAN:

Packet * LL:.:sendto(Packet * p, Handler =* h)
{

int nh = (lanrouter_) ? lanrouter_->next_hop(p) : -1;

LanRouter is able to find the next hop by querying the currBatuteLogic

int LanRouter::next_hop(Packet *p) {
int next_hoplP;
if (enableHrouting_) {
routelogic_->lookup_hier(lanaddr_, adst, next_hoplP);
} else {
routelogic_->lookup_flat(lanaddr_, adst, next_hoplP);

}
One limitation of this is thaRouteLogic may not be aware of dynamic changes to the routing. But itvsugd possible to

derive a new class fromanRouter so that to re—define itsext_hop method to handle dynamic changes appopriately.

14.8 Other Components

In addition to the C++ components described above, simmgdtical area networks also requires a number of existing-com
ponents imssuch aLlassifier , Queue, andTrace , networkinterface , etc. Configuring these objects requires
knowledge of what the user wants to simulate. The defaulfigoration is implemented in the two Tcl files mentioned at the
beginning of this chapter. To obtain more realistic simolas of wireless networks, one can use HreorModel described

in Chapter 13.

14.9 LANs andnsrouting

When a LAN is created using eitherake-lan or newLan, a “virtual LAN nodé LanNode is created.LanNode keeps
together all shared objects on the LAGhannel , Classifier/Mac ,andLanRouter . Then for each node on the LAN,

137

alanlface objectis created.anlface contains all other objects that are needed on the per—-naie B&ueue, a link
layer (LL), Mac, etc. It should be emphasized thatnNode is a node only for routing algorithms$lode andLanNode
have very little in common. One of few things that they sharari identifier taken from thidode ID—space. Ihierarchical
routing is usedLanNode has to be assigned a hierarchical addrégsst like any other node. From the point of view ros
(static) routingLanNode is just another node connected to every node on the LAN. Lagksiecting the.anNode with

IR

Figure 14.2: Actual LAN configuration (left) and as seemsyouting (right)

the nodes on the LAN are also “virtualV{ink). The default routing cost of such a linkig2, so the cost of traversing two
Vlink s (e.g.n1 — LAN — n2) is counted as just one hop.

Most important method oflink is the one that gives the head of the link:

VIink instproc head {} {

$self instvar lan_ dst_ src_

if {$src_ == [$lan_ set id_]} {
if this is a link FROM the lan vnode,
it doesn’t matter what we return, because
it's only used by $lan add-route (empty)
return "

} else {
if this is a link TO the lan vnode,
return the entry to the lanlface object
set src_lif [$lan_ set lanlface_($src)]
return [$src_lif entry]

}
}
This method is used by static (default) routing to instatreot routes at a node (s&mulator methods
compute-flat-routes and compute-hier-routes in tcl/lib/ns-route.tcl , as well asNode methods
add-route andadd-hroute in tcl/lib/ns-node.tcl).

From the code fragment above it can be seen that it returns infdface of the node as a head of the link to be installed in
the appropriate classifier.

Thus,VIink does notimpose any delay on the pac®d serves the only purpose to install LAN interfaces ircstdfanormal
links at nodes’ classifiers.

Note, that this design allows to have nodes connected byigidrANs, while in the current implementation it is impob#s

to have nodes connected by parallel simple links and use Hwm(the arraySimulator instvar link_ holds the
link object for each connected pair of source and destinatiad it can be only one object per source/destination.pair)

138

14.10 Commands at a glance

The following is a list of lan related commands commonly usesimulation scripts:

$ns_ make-lan <nodelist> <bw> <delay> <LL> <ifg> <MAC> <cha nnel> <phy>

Creates a lan from a set of nodes given by <nodelist>. Barttiniidlay characteristics along with the link-layer, Ifidee
queue, Mac layer and channel type for the lan also needs tefbeed. Default values used are as follows:

<LL>..LL

<ifg>.. Queue/DropTail

<MAC>.. Mac

<channel>.. Channel and

<phy>.. Phy/WiredPhy

$ns_ newlLan <nodelist> <BW> <delay> <args>

This command creates a lan similar to make-lan describedealBut this command can be used for finer control whereas
make-lan is a more convinient and easier command. For exangwLan maybe used to create a lan with hierarchical
addresses. Sewvtcl/ex/vlantest-hier.tcl, vlantest-mcst.tcl, lantédt mac-test.tcl for usage of newLan. The possible
argument types that can be passed are LL, ifq, MAC, chanhglapd address.

$lannode cost <c>
This assigns a cost of ¢/2 to each of the (uni-directionakdiin the lan.

$lannode cost?
Returns the cost of (bi-directional) links in the lan, i.e c.

Internal procedures :

$lannode addNode <nodes> <bw> <delay> <LL> <ifg> <MAC> <phy >

Lan is implemented as a virtual node. The LanNode mimics lan@de and uses an address (id) from node’s address space.
This command adds a list of <nodes> to the lan representeahioptie. The bandwidth, delay and network characteristics o
nodes are given by the above arguments. This is an internaiand used by make-lan and newLan.

$lannode id
Returns the virtual node’s id.

$lannode node-addr
Returns virtual nodes’s address.

$lannode dump-namconfig
This command creates a given lan layout in nam. This funcgtiag be changed to redefine the lan layout in a different way.

$lannode is-lan?

This command always returns 1, since the node here is a Mirtuke representing a lan. The corresponding command for
base class Nodgnode is-lan? always returns a 0.

139

Chapter 15

The (Revised) Addressing Structure in NS

This chapter describes the internals of the revised addigggsmat implemented ins The chapter consists of five sections.
We describe the APIs that can be used for allocating bits éonthaddressing structure. The address space as described
in chapter 3, can be thought of a contiguous fielchddits, where n may vary as per the address requirement of the si
ulation. The default value af is 16 (as defined bMAXADDRSIZE). The maximum value of is set to 32 (defined as
MAXADDRSIZE). These default and maximum address sizes are definatkfftcl/lib/ns-default.tcl.

The address space consists of 2 parts, the node-id and thi& pdihe higher bits are assigned as the node’s address or id
and remaining lower bits are assigned to form port-id or tlentification of the agent attached to the node. Of the higher
bits, 1 bit is assigned for multicast. The address spacestsref 32 bits and port id space consists of 32 bits as wele Th
higher 32 bits for node-id, the MSB for multicast and the low82 bits for port-id. Additionally, the address space may
also be set in hierarchical format, consisting of multigedls of addressing hierarchy. We shall be describing this Ad?
setting address structure in different formats as desgrdimve as well as expanding the address space. The proseahare
functions described in this chapter can be foundnigtel/lib/ns-address.tcl, address.cc and address.h.

15.1 The Default Address Format

The default settings allocates 32 lower bits for port-id,ighler bit for mcast and the rest 32 higher bits for node-ide Th
procedure to set the address format in default mode is cdilédg initialisation of the simulator as:

The preamble
set ns [new Simulator] # initialise the simulation

It can also be called explicitly set as:

$ns set-address-format def

15.2 The Hierarchical Address Format

There are two options for setting an address to hierarcfocalat, the default and the specified.

140

15.2.1 Default Hierarchical Setting

The default hierarchical node-id consists of 3 levels with {1 11) bits in the three levels. The hierarchical confiiara
may be invoked as follows:

$ns set-address-format hierarchical

This sets :

* 32 bits for port-id, * 32 bits for node-id assigned in - 3 lésef hierarchy - (10 11 11) bits for the three levels.
-or (911 11) if multicast is enabled.

15.2.2 Specific Hierarchical Setting

The second option allows a hierarchical address to be shtspitcified number of levels with number of bits assigned for
each level. The API would be as the following:

$ns set-address-format hierarchical <#n hierarchy levebits for level1> <#bits for level 2><#bits for nthviel>
An example configuration would be:
$ns set-address-format hierarchical 2 8 15

where 2 levels of hierarchy is specified, assigning 8 bitsHerlst level and 15 bits for the second.

15.3 The Expanded Node-Address Format

NOTE: Please note that this command is now obsolete givémtte address and port address spaces are 32 bits wide.
On the event of requirement of more bits to the address sfiazexpanded address APl may be used as:
$ns set-address-format expanded

This expands the address space to 30 bits, allocating 22higis to node-id and lower 8 bits to port-id.

15.4 Expanding port-id field

NOTE: Please note that this command is now obsolete givémtt®e address and port address spaces are 32 bits wide.
This primitive may be used in case of need to expand portitiénetvent of requirement to attach a large number of agents
to the nodes. This may be used in conjunction with set-aeftimasat command (with different options) explained above.
Synopsis for this command shall be:

expand-port-field-bits <#bits for portid>

expand-port-field-bits checks and raises error in the falhg if the requested portsize cannot be accomodated 6Léfitient
num.of free bits are not available) or if requested port&4ess than or equal to the existing portsize.

141

15.5 Errors in setting address format

Errors are returned for botbet-address-formatndexpand-port-field-bitprimitives in the following cases:

* if number of bits specified is less than 0. * if bit positiorlagh (contiguous number of requested free bits not *
found). * if total number of bits exceed MAXADDRSIZE _. * if gand-port-field-bits is attempted with portbits
less than or * equal to the existing portsize. * if number adrarchy levels donot match with number of bits *
specified (for each level).

15.6 Commands at a glance

The following is a list of address-format related commansisdiin simulation scripts:

$ns_ set-address-format def

This command is used internally to set the address formés beifault value of 32 lower bits for port-id, 1 higher bit for
mcast and the rest 31 higher bits for node-id. However thish#&B been replaced by the new node API

$ns_ node-config -addressType flat

$ns_ set-address-format hierarchical

This command is used to set the address format to the hiécatconfiguration that consists of 3 levels with 8bits assig)
to each level and 32 lower bits for port-id. However this ARklbeen replaced by the new node API

$ns_ node-config -addressType hierarchical

$ns_ set-address-format hierarchical <levels> <args>

This command is used to set the address format to a specifartiécal setting. The <levels> indicate the number of leve
of hierarchy in the addressing structure, while the argséaiumber of bits for each level. An example wouldies
set-address-format hierachical 3 4 4 16 , Where 4, 4 and 16 defines the number of bits to be used for the
address space in level 1, 2 and 3 respectively.

$ns_ set-address-format expanded

THIS COMMAND IS NOW OBSOLETE This command was used to expdmedatddress space to 30 bits, allocating 22
higher bits for node-id and lower 8 bits for port-id. Howeteis command is obsoleted now by 32 bit addressing, i.e
node-id field is 32 bit wide.

expand-port-field-bits <bits-for-portid>

THIS COMMAND IS NOW OBSOLETE Similar to the command aboveastivas used to expand the address space for the
port-id field to <bits-for-portid> number of bits. Howevéris command is obsolete now that the ports are 32 bit wide.

142

Chapter 16

Mobile Networking in ns

This chapter describes the wireless model that was origipaited as CMU’s Monarch group’s mobility extensionna

This chapter consists of two sections and several subsacfidhe first section covers the original mobility model pdrfrom
CMU/Monarch group. In this section, we cover the interndla mobilenode, routing mechanisms and network components
that are used to construct the network stack for a mobilendde components that are covered briefly are Channel, N&twor
interface, Radio propagation model, MAC protocols, Irded Queue, Link layer and Address resolution protocol model
(ARP). CMU trace support and Generation of node movementrafiit scenario files are also covered in this section. The
original CMU model allows simulation of pure wireless LANsmultihop ad-hoc networks. Further extensions were made to
this model to allow combined simulation of wired and wiralegtworks. MobilelP was also extended to the wireless model
These are discussed in the second section of this chapter.

16.1 The basic wireless model in ns

The wireless model essentially consists of the MobileNdd&e core,with additional supporting features that all@ive-
ulations of multi-hop ad-hoc networks, wireless LANs etcheTMobileNode object is a split object. The Cfass
MobileNode is derived from parentlass Node . Refer to Chapter 5 for details dode. A MobileNode thus is the
basicNode object with added functionalities of a wireless and mobibela like ability to move within a given topology,
ability to receive and transmit signals to and from a wirglesannel etc. A major difference between them, though s th
a MobileNode is not connected by means oihks to other nodes or mobilenodes. In this section we shall destine
internals ofMobileNode , its routing mechanisms, the routing protocols dsdv, atmbe, and dsr, creation of network stack
allowing channel access MobileNode , brief description of each stack component, trace supputtraovement/traffic
scenario generation for wireless simulations.

16.1.1 Mobilenode: creating wireless topology

MobileNode is the basiasSNode object with added functionalities like movement, abiliyttansmit and receive on a chan-

nel that allows it to be used to create mobile, wireless satnuh environments. The class MobileNode is derived from th

base class Nod@&JobileNode is a split object. The mobility features including node mmet, periodic position updates,
maintaining topology boundary etc are implemented in C+Hemplumbing of network components withiobileNode

itself (like classifiers, dmux , LL, Mac, Channel etc) haveehémplemented in Otcl. The functions and procedures de-
scribed in this subsection can be found ingmobilenode.{cc,h}, xadtcl/lib/ns-mobilenode.tcl, rgtcl/mobility/dsdv.tcl,
~ngtcl/mobility/dsr.tcl, ~ngtcl/mobility/tora.tcl. Example scripts can be found ingtcl/ex/wireless-test.tcl andhdtcl/ex/wireless.tcl.

143

While the first example uses a small topology of 3 nodes, tbermkexample runs over a topology of 50 nodes. These scripts
can be run simply by typing

$ns tcl/ex/wireless.tcl (or /wireless-test.tcl)

The four ad-hoc routing protocols that are currently supgmbare Destination Sequence Distance Vector (DSDV), Dymam
Source Routing (DSR), Temporally ordered Routing AlgoritTORA) and Adhoc On-demand Distance Vector (AODV).
The primitive to create a mobilenode is described belowasdenote that the old APIs for creating a mobilenode depended
on which routing protocol was used, like

set mnode [$opt(rp)-create-mobile-node $id]

where

$opt(rp)

defines "dsdv", "aodv", "tora" or "dsr" and id is the index the mobilenode. But the old API's use is being deprecated and
the new API is described as follows:.

$ns_ node-config -adhocRouting $opt(adhocRouting)
-IIType $opt(ll)
-macType $opt(mac)
-ifgType $opt(ifq)
-ifgLen S$opt(ifglen)
-antType $opt(ant)
-propinstance [new S$opt(prop)]
-phyType $opt(netif)
-channel [new $opt(chan)]
-topolnstance $topo
-wiredRouting OFF
-agentTrace ON
-routerTrace OFF
-macTrace OFF

The above API configures for a mobilenode with all the giveluesa of adhoc-routing protocol, network stack, chan-
nel,topography, propagation model, with wired routingneedt on or off (required for wired-cum-wireless scenariosyl a
tracing turned on or off at different levels (router, maceat). Incase hierarchical addressing is being used, tirealdie
dress of the node needs to be passed as well. For more infé tiiaommand (part of new node APIs) see chapter titled
"Restructuring ns node and new Node APIs" in ns Notes and Deatation.

Next actually create the mobilenodes as follows:

for { set j 0 } { $ < $opt(nn)} {incr j} {
set node_($j) [$ns_ node]
$node_($i) random-motion 0 ;# disable random motion

The above procedure creates a mobilenode (split)objeestes an adhoc-routing routing agent as specified, craates t
network stack consisting of a link layer, interface queuactayer, and a network interface with an antenna, uses fireede

144

port
addr IP address
—_——

defaulttarget

target_
arptable_
uptarget_ LL ARP
downtarget_
IFq
downtarget_
mac_ MAC uptarget_

downtarget_ uptarget_
Radio propagation_
Propagation NetlF
Model

channel_ i uptarget_
Channel

Figure 16.1: Schematic of a mobilenode under the CMU morswaineless extensions tos

propagation model, interconnects these components amectmthe stack to the channel. The mobilenode now looks like
the schematic in Figure 16.1.

The mobilenode structure used for DSR routing is slightffedent from the mobilenode described above. The class $i8No
is derived from class MobileNode. SRNode doesnhot use asldie®mux or classifiers and all packets received by the node

145

port
demu
—_—
entr ~
® y_ DSR | target_
v
I I_(0)
arptable_
uptarget_ LL ARP
downtarget_
IFq
downtarget_
MAC uptarget_
downtarget_ uptarget_
Radio propagation_
Propagation NetlF
Model

channel_ i uptarget_
Channel

Figure 16.2: Schematic of a SRNode under the CMU monarchi&legs extensions tws

are handed dow n to the DSR routing agent by default. The D8Bngagent either receives pkts for itself by handing it
over to the port dmux or forwards pkts as per source routelBampkt hdr or sends out route requests and route replies for
fresh packets. Details on DSR routing agent may be foundatiosel6.1.5. The schematic model for a SRNode is shown in
Figure 16.2.

146

16.1.2 Creating Node movements

The mobilenode is designed to move in a three dimensionalagy. However the third dimension (Z) is not used. That is
the mobilenode is assumed to move always on a flat terrainZvitlivays equal to 0. Thus the mobilenode has X, Y, Z(=0)
co-ordinates that is continually adjusted as the node mdvesre are two mechanisms to induce movement in mobilenodes
In the first method, starting position of the node and itsrieitiestinations may be set explicitly. These directivesarenally
included in a separate movement scenario file.

The start-position and future destinations for a mobilenay be set by using the following APIs:

$node set X_ <x1>
$node set Y_ <yl>
$node set Z_ <zl>

$ns at $time $node setdest <x2> <y2> <speed>

At $time sec, the node would start moving from its initial ftios of (x1,y1) towards a destination (x2,y2) at the defined
speed.

In this method the node-movement-updates are triggeredeviee the position of the node at a given time is required to be
known. This may be triggered by a query from a neighbourirdgseeking to know the distance between them, or the setdest
directive described above that changes the direction ageidspf the node.

An example of a movement scenario file using the above APisbedound in agtcl/mobility/scene/scen-670x670-50-600-
20-0. Here 670x670 defines the length and width of the topoldth 50 nodes moving at a maximum speed of 20m/s with
average pause time of 600s. These node movement files mayerged using CMU'’s scenario generator to be found under
~ngindep-utils/cmu-scen-gen/setdest. See subsection8lferldetails on generation of node movement scenarios.

The second method employs random movement of the node. Trhiipe to be used is:
$mobilenode start

which starts the mobilenode with a random position and hawvéred updates to change the direction and speed of the node
The destination and speed values are generated in a randhiorfaWe have not used the second method and leave it to the
user to explore the details. The mobilenode movement isdmphted in C++. See methods ingmobilenode.{cc.h} for

the implementational details.

Irrespective of the methods used to generate node movethemdpography for mobilenodes needs to be defined. It shrauld

defined before creating mobilenodes. Normally flat topolisgyreated by specifying the length and width of the topolyyap
using the following primitive:

set topo [new Topography]
$topo load_flatgrid $opt(x) $opt(y)

where opt(x) and opt(y) are the boundaries used in simulatio

The movement of mobilenodes may be logged by using a proeditterthe following:

proc log-movement {} {

147

global logtimer ns_ ns

set ns $ns_
source ../mobility/timer.tcl
Class LogTimer -superclass Timer
LogTimer instproc timeout {} {
global opt node_;
for {set i O} {$i < $opt(nn)} {incr i} {
$node_($i) log-movement
}

$self sched 0.1
}

set logtimer [new LogTimer]
$logtimer sched 0.1

In this case, mobilenode positions would be logged evergécl

16.1.3 Network Components in a mobilenode

The network stack for a mobilenode consists of a link laye)(lan ARP module connected to LL, an interface priority
queue(lFg), a mac layer(MAC), a network interface(netH#),connected to the channel. These network components are
created and plumbed together in OTcl. The relevant MobitNmethod add-interface() ims'tcl/lib/ns-mobilenode.tcl is
shown below:

The following setups up link layer, mac layer, network inte rface
and physical layer structures for the mobile node.

Z R

ode/MobileNode instproc add-interface { channel pmodel
litype mactype qtype glen iftype anttype } {

$self instvar arptable_ nifs_
$self instvar netif mac_ ifq_ Il

global ns_ MacTrace opt

set t $nifs_

incr nifs_

set netif ($t) [new S$iftype] # net-interface

set mac_($t) [new $mactype] # mac layer
set ifg_($t) [new $qtype] # interface queue
set Il_(%t) [new $litype] ;# link layer

set ant_($t) [new S$anttype]

#

Local Variables

#

set nullAgent_ [$ns_ set nullAgent_]

148

set netif $netif_($t)
set mac $mac_($t)
set ifq $ifq_(%t)

set I $I_($t)

#

Initialize ARP table only once.
#

if { $arptable_ == "™ } {

set arptable_ [new ARPTable $self $mac]
set drpT [cmu-trace Drop "IFQ" $self]
$arptable_ drop-target $drpT

}

#

Link Layer

#

$ll arptable $arptable_
$lIl mac $mac

$Il up-target [$self entry]
$Il down-target $ifq

#

Interface Queue

#

$ifq target $mac

$ifq set glim_ $qglen

set drpT [cmu-trace Drop "IFQ" $self]
$ifq drop-target $drpT

#

Mac Layer

#

$mac netif $netif

$mac up-target 3lI
$mac down-target $netif
$mac nodes $opt(nn)

#

Network Interface

#

$netif channel $channel
$netif up-target $mac

$netif propagation $pmodel ;# Propagation Model

$netif node $self # Bind node <---> interface
$netif antenna $ant_($t) # attach antenna

#

Physical Channel

#

$channel addif $netif # add to list of interfaces
s s s —————————————————— ===

Setting up trace objects

149

if { $MacTrace == "ON" } {
#
Trace RTS/CTS/ACK Packets
#
set rcvT [cmu-trace Recv "MAC" $self]
$mac log-target $revT

#

Trace Sent Packets

#

set sndT [cmu-trace Send "MAC" $self]
$sndT target [$mac sendtarget]

$mac sendtarget $sndT

#

Trace Received Packets

#

set rcvT [cmu-trace Recv "MAC" $self]
$revT target [$mac recvtarget]

$mac recvtarget $revT

#
Trace Dropped Packets
#
set drpT [cmu-trace Drop "MAC" $self]
$mac drop-target $drpT
} else {
$mac log-target [$ns_ set nullAgent_]
$mac drop-target [$ns_ set nullAgent_]

$self addif $netif

The plumbing in the above method creates the network stadeaén Figure 16.1.

Each component is briefly described here. Hopefully moraitet docuentation from CMU shall be available in the future

Link Layer ThelL used by mobilenode is same as described in Chapter 14. Thaldidrence being the link layer for
mobilenode, has an ARP module connected to it which resalV#3to hardware (Mac) address conversions. Normally
for all outgoing (into the channel) packets, the packethareled down to theL by the Routing Agent. TheL hands
down packets to the interface queue. For all incoming padkeit of the channel), the mac layer hands up packets to
the LL which is then handed off at theode_entry _ point. Theclass LL is implemented in rdll.{cc,h} and
~ndtcl/lan/ns-Il.tcl.

ARP The Address Resolution Protocol (implemented in BSD styleflule receives queries from Link layer. If ARP has
the hardware address for destination, it writes it into thecrheader of the packet. Otherwise it broadcasts an ARP
query, and caches the packet temporarily. For each unknestmation hardware address, there is a buffer for a single
packet. Incase additional packets to the same destinatieenit to ARP, the earlier buffered packet is dropped. Once

150

the hardware address of a packet's next hop is known, thegp@shknserted into the interface queue. Tdlass
ARPTable is implemented in rdarp.{cc,h} and +xdtcl/lib/ns-mobilenode.tcl.

Interface Queue Theclass PriQueue isimplemented as a priority queue which gives priority toting rotocol packets,
inserting them at the head of the queue. It supports runnfiigaover all packets in the queue and removes those with
a specified destination address. Sedgpriqueue.{cc,h} for interface queue implementation.

Mac Layer The IEEE 802.11 distributed coordination function (DCF)daotocol has been implemented by CMU. It uses
a RTS/CTS/DATA/ACK pattern for all unicast packets and diymgends out DATA for all broadcast packets. The
implementation uses both physical and virtual carrier seffheclass Mac802_11 is implemented in rRdmac-
802_11.{cc,h}.

Tap Agents Agents that subclass themselvesadass Tap defined in mac.h can register themselves with the mac object
using method installTap(). If the particular Mac protocermits it, the tap will promiscuously be given all packets
received by the mac layer, before address filtering is doae.-89mac.{cc,h} forclass Tap mplementation.

Network Interfaces The Network Interphase layer serves as a hardware intevfaedh is used by mobilenode to access the
channel. The wireless shared media interface is implerdexgglass Phy/WirelessPhy . This interface subject
to collisions and the radio propagation model receives gtsdkansmitted by other node interfaces to the channel. The
interface stamps each transmitted packet with the metardidted to the transmitting interface like the transnoissi
power, wavelength etc. This meta-data in pkt header is ugeldebpropagation model in receiving network interface
to determine if the packet has minimum power to be receivetlarcaptured and/or detected (carrier sense) by the
receiving node. The model approximates the DSSS radidante(Lucent WaveLan direct-sequence spread-spectrum).
See ngphy.{cc.h} and -ngwireless-phy.{cc,h} for network interface implementats.

Radio Propagation Model It uses Friss-space attenuatidri€?) at near distances and an approximation to Two ray Ground
(1/r*) at far distances. The approximation assumes speculattiefieff a flat ground plane. Seastworayground.{cc,h}
for implementation.

Antenna An omni-directional antenna having unity gain is used by ileslodes. Seenrgantenna.{cc,h} forimplementation
details.

16.1.4 Different MAC layer protocols for mobile networking

In ns, two MAC layer protocols are implemented for mobile netwsynkhich are 802.11 and TDMA. In this section we briefly
discuss each of them.

802.11 MAC protocol

See Agmac-802_11 {cc,h}for implementation details.

Preamble based TDMA protocol

Note: this works is still at a preliminary stage, some practicaliss, such as: contention in the preamble phase and time slot
reuse in a multi-hop environment are not considered.

Unlike contention based MAC protocol (802.11, for exampde) DMA MAC protocol allocates different time slots for nade
to send and receive packets. The superset of these timesstatbed a TDMA frame.

Currently, ns supports a single hop, preamble-based TDMA MAC protocolthwhis protocl, a TDMA frame contains
preamble besides the data transmission slots. Within gepble, every node has a dedicated subslot and uses it ticlaia

151

the destination node id of outgoing packet. Other nodesrligt the preamble and record the time slots to receive packet
Like other common TDMA protocols (GSM, for example), eaclledas a data transmission slot to send packets.

To avoid unnecessary power consumption, each node tumaslitson and off explicitly by invoking node AREt_node_sleep()
The radio only needs to be on when: in the pramble phase (taleslot time) and there is a packet to send and receive.

The preamble is implemented as a central data struttima_preamble_ , which is accessible to all the nodes. At the
beginning of a frame, each node writes the destination rbaea its subslot in preamble if it has a packet to send. kolig
preamble phase, each node sends packet in its data traimsnsitd and checks the preamble to determine if there is kgiac
to receive in other slots.

The following parameters are user configurable: the wisdie& bandwidtthandwith | the slot lengtipacket_slot_len_ ,
and the number of nodesax_node_num_. See Agmac-tdma.{cc,h} for implementation details.

16.1.5 Different types of Routing Agents in mobile networkng

The four different ad-hoc routing protocols currently irapiented for mobile networking insare dsdv, dsr, aodv and tora.
In this section we shall briefly discuss each of them.

DSDV

In this routing protocol routing messages are exchangesdsat neighbouring mobilenodes (i.e mobilenodes that at@rmwi
range of one another). Routing updates may be triggeredutinea Updates are triggered in case a routing informatiomf
one of t he neighbours forces a change in the routing tableadkgx for which the route to its destination is not known is
cached while routing queries are sent out. The pkts are daahi@ route-replies are received from the destinationerehs

a maximum buffer size for caching the pkts waiting for rogtinformation beyond which pkts are dropped.

All packets destined for the mobilenode are routed direbyiythe address dmux to its port dmux. The port dmux hands
the packets to the respective destination agents. A porbeuf 255 is used to attach routing agent in mobilenodes. The
mobilenodes al so use a default-target in their classifiexddress demux). In the event a target is not found for thirdgi®on

in the classifier (which happens when the destination of Huket is not the mobilenode itself), the pkts are handededo th
default-ta rget which is the routing agent. The routing agessigns the next hop for the packet and sends it down tortke li
layer.

The routing protocol is mainly implemented in C++. Sew/dsdv directory and argtcl/mobility/dsdv.tcl for all procedures
related to DSDV protocol implementation.

DSR

This section briefly describes the functionality of the dym@asource routing protocol. As mentioned earlier 8B)eNodeis
different from theMobileNode . TheSRNodés entry_ points to the DSR routing agent, thus forcing all packetgiresx
by the node to be handed down to the routing agent. This mededjuired for future implementation of piggy-backed rogti
information on data packets which otherwise would not flomtigh the routing agent.

The DSR agent checks every data packet for source-routemiatn. It forwards the packet as per the routing inforiomti
Incase it doesnot find routing information in the packetravides the source route, if route is known, or caches th&giac
and sends out route queries if route to destination is noivkndrouting queries, always triggered by a data packet with n
route to its destination, are initially broadcast to allgidours. Route-replies are send back either by intermediades or
the destination node, to the source, if it can find routing ifofr the destination in the route-query. It hands over atiqeds

152

destined to itself to the port dmux. BRNodethe port number 255 points to a null agent since the packealhaady been
processed by the routing agent.

See nddsr directory and rdtcl/mobility/dsr.tcl for implementation of DSR protocol

TORA

Tora is a distributed routing protocol based on "link reed¢tglgorithm. At every node a separate copy of TORA is run for
every destination. When a node needs a route to a given dastirit broadcasts a QUERY message containing the address
of the destination for which it requires a route. This padkatels through the network until it reaches the destimato

an intermediate node that has a route to the destination rnidds recepient node node then broadcasts an UPDATE packet
listing its height wrt the destination. As this node propagahrough the network each node updates its height to & valu
greater than the height of the neighbour from which it reesithe UPDATE. This results in a series of directed links fthen
node that originated the QUERY to the destination node. dendiscovers a particular destination to be unreachabést

a local maximum value of height for that destination. Incgenode cannot find any neighbour having finite height w thi
destination it attempts to find a new route. In case of netwarkition, the node broadcasts a CLEAR message that rdkets a
routing states and removes invalid routes from the network.

TORA operates on top of IMEP (Internet MANET EncapsulatiootBcol) that provides reliable delivery of route-message
and informs the routing protocol of any changes of the linkég neighbours. IMEP tries to aggregate IMEP and TORA
messages into a single packet (called block) in order toaedwerhead. For link-status sensing and maintaining aflist
neighbour nodes, IMEP sends out periodic BEACON messagahvushanswered by each node that hears it by a HELLO
reply message. Sesstora directory anchgtcl/mobility/tora.tcl for implementation of tora ins

AODV

AODV is a combination of both DSR and DSDV protocols. It has fasic route-discovery and route-maintenance of DSR
and uses the hop-by-hop routing, sequence numbers andnseaicDSDV. The node that wants to know a route to a given
destination generates a ROUTE REQUEST. The route requigsinarded by intermediate nodes that also creates a reverse
route for itself from the destination. When the request ihes@ node with route to destination it generates a ROUTE REPL
containing the number of hops requires to reach destinafitmodes that participates in forwarding this reply to swurce
node creates a forward route to destination. This stateentideom each node from source to destination is a hop-bystaip

and not the entire route as is done in source routing.nSaedv anchgtcl/lib/ns-lib.tcl for implementational details of aodv

16.1.6 Trace Support

The trace support for wireless simulations currently use-t¢race objects. In the future this shall be extended to metith
trace and monitoring support available in ns, which woukbahclude nam support for wireless modules. For now we will
explain briefly with cmu-trace objects and how they may belusdrace packets for wireless scenarios.

The cmu-trace objects are of three typ€MUTrace/Drop ,CMUTrace/Recv andCMUTrace/Send . These are used for
tracing packets that are dropped, received and sent byggenters, mac layers or interface queuessnThe methods and
procedures used for implementing wireless trace supparbedound undernrdtrace.{cc,h} and adtcl/lib/ns-cmutrace.tcl.

A cmu-trace object may be created by the following API:

set sndT [cmu-trace Send "RTR" $self]

153

which creates a trace object, sndT, of the tgddUTrace/Send for tracing all packets that are sent out in a router. Theetrac
objects may be used to trace packets in MAC, agents (routinthers), routers or any other NsObject.

The cmu-trace objed€MUTrace is derived from the base cla3sace . See Chapter 25 for details on claBsce . The
classCMUTrace is defined as the following:

class CMUTrace : public Trace {

public:
CMUTrace(const char xS, char t);
void recv(Packet *p, Handler *h);
void recv(Packet *p, const char * why);
private:
int off_arp_;
int off_mac_;
int off_sr_;
char tracename[MAX_ID_LEN + 1];
int tracetype;
MobileNode *node_;
int initialized() { return node_ && 1; }
int command(int argc, const char *const * argv);
void format(Packet *p, const char *why);
void format_mac(Packet *p, const char *why, int offset);
void format_ip(Packet *p, int offset);
void format_arp(Packet *p, int offset);
void format_dsr(Packet *p, int offset);
void format_msg(Packet *p, int offset);
void format_tcp(Packet *p, int offset);
void format_rtp(Packet *p, int offset);
3

The type field (described ifirace class definition) is used to differentiate among differgmpiets of traces. For cmu-trace
this can bes for sendingy for receiving orD for dropping a packet. A fourth typfeis used to denote forwarding of a packet
(When the node is not the originator of the packet). Simibathie method Trace::format(), the CMUTrace::format() defin
and dictates the trace file format. The method is shown below:

void CMUTrace::format(Packet * p, const char *why)
{

hdr_cmn *ch = HDR_CMN(p);

int offset = O;

| *

* Log the MAC Header

* [

format_mac(p, why, offset);
offset = strlen(wrk);

154

switch(ch->ptype()) {

case PT_MAC:
break;

case PT_ARP:
format_arp(p, offset);
break;

default:
format_ip(p, offset);
offset = strlen(wrk);
switch(ch->ptype()) {
case PT_DSR:
format_dsr(p, offset);
break;

case PT_MESSAGE:

case PT_UDP:
format_msg(p, offset);
break;

case PT_TCP:

case PT_ACK:
format_tcp(p, offset);
break;

case PT_CBR:
format_rtp(p, offset);
break;

}

The above function calls different format functions degagan the type of the packet being traced. All traces arg@nito
the buffer wrk_. A count of the offset for the buffer is keptbis passed along the different trace functions. The most bas
format is defined by format_mac() and is used to trace allygses$. The other format functions print additional inforioat
as defined by the packet types. The mac format prints thesiitp

#ifdef LOG_POSITION
double x = 0.0, y = 0.0, z = 0.0;
node_->getLoc(&x, &y, &2z);

#endif

sprintf(wrk_ + offset,
#ifdef LOG_POSITION

"%cC 9%.9f %d (%6.2f %6.2f) %3s %4s %d %s %d [%Xx %Xx %x %x] ",
#else

"%c 9%.9f _%d_ %3s %ds %d %s %d [%x %X %X %x] ",

155

#endif

op, /I's, r, D or f
Scheduler::instance().clock(), // time stamp
src_, /I the nodeid for this node
#ifdef LOG_POSITION
X, /I x co-ord
Y, /'y co-ord
#endif
tracename, /I name of object type tracing
why, /I reason, if any
ch->uid(), /I identifier for this event
packet_info.name(ch->ptype()), // packet type
ch->size(), /I size of cmn header
mh->dh_duration, /I expected time to send data
ETHER_ADDR(mh->dh_da), // mac_destination address
ETHER_ADDR(mh->dh_sa), /I mac_sender address

GET_ETHER_TYPE(mh->dh_body)); // type - arp or IP

If the LOG_POSITION is defined the x and y co-ordinates forri@bilenode is also printed. The descriptions for different
fields in the mac trace are given in the comments above. FtP gdhckets additional IP header fields are also added to the
above trace. The IP trace is described below:

sprintf(wrk_ + offset, "------- [%d:%d %d:%d %d %d] ",
src, /I 1P src address
ih->sport_, /I src port number
dst, /I 1P dest address
ih->dport_, /I dest port number
ih->ttl_, /I TTL value
(ch->next_hop_ < 0) ? 0 : ch->next_hop_); // next hopaddress , if any.

An example of a trace for a tcp packet is as follows:

r 160.093884945 6_ RTR - 5 tcp 1492 [a2 4 6 800] ------- [655
36:0 16777984:0 31 16777984] [1 0] 2 O

Here we see a TCP data packet being received by a node witl6id D of this pktis 5 with a cmn hdr size of 1492. The mac
details shows an IP pkt (ETHERTYPE_IP is defined as OxO80B{EERTYPE_ARP is 0x0806), mac-id of this receiving
node is 4. That of the sending node is 6 and expected time ththéndata pkt over the wireless channel is a2 (hex2dec
conversion: 160+2 sec). Additionally, IP traces informatabout IP src and destination addresses. The src traméleiag

a 3 level hier-address of 8/8/8) to a address string of 0.1t port of 0. The dest address is 1.0.3 with port address of 0.
The TTL value is 31 and the destination was a hop away fromrthefgiditionally TCP format prints information about tcp
seqgno of 1, ackno of 0. See other formats describedchs¥emu-trace.cc for DSR, UDP/MESSAGE, TCP/ACK and CBR
packet types.

Other trace formats are also used by the routing agents (TR SR) to log certain special routing events like "origjimg'
(adding a SR header to a packet) or "ran off the end of a soatde'rindicating some sort of routing problem with the s@urc
route etc. These special event traces begin with "S" for DISR'&®" for Tora and may be found inngtora/tora.cc for TORA
and ngdsr/dsrgent.cc for DSR routing agent.

156

16.1.7 Revised format for wireless traces

In an effort to merge wireless trace, using cmu-trace objegith ns tracing, a new, inproved trace format has beew-intr
duced. This revised trace support is backwards compatilttethe old trace formatting and can be enabled by the folhgwi
command:

$ns use-newtrace

This command should be called before the universal traceramd$ns trace-all <trace-fd> . Primitiveuse-newtrace
sets up new format for wireless tracing by setting a simuleamiable callechewTraceFormat . Currently this new trace
support is available for wireless simulations only and kbalextended to rest afsin the near future.

An example of the new trace format is shown below:

s -t 0.267662078 -Hs 0 -Hd -1 -Ni 0 -Nx 5.00 -Ny 2.00 -Nz 0.00 -Ne

-1.000000 -NI RTR -Nw --- -Ma 0 -Md 0 -Ms 0 -Mt O -Is 0.255 -Id -1. 255 -It

message -Il 32 -If O -li O -lv 32

s -t 1.511681090 -Hs 1 -Hd -1 -Ni 1 -Nx 390.00 -Ny 385.00 -Nz 0.0 0 -Ne

-1.000000 -NI RTR -Nw --- -Ma 0 -Md 0 -Ms 0 -Mt O -Is 1.255 -Id -1. 255 -t

message -ll 32 -If O -li 1 -lv 32

s -t 10.000000000 -Hs O -Hd -2 -Ni 0 -Nx 5.00 -Ny 2.00 -Nz 0.00 -N e

-1.000000 -NI AGT -Nw --- -Ma 0 -Md O -Ms 0 -Mt O -Is 0.0 -ld 1.0 -I t tcp -l 1000 -If
2 -li 2 -lv 32 -Pn tcp -Ps 0 -Pa 0 -Pf 0 -Po O

r -t 10.000000000 -Hs 0 -Hd -2 -Ni 0 -Nx 5.00 -Ny 2.00 -Nz 0.00 -N e

-1.000000 -NI RTR -Nw --- -Ma 0 -Md O -Ms 0 -Mt O -Is 0.0 -ld 1.0 -I t tcp -l 1000 -If
2 -li 2 -lv 32 -Pn tcp -Ps 0 -Pa 0 -Pf 0 -Po O

r -t 100.004776054 -Hs 1 -Hd 1 -Ni 1 -Nx 25.05 -Ny 20.05 -Nz 0.00 -Ne

-1.000000 -NI AGT -Nw --- -Ma a2 -Md 1 -Ms 0 -Mt 800 -Is 0.0 -Id 1. 0 -t

tcp -1l 1020 -If 2 -li 21 -lv 32 -Pn tcp -Ps 0 -Pa 0 -Pf 1 -Po O

s -t 100.004776054 -Hs 1 -Hd -2 -Ni 1 -Nx 25.05 -Ny 20.05 -Nz 0.0 0 -Ne

-1.000000 -NI AGT -Nw --- -Ma 0 -Md O -Ms 0 -Mt O -Is 1.0 -ld 0.0 -I t ack -Il 40

-If 2 -li 22 -lv 32 -Pn tcp -Ps 0 -Pa 0 -Pf O -Po O

Explanation of new trace format

The new trace format as seen above can be can be divided efolkbwing fields :

Event type Inthe traces above, the first field (as in the older trace foydescribes the type of event taking place at the node
and can be one of the four types:

s send
r receive
d drop
f forward

General tag The second field starting with "-t" may stand for time or glb&etting

-t time
-t * (global setting)

157

Node property tags This field denotes the node properties like node-id, thel l@hich tracing is being done like agent,
router or MAC. The tags start with a leading "-N" and are liktes below:
-Ni: node id
-Nx: node’s x-coordinate
-Ny: node’s y-coordinate
-Nz: node’s z-coordinate
-Ne: node energy level
-NI: trace level, such as AGT, RTR, MAC
-Nw: reason for the event. The different reasons for droppingc>eare given below:

"END" DROP_END_OF_SIMULATION

"COL" DROP_MAC_COLLISION

"DUP" DROP_MAC_DUPLICATE

"ERR" DROP_MAC_PACKET_ERROR

"RET" DROP_MAC_RETRY_COUNT_EXCEEDED

"STA" DROP_MAC_INVALID_STATE

"BSY" DROP_MAC_BUSY

"NRTE" DROP_RTR_NO_ROUTE i.e no route is available.
"LOOP" DROP_RTR_ROUTE_LOORP i.e there is a routing loop
"TTL" DROP_RTR_TTLi.e TTL has reached zero.
"TOUT" DROP_RTR_QTIMEOUT i.e packet has expired.
"CBK" DROP_RTR_MAC_CALLBACK

"IFQ" DROP_IFQ_QFULL i.e no buffer space in IFQ.
"ARP" DROP_IFQ_ARP_FULL i.e dropped by ARP

"OUT" DROP_OUTSIDE_SUBNET i.e dropped by base stations on rgmerouting updates from nodes out-
side its domain.

Packet information at IP level The tags for this field start with a leading "-I" and are listddng with their explanations as
following:
-Is: source address.source port number
-Id: dest address.dest port number
-It: packet type
-Il: packet size
-If: flowid
-li: unique id
-lv: ttl value
Next hop info This field provides next hop info and the tag starts with ailegd-H".

-Hs: id for this node
-Hd: id for next hop towards the destination.

Packet info at MAC level This field gives MAC layer information and starts with a leagll-M" as shown below:

-Ma: duration

-Md: dst’s ethernet address
-Ms: src’s ethernet address
-Mt: ethernet type

158

Packet info at "Application level" The packet information at application level consists oftihpe of application like ARP,
TCP, the type of adhoc routing protocol like DSDV, DSR, AODi¢ being traced. This field consists of a leading "-P"
and list of tags for different application is listed as below

-P arp Address Resolution Protocol. Details for ARP is given byftilwing tags:

-Po: ARP Request/Reply
-Pm: src mac address
-Ps: src address
-Pa: dst mac address
-Pd: dst address
-P dsr This denotes the adhoc routing protocol called Dynamica®twuting. Information on DSR is represented by
the following tags:
-Pn: how many nodes traversed
-Pqg: routing request flag
-Pi: route request sequence number
-Pp: routing reply flag
-Pl: reply length
-Pe: src of srcrouting->dst of the source routing
-Pw: error report flag ?
-Pm: number of errors
-Pc: report to whom
-Pb: link error from linka->linkb

-P cbr Constant bit rate. Information about the CBR applicatiorejgresented by the following tags:

-Pi: sequence number
-Pf: how many times this pkt was forwarded
-Po: optimal number of forwards
-P tcp Information about TCP flow is given by the following subtags:
-Ps: seq number
-Pa: ack number
-Pf. how many times this pkt was forwarded
-Po: optimal number of forwards

This field is still under development and new tags shall besdddr other applications as they get included along the
way.

16.1.8 Generation of node-movement and traffic-connectiofor wireless scenarios

Normally for large topologies, the node movement and trafficnection patterns are defined in separate files for cavoa.
These movement and traffic files may be generated using CM&ment- and connection-generators. In this section we
shall describe both separately.

MobileNode Movement

Some examples of node movement files may be foundnigitel/mobility/scene/scen-670x670-50-600-20-*. Thedesfi
define a topology of 670 by 670m where 50 nodes move with a spie#@in/s with pause time of 600s. each node is assigned

159

a starting position. The information regarding number gbsibetween the nodes is fed to the central object "GOD" (XXX
but why/where is this information used??-answer awaitecthf€MU.) Next each node is a speed and a direction to move to.

The generator for creating node movement files are to be fanddr -ngindep-utils/cmu-scen-gen/setdest/ directory. Com-
pile the files under setdest to create an executable. ruastatith arguments in the following way:

Jsetdest -n <num_of nodes> -p <pausetime> -s <maxspeed> - t <simtime>
-X <maxx> -y <maxy> > <outdir>/<scenario-file>

Note that the index used for nodes now start from 0 instead ag tvas in the original CMU version, to match witlss
tradition of assigning node indices from O.

Generating traffic pattern files

The examples for traffic patterns may be found in¥tcl/mobility/scene/cbr-50-{10-4-512, 20-4-512}.

The traffic generator is located undangindep-utils/cmu-scen-gen/ and are called cbrgen.tcltapgen.tcl. They may be
used for generating CBR and TCP connections respectively.

To create CBR connecions, run

ns cbrgen.tcl [-type cbr|tcp] [-nn nodes] [-seed seed]
[-mc connections] [-rate rate]

To create TCP connections, run
ns tcpgen.tcl [-nn nodes] [-seed seed]

You will need to pipe the outputs from above to a cbr-* or a tdje.

16.2 Extensions made to CMU'’s wireless model

As mentioned earlier, the original CMU wireless model akosimulation of wireless LANs and ad-hoc networks. However
in order to use the wireless model for simulations using lvatled and wireless nodes we had to add certain extensions to
cmu model. We call this wired-cum-wireless feature. AlsoN&gJMobilelP (implemented for wired nodes) was integrated
into the wireless model allowing mobilelP to run over wigdanobilenodes. The following two subsections describgethe
two extensions to the wireless modelia

16.2.1 wired-cum-wireless scenarios

The mobilenodes described so far mainly supports simulaifanulti-hop ad-hoc networks or wireless LANs. But what if
we need to simulate a topology of multiple wireless LANs ceeted through wired nodes, or may need to run mobilelP on
top of these wireless nodes? The extensions made to the Ckélless model allows us to do that.

160

The main problem facing the wired-cum-wireless scenaris tha issue of routing. In ns, routing information is genedat
based on the connectivity of the topology, i.e how nodes ammected to one another througimks . Mobilenodes on the
other hand have no concept of links. They route packets anmmselves, within the wireless topology, using their irogit

protocol. so how would packets be exchanged between thesiypes of nodes?

So a node calle@aseStationNode is created which plays the role of a gateway for the wired airélass domains.
The BaseStationNode is essentially a hybrid between a Hierarchical noftdierNode) and aMobileNode . The
basestation node is responsible for delivering packetsantl out of the wireless domain. In order to achieve this wezine
Hierarchical routing.

Each wireless domain along with its base-station would laavenique domain address assigned to them. All packetsddsti
to a wireless node would reach the base-station attachée tamain of that wireless node, who would eventually haed th
packet over to the destination (mobilenode). And mobilesotute packets, destined to outside their (wireless) dgna
their base-station node. The base-station knows how todfimrtihese packets towards the (wired) destination. Thensatie

of aBaseStationNode is shown in Figure 16.3.

The mobilenodes in wired-cum-wireless scenario are reguo support hierarchical addressing/routing. ThusdbbileNode
looks exactly like thdBaseStationNode . The SRNode, however, simply needs to have its own hieremsdsince it does
not require any address demuxes and thus is not requireghpmstihier routing.

The DSDV agent on having to forward a packet checks to see ifléfstination is outside its (wireless) subnet. If so, @gri

to forward the packet to its base-station node. In case nte toubase-station is found the packet is dropped. Otherwise
the packet is forwarded to the next_hop towards the baserstaVhich is then routed towards the wired network by base-
station’s classifiers.

The DSR agent, on receiving a pkt destined outside its subeetls out a route-query for its base-station in case the tou
base-station is not known. The data pkt is temporarily cdetigle it waits to hear route replies from base-station. @tiigg
areply the packet is provided with routing information is liteader and send away towards the base-station. The btise-st
address demuxes routes it correctly toward the wired nétwor

The example script for a wired-cum-wireless simulation bariound at Ag'tcl/ex/wired-cum-wireless-sim.tcl. The methods
for wired-cum-wireless implementations are defined m¥'tel/lib/ns-bsnode.tcl, rgtcl/mobility/{com.tcl,dsr.tcl, dsdv.tcl},
~ngdsdv/dsdv.{cc,h} and rddsr/dsragent.{cc,h}.

16.2.2 MobilelP

The wired-cum-wireless extensions for the wireless modeleg the path for supporting wireless MobilelPrin Sun
Microsystem’s (Charlie Perkinst al) MobilelP model was based on ns's wired model (consistinjade’s andLink ’s)
and thus didnot use CMU’s mobility model.

Here we briefly describe the wireless MobilelP implementatiWe hope that Sun would provide the detailed version of the
documentation in the future.

The mobilelP scenario consists of Home-Agents(HA) and igaordgents(FA) and have Mobile-Hosts(MH) moving be-
tween their HA and FAs. The HA and FA are essentially baseestanodes we have described earlier. While MHs are
basically the mobileNodes described in section 16.1.1.rékods and procedures for MobilelP extensions are destitib
~ngmip.{cc,h}, ~ngmip-reg.cc, Adtcl/lib/ns-mip.tcl and Adtcl/lib/ns-wireless-mip.tcl.

The HA and FA nodes are definedMsbileNode/MIPBS having a registering agent (regagent_) that sends beadda ou

1Refer to Chapter 31 for details on hierarchical routing ardrnals oHierNode .
2|n order to do away with all these different variations of thedinition of a node, we are planning to revise the node achite that would allow a more
flexible and modularised construction of a node without teeassity of having to define and be limited to certain Cladimitiens only.

161

Hierarchical port
classifiers demu

node / IP address
entry f

e
iy, N

defaulttarget_
target_
arptable_
uptarget_ LL ARP
downtarget_
IFq
downtarget_
mac_ MAC uptarget_

downtarget_ uptarget_
Radio propagation_
Propagation NetlE
Model

channel_ i uptarget_
Channel

Figure 16.3: Schematic of a baseStationNode

the mobilenodes, sets up encapsulator and decapsulateq@sed and replies to solicitations from MHs. The MH nodes
are defined abobileNode/MIPMH which too have a regagent_ that receives and responds tortieand sends out solic-

itations to HA or FAs. Figure 16.4 illustrates the schemafia MobileNode/MIPBS

node. TheMobileNode/MIPMH

node is very similar to this except for the fact that it doddrave any encapsulator or decapsulator. As for the SRNadewe
of a MH, it doesnot have the hierarchical classifiers and tAeaBent forms the entry point of the node. See Figure 16.2 for

162

target_ :
encapsulator reg_agent_
target_
MH IP address 0 decapsulator_
1
~—1 255
Hlerqrghlcal default
classifiers own |IP address target_
Ie\ﬁ&
entry_ / --------
P—-= I%
Rtg Agent
|e\b\ defaulttarget_
target_
uptarget_ LL
downtarget_ Lo
Channel

Figure 16.4: Schematic of a Wireless MobilelP BaseStatiodeéN

model of a SRNode.

TheMobileNode/MIPBS node routinely broadcasts beacon or advertisement messageo MHs. A solicitation from a
mobilenode generates an ad that is send directly to the siiggeMH. The address of the base-station sending out beacon
heard by MH and is used as the COA (care-of-address) of theTWHis as the MH moves from its native to foreign domains,
its COA changes. Upon receiving reg_request (as reply tp fani®m a mobilehost the base-station checks to see if it is the
HA for the MH. If not, it sets up its decapsulator and forwatius reg_request towards the HA of the MH.

In case the base-statigmthe HA for the requesting MH but the COA doesnot match its atveets up an encapsulator and

sends reg-request-reply back to the COA (address of the W) lvas forwarded the reg_request to it. so now all packets
destined to the MH reaching the HA would be tunneled throingheincapsulator which encapsulates the IP pkthdr with a
IPinIP hdr, now destined to the COA instead of MH. The FAsajeulator recives this packet, removes the encapsulation

163

and sends it to the MH.

If the COA matches that of the HA, it just removes the encagieulit might have set up (when its mobilehost was roaming
into foreign networks) and sends the reply directly backhtMH, as the MH have now returned to its native domain.

The mobilehost sends out solicitations if it doesnot hegrads from the base-stations. Upon receiving ads, it chaitges
COA to the address of the HA/FA it has heard the ad from, antiegback to the COA with a request for registration
(reg-request). Initially the MH maybe in the range of the HA and receivdgats directly from its COA which is HA in
this case. Eventually as the MH moves out of range of its HAiatadthe a foreign domain of a FA, the MH’s COA changes
from its HA to that of the FA. The HA now sets up an encapsulatat tunnels all pkts destined for MH towards the FA.
The FA decapsulates the pkts and hands them over to the MHd&taefrom MH destined for the wired world is always
routed towards its current COA. An example script for wisslenobilelP can be found ahgtcl/ex/wireless-mip-test.tcl. The
simulation consists of a MH moving between its HA and a FA. Hi#eand FA are each connected to a wired domain on one
side and to their wireless domains on the other. TCP flowsetrepsbetween the MH and a wired node.

16.3 Lists of changes for merging code developed in older v&@on of ns (2.1b5 or
later) into the current version (2.1b8)

The CMU-wireless model developed by David Johnhson’s Mamaroject was merged into ns around 1998-99 in what was
then the ns-2.1b5 version. Since then the ns versions usktbbgrch and by us here at ISI have forked quite a bit. Recently
we ported a newer version of DSR developed by the Monarchpgbaek into ns and in the process have created a list of
changes that were required to be made for the merge. Hop¢tigl list will be helpful for those who have been working on
older versions of ns from around that time or or later, to hidnegr stuff merged in to the current version of ns-2.1b8.

The following lists of changes are required for merging theucversion of ns (2.1b5) in to current version of 2.1b8. Each
change is followed by a brief explanation for why the changs wade.

Methods for accessing pkt hdrs have changed from

(hdr_sr *)p->access(off_sr)

to a static access method defined for each hdr, as
hdr_sr::access(p)

where for class hdr_sr a static methactess() is defined as

inline static hdr_sr * access(const Packet *)
return (hdr_sr *)p->access(offset);

why: This change avoids using casts everywhere.

As the method for accessing hdrs have changed, there is mameaplicitly bind the hdr offset values. This is now done
while establishing tcl linkage for the individual hdr class so lines like

bind("off SR_", &off_sr);

bind("off_Il_", &off _Il_);

bind("off_mac_", &off_mac_);

bind("off_ip_", &off_ip_);

should be removed.

AF_ enumerations replaced by NS_AF_asin
enum ns_af enum NS_AF_NONE, NS_AF _ILINK, NS_AF INET ;

164

why: This avoids header clashes between ns and the OS.

The ip hdr (dst/src) address fields that used be integersoavelafined as structures called ns_addr_t. ns_addr_t has 2
members address_ and port_ that are both defined as int. Heesdike

iph->src() should change to

iph->saddr() & iph->sport();

Also lines like

dst_ = (IP_BROADCAST « 8) | RT_PORT

should be replaced by

dst_.addr_ = IP_BROADCAST;

dst_.port_ = RT_PORT;

Why: This extension supports 32bit addressing.

The addrs_ member for hdr_sr class has a separate functioetfoning its value . Thus need to chBr.addrs()
instead of hsr.addrs.
why: addrs_ is now a private variable which is accessed by pultictfonaddrs()

All includes that had absolute paths by usiwgwere replaced by" . Thus
<cmu/dsr/dsragent.h>

was changed to

"cmu/dsr/dsragent.h”

The tcl command "ip-addr” was changed to "addr".

Other new tcl commands like "node”, "port-dmux™ and "traaeget” were added.
why: Part of support for mobilelP and wired-cum-wireless sintiolas.

Need to convert address in string format into int format; se u
Address::instance().str2addr(argv[2])

instead of

atoi(argv[2])

why: This is required for supporting hier-addressing/routing.

The arraypacket_names[] has changed tpacket_info.name()
why: In order to remove a bunch #defines for pkt types, an enumeration called packet_t nowarites all packet types in
ns. class p_info was created that now describes an array ndragehas replaced packet_names array used previously.

Have to explicitly set direction of new pkts to DOWN beforadiang them down to the LL.

why: A variable direction_in hdr_cmn is now used. This is usedmlbwer layers like LL, mac, phy etc to determine the
direction of the pkt flow. All incoming pkts are marked as UPdbiyannel, which should be remarked as DOWN by agents
before sending them out into the network again.

Instead ofogtarget->buffer , should now callogtarget->pt_->buffer

why: This change reflects support for eventtracing. Tracing kabsed into two types, packet tracing and event tracing.
Class Trace essentially supports packet tracing. Howevaddlition to the basic tracing properties that it derivesfra
BaseTrace class, pkt-tracing also requires to inherit sointlee Connector class properties as well. Hence pt_, a faaset
object represents the pure tracing functionalities rexfufor a trace object.

The parameter used to describe the reason a pkt was droppediouse an integer. This was changedhar * . Hence
needed to define different pkt-drop reasons in string fosmat
Why: Allows greater expandibility and flexibility.

linkHead changed to dsrLinkHead.
why: name clashed with linkHead used elsewhere in ns.

165

The older cmu model used an incoming_ flag added in all pktgtodiout direction of pkt flow in the lower layers like I,
mac etc. Later this was replaced by a variable called dwactadded in cmn_hdr. direction value can be set to UP, DOWN
or NONE. all pkts created with a DOWN dir by default.

why: Both these flags were being used which is not really reqd. cmniing_ flag has been replaced with direction_.

16.4 Commands at a glance

Following is a list of commands used in wireless simulations

$ns_ node-config -addressingType <usually flat or hierarc hical used for
wireless topologies>
-adhocRouting <adhoc rotuing protocol like DSDV, DSR,
TORA, AODV etc>

-lIType <LinkLayer>

-macType <MAC type like Mac/802_11>

-propType <Propagation model like
Propagation/TwoRayGround>

-ifqType <interface queue type like
Queue/DropTail/PriQueue>

-ifgLen <interface queue length like 50>

-phyType <network inteface type like
Phy/WirelessPhy>

-antType <antenna type like Antenna/OmniAntenna>

-channelType <Channel type like Channel/WirelessChannel >

-topolnstance <the topography instance>

-wiredRouting <turning wired routing ON or OFF>
-mobilelP <setting the flag for mobilelP ON or OFF>
-energyModel <EnergyModel type>

-initialEnergy <specified in Joules>

-rxPower <specified in W>
-txPower <specified in W>
-agentTrace <tracing at agent level turned ON or OFF>
-routerTrace <tracing at router level turned ON or OFF>
-macTrace <tracing at mac level turned ON or OFF>
-movementTrace <mobilenode movement logging turned

ON or OFF>

This command is used typically to configure for a mobilendée:. more info about this command (part of new node APIS)
see chapter titled "Restructuring ns node and new Node ARIsS Notes and Documentation.

$ns_ node <optional:hier address>
This command is used to create a mobilenode after node coafligniis done as shown in the node-config command. Incase
hierarchical addressing is being used, the hier addres$geafdde needs to be passed as well.

$node log-movement
This command previously used to enable logging of mobile'shovement has now been replacedbng
node-config -movementTrace <ON or OFF>

create-god <num_nodes>

166

This command is used to create a God instance. The numbertmfenodes is passed as argument which is used by God to
create a matrix to store connectivity information of thedimgy.

$topo load_flatgrid <X> <Y> <optional:res>
This initializes the grid for the topography object. <X> and> are the x-y co-ordinates for the topology and are used for
sizing the grid. The grid resolution may be passed as <res#efAult value of 1 is normally used.

$topo load_demfile <file-descrptor>
For loading DEMFile objects into topography. Se#dem.cc,.h for details on DEMFiles.

$ns_ namtrace-all-wireless <namtrace> <X> <Y>
This command is used to initialize a namtrace file for logginde movements to be viewed in nam. The namtrace file
descriptor, the X and Y co-ordinates of the wireless topglisgpassed as parameters with this command.

$ns_ nam-end-wireless <stop-time>
This command is used to tell nam the simulation stop timergiye<stop-time>.

$ns_ initial_node_pos <node> <size>
This command defines the node initial position in nam. <stdexotes the size of node in nam. This function must be called
after mobility model has been defined.

$mobilenode random-motion <0 or 1>
Random-motion is used to turn on random movements for thelerazle, in which case random destinations are assigned
to the node. 0 disables and 1 enables random-motion.

$mobilenode setdest <X> <Y> <s>
This command is used to setup a destination for the mobikenbde mobile node starts moving towards destination given
by <X> and <Y> at a speed of <s> m/s.

$mobilenode reset
This command is used to reset all the objects in the nodew@netomponents like LL, MAC, phy etc).

Internal procedures
Following is a list of internal procedures used in wirelessworking:

$mobilenode base-station <BSnode-hier-addr>
This is used for wired-cum-wireless scenarios. Here theil@obde is provided with the base-stationnode info for its
domain. The address is hierarchical since wired-cum-es®Ecenarios typically use hierarchical addressing.

$mobilenode log-target <target-object>
The <target-object>, which is normally a trace object, iscu® log mobilenode movements and their energy usage, if
energy model is provided.

$mobilenode topography <topoinstance>
This command is used to provide the node with a handle to thegi@phy object.

$mobilenode addif
A mobilenode may have more than one network interface. Tdnsmoand is used to pass handle for a network interface to
the node.

$mobilenode namattach <namtracefd>

This command is used to attach the namtrace file descriptmtnacefd> to the mobilenode. All nam traces for the node
are then written into this namtrace file.

167

$mobilenode radius <r>
The radius <r> denotes the node’s range. All mobilenodedaiavithin the circle of radius <r> with the node at its cent
are considered as neighbours. This info is typically usethbygridkeeper.

$mobilenode start
This command is used to start off the movement of the mobileno

168

Chapter 17

Satellite Networking in ns

This chapter describes extensions that enable the simulatisatellite networks ins. In particular, these extensions enable
nsto model the following: i) traditional geostationary “bepipe” satellites with multiple users per uplink/downliakd
asymmetric links, ii) geostationary satellites with presieg payloads (either regenerative payloads or full peskéching),
and iii) polar orbiting LEO constellations such as IridiumdeTeledesic. These satellite models are principally aiateing
nsto study networking aspects of satellite systems; in palic MAC, link layer, routing, and transport protocols.

17.1 Overview of satellite models

Exact simulation of satellite networks requires a detaitemtlelling of radio frequency characteristics (interfaxenfading),
protocol interactions (e.g., interactions of residualdberrors on the link with error checking codes), and secomtkr orbital
effects (precession, gravitational anomalies, etc.). él@x, in order to study fundamental characteristics oflltgtaetworks
from anetworkingperspective, certain features may be abstracted out. Fongbe, the performance of TCP over satellite
links is impacted little by using an approximate rather thatailed channel model- performance can be charactenadtt
order by the overall packet loss probability. This is theraagh taken in this simulation model- to create a framework f
studying transport, routing, and MAC protocols in a satelénvironment consisting of geostationary satellitesaorstella-
tions of polar-orbiting low-earth-orbit (LEO) satellite®f course, users may extend these models to provide maaé dea
given layer.

17.1.1 Geostationary satellites

Geostationary satellites orbit the Earth at an altitude 2BQ0 miles above the equator. The position of the satelige
specified in terms of the longitude of the nadir point (sublliéed point on the Earth’s surface). In practice, geostadiry
satellites can drift from their designated location dueravgational perturbations— these effects are not modétias

Two kinds of geostationary satellites can be modelled. ilicathl “bent-pipe” geostationary satellites are meredpeaters
in orbit— all packets received by such satellites on an lgimannel are piped through at RF frequencies to a correspgnd
downlink, and the satellite node is not visible to routingtoicols. Newer satellites will increasingly use basebandgssing,
both to regenerate the digital signal and to perform faskegswitching on-board the spacecraft. In the simulatitimsse
satellites can be modelled more like traditionahodes with classifiers and routing agents.

Previously, users could simulate geostationary satéifiks by simply simulating a long delay link using tradit@mslinks
and nodes. The key enhancement of these satellite extsnsitin respect to geostationary satellites is the capghiit

169

Counter-rotating planes Overlap of coverage at the poles
cause rapid “crossseam” U~ Interplane intersatellite
ISL handoffs R /Iinks (ISLs) are turned off

An “intraplane” ISL

! An “interplane” ISL

Figure 17.1: Example of a polar-orbiting LEO constellatidiis figure was generated using the SaVi software package fr
the geometry center at the University of Minnesota.

simulate MAC protocols. Users can now define many terminadéff@rent locations on the Earth’s surface and conneatithe
to the same satellite uplink and downlink channels, and tbhpgmgation delays in the system (which are slightly diffefer
each user) are accurately modelled. In addition, the ugimk downlink channels can be defined differently (perhapis wi
different bandwidths or error models).

17.1.2 Low-earth-orbiting satellites

Polar orbiting satellite systems, such as Iridium and tleppsed Teledesic system, can be modelleakirin particular, the
simulator supports the specification of satellites thattdanbpurely circular planes, for which the neighboring pésrare co-
rotating. There are other non-geostationary consteliatanfigurations possible (e.g., Walker constellationsg-ihterested
user may develop new constellation classes to simulate tither constellation types. In particular, this would nharequire
defining new intersatellite link handoff procedures.

The following are the parameters of satellite constelleithat can currently be simulated:

e Basic constellation definitionIincludes satellite altitude, number of satellites, nundfgrlanes, number of satellites
per plane.

e Orbits Orbit inclination can range continuously from 0 to 180 degrénclination greater than 90 degrees corresponds
to retrograde orbits). Orbit eccentricity is not modeleadsdl precession is not modeled. Intersatellite spacingiwa
given plane is fixed. Relative phasing between planes is {eidtough some systems may not control phasing between
planes).

o Intersatellite (ISL) links For polar orbiting constellations, intraplane, inter@aand crossseam ISLs can be defined.
Intraplane ISLs exist between satellites in the same pladeee never deactivated or handed off. Interplane ISL4 exis
between satellites of neighboring co-rotating planes.s€hieks are deactivated near the poles (above the “ISlbsit
threshold” in the table) because the antenna pointing nmestmacannot track these links in the polar regions. Like
intraplane ISLs, interplane ISLs are never handed off. €geam ISLs may exist in a constellation between satellites

170

in counter-rotating planes (where the planes form a seddkbeam” in the topology). GEO ISLs can also be defined
for constellations of geostationary satellites.

e Ground to satellite (GSL) links Multiple terminals can be connected to a single GSL satetlitannel. GSL links for
GEO satellites are static, while GSL links for LEO channeésgzeriodically handed off as described below.

e Elevation mask The elevation angle above which a GSL link can be operatio@airrently, if the (LEO) satellite
serving a terminal drops below the elevation mask, the teahsearches for a new satellite above the elevation mask.

Satellite terminals check for handoff opportunities adiog to a timeout interval specified by the user. Each ter-
minal initiates handoffs asynchronously; it would be pbksialso to define a system in which each handoff occurs

synchronously in the system.

The following table lists parameters used for example satioh scripts of the Iridiurhand Teledesfcsystems.

H Iridium ‘Teledesic‘

Altitude 780 km | 1375km
Planes 6 12
Satellites per plane 11 24
Inclination (deg) 86.4 84.7
Interplane separation (deg) 31.6 15
Seam separation (deg) 22 15
Elevation mask (deg) 8.2 40
Intraplane phasing yes yes
Interplane phasing yes no
ISLs per satellite 4 8
ISL bandwidth 25 Mb/s | 155 Mb/s
Up/downlink bandwidth 1.5Mb/s| 1.5 Mb/s
Cross-seam ISLs no yes
ISL latitude threshold (deg) 60 60

Table 17.1: Simulation parameters used for modeling a iraad version of the Iridium system and the proposed 288lisate
Teledesic system. Both systems are examples of polarmglibnstellations.

1Aside from the link bandwidths (Iridium is a narrowband gystonly), these parameters are very close to what a broadiEsibn of the Iridium

system might look like.
2These Teledesic constellation parameters are subjectatgeh thanks to Marie-Jose Montpetit of Teledesic for g tentative parameters as of

January 1999. The link bandwidths are not necessarily ateur

171

o® longitude at
equator

Figure 17.2: Spherical coordinate system used by satabitkes

17.2 Using the satellite extensions

17.2.1 Nodes and node positions

There are two basic kinds of satellite nodgeostationaryandnon-geostationargatellite nodes. In additioterminalnodes

can be placed on the Earth’s surface. As is explained lat&eiction 17.3, each of these three different types of nodes
is actually implemented with the sanstass SatNode object, but with different position, handoff manager, aimk |
objects attached. The position object keeps track of trelis@thode’s location in the coordinate system as a fumatibthe
elapsed simulation time. This position information is usedietermine link propagation delays and appropriate tifoes
link handoffs. Section 5.3 introduced the "node-configlitytused to prime the node generator for different typesatéBite
nodes.

Figure 17.2 illustrates the spherical coordinate systemd, the corresponding Cartesian coordinate system. Thedoor
nate system is centered at the Earth’s center, and:thgis coincides with the Earth’s axis of rotation(R, 6, ¢) =
(6378km, 90°,0°) corresponds t6° longitude (prime meridian) on the equator.

Specifically, there is one class of satellite n@lass Node/SatNode |, to which one of three types &fosition objects
may be attached. Ea@®atNode andPosition object is a split OTcl/C++ object, but most of the code resiteC++.
The following types of position objects exist:

e Position/Sat/Term A terminal is specified by its latitude and longitude. Ladiéuranges from—90, 90] and
longitude ranges from180, 180], with negative values corresponding to south and westersely. As simulation
time evolves, the terminals move along with the Earth’'saef The node generator can be used to create a terminal
with an attached position object as follows:

$ns node-config -satNodeType terminal \
(other node config commands go here...)

set nl [$ns node]

$n1 set-position $lat $lon; # in decimal degrees

172

e Position/Sat/Geo A geostationary satellite is specified by its longitude abthe equator. As simulation time
evolves, the geostationary satellite moves through thedboate system with the same orbital period as that of the
Earth’s rotation. The longitude ranges frdm180, 180] degrees. As we describe further below, two flavors of geosta-
tionary nodes exist: “geo” (for processing satellites) agelo-repeater” (for bent-pipe satellites). The node gatwer
can be used to create a geostationary satellite with arhattiquosition object as follows:

$ns node-config -satNodeType geo (or ‘“geo-repeater”) \
(other node config commands go here...)

set nl [$ns node]

$nl set-position $lon; # in decimal degrees

e Position/Sat/Polar A polar orbiting satellite has a purely circular orbit aloadixed plane in the coordinate
system; the Earth rotates underneath this orbital planéhe® is both an east-west and a north-south component to
the track of a polar satellite’s footprint on the Earth’sfage. Strictly speaking, the polar position object can bexdus
to model the movement of any circular orbit in a fixed plane;uge the term “polar” here because we later use such
satellites to model polar-orbiting constellations.

Satellite orbits are usually specified by six parametatttude semi-major axiseccentricity right ascension of as-
cending nodginclination, andtime of perigee passag&he polar orbiting satellites inshave purely circular orbits, so
we simplify the specification of the orbits to include onlyeh parameteraltitude, inclination, andlongitude with a
fourth parametealphaspecifying initial position of the satellite in the orbits described belowAltitude is specified
in kilometers above the Earth’s surface, andination can range fronf0, 180] degrees, witl90 corresponding to pure
polar orbits and angles greater th#hdegrees corresponding to “retrograde” orbits. Hseending nodesfers to the
point where the footprint of the satellite orbital track sses the equator moving from south to north. In this simuoati
model, the parametdongitude of ascending nodespecifies the earth-centric longitude at which the sagédlibadir
point crosses the equator moving south to nérttongitude of ascending nodmn range fronj—180, 180] degrees.
The fourth parameteglpha, specifies the initial position of the satellite along thibig starting from the ascending
node. For example, aadphaof 180 degrees indicates that the satellite is initially abovesyeator moving from north
to south. Alpha can range fror0, 360] degrees. Finally, a fifth parametqlane, is specified when creating polar
satellite nodes— all satellites in the same plane are giverséame plane index. The node generator used to create a
polar satellite with an attached position object as follows

$ns node-config -satNodeType polar \
(other node config commands go here...)

set nl [$ns node]

$n1 set-position $alt $inc $lon $alpha $plane

17.2.2 Satellite links

Satellite links resemble wireless links, which are desiin Chapter 16. Each satellite node has one or more satellit
network interface stacks, to which channels are conneotétetphysical layer object in the stack. Figure 17.3 illatgs the
major components. Satellite links differ frons wireless links in two major respects: i) the transmit anceree interfaces
must be connected to different channels, and ii) there isRB Anplementation. Currently, tHeadio Propagation Modes

a placeholder for users to add more detailed error modetsdiesired; the current code does not use a propagation model.

Network interfaces can be added with the following instppb€lass Node/SatNode

$node add-interface $type $ll $qgtype $glim $mac $mac_bw $ph y

STraditionally, the “right ascension” of the ascending niglepecified for satellite orbits— the right ascension @pands to theelestiallongitude. In
our case, we do not care about the orientation in a celest@tnate system, so we specify the earth-centric longifndtead.

173

IFg

MAC

/\ Radi

Phy_tx Phy _rx "|Propagatiq
y- Mogelg

Channeli

Figure 17.3: Main components of a satellite network intezfa

=]

Channel

The add-interface instproc returns an index value that can be used to accesgth®rk interface stack later in the
simulation. By convention, the first interface created omdenis attached to the uplink and downlink channels of algatel
or terminal. The following parameters must be provided:

e type: The following link types can be indicatedeo or polar for links from a terminal to a geo or polar satellite,
respectivelygsl andgsl-repeater for links from a satellite to a terminal, andtraplane , interplane
andcrossseam ISLs. The type field is used internally in the simulator toritiy the different types of links, but
structurally they are all very similar.

e |I: Thelink layertype ¢lass LL/Sat is currently the only one defined).

e (type: The queue type (e.gclass Queue/DropTail). Any queue type may be used— however, if additional
parameters beyond the length of the queue are needed, tiseingtproc may need to be modified to include more
arguments.

e glim: The length of the interface queue, in packets.

e mac. The MAC type. Currently, two types are defineclass Mac/Sat — a basic MAC for links with only one
receiver (i.e., it does not do collision detection), &ldss Mac/Sat/UnslottedAloha —an implementation of
unslotted Aloha.

e mac_bw The bandwidth of the link is set by this parameter, whichtoals the transmission time how fast the MAC
sends. The packet size used to calculate the transmissieridithe sum of the valuaize() in the common packet
header andlINK_HDRSIZE, which is the size of any link layer headers. The default@dtu LINK_HDRSIZE is 16
bytes (settable isatlink.h). The transmission time is encoded in the packet headesmatithe receive MAC (to
simulate waiting for a whole packet to arrive).

e phy: The physical layer— currently two Phy€lass Phy/Sat andClass Phy/Repeater) are defined. The
classPhy/Sat just pass the information up and down the stack— as in thdegsecode described in Chapter 16, a
radio propagation model could be attached at this point. cTdgsPhy/Repeater pipes any packets received on a
receive interface straight through to a transmit interface

An ISL can be added between two nodes using the followingiost

174

$ns add-isl $ltype $nodel $node2 $bw $qtype $glim

This creates two channels (of ty#hannel/Sat), and appropriate network interfaces on both nodes, ardlas the
channels to the network interfaces. The bandwidth of theitirset tobw. The linktype (type) must be specified as either
intraplane ,interplane , orcrossseam .

A GSL involves adding network interfaces and a channel orrdbtize satellite (this is typically done using the wrapper
methods described in the next paragraph), and then defingngdrrect interfaces on the terrestrial node and attachie
to the satellite link, as follows:

$node add-gsl $type $ll $gtype $glim $mac $bw_up $phy \
[$node_satellite set downlink_] [$node_satellite set upl ink]

Here, thetype must be eithegeo or polar , and we make use of ttdownlink_ anduplink_ instvars of the satellite;
therefore, the satellite’s uplink and downlink must be tedaefore this instproc is called.

By default, the node generator for satellite nodes (deedrib Section 5.3) will create nodes of a given type, give tlzam
uplink and downlink interface, and create and attach atigihuplink and downlink channel, based on the interfactons
specified.

17.2.3 Handoffs

Satellite handoff modelling is a key component of LEO sdteletwork simulations. It is difficult to predict exactlyw
handoffs will occur in future LEO systems because the sulgemt well treated in the literature. In these satellitee@sions,
we establish certain criteria for handoffs, and allow nameisdependently monitor for situations that require a fathdAn

alternative would be to have all handoff events synchrah@aoss the entire simulation— it would not be difficult t@obe
the simulator to work in such a manner.

There are no link handoffs involving geostationary satdlj but there are two types of links to polar orbiting sétlthat
must be handed off: GSLs to polar satellites, and crosss8am KA third type of link, interplane ISLs, are not handedtmft
are deactivated at high latitudes as we describe below.

Each terminal connected to a polar orbiting satellite rutimar that, upon expiry, causes thkandoffManager to check
whether the current satellite has fallen below the elevatiask of the terminal. If so, the handoff manager detaches th
terminal from that satellite’s up and down links, and seascthrough the linked list of satellite nodes for anothersgale
satellite. First, the “next” satellite in the current oddiplane is checked- a pointer to this satellite is storedhénRosition
object of each polar satellite node and is set during siraratonfiguration using th&lode/SatNode instproc ‘$node
set_next $next_node ” If the next satellite is not suitable, the handoff managgarches through the remaining satel-
lites. If it finds a suitable polar satelite, it connects igfwork interfaces to that satellite’s uplink and downlirilaanels, and
restarts the handoff timer. If it does not find a suitable Iitggit restarts the timer and tries again later. If anyklichanges
occur, the routing agent is notified.

The elevation mask and handoff timer interval are settalaléf cl:

HandoffManager/Term set elevation_mask_ 10; # degrees
HandoffManager/Term set term_handoff_int_ 10; # seconds

In addition, handoffs may be randomized to avoid phase &sfleg setting the following variable:
HandoffManager set handoff_randomization_ 0; # 0 is false, 1 is true

175

If handoff_randomization_ is true, then the next handoff interval is a random variaté&eyd from a uniform distribu-
tion acrosq0.5 x term_handof f_int_, 1.5 « term_handof f_int_).

Crossseam ISLs are the only type of ISLs that are handed dft cFiteria for handing off a crossseam ISL is whether
or not there exists a satellite in the neighboring plane ihatoser to the given satellite than the one to which it iseotly
connected. Again, a handoff timer running within the hafidafnager on the polar satellite determines when the cdatstel

is checked for handoff opportunities. Crossseam ISL hdsdwé initiated by satellites in the lower-numbered plahthe
two. It is therefore possible for a transient condition tsatin which a polar satellite has two crossseam ISLs (t@bfit
satellites). The satellite handoff interval is again dd&drom OTcl and may also be randomized:

HandoffManager/Sat set sat_handoff_int_ 10; # seconds

Interplane and crossseam ISLs are deactivated near thg, p@leause the pointing requirements for the links are teerse
as the satellite draw close to one another. Shutdown of fhdseis governed by a parameter:

HandoffManager/Sat set latitude_threshold_ 70; # degrees

The values for this parameter in the example scripts aredgie; the exact value is dependent upon the satellitéviee.
The handoff manager checks the latitude of itself and its p&tellite upon a handoff timeout; if either or both of théedides
is abovdatitude_threshold_ degrees latitude (north or south), the link is deactivatetil hoth satellites drop below
this threshold.

Finally, if crossseam ISLs exist, there are certain sitreiin which the satellites draw too close to one anothera@mitid-
latitudes (if the orbits are not close to being pure polaiteyb We check for the occurence of this orbital overlap vitie
following parameter:

HandoffManager/Sat set longitude_threshold_ 10; # degree S

Again, the values for this parameter in the example scriggspeculative. If the two satellites are closer togethéorigitude
thanlongitude_threshold_ degrees, the link between them is deactivated. This pagarigetisabled (set t6) by
default— all defaults for satellite-related bound varéshtan be found inngtcl/lib/ns-sat.tcl.

17.2.4 Routing

The current status of routing is that it is incomplete. Itigane should be able to run all existimg routing protocols over
satellite links. However, many of the existing routing prals implemented in OTcl require that the conventiorsdinks be
used. Contributions in this area are welcome, but unfotlpét is not a trivial change.

With that being said, the current routing implementatiosimilar to Session routing described in Chapter 28, exdwegt t

it is implemented entirely in C++. Upon each topology charayeentralized routing genie determines the global network
topology, computes new routes for all nodes, and uses thtegda build a forwarding table on each node. Currently, the
slot table is kept by a routing agent on each node, and packétiestined for agents on the node are sent by default to this
routing agent. For each destination for which the node hasigef the forwarding table contains a pointer to the heati®f t
corresponding outgoing link. As noted in Chapter 28, the isseautioned that this type of centralized routing can lead
minor causality violations.

The routing genie is alass SatRouteObject and is created and invoked with the following OTcl commands:
set satrouteobject_ [new SatRouteObject]

176

$satrouteobject_ compute_routes

where the call ta°compute_routes is performed after all of the links and nodes in the simuldiave been instantiated.
Like theScheduler , there is one instance of a SatRouteObject in the simuladiad it is accessed by means of an instance
variable in C++. For example, the call to recompute routésraf topology change is:

SatRouteObject::instance().recompute();

Despite the current use of centralized routing, the desfginaging a routing agent on each node was mainly done with
distributed routing in mind. Routing packets can be sentdd p55 of each node. The key to distributed routing working
correctly is for the routing agent to be able to determinenfwwhich link a packet arrived. This is accomplished by théunc
sion of aclass NetworklInterface object in each link, which uniquely labels the link on whitie tpacket arrived. A
helper functiorNsObject * intf_to_target(int label) can be used to return the head of the link corresponding
to a given label. The use of routing agents parallels that@fobility extensions, and the interested reader can tuthoise
examples to see how to implement distributed routing pratoin this framework.

The shortest-path route computations use the current getipen delay of a link as the cost metric. It is possible to pate
routes using only the hop count and not the propagation delayrder to do so, set the following default variable tdsé&:

SatRouteObject set metric_delay "true"

Finally, for very large topologies (such as the Teledesianegle), the centralized routing code will produce a veryslo
runtime because it executes an all-pairs shortest pathigdgoupon each topology change even if there is no data ithyre
being sent. To speed up simulations in which there is not ndiath transfer but there are lots of satellites and ISLs, ane ¢
disablehandoff-driverand enablelata-drivenroute computations. With data-driven computations, reare computed only
when there is a packet to send, and furthermore, a singlesahortest-path algorithm (only for the node with a patciet
send) is executed instead of an all-pairs shortest pathitdgo The following OTcl variable can configure this optifwhich

is set to "false" by default):

SatRouteObject set data_driven_computation_ "false"

17.2.5 Trace support

Tracefiles using satellite nodes and links are very simdaonventionahstracing described in Chapter 25. Special SatTrace
objects €lass SatTrace derivesfronclass Trace)are used to logthe geographic latitude and longitude ofitite
logging the trace (in the case of a satellite node, the @ditand longitude correspond to the nadir point of the stglli

For example, a packet on a link from node 66 to node 26 mighthally be logged as:

+ 1.0000 66 26 cbr 210 ------- 0 66.0 670 0 0

but in the satellite simulation, the position informatisreippended:

+ 1.0000 66 26 cbr 210 ------- 0 66.0 67.0 0 0 37.90 -122.30 48.9 0 -120.94

In this case, node 66 is at latitude 37.90 degrees, longitlgiz 30 degrees, while node 26 is a LEO satellite whose seibta
point is at 48.90 degrees latitude, -120.94 degrees longifnegative latitude corresponds to south, while negédivgitude
corresponds to west).

177

One addition is th&€lass Trace/Sat/Error , Which traces any packets that are errored by an error mddwd.error
trace logs packets dropped due to errors as follows, for gkam

e 1.2404 12 13 cbr 210 ------- 0 12.0 13.0 0 0 -0.00 10.20 -0.00 - 10.00

It may happen that a satellite node generates a packet tratribt forward (such as in sat-mixed.tcl). This will showasgma
drop in the tracefile with a destination field set to -2, andaberdinates set to -999.00:

d 848.0000 14 -2 cbr 210 ----—--- 1 14.0 15.0 6 21 0.00 10.00 -999 .00 -999.00

This indicates that node 14, in trying to send a packet to dédeould not find an available route.

To enable tracing of all satellite links in the simulatoreuke following commandseforeinstantiating nodes and links:

set f [open out.tr w]
$ns trace-all $f

Then use the following line after all node and link creatiamd all error model insertion, if any) to enable tracing df al
satellite links:

$ns trace-all-satlinks $f

Specifically, this will put tracing around the link layer ques in all satellite links, and will put a receive trace begwehe
mac and the link layer for received packets. To enable tgpoinly on a specific link on a specific node, one may use the
command:

$node trace-inlink-queue $f $i
$node trace-outlink-queue $f $i

where: is the index of the interface to be traced.

The implementations of the satellite trace objects can bedon ~ndtcl/lib/ns-sat.tcl and rgsattrace.{cc,h}.

17.2.6 Error models

nserror models are described in Chapter 13. These error modelbe set to cause packets to be errored according to various
probability distributions. These error models are simpid don’t necessarily correspond to what would be experig¢ioce

an actual satellite channel (particularly a LEO channeBeld are free to define more sophisticated error models theg m
closely match a particular satellite environment.

The following code provides an example of how to add an errodehto a link:

set em_ [new ErrorModel]

$em_ unit pkt

$em_ set rate_ 0.02

$em_ ranvar [new RandomVariable/Uniform]
$node interface-errormodel $em_

178

This will add an error model to the receive path of the firstiface created on nodmode (specifically, between the MAC
and link layer)- this first interface generally correspotathe uplink and downlink interface for a satellite or a terat (if
only one uplink and/or downlink exists). To add the error rldd a different stack (indexed by, use the following code:

$node interface-errormodel $em_ $i

17.2.7 Other configuration options

Given an initial configuration of satellites specified fan&o0, it is possible to start the satellite configuration from anlyi-
trary pointin time through the use of thiene_advance_ parameter (this is really only useful for LEO simulationBuring
the simulation run, this will set the position of the objezthe position at timé&cheduler::instance().clock +
time_advance_ seconds.

Position/Sat set time_advance_ 0; # seconds

17.2.8 nam support

nam is not currently supported. Addition ofam for satellite is open to interested contributors.

17.2.9 Integration with wired and wireless code

Recently (November 2001), support has been added to cotradittonal OTcl-based wired nodes with the satellite rmde
This section describes the capabilities and limitationthaf code.

The satellite code (and the wireless code) normally pergoathrouting in C++, while the traditional ns code uses a nfix o
OTcl and C++ code. For backward compatibility reasons, difcult to fully integrate both the wired and wireless code
The strategy for integrating wireless and wired code has bealefine a special gateway node (called a "basestatian”), t
use hierarchial routing, and to locate a single basestatiae in the wireless network with a network stack locateddthb
the wireless and the wired subnet. Because routing is nigtifuegrated, the topology of the simulation is limited tolyp
one gateway node per wireless subnet (i.e., a packet cantestthe wireless network from one wired gateway and lease vi
another).

The satellite/wired code integration takes a differendtsigy. By selecting the node configuratibns node-config
-wiredRouting ON option, the C++ routing in the satellite code is turned offfl @stead, all satellite topology changes
lead to upcalls into the OTcl code. As a result, inc_ array in OTcl is manipulated according to all topology chesig
and OTcl-based routing can occur. The penalty for doingithismuch longer execution time for larger simulations (sagh
Teledesic), but for smaller simulations, the differenceasas noticeable.

An example script detailing the use of this new option is shidimv~ng'tcl/ex/sat-wired.tcl, and a similar test in the satellite
test suite exercises this code. Additionally, all of theeBis¢ example scripts inrgtcl/ex directory can be converted to OTcl
routing by using théns node-config -wiredRouting ON option. However, there are a few caveats:

e The wired routing option for satellite has only been testéth the default) static routingbns rtProto Static
The code triggers a global routing table update upon anylisatepology change.

e The optiondata_driven_computation_ can not be set to “true” when wiredRouting is ON. Note thatehe
abling or disabling oflata_driven_computation_ can give subtle differences in simulation output sinceesut

179

are computed at different times (while propagation delagscantinuously changing). This effect can be seen by
toggling this parameter in the Iridium example scripiftcl/ex/sat-iridium.tcl.

e In the trace file, when a packet is dropped due to “no route st’tfsuch as when there is a topology change), the trace
looks a bit different depending on whether wiredRoutingii;med OFF or ON. In the former case, there is one line per
drop, with the destination labelled as “-2". In the latteseathere are three events (enque “+”, deque “-", and drop “d”
corresponding to the same packet, and the destination vgnsae “-1".

e Inrare cases, there may be warning messages during thetiexeituicating “node out of range.” This can occur if a
node becomes disconnected in the topology and then anaitiettries to send a packet to it. For example, try enabling
wiredRouting in the file ~ndtcl/ex/sat-mixed.tcl. This occurs because the routitdetés dynamically sized upon
topology change, and if a node becomes disconnected it malyave any entries inserted in the routing table (and
hence the routing table is not grown to accommodate its nodeber). This warning should not affect actual trace
output.

e There has been no attempt to interoperate with wireless dilextP code.

17.2.10 Example scripts

Example scripts can be found in thagicl/ex directory, including:

e sat-mixed.tcl A simulation with a mixture of polar and geostationary déte.

e sat-wired.tcl Similar to the previous script, but shows how to connect dimedes to a satellite simulation.

e sat-repeater.tcl Demonstrates the use of a simple bent-pipe geostationtaljitea and also error models.

¢ sat-aloha.tcl Simulates one hundred terminals in a mesh-VSAT configunaiging an unslotted Aloha MAC

protocol with a “bent-pipe” geostationary satellite. Témals listen to their own transmissions (after a delay), énd
they do not successfully receive their own packet withimzetut interval, they perform exponential backoff and then
retransmit the packet. Three variants exksisic |, basic_tracing , andpoisson . These variants are described
further in the header comments of the script.

e sat-iridium.tcl Simulates a broadband LEO constellation with parametengasi to that of the Iridium con-
stellation (with supporting scriptsat-iridium-links.tcl , sat-iridium-linkswithcross.tcl ,and
sat-iridium-nodes.tcl).

¢ sat-teledesic.tcl Simulates a broadband LEO constellation with parameteriasito those proposed for the
288 satellite Teledesic constellation (with supportingxs sat-teledesic-links.tcl andsat-teledesic-nodes.tcl

In addition, there is a test suite script that tries to exsarea lot of features simultaneously, it can be foundredtel/test/test-
suite-sat.tcl.

17.3 Implementation

The code for the implementation of satellite extensionstmafiound in -ng{sat.h, sathandoff.{cc,h}, satlink.{cc,h}, satn-
ode.{cc,h}, satposition.{cc,h}, satroute.{cc,h}, satte.{cc,h}}, and +ndtcl/lib/ns-sat.tcl. Almost all of the mechanism is
implemented in C++.

In this section, we focus on some of the key components ofrtigeimentation; namely, the use of linked lists, the node
structure, and a detailed look at the satellite link streestu

180

name

“name” is the name of the structure containing the list head

= Ih first “lh_first” is a pointer of type *obj, initialized to NULL
T “lh_next" is a pointer of type *obj

“lh_prev” (of type **obj) is a pointer to the previous Ih_next
obj obj obj

NULL
<</

L hprev | ih_prev |

Figure 17.4: Linked list implementation ims
17.3.1 Use of linked lists
There are a number of linked lists used heavily in the impletaition:

e class Node maintains a (static) list of all objects of cladsde in the simulator. The variablode::nodehead_
stores the head of the list. The linked list of nodes is useddatralized routing, for finding satellites to hand off to,
and for tracing.

e class Node maintains a list of all (satellite) links on the node. Speaillly, the list is a list of objects of class
LinkHead . The variablelinklisthead__ stores the head of the list. The linked list of LinkHeads isduior
checking whether or not to handoff links, and to discoveotogy adjacencies.

e class Channel maintains a list of all objects of clag2hy on the channel. The head of the list is stored in the
variableif_head_ . This list is used to determine the set of interfaces on amélathat should receive a copy of a
packet.

Figure 17.4 provides a schematic of how the linked list issoiged. Each objectin the listis linked through a “LINK _ERN™
that is a protected member of the class. This entry contgiodder to the next item in the list and also a pointer to therass
of the previous “next” pointer in the preceding object. \dars macros found inng/list.h can be used to manipulate the list;
the implementation of linked-lists insis similar to thequeue implementation found in some variants of BSD UNIX.

17.3.2 Node structure

Figure 17.5 is a schematic of the main components®diiNode . The structure bears resemblance toMwhileNode in

the wireless extensions, but there are several differerldks all nsnodes, the SatNode has an “entry” point to a series of
classifiers. The address classifier contains a slot tablfamrding packets to foreign nodes, but since OTcl routingot
used, all packets not destined for this node (and hence fdesao the port classifier), are sent to the default targbtchv
points to a routing agent. Packets destined on the node fo2pb are classified as routing packets and are also forddade
the routing agent.

Each node contains one or more “network stacks” that includenericSatLinkHead at the entry point of the link. The
SatLinkHead is intended to serve as an API to get at other objects in thestimicture, so it contains a number of pointers
(although the API here has not been finalized). Packetsrigdiaie network stack are sent to the node’s entry. An impbrtan
feature is that each packet leaving a network stack héfads_ field in the common packet header coded with the unique

NetworklInterface index corresponding to the link. This value can be used t@stplistributed routing as described
below.
The base class routing agentiass SatRouteAgent ; itcan be used in conjunction with centralized routing RRatteAgents

contain a forwarding table that resolves a packet's addoesparticular LinkHead target— it is the job of tBatRouteObject

181

class SatNode : public Node

SatPositiol

ffMgri

List of pointers: /
node_head nodehead_ | |satLinkHead """ | [satLinkHead
linklist_head linklisthead_|

Channel* uplink_

Channel* downlink_
Other link Other link
objects objects

Figure 17.5: Structure aflass SatNode

to populate this table correctly. The SatRouteAgent pdpsleertain fields in the header and then sends the packettdown
the approprate link. To implement a distributed routingtpool, a new SatRouteAgent could be defined- this would learn
about topology by noting the interface index marked in eaatkpt as it came up the stack— a helper function in the node
intf_to_target() allows it to resolve an index value to a particular LinkHead.

There are pointers to three additional objects in a SatNédst, each SatNode contains a position object, discuss#tki
previous section. Second, each SatNode contalifiskddandoffMgr that monitors for opportunities to hand links off and
coordinates the handoffs. Satellite nodes and terminaésiedch have their specialized version of a LinkHandoffMgr.

Finally, a number of pointers to objects are contained in@&8ade. We discusselihklisthead_ andnodehead_ in
the previous subsection. Thplink_ anddownlink_ pointers are used for convenience under the assumptionithat
most simulations, a satellite or a terminal has only onenkpdind downlink channel.

17.3.3 Detailed look at satellite links

Figure 17.6 provides a more detailed look at how satellitediare composed. In this section, we describe how packets
move up and down the stack, and the key things to note at epeh [Bhe file adtcl/lib/ns-sat.tcl contains the various OTcl
instprocs that assemble links according to Figure 17.6. ¥¢eiibe the composite structure herein as a “network Statbst

of the code for the various link components is imssatlink.{cc,h}.

The entry point to a network stack is tBatLinkHead object. The SatLinkHead object derives fr@tass LinkHead ;

the aim of link head objects is to provide a uniform API for mditwork stacks? The SatLinkHead object contains pointers
to the LL, Queue, MAC, Error model, and both Phy objects. TatiBkHead object can also be queried as to what type of
network stack it is— e.g., GSL, interplane ISL, crosssealn &c.. Valid codes for théype_ field are currently found in
~ngsat.h. Finally, the SatLinkHead stores a boolean varitukeip_ that indicates whether the link to at least one other
node on the channel is up. The C++ implementation of SatLe&ddHs found in ngsatlink.{cc,h}.

Packets leaving a node pass through the SatLinkHead tnemgjyato theclass SatLL object. The SatLL class derives
from LL (link layer). Link layer protocols (like ARQ protods) can be defined here. The current SatLL assigns a MAC

4In the author’s opinion, all network stacksris should eventually have a LinkHead object at the front— thesBatLinkHead would then disappear.

182

from routing agent to Node->entry

Sat/Drop ‘ ‘ Sat/Dequ#

Mac

‘ Phy_tx‘ ‘ Phy_rx‘

to SatChannel from SatChannel

Figure 17.6: Detailed look at network interface stack.

address to the packet. Note that in the satellite case, wetdese an Address Resolution Protocol (ARP); instead, wplgim
use the MACindex_ variable as its address, and we use a helper function to fmd/#hC address of the corresponding
interface of the next-hop node. Sindass LL derives fronclass LinkDelay ,thedelay_ parameter of LinkDelay
can be used to model any processing delay in the link layedgfgult this delay is zero.

The next object an outgoing packet encounters is the irterd@eue. However, if tracing is enabled, tracing elemeistg m
surround the queue, as shown in Figure 17.6. This part ofdlisatink functions like a conventionals link.

The next layer down is the MAC layer. The MAC layer draws paskem the queue (or deque trace) object— a handshaking
between the MAC and the queue allows the MAC to draw packetsfahe queue as it needs them. The transmission time
of a packet is modelled in the MAC also— the MAC computes thadmission delay of the packet (based on the sum of the
LINK_HDRSIZE field defined irsatlink.h and thesize field in the common packet header), and does not call up for
another packet until the current one has been “sent” to tRelager down. Therefore, it is important to set the bandtviolt

the link correctly at this layer. For convenience, the traitsime is encoded in thmac header; this information can be used
at the receiving MAC to calculate how long it must wait to det collision on a packet, for example.

Next, the packet is sent to a transmitting interface (PhyotxlassSatPhy . This object just sends the packet to the attached
channel. We noted earlier in this chapter that all interfazttached to a channel are part of the linked list for thahokh
This is not true for transmit interfaces, however. Only reeénterfaces attached to a channel comprise this linkgddince
only receive interfaces should get a copy of transmitteketsc The use of separate transmit and receive interfacesrmi
the real world where full-duplex satellite links are madeafifRF channels at different frequencies.

The outgoing packet is next sent t&atChannel , which copies the packet to every receiving interface (a$sbatPhy)

on the channel. The Phy_rx sends the packet to the MAC layetheAMAC layer, the packet is held for the duration of its
transmission time (and any appropriate collision detectsoperformed if the MAC, such as the Aloha MAC, supports it).
If the packet is determined to have arrived safely at the Mid@ext passes to aBrrorModel object, if it exists. If not,

the packet moves through any receive tracing objects t@#teL object. The SatLL object passes the packet up after a
processing delay (again, by default, the valuedelay _ is zero).

183

The final object that a received packet passes through is jectaif class Networkinterface . This object stamps
theiface_ field in the common header with the network stack’s uniquexnealue. This is used to keep track of which
network stack a packet arrived on. The packet then goes terting of the SatNode (usually, an address classifier).

Finally, “geo-repeater” satellites exist, as describetieran this chapter. Geo-repeater network stacks are sanple— they

only contain a Phy_tx and a Phy_rxdass RepeaterPhy , and a SatLinkHead. Packets received by a Phy_rx are sent
to the Phy_tx without delay. The geo-repeater satellite degenerate satellite node, in that it does not contain $hlikg
tracing elements, handoff managers, routing agents, ootngr link interfaces other than repeater interfaces.

17.4 Commands at a glance

Following is a list of commands related to satellite netviogk

$ns_ node-config -satNodeType <type>

This node configuration declares that the subsequent neasradated will be of type <type>, where <type> can be one of
the following:geo, geo-repeater, polar, terminal . Other required fields for satellite nodes (for setting up
initial links and channels) are as follows (see Section:%8%_ node-config -lIType <type>

$ns_ node-config -ifqType <type>

$ns_ node-config -ifgLen <length>

$ns_ node-config -macType <type>

$ns_ node-config -channelType <type>

$ns_ node-config -downlinkBW <value>

(note— satNodeType geo-repeater only requires specifhimghannelType— all other options are disregarded. See
tcl/ex/sat-repeater.tcl for an example.)

$ns_ satnode-polar <alt> <inc> <lon> <alpha> <plane> <link args> <chan>

This a simulator wrapper method for creating a polar saé¢efibde. Two links, uplink and downlink, are created alonthwi
two channels, uplink channel and downlink channel. <althéspolar satellite altitude, <inc> is orbit inclinationn.
equator, <lon> is the longitude of ascending node, <alphaesghe initial position of the satellite along this orkiplane>
defines the plane of the polar satellite. <linkargs> is adidink argument options that defines the network interfdiée (
LL, Qtype, Qlim, PHY, MAC etc).

$ns_ satnode-geo <lon> <linkargs> <chan>
This is a wrapper method for creating a geo satellite nodefitisacreates a satnode plus two link interfaces (uplink and
downlink) plus two satellite channels (uplink and down)inkchan> defines the type of channel.

$ns_ satnode-geo-repeater <lon> <chan>
This is a wrapper method for making a geo satellite repeatéethat first creates a satnode plus two link interfacesripl
and downlink) plus two satellite channels (uplink and dawnigl.

$ns_ satnode-terminal <lat> <lon>
This is a wrapper method that simply creates a terminal nbde .<lat> and <lon> defines the latitude and longitude
respectively of the terminal.

$ns_ satnode <type> <args>
This is a more primitive method for creating satnodes of tgfyge> which can be polar, geo or terminal.

$satnode add-interface <type> <II> <qtype> <glim> <mac_bw > <phy>

This is an internal method of Node/SatNode that sets up &éigkn, mac layer, interface queue and physical layer strestu
for the satellite nodes.

184

$satnode add-isl <ltype> <nodel> <node2> <bw> <qtype> <qli m>

This method creates an ISL (inter-satellite link) betwdentivo nodes. The link type (inter, intra or cross-seam), B\the
link, the queue-type and queue-limit are all specified.

$satnode add-gsl <Itype> <opt_lI> <opt_ifg> <opt_glim> <o pt_mac> <opt_bw> <opt_phy>
<opt_inlink> <opt_outlink>

This method creates a GSL (ground to satellite link). Finsetwork stack is created that is defined by LL, IfQ, Qlim, MAC,
BW and PHY layers. Next the node is attached to the chanriekiahd outlink.

185

Chapter 18

Radio Propagation Models

This chapter describes the radio propagation models imgiéead inns These models are used to predict the received signal
power of each packet. At the physical layer of each wirelestenthere is a receiving threshold. When a packet is redgive
if its signal power is below the receiving threshold, it isnked as error and dropped by the MAC layer.

Up to now there are three propagation modelsiinwhich are the free space modetwo-ray ground reflection model

and the shadowing model Their implementation can be found imgfpropagation.{cc,h}, agtworayground.{cc,h} and
~ngshadowing.{cc,h}. This documentation reflects the APIa$r2.1b7.

18.1 Free space model

The free space propagation model assumes the ideal pragragandition that there is only one clear line-of-sightipat
between the transmitter and receiver. H. T. Friis presetitedollowing equation to calculate the received signal oim
free space at distaneefrom the transmitter [12].

_ BG,G,\

Pd) = (18.1)

where P, is the transmitted signal powef;; andG,. are the antenna gains of the transmitter and the receivpectsely.
L(L > 1) is the system loss, andis the wavelength. It is common to sel€&t = G, = 1 andL = 1 in ns simulations.

The free space model basically represents the commumicatigye as a circle around the transmitter. If a receiver ihiwi
the circle, it receives all packets. Otherwise, it losepatikets

The OTcl interface for utilizing a propagation model is tiwde-config ~ command. One way to use it here is
$ns_ node-config -propType Propagation/FreeSpace

Another way is

1Based on the code contributedrisfrom the CMU Monarch project.
2Contributed tansfrom the CMU Monarch project.
SImplemented imsby Wei Ye at USC/ISI

186

set prop [new Propagation/FreeSpace]
$ns_ node-config -propinstance $prop

18.2 Two-ray ground reflection model

A single line-of-sight path between two mobile nodes is aaidhe only means of propation. The two-ray ground reflection
model considers both the direct path and a ground reflectah. plt is shown [29] that this model gives more accurate
prediction at a long distance than the free space model. 8deved power at distaneks predicted by

_ PGiG.hi’h,’

Py(d) = iT (18.2)

whereh, andh, are the heights of the transmit and receive antennas résggctNote that the original equation in [29]
assumed. = 1. To be consistent with the free space modeis added here.

The above equation shows a faster power loss than Eqn. @8distance increases. However, The two-ray model does not
give a good result for a short distance due to the oscillatarsed by the constructive and destructive combinatiomeofivo
rays. Instead, the free space model is still used whisrsmall.

Therefore, a cross-over distanggis calculated in this model. Wheh< d., Eqn. (18.1) is used. Wheh> d., Eqn. (18.2)
is used. At the cross-over distance, Eqgns. (18.1) and (§8:8)the same result. S can be calculated as

d. = (47hshy,) /A (18.3)
Similarly, the OTcl interface for utilizing the two-ray gnad reflection model is as follows.
$ns_ node-config -propType Propagation/TwoRayGround
Alternatively, the user can use

set prop [new Propagation/TwoRayGround]
$ns_ node-config -propinstance $prop

18.3 Shadowing model

18.3.1 Backgroud

The free space model and the two-ray model predict the redgiower as a deterministic function of distance. They both
represent the communication range as an ideal circle. lityethe received power at certain distance is a randonatdei
due to multipath propagation effects, which is also knowfadig effects. In fact, the above two models predicts thame
received power at distanek A more general and widely-used model is called the shadpwiadel [29].

187

Environment I6]
Outdoor Free space 2
Shadowed urban arep 2.7t0 5
In building | Line-of-sight 16t01.8
Obstructed 4t06

Table 18.1: Some typical values of path loss expoment

Environment oas (dB)
Outdoor 4to012
Office, hard partition 7
Office, soft partition 9.6
Factory, line-of-sight| 3t0o6
Factory, obstructed 6.8

Table 18.2: Some typical values of shadowing deviatign

The shadowing model consists of two parts. The first one isvkras path loss model, which also predicts the mean received
power at distancd, denoted byP.(d). It uses a close-in distandg as a referencel,.(d) is computed relative t&.(dy) as
follows.

Py(do) _ (u)ﬁ (18.4)

G is called the path loss exponent, and is usually empiricitgrmined by field measurement. From Egn. (18.1) we knotv tha
08 = 2 for free space propagation. Table 18.1 gives some typidakgaofs. Larger values correspond to more obstructions
and hence faster decrease in average received power ascgiftacomes largeP,.(dy) can be computed from Eqgn. (18.1).
The path loss is usually measured in dB. So from Eqgn. (18.4)ave

Py (d)
P-(do)

= —10831og (di> (18.5)
aB 0

The second part of the shadowing model reflects the variatidhe received power at certain distance. It is a log-normal
random variable, that is, it is of Gaussian distribution gasured in dB. The overall shadowing model is represented by

[]ir((;i))LB = ~10510g <dio> + Xap (18.6)

whereX ;g is a Gaussian random variable with zero mean and standaiatioens ;5. o4 is called the shadowing deviation,
and is also obtained by measurement. Table 18.2 shows spineltyalues ofr;5. Eqn. (18.6) is also known as a log-normal
shadowing model.

The shadowing model extends the ideal circle model to arisfa¢istic model: nodes can only probabilistically comicate
when near the edge of the communication range.

188

18.3.2 Using shadowing model

Before using the model, the user should select the valueBeopath loss exponert and the shadowing deviatiorn, s
according to the simulated environment.

The OTcl interface is still theode-config command. One way to use it is as follows, and the values feethbarameters
are just examples.

first set values of shadowing model

Propagation/Shadowing set pathlossExp_ 2.0 ;# path loss ex ponent
Propagation/Shadowing set std_db_ 4.0 ;# shadowing deviat ion (dB)
Propagation/Shadowing set dist0_ 1.0 # reference distanc e (m)
Propagation/Shadowing set seed_ 0 # seed for RNG

$ns_ node-config -propType Propagation/Shadowing

The shadowing model creates a random number generator (RNj>. The RNG has three types of seeds: raw seed,
pre-defined seed (a set of known good seeds) and the husstit(getails in Section 24.1). The above API only uses the
pre-defined seed. If a user want different seeding methedpitowing API can be used.

set prop [new Propagation/Shadowing]

$prop set pathlossExp_ 2.0

$prop set std_db_ 4.0

$prop set dist0_ 1.0

$prop seed <seed-type> 0 # user can specify seeding method

$ns_ node-config -propinstance $prop

The<seed-type> above can beaw, predef or heuristic

18.4 Communication range

In some applications, a user may want to specify the comnatioit range of wireless nodes. This can be done by set an
appropriate value of the receiving threshold in the netwotérfacej.e.,

Phy/WirelessPhy set RXThresh_ <value>

A separate C program is provided atgindep-utils/propagation/threshold.cc to compute threergng threshold. It can be
used for all the propagation models discussed in this chafigsume you have compiled it and get the excutable named as
threshold . You can use it to compute the threshold as follows

threshold -m <propagation-model> [other-options] distan ce

where<propagation-model> is eitherFreeSpace , TwoRayGround or Shadowing , and thedistance is the
communication range in meter.

189

[other-options] are used to specify parameters other than their defaulesaltror the shadowing model there is a
necessary parameter, <receive-rate> , Which specifies the rate of correct reception at ditance . Because
the communication range in the shadowing model is not arl ede, an inverse Q-function [29] is used to calculate the
receiving threshold. For example, if you want 95% of pacleats be correctly received at the distance of 50m, you can
compute the threshold by

threshold -m Shadowing -r 0.95 50

Other available values ¢bther-options] are shown below

-pl <path-loss-exponent> -std <shadowing-deviation> -Pt <transmit-power>
-fr <frequency> -Gt <transmit-antenna-gain> -Gr <receive -antenna-gain>

-L <system-loss> -ht <transmit-antenna-height> -hr <rece ive-antenna-height>

-d0 <reference-distance>

18.5 Commands at a glance
Following is a list of commands for propagation models.

$ns_ node-config -propType <propagation-model>
This command selectgpropagation-model> in the simulation. thecpropagation model> can be
Propagation/FreeSpace , Propagation/TwoRayGround or Propagation/Shadowing

$ns_ node-config -propinstance $prop
This command is another way to utilize a propagation mdbglop is an instance of thepropagation-model>

$sprop_ seed <seed-type> <value>
This command seeds the RN&prop_ is an instance of the shadowing model.

threshold -m <propagation-model> [other-options] distan ce

This is a separate program atgindep-utils/propagation/threshold.cc, which is useddmpute the receiving threshold for
a specified communication range.

190

Chapter 19

Energy Model in ns

Energy Model, as implemented img is a node attribute. The energy model represents level efggnin a mobile host.
The energy model in a node has a initial value which is thel lefzenergy the node has at the beginning of the simulation.
This is known agnitialEnergy _ . It also has a given energy usage for every packet it trassamtl receives. These
are calledxPower_ andrxPower_ . The files where the energy model is defined are ns/energyifradand.h]. Other
functions/methods described in this chapter may be foundsiwireless-phy.cc, ns/cmu-trace.cc, ns/tcl/lib[rsttil, ns-
node.tcl, ns-mobilenode.tcl].

19.1 The C++ EnergyModel Class
The basic energy model is very simple and is defined by classgygModel as shown below:

class EnergyModel : public TclObject

public:
EnergyModel(double energy) energy = energy;
inline double energy() return energy_;

inline void setenergy(double e) energy_ = e;
virtual void DecrTxEnergy(double txtime, double P_tx)
energy_ -= (P_tx * txtime);

virtual void DecrRcvEnergy(double rcvtime, double P_rcv)
energy_ -= (P_rcv * rcvtime);

protected:
double energy_;

As seen from the EnergyModel Class definition above, theomlig a single class variablenergy _ which represents the
level of energy in the node at any given time. The construet@rgyModel(energy) requires the initial-energy to bespds
along as a parameter. The other class methods are used gasecthe energy level of the node for every packet tranginitte

(DecrTxEnergy(txtime, P_tx)) and every packet receiveddecrRcvEnergy (rcvtime, P_rcv)) by the
node.P_tx andP_rcv are the transmitting and receiving power (respectivelgured by the node’s interface or PHY. At
the beginning of simulatiorenergy_ is set toinitialEnergy_ which is then decremented for every transmission and

1901

reception of packets at the node. When the energy level atde goes down to zero, no more packets can be received or
transmitted by the node. If tracing is turned on, IDEBUG: node <node-id> dropping pkts due to energy
= 0 is printed in the tracefile.

19.2 The OTcl interface

Since the energy model is a node attribute, it may be defingddfpollowing node configuration APIs:

$ns_ node-config -energyModel $energymodel \
-rxPower $p_rx \
-txPower $p_tx \
-initialEnergy $initialenergy

Optional values for above configuration parameters of tlezg@nmodel are given in the following table:

Attribute optional values default values
-energyModel "EnergyModel" none

-rxPower receiving power in watts (e.g 0.3)| 281.8mW

-txPower transmitting power in watts (e.g 0.4) 281.8mW
-initialEnergy energy in joules (e.g 0.1) 0.0

192

Chapter 20

Directed Diffusion

The directed diffusion module in ns has been ported from SDA@Qroup’s implementation of directed diffusion at USC/ISI
There is an older version of diffusion in ns that was impletedrseveral years back and has become relatively old and
outdated. This older version can be found under directoffuslon. And the newer version of diffusion resides under
~nd/diffusion3. This chapter talks about the newer diffusiondel in ns. The module and methods described here can
be found under rgtcl/lib/ns-diffusion.tcl, ns-lib.tcl and all relevant#3- code can be found undengdiffusion3. Visit the
SCADDS group webpage attp://www.isi.edu/scadds for details about their implementation.

20.1 What is Directed Diffusion?

Directed Diffusion is a method of data dissemination esgdcsuitable in distributed sensing scenarios. It diffemn IP
method of communication. For IP “nodes are identified byrtleeid-points, and inter-node communication is layered on
an end-to-end delivery service provided within the networRirected diffusion, on the other hand is data-centric.tdDa
generated by sensor nodes are identified by their attribaiiee pair. Sinks or nodes that request data send out “sttsriato

the network. Data generated by “source” nodes that matdetimerests, “flow” towards the sinks. Intermediate nodes a
capable of caching and transforming data. For details attid diffusion, see “Directed Diffusion: A Scalable andoBRst
Communication Paradigm for Sensor Networks”, authored bgl€@mek Intanagonwiwat, Ramesh Govindan and Deborah
Estrin that appeared in MobiCOM, August 2000, Boston, Melssaetts. This and other diffusion related papers can be
viewed athttp://www.isi.edu/scadds/publications.html under publications section.

20.2 The diffusion model in ns

The directed diffusion model consists of a core diffusioyela a diffusion library provides an application programgi
interface for overlying diffusion applications and finatlye application layer which includes both diffusion apgations and
filters. The core diffusion layer is used to receive/sendpadkets from/into the network. The library provides a ifdee
for the overlying application classes for publishing/suiisng etc. These APIs have been described in details ircardent
called Network Routing API 8.0 and can be foundp://www.isi.edu/scadds/publications.html under
APIs section. In the following paragraphs we are going tacdbe how the diffusion model looks like ims.

First we start with a brief description of the diffusion3 elitory structure. If the reader wishes to examine the C+4ecod

related to NS Diffusion that underpins the OTcl script comigg it may be found in rRgns/diffustion3aHere is a summary
by subdirectory:

193

App

Filter Filter
F1 F2
2| |3
4 |5 6 |7
1 . .) 8
— = Directed Diffusion Core e

Figure 20.1: Message flow in directed diffusion

apps contains sample source and sink applications like geag, @il rmst.

lib has DiffusionRouting class definitions and definitions dfidiion application class. In addition there are sub-dadéed
main and nr. main houses misc diffusion utility code. nrumgs attribute definition and the class NR which is an
abstract factory for the API (so that either ISI or MIT implentations may derive from it.

ns contains ns wrappers for diffusion cod@&hese wrapper classes allow the core diffusion code andiffsion API to be
seamlessly incorporated into the NS class hierarchy. Tiff@ButingAgent is a wrapper for the Core Diffusion code,
and DiffAppAgent is a wrapper for the DiffusionRouting (ARlode.

filter_core has the core diffusion agent.

filters holds the different filters supported by diffusion implertegion including two-phase-pull, one-phase-pull, geast;
log, tag and srcrt (as of 10/03/03).

The above Figure 20.1 is from SCADDS’ network routing API doent available from their homepage (URL given earlier).
The document describes attribute factories, matchingrideattributes, how applications interface with the coiféudion
layer, and filter/timer APIs. All messages coming from/gpaut in the network is received at/sent out from the coraudifin
layer. Messages can also come to core-diffusion layer frmzallapplications and/or filters that might be connectedhéo t
node. The applications use the publish/subscribe/seadace to send interest and data messages to the network.

The core diffusion agent and diffusion application agemt atached to two well-known ports defined ing#tcl/lib/ns-
default.tcl. Diffusion applications attached to the nodithe underlying diffusion application agent for publis@ysubscribing/sending
data.

20.3 Some mac issues for diffusion in ns

In the shim layer that sits between diffusion and ns, (sefisidn3/ns dir for code implementing this layer) all diffos
packets are encapsulated within ns packets and are markedii@adcasted. In previous versions all diffusion packeie
marked to be broadcastin ns. This is now changed. Now allglth pkts in ns uses the diffusion next_hop info thus alhagwi
both broadcast and unicast.

So previously this only-brdcast feature supported fonudiibn packets resulted in some problems at the mac layenriEice
802.11 doesnot try to re-transmit a broadcast packet irntb@se is a collision and the packet is dropped. Coupled swvthis
the fact that mac-802.11 didn’t do random selection of stotee contention window before it transmitted a packet ¢chst
data or rts for unicast pkts). As a result there were a hightremof collisions at the mac layer and a lot of packets were los
This was fixed by adding random selection of slots before wadta brdcast pkt (or a rts pkt).

194

However if we have a large and dense topology, there is a ehtlrat two or more nodes may select the same slot in the
mac contention window (the contention window size variesfi31 to 1023 for DSSS PHY MIB specifications). Thus now
we need to add some extra jitter at the higher applicatioarlaRiffusion has a provision to do this by compiling ns with
the macro USE_BROADCAST_MAC. What this does is it in additio delaying certain messages (to avoid collisions),
when run with a BROADCAST MAC layer, diffusion will use a diffent set of values for delays and jitters. These different
delayl/jitter values are defined under diffusion3/lib/megnfig.hh. Since this might increase the latency you migguitto
fine-tune the delay values by hand.

20.4 APIs for using filters in diffusion

As described earlier (see figure 20.1), filters can be atththa diffusion node for various reasons. There can be bééic d
sion filters providing two-phase-pull (GradientFilter)daone-phase-pull (OnePhasePullFilter) diffusion routigprithms.

There is the GeoRoutingFilter or gear that provides a aeftaiation (co-ordinate) based routing algorithm. Theralsd

other filters for RMST routing algorithm (RmstFilter), logg (LogFilter), source routing (SourceRouteFilter) andding

(TagFilter). See Commands at a glance section for detaifsRia for adding filters to a diffusion node.

20.5 Ping: an example diffusion application implementatia

There is a ping application implemented under diffusiopp&lping subdir. The application consists of a ping senddr a
receiver. The receiver requests for data by sending ouér@st’s in the network. The interests get diffused through t
network. The ping-sender on receiving matching interesstsds out data.

20.5.1 Ping Application as implemented in C++

The ping-sender and -receiver classes, hamely PingSepdexAd PingReceiverApp both derive from DiffApp, the parent
class for all diffusion based applications. See diffusitib&liffapp{.cc,.hh}for detailed implementation of tH&iffApp class.

The ping-sender uses MySenderReceive object that hanttzdlbacks for it. Also the ping-sender defines two funoso
setupSubscription() and setupPublication(). The firstfiom creates interest attributes that matches with datidates it
(the sender) has to offer. Next it calls the dr-library fuantsubscribe(). The subscription is used by the ping-setodgeate
an internal state against which attributes for interesteived from the network are matched against. Incase of ahmtite
matching data is sent outinto the network. Function setbp€ation() create attributes for the data it has to offed aalls
the library function publish() which inturn returns a pudlihandle. The ping-sender uses this handle to periodatigi out
data which is forwarded by the gradient to core-diffusiob#osent out into the network only if it finds a matching intéres

The ping-receiver object uses a similar callback objededadllyReceiverReceive. And it defines a function setupSufpsc
tion() that creates attributes for the interest the regeiitbe sending. Next it calls the dr library supported satiise() which
sends the interest out into the network. The recv() fundsarsed to recv matching data and the receiver then calcutlate
latency for each data packet received from the ping-sentlee ping sender can be found under ping_sender.cc,.h. And
the ping_receiver is implemented under ping_receivehccGome common defines and attribute factories for datmént
attributes are defined in ping.hh and ping_common.cc.

195

20.5.2 Tcl APIs for the ping application

An example script for the ping application is undergicl/ex/diffusion3/simple-diffusion.tcl. The exampleehario consists

of 3 nodes of which one is a ping-sender and another is a @ogirer. The source and sink nodes are far away from one
another and communicate only through a third node. The pjtithocRouting is defined as Directed_Diffusion. This eesbl

a core-diffusion agent to be created during the time of nodaton. Also it creates a diffusionApplication agent ileds not
present already. The option diffusionFilter needs to beidexd at the time of node configuration that defines the onearem
filters that would be added to the node. There is also an oftitspecifying stopTime which is the time the simulation end

At this time there is a callback to a function that prints dustatistical data into /tmp/diffusion-*.out.

Node configuration is done as follows:

$ns_ node-config -adhocRouting $opt(adhocRouting) -IITy pe S$opt(ll)
-diffusionFilter $opt(filters) -stopTime $opt(prestop)

The ping sender application is created in the following way:

set src_(0) [new Application/DiffApp/PingSender]
$ns_ attach-diffapp $node_(0) $src_(0)
$ns_ at 0.123 "$src_(0) publish”

The first line creates a ping-sender object. Simulator clesthod attach-diffapp basically attaches the applicatahe un-
derlying diffusionApplication agent for that given nodendflcommangbublish essentially “starts” the sender application.

Similarly the ping sink is created as follows:

#Diffusion sink application

set snk_(0) [new Application/DiffApp/PingReceiver]
$ns_ attach-diffapp $node_(2) $snk_(0)

$ns_ at 1.456 "$snk_(0) subscribe"

The commandubscribe starts the ping-receiver application.

Thus in order to create your own application, you need to :

1. define attribute-factories and attributes for applicatitierest/data.
2. create the application class (using dr-library APIs)

3. add tcl commands to start the application

See ndftcl/lib/ns-lib.tcl, ns-diffusion.tcl for implementains of OTcl hooks for directed diffusion. Alo see chapter oo-M
bility in this manual for details on mobility model and wiesls simulations ins

20.6 Changes required to add yr diffusion application to ns

Let's say you have an application (it might even be a certlar fivhich also is by class hierarchy, a diffusion applcatnd
it would derive from class DiffApp) that runs on the test-hwgision. Now you want to run diffusion on ns and so want to use

196

yr application in the ns context. The few lines describe thenges/additions you need to make for yr diffusion appbecat
to work in ns environment.

We will consider onePhasePullFilter object (under diffud/filters/misc/log.*) as an example. As a first step youdntee
create a split object out of the application class objeaspmably defined as a pure c++ object. A split object is oneigha
created by the user in the interpretor (in OTcl space) andhvisi also has a shadow object in the compiled hierarchy (in c+
space). In ns, a split object is derived from class TclClassh@wn below:

#ifdef NS_DIFFUSION
static class LogFilterClass : public TclClass

public:
LogFilterClass() : TclClass("Application/DiffApp/LogF ilter")
TclObject * create(int argc, const char *const * argv)

return(new LogFilter());

class_log_filter;
#endif //DIFFUSION

Note that all filter objects specifically have a handle to th#AppAgent (the diffusion routing object) passed in theneo
structor call. Filter objects get created from functionateediffusionApp-agent diffFilters defined in ns-diffasitcl. Users
need not specifically call the OTcl function create-difrshpp-agent as it is called during node creation based ondbe-
configuration parameters. See how filters are defined in modég under commands at a glance section. However apolicati
objects which are not filter objects (like ping_sender, pusbeiver etc) are created by users directly from user tcriond

in that case the handle to DiffAppAgent is passed ug§ing attach-diffapp $node $app where the application
$app is attached to the node objekitode .

So for the reasons explained above the constructors ameliffin non NS_DIFFUSION context as shown below.

#ifdef NS_DIFFUSION

LogFilter::LogFilter()

#else

LogFilter::LogFilter(int argc, char ** argv)
#endif // NS_DIFFUSION

/I Create Diffusion Routing class
#ifndef NS_DIFFUSION

parseCommandLine(argc, argv);

dr_ = NR:createNR(diffusion_port);
#endif // INS_DIFFUSION

filter_callback_ = new LogFilterReceive(this);
#ifndef NS_DIFFUSION

/I Set up the filter
filter_handle_ = setupFilter();

#endif // INS_DIFFUSION

197

Next you need to add the c++ function command(..) that allewecution of tcl commands through the compiled shadow
object. For example the otcl commasidrt is used to start a filter application as follodapp start . While commands
publish andsubscribe are used to start sender and receiver applications regplcfihe command function is added,
again with the NS_DIFFUSION scope using ifdef statemerst$obows:

#ifdef NS_DIFFUSION

int LogFilter::command(int argc, const char *CONst * argv)
if (argc == 2)
if (strcmp(argv[l], "start”) == 0)
run();

return TCL_OK;

return DiffApp::command(argc, argv);

#endif // NS_DIFFUSION

Note how the parent class command function is invoked inteseommand string is not found. Look into lib/diffapp.* to
see all otcl commands supported for the DiffApp class.

Once these changes made to your c++ code, you would alsomesitd a tcl script (see the section on test-suite for exampl
tcl scripts) that uses your diffusion application using tigét tcl APIs.

20.7 Test-suites for diffusion

we start with a simple testcase of 3 nodes with 1 ping sourdelgring sender. There are other tests for 2 phase-pull(2pp),
phase-pull(1pp), push and gear (with 2pp and push) scendriduture we plan to extend the test-suite for testingedéht
components/functionalities of directed diffusion. Alffdision3 related test cases can be found undeftel/test/test-suite-
diffusion3.tcl.

20.8 Commands at a glance
Following is a list of commands used for diffusion relateahglation in ns.

$ns_ node-config -adhocRouting $opt(adhocRouting)
-IIType $opt(ll)

-diffusionFilter $opt(filters)
-stopTime $(pre-stop)

where,

value of opt(adhocRouting) is set to Directed_Diffusion

This command is used to enable directed diffusion in wireles s nodes.

value of opt(filters) can be a list of filters that is require d to be attached to diffusion nodes
This command allows adding filter objects to diffusion-ena bled nodes.

198

value of opt(pre-stop) is usually the time simulation stops
This command allows dumping of statistical data into an outp

set src [new Application/DiffApp/PingSender]
This command is used to create ping-sender application.

set snk [new Application/DiffApp/PingReceiver]
This command is used to create ping-receiver application.

set src [new Application/DiffApp/PushSender]
This command is used to create push-sender application.

set snk [new Application/DiffApp/PushReceiver]
This command is used to create push-receiver application.

set src [new Application/DiffApp/GearSenderApp]
This command is used to create gear-sender application.

set snk [new Application/DiffApp/GearReceiverApp]
This command is used to create gear-receiver application.

$gearApp push-pull-options <push/pull> <point/region> <

when all statistical data is dumped
ut file after running a diffusion

co-ordinatesX1> <X2> <Y1>

<Y2> This command defines the type of routing algorithm gear isgidincase the second option is defined as region, all
four co-ordinates should be defined. While if point is chqosety X1 and Y1 maybe defined.

$ns_ attach-diffapp $node_ $src_

where the diffusion applicatioBsrc_ gets attached to the givémode_ .

$src_(0) publish
Command to start a ping source (sender).

$snk_(0) subscribe
Command to start a ping sink (receiver).

199

Chapter 21

XCP: eXplicit Congestion control Protocol

XCP is a feedback-based congestion control system thatdissg, explicit, router feedback to avoid congestion ie th
network. It is designed for both scalability and generalltywas developed by Dina Katabi, starting from a suggedtiypn
Mark Handley (refer to?] for detailed descriptions). Thes code for XCP which was originally developed by Dina Katabi
was modified, extended and integrated into ns-2.28 at USQYISill continues to evolve as of today. If you are intarssin
looking at Dina’s original source code please go to her welaihttp://www.ana.lcs.mit.edu/dina/XCP/

21.1 Whatis XCP?

XCP is a congestion control protocol that can be applied foteansport protocol. It performs especially well in verghi
delay-bandwidth product networks. Typically in large bamdth-delay product networks, efficiency of TCP goes down in
the event of multiple of packet losses and becomes unstablpective of queueing schemes used. However in similar
environments, XCP, using a control theory based feedbadaeinachieves much more efficiency, stability and fairngss b
sending feedback from the network to the sender for settinglaita flow into the network.

XCP’s scalability results from the fact that it requires rer{flow state in the router to calculate the feedback. Moster
assisted congestion control systems maintain per-flowrnimdtion used to allocate the resources. XCP keeps verg littl
information in the router, and this information is chosemimimize both the amount of router state and the per-packet
operations needed to update that state.

For generality, XCP divides the resource allocation fumttbetween two controllers: a congestion controller thauees
that flows use all available capacity, and a fairness cdetrtiat ensures that flows are allocated the capacity faigst
congestion control systems fail to make this division, mleds to implement as two conceptually distinct systems.s Thi
division allows a clear exposition and implementation of teasic resource allocation functions in XCP. XCP sourced se
additional information about their current round-trip 8sand router-assigned throughput in each packet. XCPredntert
feedback into the packets that is interpreted by the sources

Although XCP may be implemented for any transport protobolyever as an initial test it has been implemented in TCP.
The next section gives details of the way XCP is implemerriethi

200

21.2 Implementation of XCP in NS

In ng the XCP implementation can be found undesxcp directory. The protocol needs to be deployed in the TG® e
points (source and receiver) as well within the intermediades which is mostly the router and may sometimes be a link-
layer switch as well. The end-point part of XCP code may befbunder xcp-end-sys.cc,h and the router portion of the code
may be found under xcp.cc,h and xcpg.cc,h.

21.2.1 Endpoints in XCP

The end points consist of TCP source and sink agents usinga§GReir congestion control mechanism. The intermediate
node or router writes feedback in each packet header as liae treoughput value, about the data capacity that maydre-in
mented if feedback is positive and should be decreasedaittiveg When this packet reaches the receiver this deltautimput
value is returned to the sender in a reverse_feedback fieddcohgestion header in the returning packet, which is an ACK
packet in case of TCP.

The sender upon receiving this reverse_feedback valuestadiis sending rate by increasing or decreasing its colgest
window size as the case maybe.

The packet header that is used by XCP is implemented as astwalled hdr_xcp imsand is defined as follows:

double x_; /I idealized inter-packet time
double rtt_;
enum {
XCP_DISABLED = 0,
XCP_ENABLED,

XCP_ACK,
} xcp_enabled_; // to indicate that the flow is XCP enabled
int xcpld_; /I Sender’'s ID (debugging only)

double cwnd_; // The current window (debugging only)
double reverse_feedback_;

/I --- Initialized by source and Updated by Router
double delta_throughput_;
unsigned int controlling_hop_;// router ID (debugging onl y)

The xcp receiver is responsible for copying the delta_thhput value into the reverse_feedback field of the ack packet
some cases where delayed ack is used, the receiver catctilateum of the delta_throughput values in arriving packets
copying into the reverse_feedback field of the outgoing audkpt.

The controlling_hop_ field that carries the address of theelowho has last updated the feedback is used for debugging
purposes only.

In case of a packet loss in the network, TCP’s Van Jacobsogestion control should most likely override XCP. However
in nghis happens a little differently. With receiving of dugie acks indicating packet loss, the cwnd gets halved and fas
retransmit and fast recovery algorithms come into play. E\eev xcp routers continue to send feedback to the source loase
which the source tries to open its cwnd. So it seems to be améagh of VJCC and XCP algorithms. However for most cases
this issue doesnot arise as XCP router very rarely expezgagkt drop as the queue is continuously regulated andedtain
by XCP. Understanding the correct behaviour of XCP in facgktfloss is an area of current study and shall be implemented

in the future.

201

21.2.2 XCP Router

The XCP router consists of a wrapper class that holds viqualies for XCP, TCP and OTHER traffic flows. OTHER flow
maybe anything other than XCP and TCP. In the current impfation, the XCP queue is a drop-tail queue while those for
TCP and OTHER use RED.

These underlying queues are bundled in a wrapper class X@p@that provides necessary interface to the XCP router.
The XCP/TCP/OTHER queues are serviced in a Weighted RowtirRRnanner. Each queue has a weight that determines
the percentage of the service it receives. The current queights of 0.5 each for the XCP and TCP allows equal service
between the two. The third queue reserved for OTHER flows babeen used as yet and has a weight of 0.0.

OTCL Class Queue/XCP has a flag named tcp_xcp_on_ whichte aatefault value of 0. This should be set to 1 for those
simulations that use both XCP and TCP flows. This flag is useplibthe link capacity of the router between the XCP and
TCP queues in simulations that use both flow types. This ipasgd to be a temporary fix and should go away once the
dynamic queue weights come into effect. A caveat for thexcp flag is that it is set as an OTcl class variable and not per
instance variable. This might cause some problems in tgpedahat uses mix of intermittent xcp and tcp flows for which
some router would require to support both TCP and XCP and seooédn’t.

Every packet received by the wrapper queue class is firstedarkassigned a code point depending on the type of the packet

Packets, for the current TCP implementation, are markeX @, TCP/TCP-ACK and OTHER packets. This code point is
used to enque packets in the right queue. The wrapper clamplismented in xcp.cc,h.

21.2.3 XCP queue

The XCP queue is responsible for sending back feedback iy paeket header which is used by the sender to control rate of
sending data packets into the network. XCP uses two corlgotithms, the congestion controller and the fairness raletr
that are executed once every estimation control intenal, T

In nsthe estimation_timer is used to maintain this interval ahik based on the average rtt values of the (xcp) flows seen
through the router. However there may be better ways of defithiis interval. The outstanding queue in the router is ess

at a separate interval Tq, for which a queue_timer is usesiallyian rtt_timer is used to measure certain parameteisan t
router like packet drops, queue size, utilization etc foiveiy interval Tr, that may either be set by user from tcl stsripr it

may use the highest rtt value seen for all flows in the router.

The rtt_timer interval value, Tr maybe set from tcl using thkkowing API:

$queue queue-sample-everyrtt $rtt_value

where $queue is a handle to the xcp router and $rit_valuesitntierval for which xcp queue parameters like packet drop ,
queue size etc shall be measured. See example script ungl@i/ex/xcp/parking_lot_topo/parking_lot_topo.tckfase of

this API.

On packet arrival the total input traffic seen at the XCP qusulecremented by the size of the packet received. The sum of
inversed throughput and sum of rtt by throughput is increteeas well. Values for throughput and rtt are read from thg xc
header as set by the TCP source. Each value is normalisea Ipattket size.

On the event of the estimation timer going off, average rtlbflows is estimated using the above two sums as follows

avg_rtt = sum_rtt_by throughput/ sum_inv_throughput

The aggregate feedback is calculated based on the avaiabtevidth capacity of the router, arriving traffic bandviaidind

202

the persistent queue length in the router. Further detaikgdanation of calculations used by the XCP router algoritan
be found in XCP specification available from XCP’s websitati://www.isi.edu/isi-xcp/docs/draft-falk-xcp-sp0.txt

Each packet carries the current throughput value of the flod @ throughput adjustment or the delta_throughput in its
header. The XCP router based on the feedback values it atdslih the estimation control timeout, calculates a pekea
throughput adjustment feedback for every packet. Posigedback is applied equally per-flow while negative fee#thiac
made proportional to each flow’s capacity. Also a downsreaumter can change the delta_throughput value in a packet’s
header only if the feedback value calculated is less tharniritiae header (written by an less congested upstream jo(tiee
implementation of XCP queue imsmay be found in xcpq.{cc,h}.

21.3 XCP example script

Let's walk through a simple xcp script that is similar tagtcl/ex/xcp/xcp_test.tcl The example uses a small dunbbel
topology having 3 xcp sources running over a bottleneck link

The topology is setup using the node and link creation APtse Bottleneck is a duplex link that has a xcp router in both
directions. For details on creating nodes, links etasisee Marc Greis’ NS tutorial at http://www.isi.edu/nsnagftatorial.

The bottleneck link having a XCP queue is created as follows:

set RO [$ns node] # create Bottleneck between nodes RO and R1
set R1 [$ns node]
$ns duplex-link $RO $R1 <BW>Mb <delay>ms XCP

The side links connecting source nodes to the bottlene&khave XCP queues as well. The Aglieue-limit allows
users to set the buffer size in the queue.

The xcp source and sink is created as follows (very similacp):

set xcp [new Agent/TCP/Reno/XCP]

$ns attach-agent $src_node $xcp

set xcp_sink [new Agent/TCPSink/XCPSink]
$ns attach-agent $rcvr_node $xcp_sink
$ns connect $xcp $xcp_sink

There is a tcl class GeneralSender used in the example fuaippsets up xcp agents in the source nodes and then connects
them to the xcp receiver in the destination node. An FTP soigrased in all the 3 sources.

Note that once the topology is set up the link bandwidth imf@tion needs to be propagated to the xcp queue as this is used
by the xcp router for feedback calculation. So for every xapug use the following tcl command:

$xcp_queue set-link-capacity <bandwidth_in_bits_per_s ec> Next we need to trace variables in the

xcp router and xcp sources. The GeneralSender class pnactdue-xcp sets up tracing for xcp sources using variable-
tracing inns

203

GeneralSender instproc trace-xcp parameters {
$self instvar tcp_ id_ tcpTrace_
global ftracetcp$id_
set ftracetcp$id_ [open xcp$id_.tr w]
set tcpTrace_ [set ftracetcp$id]
$tcp_ attach-trace [set ftracetcp$id]
if { -1 < [Isearch $parameters cwnd] } { $tcp_ tracevar cwnd_ }
if { -1 < [Isearch $parameters seqno] } { $tcp_ tracevar t seq no_ }

}

For tracing xcp queue it is required to attach a file descrifmtdhe xcp queue.

$xcpq attach <file-descriptor>

This is an example of how the trace at an xcp source looks like:

0.00000 2 0 1 0O cwnd_ 1.000
0.00000 2 0 1 O tsegno_O
0.079 x x x x throughput 0.1

0.119064
0.11906

X X X throughput 50000
0 1 0 t.segno_ 3

0.07900 2 0 1 O ¢t.segno_1
0.119064 x x x x reverse_feedback 0
0.119064 x x x x controlling_hop_ 0
0.119064 x x x x newcwnd 1
0.11906 2 0 1 O cwnd_ 2.000
0.119064 x x x x throughput 50000
0.11906 2 0 1 O t_seqno_ 2

X

2

The first field gives the timestamp; the next 4 fields give thea®id (node/port) and destination id (node/port) for tiep x
flow. The next field gives the name of the variable being trdodwed by the value of the variable. Note that variablé&s li

cwnd_, t_seqno_ are using variable tracing which is a fomcsupported by the OTcl lib. While variables like throughpu
reverse_feedback use the XCPAgent class function tracelefmed in xcp-end-sys.cc. For more on variable tracingsn

please read section 3.4.3 in the ns manual at http://wwadginsnam/ns/doc/index.html

And example of trace output at a xcp bottleneck router lodesthelow:

Tg_ 0.0472859 0.025
queue_bytes 0.0472859 0
routerld_ 0.0472859 0
pos_fbk 0.053544 0
neg_fbk 0.053544 0
delta_throughput 0.053544 0
Thruput2 0.053544 60000
pos_fbk 0.054024 0
neg_fbk 0.054024 0
delta_throughput 0.054024 0

204

Thruput2 0.054024 60000
residue_pos_fbk_not_allocated 0.0638023 0O
residue_neg_fbk_not_allocated 0.0638023 0
input_traffic_bytes 0.0638023 2480
avg_rtt_ 0.0638023 0.04

Here the first field describes the name of the variable, therskfield gives the timestamp and the third field gives theevalu
of the variable. The XCPQueue class functitace_var() is used to trace variables in the xcp queue.

Additionally packet traces may be createdsusing the following tcl APIs:

set f_all [open out.tr w]
$ns trace-all $f _all

First open a file and then attach the file descriptor torthiace object such that a trace of each packet as it travelsghr
the network is logged and dumped into the output file.

An example of such a file would look like:

+ 0.003 4 0 xcp 40 ------- 2401200

- 0.003 4 0 xcp 40 ------- 2401200

r 0.013016 4 0 xcp 40 ------- 2401200

+ 0.013016 0 1 xcp 40 ------- 2401200

- 0.013016 0 1 xcp 40 ------- 2401200

r 0.023032 0 1 xcp 40 ------- 2401200

+ 0.023032 1 0 ack 40 ----—--- 2124001

- 0.023032 1 0 ack 40 ------- 2124001

r 0.033048 1 0 ack 40 ------- 2124001

+ 0.033048 0 4 ack 40 ------- 2124001

- 0.033048 0 4 ack 40 ------ 2124001

r 0.043064 0 4 ack 40 ----—-- 2124001

+ 0.043064 4 0 xcp 1200 ------- 2401212
- 0.043064 4 0 xcp 1200 ------- 2401212
+ 0.043064 4 0 xcp 1200 ------- 24012 23
- 0.043544 4 0 xcp 1200 ------- 24012 23

Lets try to read the first line:

+ 0.003 4 0 xcp 40 ----- 2401200

+ means a packet is enqueued in the queue (in node 4) as itdhboppeeen node 4 to node 0. You'll find traces showing
packets enqued (+) and then dequed (-) at the queue, aftelnvtis transmitted over the link to be received by the nexteno

packet type is xcp and it is of size 40 bytes. The xcp flow haslaf R and the packet header has a source node/port id of
4.0 and dest node/port id of 1.2 and the unique packetid is O.

205

21.4 Test-suites for XCP

The xcp test-suite uses 3 tests. The first one is similar totleave discussed in the earlier section. It consists of a dbatib
topology where 3 xcp flows share a bottleneck link. The setesithas a similar topology having 3 xcp and 1 tcp flow sharing
the same bottleneck. And finally the last test is built on D§@éabi’s parking-lot experiment referred in her SIGCOMN'0
paper. Itis a downsized version of Dina’s example. The tess@ 9-hop link string topology. It has 10 long XCP flows that
flow through the entire length of the chain topology. Therais 10 XCP flows that run through each hop, starting at (n-1)th
hop and ending at nth hop and so on creating the intermittewsfl And finally there are long XCP flows in the reverse
direction, starting from the last (10th) node and endindhnfirst (1st) node. There is a bottleneck at the middle of tarc
topology. Thus the third test employs a large and complegltary and shows the utilization, queue length and packei dro
values at every link.

21.5 Commands at a glance

Following is a list of commands used for xcp related simolain ns.

set xcp_src [new Agent/TCP/Reno/XCP]
This command creates an XCP source agent.

set xcp_dst [new Agent/TCPSink/XCPSink]
This command creates an XCP sink.

$ns duplex-link $R0 $R1 <BW>Mb <delay>ms XCP
This code creates a duplex link with specified bandwidth ariddelay using an XCP router between node RO and R1.

$xcp_queue set-link-capacity <bandwidth_in_bits_per_s ec>
This command propagates the link bandwidth informatiorhoxcp queue which uses it for the router feedback calculatio

set tfile [open tfile w]
$xcp_queue attach $tfile
This Tcl command allows a file to be attached for tracing xcelugiparameters.

$xcp_src attach-trace <file-descriptor> $xcp_src tracev ar <var-to-traced>
This command allows the xcp sources to trace variables.

$queue queue-sample-everyrtt $rit_value
This command allows the user to set rtt interval values atiwkariables like packet_drops and queue lengths are meghsur
at the xcp queue.

Queue/XCP set tcp_xcp_on_ 1

This flag lets tcp and xcp flows to use the same xcp router. Tdgsi$la temporary fix and should go away when dynamic
queue weights come into effect.

206

Chapter 22

DelayBox: Per-Flow Delay and Loss

DelayBox is an ns node that should be placed in between theeand destination nodes. With Delaybox, packets from
a TCP flow can be delayed, dropped, and/or forced throughtiebetk link before being passed on to the next node. A
distribution can be used to specify delay, loss, and/otdrwetck link speed for a source - destination pair. Each floiwben
that source - destination pair draws from the distributiomlétermine its characteristics. Delays in DelayBox arefiosy,
rather than per-packet. Since DelayBox distinguishes éetwilows, thdid_ variable (flow identifier) should be set for
each flow in the simulation. DelayBox can be used with both diegh FullTcp agents.

22.1 Implementation Details

DelayBox maintains two tables: a rule table and a flow tabletri&s in the rule table are added by the user in the OTcl
simulation script and give an outline of how flows from a s@utg a destination should be treated. The fields are source,
destination, delay Random Variable (in ms), loss rate Ramdariable (in fraction of packets dropped), and bottlenak
speed Random Variable (in Mbps). The bottleneck link spesd i optional. Entries in the flow table are created intlyna
and specify exactly how each flow should be handled. Its gaduwe obtained by sampling from the distributions given & th
rule table. The fields are source, destination, flow ID, ddtags, and bottleneck link speed (if applicable). Full-TiRvs

are defined as beginning at the receipt of the first SYN of a n@w fiD and ending after the sending of the first FIN. Packets
after the first FIN are forwarded immediately (<i>i.e.</ihey are neither delayed nor dropped by DelayBox). For Tephg
flows are defined as beginning at the receipt of the first 40 patdet of a new flow ID. Since there are no FIN packets in
TcpAgent, TcpAgent flows are never considered finished rottegy removed from the flow table.

DelayBox also maintains a set of queues to handle delayiokgbe There is one queue per entry in the flow table. These
queues are implemented as delta queues, in that the timartsfér the packet is kept only for the head packet. All other
packets are stored with the difference between the time gsheuld be transferred and the time the previous packet dhoul
be transferred. The actual time the previous packet shaalglansferred is stored in the varialdeltasum_ , named so
because it is the sum of all delta values in the queue (inetutlie head packet’s transfer time). If the bottleneck lip&ed

has been specified for the flow, a processing delay is compaoteadch packet by dividing the size of the packet by the flow’s
bottleneck link speed.

When a packet is received, its transfer time (current timelayg) is calculated. (This transfer time is the time thatfitte bit

of the packet will begin transfer. Packets that wait in theuwgibehind this packet must be delayed by the amount of time to
transfer all bits of the packet over the bottleneck link.efdare two scenarios to consider in deciding how to set tbkgt'a
delta:

207

1. If the packet is due to be transferred before the last btheflast packet in the queue, its delta (the time between
transferring the previous packet and transferring thiskpgcis set to the previous packet’s processing delay. This
packet has to queue behind the previous packet, but will &gyreo be transmitted as soon as the previous packet has
completed its transfer.

2. If the packet is due to be transferred after the last biheflast packet in the queue, its delta is difference betwsien t
packet’s transfer time and the previous packet’s trangfes.t

If the current packet is the only packet in the queue, Delay&iedules a timer for the receipt of the packet. When tiistti
expires, DelayBox will pass the packet on to the standarllgidorwarder for processing. Once a packet has been pagsed u
DelayBox will look for the next packet in the queue to be pssEl and schedule a timer for its transfer. All packets, both
data and ACKs, are delayed in this manner.

Packets that should be dropped are neither queued nor paissédl packets in a queue are from the same connection and
are delayed the same amount (except for delays due to pazkgtad are dropped with the same probabilitypte: Drops
at DelayBox are not recorded in the trace-queue file.

22.2 Example
More examples are available in tte/ex/delaybox/ directory of the ns source code. The validation saegt-suite-delaybox.tcl
is in tcl/test/ and can be run with the commatest-all-delaybox from that directory.

test-delaybox.tcl - NS file transfer with DelayBox

setup ns

remove-all-packet-headers; # removes all packet headers
add-packet-header IP TCP; # adds TCP/IP headers
set ns [new Simulator]; # instantiate the simulator

global defaultRNG
$defaultRNG seed 999

create nodes

set n_src [$ns node]
set db(0) [$ns DelayBox]
set db(1) [$ns DelayBox]
set n_sink [$ns node]

setup links

$ns duplex-link $db(0) $db(1) 100Mb 1ms DropTalil
$ns duplex-link $n_src $db(0) 100Mb 1ms DropTail
$ns duplex-link $n_sink $db(1) 100Mb 1ms DropTail

set src [new Agent/TCP/FullTcp]
set sink [new Agent/TCP/FullTcp]
$src set fid_ 1
$sink set fid_ 1

attach agents to nodes
$ns attach-agent $n_src $src

208

$ns attach-agent $n_sink $sink

make the connection
$ns connect $src $sink
$sink listen

create random variables

set recvr_delay [new RandomVariable/Uniform]; # delay 1-2
$recvr_delay set min_ 1

$recvr_delay set max_ 20

set sender_delay [new RandomVariable/Uniform]; # delay 20
$sender_delay set min_ 20

$sender_delay set max_ 100

set recvr_bw [new RandomVariable/Constant]; # bw 100 Mbps

$recvr_bw set val_ 100

-100 ms

set sender_bw [new RandomVariable/Uniform]; # bw 1-20 Mbps

$sender_bw set min_ 1
$sender_bw set max_ 20

set loss_rate [new RandomVariable/Uniformy; # loss 0-1% lo

$loss_rate set min_ 0
$loss_rate set max_ 0.01

setup rules for DelayBoxes

$db(0) add-rule [$n_src id] [$n_sink id] $recvr_delay $los
$db(1) add-rule [$n_src id] [$n_sink id] $sender_delay $lo
output delays to files

$db(0) set-delay-file "db0.out"

$db(1) set-delay-file "dbl.out"

schedule traffic

$ns at 0.5 "$src advance 10000"

$ns at 1000.0 "$db(0) close-delay-file; $db(1) close-dela

start the simulation
$ns run

22.3 Commands at a Glance

The following commands on the DelayBox class can be accdsaadOTcl:

[$ns DelayBox]
Creates a new DelayBox node.

$delaybox add-rule <srcNodelD> <dstNodelD> <delayRV> [<I

SS

s_rate $recvr_bw
ss_rate $sender_bw

y-file; exit 0"

0ssRV>] [<linkSpeedRV>]

Add a rule to the rule table, specifying delay, loss rate, laoitleneck link speed RandomVariables for packets flowrogf
srcNode todstNode . Delay is required, but loss rate and link speed are optional

$delaybox list-rules
List all rules in the rule table

209

$delaybox list-flows
List all flows in the flow table

$delaybox set-asymmetric
Specifies that the delay should be only on the data path rdtherapplied to both the data and ACK paths

$delaybox set-delay-file <filename>
Output delays for each flow tilename . Format:srcNode dstNode fid delay

$delaybox close-delay-file
Closes the file where delays are written

$delaybox set-debug <int>
Set the debugging level

e 1: Output when packets are dropped at DelayBox

e 2:Levell+
Contents of the queue at each queue operation

210

Part Il

Support

211

Chapter 23
Debugging ns

ngs a simulator engine built in C++ and has an OTcl (Objectmtéd Tcl) interface that is used for configuration and
commands. Thus in order to debngve will have to deal with debugging issues involving both Cared C++. This chapter
gives debugging tips at Tcl and C++ level and shows how to niofeo the Tcl and C++ boundaries. It also briefly covers
memory debugging and memory conservationsn

23.1 Tcl-level Debugging

Ns supports Don Libs’ Tcl debugger (see its Postscript dantation at http://expect.nist.gov/tcl-debug/tcl-dglps.Z and

its source code at http://expect.nist.gov/tcl-debuglatbug.tar.gz). Install the program or leave the source dod directory
parallel to ns-2 and it will be built. Unlike expect, des@ibin the tcl-debug documentation, we do not support the -D
flag. To enter the debugger, add the lines "debug 1" to youptsat the appropriate location. In order to build ns with
the debugging flag turned on, configure ns with configuratistioo "—enable-debug" and incase the Tcl debugger has been
installed in a directory not parallel to ns-2, provide thépaith configuration option "—with-tcldebug=<give/yopath/to/tcl-
debug/library>".

An useful debugging command$ns_ gen-map which may be used to list all OTcl objects in a raw form. Thisiseful
to correlate the position and function of an object givemisne. The name of the object is the OTcl handle, usually of the
form _o### . For TclObjects, this is also available in a C++ debuggeshsas gdb, athis->name_

23.2 C++-Level Debugging

Debugging at C++ level can be done using any standard debubige following macro for gdb makes it easier to see what
happens in Tcl-based subroutines:

for Tcl code

define pargvc

set $i=0

while $i < argc
p argv[$i]
set $i=$i+1

212

end
end
document pargvc
Print out argc argv[il's common in Tcl code.
(presumes that argc and argv are defined)
end

23.3 Mixing Tcl and C debugging

Itis a painful reality that when looking at the Tcl code an8aigging Tcl level stuff, one wants to get at the C-level @asand
vice versa. This is a smallish hint on how one can make thktasier. If you are running ns through gdb, then the follawin
incantation (shown below) gets you access to the Tcl debuglgees on how you can then use this debugger and what you
can do with it are documented earlier in this chapter andistdRL (http://expect.nist.gov/tcl-debug/tcl-debugf)s

(gdb) run
Starting program: /nfs/prot/kannan/PhD/simulators/ns/ ns-2/ns
Breakpoint 1, AddressClassifier::AddressClassifier (th is=0x12fbd8)

at classifier-addr.cc:47

(gdb) p this->name_

$1 = 0x2711e8 " 073"

(gdb) call Tcl::instance().eval("debug 1")
15: lappend auto_path $dbg_library
dbg15.3> w

+(0: application

15: lappend auto_path /usr/local/lib/dbg
dbgl5.4> Simulator info instances
_ol

dbgl5.5> 01 now

0

dbgl5.6> # and other fun stuff
dbgl5.7> 073 info class
Classifier/Addr

dbg15.8> 073 info vars

slots_ shift_ off ip_ offset_ off flags_ mask_ off cmn_
dbg15.9> ¢

(gdb) w

Ambiguous command "w": while, whatis, where, watch.
(gdb) where

#0 AddressClassifier::AddressClassifier (this=0x12fbd 8)
at classifier-addr.cc:47
#1 0x5c68 in AddressClassifierClass:.create (this=0x10d 6c8, argc=4,

argv=0xefffcdc0) at classifier-addr.cc:63

(gdb)

In a like manner, if you have started ns through gdb, then youadways get gdb’s attention by sending an interrupt, igual
a<Ctrl-c> on berkeloidrones. However, note that these do tamper Witlstack frame, and on occasion, may (sometimes
can (and rarely, does)) screw up the stack so that, you mdyaiota position to resume execution. To its credit, gdb apgpea
to be smart enough to warn you about such instances when yaldstnead softly, and carry a big stick.

213

23.4 Memory Debugging

The first thing to do if you run out of memory is to make sure yan ase all the memory on your system. Some systems by
default limit the memory available for individual programessomething less than all available memory. To relax thig, the
limit or ulimit command. These are shell functions—see tlamal page for your shell for details. Limit is for csh, ultris

for sh/bash.

Simulations of large networks can consume a lot of memory20817 supports Gray Watson’s dmalloc library (see its web
documentation at http://www.letters.com/dmalloc/ anttlge source code from ftp://ftp.letters.com/src/dmdliimealloc.tar.gz

). To add it, install it on your system or leave its source iriraatory parallel to ns-2 and specify —with-dmalloc whem€o
figuring ns. Then build all components of ns for which you war@mory information with debugging symbols (this should
include at least ns-2, possibly tclcl and otcl and maybe@l3o

23.4.1 Using dmalloc
In order to use dmalloc do the following:

e Define an alias
for csh: alias dmalloc 'eval ‘\dmalloc -C \! x
for bash: function dmalloc { eval ‘command dmalloc -b $ *' 1%%

e Next turn debugging on by typingmalloc -l logfile low
e Run your program (which was configured and built with dmalsalescribed above).

o Interpretlogfile by runningimalloc_summarize ns <logfile . (You need to downloadmalloc_summarize
separately.)

On some platforms you may need to link things statically to dy@alloc to work. On Solaris this is done by linking
with these options:"-Xlinker -B -Xlinker -static libraries -Xlinker -B -Xlink er -dynamic
-ldl -IX11 -IXext" . (You'll need to change Makefile. Thanks to Haobo Yu and Doomtl$for working this out.)

We can interpret a sample summary produced from this pramess-2/tcl/ex/newmcast/cmcast-100.tcl with an exiestent
after the 200'th duplex-link-of-interefaces statement:

Ns allocates 6MB of memory.

1MB is due to TclObject::bind

900KB is StringCreate, all in 32-byte chunks

700KB is NewVar, mostly in 24-byte chunks

Dmalloc_summarize must map function names to and from tddiresses. It often can't resolve addresses for shared li-
braries, so if you see lots of memory allocated by things tr@gg with “ra=", that's what it is. The best way to avoid this
problem is to build ns statically (if not all, then as much asgible).

Dmalloc’'s memory allocation scheme is somewhat expenplus,there’'s bookkeeping costs. Programs linked againat-dm
loc will consume more memory than against most standardocsll

Dmalloc can also diagnose other memory errors (duplicatesfrbuffer overruns, etc.). See its documentation foildeta

214

23.4.2 Memory Conservation Tips

Some tips to saving memory (some of these use examples f@ontbast-100.tcl script): If you have many links or nodes:

Avoidtrace-al | : $ns trace-all $f causes trace objects to be pushed on all links. If you onlytwatrace one
link, there’s no need for this overhead. Saving is about 14iKR

Use arrays for sequences of variables Each variable, sap$i in set n$i [$ns node] , has a certain overhead. If a
sequence of nodes are created as an arrap($. , then only one variable is created, consuming much less memo
Saving is about 40+ Byte/variable.

Avoid unnecessary variables :If an object will not be referred to later on, avoid naming thgect. E.gset cmcast(1)
[new CtrMcast $ns $n(1) $ctrmcastcomp [list 1 1]] would be better if replaced mjew CtrMcast
$ns $n(1) $ctrmcastcomp [list 1 1] . Saving is about 80 Byte/variable.

Run on top of FreeBSD : malloc() overhead on FreeBSD is less than on some othemsgsté/e will eventually port that
allocator to other platofrms.

Dynamic binding : Using bind() in C++ consumes memory for each object you etektis approach can be very expensive
if you create many identical objects. Changinigd() to delay_bind() changes this memory requirement to
per-class. Sergobject.cc for an example of how to do binding, either way.

Disabling packet headers :For packet-intensive simulations, disabling all packedders that you will not use in your
simulation may significantly reduce memory usage. See @edR.1 for detail.

23.4.3 Some statistics collected by dmalloc

A memory consumption problem occured in recent simulati@nscast-[150,200,250].tcl), so we decided to take a closer
look at scaling issue. See page http://www-mash.cs.bgyrleslu/ns/ns-scaling.html which demostrates the efforfisding
the bottlneck.

The following table summarises the results of investigatire bottleneck:

KBytes cmcast-50.tcl(217 Links) cmcast-100.tcl(950 Links
trace-all 8,084 28,541
turn off trace-all 5,095 15,465
use array 5,091 15,459
remove unnecessay variables 5,087 15,451
on SunOS 5,105 15,484

23.5 Memory Leaks

This section deals with memory leak problemsigmboth in Tcl as well as C/C++.

215

23.5.1 OfTcl

OTcl, especially TcICL, provides a way to allocate new otgetlowever, it does not accordingly provide a garbage ctitia
mechanism for these allocated objects. This can easilytteadintentional memory leaks. Important: tools such aslibma
and purify are unable to detect this kind of memory leaks.é@mple, consider this simple piece of OTcl script:

set ns [new Simulator]
for set i 0 $i < 500 incr i
set a [new RandomVariable/Constant]

One would expect that the memory usage should stay the saenéted first RandomVariable is allocated. However, because
OTcl does not have garbage collection, when the second Raviltable is allocated, the previous one is not freed and
hence results in memory leak. Unfortunately, there is ng &&dor this, because garbage collection of allocated disjex
essentially incompatible with the spirit of Tcl. The only yv® fix this now is to always explicitly free every allocated €
object in your script, in the same way that you take care ofonatd object in C/C++.

23.5.2 C/C++

Another source of memory leak is in C/C++. This is much eatsidrack given tools that are specifically designed for this
task, e.g., dmalloc and purifyishas a special target ns-pure to build purified ns executdtet make sure that the macro
PURIFY in the ns Makefile contains the right -collector foruydinker (check purify man page if you don’t know what this
is). Then simply typenake ns-pure . See earlier sections in this chapter on how to use ns wittmigdloc.

216

Chapter 24

Mathematical Support

The simulator includes a small collection of mathematicaldtions used to implement random variate generation aed in
gration. This area of the simulator is currently underg@oge changes.

The procedures and functions described in this chapter eafound in -ngtools/rng.{cc, h}, -ngtools/random.{cc, h},
~ngtools/ranvar.{cc, h}, Adtools/pareto.{cc, h}, ndtools/expoo.{cc, h}, Agtools/integrator.{cc, h}, and rdtcl/lib/ns-
random.tcl.

24.1 Random Number Generation

The RNG class contains an implementation of the combinedipieitecursive generator MRG32k3a proposed by L'Ecuyer
[16]. The C++ code was adapted from [18]. This replaces tle#ipus implementation dRNG which used the minimal
standard multiplicative linear congruential generatoPafk and Miller [27]. The newer (MRG32k3&NGis used in ns
versions 2.1b9 and later.

The MRG32k3a generator providésx10'° independent streams of random numbers, each of which ¢emgiz.3x10'°
substreams. Each substream has a petiegthe number of random numbers before overlap).6k10%2. The period of the
entire generator i8.1x10%7. Figure 24.1 provides a graphical idea of how the streamssahstreams fit together.

A default RNG ¢lefaultRNG), created at simulator initialization time, is providetimultiple random variables are used in

a simulation, each random variable should use a separated®d@t. When a new RNG object is created, it is automatically
seeded to the beginning of the next independent stream dbramumbers. Used in this manner, the implementation allows
for a maximum ofl.8x10'° random variables.

Often, multiple independent replications of a simulatioa aeededi(e., to perform statistical analysis given multiple runs
with fixed parameters). For each replication, a differefitstteam should be used to ensure that the random numbanstrea
are independent. (This process is given as an OTcl exantgle) IThis implementation allows for a maximumaBx10'?
independent replications. Each random variable in a sirggéication can produce up 6x10%2 random numbers before
overlapping.

Note: Only the most common functions are described here. For nmdoemation, see [18] and the source code found in

tools/rng.h andtools/rng.cc . For a comparison of this RNG to the more common LCG16807 RAi@ (why
LCG16807 is not a good RNG), see [17].

217

Stream
§=p191-127

=1.8x1019

276 = 7.6x1022

Figure 24.1: Overall arrangement of streams and substrdd®is

24.1.1 Seeding The RNG

Due to the nature of the RNG and its implementation, it is remtassary to set a seed (the default is 12345). If you wish to
change the seed, functions are available. You should onltheeseed of the default RNG. Any other RNGs you create are
automatically seeded such that they produce independeatss. The range of valid seeds is MAXINT.

To get non-deterministic behavior, set the seed of the deRNG to 0. This will set the seed based on the current time of
day and a counteiThis method should not be used to set seeds for independentplcations. There is no guarantee that
the streams produced by two random seeds will not overlap.ohity way to guarantee that two streams do not overlap is to
use the substream capability provided by the RNG implentiemta

Example

Usage: ns rng-test.tcl [replication number]

if {$argc > 1} {
puts "Usage: ns rng-test.tcl \[replication number\]
exit

}

set run 1
if {$argc == 1} {

218

set run [lindex $argv 0]

}

if {$run < 1} {
set run 1

}

seed the default RNG
global defaultRNG
$defaultRNG seed 9999

create the RNGs and set them to the correct substream
set arrivalRNG [new RNG]
set sizeRNG [new RNG]
for {set j 1} {$j < $run} {incr j} {
$arrivalRNG next-substream
$sizeRNG next-substream

}

arrival_ is a exponential random variable describing the t
between consecutive packet arrivals

set arrival_ [new RandomVariable/Exponential]

$arrival_ set avg_ 5

$arrival_ use-rng S$arrivalRNG

size_ is a uniform random variable describing packet sizes
set size_ [new RandomVariable/Uniform]

$size_ set min_ 100

$size_ set max_ 5000

$size_ use-rng $sizeRNG

print the first 5 arrival times and sizes
for {set j O} {$j < 5} {incr j} {

puts [format "%-8.3f %-4d" [$arrival_ value] \
[expr round([$size_ value])]]

Output

% ns rng-test.tcl 1

6.358 4783
5.828 1732
1.469 2188
0.732 3076
4.002 626
% ns rng-test.tcl 5
0.691 1187
0.204 4924
8.849 857
2111 4505
3.200 1143

219

ime

24.1.2 QOTcl Support
Commands
The following commands on the RNG class can be accessed fiarhadd are found inools/rng.cc

seed n —seedthe RNG te, if n == 0, the seed is set according to the current time and a counter

next-random — return the next random number

seed - return the current value of the seed

next-substream — advance to the next substream

reset-start-substream — reset the stream to the beginning of the current substream

normal avg std —return a number sampled from a normal distribution withghen average and standard deviation

lognormal avg std —return a number sampled from a lognormal distribution \lith given average and standard devi-
ation

The following commands on the RNG class can be accessed fiimhad are found irtcl/lib/ns-random.tcl

exponential mu — return a number sampled from an exponential distributidgh meanmu
uniform min maz —return an integer sampled from a uniform distribution onif, max]

integer &k —return an integer sampled from a uniform distribution opif]

Example

Usage: ns rng-test2.tcl [replication number]

if {$argc > 1} {
puts "Usage: ns rng-test2.tcl \[replication number\]"
exit

}

set run 1

if {$argc == 1} {
set run [lindex $argv 0]

}

if {$run < 1} {
set run 1

}

the default RNG is seeded with 12345

create the RNGs and set them to the correct substream
set arrivalRNG [new RNG]
set sizeRNG [new RNG]
for {set j 1} {$j < $run} {incr j} {
$arrivalRNG next-substream

220

$sizeRNG next-substream

}

print the first 5 arrival times and sizes
for {set j O} {$j < 5} {incr j} {
puts [format "%-8.3f %-4d" [$arrivalRNG lognormal 5 0.1] \
[expr round([$sizeRNG normal 5000 100])]]

Output

% ns rng-test2.tcl 1
142.776 5038
174.365 5024
147.160 4984
169.693 4981
187.972 4982

% ns rng-test2.tcl 5
160.993 4907
119.895 4956
149.468 5131

137.678 4985
158.936 4871

24.1.3 C++ Support
Member Functions

The random number generator is implemented by the RNG ctassalefined irtools/rng.h
Note: The Random class itwols/random.h is an older interface to the standard random number stream.

Member functions provide the following operations:

void set_seed (long seed) — set the seed of the RNG, dted == 0, the seed is set according to the current time
and a counter

long seed (void) —return the current seed

long next (void) — return the next random number as an integer oiV[AXINT]

double next_double (void) — return the next random number on [0, 1]

void reset_start_substream (void) — reset the stream to the beginning of the current substream

void reset_next_substream (void) — advance to the next substream

int uniform (int k) —return an integer sampled from a uniform distribution onlj]

double uniform (double r) — return a number sampled from a uniform distribution onJO, r

221

double uniform (double a, double b) — return a number sampled from a uniform distribution on |a, b

double exponential (void) — return a number sampled from an exponential distributidh mean 1.0

double exponential (double k) —return a number sampled from an exponential distributidh mean k

double normal (double avg, double std) -

given average and standard deviation

double lognormal (double avg, double std)
the given average and standard deviation

Example

[» create new RNGs =/
RNG arrival (23456);
RNG size;

[+ set the RNGs to the appropriate substream

for (int i = 1; i < 3; i++) {
arrival.reset_next_substream();
size.reset_next_substream();

}

[* print the first 5 arrival times and sizes
for (int j = 0; j < 5; j++) {

return a number sampled from a normal distribution with the

—return a number sampled from a lognormal distribution with

printf ("%-8.3f %-4d\n", arrival.lognormal(5, 0.1),

int(size.normal(500, 10)));

}

Output
161.826 506
160.591 503
157.145 509
137.715 507
118.573 496

24.2 Random Variables

Theclass RandomVariable provides a thin layer of functionality on top of the base rmchumber generator and the
default random number stream. It is defined img'ranvar.h:

class RandomVariable : public TclObject {
public:
virtual double value() = 0;
int command(int argc, const char
RandomVariable();

*const * argv);

222

protected:
RNG rng_;

k

Classes derived from this abstract class implement spefiffiicbutions. Each distribution is parameterized witk thalues
of appropriate parameters. The value method is used taratualue from the distribution.

The currently defined distributions, and their associa@@dmeters are:

class UniformRandomVariable min_ , max_
class ExponentialRandomVariable avg_
class ParetoRandomVariable avg_ , Shape_
class ParetollRandomVariable avg_ , Shape_
class ConstantRandomVariable val_
class HyperExponentialRandomVariable avg_ , COV_
class NormalRandomVariable avg_ ,std_
class LogNormalRandomVariable avg_ , std_

The RandomVariable class is available in OTcl. For instatecereate a random variable that generates number unijarml|
[10, 20]:

set u [new RandomVariable/Uniform]
$u set min_ 10

$u set max_ 20

$u value

By default, RandomVariable objects use the default randomlrer generator described in the previous section. Thenge-
method can be used to associate a RandomVariable with aefanitRNG:

set rng [new RNG]
$rng seed O

set e [new RandomVariable/Exponential]
$e use-rng $rng

24.3 Integrals

The class Integrator supports the approximation of (continuous) integration(tigscrete) sums; it is defined in
~ndintegrator.h as

From integrator.h:
class Integrator : public TclObject {
public:
Integrator();
void set(double x, double y);
void newPoint(double x, double y);
int command(int argc, const char *const * argv);

223

protected:

double lastx_;
double lasty ;
double sum_;
2
From integrator.cc:
Integrator::Integrator() : lastx_(0.), lasty (0.), sum_ (0.)
{
bind("lastx_", &lastx);
bind("lasty_", &lasty);
bind("sum_", &sum_);
}
void Integrator::set(double x, double y)
{
lastx_ = Xx;
lasty = v;
sum_ = 0.
}
void Integrator::newPoint(double x, double y)
{
sum_ += (x - lastx) * lasty_;
lastx_ = Xx;
lasty = vy;
}
int Integrator::command(int argc, const char *Cconst * argv)
{
if (argc == 4) {
if (strcmp(argv[l], "newpoint”) == 0) {
double x = atof(argv[2)]);
double y = atof(argv[3]);
newPoint(x, y);
return (TCL_OK);
}
}
return (TclObject::command(argc, argv));
}

This class provides a base class used by other classes sQeteasMonitor that keep running sums. Each new element
of the running sum is added by timewPoint (x, y) function. After thekth execution ofhewPoint , the running sum is
equal tto:1 yi—1(x; — x;—1) wherexg = yo = O unlesdastx_ , lasty_ , orsum_ are reset via OTcl. Note that a new
point in the sum can be added either by the C++ membaiPoint or the OTcl membenewpoint . The use of integrals
to compute certain types of averages (e.g. mean queue ®ngtjiven in (pp. 429-430, [15]).

24.4 ns-random

ns-r andomis an obsolete way to generate random numbers. This informé&in is provided only for backward com-
patibility.

224

ns-random is implemented in rRgmisc.{cc,h}. When called with no argument, it generateargdom number with uniform
distribution between 0 anMAXINT. When an integer argument is provided, it seeds the randorargter with the given
number. A special case is whas-random 0 is called, it randomly seeds the generator based on cumeat This feature
is useful to produce non-deterministic results across.runs

24.5 Some mathematical-support related objects

INTEGRATOR OBJECTdntegrator Objects support the approximate computatiaoatinuous integrals using discrete sums.
The running sum(integral) is computed aam_ += [lasty__ * (x lastx)] where (X, y) is the last element entered
and (lastx_, lasty) was the element previous to that adolé¢ldet sum. lastx_ and lasty are updated as new elements are
added. The first sample point defaults to (0,0) that can beggtaby changing the values of (lastx_,lastysijtegrator

newpoint <x> <y>

Add the point (x,y) to the sum. Note that it does not make sémseto be less than lastx_.

There are no configuration parameters specific to this abject

State Variables are:

lastx_ x-coordinate of the last sample point.
lasty_ y-coordinate of the last sample point.

sum_ Running sum (i.e. the integral) of the sample points.

SAMPLES OBJECT Samples Objects support the computation of mean and vargatistics for a given sample.

$samples mean
Returns mean of the sample.

$samples variance
Returns variance of the sample.

$samples cnt
Returns a count of the sample points considered.

$samples reset
Reset the Samples object to monitor a fresh set of samples.

There are no configuration parameters or state variablesfsp® this object.

24.6 Commands at a glance

Following is a list of mathematical support related comnmaooimmonly used in simulation scripts:

set rng [new RNG]
This creates a new random number generator.

225

$rng seed <0 or n>
This command seeds the RNG. If 0 is specified, the RNG is sdeelaiktically. Otherwise the RNG is seeded with the
value <n>.

$rng next-random
This returns the next random number from RNG.

$rng uniform <a>
This returns a number uniformly distributed on <a> and .

$rng integer <k>
This returns an integer uniformly distributed on 0 and k-1.

$rng exponential
This returns a number that has exponential distributioh aiterage 1.

set rv [new Randomvariable/<type of random-variable>]

This creates an instance of a random variable object thargess random variables with specific distribution. Théedént
types of random variables derived from the base class are:

RandomVariable/Uniform, RandomVariable/Exponenti@nBomVariable/Pareto, RandomVariable/Constant,
RandomVariable/HyperExponential. Each of these distidioutypes are parameterized with values of appropriate
parameters. For details see section 24.2 of this chapter.

$rv use-rng <rng>

This method is used to associated a random variable objét&awion-default RNG. Otherwise by default, the random
variable object is associated with the default random nurgbeerator.

226

Chapter 25

Trace and Monitoring Support

The procedures and functions described in this chapter edaund in ndtrace.{cc, h}, -ndtcl/lib/ns-trace.tcl, Agqueue-
monitor.{cc, h}, ~ndtcl/lib/ns-link.tcl, ~ngpacket.h, Agflowmon.cc, and rYclassifier-hash.cc.

There are a number of ways of collecting output or trace datsimulation. Generally, trace data is either display ety
during execution of the simulation, or (more commonly) stbin a file to be post-processed and analyzed. There are two
primary but distinct types of monitoring capabilities cemtly supported by the simulator. The first, caltemtes record each
individual packet as it arrives, departs, or is dropped atkadr queue. Trace objects are configured into a simulatiomogles

in the network topology, usually with a Tcl “Channel” objéaioked to them, representing the destination of collectdd d
(typically a trace file in the current directory). The othgpés of objects, calleshonitors record counts of various interesting
quantities such as packet and byte arrivals, departuresietnitors can monitor counts associated with all paclaten a
per-flow basis using #iow monitorbelow (Section 25.7).

To support traces, there is a speai@mmonheader included in each packet (this format is definedrigpacket.h as
hdr_cmn). It presently includes a unique identifier on each packegiaeket type field (set by agents when they gener-
ate packets), a packet size field (in bytes, used to detertinéngansmission time for packets), and an interface lalmd

for computing multicast distribution trees).

Monitors are supported by a separate set of objects thatreated and inserted into the network topology around queues

They provide a place where arrival statistics and times atieagyed and make use of ttlass Integrator (Section 24.3)
to compute statistics over time intervals.

25.1 Trace Support

The trace supportin OTcl consists of a number of specialifaskes visible in OTcl but implemented in C++, combinedhwit
a set of Tcl helper procedures and classes defined indlilerary.

All following OTcl classes are supported by underlying CHasses defined inngtrace.cc. Objects of the following types
are inserted directly in-line in the network topology:

227

Trace/Hop trace a “hop” (XXX what does this mean exactlys inot really used XXX)
Trace/Enque a packet arrival (usually at a queue)
Trace/Deque a packet departure (usually at a queue)
Trace/Drop packet drop (packet delivered to drop-target)
Trace/Recv packet receive event at the destination nodér a
SnoopQueue/ln on input, collect a time/size sample (padsspan)
SnoopQueue/Out on output, collect a time/size sample (paEdset on)
SnoopQueue/Drop on drop, collect a time/size sample (fdsepon)
SnoopQueue/EDrop on an "early" drop, collect a time/sirepda (pass packet on)

Obijects of the following types are added in the simulatiod amreferenced by the objects listed above. They are used to
aggregate statistics collected by the SnoopQueue objects:

QueueMonitor receive and aggregate collected samplesdropers
QueueMonitor/ED queue-monitor capable of distinguishiatyveen “early” and standard packet drops
QueueMonitor/ED/Flowmon per-flow statistics monitor (rager)
QueueMonitor/ED/Flow per-flow statistics container

QueueMonitor/Compat a replacement for a standard Queugdtevhennsvl compatibility is in use

25.1.1 OfTcl Helper Functions

The following helper functions may be used within simulatszripts to help in attaching trace elements (segtel/lib/ns-
lib.tcl); they are instance procedures of the class Simulat

flush-trace {} flush buffers for all trace objects in simulation

create-trace { type file src dst } create a trace object of typgpe between the given src and dest
nodes. Iffile is non-null, it is interpreted as a Tcl channel and is
attached to the newly-created trace object. The procedtuens
the handle to the newly created trace object.

trace-queue { nl n2 file } arrange for tracing on the link between nosdsandn2. This func-
tion calls create-trace, so the same rules apply with respeloefile
argument.
trace-callback{ ns command } arranges to catommandwhen a line is to be traced. The procedure

treatscommandas a string and evaluates it for every line traced. See
~ngtcl/ex/callback_demao.tcl for additional details on usag

monitor-queue { n1 n2 } this function calls thenit-monitor function on the link be-
tween nodeslandn2.
drop-trace { n1 n2 trace } the giventraceobject is made the drop-target of the queue associated

with the link between nodasl andn2.

Thecreate-trace {} procedure is used to create a ndace object of the appropriate kind and attach an Tcl I/0O channel
to it (typically a file handle). Therc_ anddst_ fields are are used by the underlying C++ object for produttegtrace
output file so that trace output can include the node addsatsfining the endpoints of the link which is being traced.eNot
that they are not used fanatching Specifically, these values in no way relate to the packedérsac anddst fields, which

are also displayed when tracing. See the description oftaee class below (Section 25.3).

Thetrace-queue function enable&nque, Deque, andDrop tracing on the link between nodag andn2. The Link
trace procedure is described below (Section 25.2).

228

The monitor-queue function is constructed similarly trace-queue . By calling the link’sinit-monitor pro-
cedure, it arranges for the creation of obje@sdopQueue andQueueMonitor objects) which can, in turn, be used to
ascertain time-aggregated queue statistics.

Thedrop-trace function provides a way to specify@ueue’s drop target without having a direct handle of the queue.

25.2 Library support and examples

TheSimulator procedures described above requiretitaeee andinit-monitor methods associated with the OTcl
Link class. Several subclasses of link are defined, the most comfmwehich is calledSimpleLink . Thus, thetrace
andinit-monitor methods are actually part of tt&mpleLink class rather than thieink base class. Theace
function is defined as follows (ins-link.tcl):

#

Build trace objects for this link and
update the object linkage
#
S

impleLink instproc trace { ns f } {
$self instvar enqT_ deqT_ drpT_ queue_ link_ head_ fromNode _ toNode_
$self instvar drophead_

set engT_ [$ns create-trace Enque $f $fromNode $toNode]
set deqT_ [$ns create-trace Deque $f $fromNode $toNode]
set drpT_ [$ns create-trace Drop $f $fromNode_ $toNode_]

$drpT_ target [$drophead_ target]
$drophead_ target $drpT_
$queue_ drop-target $drpT_

$deqT_ target [$queue_ target]
$queue_ target $deqT_

if { [$head_ info class] == "networkinterface" } {
$enqT_ target [$head_ target]
$head_ target $enqT_
puts "head is i/f"
} else {
$engT_ target $head_
set head_ $enqT_
puts "head is not i/f"

This function establishegnque, Deque, andDrop traces in the simulatddns and directs their output to I/O hand$é .

The function assumes a queue has been associated with khdtlioperates by first creating three new trace objects and
inserting theEnque object before the queue, tiEque object after the queue, and tBeop object between the queue and
its previous drop target. Note that all trace output is dddo the same 1/0O handle.

This function performs one other additional tasks. It clseicksee if a link contains a network interface, and if so, ésdvas
the first object in the chain of objects in the link, but othisinserts th&nque object as the first one.

229

The following functionsinit-monitor andattach-monitor , are used to create a set of objects used to monitor queue
sizes of a queue associated with a link. They are defined lasviol

SimpleLink instproc attach-monitors { insnoop outsnoop dr opsnhoop gmon } {
$self instvar queue_ head_ snoopin_ snoopOut_ snoopDrop_
$self instvar drophead_ gMonitor_

set snoopln_ $insnoop
set snoopOut_ $outsnoop
set snoopDrop_ $dropsnoop

$snoopin_ target $head_
set head_ $snoopin_

$snoopOut_ target [$queue_ target]
$queue_ target $snoopOut_

$snoopDrop_ target [$drophead_ target]
$drophead_ target $snoopDrop_

$snoopln_ set-monitor $gmon
$snoopOut_ set-monitor $gmon
$snoopDrop_ set-monitor $gmon
set gMonitor_ $gmon

}

#

Insert objects that allow us to monitor the queue size

of this link. Return the name of the object that

can be queried to determine the average queue size.

#

SimpleLink instproc init-monitor { ns gtrace samplelnterv al} {

$self instvar gMonitor_ ns_ qgtrace_ samplelnterval_

set ns_ $ns

set gtrace_ $qtrace

set samplelnterval_ $sampleinterval
set gMonitor_ [new QueueMonitor]

$self attach-monitors [new SnoopQueue/In] \
[new SnoopQueue/Out] [new SnoopQueue/Drop] $gMonitor

set bytesInt_ [new Integrator]
$gMonitor_ set-bytes-integrator $bytesint_
set pktsint_ [new Integrator]

$gMonitor_ set-pkts-integrator $pktsint_
return $gMonitor_

These functions establish queue monitoring on $impleLink object in the simulatons. Queue monitoring is im-
plemented by constructing thr&noopQueue objects and onQueueMonitor object. TheSnoopQueue objects are
linked in around &Queue in a way similar toTrace objects. TheSnoopQueue/In(Out) object monitors packet ar-
rivals(departures) and reports them to an associ@eelueMonitor agent. In addition, &noopQueue/Out object is

230

also used to accumulate packet drop statistics to an assd€@eueMonitor object. Forinit-monitor the same
QueueMonitor object is used in all cases. The C++ definitions of 8r@opQueue andQueueMonitor classes are
described below.

25.3 The C++ Trace Class

Underlying C++ objects are created in support of the intafspecified in Section 25.3 and are linked into the netwgskilto
ogy as network elements. The single Clrace class is used to implement the OTcl claséesce/Hop , Trace/Enque
Trace/Deque ,andTrace/Drop . Thetype_ field is used to differentiate among the various types ofesaany particu-
lar Trace object might implement. Currently, this field may contaireasf the following symbolic characters:for enque,
- for dequeh for hop, andd for drop. The overall class is defined as follows imstrace.cc:

class Trace : public Connector {
protected:
int type_;
nsaddr_t src_;
nsaddr_t dst ;
Tcl_Channel channel_;

int callback_;

char wrk_[256];

void format(int tt, int s, int d, Packet *),

void annotate(const char * S);

int show_tcphdr_; // bool flags; backward compat
public:

Trace(int type);

~Trace();

int command(int argc, const char *const * argv);

void recv(Packet = p, Handler =),

void dump();

inline char = buffer() { return (wrk); }
h

Thesrc_ ,anddst_ internal state is used to label trace output and is indeperdé¢he corresponding field names in packet
headers. The mairecv () method is defined as follows:

void Trace::recv(Packet * p, Handler * h)
{
format(type_, src_, dst_, p);
dump();
/= hack: if trace object not attached to anything free packeét
if (target_ == 0)
Packet::free(p);
else

send(p, h); / = Connector::send() */

The function merely formats a trace entry using the sourestidation, and particular trace type character. dimap function
writes the formatted entry out to the I/O handle associati#d ghannel_ . Theformat function, in effect, dictates the
trace file format.

231

25.4 Trace File Format

The Trace::format () method defines the trace file format used in trace files prediy theTrace class. It is con-
structed to maintain backward compatibility with outpuééilin earlier versions of the simulatare(, nsv1) so thatnsvl
post-processing scripts continue to operate. The impbpianes of its implementation are as follows:

/I this function should retain some backward-compatibitythat

/I scripts don'’t break.

void Trace::format(int tt, int s, int d, Packet *)

{
hdr_cmn =th = (hdr_cmn =)p->access(off_cmn_);
hdr_ip *iph (hdr_ip *)p->access(off_ip_);
hdr_tcp *tcph = (hdr_tcp *)p->access(off_tcp);
hdr_rtp *rh = (hdr_rtp *)p->access(off_rtp_);
packet t t = th->ptype();
const char * name = packet_info.name(t);

if (name == 0)
abort();

int segno;

[+ XXX */

/* CBR’s now have seqno’s toe/

if (t == PT_RTP || t == PT_CBR)
seqno = rh->seqgno();

else if (t == PT_TCP || t == PT_ACK)
seqno = tcph->seqno();

else
segno = -1,

if (!show_tcphdr_) {

sprintf(wrk_, "%c %g %d %d %s %d %s %d %d.%d %d.%d %d %d",
tt,
Scheduler::instance().clock(),
S,
d,
name,
th->size(),
flags,
iph->flowid() / * was p->class_ */,
iph->src() >> 8, iph->src() & Oxff, Il XXX
iph->dst() >> 8, iph->dst() & Oxff, /I XXX
seqgno,
th->uid() / * was p->uid_ */);

} else {

sprintf(wrk_,

"%c %g %d %d %s %d %s %d %d.%d %d.%d %d %d %d 0x%x %d",
tt,
Scheduler::instance().clock(),
S,
d,

232

name,

th->size(),

flags,

iph->flowid() / * was p->class_ */,
iph->src() >> 8, iph->src() & Oxff, Il XXX
iph->dst() >> 8, iph->dst() & Oxff, /I XXX
seqgno,

th->uid(), / * was p->uid_ */
tcph->ackno(),
tcph->flags(),
tcph->hlen());

This function is somewhat unelegant, primarily due to theirdeto maintain backward compatibility. It formats the sy
destination, and type fields defined in the trace object in the packet headerghe current time, along with various packet
header fields including, type of packet (as a name), sizes {gmbolically), flow identifier, source and destinatiortlpet
header fields, sequence number (if present), and uniquéifiden The show_tcphdr_ variable indicates whether the
trace output should append tcp header information (ack munilags, header length) at the end of each output line. This
is especially useful for simulations using FullTCP age&sation 33.3). An example of a trace file (without the tcp leead
fields) might appear as follows:

+ 1.84375 0 2 cbr 210 ------- 0 0.0 3.1 225 610
- 1.84375 0 2 cbr 210 ------- 0 0.0 3.1 225 610

r 1.84471 2 1 cbr 210 ------- 1 3.0 1.0 195 600

r 1.84566 2 0 ack 40 ------- 2 3.2 0.1 82 602

+ 1.84566 0 2 tcp 1000 ------- 2 0.1 3.2 102 611
- 1.84566 0 2 tcp 1000 ------- 2 0.1 3.2 102 611
r 1.84609 0 2 cbr 210 ------- 0 0.0 3.1 225 610

+ 1.84609 2 3 cbr 210 ------- 0 0.0 3.1 225 610
d 1.84609 2 3 cbr 210 ------- 0 0.0 3.1 225 610
- 18461 2 3 cbr 210 ------- 0 0.0 3.1 192 511

r 1.84612 3 2 cbr 210 ------- 1 3.0 1.0 196 603

+ 1.84612 2 1 cbr 210 ------- 1 3.0 1.0 196 603
- 1.84612 2 1 cbr 210 ------- 1 3.0 1.0 196 603

+ 1.84625 3 2 cbr 210 ------- 1 3.0 1.0 199 612

Here we see 14 trace entries, five enque operations (indibgtet” in the first column), four deque operations (indichtey

“-"), four receive events (indicated by “r"), and one dropeewt. (this had better be a trace fragment, or some packetslwou
have just vanished!). The simulated time (in seconds) athvbach event occurred is listed in the second column. The nex
two fields indicate between which two nodes tracing is hapuenThe next field is a descriptive name for the the type of
packet seen (Section 25.5). The next field is the packees aizencoded in its IP header.

The next field contains the flags, which not used in this examphe flags are defined in the flags[] array in trace.cc. Four
of the flags are used for ECN: “E” for Congestion ExperienceH)and “N” for ECN-Capable-Transport (ECT) indications
in the IP header, and “C” for ECN-Echo and “A” for Congestiomidbw Reduced (CWR) in the TCP header. For the other
flags, “P” is for priority, and “F” is for TCP Fast Start.

The next field gives the IRow identifierfield as defined for IP version6. The subsequent two fields indicate the packet’s
source and destination node addresses, respectively.cllbihg field indicates the sequence numbérhe last field is a

lin nsv1, each packet includedddass field, which was used by CBQ to classify packets. It then foadditional use to differentiate between “flows”
at one trace point. Imsv2, the flow ID field is available for this purpose, but any diddial information (which was commonly overloaded into thass
field in nsv1) should be placed in its own separate field, possibly inesother header

2In nsv1, all packets contained a sequence number, whereas V@ only those Agents interested in providing sequencing géherate sequence
numbers. Thus, this field may not be usefuhisiv2 for packets generated by agents that have not filled in aes®g number. It is used here to remain
backward compatible withsv1.

233

unique packet identifier. Each new packet created in thelaiion is assigned a new, unique identifier.

25.5 Packet Types

Each packet contains a packet type field uset@itage::format to print out the type of packet encountered. The type field
is defined in thé&raceHeader class, and is considered to be part of the trace supportdtimterpreted elsewhere in the
simulator. Initialization of the type field in packets is flmed by theAgent::allocpkt (void) method. The type field is
set to integer values associated with the definition passteeAgent constructor (Section 10.6.3). The currently-supported
definitions, their values, and their associated symblicemare as follows (defined imspacket.h):

enum packet_t {
PT_TCP,

PT_UDP,

PT_CBR,
PT_AUDIO,
PT_VIDEO,
PT_ACK,
PT_START,
PT_STOP,
PT_PRUNE,
PT_GRAFT,
PT_GRAFTACK,
PT_JOIN,
PT_ASSERT,
PT_MESSAGE,
PT_RTCP,

PT_RTP,
PT_RTPROTO_DV,
PT_CtrMcast_Encap,
PT_CtrMcast_Decap,
PT_SRM,

/ = simple signalling messages */
PT_REQUEST,
PT_ACCEPT,
PT_CONFIRM,
PT_TEARDOWN,
PT_LIVE,// packet from live network
PT_REJECT,

PT_TELNET,// not needed: telnet use TCP
PT_FTP,

PT_PARETO,

PT_EXP,

PT_INVAL,

PT _HTTP,

[* new encapsulator */
PT_ENCAPSULATED,

PT_MFTP,

[+ CMU/Monarch’s extnsions */
PT_ARP,

PT_MAC,

234

PT_TORA,
PT_DSR,
PT_AODV,

/I insert new packet types here

PT_NTYPE // This MUST be the LAST one
h

The constructor of clags_info glues these constants with their string values:

p_info() {

name_[PT_TCP]= "tcp";
name_[PT_UDP]= "udp";
name_[PT_CBR]= "cbr";
name_[PT_AUDIO]= "audio";

name_[PT_NTYPE]= "undefined";
}

See also section 12.2.2 for more details.

25.6 Queue Monitoring

Queue monitoring refers to the capability of tracking theamyics of packets at a queue (or other object). A queue nronito
tracks packet arrival/departure/drop statistics, and w@tjonally compute averages of these values. Monitoring b
applied to all packets (aggregate statistics), or per-flatstics (using a Flow Monitor).

Several classes are used in supporting queue monitoringn\Wipacket arrives at a link where queue monitoring is edalle
generally passes througisaoopQueue object when it arrives and leaves (or is dropped). Thesectbfontain a reference
to aQueueMonitor object.

A QueueMonitor is defined as follows (@ggueue-monitor.cc):

class QueueMonitor : public TclObject {
public:
QueueMonitor() : bytesint (NULL), pktsint_ (NULL), delay Samp_(NULL),
size_(0), pkts_(0),
parrivals_(0), barrivals_(0),
pdepartures_(0), bdepartures_(0),
pdrops_(0), bdrops_(0),
srcld_(0), dstld_(0), channel_(0) {

bind("size_", &size);

bind("pkts_", &pkts);
bind("parrivals_", &parrivals_);
bind("barrivals_", &barrivals_);
bind("pdepartures_", &pdepartures_);
bind("bdepartures_", &bdepartures);

235

bind("pdrops_", &pdrops_);

bind("bdrops_", &bdrops_);

bind("off_cmn_", &off cmn_);
¥

int size() const { return (size); }

int pkts() const { return (pkts); }

int parrivals() const { return (parrivals_); }

int barrivals() const { return (barrivals_); }

int pdepartures() const { return (pdepartures); }
int bdepartures() const { return (bdepartures_); }
int pdrops() const { return (pdrops_); }

int bdrops() const { return (bdrops_); }

void printStats();

virtual void in(Packet *);

virtual void out(Packet *);

virtual void drop(Packet *);

virtual void edrop(Packet +) { abort(); }; // not here

virtual int command(int argc, const char *const * argv);

/I packet arrival to a queue

void QueueMonitor::in(Packet * D)

{
hdr_cmn » hdr = (hdr_cmn =*)p->access(off_cmn_);
double now = Scheduler:instance().clock();
int pktsz = hdr->size();

barrivals_ += pktsz;

parrivals_++;
size_ += pktsz;
pkis_++;

if (bytesint)

bytesint_->newPoint(now, double(size));
if (pktsint_)

pktsint_->newPoint(now, double(pkts_));
if (delaySamp_)

hdr->timestamp() = now;
if (channel)

printStats();

. in(), out(), drop() are all defined similarly ...

It addition to the packet and byte counters, a queue moniéyroptionally refer to objects that keep an integral of thewg
size over time usingntegrator objects, which are defined in Section 24.3. Thigrator class provides a simple
implementation of integral approximation by discrete sums

All bound variables beginning witp refer to packet counts, and all variables beginning \eitrefer to byte counts. The
variablesize_ records the instantaneous queue size in bytes, and thédbegpicts records the same value in packets.
When aQueueMonitor is configured to include the integral functions (on bytes ackets or both), it computes the
approximate integral of the queue size (in bytes) with resfmetime over the intervdtg, now], wheret is either the start of
the simulation or the last time treaim__field of the underlyingntegrator class was reset.

236

The QueueMonitor class is not derived fror@onnector , and is not linked directly into the network topology. Rathe
objects of theSnoopQueue class (or its derived classes) are inserted into the nettap@logy, and these objects contain
references to an associated queue monitor. OrdinarilytipteiSnoopQueue objects will refer to the same queue monitor.
Objects constructed out of these classes are linked in thelafion topology as described above and aleueMonitor

out ,in , ordrop procedures, depending on the particular type of snoopyejueu

25.7 Per-Flow Monitoring

A collection of specialized classes are used to to implerpenflow statistics gathering. These classes include:
QueueMonitor/ED/Flowmon , QueueMonitor/ED/Flow , andClassifier/Hash . Typically, an arriving packet

is inspected to determine to which flow it belongs. This irtjpe and flow mapping is performed bycassifierobject
(described in section 25.7.1). Once the correct flow is deitezd, the packet is passed tl@v monitor which is responsible

for collecting per-flow state. Per-flow state is containetlon objects in a one-to-one relationship to the flows known by the
flow monitor. Typically, a flow monitor will create flow objexbn-demand when packets arrive that cannot be mapped to an
already-known flow.

25.7.1 The Flow Monitor

TheQueueMonitor/ED/Flowmon class is responsible for managing the creation of new flowabjwhen packets arrive
on previously unknown flows and for updating existing floweatis. Because it is a subclassieueMonitor , each flow
monitor contains an aggregate count of packet and byteadsridepartures, and drops. Thus, it is not necessary ttecaea
separate queue monitor to record aggregate statisticeovides the following OTcl interface:

classifier get(set) classifier to map packets to flows
attach attach a Tcl I/O channel to this monitor
dump dump contents of flow monitor to Tcl channel
flows return string of flow object names known to this monitor

The classifier function sets or gets the name of the previously-allocatgdad which will perform packet-to-flow
mapping for the flow monitor. Typically, the type of classifiesed will have to do with the notion of “flow” held by the user.
One of the hash based classifiers that inspect various BHeader fields is typically used here (e.g. fid, src/dstdstiid).
Note that while classifiers usually receive packets and d&dwhem on to downstream objects, the flow monitor uses the
classifier only for its packet mapping capability, so the flmenitor acts as a passive monitor only and does not actively
forward packets.

The attach and dump functions are used to associate a Tcl I/O stream with the flawitar, and dump its contents
on-demand. The file format used by tthemp command is described below.

Theflows function returns a list of the names of flows known by the flownitar in a way understandable to Tcl. This
allows tcl code to interrogate a flow monitor in order to obthandles to the individual flows it maintains.

25.7.2 Flow Monitor Trace Format

The flow monitor defines a trace format which may be used by-pasiessing scripts to determine various counts on a
per-flow basis. The format is defined by the following code mgflowmon.cc:

237

void
FlowMon::fformat(Flow *)
{
double now = Scheduler::instance().clock();
sprintf(wrk_, "%8.3f %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d %dod

%d",
now,
f->flowid(), /I flowid
0, /I category
f->ptype(), /I type (from common header)
f->flowid(), /I flowid (formerly class)
f->src(),
f->dst(),
f->parrivals(), // arrivals this flow (pkts)
f->barrivals(), // arrivals this flow (bytes)
f->epdrops(), // early drops this flow (pkts)
f->ebdrops(), /I early drops this flow (bytes)
parrivals(), /I all arrivals (pkts)
barrivals(), /[all arrivals (bytes)
epdrops(), /I total early drops (pkts)
ebdrops(), /I total early drops (bytes)
pdrops(), /I total drops (pkts)
bdrops(), /I total drops (bytes)
f->pdrops(), /I drops this flow (pkts) [includes edrops]
f->bdrops() /I drops this flow (bytes) [includes edrops]

);
3

Most of the fields are explained in the code comments. Thefmay” is historical, but is used to maintain loose backward
compatibility with the flow manager format imsversion 1.

25.7.3 The Flow Class

The classQueueMonitor/ED/Flow is used by the flow monitor for containing per-flow counterss @ subclass of
QueueMonitor , it inherits the standard counters for arrivals, depaguaad drops, both in packets and bytes. In addition,
because each flow is typically identified by some combinatibtihe packet source, destination, and flow identifier fields,
these objects contain such fields. Its OTcl interface castanly bound variables:

src_ source address on packets for this flow
dst_ destination address on packets for this flow
flowid_ flow id on packets for this flow

Note that packets may be mapped to flows (by classifiers) wgiteyia other than a src/dst/flowid triple. In such circum-
stances, only those fields actually used by the classifiegiifopning the packet-flow mapping should be consideredloégi

25.8 Commands at a glance

Following is a list of trace related commands commonly usesimulation scripts:

238

$ns_ trace-all <tracefile>
This is the command used to setup tracing in ns. All tracesvateen in the <tracefile>.

$ns_ namtrace-all <namtracefile>
This command sets up nam tracing in ns. All nam traces aréanrih to the <namtracefile>.

$ns_ namtrace-all-wireless <namtracefile> <X> <Y>
This command sets up wireless nam tracing. <X> and <Y> arg-§heo-ordinates for the wireless topology and all
wireless nam traces are written into the <namtracefile>.

$ns_ nam-end-wireless <stoptime>
This tells nam the simulation stop time given in <stoptime>.

$ns_ trace-all-satlinks <tracefile>
This is a method to trace satellite links and write traces #ttacefile>.

$ns_ flush-trace
This command flushes the trace buffer and is typically cdiefdre the simulation run ends.

$ns_ get-nam-traceall
Returns the namtrace file descriptor stored as the Simuitatance variable calledamtraceAllFile_

$ns_ get-ns-traceall
Similar to get-nam-traceall. This returns the file desanifor ns tracefile which is stored as the Simulator instaratked
traceAllFile

$ns_ create-trace <type> <file> <src> <dst> <optional:op>

This command creates a trace object of type <type> betweendit> and <dst> nodes. The traces are written into the
<file>. <op> is the argument that may be used to specify the dfgirace, like nam. if <op> is not defined, the default trace
object created is for nstraces.

$ns_ trace-queue <nl> <n2> <optional:file>
This is a wrapper method fareate-trace . This command creates a trace object for tracing eventselirtk
represented by the nodes <nl1> and <n2>.

$ns_ namtrace-queue <nl> <n2> <optional:file>
This is used to create a trace object for namtracing on ttkeblegtween nodes <n1> and <n2>. This method is very similar to
and is the namtrace counterpart of methi@te-queue

$ns_ drop-trace <nl> <n2> <trace>
This command makes the given <trace> object a drop-targ#héoqueue associated with the link between nodes <n1> and
<n2>.

$ns_ monitor-queue <nl> <n2> <qgtrace> <optional:samplein terval>
This sets up a monitor that keeps track of average queuei@fi¢ite queue on the link between nodes <nl1> and <n2>. The
default value of sampleinterval is 0.1.

$link trace-dynamics <ns> <fileID> Trace the dynamics of this link and write the output to filel@Hiandle.
ns is an instance of the Simulator or MultiSim object that wasated to invoke the simulation.

The tracefile format is backward compatible with the outdasfin the ns version 1 simulator so that ns-1 postprocessing
scripts can still be used. Trace records of traffic for linkeaits with Enque, Deque, receive or Drop Tracing have the
following form:

<code> <time> <hsrc> <hdst> <packet>

239

where

<code> := [hd+-] h=hop d=drop +=enque -=deque r=receive <ti me> =
simulation time in seconds
<hsrc> := first node address of hop/queuing link

<hdst> := second node address of hop/queuing link

<packet> := <type> <size> <flags> <flowID> <src.sport> <ds t.dport> <seqg>
<pktID>

<type> := tcp|telnet|cbr|ack etc.

<size> := packet size in bytes

<flags> := [CP] C=congestion, P=priority

<flowID> := flow identifier field as defined for IPv6
<src.sport> := transport address (src=node,sport=agent)
<dst.sport> := transport address (dst=node,dport=agent)
<seq> := packet sequence number

<pktID> := unique identifer for every new packet

Only those agents interested in providing sequencing willegate sequence numbers and hence this field may not bé usefu
for packets generated by some agents. For links that use REWagys, there are additional trace records as follows:
<code> <time> <value>

where

<code> := [Qap] Q=queue size, a=average queue size, p=packe t dropping
probability

<time> := simulation time in seconds

<value> := value

Trace records for link dynamics are of the form:
<code> <time> <state> <src> <dst>
where

<code> := [v]

<time> := simulation time in seconds
<state> := [link-up | link-down]

<src> := first node address of link
<dst> := second node address of link

240

Chapter 26

Test Suite Support

The ns distribution contains many test suites undedtel/test, which used by validation programs§validate, validate-
wired, validate-wireless, and validate.win32) to vertiat the installation of ns is correct. If you modify or add nevsdules
to ns, you are encouraged to run the validation programs t@rmeare that your changes do not affect other parts in ns.

26.1 Test Suite Components
Each test suite undendtcl/test is written to verify the correctness of a certaiadule in ns. It has 3 components:

e A shell script (test-all-xxx) to start the test;
e A ns tcl script (test-suite-xxx.tcl) to actually run thrduthe tests defined.

e A subdirectory (test-output-xxx) undendtcl/test, which contains thecorrect trace files generétedhe test suite.
These files are used to verify if the test suite runs correeifly your ns.

(Note: xxx stands for the name of the test suite.)

26.2 Write a Test Suite

You can take one of the test suites undeg'tel/test as a template when you are writing your own, fomagbe the test suite
written for wireless lan (test-all-wireless-lan, tesiteuwireless-lan.tcl, and test-output-wireless-lan).

To write a test suite, you first need to write the shell scripsi‘all-xxx). In the shell script, you specify the modubebie

tested, the name of the ns tcl script and the output subdirecYou can run this shell script in quiet mode. Below is the
example (test-all-wireless-lan):

To run in quiet mode: "./test-all-wireless-lan quiet".

f="wireless-lan" # Specify the name of the module to test.

241

file="test-suite-$f.tcl" # The name of the ns script.
directory="test-output-$f" # Subdirectory to hold the tes t results
version="v2" # Speficy the ns version.

Pass the arguments to test-all-templatel, which will run t hrough
all the test cases defined in test-suite-wireless-lan.tc l.
Jtest-all-templatel $file $directory $version $@

You also need to create several test cases in the ns scipis(tike-xxx.tcl) by defining a subclass of TestSuite fazthea
different test. For example, in test-suite-wirelesstleneach test case uses a different Ad Hoc routing protoEbey are
defined as:

Class TestSuite

wireless model using destination sequence distance vecto r
Class Test/dsdv -superclass TestSuite

wireless model using dynamic source routing
Class Test/dsr -superclass TestSuite

Each test case is basically a simulation scenario. In therstlpss TestSuite, you can define some functions, like imdt a
finish to do the work required by each test case, for examptmgaup the network topology and ns trace. The test specific
configurations are defined within the corresponding subscl&ach sub-class also has a run function to start the dionla

TestSuite instproc init {} {
global opt tracefd topo chan prop
global node_ god_
$self instvar ns_ testName_
set ns_ [new Simulator]

TestSuite instproc finish {} {
$self instvar ns_
global quiet

$ns_ flush-trace

puts “finishing.."
exit 0

}

Test/dsdv instproc init {} {
global opt node_ god_
$self instvar ns_ testName_
set testName_ dsdv

$self next

242

$ns_ at Sopt(stop).1 "$self finish"
}

Test/dsdv instproc run {} {
$self instvar ns_
puts "Starting Simulation...'
$ns_ run

}

All the tests are started by the function runtest in the npscr

proc runtest {arg} {
global quiet
set quiet O

set b [llength $arg]
if {$b == 1} {
set test $arg
} elseif {$b == 2} {
set test [lindex $arg 0]
if {[lindex $arg 1] == "QUIET"} {
set quiet 1

} else {
usage
}
set t [new Test/$test]
$t run

}

global argv arg0
runtest $argv

When you run the tests, trace files are generated and savikd tutput subdirectory. These trace files are compared to the
those correct trace coming with the test suite. If the comfpam shows difference, the test is failed.

243

Chapter 27

ns Code Styles

We recommend the following coding guidelines for ns

27.1 Indentation style

e We recommend using the BSD Kernel Normal Form coding stydatied at
http://cvsweb.netbsd.org/bsdweb.cgi/sharesrc/smése/style?rev=HEAD&content-type=text/x-cvsweb-mask

o Although KNF is specified for C, it also applies reasonablyl veeC++ and Tcl. Most of ns already follows KNF and
it is also extensively used for the BSD and Linux kernels.

e The high order bit is 8-space indents. Using 8-space indeiisi confusion about what a "tab" character represents. A
downside is it makes deeply nested looping structures ldfitiin 80 columns. (Some people consider this a feature.

-)

27.2 Variable Naming Conventions

e Instance variables of a class should all end in an undersgbis helps distinguish instance variables from global and
local variables.

e C++ and Tcl bound variables should have the same names Tlpsidentify the bound variables quickly and reduces
complexity

27.3 Miscellaneous

e Avoid the use of C++ templates. Ns is supported on multip&fpims and templates are not very portable and are
often difficult to debug. Exception: This guideline has besaxed for some imported code, but the core of ns should
build and run without templates.

e For NsObijects, use the debug_ instance variable to enablegdang functionality. This avoids repetitive definations
of debug statements and allows debugging a particular Msbhjithout recompilation.

244

Example: To enable debugging in Queue object include thewolg statement in your tcl script.
Queue set debug_ true

Debugging statments can be inserted in the classes imtefitm Queue as follows:
debug("This is a debug statement %d",variable_to_debug);

All debugging statements are sent to stdout.

e Error messages which cause the program to exit should beacstaterr. All other messages should be sent to stdout

245

Part IV

Routing

246

Chapter 28

Unicast Routing

This section describes the structure of unicast routingsinVe begin by describing the interface to the user (Sectioh)28
through methods in thelass Simulator and theclass RoutelLogic . We then describe configuration mechanisms
for specialized routing (Section 28.2) such as asymmatriting, or equal cost multipath routing The next sectiorcdbss
the the configuration mechanisms for individual routingiggies and protocols (Section 28.3). We conclude with gpcem
hensive look at the internal architecture (Section 28.4pafing inns

The procedures and functions described in this chapter edound in -ngtcl/lib/ns-route.tcl, Adtcl/rtglib/route-proto.tcl,
~ngtcl/mcast/McastProto.tcl, anchsrtProtoDV.{cc, h}.

28.1 The Interface to the Simulation Operator (The API)

The user level simulation script requires one command: ¢ézifpthe unicast routing strategy or protocols for the dattion.

A routing strategy is a general mechanism by whiskvill compute routes for the simulation. There are four ragtstrategies

in ns Static, Session, Dynamic and Manual. Conversely, a rgytintocol is a realization of a specific algorithm. Currgntl
Static and Session routing use the Dijkstra’s all-pairs &Rjerithm []; one type of dynamic routing strategy is cuihgn
implemented: the Distributed Bellman-Ford algorithm [h s we blur the distinction between strategy and protocol for
static and session routing, considering them simply aopods-.

rtproto {} is the instance procedure in thedass Simulator that specifies the unicast routing protocol to be used in
the simulation. It takes multiple arguments, the first of ethis mandatory; this first argument identifies the routingt@col

to be used. Subsequent arguments specify the nodes thauwithe instance of this protocol. The default is to run the
same routing protocol on all the nodes in the topology. Asan®le, the following commands illustrate the use of the
rtproto {} command.

$ns rtproto Static H# Enable static route strategy for the simulation
$ns rtproto Session # Enable session routing for this simulation
$ns rtproto DV $nl $n2 $n3 H# Run DV agents on nodes $n1, $n2, and $n3
$ns rtproto LS $nl $n2 H Run link state routing on specified nodes

If a simulation script does not specify amproto {} command, thennswill run Static routing on all the nodes in the
topology.

1The consideration is that static and session routing sfiestéprotocols are implemented as agents derived frorolg®s Agent/rtProto similar
to how the different dynamic routing protocols are impleteely hence the blurred distinctions.

247

Multiple rtproto {} lines for the same or different routing protocols can ocaua simulation script. However, a simulation
cannot use both centralized routing mechanisms such &sa@takession routing and detailed dynamic routing protesakh
as DV.

In dynamic routing, each node can be running more than ontngpprotocol. In such situations, more than one routing
protocol can have a route to the same destination. Theredah protocol affixes a preference value to each of its soute
These values are non-negative integers in the range 0... T2ie3ower the value, the more preferred the route. Whenipialt
routing protocol agents have a route to the same destinatiermost preferred route is chosen and installed in the’'sode
forwarding tables. If more than one agent has the most pegfeputes, the ones with the lowest metric is chosen. We call
the least cost route from the most preferred protocol thedadate” route. If there are multiple candidate routes fritve
same or different protocols, then, currently, one of thentig@outes is randomly chosén

Preference Assignment and Control Each protocol agent stores an array of route preferenmtg®gf . There is one
element per destination, indexed by the node handle. Treligireference values used by each protocol are derived &ro
class variablepreference_ , for that protocol. The current defaults are:

Agent/rtProto set preference_ 200 H# global default preference
Agent/rtProto/Direct 3 set preference_ 100
Agent/rtProto/DV set preference_ 120

A simulation script can control routing by altering the prefnce for routes in one of three ways: alter the prefereoica f
specific route learnedia a particular protocol agent, alter the preference for alkes learned by the agent, or alter the class
variables for the agent before the agent is created.

Link Cost Assignment and Control In the currently implemented route protocols, the metri@abute to a destination,
at a node, is the cost to reach the destination from that nttds.possible to change the link costs at each of the links.
The instance procedumsst {} is invoked as$ns cost (nodel) (node2) (cost),and sets the cost of the link from
(node? to (node2 to (cosb.

$ns cost $nl $n2 10 # set cost of linkrom $nlto $n2 to 10

$ns cost $n2 $n1 5 # set cost of link in reverse direction to 5
[$ns link $n1 $n2] cost? H# query cost of link from $n1 to $n2
[$ns link $n2 $nl] cost? H query cost of link in reverse direction

Notice that the procedure sets the cost along one directidyy cSimilarly, the procedureost? {} returns the cost of
traversing the specified unidirectional link. The defawi$tcof a link is 1.

28.2 Other Configuration Mechanisms for Specialised Routig

It is possible to adjust preference and cost mechanismgt tiovgespecial types of route configurations: asymmetricirayt
and multipath routing.

2This really is undesirable, and may be fixed at some point.fikheill probably be to favor the agents in class preferenagearA user level simulation
relying on this behavior, or getting into this situation esific topologies is not recommended.

3Direct is a special routing strategy that is used in conjoncivith Dynamic routing. We will describe this in greatertaibas part of the route architec-
ture description.

248

Asymmetric Routing Asymmetric routing occurs when the path from nodeto noden. is different from the path from
no to ny. The following shows a simple topology, and cost configorathat can achieve such a result:

Nodesn; and n, use different $ns cost $nl $r1 2
paths to reach each other. All e e $ns cost $n2 $r2 2
other pairs of nodes use symmet- $ns cost $r1 $n2 3

ric paths to reach each other.

Any routing protocol that uses link costs as the metric caseole such asymmetric routing if the link costs are appeately
configured.

MultiPath Routing Each node can be individually configured to use multiple sspapaths to a particular destination.
The instance variablmultiPath_ determines whether or not that node will use multiple patharty destination. Each
node initialises its instance variable from a class vadaiflthe same name. If multiple candidate routes to a de&imat
are available, all of which are learned through the sameopwdt then that node can use all of the different routes to the
destination simultaneously. A typical configuration is heven below:

Node set multiPath_ 1 # All new nodes in the simulation use multiPaths where applea
or alternately
set nl [$ns Node] # only enable $n1 to use multiPaths where applicable

$nl set multiPath_ 1

Currently, only DV routing can generate multipath routes.

28.3 Protocol Specific Configuration Parameters

Static Routing The static route computation strategy is the default room@pmutation mechanism ins This strategy
uses the Dijkstra’s all-pairs SPF algorithm []. The routengatation algorithm is run exactly once prior to the starthed
simulation. The routes are computed using an adjacencyxaatd link costs of all the links in the topology.

(Note that static routing is static in the sense that it is potad once when the simulation starts, as opposed to semsibn
DV routing that allow routes to change mid-simulation. Ateahative to static routing is Manual routing where routes a
not computed but instead are set (manually) by the user.)

Session Routing The static routing strategy described earlier only compuetes for the topology once in the course of a
simulation. If the above static routing is used and the togplchanges while the simulation is in progress, some seucd
destinations may become temporarily unreachable from etgr for a short time.

Session routing strategy is almost identical to staticimgytin that it runs the Dijkstra all-pairs SPF algorithmario the
start of the simulation, using the adjacency matrix and tiokts of the links in the topology. However, it will also ruret
same algorithm to recompute routes in the event that thddgg@hanges during the course of a simulation. In other word
route recomputation and recovery is done instantaneouslyteere will not be transient routing outage as in statidingu

Session routing provides complete and instantaneousgpatianges in the presence of topology dynamics. If the tapydb
always connected, there is end-to-end connectivity airatg during the course of the simulation. However, the useuksl

4Link costs can also be used to favour or disregard specifis lin order to achieve particular topology configurations.

249

note that the instantaneous route recomputation of sessitimg does not prevent temporary violations of causaditgh as
packet reordering, around the instant that the topologyngésa.

DV Routing DV routing is the implementation of Distributed BellmanfBolor Distance Vector) routing ims The
implementation sends periodic route updates ewatyertinterval . This variable is a class variable in tlotass
Agent/rtProto/DV . Its default value is 2 seconds.

In addition to periodic updates, each agent also sendsetggigupdates; it does this whenever the forwarding tabléisen
node change. This occurs either due to changes in the topabhecause an agent at the node received a route update, and
recomputed and installed new routes.

Each agent employs the split horizon with poisoned reversehanisms to advertise its routes to adjacent peers. “Split
horizon” is the mechanism by which an agent will not adverttse route to a destination out of the interface that it ingisi

to reach that destination. In a “Split horizon with poisomederse” mechanism, the agent will advertise that routebtitat
interface with a metric of infinity.

Each DV agent uses a defapleference_ of 120. The value is determined by the class variable of theesaame.

Each agent uses the class varidblEINITY (set at 32) to determine the validity of a route.

Manual Routing Manual routing is not a route computation protocol (like titbers), but simply a way for users to
configure the routing table by hand, much as you would witH'tbete” command on a workstation.

To use manual routing, enable it with rtproto, then set eamten routing tables with the add-route-to-adj-node comtdnan
For example:

$ns rtproto Manual

set nl [$ns node]

set n2 [$ns node]

$ns duplex-link $n1 $n2 10Mb 100ms DropTail
$nl add-route-to-adj-node -default $n2

$n2 add-route-to-adj-node -default $nl

For a more complete example, dekex/many_tcp.tcl

28.4 Internals and Architecture of Routing

We start with a discussion of the classes associated wittaghirouting, and the code path used to configure and execute
each of the different routing protocols. We conclude witreaatiption of the interface between unicast routing andaek
dynamics, and that between unicast and multicast routing.

28.4.1 The classes

There are four main classes, the class RoutelLogic, the itlabgect, the class rtPeer, and the base class Agent/otRyoall
protocols. In addition, the routing architecture exterasdlasses Simulator, Link, Node and Classifier.

250

cl ass Rout eLogi ¢ This class defines two methods to configure unicast routimgjcae method to query it for route
information. It also defines an instance procedure that giegble when the topology is dynamic. We discuss this last
procedure in conjunction with the interface to network dyics.

e The instance proceduregister {} is invoked by Simulator::rtproto {}. It takes the protocol and a list of
nodes as arguments, and constructs an instance vaniglstgos ~ , as an array; the array index is the name of the
protocol, and the value is the list of nodes that will run gistocol.

e Theconfigure {}readsthertprotos_ instance variable, and for each element in the array, invotete protocol
methods to perform the appropriate initializations. Itigdked by the simulator run procedure.

For each protocafrt-proto) indexed in thetprotos_ array, this routine invoke&gent/rtProto/ (rt-proto)
init-all rtprotos_((rt-proto).
Ifthere are no elementsitprotos_ , the routine invokes Static routing, Agent/rtProto/Static init-all

e The instance proceduteokup {} takes two node numbersyodeld; andnodelds, as argument; it returns the id of
the neighbor node thaiodeld; uses to reachodelds.

The procedure is used by the static route computation proedd query the computed routes and populate the routes
at each of the nodes. It is also used by the multicast routiotppols to perform the appropriate RPF check.

Note that this procedure overloads an instproc-like of trssname. The procedure queries the approptiatgect
entities if they exist (which they will if dynamic routingrstegies are used in the simulation); otherwise, the prnoeed
invokes the instproc-like to obtain the relevant inforroati

class rt Obj ect isused in simulations that use dynamic routing. Each nodeahtObject associated with it, that acts
as a co-ordinator for the different routing protocols thpermte at a node. At any node, the rtObject at that node teeads
of the protocols operating at that node; it computes andlilssthe nest route to each destination available via eatheof
protocols. In the event that the routing tables change,etdhology changes, the rtObject will alert the protocolate the
appropriate action.

The class defines the procedumé-all {}; this procedure takes a list of nodes as arguments, andtesea rtObject at
each of the nodes in its argument list. It subsequently iegatscompute-routes

The assumption is that the constructor for each of the newobbjwill instantiate the “Direct” route protocol at each
of these nodes. This route protocol is responsible for cdinguhe routes to immediately adjacent neighbors. When
compute-routes {} is run by the init-all {} procedure, these direct routes are installed in the nogeéhe appro-
priate route object.

The other instance procedures in this class are:

e init {} The constructor sets up pointers from itself to the nodeits instance variableode_, and from the node to
itself, through the Node instance procedimé-routing {} and the Node instance variabi&Object_ . It then
initializes an array ohextHop_ , rtpref ., metric_ , rtVia_ . The index of each of these arrays is the handle of
the destination node.

ThenextHop_ contains the link that will be used to reach the particulatidation;rtpref andmetric_ are the
preference and metric for the route installed in the notdéda_ is the name of the agent whose route is installed in

the node.
The constructor also creates the instance of the Direcerpttocol, and invokesompute-routes {} for that
protocol.

e add-proto {} creates an instance of the protocol, stores a referendandts array of protocolsttProtos_ . The

index of the array is the name of the protocol. It also attathe protocol object to the node, and returns the handle of
the protocol object.

251

e lookup {}takes a destination node handle, and returns the id of #ighbor node that is used to reach the destination.
If multiple paths are in use, then it returns a list of the hédigr nodes that will be used.
If the node does not have a route to the destination, the grweewill return -1.

e compute-routes {} is the core procedure in this class. It first checks to seany of the routing protocols at the
node have computed any new routes. If they have, it will deiee the best route to each destination from among
all the protocols. If any routes have changed, the procedilleotify each of the protocols of the number of such
changes, in case any of these protocols wants to send a foesiteu Finally, it will also notify any multicast protocol
that new unicast route tables have been computed.

The routine checks the protocol agent’s instance variatd€hanged_ to see if any of the routes in that protocol
have changed since the protocol was last examined. It thesithe protocol’s instance variable arragextHop_ ,
rtpref ., andmetric_ to compute its own arrays. The rtObject will install or mgddny of the routes as the
changes are found.

If any of the routes at the node have changed, the rtObjettinvibke the protocol agent’s instance procedures,
send-updates {} with the number of changes as argument. It will then invake multicast route object, if it
exists.

The next set of routines are used to query the rtObject faouarstate information.

e dump-routes {} takes a output file descriptor as argument, and writes batrouting table at that node on that file
descriptor.

A typical dump output is:

e rtProto? {} takes a route protocol as argument, and returns a handikegdnstance of the protocol running at the
node.

e nextHop? {} takes a destination node handle, and returns the link ihated to reach that destination.

e Similarly, rtpref? {} and metric? {} take a destination node handle as argument, and returmptbirence and
metric of the route to the destination installed at the node.

Thecl ass rtPeer isacontainerclass used by the protocol agents. Each digges the address of the peer agent, and
the metric and preference for each route advertised by #at pA protocol agent will store one object per peer. Thesclas
maintains the instance varialdeldr_ , and the instance variable arraypsetric_ andrtpref _ ; the array indices are the
destination node handles.

The class instance proceduresetric {} and preference {}, take one destination and value, and set the respective ar
ray variable. The proceduresietric? {} and preference? {}, take a destination and return the current value for that
destination. The instance procedaddr? {} returns the address of the peer agent.

cl ass Agent/rtProto Thisclass is the base class from which all routing protogelds are derived. Each protocol
agent must define the procedumig-all {} to initialize the complete protocol, and possibly instanproceduremit {},
compute-routes {}, and send-updates {}. In addition, if the topology is dynamic, and the protocalpports route
computation to react to changes in the topology, then thevpobshould define the procedwempute-all {}, and possi-
bly the instance procedunetf-changed {}. In this section, we will briefly describe the interfacerftihe basic procedures.
We will defer the description ofompute-all {} and intf-changed {} to the section on network dynamics. We also
defer the description of the details of each of the prototttheir separate section at the end of the chapter.

252

— The procedurénit-all {} is a global initialization procedure for the class. It még given a list of the nodes as
an argument. This the list of nodes that should run this ngutirotocol. However, centralized routing protocols such
as static and session routing will ignore this argumentaitd dynamic routing protocols such as DV will use this
argument list to instantiate protocols agents at each afitiies specified.

Note that derived classes in OTcl do not inherit the procesdlulefined in the base class. Therefore, every derived
routing protocol class must define its own procedures eitiglic

— The instance proceduigit {} is the constructor for protocol agents that are createdhe base class constructor
initializes the default preference for objects in this slaglentifies the interfaces incident on the node and thei#r cu
rent status. The interfaces are indexed by the neighborlbamdl stored in the instance variable arriéy, ; the
corresponding status instance variable arragsiait_

Centralized routing protocols such as static and sessigimigpdo not create separate agents per node, and therefore d
not access any of these instance procedures.

— The instance procedummmpute-routes {} computes the actual routes for the protocol. The compateis based
on the routes learned by the protocol, and varies from padtmcprotocol.

This routine is invoked by the rtObject whenever the topgloganges. It is also invoked when the node receives an
update for the protocol.

If the routine computes new routetObject::compute-routes {} needs to be invoked to recompute and possi-
bly install new routes at the node. The actual invoking ofrtfject is done by the procedure that invoked this routine
in the first place.

— The instance procedusend-updates {}is invoked by the rtObject whenever the node routing tatiave changed,
and fresh updates have to be sent to all peers. The rtObjssepas argument the number of changes that were done.
This procedure may also be invoked when there are no changbs troutes, but the topology incident on the node
changes state. The number of changes is used to determili& thfepeers to which a route update must be sent.

Other procedures relate to responding to topology changgsie described later (Section 28.4.2).

Other Extensions to the Simulator, Node, Link, and Classifie

— We have discussed the methattwoto {} and cost {} in the class Simulator earlier (Section 28.1). The oneesth
method used internally iget-routelogic {}; this procedure returns the instance of routelogic in iaulation.

The method is used by the class Simulator, and unicast antitasilrouting.

— The class Node contains these additional instance proesttusupport dynamic unicast routirigit-routing {3,
add-routes {}, delete-routes {}, and rtObject? {}.

The instance proceduiit-routing {}is invoked by thertObject atthe node. It stores a pointer to the rtObject,
in its instance variablgObject_ , for later manipulation or retrieval. It also checks itssdaariable to see if it should
use multiPath routing, and sets up an instance variableatoeffect. If multiPath routing could be used, the instance
variable arrayroutes_ stores a count of the number of paths installed for eachrd®gin. This is the only array in
unicast routing that is indexed by the node id, rather themibde handle.

The instance procedurtObject? {} returns the rtObject handle for that node.

The instance procedusald-routes {} takes a node id, and a list of links. It will add the list ohks as the routes
to reach the destination identified by the node id. The ratiim of multiPath routing is done by using a separate
Classifier/multiPath. For any given destinatiordidf this node has multiple paths th then the main classifier points
to this multipath classifier instead of the link to reach thestthation. Each of the multiple paths identified by the
interfaces being used is installed in the multipath claasifthe multipath classifier will use each of the links inist@l

in it for succeeding packets forwarded to it.

253

The instance procedudelete-routes {} takes a node id, a list of interfaces, and a nullAgent. in@ves each of
the interfaces in the list from the installed list of intexées. If the entry did not previously use a multipath classifie
then it must have had only one route, and the route entry i®g®iint to the nullAgent specified.

Q: WHY DOES IT NOT POINT TO NULLAGENT IF THE ENTRIES IN THE MPARCLASSIFIER GOES TO
ZERO?

— The main extension to the class Link for unicast routingoisapport the notion of link costs. The instance variable
cost_ contains the cost of the unidirectional link. The instanaepduresost {} and cost? {} set and get the cost
on the link.

Note thatcost {} takes the cost as argument. It is preferable to use the lsitoumethod to set the cost variable,
similar to the simulator instance procedures to set the goedelay on a link.

— Theclass Classifier contains three new procedures, two of which overloads astiegiinstproc-like, and the
other two provide new functionality.

The instance procedumestall {} overloads the existing instproc-like of the same nameeTocedure stores the
entry being installed in the instance variable aredlgments_ , and then invokes the instproc-like.

The instance proceduiestallNext {} also overloads the existing instproc-like of the same m®arfhis instproc-
like simply installs the entry into the next available slot.

The instance proceduesljacents {} returns a list of (key, value pairs of all elements installed in the classifier.

28.4.2 Interface to Network Dynamics and Multicast

This section describes the methods applied in unicastmgidi respond to changes in the topology. The complete sequen
of actions that cause the changes in the topology, and firappeopriate actions is described in a different sectione Th
response to topology changes falls into two categorieforataken by individual agents at each of the nodes, andrectd

be taken globally for the entire protocol.

Detailed routing protocols such as the DV implementatiaquie actions to be performed by individual protocol ageatts
the affected nodes. Centralized routing protocols sucha® &ind session routing fall into the latter category esidlely.
Detailed routing protocols could use such techniques tbeyadtatistics related to the operation of the routing proto
however, no such code is currently implementedsn

Actions at the individual nodes Following any change in the topology, the network dynamicsleis will first invoke
rtObject::intf-changed {} at each of the affected nodes. For each of the unicast ngytrotocols operating at that
node, rtObject::intf-changed {} will invoke each individual protocol’s instance procedy intf-changed {},
followed by that protocol’'sompute-routes {}.

After each protocol has computed its individual rout&3bject::intf-changed {} invokes compute-routes {}

to possibly install new routes. If new routes were instailedhe node rtObject::compute-routes {} will invoke
send-updates {} for each of the protocols operating at the node. The pracedvill also flag the multicast route object of
the route changes at the node, indicating the number of @sgthgt have been executetDbject::flag-multicast {3
will, in turn, notify the multicast route object to take appriate action.

The one exception to the interface between unicast and aasttrouting is the interaction between dynamic dense mode
multicast and detailed unicast routing. This dynamicDM lenpentation imsassumes neighbor nodes will send an implicit
update whenever their routes change, without actually ingnithe update. It then uses this implicit information to com
pute appropriate parent-child relationships for the neakit spanning trees. Therefore, detailed unicast routitignwoke
rtObject_ flag-multicast 1 whenever it receives a route update as well, even if that tepdizes not result in any
change in its own routing tables.

254

Global Actions Once the detailed actions at each of the affected nodes ipleted, the network dynamics models will
notify the RouteLogic instanc&putelLogic::notify {}) of changes to topology. This procedure invokes the prhge
compute-all {} for each of the protocols that were ever installed at anyhef nodes. Centralized routing protocols such
as session routing use this signal to recompute the rouths topology. Finally, th&®outeLogic::notify {} procedure
notifies any instances of centralized multicast that areaipe at the node.

28.5 Protocol Internals

In this section, we describe any leftover details of eacthefrbuting protocol agents. Note that this is the only plabens
we describe the internal route protocol agent, “Direct"tiog.

Direct Routing This protocol tracks the state of the incident links, andntans routes to immediately adjacent neighbors
only. As with the other protocols, it maintains instanceafle arrays ohextHop_ , rtpref_ , andmetric_ , indexed by
the handle of each of the possible destinations in the tggolo

The instance procedumpute-routes {} computes routes based on the current state of the link, thedoreviously
known state of the incident links.

No other procedures or instance procedures are definedigoribtocol.

Static Routing The procedureompute-routes {}in the class RoutelLogic first creates the adjacency matrix, and
then invokes the C++ methodpmpute_routes () of the shadow object. Finally, the procedure retrievesrsult of the
route computation, and inserts the appropriate routescit ethe nodes in the topology.

The class only defines the procedimit-all {} that invokescompute-routes {}.

Session Routing The class defines the procedimi-all {} to compute the routes at the start of the simulation. lbals
defines the procedummpute-all {} to compute the routes when the topology changes. Eachedelprocedures directly
invokescompute-routes {}.

DV Routing In a dynamic routing strategy, nodes send and receive messaigd compute the routes in the topology based
on the messages exchanged. The procethit-@ll {} takes a list of nodes as the argument; the default is thedlfs
nodes in the topology. At each of the nodes in the argumeatpthcedure starts thdass rtObject and aclass
Agent/rtProto/DV agents. It then determines the DV peers for each of the neselgted DV agents, and creates the
relevantrtPeer objects.

The constructor for the DV agent initializes a number of &mste variables; each agent stores an array, indexed by the
destination node handle, of the preference and metricntieeface (or link) to the next hop, and the remote peer intide

the interface, for the best route to each destination coetphy the agent. The agent creates these instance variabtés,
then schedules sending its first update within the first Ocbrses of simulation start.

Each agent stores the list of its peers indexed by the haffithe @eer node. Each peer is a separate peer structure fdat ho
the address of the peer agent, the metric and preference adttite to each destination advertised by that peer. We sitbe
rtPeer structure later when discuss the route architeclithie peer structures are initialized by the proceddd-peer {}
invoked byinit-all {3

255

The routinesend-periodic-update {} invokes send-updates {} to send the actual updates. It then reschedules
sending the next periodic update afselvertinterval jittered slightly to avoid possible synchronization effec

send-updates {} will send updates to a select set of peers. If any of the esudt that node have changed, or for periodic
updates, the procedure will send updates to all peers. Wigerif some incident links have just recovered, the proced
will send updates to the adjacent peers on those incide éinly.

send-updates {} uses the procedursend-to-peer {}to send the actual updates. This procedure packages ttiatep
taking the split-horizon and poison reverse mechanisnesantount. It invokes the instproc-likeend-update {} (Note

the singular case) to send the actual update. The actua vpalate is stored in the class variabieg_ indexed by a non-
decreasing integer as index. The instproc-like only sehdsridex tomsg_ to the remote peer. This eliminates the need to
convert from OTcl strings to alternate formats and back.

When a peer receives a route update it first checks to deterifrtime update from differs from the previous ones. The agent
will compute new routes if the update contains new inforomati

28.6 Unicast routing objects

Routelogic and rtObject are two objects that are signifitantnicast routing ims Routelogic, essentially, represents the
routing table that is created and maintained centrally f@rg unicast simulation. rtObject is the object that eveoge
taking part in dynamic unicast routing, has an instance afteNhat nodes will not have an instance of this object if B@ss
routing is done as a detailed routing protocol is not beimgusated in this case. The methods for RouteLogic and rt@bjec
are described in the next section.

28.7 Commands at a glance

Following is a list of unicast routing related commands usesimulation scripts:

$ns_ rtproto <routing-proto> <args>

where <routing-proto> defines the type of routing protoodbé used, like Static, Manual, Session , DV etc. args mayealefin
the list of nodes on which the protocol is to be run. The nostadiefaults to all nodes in the topology.

Internal methods:

$ns_ compute-routes

This command computegext_hop information for all nodes in the topology using the topolagpnnectivity. This

next_hop info is then used to populate the node classifiers or thengugibles. compute-routes calls compute-flat-routes
or compute-hier-routes depending on the type of addressingy used for the simulation.

$ns_ get-routelogic

This returns a handle to the RoutelLogic object (the routiidg), if one has been created. Otherwise a new routing table
object is created.

$ns_ dump-routelogic-nh

256

This dumps next hop information in the routing table.
$ns_ dump-routelogic-distance

This dumps the distance information in the routing table.
$node add-route <dst> <Target>

This is a method used to add routing entries (nexthop inftiomgin the node’s routing table. The nexthop to <dst> from
this node is the <target> object and this info is added to tdeis classifier.

$routelogic lookup <srcid> <destid>
Returns the id of the node that is the next hop from the node idisrcid to the node with id destid.
$routelogic dump <nodeid>

Dump the routing tables of all nodes whose id is less thanidotide ids are typically assigned to nodes in ascending
fashion starting from 0 by their order of creation.

rtobject dump-routes <filelID>

Dump the routing table to the output channel specified byDiléileID must be a file handle returned by the Tcl open
command and it must have been opened for writing.

$rtobject rtProto? <proto>

Returns a handle to the routing protocol agent specified biopf it exists at that node. Returns an empty string othsewi
$rtobject nextHop? <destIlD>

Returns the id of the node that is the next hop to the destinatiecified by the node id, <destID>.

$rtobject rtpref? destiD

Returns the preference for the route to destination nodenddy destid.

$rtobject metric? destlD

Returns metric for the route to destid.

257

Chapter 29

Multicast Routing

This section describes the usage and the internals of rasitiouting implementation ins We first describe the user
interface to enable multicast routing (Section 29.1), gpélse multicast routing protocol to be used and the varimethods
and configuration parameters specific to the protocols ntlreupported ims We then describe in detail the internals and
the architecture of the multicast routing implementations (Section 29.2).

The procedures and functions described in this chaptere&oumnd in various files in the directorieagtcl/mcast, ngtcl/ctr-
mcast; additional support routines are ims‘mcast_ctrl.{cc,h}, adtcl/lib/ns-lib.tcl, and -agtcl/lib/ns-node.tcl.

29.1 Multicast API

Multicast forwarding requires enhancements to the nodddiaks in the topology. Therefore, the user must specifytioast
requirements to the Simulator class before creating theltgy. This is done in one of two ways:

set ns [new Simulator -multicast on]
or

set ns [new Simulator]

$ns multicast

When multicast extensions are thus enabled, nodes will é&ted with additional classifiers and replicators for noaki
forwarding, and links will contain elements to assign indoginterface labels to all packets entering a node.

A multicast routing strategy is the mechanism by which thdtizast distribution tree is computed in the simulatioms
supports three multiast route computation strategiesraksed, dense mode(DM) or shared tree mode(ST).

The methodnrtproto {} in the Class Simulator specifies either the route comgatastrategy, for centralised multicast
routing, or the specific detailed multicast routing protidbat should be used.

The following are examples of valid invocations of multicesuting inns

set cmc [$ns mrtproto CtrMcast] H# specify centralized multicast for all nodes
;# cmcis the handle for multicast protocol object
$ns mrtproto DM # specify dense mode multicast for all nodes

258

$ns mrtproto ST ;# specify shared tree mode to run on all nodes

Notice in the above examples that CtrMcast returns a hamdiedan be used for additional configuration of centralised
multicast routing. The other routing protocols will rettamull string. All the nodes in the topology will run instarsoaf the
same protocol.

Multiple multicast routing protocols can be run at a nodd,ibuhis case the user must specify which protocol owns which
incoming interface. For this finer controirtproto-iifs {}is used.

New/unused multicast address are allocated using the guoeallocaddr {}.
The agents use the instance procedjoiesgroup {}and leave-group {}, in the class Node to join and leave multicast
groups. These procedures take two mandatory argumentdir§hargument identifies the corresponding agent and second

argument specifies the group address.

An example of a relatively simple multicast configuration is

set ns [new Simulator -mul ticast on ;# enable multicast routing
set group [Node al | ocaddr] ;# allocate a multicast address
set nodeO [$ns node] # create multicast capable nodes

set nodel [$ns node]
$ns duplex-link $node0 $nodel 1.5Mb 10ms DropTail

set mproto DM ;# configure multicast protocol
set mrthandle [$ns nrtproto $nprotg # all nodes will contain multicast protocol agents
set udp [new Agent/UDP] ;# create a source agent at node 0

$ns attach-agent $nodeO $udp

set src [new Application/Traffic/CBR]
$src attach-agent $udp

$udp set dst_addr_ $group
$udp set dst_port_ O

set rcvr [new Agent/LossMonitor] # create a receiver agent at node 1
$ns attach-agent $nodel $rcvr
$ns at 0.3 " $nodel join-group $rcvr $group ;# jointhe group at simulation time 0.3 (sec)

29.1.1 Multicast Behavior Monitor Configuration

nssupports a multicast monitor module that can trace usene@fdacket activity. The module counts the number of packets
in transit periodically and prints the results to specifideisfiattach {} enables a monitor module to print output to a file.
trace-topo {} insets monitor modules into all linksfilter {} allows accounting on specified packet header, field in
the header), and value for the field). Callifiger {} repeatedly will result in an AND effect on the filtering cdlition.
print-trace {} notifies the monitor module to begin dumping dafatype() is a global arrary that takes a packet type
name (as seen tnace-all {} output) and maps it into the corresponding value. A simpdafiguration to filter cbr packets

on a particular group is:

set mcastmonitor [new McastMonitor]

set chan [open cbr.tr w] # open trace file
$mmonitor attach $chanl # attach trace file to McastMoniotor object
$mcastmonitor set period_ 0.02 # default 0.03 (sec)

259

$mmonitor trace-topo ;# trace entire topology

$mmonitor filter Common ptype_ $ptype(cbr) H filter on ptype_ in Common header
$mmonitor filter IP dst_ $group # AND filter on dst_ address in IP header
$mmonitor print-trace # begin dumping periodic traces to specified files

The following sample output illustrates the output file fatnftime, count):

0.16 0

0.17999999999999999
0.19999999999999998
0.21999999999999997 6
0.23999999999999996 11
0.25999999999999995 12
0.27999999999999997 12

o o

29.1.2 Protocol Specific configuration

In this section, we briefly illustrate the protocol specifimfiguration mechanisms for all the protocols implementeasi

Centralized Multicast The centralized multicast is a sparse mode implementafionudticast similar to PIM-SM [9]. A
Rendezvous Point (RP) rooted shared tree is built for a pagtigroup. The actual sending of prune, join messagescetc. t
set up state at the nodes is not simulated. A centralized otatipn agent is used to compute the forwarding trees and set
up multicast forwarding statéS, G at the relevant nodes as new receivers join a group. Dateepafiom the senders to a
group are unicast to the RP. Note that data packets from titeesg are unicast to the RP even if there are no receiversdor t

group.

The method of enabling centralised multicast routing imawgation is:

set mproto CtrMcast # set multicast protocol
set mrthandle [$ns mrtproto $mproto]

The command procedurertproto {} returns a handle to the multicast protocol object. Thigntlkee can be used to control
the RP and the boot-strap-router (BSR), switch tree-typea fparticular group, from shared trees to source specéistr
and recompute multicast routes.

$mrthandle set_c_rp $node0 $nodel # setthe RPs
$mrthandle set_c_bsr $node0:0 $nodel:1l H# set the BSR, specified as list of node:priority
$mrthandle get c_rp $node0 $group H get the current RP ???
$mrthandle get c_bsr $node0 # getthe current BSR
$mrthandle switch-treetype $group H to source specific or shared tree
$mrthandle compute-mroutes H recompute routes. usually invoked automatically as needed

Note that whenever network dynamics occur or unicast rgutimangescompute-mroutes {} could be invoked to re-
compute the multicast routes. The instantaneous re-catipatfeature of centralised algorithms may result in chiysa
violations during the transient periods.

260

Dense Mode The Dense Mode protocoDM.tcl) is an implementation of a dense—mode-like protocol. Ddjpgnon
the value of DM class variableacheMissMode it can run in one of two modes. EacheMissMode is set topimdm
(default), PIM-DM-like forwarding rules will be used. Alteatively, CacheMissMode can be set tadvmrp (loosely based
on DVMRP [30]). The main difference between these two mosléisdat DVMRP maintains parent—child relationships among
nodes to reduce the number of links over which data packetsraadcast. The implementation works on point-to-poirkdi

as well as LANs and adapts to the network dynamics (linksgamand down).

Any node that receives data for a particular group for whtdiais no downstream receivers, send a prune upstream. A prune
message causes the upstream node to initiate prune sthtd abtle. The prune state prevents that node from sendiag dat
for that group downstream to the node that sent the originaigp message while the state is active. The time duration for
which a prune state is active is configured through the DMsclasiable PruneTimeout . A typical DM configuration is
shown below:

DM set PruneTimeout 0.3 # default 0.5 (sec)
DM set CacheMissMode dvmrp # default pimdm
$ns mrtproto DM

Shared Tree Mode Simplified sparse mod8T.tcl is a version of a shared—tree multicast protocol. Clasab&iarray
RP_indexed by group determines which node is the RP for a pdatiguoup. For example:

ST set RP_($group) $node0
$ns mrtproto ST

At the time the multicast simulation is started, the protogil create and install encapsulator objects at nodes liaae
multicast senders, decapsulator objects at RPs and caimeect To join a group, a node sends a graft message towards the
RP of the group. To leave a group, it sends a prune messageratoeol currently does not support dynamic changes and
LANSs.

Bi-directional Shared Tree Mode BST.tcl is an experimental version of a bi—directional shared tnedqggol. As in
shared tree mode, RPs must be configured manually by usingdabe arrayRP_. The protocol currently does not support
dynamic changes and LANSs.

29.2 Internals of Multicast Routing

We describe the internals in three parts: first the classémptement and support multicast routing; second, the $ipeci
protocol implementation details; and finally, provide & tifthe variables that are used in the implementations.

29.2.1 The classes

The main classes in the implementation aredlass mrtObject and theclass McastProtocol . There are also
extensions to the base classes: Simulator, Node, ClassiftieiVe describe these classes and extensions in this subisectio
The specific protocol implementations also use adjunctstatatures for specific tasks, such as timer mechanismstayet®
dense mode, encapsulation/decapsulation agents foatisatt multicasetc; we defer the description of these objects to the
section on the description of the particular protocol ftsel

261

mrtObject class There is one mrtObject (aka Arbiter) object per multicagiadzle node. This object supports the ability
for a node to run multiple multicast routing protocols by ntaining an array of multicast protocols indexed by the mew
interface. Thus, if there are several multicast protocbks aode, each interface is owned by just one protocol. Thezef
this object supports the ability for a node to run multiplelticast routing protocols. The node uses the arbiter togrerf
protocol actions, either to a specific protocol instancé&acit that node, or to all protocol instances at that node.

addproto {instance, [iiflist]} adds the handle for a protocol instano its array of protocols. The second
optional argument is the incoming interface list contrdll®y the protocol.
If this argument is an empty list or not specified, the proti€assumed to
run on all interfaces (just one protocol).

getType {protocol} returns the handle to the protocol instanceaett that node that matches
the specified type (first and only argument). This functiooften used to
locate a protocol’s peer at another node. An empty stringtisrned if the
protocol of the given type could not be found.

all-mprotos {op, args} internal routine to execut®p” with “ args " on all protocol instances ac-
tive at that node.

start {}
stop {} start/stop execution of all protocols.

notify {dummy} is called when a topology change occurs. The dummgyarentis currently
not used.

dump-mroutes {file-handle, [grp], [src]} dump multicast routes to speeififile-handle.
join-group {G, S} signals all protocol instances to joii$, G).
leave-group {G, S} signals all protocol instances to leay®, G).

upcall {code, s, g, iif} signalled by node on forwarding errors iraskifier; this routine in turn
signals the protocol instance that owns the incoming iatef(if) by
invoking the appropriate handle function for that partandode.

drop {rep, s, g, iif} Called on packet drop, possibly to prune ateiface.

In addition, the mrtObject class supports the concept of lwadwn groupsj.e., those groups that do not require explicit
protocol support. Two well known group8LL_ ROUTERSNdALL_PIM_ROUTERSre predefined ins

Theclass mrtObject defines two class procedures to set and get information @abes¢ well known groups.

registerWellKknownGroups {name} assign:iame a well known group address.

getWellKnownGroup {name} returnsthe address allocated to well known grawgme. If nameis not reg-
istered as a well known group, then it returns the addresaslior ROUTERS

McastProtocol class This is the base class for the implementation of all the roadi protocols. It contains basic multicast
functions:

start {}, stop {} Setthestatus_ of execution of this protocol instance.
getStatus {} return the status of execution of this protocol instance.
getType {} returnthe type of protocol executed by this instance.

upcall {code args} invoked when the node classifier signals an ggitiner due to a cache-miss or a wrong-iif for
incoming packet. This routine invokes the protocol speditimdle,handle- (code){} with
specifiedargs to handle the signal.

A few words about interfaces. Multicast implementatiomgassumes duplex links i.e. if there is a simplex link from naéde

to node 2, there must be a reverse simplex link from node 2de o To be able to tell from which link a packet was received,
multicast simulator configures links with an interface lddreat the end of each link, which labels packets with a patér

262

and unique label (id). Thus, “incoming interface” is retmirto this label and is a number greater or equal to zero. lirgpm
interface value can be negative (-1) for a special case Wiepdcket was sent by a local to the given node agent.

In contrast, an “outgoing interface” refers to an objectdian usually a head of a link which can be installed at a oapdir.
This destinction is importanincoming interface is a numeric label to a packet, while aing interface is a handler to an
object that is able to receive packets, e.g. head of a link.

29.2.2 Extensions to other classes ims

In the earlier chapter describing nodess(Chapter 5), we described the internal structure of the moda To briefly recap
that description, the node entry for a multicast node issthikch_ . It looks at the highest bit to decide if the destination is
a multicast or unicast packet. Multicast packets are fodedrto a multicast classifier which maintains a list of regiics;
there is one replicator pésource, grouptuple. Replicators copy the incoming packet and forwardltoggoing interfaces.

Class Node Node support for multicast is realized in two primary wayssdrves as a focal point for access to the multicast
protocols, in the areas of address allocation, control andagement, and group membership dynamics; and secondly, it
provides primitives to access and control interfaces drslincident on that node.

263

expandaddr {},
allocaddr {}

start-mcast {},
stop-mcast {}
notify-mcast {}

getArbiter {}
dump-routes {file-handle}

new-group {s g iif code}

join-group {ag}

leave-group {ag}

add-mfc {s g iif oiflist}

del-mfc {s g oiflist}

Class procedures for address managementexpandaddr {} is now obsoleted.
allocaddr {} allocates the next available multicast address.

To start and stop multicast routing at that node.

notify-mcast {} signals the mrtObject at that node to recompute multicastes fol-
lowing a topology change or unicast route update from a riEgh

returns a handle to mrtObject operating at that node.
to dump the multicast forwarding tables attthade.

When a multicast data packet is received, aredrtiulticast classifier cannot find the slot
corresponding to that data packet, it invokésde nstproc new-group {} to estab-
lish the appropriate entry. The code indicates the reasomdfifinding the slot. Currently
there are two possibilities, cache-miss and wrong-iif. sTpriocedure notifies the arbiter
instance to establish the new group.

An agent at a node that joins a particular group invokeasotle join-group
<agent> <group> ". The node signals the mrtObject to join the particuigoup ,
and addsgent to its list of agents at thagroup . It then addsgent to all replicators
associated witlgroup .

Node instproc leave-group reverses the process described earlier. It disables
the outgoing interfaces to the receiver agents for all tipdicators of the group, deletes
the receiver agents from the locAbents_ list; it then invokes the arbiter instance’s
leave-group {}.

Node instproc add-mfc adds amulticast forwarding cachentry for a particular
(source, group, iif. The mechanism is:

e create a new replicator (if one does not already exist),
e update theeplicator_ instance variable array at the node,
e add all outgoing interfaces and local agents to the appatgreplicator,

e invoke the multicast classifieradd-rep {} to create a slot for the replicator in the
multicast classifier.

disables each oif imiflist from the replicator fors, g.

The list of primitives accessible at the node to controlriteifaces are listed below.

264

add-iif {ifid link},
add-oif {linkif} Invoked during link creation to prep the node aboii$ incoming interface label and outgoing
interface object.
get-all-oifs {} Returns all oifs for this node.
get-all-iifs {} Returns all iifs for this node.
iif2link {ifid} Returns the link object labelled with given interfatabel.
link2iif {link} Returns the incoming interface label for the givénk
oif2link {oif} Returns the link object corresponding to the given gaing interface.
link2oif {link} Returns the outgoing interface for tHenk (nsobject that is incident to the node).
rpf-nbr {src} Returns a handle to the neighbour node that is its negtto the specifiedrc .
getReps {sg} Returns a handle to the replicator that matckgs). Either argument can be a wildcard (*).
getReps-raw {sg} As above, but returns a list dkey, handlé pairs.
clearReps {sg} Removes all replicators associated w{#) g).

Class Link and SimpleLink This class provides methods to check the type of link, andabel it affixes on individual
packets that traverse it. There is one additional methodtigaily place the interface objects on this link. These rodtare:

if-label? {} returns the interface label affixed by this link to packétsit traverse it.

Class Networkinterface This is a simple connector that is placed on each link. It effiks label id to each packet that
traverses it. The packetid is used by the destination nadeéent on that link to identify the link by which the packeaohed

it. The label id is configured by the Link constructor. Thigedt is an internal object, and is not designed to be manipdla
by user level simulation scripts. The object only suppas methods:

label {ifid} assignsifid that this object will affix to each packet.
label {} returns the label that this object affixes to each packet.

The global class variabldacenum_ , specifies the next availabiigd number.

Class Multicast Classifier Classifier/Multicast maintains amulticast forwarding cacheThere is one multicast
classifier per node. The node stores a reference to thisf@ass its instance variablenulticlassifier_ . When this
classifier receives a packet, it looks at {lseurce, groupinformation in the packet headers, and the interface treapttket

arrived from (the incoming interface or iif); does a lookupthe MFC and identifies the slot that should be used to forward
that packet. The slot will point to the appropriate replarat

However, if the classifier does not have an entry for thisurce, group or the iif for this entry is different, it will invoke an
upcallnew-group {} for the classifier, with one of two codes to identify the fnem:

e cache-miss indicates that the classifier did not find afspurce, groupentries;

e wrong-iif indicates that the classifier fourgource, groupentries, but none matching the interface that this packet
arrived on.

These upcalls to TCL give it a chance to correct the situatiastall an appropriate MFC—entry (faache-miss) or
change the incoming interface for the existing MFC—entoy@rong-iif). Thereturn valueof the upcall determines what
classifier will do with the packet. If the return value is “It' will assume that TCL upcall has appropriately modified MFC

265

will try to classify packet (lookup MFC) for the second timéthe return value is “0”, no further lookups will be done,can
the packet will be thus dropped.

add-rep {} creates a slot in the classifier and adds a replicator$murce, group, iifto that slot.

Class Replicator When a replicator receives a packet, it copies the packétad igs slots. Each slot points to an outgoing
interface for a particulatsource, group

If no slot is found, the C++ replicator invokes the classamse procedurdrop {} to trigger protocol specific actions. We
will describe the protocol specific actions in the next sattivhen we describe the internal procedures of each of thigcast
routing protocols.

There are instance procedures to control the elements mstelc

insert {oif} inserting a new outgoing interface to the next avaiailot.
disable {oif} disable the slot pointing to the specified oif.
enable {oif} enable the slot pointing to the specified oif.
is-active {} returnstrue if the replicator has at least one active slot
exists {oif} returns true if the slot pointing to the specified oif &tive.
change-iface {source, group, oldiif, newiif} modified the iif entry for # particular replicator.

29.2.3 Protocol Internals

We now describe the implementation of the different muliicauting protocol agents.

Centralized Multicast

CtrMcast is inherits fromMcastProtocol . One CtrMcast agent needs to be created for each node. Tharedn-
tral CtrMcastComp agent to compute and install multicastes for the entire topology. Each CtrMcast agent processes
membership dynamic commands, and redirects the CtrMcagpGgent to recompute the appropriate routes.

join-group {} registers the new member with theétrMCastComp agent, and invokes that agent to re-
compute routes for that member.

leave-group {} istheinverse ofjoin-group {}.

handle-cache-miss {} called when no proper forwarding entry is found for a pattiar packet source. In case of
centralized multicast, it means a new source has startatirgpdata packets. Thus, the
CtrMcast agent registers this new source with@eMcastComp agent. If there are any
members in that group, compute the new multicast tree. Ifitbap is in RPT (shared tree)
mode, then

1. create an encapsulation agent at the source;
2. a corresponding decapsulation agent is created at the RP;
3. the two agents are connected by unicast; and

4. the(S,G entry points its outgoing interface to the encapsulaticenag

266

CtrMcastComp is the centralised multicast route computation agent.

reset-mroutes {} resets all multicast forwarding entries.
compute-mroutes {} (re)computes all multicast forwarding entries.

compute-tree {source, group} computes a multicast tree for one sourcesth all the receivers in a

specific group.

compute-branch {source, group, member} is executed when a receiver joinsuéticast group. It could also be
invoked bycompute-tree {} when it itself is recomputing the mul-
ticast tree, and has to reparent all receivers. The algorgtarts at the
receiver, recursively finding successive next hops, unéither reaches
the source or RP, or it reaches a node that is already a pdreatte-
vant multicast tree. During the process, several new rafdis and an
outgoing interface will be installed.

prune-branch {source, group, member} is similar ttompute-branch {} except the outgoing interface is dis-
abled; if the outgoing interface list is empty at that nodewill walk
up the multicast tree, pruning at each of the intermediatieapuntil it
reaches a node that has a non-empty outgoing interfacetishé par-
ticular multicast tree.

Dense Mode

join-group {group} sends graft messages upstreaSfG does not contain any ac-
tive outgoing slotsi(e., no downstream receivers). If the next
hop towards the source is a LAN, icrements a counter of recgiv
for a particular group for the LAN

leave-group {group} decrements LAN counters.

handle-cache-miss {srcID group iface} depending on the value of CacheMissMode
calls either handle-cache-miss-pimdm or
handle-cache-miss-dvmrp

handle-cache-miss-pimdm {srcID group iface} if the packet was received on the corndcdffrom the node that
is the next hop towards the source), fan out the packet orifall o
except the oif that leads back to the next—hop—neighbor dad o
that are LANSs for which this node is not a forwarder. Otheryis
if the interface was incorrect, send a prune back.

handle-cache-miss-dvmrp {srcID group iface} fans out the packet only to nodes for whifis node is a next
hop towards the source (parent).

drop {replicator source group iface} sends a prune message lusitietprevious hop.
recv-prune {from source group iface} resets the prunetimerif the ifdee had been pruned previously;
otherwise, it starts the prune timer and disables the iaterffur-

thermore, if the outgoing interface list becomes emptyrafpa-
gates the prune message upstream.

recv-graft {from source groupiface} cancels any existing prune tinsrdre-enables the pruned in-
terface. If the outgoing interface list was previously eynjit
forwards the graft upstream.

handle-wrong-iif {srcID group iface} This is invoked when the multicast cldies drops a
packet because it arrived on the wrong interface, and
invoked new-group {}. This routine is invoked by
mrtObject instproc new-group {}. When invoked, it
sends a prune message back to the source.

267

29.2.4 The internal variables

Class mrtObject
protocols_

mask-wkgroups
wkgroups

McastProtocol
status_
type_
Simulator
multiSim_
MrtHandle_

Node
switch_

multiclassifier_
replicator_
Agents_

outLink_
inLink_

Link andSimpleLink
if_

head_

NetworkInterface
ifacenum_

An array of handles of protocol instances active at the nadehich this protocol operates
indexed by incoming interface.

Class variable—defines the mask used to identify well knomuigs.

Class array variable—array of allocated well known grougdrasses, indexed by the group
name.wkgroups (Allocd) is a special variable indicating the highest cathg allocated well
known group.

takes values “up” or “down”, to indicate the status of exémubf the protocol instance.
contains the type (class hame) of protocol executed byrktaincee.g, DM, or ST.

1 if multicast simulation is enabled, 0 otherwise.
handle to the centralised multicast simulation object.

handle for classifier that looks at the high bit of the destimeaddress in each packet to deter-
mine whether it is a multicast packet (bit = 1) or a unicastea¢bit = 0).

handle to classifier that performs tkg g, iif) match.

array indexed by(s, g of handles that replicate a multicast packet on to the reguinks.

array indexed by multicast group of the list of agents at tfoal node that listen to the specific
group.

Cached list of outgoing interfaces at this node.

Cached list of incoming interfaces at this node.

handle for the Networkinterface object placed on this link.

first object on the link, a no-op connector. However, thisscbontains the instance variable,
link_ , that points to the container Link object.

Class variable—holds the next available interface number.

29.3 Commands at a glance

Following is a list of commands used for multicast simulasp

set ns [new Simulator -mcast on]
This turns the multicast flag on for the the given simulatitrthe time of creation of the simulator object.

ns_ multicast

This like the command above turns the multicast flag on.

ns_ multicast?

This returns true if multicast flag has been turned on for threikation and returns false if multicast is not turned on.

268

$ns_ mrtproto <mproto> <optional:nodelist>

This command specifies the type of multicast protocol <ngprab be used like DM, CtrMcast etc. As an additional
argument, the list of nodes <nodelist> that will run an ins&of detailed routing protocol (other than centralise@dstccan
also be passed.

$ns_ mrtproto-iifs <mproto> <node> <iifs>
This command allows a finer control than mrtproto. Since ipletmcast protocols can be run at a node, this command
specifies which mcast protocol <mproto> to run at which ofitteeming interfaces given by <iifs> in the <node>.

Node allocaddr
This returns a new/unused multicast address that may betasasdign a multicast address to a group.

Node expandaddr
THIS COMMAND IS OBSOLETE NOW This command expands the adsisgmce from 16 bits to 30 bits. However this
command has been replacedog_ set-address-format-expanded"

$node_ join-group <agent> <grp>
This command is used when the <agent> at the node joins aylartgroup <grp>.

$node_ leave-group <agent> <grp>
This is used when the <agent> at the nodes decides to leageahe <grp>.

Internal methods:
$ns_ run-mcast
This command starts multicast routing at all nodes.

$ns_ clear-mcast
This stopd mcast routing at all nodes.

$node_ enable-mcast <sim>
This allows special mcast supporting mechanisms (like sshdassifier) to be added to the mcast-enabled node. <sim> is
the a handle to the simulator object.

In addition to the internal methods listed here there areratiethods specific to protocols like centralized mcast\Cast),
dense mode (DM), shared tree mode (ST) or bi-directionakshimee mode (BST), Node and Link class methods and
NetworklInterface and Multicast classifier methods spetificulticast routing. All mcast related files may be found eind
ngtcl/mcast directory.

Centralised Multicast A handle to the CtrMcastComp object is returned when thegoaltis specified as ‘CtrMcast’ in
mrtproto. Ctrmcast methods are:
$ctrmcastcomp switch-treetype group-addr
Switch from the Rendezvous Point rooted shared tree to sespecific trees for the group specified by group-addr.
Note that this method cannot be used to switch from soureeifiptrees back to a shared tree for a multicast group.

$ctrmcastcomp set_c_rp <node-list>
This sets the RPs.

$ctrmcastcomp set_c_bsr <node0:0> <nodel:1>
This sets the BSR, specified as list of node:priority.

$ctrmcastcomp get_c_rp <node> <group>

Returns the RP for the group as seen by the node node for thiastigroup with address group-addr. Note that
different nodes may see different RPs for the group if thevoet is partitioned as the nodes might be in different
partitions.

$ctrmcastcomp get_c_bsr <node>

269

Returns the current BSR for the group.

$ctrmcastcomp compute-mroutes
This recomputes multicast routes in the event of networladyies or a change in unicast routes.

Dense Mode The dense mode (DM) protocol can be run as PIM-DM (defaul)\@MRP depending on the class variable
CacheMissMode . There are no methods specific to this mcast protocol objdass variables are:

PruneTimeout Timeout value for prune state at nodes. defaults to 0.5sec.
CacheMissMode Used to set PIM-DM or DVMRP type forwarding rules.

Shared Tree There are no methods for this class. Variables are:
RP_ RP_ indexed by group determines which node is the RP for &phat group.

Bidirectional Shared Tree There are no methods for this class. Variable is same as fil&ktazed Tree described above.

270

Chapter 30

Network Dynamics

This chapter describes the capabilitie®sto make the simulation topologies dynamic. We start withitiséance procedures
to the class Simulator that are useful to a simulation s¢8pttion 30.1). The next section describes the internait@cture
(Section 30.2), including the different classes and instavariables and procedures; the following section dessrihe
interaction with unicast routing (Section 30.3). This agpE network dynamics is still somewhat experimentahi& The
last section of this chapter outlines some of the deficienitighe current realization (Section 30.4) of network dyien
some one or which may be fixed in the future.

The procedures and functions described in this chapter eafound in dtcl/rtglib/dynamics.tcl and rgftcl/lib/route-
proto.tcl.

30.1 The user level API

The user level interface to network dynamics is a collectbrnstance procedures in the class Simulator, and one pro-
cedure to trace and log the dynamics activity. Reflectingtlaerapoor choice of names, these procedurestanedel
rtmodel-delete , andrtmodel-at . There is one other procedurénodel-configure , that is used internally by
the class Simulator to configure the rtmodels just prior towation start. We describe this method later (Section)30.2

— The instance proceduremodel {} defines a model to be applied to the nodes and links in thelmogp. Some
examples of this command as it would be used in a simulatioptsre:

$ns rtmodel Exponential 0.8 1.0 1.0 $n1
$ns rtmodel Trace dynamics.trc $n2 $n3
$ns rtmodel Deterministic 20.0 20.0 $node(1) $node(5)

The procedure requires at least three arguments:

e The first two arguments define the model that will be used, hagharameters to configure the model.

The currently implemented models irs are Exponential (On/Off), Deterministic (On/Off), Tracgrifen), or
Manual (one-shot) models.

e The number, format, and interpretation of the configuragiarameters is specific to the particular model.

1. The exponential on/off model takes four parametétart time], up interval, down interval, [finish time]
(start time defaults td).5s. from the start of the simulatiorffinish time) defaults to the end of the simulation.
(up interva} and(down interva) specify the mean of the exponential distribution defining time that the

271

node or link will be up and down respectively. The default mg aown interval values ar&)s. and1s.
respectively. Any of these values can be specified-ds6 default to the original value.
The following are example specifications of parametersisortiodel:

0.8 1.0 1.0 H# start at0.8s., up/down =1.0s., finish is default
5.0 0.5 # startis default, up/down 5.0s, 0.5s., finish is default
- 0.7 # start, up interval are default, down 6.7s., finish is default
---10 # start, up, down are default, finish &0s.

2. The deterministic on/off model is similar to the expori@imhodel above, and takes four parametéfstart
time], up interval, down interval, [finish timg] (start time defaults to the start of the simulatioffinish time)
defaults to the end of the simulation. Only the interprerif the up and down interval is differenfp
interval) and(down interva) specify the exact duration that the node or link will be up dodn respectively.
The default values for these parameters &éart time is 0.5s. from start of simulation{up interva} is 2.0s.,
(down interva) is 1.0s., and(finish time is the duration of the simulation.

3. The trace driven model takes one parameter: the name tfabefile. The format of the input trace file is
identical to that output by the dynamics trace modwés, v (time) link- (operation) (nodel)
(node2). Lines that do not correspond to the node or link specifiedgarered.

v 0.8123 link-up 3 5
v 3.5124 link-down 3 5

4. The manual one-shot model takes two parameters: thetapeta be performed, and the time that it is to be

performed.

e The rest of the arguments to thienodel {} procedure define the node or link that the model will be apglto.
If only one node is specified, it is assumed that the node wiill This is modeled by making the links incident
on the node fail. If two nodes are specified, then the commasdmaes that the two are adjacent to each other,
and the model is applied to the link incident on the two notfesore than two nodes are specified, only the first
is considered, the subsequent arguments are ignored.

e instance variabldraceAllFile_ is set.

The command returns the handle to the model that was creathibicall.
Internally,rtmodel {} stores the list of route models created in the class Sitaulanstance variabletModel_

— The instance procedurémodel-delete {} takes the handle of a route model as argument, remove®ih fthe
rtModel_ list, and deletes the route model.

— The instance procedurgmodel-at {} is a special interface to the Manual model of network dynesn

The command takes the time, operation, and node or link asreggts, and applies the operation to the node or link at
the specified time. Example uses of this command are:

$ns rtmodel-at 3.5 up $n0

$ns rtmodel-at 3.9 up $n(3) In(5)
$ns rtmodel-at 40 down $n4

Finally, the instance proceduteace-dynamics {} of the class rtModel enables tracing of the dynamics eféelcby this

model. Itis used as:

set fh [open "dyn.tr" w]
$rtmodell trace-dynamics $fh
$rtmodel2 trace-dynamics $fh
$rtmodell trace-dynamics stdout

In this example$rtmodell writes out trace entries to both dyn.tr and std@rtmodel2 only writes out trace entries to
dyn.tr. A typical sequence of trace entries written out ki@ model might be:

272

0.8123 link-up 3 5
0.8123 link-up 5 3
3.5124 link-down 3 5
3.5124 link-down 5 3

< < < <

These lines above indicate that Lif, 5) failed at0.8123s., and recovered at tim&5124s.

30.2 The Internal Architecture

Each model of network dynamics is implemented as a sepdess, aerived from the bastass rtModel . We begin
by describing the base class rtModel and the derived cldSsetion 30.2.1). The network dynamics models use an iakern
gueuing structure to ensure that simultaneous events alexctly handled, thelass rtQueue . The next subsection (Sec-
tion 30.2.2) describes the internals of this structureafynwe describe the extensions to the existing classexi(®e30.3.1):
the Node, Link, and others.

30.2.1 The class rtModel

To use a new route model, the routinmodel {} creates an instance of the appropriate type, defines thie o link that
the model will operate upon, configures the model, and plyssitiables tracing; The individual instance procedures tha
accomplish this in pieces are:

The constructor for the base class stores a reference tarthdefor in its instance variables_ . It also initializes the
startTime_ andfinishTime_ from the class variables of the same name.

The instance procedure set-elements identifies the nodekahkt the model will operate upon. The command stores
two arrays:links_ , of the links that the model will act uponpdes__, of the incident nodes that will be affected by
the link failure or recovery caused by the model.

The default procedure in the base class to set the model coafign parameters is set-parms. It assumes a well defined
start time, up interval, down interval, and a finish time, apts up configuration parameters for some class of models.

It stores these values in the instance variabdéatTime_ ,upinterval_ ,downinterval_ , finishTime_
The exponential and deterministic models use this defautime, the trace based and manual models define their own
procedures.

The instance proceduteace {} enablestrace-dynamics {} on each of the links that it affects. Additional details
ontrace-dynamics {}is discussed in the section on extensions to the class [(8dction 30.3.1).

The next sequence of configuration steps are taken justtpribbe start of the simulatonsinvokesrtmodel-configure {
just before starting the simulation. This instance procediust acquires an instance of the class rtQueue, and tlvekes
configure {} for each route model in its listrtModel_

The instance procedummnfigure {} makes each link that is is applied to dynamic; this is theadinks stored in
its instance variable arrajnks_ . Then the procedure schedules its first event.

The default instance procedwset-first-event {} schedules the first event to take all the links “down” at
$startTime_ +uplinterval_ . Individual types of route models derived from this baseslshould redefine tihs
function.

273

Two instance procedures in the base classt;event {} and set-event-exact {}, can be used to schedule
events in the route queue.

set-event {interval, operation} schedulesperation afterinterval seconds from the current time; it uses the
procedureset-event-exact {} below.

set-event-exact {fireTime, operation} schedulesperation to execute afireTime
If the time for execution is greater than tfieishTime_ |, then the only possible action is to take a failed link “up”.

Finally, the base class provides the methods to take the lipk} or down{}. Each method invokes the appropriate
procedure on each of the links in the instance varidhiks

Exponential The model schedules its first event to take the links dowstaatTime__ + E(upinterval_);

It also defines the proceduragy{} and down{}; each procedure invokes the base class procedure to parfoe actual
operation. This routine then reschedules the next evenfgtiiterval) or E(downinterval_) respectively.

Deterministic The model defines the procedureg{} and down{}; each procedure invokes the base class procedure to
perform the actual operation. This routine then reschegihle next event aipinterval or downlinterval_ respec-
tively.

Trace The model redefines the instance procedteparms {} to operan a trace file, and set events based on that input.

The instance proceduget-next-event {} returns the next valid event from the trace file. A valid exés an event that
is applicable to one of the links in this objediilsks_ variable.

The instance proceduset-trace-events {} uses get-next-event {} to schedule the next valid event.

The model redefineset-first-event {}, up{}, and down{} to use set-trace-events {3.

Manual The model is designed to fire exactly once. The instance pgroeset-parms {} takes an operation and the
time to execute that operation as argumeses-first-event {} will schedule the event at the appropriate moment.

This routine also redefingmtify {} to delete the object instance when the operation is cotepleThis notion of the object
deleting itself is fragile code.

Since the object only fires once and does nto have to be resigukd does not overload the proceduogg} or down{}.

30.2.2 cl ass rt Queue

The simulator needs to co-ordinate multiple simultaneats/ark dynamics events, especially to ensure the right restte
behaviour. Hence, the network dynamics models use theiriotemal route queue to schedule dynamics events. There is
one instance of this object in the simulator, in the classuitor instance variableq_ .

The queue object stores an array of queued operations imsii@rice variabletq_ . The index is the time at which the event
will execute. Each element is the list of operations that @ikecute at that time.

The instance proceduréssq {} and insg-i {} can insert an element into the queue.

274

The first argument is the time at which this operation will @xte. insq {} takes the exact time as argument;
insg-i {} takes the interval as argument, and schedules the operatierval seconds after the current time.

The following arguments specify the objegbj , the instance procedure of that objekiproc , and the arguments
to that procedurebargs .

These arguments are placed into the route queue for exa@tttbe appropriate time.

The instance proceduranq {} executeseval $obj $iproc $args at the appropriate instant. After all the events for
that instance are executednq {} will notify {} each object about the execution.

Finally, the instance procedudelq {} can remove a queued action with the time and the name of tject.

30.3 Interaction with Unicast Routing

In an earlier section, we had described how unicast routtagts (Section 28.4.2) to changes to the topology. Thisosect
details the steps by which the network dynamics code wilfyttie nodes and routing about the changes to the topology.

1. rtQueue:rung {} will invoke the procedures specified by each of the routedelinstances. After all of the actions
are completediung {} will notify each of the models.

2. notify {} will then invoke instance procedures at all of the nodeattivere incident to the affected links. Each route
model stores the list of nodes in its instance variable arrages .
It will then notify the RouteLogic instance of topology clugs.

3. The rtModel object invokes the class Node instance proegdtf-changed {} for each of the affected nodes.

4. Node::intf-changed {} will notify any rtObject atthe node of the possible changes to the topology.
Recall that these route objects are created when the sionlages detailed dynamic unicast routing.

30.3.1 Extensions to Other Classes

The existing classes assume that the topology is staticfaylteln this section, we document the necessary changbsse
classes to support dynamic topologies.

We have already described the instance procedures ioldlss Simulator to create or manipulate route moddls,,
rtmodel {}, rtmodel-at {}, rtmodel-delete {}, and rtmodel-configure {}in earlier sections (Section 30.2.1).
Similarly, theclass Node contains the instance proceduméf-changed {} that we described in the previous section
(Section 30.3).

The network dynamics code operates on individual links.nEaodel currently translates its specification into operation
the appropriate links. The following paragraphs desciilgedass Link and related classes.

cl ass Dynam cLi nk Thisclassis the only TclObject in the network dynamics cdde shadow class is callethss
DynaLink . The class supports one bound variatatus_ . status_ is 1 when the link is up, and 0 when the link is
down. The shadow objecti®cv () method checks thetatus_ variable, to decide whether or not a packet should be
forwarded.

275

cl ass Li nk This class supports the primitives: up and down, and up?ttarsequerystatus_ . These primitives are
instance procedures of the class.

The instance procedurep{} and down{} set status_ to 1 and O respectively.

In addition, when the link failsdown{} will reset all connectors that make up the link. Each coatoe, including all
queues and the delay object will flush and drop any packetsttbarrently stores. This emulates the packet drop due
to link failure.

Both procedures then write trace entries to each file handies list,dynT _.

The instance procedutp? {} returns the current value oftatus__

In addition, the class contains the instance procedlli@nnectors {}. This procedure takes an operation as argument,
and applies the operation uniformly to all of the class instavariables that are handles for TclObjects.

cl ass Sinpl eLi nk The class supports two instance proceduhgsamic {} and trace-dynamics {}. We have
already described the latter procedure when describingdélce {} procedure in the class rtModel.

The instance procedudynamic {} inserts a DynamicLink object (Section 6.2) at the headh# tjueue. It points the down-
target of the object to the drop target of the likpT_, if the object is defined, or to theullAgent_ in the simulator. It
also signals each connector in the link that the link is nowadyic.

Most connectors ignore this signal to be become dynamicexiception isDelayLink object. This object will normally
schedule each packet it receives for reception by the deggimnode at the appropriate time. When the link is dynamic,
the object will queue each packet internally; it scheduldg one event for the next packet that will be delivered,east of
one event per packet normally. If the link fails, the routedmlowill signal areset , at which point, the shadow object will
execute its reset instproc-like, and flush all packets imternal queue. Additional details about the DelayLink barfound

in another chapter (Chapter 8).

30.4 Deficencies in the Current Network Dynamics API

There are a number of deficencies in the current API that sheeichanged in the next iteration:

1. There is no way to specify a cluster of nodes or links thale in lock-step dynamic synchrony.

2. Node failure should be dealt with as its own mechanisrhgrahan a second grade citizen of link failure. This shows
up in a number of situations, such as:

(a) The method of emulating node failure as the failure ofittedent links is broken. ldeally, node failure should
cause all agents incident on the node to be reset.

(b) There is no tracing associated with node failure.

3. If two distinct route models are applied to two separatkdiincident on a common node, and the two links experience
a topology change at the same instant, then the node will tiiieiclomore than once.

30.5 Commands at a glance

Following is a list of commands used to simulate dynamic ades inns

276

$ns_ rtmodel <model> <model-params> <args>

This command defines the dynamic model (currently impleewnodels are: Deterministic, Exponential, Manual or
Trace) to be applied to nodes and links in the topology. Tisétiivo arguments consists of the rtmodel and the parameter to
configure the model. <args> stands for different type of argnts expected with different dynamic model types. This
returns a handle to a model object corresponding to the fspgonodel.

e In the Deterministic model <model-params> is <start-timeap-interval>, <down-interval>, <finish-time>. Stagin
from start-time the link is made up for up-interval and downdown-interval till finish-time is reached. The default
values for start-time, up-interval, downinterval are 0 &8s, 1.0s respectively. finishtime defaults to the enthef t
simulation. The start-time defaults to 0.5s in order to et touting protocol computation quiesce.

¢ |f the Exponential model is used model-params is of the foup-interval>, <down-interval> where the link up-time
is an exponential distribution around the mean upintermdithe link down-time is an exponential distribution around
the mean down-interval. Default values for up-interval dod/n-interval are 10s and 1s respectively.

o If the Manual distribution is used model-params is <at> <oyvere at specifies the time at which the operation op
should occur. op is one of up, down. The Manual distributiounld be specified alternately using the rtmodel-at
method described later in the section.

o If Trace is specified as the model the link/node dynamicsad feom a Tracefile. The model-params argument would
in this case be the file-handle of the Tracefile that has thamyes information. The tracefile format is identical to the
trace output generated by the trace-dynamics link methesl TRACE AND MONITORING METHODS SECTION).

$ns_ rtmodel-delete <model>
This command takes the handle of the routemodel <model> aggaiment, removes it from the list of tmodels maintained
by simulator and deletes the model.

$ns_ rtmodel-at <at> <op> <args>

This command is a special interface to the Manual model ofoikt dynamics. It takes the time <at>, type of operation
<op> and node or link on which to apply the operation <argsthasarguments. At time <at>, the operation <op> which
maybe up or down is applied to a node or link.

$rtmodel trace <ns> <f> <optional:op>

This enables tracing of dynamics effected by this model élithks. <ns> is an instance of the simulator, <f> the outpet fi
to write the traces to and <op> is an optional argument thatlmeaused to define a type of operation (like nam). This is a
wrapper for the class Link proceduirace-dynamics

$link trace-dynamics <ns> <f> <optional:op>
This is a class link instance procedure that is used to sedigpng of dynamics in that particular link. The arguments ar
same as that of class rtModel’s procedtrexe described above.

$link dynamic
This command inserts a DynamicLink object at the head of theig and signals to all connectors in the link that the link is
now dynamic.

Internal procedures:

$ns_ rtmodel-configure

This is an internal procedure that configures all dynamic el@that are present in the list of models maintained by the
simulator.

277

Chapter 31

Hierarchical Routing

This chapter describes the internals of hierarchical nguiimplemented ims This chapter consists of two sections. In the
first section we give an overview of hierarchical routing.the second section we walk through the API's used for setting
hierarchical routing and describe the architecture, imdexr and code path for hier rtg in the process.

The functions and procedures described in this chapter eafoind in ndtcl/lib/ns-hiernode.tcl, tcl/lib/ns-address.tcl,
tcl/lib/ns-route.tcl and route.cc.

31.1 Overview of Hierarchical Routing

Hierarchical routing was mainly devised, among other thjrig reduce memory requirements of simulations over vegela
topologies. A topology is broken down into several layersiefarchy, thus downsizing the routing table. The table &z
reduced fromn?, for flat routing, to aboutog n for hierarchical routing. However some overhead costsltesis number
of hierarchy levels are increased. Optimum results weraddior 3 levels of hierarchy and the current ns implementatio
supports upto a maximum of 3 levels of hierarchical routing.

To be able to use hierarchical routing for the simulations,nged to define the hierarchy of the topology as well as peovid
the nodes with hierarchical addressing. In flat routingrgmede knows about every other node in the topology, thudtiag

in routing table size to the order @f. For hierarchical routing, each node knows only about thasges in its level. For
all other destinations outside its level it forwards thekeds to the border router of its level. Thus the routing tadite gets
downsized to the order of about log n.

31.2 Usage of Hierarchical routing

Hierarchical routing requires some additional features mr@chanisms for the simualtion. For example, a new nodecbbje
calledHierNodeis been defined for hier rtg. Therefore the user must spe@fiarchical routing requirements before creating
topology. This is done as shown below:

First, the address format () or the address space used feramdiport address, needs to be set in the hierarchical mbde. |
may be done in one of the two ways:

set ns [new Simulator]

278

$ns set-address-format hierarchical

This sets the node address space to a 3 level hierarchy exgRybits in each level.

or,

$ns set-address-format hierarchical <n hierarchy levels> <# bits in
level 1> ...<# bits in nth level>

which creates a node address space for n levels of hierassigrang bits as specified for every level.

This other than creating a hierarchical address spaceeisa$lag calletEnableHierRt and sets the Simulator class variable
node_factory_to HierNode. Therefore when nodes are adatealling Simulator method “node” as in :

$ns node 0.0.1, a HierNode is created with an address of;0.0.1

Class AddrParams is used to store the topology hierarcleyrlikmber of levels of hierarchy, number of areas in each level
like number of domains, number of clusters and number of sadeach cluster.

The API for supplying these information to AddrParams isvehdelow:

AddrParams set domain_num_ 2

lappend cluster_num 2 2

AddrParams set cluster_num_ $cluster_num
lappend eilastlevel 2 3 2 3

AddrParams set nodes _num_ $eilastlevel

This defines a topology with 2 domains, say D1 and D2 with 2terssach (C11 & C12 in D1 and C21 & C22 in D2). Then
number of nodes in each of these 4 clusters is specified &dhd,3 respectively.

The default values used by AddrParams provide a topolody avitingle domain with 4 clusters, with each cluster congisti
of 5 nodes.

Appropriate mask and shift values are generated by Addnafar the hierarchical node address space.

Each HierNode at the time of its creation calls the method-tefault-classifier ” to setup n numbers of address classifie
for n levels of hierarchy defined in the topology.

HierNode instproc mk-default-classifier

$self instvar np_ id_ classifiers_ agents_ dmux_ neighbor_ address__

puts "id=$id_"

set levels [AddrParams set hlevel]

for set n 1 $n <= $levels incr n
set classifiers_($n) [new Classifier/Addr]
$classifiers_($n) set mask [AddrParams set NodeMask_($n)
$classifiers_($n) set shift_ [AddrParams set NodeShift_($n)]

At the time of route computation, a call is made to add-rowgd-route populates classifiers as shown in the otcl method
below:

279

i To HierNode
/ Port Demux
A 1

1
_/ 2 N\
HierNode . 3
Entry
> 2 < Level 3
3
Level 2
Level 1

3-Level classifiers for HierNode (hier-addr:0.2.1)

Figure 31.1: Hierarchical classifiers

Node instproc add-route dst target

$self instvar rtnotif_
Notify every module that is interested about this
route installation

if $rtnotif_ 1= ™
$rtnotif _ add-route $dst $target

$self incr-rtgtable-size

For an example of 3 level of hierarchy, the level 1 classifiemdxes for domains, level 2 for all clusters inside the nede’
domain and finally classifier 3 demuxes for all nodes in théi@aar cluster that the node itself resides. For such altupo
a HierNode with address of 0.1.2 looks like the figure below:

Thus the size of the routing tables are considerably redéromd »? as seen for flat routing where each node had to store
the next_hop info of all other nodes in the topology. Instefad hierarchical routing, a given node needs to know about
its neighbours in its own cluster, about the all clusterstndomain and about all the domains. This saves on memory
consumption as well as run-time for the simulations usingss thousands of nodes in their topology.

31.3 Creating large Hierarchical topologies

The previous section describes methods to create hiecalcttipologies by hand. However, there is a script available
in ns that converts Georgia-tech’s SGB-graphs into ns caeitvipahierarchical topologies. Please refer htip://www-
mash.CS.Berkeley.EDU/ns/ns-topogen.fidmiiownloading as well as instructions on using the hidvaa converter pack-
age.

See hier-rtg-10.tcl and hier-rtg-100.tcl imgitcl/ex for example scripts of hier routing on small and katgpologies respec-
tively.

280

31.4 Hierarchical Routing with SessionSim

Hierarchical routing may be used in conjunction with Sessionulations (see Chapter 41). Session-level simulatidrish
are used for running multicast simulations over very lagpotogies, gains additionally in terms of memory savingssiéd
with hierarchical routing. See simulation scriptgicl/ex/newmcast/session-hier.tcl for an example ofisesim over hier

rg.

31.5 Commands at a glance

Following is a list of hierarchical routing/addressingateld commands used in simulation scripts:

$ns_ set-address-format hierarchical

This command was used to setup hierarchical addressing iHowever with the recent changes in node APlIs, this
command has been replaced by

ns_ node-config -addressType hierarchical

This creates a default topology of 3 levels of hierarchyigassg 8 bits to each level.

$ns_ set-address-format hierarchical <nlevels> <#bits in levell>....<#bits in level
n>
This command creates a hierarchy of <nlevels> and assigtsitthin each level as specified in the arguments.

AddrParams set domain_num_ <n_domains>
AddrParams set cluster_num_ <n_clusters>
AddrParams set nodes _num_ <n_nodes>

The above APIs are used to specify the hierarchical topolagthe number of domains, clusters and nodes present in the
topology. Default values used by AddrParams (i.e if nothiéngpecified) provide a topology with a single domain with 4
clusters, with each cluster consisting of 5 nodes.

Internal procedures:
$Node add-route <dst> <target>
This procedure is used to add next-hop entries of a destimatilst> for a given <target>.

$hiernode_ split-addrstr <str>
This splits up a hierarchical adrress string (say a.b.©) &nlist of the addresses at each level (i.e, a,b and c).

281

Part V

Transport

282

Chapter 32

UDP Agents

32.1 UDP Agents

UDP agents are implementedulp.{cc, h} . A UDP agent accepts data in variable size chunks from aricgioin,

and segments the data if needed. UDP packets also contain@an@ally increasing sequence number and an RTP times-
tamp. Although real UDP packets do not contain sequence atsy timestamps, this sequence number does not incur any
simulated overhead, and can be useful for tracefile anabdy$a simulating UDP-based applications.

The default maximum segment size (MSS) for UDP agents is b6
Agent/UDP set packetSize_ 1000 # max segment size

This OTcl instvar is bound to the C++ agent variabitee_ .

Applications can access UDP agents viagbeadmsg () function in C++, or via thesend or sendmsg methods in OTcl, as
described in section 37.2.3.

The following is a simple example of how a UDP agent may be irsadorogram. In the example, the CBR traffic generator
is started at time 1.0, at which time the generator beginetmgdically call the UDP agersendmsg () function.

set ns [new Simulator]

set n0 [$ns node]

set n1 [$ns node]

$ns duplex-link $n0 $n1 5Mb 2ms DropTail

set udpO [new Agent/UDP]

$ns attach-agent $n0 $udpO

set cbrO [new Application/Traffic/CBR]

$cbr0 attach-agent $udpO

$udpO set packetSize_ 536 # set MSS to 536 bytes

set null0 [new Agent/Null]
$ns attach-agent $nl $nullo
$ns connect $udpO $null0
$ns at 1.0 "$cbr0 start"

283

32.2 Commands at a glance

The following commands are used to setup UDP agents in stionlscripts:

set udpO [new Agent/UDP]
This creates an instance of the UDP agent.

$ns_ attach-agent <node> <agent>
This is a common command used to attach any <agent> to a givaahess.

$traffic-gen attach-agent <agent>
This a class Application/Traffic/<traffictype> method whiconnects the traffic generator to the given <agent>. For
example, if we want to setup a CBR traffic flow for the udp agedpl, we given the following commands

set cbrl [new Application/Traffic/CBR]
$cbrl attach-agent $udpl

$ns_ connect <src-agent> <dst-agent>
This command sets up an end-to-end connection between svidsa@t the transport layer).

$udp set packetSize_ <pktsize>
$udp set dst_addr_ <address>
$udp set dst _port_ <portnum>
$udp set class_ <class-type>
$udp set ttl_ <time-to-live>

..... etc

The above are different parameter values that may be sebagistbove for udp agents. The default values can be found in
ngtcl/lib/ns-default.tcl.

For a typical example of setting up an UDP agent used in a sitionl, see the above section 32.1.

284

Chapter 33

TCP Agents

This section describes the operation of the TCP agents ifihere are two major types of TCP agents: one-way agents and a
two-way agent. One-way agents are further subdivided irset@f TCP senders (which obey different congestion and erro
control techniques) and receivers (“sinks”). The two-wggmt is symmetric in the sense that it represents both a sande
receiver. It is still under development.

The files described in this section are too numerous to eratméere. Basically it covers most files matching the regular
expression rgtcp*.{cc, h}.

The one-way TCP sending agents currently supported are:

Agent/TCP - a “tahoe” TCP sender

Agent/TCP/Reno - a “Reno” TCP sender
Agent/TCP/Newreno - Reno with a modification
Agent/TCP/Sackl - TCP with selective repeat (follows RFG20
Agent/TCP/Vegas - TCP Vegas

Agent/TCP/Fack - Reno TCP with “forward acknowledgment”

The one-way TCP receiving agents currently supported are:

e Agent/TCPSink - TCP sink with one ACK per packet

e Agent/TCPSink/DelAck - TCP sink with configurable delay p&K
e Agent/TCPSink/Sackl - selective ACK sink (follows RFC2p18

e Agent/TCPSink/Sackl/DelAck - Sackl with DelAck

The two-way experimental sender currently supports onlgad¥orm of TCP:

e Agent/TCP/FullTcp

The section comprises three parts: the first part is a simygeveew and example of configuring the base TCP send/sink
agents (the sink requires no configuration). The seconddeaxtribes the internals of the base send agent, and lass part
description of the extensions for the other types of agdrashave been included in the simulator.

285

33.1 One-Way TCP Senders

The simulator supports several versions of an abstract&lSeEdder. These objects attempt to capture the essencel@@fhe
congestion and error control behaviors, but are not intdridde faithful replicas of real-world TCP implementatioiifiey

do not contain a dynamic window advertisement, they do segmenber and ACK number computations entirely in packet
units, there is no SYN/FIN connection establishment/teard and no data is ever transferred (e.g. no checksums entirg
data).

33.1.1 The Base TCP Sender (Tahoe TCP)

The “Tahoe” TCP agerAgent/TCP performs congestion control and round-trip-time estioratin a way similar to the
version of TCP released with the 4.3BSD “Tahoe” UN’X systegtease from UC Berkeley. The congestion window is
increased by one packet per new ACK received during slowt-gthencwnd_ < ssthresh_) and is increased % for
each new ACK received during congestion avoidance (wheni_ > ssthresh_). -

Responses to CongestionTahoe TCP assumes a packet has been lost (due to congedtiem)jtwbserveBlUMDUPACKS
(defined intcp.h , currently 3) duplicate ACKs, or when a retransmission tieires. In either case, Tahoe TCP reacts by
settingssthresh_ to half of the current window size (the minimumofind_ andwindow_) or 2, whichever is larger. It
then initializescwnd_ back to the value ofvindowlnit_ . This will typically cause the TCP to enter slow-start.

Round-Trip Time Estimation and RTO Timeout Selection Four variables are used to estimate the round-trip time
and set the retransmission timett , srtt , rttvar_, tcpTick , and backoff . TCP initializes rttvar

to 3/tepTick_ and backoff to 1. When any future retransmission timer tsigge timeout is set to the current time plus
max(bt(a + 4v + 1), 64) seconds, wherkis the current backoff value,is the value of tcpTicke is the value of srtt, and

is the value of rttvar.

Round-trip time samples arrive with new ACKs. The RTT sanplomputed as the difference between the current time and
a “time echo” field in the ACK packet. When the first sample letg its value is used as the initial value fott_ . Half
the first sample is used as the initial valueffitvar . For subsequent samples, the values are updated as follows:

7 1
srtt = 3 X srtt + 3 X sample

3 1
rttvar = e rttvar + e |sample — srtt|

33.1.2 Configuration

Running an TCP simulation requires creating and configuttiegagent, attaching an application-level data sourceaffictr
generator), and starting the agent and the traffic generator

33.1.3 Simple Configuration

Creating the Agent

286

set ns [new Simulator]
set nodel [$ns node]
set node2 [$ns node]

preamble initialization
;# agentto reside on this node
;# agent to reside on this node

set tcpl [$ns create-connection TCP $nodel TCPSi nk $node22}
$tcp set window_ 50 # configure the TCP agent
set ftpl [new Application/FTP]

$ftpl attach-agent $tcpl

$ns at 0.0 "$ftp start"

This example illustrates the use of the simulator builttindtioncreate-connection . The arguments to this function
are: the source agent to create, the source node, the tgegtta create, the target node, and the flow ID to be used on the
connection. The function operates by creating the two ageetting the flow ID fields in the agents, attaching the sourc
and target agents to their respective nodes, and finallyeximy the agents (i.e. setting appropriate source anéhdésn
addresses and ports). The return value of the function indinge of the source agent created.

TCP Data Source The TCP agent does not generate any application data on its ioatead, the simulation user can
connect any traffic generation module to the TCP agent torgémdata. Two applications are commonly used for TCP: FTP
and Telnet. FTP represents a bulk data transfer of large aimktelnet chooses its transfer sizes randomly from tqpkie

the filetcplib-telnet.cc . Details on configuring these application source objeasraBection 37.4.

33.1.4 Other Configuration Parameters

In addition to thewindow_ parameter listed above, the TCP agent supports additiomdigtiration variables. Each of the
variables described in this subsection is both a classhlarend an instance variable. Changing the class varialalegds
the default value for all agents that are created subselgu@itanging the instance variable of a particular ageny affects

the values used by that agent. For example,

Agent/TCP set window_ 100
$tcp set window_ 2.0

The default parameters for each TCP agent are:

;# Changes the class variable
;# Changes window__ for the $tcp object only

Agent/TCP set window_ 20 ;# max bound on window size
Agent/TCP set windowlnit_ 1 # initial/reset value of cwnd
Agent/TCP set windowOption_ 1 ;# cong avoid algorithm (1: standard)
Agent/TCP set windowConstant_ 4 # used only when windowOption != 1
Agent/TCP set windowThresh_ 0.002 # used in computing averaged window
Agent/TCP set overhead_ 0 ;# =0 adds random time between sends
Agent/TCP set ecn_ 0O ;# TCP should react to ecn bit
Agent/TCP set packetSize_ 1000 ;# packet size used by sender (bytes)
Agent/TCP set bugFix_ true # see explanation
Agent/TCP set slow_start_restart true # see explanation
Agent/TCP set tcpTick_ 0.1 # timer granulatiry in sec (.1 is NONSTANDARD)
Agent/TCP set maxrto_ 64 ;# bound on RTO (seconds)
Agent/TCP set dupacks_ O ;# duplicate ACK counter
Agent/TCP set ack_ 0 ;# highest ACK received

287

Agent/TCP set cwnd_ 0 ;# congestion window (packets)

Agent/TCP set awnd_ 0 ;# averaged cwnd (experimental)
Agent/TCP set ssthresh_ 0 # slow-stat threshold (packets)
Agent/TCP set rtt_ O # rtt sample

Agent/TCP set srtt. 0 ;# smoothed (averaged) rtt
Agent/TCP set rttvar_ 0 ;# mean deviation of rtt samples
Agent/TCP set backoff _ 0 # current RTO backoff factor
Agent/TCP set maxseq_ 0 # max (packet) seq number sent

For many simulations, few of the configuration parameteedigely to require modification. The more commonly modified
parameters includewindow_ andpacketSize_ . The first of these bounds the window TCP uses, and is corsider
play the role of the receiver’s advertised window in realrdd@ CP (although it remains constant). The packet sizentisdly
functions like the MSS size in real-world TCP. Changes ta¢hgarameters can have a profound effect on the behavior of
TCP. Generally, those TCPs with larger packet sizes, biggedows, and smaller round trip times (a result of the togglo
and congestion) are more agressive in acquiring networkiatth.

33.1.5 Other One-Way TCP Senders

Reno TCP The Reno TCP agent is very similar to the Tahoe TCP agentpéxcalso includegast recoverywhere the
current congestion window is “inflated” by the number of dogle ACKs the TCP sender has received before receiving a
new ACK. A “new ACK” refers to any ACK with a value higher thamet higest seen so far. In addition, the Reno TCP agent
does not return to slow-start during a fast retransmit. Bathreduces sets the congestion window to half the cumérdow

and resetssthresh_ to match this value.

Newreno TCP This agentis based on the Reno TCP agent, but which modiéexction taken when receiving new ACKS.
In order to exit fast recovery, the sender must receive an A@khe highest sequence number sent. Thus, new “partial
ACKs” (those which represent new ACKs but do not represemA@K for all outstanding data) do not deflate the window
(and possibly lead to a stall, characteristic of Reno).

Vegas TCP This agent implements “Vegas” TCP ([4, 5]). It was contrémiby Ted Kuo.

Sack TCP This agent implements selective repeat, based on selekdies provided by the receiver. It follows the ACK
scheme described in [23], and was developed with Matt MatidisJamshid Mahdavi.

Fack TCP This agentimplements “forward ACK” TCP, a modification ofc8a CP described in [22].

33.2 TCP Receivers (sinks)

The TCP senders described above represent one-way daexrsehdey must peer with a “TCP sink” object.

288

33.2.1 The Base TCP Sink

The base TCP sink objecAgent/TCPSink) is responsible for returning ACKs to a peer TCP source dbj¢generates
one ACK per packet received. The size of the ACKs may be cordeijuThe creation and configuration of the TCP sink
object is generally performed automatically by a librarlt (seecreate-connection above).

configuration parameters

Agent/TCPSink set packetSize_ 40

33.2.2 Delayed-ACK TCP Sink

A delayed-ACK sink objectAgent/Agent/TCPSink/DelAck) is available for simulating a TCP receiver that ACKs
less than once per packet received. This object containsdoariablanterval _ which gives the number of seconds to
wait between ACKs. The delayed ACK sink implements an agregsCK policy whereby only ACKs for in-order packets
are delayed. Out-of-order packets cause immediate ACKrgeae.

configuration parameters

Agent/TCPSink/DelAck set interval_ 100ms

33.2.3 Sack TCP Sink

The selective-acknowledgment TCP siflgent/TCPSink/Sackl) implements SACK generation modeled after the de-
scription of SACK in RFC 2018. This object includes a boundalde maxSackBlocks_ which gives the maximum
number of blocks of information in an ACK available for haidiSACK information. The default value for this variable js 3
in accordance with the expected use of SACK with RTTM (see RELB, section 3). Delayed and selective ACKs together
are implemented by an object of tydgent/TCPSink/Sack1/DelAck

configuration parameters

Agent/TCPSink set maxSackBlocks_ 3

33.3 Two-Way TCP Agents (FullTcp)

The Agent/TCP/FullTcp object is a new addition to the suite of TCP agents suppontée simulator and is still under
development. It is different from (and incompatible withetother agents, but does use some of the same architedture. |
differs from these agents in the following ways: followinqys:

e connections may be establised and town down (SYN/FIN packetexchanged)
e bidirectional data transfer is supported

289

e sequence numbers are in bytes rather than packets

The generation of SYN packets (and their ACKs) can be ofcaitimportance in trying to model real-world behavior when
using many very short data transfers. This version of TCIRecuily defaults to sending data on the 3rd segment of amit3iti

way handshake, a behavior somewhat different than comnadwearld TCP implementations. A “typical” TCP connection
proceeds with an active opener sending a SYN, the passiveeopsponding with a SYN+ACK, the active opener responding
with an ACK, and then some time later sending the first segmightdata (corresponding to the first application write) ush

this version of TCP sends data at a time somewhat earliertjtpacal implementations. This TCP can also be configured to
send data on the initial SYN segment. Future changes to ERllmay include a modification to send the first data segment
later, and possibly to implement T/TCP functionality.

Currently FUllTCP is only implemented with Reno congestiontrol, but ultimately it should be available with the frdhge
of congestion control algorithms (e.g., Tahoe, SACK, Vegts).

33.3.1 Simple Configuration

Running an Full TCP simulation requires creating and comifiguthe agent, attaching an application-level data so(ace
traffic generator), and starting the agent and the traffiegsor.

Creating the Agent

setup connection (do not use "create-connection" methoduse
we need a handle on the sink object)

set src [new Agent/TCP/FullTcp] # create agent
set sink [new Agent/TCP/FullTcp] # create agent
$ns_ attach-agent $node_(s1) $src ;# bind src to node
$ns_ attach-agent $node_(k1) $sink ;# bind sink to node
$src set fid_ 0 # setflow ID field
$sink set fid_ 0 # setflow ID field
$ns_ connect $src $sink ;# active connection src to sink

setup TCP-level connections
$sink listen ;# will figure out who its peer is
$src set window_ 100;

The creation of the FullTcp agent is similar to the other agebut the sink is placed in a listening state by lilsgen
method. Because a handle to the receiving side is requirediir to make this call, thereate-connection call used
above cannot be used.

Configuration Parameters The following configuration parameters are available tigtoticl for the FullTcp agent:

Agent/TCP/FullTcp set segsperack 1 # segs received before generating ACK
Agent/TCP/FullTcp set segsize_ 536 # segment size (MSS size for bulk xfers)
Agent/TCP/FullTcp set tcprexmtthresh_ 3 # dupACKs thresh to trigger fast rexmt
Agent/TCP/FullTcp set iss_ 0 # initial send sequence number
Agent/TCP/FullTcp set nodelay_ false # disable sender-side Nagle algorithm
Agent/TCP/FullTcp set data_on_syn_ false # send data on initial SYN?

290

Agent/TCP/FullTcp set dupseg_fix_ true # avoid fast rxt due to dup segs+acks
Agent/TCP/FullTcp set dupack reset_ false ;# reset dupACK ctr on !0 len data segs containing dup ACKs
Agent/TCP/FullTcp set interval_ 0.1 # as in TCP above, (100ms is non-std)

33.3.2 BayFullTcp

A different implementation of two-way TCP has been ported ims from Kathy Nicholes/Van Jacobson’s group. Itis called
BayFullTcp. The basic difference between BayFullTcp antiiTiep (the two-way tcp version already present in ns) are as
follows:

BayTcp supports a client-server application model whiléTeyp makes no assumption about its application layer.

The tcp-application interface is different for both;

FullTcp supports partial ack (BayTcp doesn't).

FullTcp supports different flavors of tcp (tahoe, reno etbjah is not the case for baytcp.

e Both implementations have different set of API'’s .

There might be other finer differences between the two as Welk of our future plans is to redefine the APIs to allow fylltc
to use baytcp’s client-server model.

33.4 Architecture and Internals

The base TCP agent (cladgent/TCP) is constructed as a collection of routines for sending p&gkprocessing ACKs,
managing the send window, and handling timeouts. Genegalh of these routines may be over-ridden by a function with
the same name in a derived class (this is how many of the TGiesgariants are implemented).

The TCP header The TCP header is defined by thdr_tcp structure in the file rgtcp.h. The base agent only makes
use of the following subset of the fields:

ts_ / = current time packet was sent from soufde
ts_echo_ / = for ACKs: timestamp field from packet associated with thiK AC
seqno_ | = sequence number for this data segment or ACK (Note: ovarig§d /
reason_ / = set by sender when (re)transmitting to trace reason for s¢nd

Functions for Sending Data Note that generally the sending TCP never actually sends(datnly sets the packet size).

send_much(force, reason, maxburst this function attempts to send as many packets as the ¢weahwindow allows. It
also keeps track of how many packets it has sent, and limttsettotal tomaxburst

The functionoutput(segno, reason) sends one packet with the given sequence number and upbategkimum
sent sequence number variabheakseq_) to hold the given sequence number if it is the greatest sefdrs This function
also assigns the various fields in the TCP header (sequendganutimestamp, reason for transmission). This functiea a
sets a retransmission timer if one is not already pending.

291

Functions for Window Management The usable send window at any time is given by the funcordow(). It returns
the minimum of the congestion window and the variabled_, which represents the receiver’s advertised window.

opencwnd() - this function opens the congestion window. It is invokedewla new ACK arrives. When in slow-start,
the function merely incrementsvnd_ by each ACK received. When in congestion avoidance, thalatdnconfiguration
incrementcwnd_ by its reciprocal. Other window growth options are supp@dearing congestion avoidance, but they are
experimental (and not documented; contact Sally Floyd &aitk).

closecwnd(int how)- this function reduces the congestion window. It may be keebin several ways: when entering fast
retransmit, due to a timer expiration, or due to a congestimtification (ECN bit set). Its argumehbw indicates how the
congestion window should be reduced. The vdlug used for retransmission timeouts and fast retransmiahmo& TCP. It
typically causes the TCP to enter slow-start and redgteresh_ to half the current window. The valdes used by Reno
TCP for implementing fast recovery (which avoids returntogslow-start). The valu@ is used for reducing the window
due to an ECN indication. It resets the congestion windowvtstinitial value (usually causing slow-start), but does alter
ssthresh

Functions for Processing ACKs recv(} this function is the main reception path for ACKs. Note thatause only one
direction of data flow is in use, this function should only elve invoked with a pure ACK packet (i.e. no data). The funttio
stores the timestamp from the ACK ia_peer_ , and checks for the presence of the ECN bit (reducing the sémdiow

if appropriate). If the ACK is a new ACK, it callsewack(), and otherwise checks to see if it is a duplicate of the lagK AC
seen. If so, it enters fast retransmit by closing the windegetting the retransmission timer, and sending a packeaking
send_much.

newack()- this function processes a “new” ACK (one that contains atKAQmber higher than any seen so far). The function
sets a new retransmission timer by callingwtimer(), updates the RTT estimation by callinty_update, and updates the
highest and last ACK variables.

Functions for Managing the Retransmission Timer These functions serve two purposes: estimating the rodpdirne
and setting the actual retransmission timet. init - this function initializessrtt_ andrtt_ to zero, setsttvar_ to
3/tep_tick_, and sets the backoff multiplier to one.

rtt_timeout - this function gives the timeout value in seconds that sthbel used to schedule the next retransmission timer.
It computes this based on the current estimates of the mehdemation of the round-trip time. In addition, it implenten
Karn’s exponential timer backoff for multiple consecutieéransmission timeouts.

rtt_update - this function takes as argument the measured RTT and a®itdg to the running mean and deviation estimators
according to the description above. Note thatrtt ~ andt_rttvar are both stored in fixed-point (integers). They have
3 and 2 bits, respectively, to the right of the binary point.

reset_rtx_timer - This function is invoked during fast retransmit or duringiraeout. It sets a retransmission timer by calling
set_rtx_timer and if invoked by a timeout also calit_backoff

rtt_backoff - this function backs off the retransmission timer (by dadndpit).

newtimer - this function called only when a new ACK arrives. If the serisl left window edge is beyond the ACK, then
set_rtx_timer is called, otherwise if a retransmission timer is pendinig @¢ancelled.

292

33.5 Tracing TCP Dynamics

The behavior of TCP is often observed by constructing a secpiaumber-vs-time plot. Typically, a trace is performed by
enabling tracing on a link over which the TCP packets willpaBvo trace methods are supported: the default one (used for
tracing TCP agents), and an extension used only for FullTcP.

33.6 One-Way Trace TCP Trace Dynamics

TCP packets generated by one of the one-way TCP agents atimedd®r a TCP sink agent passing over a traced link (see
section 25) will generate a trace file lines of the form:

+ 0.94176 2 3 tcp 1000 ------ 0 0.0 3.0 25 40
+ 0.94276 2 3 tcp 1000 ------ 0 0.0 3.0 26 41
d 0.94276 2 3 tcp 1000 ------ 0 0.0 3.0 26 41
+ 0.95072 2 0 ack 40 ------ 0 3.0 0.0 14 29

- 0.95072 2 0 ack 40 ------ 0 3.0 0.0 14 29

- 095176 2 3 tcp 1000 ------ 0 0.0 3.0 21 36
+ 0.95176 2 3 tcp 1000 ------ 0 0.0 3.0 27 42

The exact format of this trace file is given in section 25.4.aWkracing TCP, packets of typep or ack are relevant. Their
type, size, sequence number (ack number for ack packetsgraimal/depart/drop time are given by field positions 518,
and 2, respectively. The indicates a packet arrivatl a drop, and a departure. A number of scripts process this file to
produce graphical output or statistical summaries (seexXample, Agtest-suite.tcl, théinish procedure.

33.7 One-Way Trace TCP Trace Dynamics

TCP packets generated by FullTcp and passing over a tragkeddintain additional information not displayed by default
using the regular trace object. By enabling the fhgw_tcphdr_ on the trace object (see section refsec:traceformat), 3
additional header fields are written to the trace file: ack bemtcp-specific flags, and header length.

33.8 Commands at a glance

The following is a list of commands used to setup/manipul&® flows for simulations:

set tcp0 [new Agent/TCP]

This creates an instance of a TCP agent. There are severakflaf/T CP-sender and TCP-receiver (or sink) agent cugrentl
implemented in ns. TCP-senders currently available aren®d@CP, Agent/TCP/Reno, Agent/TCP/Newreno,
Agent/TCP/Sackl, Agent/TCP/Vegas, Agent/TCP/Fack.

TCP-receivers currently available are: Agent/TCPSinke AT CPSink/DelAck, Agent/TCPSink/Sack1,
Agent/TCPSink/Sack1/DelAck.

There is also a two-way implementation of tcp called AgeG®TFullTcp. For details on the different TCP flavors seeiearl
sections of this chapter.

Configuration parameters for TCP flows maybe set as follows:

293

$tcp set window_ <wnd-size>
For all possible configuration parameters available for BE® section 33.1.4. The default configuration values canbals
found inng'tcl/lib/ns-default.tcl.

Following is an example of a simple TCP connection setup:

set tcp [new Agent/TCP] # create tcp agent
$ns_ attach-agent $node_(s1) $tcp ;# bind src to node
$tcp set fid_ 0O # setflow ID field
set ftp [new Application/FTP] # create ftp traffic
$ftp attach-agent $tcp ;# bind ftp traffic to tcp agent
set sink [new Agent/TCPSink] # create tcpsink agent
$ns_ attach-agent $node_(k1) $sink ;# bind sink to node
$sink set fid_ 0 # set flow ID field
$ns_ connect $ftp $sink ;# active connection src to sink
$ns_ at S$start-time "$ftp start" # start ftp flow

For an example of setting up a full-tcp connection see se@®3.1.

294

Chapter 34

SCTP Agents

This chapter describes the SCTP agents developensfby the Protocol Engineering Lab at the University of Delagvar
The SCTP agents are all two-way agents, which means theymmstric in the sense that they represent both a sender and
receiver. However, bi-directional data has not yet beerlemgnted. Each instance of an SCTP agent is either a sender or
receiver.

The SCTP agents are implemented in files matching the regytaession rgsctp/sctp*.{cc, h}

The SCTP agents currently supported are:

Agent/SCTP - RFC2960 + draft-ietf-tsvwg-sctpimpguidetdor+ draft-ietf-tsvwg-usctp-01.txt
Agent/SCTP/HbAfterRto - experimental extension (HEARTBEafter RTO)
Agent/SCTP/MultipleFastRtx - experimental extension (BBL's Multiple Fast Retransmit algorithm)
Agent/SCTP/Timestamp - experimental extension (TIMESTAShuUNK)

Agent/SCTP/MfrHbAfterRto - experimental extension thatmbines MultipleFastRtx and HbAfterRto
Agent/SCTP/MfrTimestamp - experimental extension thanlimes MultipleFastRtx and Timestamp

Section 34.1 provides a simple overview of the base SCTPtagiém details of configuration parameters and commands.
Section 34.2 describes the SCTP extensions available. @tadlslof the SCTP trace format used in packet trace files are
explained in Section 34.3. Section 34.4 explains how to egady applications with SCTP and how to write SCTP-aware ap-
plications which exploit all SCTP’s features. Section 3drévides examples scripts for both singled homed and nuauttdd
endpoints.

34.1 The Base SCTP Agent

The base SCTP ageAgent/SCTP supports the features in the following sections of RFC2@&uding modifications up
to draft-ietf-tsvwg-sctpimpguide-13.txt.

5.1 Normal Establishment of an Association (rudimentanydsiake)
6.1 Transmission of DATA Chunks

295

6.2 Acknowledgment on Reception of DATA Chunks
6.3 Management Retransmission Timer

6.4 Multihomed SCTP Endpoints

6.5 Stream ldentifier and Stream Sequence Number
6.6 Ordered and Unordered Delivery

6.7 Report Gaps in Received DATA TSNs

7.2 SCTP Slow-Start and Congestion Avoidance

8.1 Endpoint Failure Detection

8.2 Path Failure Detection

8.3 Path Heartbeat (without upper layer control)

This agent also supports the Partial Reliability extensi®of draft-ietf-tsvwg-usctp-01.txt.

Association Establishment The SCTP agent establishes an association using a four-avaishake, but the handshake is
kept simple and does not strictly conform to RFC2960. Thalshake does not exchange tags, and the INIT and COOKIE-
ECHO chunks are not used to update the RTT. Instead, RTT at#imbegin with the first DATA chunk.

Association Shutdown Currently, the SCTP agent does not perform a proper shutddiwa association is abruptly termi-
nated when the simulated connection ends. A shutdown pooeeday be added in a future release.

Multihoming The underlying infrastructure of ns-2 does not support ipldtinterfaces for a single node. To get around
this limitation, our approach allows the general supportiégically multihoming nodes that have a multihomed traosp
layer, such as SCTP. Each multihomed node is actually madémpre than one node. As shown in Figure 34.1, a logically
multihomed node is made up of a single "core node” and maltipiterface nodes”, one for each simulated interface. The
core node is connected to each interface node via a unitiinat link towards the interface node, but traffic nevevéses
these links. These links are only in place for the core nodeake routing decisions. An SCTP agent simultaneously essid
on all these nodes (i.e., the core and interface nodes) ctualdraffic only goes to/from the interface nodes. Whenéve
SCTP agent needs to send data to a destination and does motMrich outgoing interface to use, the agent firsts consults
with the core node for a route lookup. Then, the SCTP agembpas the send from the appropriate interface node. Incgmin
data is received at one of the interface nodes directly asdguhup to the SCTP agent. This solution is applicable to any
transport protocol that requires multihoming functiobaln ns-2. Note: the user must configure multihomed nodesgusi
commands in Section 34.1.2 (an example is shown in Sectidn234

Packet Number vs TSN Numbering While ns starts numbering packets at 0, the SCTP module starts nimgtieATA
chunk TSNs at 1 and assigns undefined TSN values (-1) to datwoks (ie, INIT, SACK, HEARTBEAT, etc). The four
packets exchanged during the association establishmenbanted in the packet enumeration, but do not show up irhgrap
This information is important when doing things like spgaify a drop list for theErrorModel object. For example, packet
2 actually refers to the first SCTP packet with DATA chunk(s).

34.1.1 Configuration Parameters

SCTP supports several configuration variables which are Bi@table. Each of the variables described in this subsedio
both a class variable and an instance variable. Changingldiss variable changes the default value for all agentsatteat

296

Sctp Agent

i
A

LY

Route

Lecabeip

an

eore MNode

\

Send

-,

Foonive

Interface Mode,

Intarface Mode

\kh'lullihnrr!ec Node

LY

LY

el

bl

-

-
o -

Intermace Nade T

1 A

2

Figure 34.1: Example of a Multihomed Node

created subsequently. Changing the instance variable aftecplar agent only affects the values used by that ageot. F

example,

Agent/SCTP set pathMaxRetrans_ 5
$sctp set pathMaxRetrans_ 5

#

The default parameters for each SCTP agent are:

Agent/SCTP
Agent/SCTP
Agent/SCTP
Agent/SCTP
Agent/SCTP
Agent/SCTP
Agent/SCTP
Agent/SCTP
Agent/SCTP
Agent/SCTP
Agent/SCTP
Agent/SCTP
Agent/SCTP
Agent/SCTP
Agent/SCTP
Agent/SCTP
Agent/SCTP
Agent/SCTP
Agent/SCTP
Agent/SCTP
Agent/SCTP
Agent/SCTP

set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set

debugMask_ 0

debugFileindex_ -1
associationMaxRetrans_ 10
pathMaxRetrans_ 5

changePrimaryThresh_ -1 #
maxInitRetransmits_ 8
oneHeartbeatTimer_ 1

heartbeatinterval_ 30

mtu_ 1500

initialRwnd_ 65536
initialSsthresh_ 65536

initialCwnd_ 2

initialRto_ 3.0

minRto_ 1.0

maxRto_ 60.0
fastRtxTrigger_ 4
numOutStreams_ 1

numUnrelStreams_ 0 ;#

reliability_ 0
unordered_ 0O

ipHeaderSize _
dataChunkSize 1468

20

#H

32-bitm

;# Changes the class variable
Changes pathMaxRetrans_ for the $sctp object only

ask for modular toggle debugging control (see axalin)
specifies debugging output file (see explanation)
RFC2960’s Association.Max.Retrans
RFC2960’s Path.Max.Retrans

change primary if error count exeeds thresh (default indinit

H# RFC2960's Max.Init.Retransmits
toggle HB timer for each dest vs one for all dests
RFC2960’s HB.interval in seconds
MTU in bytes including IP header
initial receiver window in bytes (set on receiver side)
H# initial ssthresh value in bytes
initial cwnd in multiple of (MTU - SCTP/IP headers)
default initial RTO = 3 secs
default min RTO = 1 sec
;# default max RTO = 60 secs
4 missing reports trigger fast rtx
;# number of outgoing streams

#H

#

number of partially reliable streams (all grouped startiagstream 0)

#H

297

H# k-rtx value of all partially reliable streams
toggle all chunks are ordered/unordered

IP header size

H

includes data chunk header and restricted to 4 byte bouedari

Agent/SCTP set useDelayedSacks_ 1 H# toggle on/off delayed sack algorithm (set on receiver side)

Agent/SCTP set sackDelay 0.200 # rfc2960 recommends 200 ms
Agent/SCTP set useMaxBurst_ 1 ;# toggle on/off max burst
Agent/SCTP set rixToAlt_ 1 H rtxs to which dest? 0 =same, 1 = alt, 2 = fast rtx to same + timesdo alt
Agent/SCTP set dormantAction_ 0 # 0 = change dest, 1 = use primary, 2 = use last dest before dotman
Agent/SCTP set routeCalcDelay_ 0 # time to calculate a route (see explanation)
Agent/SCTP set routeCacheLifetime_ 1.2 H# how long a route remains cached (see explanation)
Agent/SCTP set trace_all_ 0 # toggle on/off print all variables on a trace event

The debugMask_ parameter is a 32-bit mask to turn on/off debugging for patéir functions. Seengsctp/sctpDebug.h
for the mappings of the bitmask. A -1 may be used to clear &l laind 0 is used to turn off all debugging.débug_ (the
standarchsdebug flag) is set to 1, then all the bitsdebugMask_ are set. Notensmust be compiled withiDDEBUGfor
this option to work.

The debugFilelndex_ parameter is an integer to specify the file used for debuggirtgut by an SCTP agent. Each
instance of an SCTP agent can independently output debgiggimto a separate file. For example, the data sender can log
debugging output to one file, while the receiver logs to aepfite. If debugFilelndex is set to 0, the file used will be
nameddebug.SctpAgent.Of -1 is used, the debug output is sentstderr. To avoid confusion, two SCTP agents should not
send debug output to the same file. The default is -1. Nwenust be compiled withtDDEBUGor this option to work.

The configuration parameters that deal with ordering aridlvity options may be overridden by an SCTP-aware appbca
(see Section 34.4).

The routeCalcDelay _ androuteCachelLifetime_ parameters are only used to optionally simulate overhefds o
reactive routing protocols in MANETSs without actually sitating a MANET. (Do not use this feature if you are actually
simulating a MANET!) The default setting foputeCalcDelay_ is 0 seconds, which means that this feature is turned
off. The default setting forouteCacheLifetime_ is 1.2 seconds (ignored if this feature is turned off), whichurposely

set slightly larger than the default min RTO to avoid a “cantiss” after a single timeout event.

34.1.2 Commands

SCTP provides certain commands that can be used within T@htsc

trace Tracks given variables. The variable (and associatedrimdtion) is printed every time the value changes. Takes 1
argument:

cwnd_ Used to trace the cwnds of all paths.

rto_ Used to trace the RTOs of all paths.

errorCount_ Used to trace the error counters of all paths.

frCount_ Used to trace the number of times a fast retransmit is invoked

mfrCount_ Used to trace the number of times the multiple fast retrahatgorithm is invoked. This trace variable
can only be used with the MultipleFastRtx extension age&#e(Section 34.2.2)

timeoutCount_ Used to trace the total number of times a timeout has occoomeall paths.

rcdCount_ Used to trace the total number of times a route calculatidaydsee Section 34.1.1) has occurred on all
paths.

298

Note: the actual value of these trace variables have no mgaiiihey are simply used to trace corresponding variables fo
potentially multihomed endpoints. For example, if a seisdgeer endpoint has two destinations, the sender will raaint
two cwnds. Thewnd__ trace variable will trace both of these cwnds together.

print Provides the sampling method of tracing. This command simpphts a given variable (and associated information)
per call. Takes 1 argument: one of the trace variables ptedatove.

set-multihome-core Sets the core node for multihomed endpoints. Takes 1 arguofigype node. Mandatory for multi-
homed endpoints and must not be set more than once per endpoin

multihome-add-interface Adds an interface to a multihomed endpoint. Takes 2 argusrartype node. Argument 1 is the
core node of the multihomed endpoint. Argument 2 is the fater node to be added. Mandatory for multihomed endpoints.
All interfaces must be added after set-multihome-coreligdand before multihome-attach-agentis called.

multihome-attach-agent Attaches an SCTP agent to a multihomed endpoint. Takes 2ramngis. Argument 1 is the core
node. Argument 2 is the SCTP agent. Mandatory for multihoeretpoints.

set-primary-destination Sets the interface node of the peer endpoint as the primatindéion. Takes 1 argument of type
node. Optional and may be set more than once per endpoirtt ifsed, a primary destination is chosen automatically.

force-source Sets the interface node that packets will be sent from. Tal@gument of type node. Optional and may be
set more than once per endpoint. If not used, routing wilbenattically choose the source on a per packet basis.

34.2 Extensions

34.2.1 HbAfterRto SCTP

The HbAfterRto SCTP agent extends the current retransomigslicy. In addition to SCTP’s current policy of retranstinig
to an alternate destination on a timeout, a heartbeat isrsemediately to the destination on which a timeout occuriedra
heartbeats provide a mechanism for a sender to update ameaét@estination’s RTT estimate more frequently, thusltieg)
in a better RTT estimate on which to base the RTO value.

For example, suppose a packet is lost in transit to the pyimi@stination, and later gets retransmitted to an alternbeséina-
tion. Also suppose that the retransmission times out. Tétgdacket is retransmitted again to yet another alternatidgion
(if one exists; otherwise, the primary). More importandyheartbeat is also sent to the alternate destination wingdtout.
If the heartbeat is successfully acked, that destinatiguiaes an additional RTT measurement to help reduce itathce
doubled RTO 7).

34.2.2 MultipleFastRtx SCTP

The MultipleFastRtx SCTP agent attempts to minimize the lmemof timeouts which occur. Without the Multiple Fast Re-
transmit algorithm, SCTP may only Fast Retransmit a TSN olfeeFast Retransmitted TSN is lost, a timeout is necessary

299

to retransmit the TSN again. The Multiple Fast Retransngibathm allows the same TSN to be Fast Retransmitted several
times if needed. Without the Multiple Fast Retransmit ailpon, a large window of outstanding data may generate enough
SACKs to incorrectly trigger more than one Fast Retransifinihe same TSN in a single RTT. To avoid these spurious Fast
Retransmits, the Multiple Fast Retransmit algorithm idtroes &astRtxRecovestate variable for each TSN Fast Retrans-
mitted. This variable stores the highest outstanding TSlKetime a TSN is Fast Retransmitted. Then, only SACKs which
newly ack TSNs beyonthstRtxRecovetan increment the missing report for the Fast Retransmit@d. If the missing
report threshold for the Fast Retransmitted TSN is reachathathe sender has enough evidence that this TSN was ldst an
can be Fast Retransmitted aga®h [

34.2.3 Timestamp SCTP

The Timestamp SCTP agent introduces timestamps into eatepahus allowing a sender to disambiguate original trans
missions from retransmissions. By removing retransmissimbiguity, Karn’s algorithm can be eliminated, and susfids
retransmissions on the alternate path can be used to updaEel{T estimate and keep the RTO value more accurate. With
timestamps, the sender has more samples for updating the&iriate of alternate destination(8).[

34.2.4 MfrHbAfterRto SCTP

The MfrHbAfterRto SCTP agent combines the functionalityted HbAfterRto and MultipleFastRtx SCTP agents.

34.2.5 MfrHbAfterRto SCTP

The MfrTimestamp SCTP agent combines the functionalithefTimestamp and MultipleFastRtx SCTP agents.

34.3 Tracing SCTP Dynamics

SCTP packets generated by one of the SCTP agents and déstirredeer SCTP agent over a traced link (see section 25)
will generate a trace file with lines of the form:

+ 051 4 sctp 56 ------- I 0 1.0 40 1 -1 4 65535 65535
-051 4 sctp 56 ------- I 0 1.0 40 1 -1 4 65535 65535

r 0.700896 1 4 sctp 56 ------- I 0 1.0 40 1 -1 4 65535 65535
+ 0.700896 4 1 sctp 56 ------- I 040 10 1 -1 5 65535 65535
- 0.700896 4 1 sctp 56 ------- I 040 1.0 1 -1 5 65535 65535
r 0.901792 4 1 sctp 56 ------- I 040 1.0 1 -1 5 65535 65535
+ 0.901792 1 4 sctp 36 ------- I 0 1.0 40 1 -1 6 65535 65535
- 0901792 1 4 sctp 36 ------- I 0 1.0 40 1 -1 6 65535 65535
r 1.102368 1 4 sctp 36 ------- I 0 1.0 40 1 -1 6 65535 65535
+ 1.102368 4 1 sctp 36 ------- I 040 10 1 -1 7 65535 65535
- 1.102368 4 1 sctp 36 ------- I 0 40 1.0 1 -1 7 65535 65535
r 1.302944 4 1 sctp 36 ------- I 0 40 1.0 1 -1 7 65535 65535
+ 1.302944 1 4 sctp 1500 ------- D0104011800

- 1.302944 1 4 sctp 1500 ------- D0104011800

+ 1.302944 1 4 sctp 1500 ------- D0104012901

- 1.326624 1 4 sctp 1500 ------- D0104012901

r 1.526624 1 4 sctp 1500 ------- D0104011800

r 1.550304 1 4 sctp 1500 ------- D0104012901

+ 1.550304 4 1 sctp 48 ------- S 040 1.0 1 2 11 65535 65535

- 1.550304 4 1 sctp 48 ------- S 040 101 2 11 65535 65535

r 1.751072 4 1 sctp 48 ------- S 040 101 2 11 65535 65535

+ 19.302944 4 1 sctp 56 ------- H 0 20 50 1 -1 336 65535 65535
- 19.302944 4 1 sctp 56 ------- H 0 2.0 50 1 -1 336 65535 65535
r 19.303264 4 1 sctp 56 ------- H 0 40 1.0 1 -1 322 65535 65535
+ 19.303264 1 4 sctp 56 ------- B O 1.0 40 1 -1 337 65535 65535
- 19.327584 1 4 sctp 56 ------- B 0O 1.0 40 1 -1 337 65535 65535
r 19.52848 1 4 sctp 56 ------- B 0 1.0 40 1 -1 337 65535 65535

When tracing SCTP, packets of typetp are relevant. Their packet type, chunk type, packet siz&l {[CumAck point for
SACK chunks), stream ID, SSN, and arrival/depart/drop tareegiven by field positions 5, 7 (flag position 8), 6, 12, 14, 15
and 2, respectively. If a packet has more than one chunkeddiprinted for each chunk. A future release should include a
field to indicate which chunk of the packet a line refers tg(€2:3 could identify the 2nd chunk of a packet which corgan
chunks). Since control chunks do not use TSNs, stream ID8S0Is, the trace lines for these chunks use undefined numbers
(-1 or 65535) for these fields. Theindicates a packet arrivad, a drop, and a departure.

Flag position 8 of field 7 indicate the chunk type as followheTflag indicates an association initiation control chunk {TNI
INIT-ACK, COOKIE-ECHO, COOKIE-ACK). A future release shidwsel for the INIT and INIT-ACK chunks, an€ for
the COOKIE-ECHO and COOKIE-ACK chunks. TBe S, H, andB flags indicate a DATA chunk, a SACK, a HEARTBEAT
chunk, and a HEARTBEAT-ACK chunk.

A number of scripts process this file to produce graphicapoubr statistical summaries (for example, see finesh
procedure in ndtcl/test/test-suite-sctp.icl

34.4 SCTP Applications

SCTP supports legaays applications, but they obviously cannot completely expddli SCTP’s features. For these appli-
cations, the TCL-bound SCTP configuration parameters carsbd to set reliability and ordering options. However, ¢hes
options cannot be controlled per message using these p@m®©nly SCTP-aware application can be written to do so.
nsapplications wishing to become SCTP-aware can use the sgndrl as follows (seengapps/sctp_appl.{cc, lgs an
example).

1. Create and fill an instance of tippData_S structure (see rgsctp/sctp.h The AppData_S structure has the
following fields:

usNumsStreams is the number of outgoing streams to setup during negotiatidthough this field is passed
with every sendmsg call, it is only used during associatems. Once the association is established, this field is
ignored.

usNumUnreliable is the number of outgoing streams which are unreliable (raed partially reliable). The
sender simply sets the lowest outgoing stream to unreliadttally-reliable; the remaining ones are reliable.
This field is also only used during association establisimen

usStreamld is the stream ID of a message.

usReliability is the reliability level (k-rtx value) of a message. Thisdiéd ignored if the message is sent
on a reliable stream.

301

eUnordered is the unordered boolean flag for a message.
uiNumBytes is the number of bytes in a message.

2. Pass this object as the second parameter in SCTP’s sendmsg
*)appData);

sctpAgent->sendmsg(numBytes, (char

34.5 Example Scripts

34.5.1 Singled Homed Example

Trace set show_sctphdr_ 1

set ns [new Simulator]
set allchan [open all.tr w]
$ns trace-all $allchan

proc finish {
exit 0

}

set n0 [$ns node]
set nl [$ns node]
$ns duplex-link $n0 $nl .5Mb 200ms DropTail

this needs to be set for tracing SCTP packets

NOTE: The debug files (in this example, they would be debug. SctpAgent.0

and debug.SctpAgent.1) contain a lot of useful info. They ¢ an be

used to trace every packet sent, received, and processed.

#

set sctpO [new Agent/SCTP]

$ns attach-agent $n0 $sctpO

$sctp0 set debugMask_ 0x00303000 H# refer to sctpDebug.h for mask mappings

$sctp0 set debugFileindex_ 0

set trace_ch [open trace.sctp w]
$sctp0 set trace_all_ 0

$sctp0 trace cwnd_

$sctp0 attach $trace_ch

set sctpl [new Agent/SCTP]
$ns attach-agent $nl $sctpl
$sctpl set debugMask_ -1
$sctpl set debugFileindex_ 1
$ns connect $sctp0 $sctpl

set ftp0 [new Application/FTP]
$ftp0 attach-agent $sctpO

$ns at 0.5 "$ftp0 start"
$ns at 4.5 "$ftp0 stop"

302

do not trace all variables on one line
trace cwnd for all destinations

;# use -1to turn on all debugging

$ns at 5.0 "finish"

$ns run

34.5.2 Multihomed Example

This example demonstrates multihoming. Two SCTP endpoint
with 2 interfaces, are directly connected between each pai
interfaces. In the middle of the association, a change prim
is done. Running nam helps to visualize the multihomed

architecture.

#

host0_if0 O===========0 host1_if0

/ \

hostO_core 0] O hostl_core

\ /

host0_ifl O===========0 hostl_ifl

Trace set show_sctphdr_ 1

set ns [new Simulator]
set nf [open sctp.nam w]
$ns namtrace-all $nf

set allchan [open all.tr w]
$ns trace-all $allchan

proc finish {
exec nam sctp.nam &
exit 0

}

set host0_core [$ns node]

set host0_if0 [$ns node]

set hostO_ifl [$ns node]

$host0_core color Red

$host0_if0 color Red

$host0_if1l color Red

$ns multihome-add-interface $hostO_core $host0_if0
$ns multihome-add-interface $host0_core $host0_ifl

set hostl_core [$ns node]

set hostl_if0 [$ns node]

set hostl_ifl [$ns node]

$hostl_core color Blue

$hostl _if0 color Blue

$hostl_ifl color Blue

$ns multihome-add-interface $hostl_core $hostl_if0
$ns multihome-add-interface $hostl_core $hostl_ifl

$ns duplex-link $host0_if0 $hostl if0 .5Mb 200ms DropTalil

303

s, each
r of
ary

$ns duplex-link $host0_ifl $hostl_ifl .5Mb 200ms DropTalil

set sctpO [new Agent/SCTP]
$ns multihome-attach-agent $host0_core $sctp0

set trace_ch [open trace.sctp w]

$sctpO set trace_all_ 1 # print all on a single trace event
$sctp0 trace rto_

$sctp0 trace errorCount_

$sctp0 attach S$trace ch

set sctpl [new Agent/SCTP]
$ns multihome-attach-agent $hostl_core $sctpl

$ns connect $sctp0 $sctpl

set ftp0 [new Application/FTP]
$ftp0 attach-agent $sctpO

$sctp0 set-primary-destination $hostl_if0 # set primary before association starts
$ns at 7.5 "$sctp0 set-primary-destination $hostl_ifl" # change primary
$ns at 7.5 "$sctp0O print cwnd_" # print all dests’ cwnds at time 7.5

$ns at 0.5 "$ftp0 start"
$ns at 9.5 "$ftp0 stop”
$ns at 10.0 "finish"

$ns run

304

Chapter 35

Agent/SRM

This chapter describes the internals of the SRM implemimtat ns The chapter is in three parts: the first part is an overview

of a minimal SRM configuration, and a “complete” descriptafrthe configuration parameters of the base SRM agent. The
second part describes the architecture, internals, andadtie path of the base SRM agent. The last part of the chapder is

description of the extensions for other types of SRM agédratshave been attempted to date.

The procedures and functions described in this chapter edaund in -ngtcl/mcast/srm.tcl, adtcl/mcast/srm-adaptive.tcl,
~ngtcl/mcast/srm-nam.tcl,ngtcl/mcast/srm-debug.tcl, ands'srm.{cc, h}.

35.1 Configuration

Running an SRM simulation requires creating and configutiegagent, attaching an application-level data sourcea{fictr
generator), and starting the agent and the traffic generator

35.1.1 Trivial Configuration

Creating the Agent
set ns [new Simulator] # preamble initialization
$ns enableMcast
set node [$ns node] ;# agent to reside on this node
set group [$ns allocaddr] # multicast group for this agent

set srm [new Agent/ SRM
$srm set dst_ $group ;# configure the SRM agent
$ns attach-agent $node $srm

$srm set fid_ 1 ;# optional configuration
$srm log [open srmStats.tr w] # log statistics in this file
$srm trace [open srmEvents.tr w] # trace events for this agent

The key steps in configuring a virgin SRM agent are to assgymitlticast group, and attach it to a node.

305

Other useful configuration parameters are to assign a degéoa id to traffic originating from this agent, to open a lolg fi
for statistics, and a trace file for trace data

The file tcl/mcast/srm-nam.tcl contains definitions that overload the agesend methods; this separates control
traffic originating from the agent by type. Each type is &l a separate flowlD. The traffic is separated into session
messages (flowid = 40), requests (flowid = 41), and repair agess(flowid = 42). The base flowid can be changed by setting
global variablectrlFid ~ to one less than the desired flowid before soursimg-nam.tcl . To do this, the simulation script
must sourcesrm-nam.tcl before creating any SRM agents. This is useful for analyisisaéfic traces, or for visualization

in nam.

Application Data Handling The agent does not generate any application data on its ostead, the simulation user can
connect any traffic generation module to any SRM agent torgémelata. The following code demonstrates how a traffic
generation agent can be attached to an SRM agent:

set packetSize 210

set exp0 [new Application/Traffic/Exponential] # configure traffic generator
$exp0 set packetSize_ $packetSize

$exp0 set burst_time_ 500ms

$exp0 set idle_time_ 500ms

$exp0 set rate_ 100k

$exp0 attach-agent $srnD ;# attach application to SRM agent
$srnD set packet Size_ $packet Si ze ;# to generate repair packets of appropriate size
$srm0 set tg_ $expO ;# pointer to traffic generator object
$srm0 set app_fid_ O # fid value for packets generated by traffic generator

The user can attach any traffic generator to an SRM agent. R &ent will add the SRM headers, set the destination
address to the multicast group, and deliver the packet t@itet. The SRM header contains the type of the message, the
identity of the sender, the sequence number of the messadéfa control messages), the round for which this message i
being sent. Each data unitin SRM is identifiedsender’s id, message sequence number

The SRM agent does not generate its own data; it does not am tkack of the data sent, except to record the sequence
numbers of messages received in the event that it has to dorecovery. Since the agent has no actual record of past data
it needs to know what packet size to use for each repair messtance, the instance varialpacketSize_ specifies the

size of repair messages generated by the agent.

Starting the Agent and Traffic Generator The agent and the traffic generator must be started separatel

$srm start
$exp0 start

Alternatively, the traffic generator can be started from$wM Agent:

$srnD start-source

At start , the agent joins the multicast group, and starts generatsgion messages. Tsrt-source triggers the
traffic generator to start sending data.

INote that the trace data can also be used to gather certals &frirace data. We will illustrate this later.

306

35.1.2 Other Configuration Parameters

In addition to the above parameters, the SRM agent suppadii@nal configuration variables. Each of the variables de
scribed in this section is both an OTcl class variable and &ol Object’s instance variable. Changing the class vagiabl
changes the default value for all agents that are createsegulently. Changing the instance variable of a particidanta
only affects the values used by that agent. For example,

Agent/SRM set D1_ 2.0 # Changes the class variable
$srm set D1 2.0 ;# Changes D1 _ for the particular $srm object only

The default request and repair timer parameters [11] foh &M agent are:

Agent/SRM set C1_ 2.0 # request parameters
Agent/SRM set C2_ 2.0
Agent/SRM set D1 _ 1.0 # repair parameters
Agent/SRM set D2_ 1.0

Itis thus possible to trivially obtain two flavors of SRM agebased on whether the agents use probabilistic or detistinin
suppression by using the following definitions:

Class Agent/SRM/Deterministic -superclass Agent/SRM
Agent/SRM/Deterministic set C2_ 0.0
Agent/SRM/Deterministic set D2_ 0.0

Class Agent/SRM/Probabilistic -superclass Agent/SRM
Agent/SRM/Probabilistic set C1_ 0.0
Agent/SRM/Probabilistic set D1_ 0.0

In a later section (Section 35.7), we will discuss other walyextending the SRM agent.

Timer related functions are handled by separate objectsbeig to the class SRM. Timers are required for loss regoaed
sending periodic session messages. There are loss reabjents to send request and repair messages. The agemiscaeat
separate request or repair object to handle each loss. mastrthe agent only creates one session object to sermtjeri
session messages. The default classes the express eaebeofuhctions are:

Agent/SRM set requestFunction_ "SRM/request”
Agent/SRM set repairFunction_ "SRM/repair"
Agent/SRM set sessionFunction_ "SRM/session"

Agent/SRM set requestBackoffLimit_ 5 # parameter to requestFunction_
Agent/SRM set sessionDelay 1.0 H# parameter to sessionFunction_

The instance proceduresquestFunction {}, repairFunction {}, and sessionFunction {} can be used to
change the default function for individual agents. The tagt lines are specific parameters used by the request and ses-
sion objects. The following section (Section 35.2) dessithe implementation of theses objects in greater detail.

307

35.1.3 Statistics

Each agent tracks two sets of statistics: statistics to ureabe response to data loss, and overall statistics fdr e=ac
quest/repair. In addition, there are methods to access otfoemation from the agent.

Data Loss The statistics to measure the response to data losses thactaplicate requests (and repairs), and the average
request (and repair) delay. The algorithm used is docurdent&loyd etal[11]. In this algorithm, each new request (or
repair) starts a new request (or repair) period. During dwuest (or repair) period, the agent measures the numbesbf fi
round duplicate requests (or repairs) until the round teatss either due to receiving a request (or repair), or dtieetagent
sending one. The following code illustrates how the usersiiauple retrieve the current values in an agent:

set statsList [$srm array get statistics_]
array set statsArray [$srm array get statistics_]

The first form returns a list of key-value pairs. The seconanftoads the list into thetatsArray for further manipula-
tion. The keys of the array adup-req ,ave-dup-req ,reqg-delay ,ave-req-delay ,dup-rep ,ave-dup-rep
rep-delay , andave-rep-delay

Overall Statistics In addition, each loss recovery and session object keegls dftimes and statistics. In particular, each
object records itstartTime |, serviceTime |, distance , as are relevant to that object; startTime is the time thiat th
object was created, serviceTime is the time for this objeciomplete its task, and the distance is the one-way timeatthre
the remote peer.

For request objects, startTime is the time a packet losstecth, serviceTime is the time to finally receive that packe
and distance is the distance to the original sender of thkgpa&or repair objects, startTime is the time that a reqfast
retransmission is received, serviceTime is the time semgbair, and the distance is the distance to the original igqud~or
both types of objects, the serviceTime is normalized by tlstadce. For the session object, startTime is the time tieat t
agent joins the multicast group. serviceTime and distane@at relevant.

Each object also maintains statistics particular to thpe tgf object. Request objects track the number of duplicgaests
and repairs received, the number of requests sent, and thberof times this object had to backoff before finally rea&iv
the data. Repair objects track the number of duplicate i®tqu@nd repairs, as well as whether or not this object forafent
sent the repair. Session objects simply record the numbsgssion messages sent.

The values of the timers and the statistics for each objectaitten to the log file every time an object completes thererr
recovery function it was tasked to do. The format of thisé¢réie is:

(prefix) (id) (times) (stats)

wher e
(prefix) is (time) n (node id) m (msg id) r (round)
(msg id) is expressed as (source id:sequence number)
(id) is type (of object)
(times) is list of key-value pairs of startTime, serviceTime, dista nce
(stats) is list of key-value pairs of per object statistics
dupRQST, dupREPR, #sent, backoff for request objects
dupRQST, dupREPR, #sent for repair objects
#sent for session objects

The following sample output illustrates the output file fatnithe lines have been folded to fit on the page):

308

3.6274 n 0 m <1:1> r 1 type repair serviceTime 0.500222 \

startTime 3.5853553333333332 distance 0.0105 #sent 1 dupR EPR 0 dupRQST 0
3.6417 n 1 m <1:1> r 2 type request serviceTime 2.66406 \

startTime 3.5542666666666665 distance 0.0105 backoff 1 #s ent 1 dupREPR O dupRQST O
3.6876 n 2 m <1:1> r 2 type request serviceTime 1.33406 \

startTime 3.5685333333333333 distance 0.021 backoff 1 #se nt 0 dupREPR O dupRQST 0
3.7349 n 3 m <1l:1> r 2 type request serviceTime 0.876812 \

startTime 3.5828000000000002 distance 0.032 backoff 1 #se nt 0 dupREPR O dupRQST 0
3.7793 n 5 m <1:1> r 2 type request serviceTime 0.669063 \

startTime 3.5970666666666671 distance 0.042 backoff 1 #se nt 0 dupREPR 0 dupRQST 0
3.7808 n 4 m <1:1> r 2 type request serviceTime 0.661192 \

startTime 3.5970666666666671 distance 0.0425 backoff 1 #s ent 0 dupREPR 0 dupRQST 0

Miscellaneous Information Finally, the user can use the following methods to gatheitimahél information about the
agent:

e groupSize? {} returns the agent’s current estimate of the multicastgrsize.

e distances? {} returns a list of key-value pairs of distances; the key lie taddress of the agent, the value is the
estimate of the distance to that agent. The first elemeneiadiress of this agent, and the distance of 0.

e distance? {} returns the distance to the particular agent specifiedrgaraent.
The default distance at the start of any simulation is 1.

$srm(i) groupSize? H# returns $srm(i)’s estimate of the group size
$srm(i) distances? ;# returns list of(address, distangeuples
$srm(i) distance? 257 H# returns the distance to agent at address 257

35.1.4 Tracing

Each object writes out trace information that can be usedhttktthe progress of the object in its error recovery. Eaabdr
entry is of the form:

(prefix) (tag) (type of entry) (values)

The prefix is as describe in the previous section for statistThe tag i) for request objects; for repair objects, an& for
session objects. The following types of trace entries amdmaters are written by each object:

309

Type of

Tag Object Other values Comments

Q DETECT

Q INTERVALS C1(C1_) C2(C2_) dist(distancé i (backoff_)

Q NTIMER at(time) Time the request timer will fire

Q SENDNACK

Q NACK IGNORE-BACKOFF(time) Receive NACK, ignore other NACKs
until (time)

Q REPAIR IGNOREStime) Receive REPAIR, ignore NACKs until
(time)

Q DATA Agent receives data instead of repair.
Possibly indicates out of order arrival of
data.

P NACK from (requester Receive NACK, initiate repair

P INTERVALS D1(D1) D2(D2_) dist(distancé

P RTIMER at(time) Time the repair timer will fire

P SENDREP

P REPAIR IGNOREStime) Receive REPAIR, ignore NACKs until
(time)

P DATA Agent receives data instead of repair. In-

dicates premature request by an agent.

S SESSION logs session message sent

The following illustrates a typical trace for a single losglaecovery.

35543 n 1 m <1:1>r 0 Q DETECT

35543 n 1 m <Ll:1>r 1 Q INTERVALS C1 2.0 C2 0.0 d 0.0105 i 1
35543 n 1 m <1:1>r 1 Q NTIMER at 3.57527

35685 n 2 m <1:1>r 0 Q DETECT

35685 n 2 m <Ll:1>r 1 Q INTERVALS C1 20 C2 0.0 d 0.021 i 1
35685 n 2 m <1:1>r 1 Q NTIMER at 3.61053

35753 n 1 m <1:1> r 1 Q SENDNACK

35753 n 1 m <Ll:1>r 2 Q INTERVALS C1 2.0 C2 0.0 d 0.0105 i 2
35753 n 1 m <1:1> r 2 Q NTIMER at 3.61727

35753 n 1 m <1:1> r 2 Q NACK IGNORE-BACKOFF 3.59627
35828 n 3 m <1l:1>r 0 Q DETECT

35828 n 3 m <1:1>r 1 Q INTERVALS C1 20 C2 0.0 d 0.032 i 1
35828 n 3 m <1:1>r 1 Q NTIMER at 3.6468

35854 n 0 m <1:1> r 0 P NACK from 257

35854 n 0 m <1:1> r 1 P INTERVALS D1 1.0 D2 0.0 d 0.0105
35854 n 0 m<1:1>r 1 P RTIMER at 3.59586

35886 n 2 m <1l:1>r 2 Q INTERVALS C1 2.0 C2 0.0 d 0.021 i 2
3.5886 n 2 m <1:1> r 2 Q NTIMER at 3.67262

35886 n 2 m <1:1> r 2 Q NACK IGNORE-BACKOFF 3.63062
35959 n 0 m <1:1>r 1 P SENDREP

35959 n 0 m <1:1> r 1 P REPAIR IGNORES 3.62736

35971 n 4 m <1:1> r 0 Q DETECT

35971 n 4 m <Ll:1>r 1 Q INTERVALS C1 2.0 C2 0.0 d 0.0425 i 1
35971 n 4 m <1:1> r 1 Q NTIMER at 3.68207

3.5971 n 5 m <1:1> r 0 Q DETECT

35971 n 5 m <Ll:1>r 1 Q INTERVALS C1 20 C2 0.0 d 0.042 i 1
35971 n 5 m <1:1> r 1 Q NTIMER at 3.68107

3.6029 n 3 m <1:1>r 2 Q INTERVALS C1 2.0 C2 0.0 d 0.032 i 2

310

36029 n 3 m <Ll:1>r 2 Q NTIMER at 3.73089

3.6029 n 3 m <1:1> r 2 Q NACK IGNORE-BACKOFF 3.66689
3.6102 n 1 m <1:1> r 2 Q REPAIR IGNORES 3.64171

3.6172 n 4 m <L:1>r 2 Q INTERVALS C1 2.0 C2 0.0 d 0.0425 i 2
3.6172 n 4 m <1:11> r 2 Q NTIMER at 3.78715

3.6172 n 4 m <1:1> r 2 Q NACK IGNORE-BACKOFF 3.70215
3.6172 n 5 m <L:1>r 2 Q INTERVALS C1 2.0 C2 0.0 d 0.042 i 2
3.6172 n 5 m <1:11> r 2 Q NTIMER at 3.78515

3.6172 n 5 m <1:1> r 2 Q NACK IGNORE-BACKOFF 3.70115
3.6246 n 2 m <Ll:1>r 2 Q REPAIR IGNORES 3.68756

3.6389 n 3 m <1:1> r 2 Q REPAIR IGNORES 3.73492

3.6533 n 4 m <1:11> r 2 Q REPAIR IGNORES 3.78077

3.6533 n 5 m <Ll:1>r 2 Q REPAIR IGNORES 3.77927

The logging of request and repair traces is don8By::evTrace {}. However, the routineSRM/Session::evTrace {},
overrides the base class definitionsp::evTrace {}, and writes out nothing. Individual simulation scriptam override
these methods for greater flexibility in logging options. eJsossible reason to override these methods might to retlece t
amount of data generated; the new procedure could thenaermmpressed and processed output.

Notice that the trace filoe contains sufficient informatiowl @etails to derive most of the statistics written out inltigefile,
or is stored in the statistics arrays.

35.2 Architecture and Internals

The SRM agent implementation splits the protocol functiots packet handling, loss recovery, and session mességiyac

Packet handling consists of forwarding application datasages, sending and receipt of control messages. These
activities are executed by C++ methods.

Error detection is done in C++ due to receipt of messages.ederythe loss recovery is entirely done through instance
procedures in OTcl.

The sending and processing of messages is accomplishedHirtii@Holicy about when these messages should be sent
is decided by instance procedures in OTcl.

We first describe the C++ processing due to receipt of mess@gztion 35.3). Loss recovery and the sending of session
messages involves timer based processing. The agent usparateclass SRM to perform the timer based functions. For
each loss, an agent may do either request or repair progedsitch agent will instantiate a separate loss recovencofge
every loss, as is appropriate for the processing that it ba®t In the following section we describe the basic timerbas
functions and the loss recovery mechanisms (Section 35iBally, each agent uses one timer based function for sgndin
periodic session messages (Section 35.6).

35.3 Packet Handling: Processing received messages

Therecv () method can receive four type of messages: data, reqegsiiyrand session messages.

Data Packets The agent does not generate any data messages. The usespeasitp an external agent to generate traffic.
The recv () method must distinguish between locally originated dhtt must be sent to the multicast group, and data

311

received from multicast group that must be processed. Towrethe application agent must set the packet’s destinati
address to zero.

For locally originated data, the agent adds the approp8&#! headers, sets the destination address to the multicagh g
and forwards the packet to its target.

On receiving a data message from the growgy_data (sender, msgid) will update its state marking messggader,
msgid received, and possibly trigger requests if it detects lpsbeaddition, if the message was an older message received
out of order, then there must be a pending request or reptinthist be cleared. In that case, the compiled object invililees
OTcl instance proceduregcv-data {sender, msgid}.

Currently, there is no provision for the receivers to adijuaceive any application data. The agent does not alse sioy of
the user data. It only generates repair messages of the@giesize, defined by the instance varigtdeketSize . How-
ever, the agent assumes that any application data is plateeldata portion of the packet, pointed todacket->accessdata()

Request Packets On receiving a requestecv_rgst (sender, msgid) will check whether it needs to scheduleesigifor
other missing data. If it has received this request befovweai aware that the source had generated this data message (
the sequence number of the request is higher than the lastrks@equence number of data from this source), then the agent
can infer that it is missing this, as well as data from the kastwn sequence number onwards; it schedules requests &r al
the missing data and returns. On the other hand, if the seguammber of the request is less than the last known sequence
number from the source, then the agent can be in one of thatessi(1) it does not have this data, and has a request pending
for it, (2) it has the data, and has seen an earlier requesh wpich it has a repair pending for it, or (3) it has the datal a

it should instantiate a repair. All of these error recoveryamanisms are done in OTececv_rgst () invokes the instance
procedurgecv-rqst {sender, msgid, requester} for further processing.

Repair Packets On receiving a repaimecv_repr (sender, msgid) will check whether it needs to scheduleasigufor
other missing data. If it has received this repair beforeaswaware that the source had generated this data messaghe
sequence number of the repair is higher than the last knoguwesee number of data from this source), then the agent can
infer that it is missing all data between the last known seqaeumber and that on the repair; it schedules requestd fifr a
this data, marks this message as received, and returns.eCathtér hand, if the sequence number of the request is less tha
the last known sequence number from the source, then thé egee in one of three states: (1) it does not have this data,
and has a request pending for it, (2) it has the data, and leasaseearlier request, upon which it has a repair pending,for i
or (3) it has the data, and probably scheduled a repair fardbme time; after error recovery, its hold down timer (ec¢toal
three times its distance to some requester) expired, aththiee the pending object was cleared. In this last situatioa
agent will simply ignore the repair, for lack of being abledim anything meaningful. All of these error recovery meckars

are done in OTclrecv_repr () invokes the instance proceduexyv-repr {sender, msgid} to complete the loss recovery
phase for the particular message.

Session Packets On receiving a session message, the agent updates its sequanbers for all active sources, and com-
putes its instantaneous distance to the sending agentsitpp@sThe agent will ignore earlier session messages frgnoap
member, if it has received a later one out of order.

Session message processing is dorredn_sess (). The format of the session message/@unt of tuples in this message,
list of tupleg, where each tuple indicates tkeender id, last sequence number from the source, time thedssion message
was received from this sender, time that that message wés 3@ first tuple is the information about the local agent

2Technically,recv_data () invokes the instance procedurecv data (sender) (msgid), that then invokesecv-data {}. The indirection
allows individual simulation scripts to override thecv {} as needed.

3Note that this implementation of session message handiishitly different from that used b or described in [11]. In principle, an agent disseminates
a list of the data it has actually received. Our implemeatgton the other hand, only disseminates a count of the las$age sequence number per source
that the agent knows that that the source has sent. This isstramt when studying aspects of loss recovery duringtjgartand healing. It is reasonable to
expect that the maintainer of this code will fix this problenridg one of his numerous intervals of copious spare time.

312

35.4 Loss Detection—The Class SRMinfo

A very small encapsulating class, entirely in C++, tracksimher of assorted state information. Each member of thepgrou
n;, uses one SRMinfo block for every other member of the group.

An SRMinfo object about group membey atn;, contains information about the session messages redayvedfrom n;.
n; can use this information to compute its distance fo

If n; sends is active in sending data traffic, then the SRMinfoaihijgl also contain information about the received data,
including a bit vector indicating all packets received fram

The agent keeps a list of SRMinfo objects, one per group merimdes member variablesip_ . Its methodget_state (int
sender) will return the object corresponding to that sentessibly creating that object, if it did not already exiBheclass
SRMinfo has two methods to access and set the bit veictar,

ifReceived (intid) indicates whether the particular message from thgrapriate sender, with il was received
atn;,
setReceived (intid) to set the bit to indicate that the particular messttgm the appropriate sender, withidl was
received at;.

The session message variables to access timing informatogpublic; no encapsulating methods are provided. These ar

int Isess_; / = # of last session msg received
int sendTime_; [= Time sess. msg. # set
int recvTime_; / = Time sess. msg. # received

double distance_;

[Data messages /
int Idata_; / = # of last data msg senrt/

35.5 Loss Recovery Objects

In the last section, we described the agent behavior whendtves a message. Timers are used to control when anyyarrtic
control message is to be sent. The SRM agent uses a seplasteSRM to do the timer based processing. In this section,
we describe the basics if the class SRM, and the loss recolgegts. The following section will describe how the class
SRM is used for sending periodic session messages. An SRM agkinstantiate one object to recover from one lost data
packet. Agents that detect the loss will instantiate anailijetheclass SRM/request ; agents that receive a request and
have the required data will instantiate an object indlzss SRM/repair

Request Mechanisms SRM agents detect loss when they receive a message, andhaféoss based on the sequence
number on the message received. Since packet receptiondéeldeentirely by the compiled object, loss detection osdar
the C++ methods. Loss recovery, however, is handled eptineinstance procedures of the corresponding interprebgeto

in OTcl.

When any of the methods detects new losses, it invélgent/SRM::request {} with a list of the message sequence
numbers that are missingrequest {} will create a new requestFunction_ object for each message that is miss-
ing. The agent stores the object handle in its arraperiding_ objects. The key to the array is the message identifier
(sendey:(msgid.

313

The defaultrequestFunction_ is class SRM/request The constructor for the class SRM/request calls the
base class constructor to initialize the simulator instafuis_), the SRM agentggent_), trace file {race_), and
thetimes_ array. It then initializes itstatistics_ array with the pertinent elements.

A separate call tget-params {} sets thesender_ ,msgid_ ,round_ instance variables for the request object. The
objectdetermine€1_andC2_ by queryingitsagent_ . It sets its distance to the sendéimes_ (distance))and
fixes other scheduling parameters: the backoff conskeatt{off), the current number of backoffegckoffCtr_),
and the limit packoffLimit_) fixed by the agentset-params {} writes the trace entry Q DETECT".

The final step inrequest {} is to schedule the timer to send the actual request at th@apiate moment. The
instance procedur8RM/request::schedule {} uses compute-delay {} and its current backoff constant to
determine the delay. The object schedudead-request {} to be executed aftedelay_ seconds. The instance
variableeventID_ stores a handle to the scheduled event. The detautpute-delay {} function returns a
value uniformly distributed in the intervdCid,, (C; + C2)d,], whered, is twice $times_(distance) . The
schedule {} schedules an event to send a request after the computey.ddlhe routine writes a trace entrp*“
NTIMER at(time)”.

When the scheduled timer fires, the routsend-request {} sends the appropriate message. It invok&agent_ send
requestargs” to send the request. Note therind {} is an instproc-like, executed by theommand)) method of the compiled
object. However, it is possible to overload the instprde-lvith a specific instance procedwend {} for specific configu-
rations. As an example, recall that the fitd/mcast/srm-nam.tcl overloads thesend {} command to set the flowid
based on type of message that is seahd-request {} updates the statistics, and writes the trace entpySENDNACK".

When the agent receives a control message for a packet fohwapending object exists, the agent will hand the messdge of
to the object for processing.

When a request for a particular packet is received, the itquigect can be in one of two states: it is ignoring requests,
considering them to be duplicates, or it will cancel its serent and re-schedule another one, after having backed off
its timer. If ignoring requests it will update its statigjcand write the trace entry@Q*NACK dup”. Otherwise, set a
time based on its current estimate of dheay _ , until which to ignore further requests. This interval isnked by

the instance variablgnore_ . If the object reschedules its timer, it will write the traeetry “ Q NACK IGNORE-
BACKOFF (ignore”. Note that this re-scheduling relies on the fact that therddnas joined the multicast group, and
will therefore receive a copy of every message it sends out.

When the request object receives a repair for the partigaeket, it can be in one of two states: either it is still wagti
for the repair, or it has already received an earlier repiit is the former, there will be an event pending to send a
request, an@ventlD_ will point to that event. The object will compute its servigee, cancel that event, and set a
hold-down period during which it will ignore other requestd the end of the hold-down period, the object will ask its
agent to clear it. It will write the trace entn@*REPAIR IGNORES (ignore)”. On the other hand, if this is a duplicate
repair, the object will update its statistics, and write titzee entry Q REPAIR dup”.

When the loss recovery phase is completed by the obfant/SRM::clear {} will remove the object from its array
of pending_ objects, and place it in its list afone_ objects. Periodically, the agent will cleanup and deleteditne
objects.

Repair Mechanisms The agent will initiate a repair if it receives a request fareecket, and it does not have a request object
pending_ for that packet. The default repair object belongs todlass SRM/repair . Barring minor differences, the
sequence of events and the instance procedures in thissclagientical to those for SRM/request. Rather than oudiresy
single procedure, we only outline the differences from ¢hdascribed earlier for a request object.

The repair object uses the repair parametefs,, D2_. A repair object does not repeatedly reschedule is timbesgfore, it
does not use any of the backoff variables such as that useddguast object. The repair object ignores all requestdior t

314

same packet. The repair objet does not useghere_ variable that request objects use. The trace entries wiiyeepair

objects are marginally different; they are NACK from (requesteX’, “ P RTIMER at (fireTime)”, “P SENDREP, “ P REPAIR
IGNORES (holddown}”.

Apart from these differences, the calling sequence for &vi@ra repair object is similar to that of a request object.

Mechanisms for Statistics The agent, in concert with the request and repair objectbeatostatistics about their re-
sponse to data loss [11]. Each call to the agenquest {} procedure marks a new period. At the start of a new period,
mark-period {} computes the moving average of the number of duplicatabénlast period. Whenever the agent receives
a first round request from another agent, and it had sent &stgquthat round, then it considers the request as a duplieat
quest, and increments the appropriate counters. A regbgsttaloes not consider duplicate requests if it did noffitend a
request in the first round. If the agent has a repair objeaipgnthen it does not consider the arrival of duplicate esjs for
that packet. The object metho8&M/request::dup-request? {} and SRM/repair::dup-request? {} encode
these policies, and return 0 or 1 as required.

A request object also computes the elapsed time between thlhdoss is detected to when it receives the first request. The
agent computes a moving average of this elapsed time. Tketatymputes the elapsed time (or delay) when it cancels its
scheduled event for the first round. The object invokes Ag#RIV::update-ave to compute the moving average of the delay

The agent keeps similar statistics of the duplicate repaird the repair delay.

The agent stores the number of rounds taken for one loss@egde ensure that subsequent loss recovery phases for that
packet that are not definitely not due to data loss do not atdouthese statistics. The agent stores the number of soute
taken for a phase in the arrayd_ . When a new loss recovery object is instantiated, the objélctise the agent’s instance
procedurgound? {} to determine the number of rounds in a previous loss recpphase for that packet.

35.6 Session Objects

Session objects, like the loss recovery objects (Sectids) 3&re derived from the bastass SRM Unlike the loss recovery
objects though, the agent only creates one session objetitddifetime of the agent. The constructor invokes the base
class constructor as before; it then sets its instanceblagassionDelay . The agent creates the session object when it
start {}s. Atthat time, it also invokes SRM/session::schedubesénd a session message afessionDelay _ seconds.

When the object sends a session message, it will scheduéntbtbe next one after some interval. It will also update its
statistics.send-session {} writes out the trace entry $ SEssION.

The class overrides thevTrace {} routine that writes out the trace entries. SRM/sessieviTrace disable writing out the
trace entry for session messages.

Two types of session message scheduling strategies aentlyravailable: The function in the base class scheduledisg
session messages at fixed intervalsegsionDelay jittered around a small value to avoid synchronization agwahthe
agents at all the nodeslass SRM/session/logScaled chedules sending messages at intervaksestionDelay
timeslog,(groupSize_) so that the frequency of session messages is inverselpgiopal to the size of the group.

The base class that sends messages at fixed intervals isféludt dessionFunction_ for the agent.

315

35.7 Extending the Base Class Agent

In the earlier section on configuration parameters (Se@mai.2), we had shown how to trivially extend the agent to get
deterministic and probabilistic protocol behavior. InstBection, we describe how to derive more complex extensmtise
protocol for fixed and adaptive timer mechanisms.

35.7.1 Fixed Timers

The fixed timer mechanism are done in the derigkds Agent/SRM/Fixed The main difference with fixed timers is
that the repair parameters are setdg(groupSize_). Therefore, the repair procedure of a fixed timer agent sallD,
andD- to be proportional to the group size before scheduling thairebject.

35.7.2 Adaptive Timers

Agents using adaptive timer mechanisms modify their regaled repair parameters under three conditions (1) evenry &m
new loss object is created; (2) when sending a message; anthéd they receive a duplicate, if their relative distarcéhe
lossis less than that of the agent that sends the dupliclitiirde changes require extensions to the agent and thelijssts.
Theclass Agent/SRM/Adaptive usexlass SRM/request/Adaptive andclass SRM/repair/Adaptive

as the request and repair functions respectively. In addithe last item requires extending the packet headersiviertise
their distances to the loss. The corresponding compilesbdiar the agent is thelass ASRMAgent .

Recompute for Each New Loss Object Each time a new request object is created, SRM/requesttieapet-params
invokes$agent_ recompute-request-params . The agent methotecompute-request-params (). uses the
statistics about duplicates and delay to modifyandC- for the current and future requests.

Similarly, SRM/request/Adaptive::set-params for a nepaieobject invoke$agent_ recompute-repair-params
The agent methotecompute-repair-params (). uses the statistics objects to modify andD- for the current and
future repairs.

Sending a Message If aloss object sends arequestinits fi@mind_ , then the agent, in the instance procedmeding-request
will lower C7, and set its instance varialt®sest_(requestor) to 1.

Similarly, aloss object that sends a repair in its figtnd_ will invoke the agent’s instance procedusending-repair {3
to lower D; and setlosest_(repairor) to 1.

Advertising the Distance Each agent must add additional information to each reqegsiit that it sends out. The base
class SRMAgent invokes the virtual methodddExtendedHeaders () for each SRM packet that it sends out. The
method is invoked after adding the SRM packet headers, afmtebthe packet is transmitted. The adaptive SRM agent
overloadsaddExtendedHeaders () to specify its distances in the additional headers. Wieenlig a request, that agent
unequivocally knows the identity of the sender. As an exantple definition oaddExtendedHeaders () for the adaptive
SRM agentis:

void addExtendedHeaders(Packet * p) {
SRMinfo * sp;
hdr_srm * sh = (hdr_srm =) p->access(off_srm_);

316

{

hdr_asrm * seh = (hdr_asrm *) p->access(off_asrm_);
switch (sh->type()) {
case SRM_RQST:

sp = get_state(sh->sender());

seh->distance() = sp->distance_;

break;

Similarly, the methocparseExtendedHeaders () is invoked every time an SRM packet is received. It setsatent
member variabl@distance_ to the distance advertised by the peer that sent the messagenember variable is bound

to an instance variable of the same name, so that the peandéstan be accessed by the appropriate instance procedures
The correspondingarseExtendedHeaders () method for the Adaptive SRM agent is simply:

void parseExtendedHeaders(Packet * p) {
hdr_asrm * seh = (hdr_asrm *) p->access(off_asrm_);
pdistance_ = seh->distance();

Finally, the adaptive SRM agent’s extended headers areadkdisstruct hdr_asrm . The header declaration is identical
to declaring other packet headersim Unlike most other packet headers, these are not autorthptivailable in the packet.
The interpreted constructor for the first adaptive agentadt the header to the packet format. For example, the dtéreo
constructor for thédgent/SRM/Adaptive agentis:

Agent/SRM/Adaptive set done_ 0O
Agent/SRM/Adaptive instproc init args {
if /[$class set done] {
set pm [[Simulator instance] set packetManager_]
TclObject set off asrm_ [$pm allochdr aSRM]
$class set done_ 1

}

eval $self next $args

35.8 SRM objects

SRM objects are a subclass of agent objects that implemeI®RM reliable multicast transport protocol. They inheltivd
the generic agent functionalities. The methods for thigolis described in the next section 35.9. Configurationrpatars
for this object are:

packetSize_The data packet size that will be used for repair messagesdatault value is 1024.

requestFunction_ The algorithm used to produce a retransmission request,seting request timers. The default value is
SRM/request. Other possible request functions are SRMéwtfAdaptive, used by the Adaptive SRM code.

repairFunction_ The algorithm used to produce a repair, e.g., compute répaars. The default value is SRM/repair. Other
possible request functions are SRM/repair/Adaptive, Useithe Adaptive SRM code.

317

sessionFunction_The algorithm used to generate session messages. Def@iRMgsession

sessionDelay_The basic interval of session messages. Slight randomticariss added to this interval to avoid global
synchronization of session messages. User may want totdtjasvariable according to their specific simulation.
Default value is 1.0.

C1_, C2_ The parameters which control the request timer. Refer tédBfletail. The default valueis C1_=C2_=2.0.
D1_, D2_ The parameters which control the repair timer. Refer to @8]detail. The default valueis D1_=D2_=1.0.

requestBackoffLimit_ The maximum number of exponential backoffs. Default vatug. i
State Variables are:

stats_ An array containing multiple statistics needed by adap8i®M agent. Including: duplicate requests and repairs in
current request/repair period, average number of dugicatuests and repairs, request and repair delay in current
request/repair period, average request and repair delay.

SRM/ADAPTIVE OBJECTS SRM/Adaptive objects are a subclass of the SRM objects thateiment the adaptive SRM
reliable multicast transport protocol. They inherit allthé SRM object functionalities. State Variables are:

(Refer to the SRM paper by Sally et al [Fall, K., Floyd, S., &ehderson, T., Ns Simulator Tests for Reno FullTCP. URL
ftp://ftp.ee.Ibl.gov/papers/fulltcp.ps. July 1997.} foore detail.)

pdistance_ This variable is used to pass the distance estimate probg#ue remote agent in a request or repair message.

D1 _,D2_The same as that in SRM agents, except that they are ingitatia log10(group size) when generating the first
repair.

MinC1_, MaxC1_, MinC2_, MaxC2_ The minimum/maximum values of C1_ and C2_. Default initialues are defined
in [8]. These values define the dynamic range of C1_and C2_.

MinD1_, MaxD1_, MinD2_, MaxD2_ The minimum/maximum values of D1_ and D2_. Default initialues are defined
in [8]. These values define the dynamic range of D1_ and D2_.

AveDups Higher bound for average duplicates.
AveDelay Higher bound for average delay.

eps AveDups-dups determines the lower bound of the number of duplicatben we should adjust parameters to decrease
delay.

35.9 Commands at a glance

The following is a list of commands to create/manipulate agants in simulations:

set srm0 [new Agent/SRM]
This creates an instance of the SRM agent. In addition todlse blass, two extensions of the srm agent have been
implemented. They are Agent/SRM/Fixed and Agent/SRM/AidapSee section 35.7 for details about these extensions.

ns_ attach-agent <node> <srm-agent>
This attaches the srm agent instance to the given <node>.

318

set grp [Node allocaddr]
$srm set dst_ $grp

This assigns the srm agent to a multicast group represegtdtbbmcast address <grp>.

Configuration parameters for srm agent may be set as follows:

$srm set fid_ <flow-id>
$srm set tg_ <traffic-generator-instance>
. etc

For all possible parameters and their default values pliead@ipngtcl/mcast/srm.tcl andgtcl/mcast/srm-adaptive.tcl.

set exp [new Application/Traffic/Exponential]
$exp attach-agent $srm

This command attaches a traffic generator (an exponentilotiis example), to the srm agent.

$srm start; $exp start

These commands start the srm agent and traffic generatae.thttthe srm agent and traffic generator have to be started
separately. Alternatively, the traffic generator may betsththrough the agent as follows:

$srm start-source

Seenditcl/ex/srm.tcl for a simple example of setting up a SRM dgen

319

Chapter 36

PLM

This chapter describes the ns implementation of the PLMogd{19]. The code of the PLM protocol is written in both C++
and OTcl. The PLM Packet Pair generator is written in C++ dredRLM core machinery is written in OTcl. The chapter
has simply three parts: the first part shows how to create anfigure a PLM session; the second part describes the Packet
Pair source generator; the third part describes the aathiteand internals of the PLM protocol. In this last parthea than
giving a list of procedures and functions, we introduce ttemprocedures per functionality (instantiation of a PLMisz®,
instantiation of a PLM receiver, reception of a packet, débda of a loss, etc.).

The procedures, functions, and variables described inctiapter can be found in:ngplm/cbr-traffic-PP.cc, rdplm/loss-
monitor-plm.cc, adtcl/plm/plm.tcl, ~ngtcl/plm/plm-ns.tcl, adtcl/plm/plm-topo.tcl, adtcl/lib/ns-default.tcl.

36.1 Configuration

Creating a simple scenario with one PLM flow (only one receivg
This simple example can be run as is (several complex s@Eneain be found in the filengtcl/ex/simple-plm.tcl).

set packetSize 500 ;# Packet size (in bytes)
set plm_debug_flag 2 ;# Debugging output
set rates "50e3 50e3 50e3 50e3 50e3" # Rate of each layer
set rates_cum [calc_cum $rates] # Cumulated rate of the layers (mandatory)
set level [llength $rates] ;# Number of layers (mandatory)
set Queue_sched_ FQ ;# Scheduling of the queues
set PP_burst_length 2 ;# PP burst length (in packets)
set PP_estimation_length 3 # Minimum number of PP required to make an estimate

Class Scenario0 -superclass PLMTopology
Scenario0 instproc init args {

eval $self next $args

$self instvar ns node

$self build_link 1 2 100ms 256Kb # Build a link
set addr(1) [$self place_source 1 3] ;# Set a PLM source
$self place_receiver 2 $addr(1) 5 1 # Seta PLM receiver

320

#set up the multicast routing
DM set PruneTimeout 1000 # Alarge PruneTimeout value is required
set mproto DM
set mrthandle [$ns mrtproto $mproto {}]

}

set ns [new Simulator -multicast on] H PLM needs multicast routing
$ns multicast

$ns namtrace-all [open out.nam w] ;# Nam output
set scn [new Scenario0 $ns] ;# Call of the scenario
$ns at 20 "exit 0"

$ns run

Several variables are introduced in this example. Theyesbno be set in the simulation script (there is no defauttevébr
these variables). In particular the two following lines arandatory and must not be omitted:

set rates_cum [calc_cum $rates]
set level [llength $rates]

We describe now in detail each variable:

packetSize represents the size of the packets in bytes sent by the PLkesou

plm_debug_flag represents the verbose level of debugging output: from O atpud to 3 full output. For
plm_debug flag set to 3 (full output), long lines output are generated whichot compatible with ham visu-
alization.

rates is a list specifying the bandwidth of each layer (this is gt cumulated bandwidth!).

rates_cum s a list specifying the cumulated bandwidth of the layel® first element ofates_cum is the bandwidth
a layer 1, the second element i@ites_cum is the sum of the bandwidth of layer 1 and layer 2, etc. The proc
calc_cum {} computes the cumulated rates.

level isthe number of layers.

Queue_sched_ represents the scheduling of the queues. This is used by ti@dpology instprodouild_link . PLM
requires FQ scheduling or a variation.

PP_burst_length represents the size of the Packet Pair bursts in packets.

PP_estimation_length represents the minimum number of Packet Pair required topodenan estimate (see sec-
tion 36.3.3).

All the simulations for PLM should be setup using the PLMTimgy environment (as in the example script where we define
a PLMTopology superclass called Scenario0). The userfateiis (all the instproc can be found ingtcl/plm/plm-topo.tcl):

build_link a b d bw creates a duplex link between noal@ndb with a delayd and a bandwidtlw. If either node
does not existhuild_link creates it.

place_source n t creates and places a PLM source at noged starts it at timé . place_source returnsaddr
which allows to attach receivers to this source.

321

place_receiver n addr C nb creates and places a PLM receiver at no@ad attached it to the source which return
the addresaddr . The check value for this PLM receiver & An optional parametemb allows to get an instance
of the PLM receiver calledPLMrcvr($nb) . This instance is only useful to get some specific statistlsut this
receiver (mainly the number of packets received or lost).

36.2 The Packet Pair Source Generator

This section describes the Packet Pair source generatrretbvant files are: nsplm/cbr-traffic-PP.cc, ndtcl/lib/ns-
default.tcl. The OTcl class name of the PP source is: Apptinalraffic/CBR_PP. The Packet Pair (PP) source generator
is in the file -ngplm/cbr-traffic-PP.cc. This source generator is a vasiatf the CBR source generator ingcbr_traffic.cc.

We just describe the salient differences between the cotted@BR source and the code of the PP source. The defaulsvalue
in ~ndtcl/lib/ns-default.tcl for the PP source generator are shme than for the CBR source. We need for the PP source
generator a new paramefBM

Application/Traffic/CBR_PP set PBM_ 2 ;# Default value

The OTcl instvar bounded variabRBM_(same name in C++ and in OTcl) specifies the number of badlatd-packets to

be sent. FOPBM =1 we have a CBR source, f&BM =2 we have a Packet Pair source (a source which sends twotpacke
back-to-back), etc. The mean rate of the PP sourcatés , but the packets are sent in burstRBM_packets. Note that we
also use the terminology Packet Pair source and PacketirairforPBM_>2. We compute thaext_interval as:

double CBR_PP_Traffic::next_interval(int& size)

[*(PP_- 1) is the number of packets in the current burst.*/
if (PP_ >= (PBM_ - 1))
interval_ = PBM_ = (double)(size_ << 3)/(double)rate_;

PP_ = 0;

else
interval_ = 1e-100; //zero
PP_ += 1 ;

Thetimeout {} method puts theNEW_BURSTIag in the first packet of a burst. This is useful for the PLMtpaml to
identify the beginning of a PP burst.

void CBR_PP_Traffic::timeout()

if (PP_ == 0)
agent_->sendmsg(size_, "NEW_BURST");
else

agent_->sendmsg(size);

322

36.3 Architecture of the PLM Protocol

The code of the PLM protocol is divided in three filesngtcl/plm/plm.tcl, which contains the PLM protocol machiye
without any specific interface withs ~ngtcl/plm/plm-ns.tcl, which contains the specific ns intex. However, we do not
guarantee the strict validity of this ns interfacingigtcl/plm/plm-topo.tcl, which contains a user interfacétold simulation
scenarios with PLM flows.

In the following we do not discuss the various procedureopg@ct (for instance all the instproc of the PLM class) bthea
per functionality (for instance which instproc among thei®as classes are involved in the instantiation of a PLM iner.
For a given functionality, we do not describe in details ladl tode involved, but we give the principal steps.

36.3.1 |Instantiation of a PLM Source

To create a PLM source, place it at nadeand start it at o, we call the PLMTopology instproplace_source n t .
This instproc returraddr , the address required to attach a receiver to this soystace _source calls the Simulator
instprocPLMbuild_source_set that creates as many Application/Traffic/CBR_PP instaasethere are layers (in the
following we call an instance of the class Application/Ti@dfCBR_PP a layer). Each layer corresponds to a differerticast

group.

To speed up the simulations when the PLM sources start wehedeltowing trick: At¢ = 0, PLMbuild_source_set
restricts each layer to send only one packeaxpkts_ setto 1). That allows to build the multicast trees — one roati tree
per layer — without flooding the whole network. Indeed, eagtet only sends one packet to build the corresponding nasttic
tree.

The multicast trees take at most the maximum RTT of the ndtwmibe established and must be established befgre
the PLM source starting time. Therefote, must be carrefully chosen, otherwise the source sends a tampber of use-
less packets. However, as we just need to start the PLM saifiteethe multicast trees are estabishieglcan be largely
overestimated. At timey, we setmaxpkts to 268435456 for all the layers.

It is fundamental, in order to have persistent multicastgrehat the prune timeout is set to a large value. For instamith
DM routing:

DM set PruneTimeout 1000

Each layer of a same PLM source has the same fldwdid . Consequently, each PLM source is considered as a single flow
for a Fair Queueing scheduler. The PLM code manages autcaiigtihefid_ to prevent different sources to have the same
fid_ . Thefid_ starts at 1 for the first source and is increased by one for Bastsource. Be careful to avoid other flows
(for instance concurrent TCP flows) to have the séiche than the PLM sources. Additionally, If you considir_ larger

than 32, do not forget to increase thEAXFLOWA ~ngfg.cc MAXFLOWhust be set to the higheitl_ considered in the
simulation).

36.3.2 Instantiation of a PLM Receiver

All the PLM machinery is implemented at the receiver. In #@stion we decribe the instantiation process of a receleerre-
ate, place at node, attach to sourc8, and start at ; a PLM receiver we call the PLMTopology instprbuaild_receiver

n addr t ; Cwhereaddr isthe address returned pjace_source whenS was created, an@is the check value. The
receiver created bpuild_receiver is an instance of the class PLM/ns, the ns interface to the Riddhinery. At
the initialisation of the receiver, the PLM instpradit is called due to inheritanceinit calls the PLM/ns instproc

323

User

. Inherit
v PLMTopology
¢ Instantiate _- PLM
PLM/ns
PLMLayer « _ /\ _- PLMLayer
N -
PLMLayer/ns PLMLayer/ns
Agent/LossMonitor/PLM. _ ‘ ’ _. Agent/LossMonitor/PLM
o L
PLMLossTrace PLMLossTrace

Number of layers

Figure 36.1: Inheritance and instantiation when we creageeaiver.

create-layer and, by this way, creates as many instances of the class Py&iins (the ns interface to the PLMLayer
class) as there are layers. Each instance of PLMLayer/mdes@n instance of the class PLMLossTrace which is repon-
sible for monitoring the received and lost packets thankh&ofact that the class PLMLossTrace inherits from the class
Agent/LossMonitor/PLM. Fig. 36.1 schematically descsiltiee process of a PLM receiver instantiation. In the follogwve
describe the behavior of a PLM receiver when it receives >aand when it detects a loss.

36.3.3 Reception of a Packet

We create a new c++ class PLMLossMoniton§plm/loss-monitor-plm.cc) that inherits from LossMonitdhe OTcl class
name of the c++ PLMLossMonitor class is Agent/LossMonRai.

class PLMLossMonitor : public LossMonitor
public:

PLMLossMonitor();

virtual void recv(Packet * pkt, Handler =*);
protected:

/I PLM only

int flag PP_;

double packet_time_PP_;

int fid_PP_;

static class PLMLossMonitorClass : public TclClass
public:
PLMLossMonitorClass() : TclClass("Agent/LossMonitor/P LM")
TclObject * create(int, const char * CONSt *)
return (new PLMLossMonitor());

class_loss_mon_pim;

324

We add invoid PLMLossMonitor::recv(Packet * pkt, Handler) aTcl call to the Agent/LossMonitor/PLM
instproclog-PP each time a packet is received :

void LossMonitor::recv(Packet * pkt, Handler =)
if (expected_ >= 0)

Tcl::instance().evalf("%s log-PP", name());

The Agent/LossMonitor/PLM instprotog-PP is empty. In fact, we define théog-PP instproc for the class

PLMLossTrace. log-PP computes an estimate of the available bandwidth based omgesPP burst (of length

PP_burst_length in packets). Oncéog-PP has received th®P_burst_length packets of the burst, it computes
the estimate and calls the PLM instpnoake_estimate with the computed estimate as argument.

make_estimate puts the estimate based on a single PP_(value) in an array of estimate sampleRBR_estimate).

If PP_value is lower than the current subscription level (i.e. lowerrthae throughput achieved according to the
current number of layers subscribedjiake_estimate calls the PLM instprocstability-drop which simply
drops layers until the current subscription level becommsel thanPP_value . make_estimate makes an es-
timate PP_estimate_value by taking the minimumPP_value received during the lastheck_ estimate pe-

riod (if there are at leasPP_estimation_length single PP estimate received). Onowke estimate has a
PP_estimate_value it calls the PLM instproachoose_layer which joins or drops layer(s) according to the cur-
rent subscription level and to tHP_estimate_value . For details about the PLM instpracake_estimate |, refer to

its code in fgtcl/plm/plm.tcl.

36.3.4 Detection of a Loss

Each time a loss is detected by an instance of the class PL&Masitor, a call to the Agent/LossMonitor/PLM instproc
log-loss s triggered. The Agent/LossMonitor/PLM instprémg-loss is empty. In fact, we define thieg-loss
instproc for the class PLMLossTrace. The PLMLossTraceiostlog-loss simply calls the PLM instprotog-loss

which contains the PLM machinery in case of loss. In summagyloss only drops a layer when the loss rate exceeds
10% (this test is executed by the PLM instpeo@ed_loss_thresh). After a layer drogog-loss precludes any other
layer drop due to loss for 500ms. For details about the PLNpioslog-loss , refer to its code in rg'tcl/pim/plm.tcl.

36.3.5 Joining or Leaving a Layer

To join a layer the PLM instproadd-layer is called. This instproc calls the PLMLayer instprioin-group which
calls the PLMLayer/ns instprgoin-group . To leave a layer the PLM instpratrop-layer is called. This instproc
calls the PLMLayer instproleave-group which calls the PLMLayer/ns instprdeave-group

36.4 Commands at a Glance

Note: This section is a copy paste of the end of section 36eladid this section to preserve homogeneity with the ns manual

325

All the simulations for PLM should be set using the PLMTompl@nvironment (as in the example script where we define a
PLMTopology superclass called ScenarioQ). The user imterfs (all the instproc can be found ingtcl/plm/plm-topo.tcl):

build_link a b d bw creates a duplex link between noal@ndb with a delayd and a bandwidtlbw. If either node
does not existhuild_link creates it.

place_source n t creates and places a PLM source at nodmnd starts it at timé . place_source returnsaddr
which allows to attach receivers to this source.

place_receiver n addr C nb creates and places a PLM receiver at no@ad attached it to the source which return
the addresaddr . The check value for this PLM receiver & An optional parametemb allows to get an instance
of the PLM receiver calledPLMrcvr($nb) . This instance is only useful to get some specific statisthsut this
receiver (mainly the number of packets received or lost).

326

Part VI

Application

327

Chapter 37

Applications and transport agent API

Applications sit on top of transport agentsia There are two basic types of applications: traffic genesaad simulated ap-
plications. Figure 37.1 illustrates two examples of howlegagions are composed and attached to transport agerssgort
agents are described in Part V (Transport).

This chapter first describes the badass Application . Next, the transport API, through which applications resjue

services from underlying transport agents, is describéthlly, the current implementations of traffic generatard aources
are explained.

37.1 The class Application

Application is a C++ class defined as follows:

class Application : public TclObject {

public:
Application();
virtual void send(int nbytes);
virtual void recv(int nbytes);
virtual void resume();
protected:
int command(int argc, const char *Cconst * argv);
virtual void start();
virtual void stop();
Agent =*agent_;
int enableRecv_; /I call OTcl recv or not
int enableResume_; /I call OTcl resume or not
h
Although objects ofclass Application are not meant to be instantiated, we do not make it an abdiess class
so that it is visible from OTcl level. The class provides lgsiototypes for application behaviasend(), recv(),
resume(), start(), stop()), a pointer to the transport agent to which it is connected feags that indicate whether

a OTcl-level upcall should be made farcv() andresume() events.

328

Traffic generators Simulated applications

|/_ -~ _ - N ‘ |/ __________ '

Application/ | ot |

: Traffic/ | : Application/FTP |

, Exponential | | |

\ ' \ !
API API

. 1 o |

| | |

Agent/UDP | . Agent/TCP/FullTcp !

| | |

! X |

——— -

Figure 37.1: Example of Application Composition

37.2 The transport agent API

In real-world systems, applications typically access ekvgervices through an applications programming intexfghePl).
The most popular of these APIs is known as “sockets.”ngnwe mimic the behavior of the sockets API through a set
of well-defined API functions. These functions are then neabfo the appropriate internal agent functions (e.g., atoall
send(numBytes) causes TCP to increment its “send buffer” by a correspondimgber of bytes).

This section describes how agents and applications aregddokether and communicate with one another via the API.

37.2.1 Attaching transport agents to nodes

This step is typically done at OTcl level. Agent managemeas @iso briefly discussed in Section 5.2.

set src [new Agent/TCP/FullTcp]
set sink [new Agent/TCP/FullTcp]
$ns_ attach-agent $node (sl1l) $src
$ns_ attach-agent $node_(k1) $sink
$ns_ connect $src $sink

The above code illustrates thatriig, agents are first attached to a nodeafach-agent . Next, theconnect instproc

sets each agent’s destination target to the other. Notgitivag, connect() has different semantics than in regular sockets.
In ns connect() simply establishes the destination address for an agenhtidas not set up the connection. As a result,
the overlying application does not need to know its peerrass. For TCPs that exchange SYN segments, the first call to
send() will trigger the SYN exchange.

To detach an agent from a node, the instpdetach-agent can be used; this resets the target for the agent to a nult.agen

329

37.2.2 Attaching applications to agents

After applications are instantiated, they must be conmttt@ transport agent. Tlatach-agent method can be used to
attach an application to an agent, as follows:

set ftpl [new Application/FTP]
$ftpl attach-agent $src

The following shortcut accomplishes the same result:
set ftpl [$src attach-app FTP]

The attach-agent method, which is also used by attach-gpmplemented in C++. It sets tlagent_ pointer inclass
Application to point to the transport agent, and then it caltsachApp() in agent.cc to set theapp_ pointer

to point back to the application. By maintaining this birglionly in C++, OTcl-level instvars pointers are avoided and
consistency between OTcl and C++ is guaranteed. The OVel-4®mmand$ftpl agent] can be used by applications
to obtain the handler for the transport agent.

37.2.3 Using transport agents via system calls

Once transport agents have been configured and applicatiached, applications can use transport services viatloaing
system calls. These calls can be invoked at either OTcl orl€vwel, thereby allowing applications to be coded in eitherC
or OTcl. These functions have been implemented as virtuadtfons in the baselass Agent , and can be redefined as
needed by derived Agents.

e send(int nbytes) —Send nbytes of data to peer. For TCP agentapiftes == -1 , this corresponds to an
“infinite” send; i.e., the TCP agent will act as if its sendfenis continually replenished by the application.

e sendmsg(int nbytes, const char * flags = 0) —lIldenticaltosend(int nbytes) , exceptthatit passes
an additional strindlags . Currently one flag value, “MSG_EOF,” is defined; MSG_ EOFc#fes that this is the last
batch of data that the application will submit, and serveasrasnplied close (so that TCP can send FIN with data).

e close() —Requests the agentto close the connection (only appéidablr CP).
e listen() —Requests the agent to listen for new connections (onlyiegdge for Full TCP).
e set_pkttype(int pkttype) —This function sets thgype_ variable in the agent tpkttype . Packet types

are defined irpacket.h . This function is used to override the transport layer patkee for tracing purposes.

Note that certain calls are not applicable for certain agjeely., a call taclose () a UDP connection results in a no-op.
Additional calls can be implemented in specialized aggmtsyided that they are magbeiblic member functions.

37.2.4 Agent upcalls to applications

Since presently imsthere is no actual data being passed between applicatigastsacan instead announce to applications
the occurrence of certain events at the transport layeuttrdupcalls.” For example, applications can be notifiedhs t
arrival of a number of bytes of data; this information may #id application in modelling real-world application betoav
more closely. Two basic “upcalls” have been implementediseblass Application and in the transport agents:

330

e recv(int nbytes) —Announces thahbytes of data have been received by the agent. For UDP agents, this
signifies the arrival of a single packet. For TCP agents,digsifies the “delivery” of an amount of in-sequence data,
which may be larger than that contained in a single packet {dthe possibility of network reordering).

e resume() —This indicates to the application that the transport agestsent out all of the data submitted to it up to
that point in time. For TCP, it does not indicate whether tatadas been ACKed yet, only that it has been sent out for
the first time.

The default behavior is as follows: Depending on whetheaty@ication has been implemented in C++ or OTcl, these C++
functions call a similarly namedédcv, resume) function in the application, if such methods have been defin

Although strictly not a callback to applications, certaigehts have implemented a callback from C++ to OTcl-level tha
has been used by applications such as HTTP simulators. @tismck methoddone{} , is used in TCP agents. In TCP,
done{} is called when a TCP sender has received ACKs for all of ita dad is now closed; it therefore can be used to
simulate a blocked TCP connection. Tdhene{} method was primarily used before this APl was completedntay still

be useful for applications that do not want to uesume()

To usedonef{} for FullTcp, for example, you can try:

set myagent [new Agent/TCP/FullTcp]
$myagent proc done
. code you want ...

If you want all the FullTCP’s to have the same code you coldad db:

Agent/TCP/FullTcp instproc done
. code you want ...

By default,done{} does nothing.

37.2.5 Anexample
Here is an example of how the API is used to implement a simmdiGation (FTP) on top of a FullTCP connection.

set src [new Agent/TCP/FullTcp]
set sink [new Agent/TCP/FullTcp]
$ns_ attach-agent $node_(s1) $src
$ns_ attach-agent $node_(k1) $sink
$ns_ connect $src $sink

set up TCP-level connections
$sink listen;
$src set window_ 100

set ftpl [new Application/FTP]
$ftpl attach-agent $src

$ns_ at 0.0 "$ftpl start”

331

In the configuration script, the first five lines of code all@satwo new FullTcp agents, attaches them to the correctspode
and "connects” them together (assigns the correct destinatidresses to each agent). The next two lines configure the
TCP agents further, placing one of them in LISTEN mode. Néxtl is defined as a new FTP Application, and the
attach-agent method is called in C++app.cc).

The ftpl application is started at time O:

Application/FTP instproc start {} {
[$self agent] send -1; # Send indefinitely

}

Alternatively, the FTP application could have been implated in C++ as follows:

void FTP::start()
{

}

agent_->send(-1); /I Send indefinitely

Since the FTP application does not make use of callbackse thumctions are null in C++ and no OTcl callbacks are made.

37.3 The class TrafficGenerator

TrafficGenerator is an abstract C++ class defined as follows:

class TrafficGenerator : public Application {
public:
TrafficGenerator();
virtual double next_interval(int &) = 0;
virtual void init() {}
virtual double interval() { return O; }
virtual int on() { return O; }
virtual void timeout();
virtual void recv() {}
virtual void resume() {}
protected:
virtual void start();
virtual void stop();
double nextPkttime_;

int size_;
int running_;
TrafficTimer timer_;
h
The pure virtual functiomext_interval () returns the time until the next packet is created and atotbe size in bytes

of the next packet. The functistart () callsinit (void) and starts the timer. The functiimeout () sends a packet and
reschedules the next timeout. The functgiap () cancels any pending transmissions. Callbacks are tyyicat used for
traffic generators, so these functionsdv, resume) are null.

Currently, there are four C++ classes derived from the claafficGenerator:

332

1. EXPOO_Traffic —generates traffic according to an Exponential On/Off distion. Packets are sent at a fixed rate
during on periods, and no packets are sent during off periBdsh on and off periods are taken from an exponential
distribution. Packets are constant size.

2. POO_Traffic —generates traffic according to a Pareto On/Off distributidrhis is identical to the Exponential
On/Off distribution, except the on and off periods are takem a pareto distribution. These sources can be used to
generate aggregate traffic that exhibits long range depwyde

3. CBR_Traffic —generates traffic according to a deterministic rate. Pigchee constant size. Optionally, some
randomizing dither can be enabled on the interpacket deqgairitervals.

4. TrafficTrace —qgenerates traffic according to a trace file. Each recordertridce file consists of 2 32-bit fields in
network (big-endian) byte order. The first contains the timenicroseconds until the next packet is generated. The
second contains the length in bytes of the next packet.

These classes can be created from OTcl. The OTcl classesrmam@ssociated parameters are given below:

Exponential On/Off An Exponential On/Off object is embodied in the OTcl classplgation/Traffic/Exponential. The
member variables that parameterize this object are:

packetSize the constant size of the packets generated
burst_time_ the average “on” time for the generator
idle_time_ the average “off” time for the generator
rate_ the sending rate during “on” times

Hence a new Exponential On/Off traffic generator can be eceahd parameterized as follows:

set e [new Application/Traffic/Exponential]
$e set packetSize_ 210

$e set burst_time 500ms

$e set idle_time_ 500ms

$e set rate_ 100k

NOTE: The Exponential On/Off generator can be configured to beas@@oisson procesby setting the variablburst_time_
to 0 and the variableate_ to a very large value. The C++ code guarantees that even Hutst time is zero, at least one
packet is sent. Additionally, the next interarrival timetti®@ sum of the assumed packet transmission time (governéteby
variablerate_) and the random variate correspondinddte_time_ . Therefore, to make the first term in the sum very
small, make the burst rate very large so that the transnmigsie is negligible compared to the typical idle times.

Pareto On/Off A Pareto On/Off object is embodied in the OTcl class ApplmafTraffic/Pareto. The member variables
that parameterize this object are:

packetSize the constant size of the packets generated
burst_time_ the average "on" time for the generator
idle_time_ the average "off" time for the generator
rate the sending rate during "on" times

shape_ the "shape" parameter used by the pareto distribution

A new Pareto On/Off traffic generator can be created as faliow

333

set p [new Application/Traffic/Pareto]
$p set packetSize_ 210

$p set burst_time_ 500ms

$p set idle_time_ 500ms

$p set rate_ 200k

$p set shape_ 1.5

CBR A CBR object is embodied in the OTcl class Application/TidfiBR. The member variables that parameterize this
object are:

rate_ the sending rate
interval_ (Optional) interval between packets
packetSize the constant size of the packets generated
random_ flag indicating whether or not to introduce random “noisethie scheduled departure times (default is
off)

maxpkts_ the maximum number of packets to send (defaul2#8)

Hence a new CBR traffic generator can be created and parapeetes follows:

set e [new Application/Traffic/CBR]
$e set packetSize 48

$e set rate_ 64Kb

$e set random_ 1

The setting of a CBR objectimte andinterval _ are mutually exclusive (the interval between packets isaaied
as an interval variable in C++, and some exampdscripts specify an interval rather than a rate). In a sinhateither a
rate or an interval (but not both) should be specified for a @BfRCct.

Traffic Trace A Traffic Trace object is instantiated by the OTcl class Apation/Traffic/Trace. The associated class Trace-
file is used to enable multiple Traffic/Trace objects to beoaisted with a single trace file. The Traffic/Trace class uses
the method attach-tracefile to associate a Traffic/Traceoblyjith a particular Tracefile object. The method filename of
the Tracefile class associates a trace file with the Tracdfiject The following example shows how to create two Ap-
plication/Traffic/Trace objects, each associated withsame trace file (called "example-trace" in this example).avaid
synchronization of the traffic generated, random startiaggs within the trace file are chosen for each Traffic/Trdgea.

set tfile [new Tracefile]
$tfile filename example-trace

set t1 [new Application/Traffic/Trace]
$t1 attach-tracefile $tfile

set t2 [new Application/Traffic/Trace]
$t2 attach-tracefile $tfile

37.3.1 Anexample

The following code illustrates the basic steps to configmr&=aponential traffic source over a UDP agent, for traffic flogvi
from nodes1 to nodekl:

334

set src [new Agent/UDP]
set sink [new Agent/UDP]
$ns_ attach-agent $node_(s1) $src
$ns_ attach-agent $node_(k1) $sink
$ns_ connect $src $sink

set e [new Application/Traffic/Exponential]
$e attach-agent $src

$e set packetSize_ 210

$e set burst_time_ 500ms

$e set idle_time_ 500ms

$e set rate_ 100k

$ns_ at 0.0 "$e start"

37.4 Simulated applications: Telnet and FTP

There are currently two “simulate application” classesiat from Application: Application/FTP and Applicatiorghet.
These classes work by advancing the count of packets alatlabe sent by a TCP transport agent. The actual transmissio
of available packets is still controlled by TCP’s flow and gestion control algorithm.

Application/FTP Application/FTP, implemented in OTcl, simulates bulk datnsfer. The following are methods of the
Application/FTP class:

attach-agent attaches an Application/FTP object to an agent.

start start the Application/FTP by calling the TCP agerg&nd(-1) function, which causes TCP to
behave as if the application were continuously sending rega. d

stop stop sending.
produce n set the counter of packets to be sentto
producemore n increase the counter of packets to be sent by
send n similar toproducemore , but sends: bytes instead of packets.

Application/Telnet Application/Telnet objects generate packets in one of tagswv If the member variabiaterval

is non-zero, then inter-packet times are chosen from anrexqal distribution with average equal teterval_ . If
interval_ is zero, then inter-arrival times are chosen according ¢éottplib distribution (see tcplib-telnet.cc). The start
method starts the packet generation process.

37.5 Applications objects

An application object may be of two types, a traffic generatoa simulated application. Traffic generator objects gateer
traffic and can be of four types, namely, exponential, pal@BR and traffic trace.

Application/Traffic/Exponential objects Exponential traffic objects generate On/Off traffic. Durllwg” periods, packets
are generated at a constant burst rate. During "off" periodsraffic is generated. Burst times and idle times are taken
from exponential distributions. Configuration parametees

335

PacketSize_constant size of packets generated.

burst_time_ average on time for generator.

idle_time_ average off time for generator.

rate_ sending rate during on time.
Application/Traffic/Pareto Application/Traffic/Pareto objects generate On/Off taffiith burst times and idle times taken

from pareto distributions. Configuration parameters are:

PacketSize_constant size of packets generated.

burst_time_ average on time for generator.

idle_time_ average off time for generator.

rate_ sending rate during on time.

shape_the shape parameter used by pareto distribution.

Application/Traffic/CBR CBR objects generate packets at a constant bit rate.

$cbr start
Causes the source to start generating packets.

$cbr stop
Causes the source to stop generating packets.

Configuration parameters are:

PacketSize_constant size of packets generated.
rate_ sending rate.
interval_ (optional) interval between packets.
random_ whether or not to introduce random noise in the scheduledree times. defualt is off.
maxpkts_ maximum number of packets to send.
Application/Traffic/Trace Application/Traffic/Trace objects are used to generaféi¢criiom a trace file $trace attach-tracefile
tfile
Attach the Tracefile object tfile to this trace. The Tracefitgeat specifies the trace file from which the traffic data is

to be read. Multiple Application/Traffic/Trace objects damattached to the same Tracefile object. A random starting
place within the Tracefile is chosen for each Applicatioaffic/Trace object.

There are no configuration parameters for this object.
A simulated application object can be of two types, Telnet BRP.

Application/Telnet TELNET objects produce individual packets with inter-eatitimes as follows. If interval_ is non-zero,
then inter-arrival times are chosen from an exponentiatiigion with average interval_. If interval_ is zero, the
inter-arrival times are chosen using the "tcplib" telnettdbution.

$telnet start
Causes the Application/Telnet object to start producirkpts.

$telnet stop
Causes the Application/Telnet object to stop producindcptsc

$telnet attach <agent>
Attaches a Telnet object to agent.

Configuration Parameters are:

interval_ The average inter-arrival time in seconds for packets gaadrby the Telnet object.

336

Application FTP FTP objects produce bulk data for a TCP object to send.

$ftp start
Causes the source to produce maxpkts_ packets.

$ftp produce <n>
Causes the FTP object to produce n packets instantaneously.

$ftp stop
Causes the attached TCP object to stop sending data.

$ftp attach agent
Attaches a Application/FTP object to agent.

$ftp producemore <count>
Causes the Application/FTP object to produce count morkgiac

Configuration Parameters are:

maxpkts The maximum number of packets generated by the source.

TRACEFILE OBJECTSTracefile objects are used to specify the trace file that istaded for generating traffic (see Applica-
tion/Traffic/Trace objects described earlier in this saa}i $tracefile is an instance of the Tracefile Objegtracefile
filename <trace-input>

Set the filename from which the traffic trace data is to be reddhte-input.

There are no configuration parameters for this object. Aetfde consists of any number of fixed length records. Eachrteco
consists of 2 32 bit fields. The first indicates the intervailithe next packet is generated in microseconds. The second
indicates the length of the next packet in bytes.

37.6 Commands at a glance

Following are some transport agent and application reletedmands commonly used in simulation scripts:

set tcpl [new Agent/TCP]

$ns_ attach-agent $node_(src) $tcpl
set sinkl [new Agent/TCPSink]

$ns_ attach-agent $node_(snk) $sinkl
$ns_ connect $tcpl $sinkl

This creates a source tcp agent and a destination sink d@thitthe transport agents are attached to their resoeaigdesn
Finally an end-to-end connection is setup between the stciak.

set ftpl [new Application/FTP]
$ftpl attach-agent $agent

orset ftpl [$agent attach-app FTP] Both the above commands achieve the same. An applicatpm(this
example) is created and attached to the source agent. Aicaigh can be of two types, a traffic generator or a simulated
application. Types of Traffic generators currently preseet Application/Traffic/Exponential, Application/Tfaf/Pareto,
Application/Traffic/CBR, and Application/Traffic/Trac8ee section 37.3 for details. Types of simulated applinatio
currently implemented are: Application/FTP and AppliocatiTelnet. See section 37.4 for details.

337

Chapter 38

Web cache as an application

All applications described above are “virtual” applicat® in the sense that they do not actually transfer their oata d

in the simulator; all that matter is th@zeand thetime when data are transferred. Sometimes we may want applisatio
to transfer their own data in simulations. One such exangpleggb caching, where we want HTTP servers to send HTTP
headers to caches and clients. These headers contain pd@eation time information and other caching directivehioh

are important for some cache consistency algorithms.

In the following, we first describe general issues regardiagsmitting application-level data ims, then we discuss special
issues, as well as APls, related to transmitting applicatiata using TCP as transport. We will then proceed to disttiess
internal design of HTTP client, server, and proxy cache.

38.1 Using application-level data ims

In order to transmit application-level data i, we provide a uniform structure to pass data among appdicatiand to
pass data from applications to transport agents (Figurg) 3&. has three major components: a representation of aumif
application-level data unit (ADU), a common interface tepdata between applications, and two mechanisms to pass dat
between applications and transport agents.

38.1.1 ADU

The functionality of an ADU is similar to that of a Packet. #eds to pack user data into an array, which is then included in
the user data area of agpacket by an Agent (this is not supported by current Agenserhust derive new agents to accept
user data from applications, or use an wrapper like TcpApell\iscuss this later).

Compared with Packet, ADU provides this functionality in ifedent way. In Packet, a common area is allocated for all
packet headers; an offset is used to access different heediris area. In ADU this is not applicable, because some ADU
allocates their space dynamically according the the dvidithaof user data. For example, if we want to deliver an OTcl
script between applications, the size of the script is ustleined beforehand. Therefore, we choose a less efficiemhore
flexible method. Each ADU defines its own data members, andigge methods to serialize them (i.e., pack data into an
array and extract them from an array). For example, in th&rattsbase class of all ADU, AppData, we have:

class AppData {

338

Application
(HttpApp, ...)
]

|
|
|
|
(Agent Wrappe) ! send_data(ADU) process_data(ADU)
|
|
|
|
|
|

Application
send_data(ADU) process_data(ADU) (HttpApp, ...)
(TcpApp, -..) !
A
Agents supporting user dat:
send(bytes) recv(bytes) (HttpinvalAgent, ...)

Agent (TCP, ...)

I packets

packets

Figure 38.1: Examples of application-level data flow

private:
AppDataType type ; // ADU type
public:
struct hdr {
AppDataType type_;
h
public:
AppData(char * b) {
assert(b '= NULL);
type_ = ((hdr *)b)->type_;
}
virtual void pack(char * buf) const;
}

Herepack(char * buf) is used to write an AppData object into an array, &ppData(char * b) is used to build a
new AppData from a “serialized” copy of the object in an array

When deriving new ADU from the base class, users may add matee tut at the same time a npack(char *b) and
a new constructor should be provided to write and read thesedata members from an array. For an example as how to
derive from an ADU, look ahsgwebcache/http-aux.h.

38.1.2 Passing data between applications

The base class of Application, Process, allows applicatiorpass data or request data between each other. It is defined
follows:

class Process {
public:
Process() : target (0) {}
inline Process & target() { return target_; }

339

virtual void process_data(int size, char * data) = 0;
virtual void send_data(int size, char * data = 0);

protected:
Process * target_;

h

Process enables Application to link together.

38.1.3 Transmitting user data over UDP

Currently there is no support in class Agent to transmit uls¢a. There are two ways to transmit a serialized ADU through
transport agents. First, for UDP agent (and all agents ed@rivom there), we can derive from class UDP and add a new
methodsend(int nbytes, char +xuserdata) to pass user data from Application to Agent. To pass data fiom
Agent to an Application is somewhat trickier: each agentdasginter to its attached application, we dynamically chist t
pointer to an AppConnector and then o&fipConnector::process_data()

As an example, we illustrate how class HttplnvalAgent islengented. It is based on UDP, and is intended to deliver web
cache invalidation messagess{vebcache/inval-agent.h). It is defined as:

class HttplnvalAgent : public Agent {

public:

HttplnvalAgent();

virtual void recv(Packet *, Handler *);

virtual void send(int realsize, AppData * (data);
protected:

int off_inv_;
h

Hererecv(Packet =+, Handler =) overridden to extract user data, and a resmd(int, AppData *) is provided
to include user data in packetes. An application (HttpAp@ttached to an HttpinvalAgent usiAgent::attachApp()

(a dynamic cast is needed).$end() , the following code is used to write user data from AppDattheouser data area in a
packet:

Packet =+pkt = allocpkt(data->size());

hdr_inval *ih = (hdr_inval *)pkt->access(off_inv_);
ih->size() = data->size();

char *p = (char =)pkt->accessdata();

data->pack(p);

Inrecv() |, the following code is used to read user data from packet@adeliver to the attached application:

hdr_inval *ih = (hdr_inval *)pkt->access(off_inv_);
((HttpApp *)app_)->process_data(ih->size(), (char *)pkt->accessdata());
Packet::free(pkt);

340

38.1.4 Transmitting user data over TCP

Transmitting user data using TCP is trickier than doing thatr UDP, mainly because of TCP’s reassembly queue is only
available for FullTcp. We deal with this problem by abstiagta TCP connection as a FIFO pipe.

As indicated in section 37.2.4, transmission of applicgatiata can be implemented via agent upcalls. Assuming wesarg u
TCP agents, all data are delivered in sequence, which mearamview the TCP connection as a FIFO pipe. We emulate
user data transmission over TCP as follows. We first providiebfor application data at the sender. Then we count thesy
received at the receiver. When the receiver has got all ftéee current data transmission, it then gets the datattiirgom

the sender. Class Application/TcpApp is used to implentgstftinctionality.

A TcpApp object contains a pointer to a transport agent,ymably either a FullTcp or a SimpleTcp.(Currently TcpApp
doesn’t support asymmetric TCP agents, i.e., sender isatepldfrom receiver). It provides the following OTcl intaces:

e connect : Connecting another TcpApp to this one. This connection-difectional, i.e., only one call toonnect
is needed, and data can be sent in either direction.

e send: It takes two argumentgnbytes, str) . nbytes is the “nominal” size of application datatr is appli-
cation data in string form.

In order to send application data in binary form, TcpApp pde¢ a virtual C++ methodend(int nbytes, int

dsize, const char *data) . In fact, this is the method used to implement the OTcl metbead . Because it’s
difficult to deal with binary data in Tcl, no OTcl interfacepsovided to handle binary databytes is the number of bytes
to be transmittedjsize is the actual size of the arralata .

TcpApp provides a C++ virtual methqotocess_data(int size, char +xdata) to handle the received data. The
default handling is to treat the data as a tcl script and ewalthe script. But it's easy to derive a class to provide ayyges
of handling.

Here is an example of using Application/TcpApp. A similameple isTest/TcpApp-2node in ndtcl/test/test-suite-
webcache.tcl. First, we create FullTcp agents and conhent:t

set tcpl [new Agent/TCP/FullTcp]
set tcp2 [new Agent/TCP/FullTcp]
Set TCP parameters here, e.g., window_, iss_, ...

$ns attach-agent $nl S$tcpl
$ns attach-agent $n2 $tcp2
$ns connect $tcpl $tcp2
$tcp2 listen

Then we create TcpApps and connect them:

set appl [new Application/TcpApp S$tcpl]
set app2 [new Application/TcpApp $tcp2]
$appl connect $app2

1A SimpleTcp agent is used solely for web caching simulatidhis actually an UDP agent. It has neither error recovenyftaw/congestion control.
It doesn't do packet segmentation. Assuming a loss-fregarktand in-order packet delivery, SimpleTcp agent simgdifihe trace files and hence aids the
debugging of application protocols, which, in our caseh&sweb cache consistency protocol.

341

(TclObject)
Process

Application

(HttpApp,) Qpplication/TcpApD

Figure 38.2: Hierarchy of classes related to applicaterel data handling

Application/FTP
Application/Telnet
Application/Traffic/*

Now we let$appl be sender anflapp2 be receiver:
$ns at 1.0 "$appl send 100 \"$app2 app-recv 100 \™
Whereapp-recv is defined as:

Application/TcpApp instproc app-recv { size } {
global ns
puts "“[$ns now] app2 receives data $size from appl"

38.1.5 Class hierarchy related to user data handling

We conclude this section by providing a hierarchy of classeslved in this section (Figure 38.2).

38.2 Overview of web cache classes

There are three major classes related to web cache, as ithe ireal world: client (browser), server, and cache. Begaus
they share a common feature, i.e., the HTTP protocol, theydarived from the same base cla$gp (Name of OTcl
class, it's calledHttpApp in C++). For the following reasons, it's not a real Applicati First, an HTTP object (i.e.,
client/cache/server) may want to maintain multiple conear HTTP connections, but an Application contains only one
agent_ . Also, an HTTP object needs to transmit real data (e.g., Hi@&der) and that's provided by TcpApp instead of
any Agent. Therefore, we choose to use a standalone classdli&om TclObject for common features of all HTTP objects,
which are managing HTTP connections and a set of pages. Iregh®f the section, we’'ll discuss these functionalities of
Http. In the next three sections, we’ll in turn describe HTd@nt, cache and server.

38.2.1 Managing HTTP connections

Every HTTP connection is embodied as a TcpApp object. Httpntaims a hash of TcpApp objects, which are all of its
active connections. It assumes that to any other Http, ibhfisone HTTP connection. It also allows dynamic establishtn

342

and teardown of connections. Only OTcl interface is proglife establishing, tearing down a connection and senditg da
through a connection.

OTcl methods Following is a list of OTcl interfaces related to connectinanagement in Http objects:

id return the id of the Http object, which is the id of the notle bbject is attached to.
get-cnc(client) return the TCP agent associated with $client (Http object).
is-connectedservel return O if not connected to $server, 1 otherwise.
send(client) (bytes (callback send $bytes of data to $client. When it's done, executel$aelll (a OTcl command).

connectclient) (TCP) associate a TCP agent with $client (Http object). That agéhibe used to send packets
to $client.

disconnectclienty delete the association of a TCP agent with $client. Notertbdher the TCP agent nor
$client is not deleted, only the assaciation is deleted.

Configuration parameter By default, Http objects use Agent/SimpleTcp as transpgenss (section 38.1.4). They can
also use Agent/FullTcp agents, which allows Http objectsgerate in a lossy network. Class variable codeTRANSPORT _
is used for this purpose. E.ddttp set TRANSPORT_FullTcp tells all Http objects use FullTcp agents.

This configuration should be doreforesimulation starts, and it should not change during simaifatbecause FullTcp
agents do not inter-operate with SimpleTcp agents.

38.2.2 Managing web pages

Http also provides OTcl interfaces to manage a set of padesrdal management of pages are handled by 8lagsPool

and its subclasses. Because different HTTP objects haferatit requirements for page management, we allow differen
PagePool subclasses to be attached to different subclaissiétp class. Meanwhile, we export a common set of PagePool
interfaces to OTcl through Http. For example, a browser nsg/alPagePool only to generate a request stream, so its hgePo
only needs to contain a list of URLs. But a cache may want teegiage size, last modification time of every page instead of
a list of URLs. However, this separation is not clearcut i& tarrent implementation.

Page URLs are represented in the form@&erverName): (SequenceNumber) where theServerName is the name of
OTcl object, and every page in every server should have auer8gquenceNumber . Page contents are ignored. Instead,
every page contains sevegdtributes which are represented in OTcl as a list of the followikiggme (value) pairs: “mod-
time (val)” (page modification time), “sizéval)” (page size), and “agéval)”} The ordering of these pairs is not significant.

Following is a list of related OTcl methods.

set-pagepoa|pagepodl set page pool
enter-pagepageid (attributes add a page with id $pageid into pool. $attributes is thelattes of $pageid, as described
above.

get-pag€pageid return page attributes in the format described above.
get-modtime(pageid return the last modification time of the page $pageid.
exist-pagepageid return O if $pageid doesn't exist in this Http object, 1 othise.
get-size(pageid return the size of $pageid.
get-cachetimépageid return the time when page $pageid is entered into the cache.

343

38.2.3 Debugging

HttpApp provides two debugging methodeg registers a file handle as the trace file for all HttpApp-sfietiaces. Its
trace format is described in section 38 Trace logs a particular event into trace file. It concatenates tme the id of
the HttpApp to the given string, and writes it out. Details e found ilnswebcache/http.cc.

38.3 Representing web pages

We represent web pages as the abstract class Page. It isddagifalows:

class Page {

public:

Page(int size) : size_(size) {}

int size() const { return size_; }

int& id() { return id_; }

virtual WebPageType type() const = 0;
protected:

int size_;

int id_;
h

It represents the basic properties of a web page: size and URn it we derive two classes of web pages: ServerPage and
ClientPage. The former contains a list of page modificatiores$, and is supposed to by used by servers. It was originally
designed to work with a special web server trace; curretily mot widely used ims The latter, ClientPage, is the default
web page for all page pools below.

A ClientPage has the following major properties (we omit sorariables used by web cache with invalidation, which has to
many details to be covered here):

e HttpApp * server_ - Pointer to the original server of this page.
e double age_ - Lifetime of the page.

e int status_ - Status of the page. Its contents are explained below.

The status (32-bit) of a ClientPage is separated into twoitparts. The first part (with mask OxO0FF) is used to stoigepa
status, the second part (with mask OxFFO0O) is used to st@ectxd page actions to be performed by cache. Available page
status are (again, we omit those closely related to web daghkdation):

HTTP_VALID PAGE Page is valid.
HTTP_UNCACHEABLE Pageis uncacheable. This option can led tssimulate CGI pages or dynamic server pages.

CilentPage has the following major C++ methods:

e type() - Returns the type of the page. Assuming pages of the sameshmeéd have identical operations, we let
all ClientPage to be of type “HTML”. If later on other types wkb pages are needed, a class may be derived from
ClientPage (or Page) with the desired type.

344

TclObject

PagePool

GagePooI/CompM@ (PagePool/Math) (PagePooI/ClienD GagePooI/ProxyTra}

Figure 38.3: Class hierarchy of page pools

e name(char =*buf) - Printthe page’s name into the given buffer. A page’s nanetise format of:(ServerNamg (PagelD.

e split_name(const char *name, PagelD& id) - Split a given page name into its two components. This is
a static method.

e mtime() - Returns the last modification time of the page.

e age() - Returns the lifetime of the page.

38.4 Page pools

PagePool and its derived classes are used by servers taateepage information (name, size, modification time, life]
etc.), by caches to describe which pages are in storage,\adéehts to generate a request stream. Figure 38.3 proeides
overview of the class hierarchy here.

Among these, class PagePool/Client is mostly used by cdclstsre pages and other cache-related information; otineet
classes are used by servers and clients. In the followingeseribe these classes one by one.

38.4.1 PagePool/Math

This is the simplest type of page pool. It has only one pageselsize can be generated by a given random variable. Page
modification sequence and request sequence are generaigdws given random variables. It has the following OTcl
methods:

gen-pageid Returns the page ID which will be requested Bedause it has only one page, it always
returns O.

gen-size Returns the size of the page. It can be generatedibgrarandom variable.

gen-modtimgpagelD (mt) Returns the next modification time of the pagent) gives the last modification time. It
uses the lifetime random variable.

ranvar-agerv) Set the file lifetime random variable &v).
ranvar-sizerv) Set the file size random variable to be).

NOTE There are two ways to generate a request sequence. Wittigdlgools except PagePool/ProxyTrace, request sequence
is generated with a random variable which describes theastqaterval, and thgen-pageid method of other page pools

345

gives the page ID of the next request. PagePool/ProxyToatkslthe request stream during initialization phase, soes ot
need a random variable for request interval; see its degmmipelow.

An example of using PagePool/Math is at Section 38.8. Thiitds also available atdtcl/ex/simple-webcache.tcl.

38.4.2 PagePool/CompMath

It improves over PagePool/Math by introducing a compoungepaodel. By a compound page we mean a page which
consists of a main text page and a number of embedded obgegts GIFs. We model a compound page as a main page
and several component objects. The main page is alwaysnaskigith ID 0. All component pages have the same size;
both the main page size and component object size is fixeddpustable through OTcl-bound variablesin_size_ and
comp_size_ , respectively. The number of component objects can be s&j ttee OTcl-bound variableum_pages_ .

PagePool/CompMath has the following major OTcl methods:

gen-size(pagelD If (pagelD is 0, returnmain_size_ , otherwise returcomp_size_ .
ranvar-main-agérv) Setrandom variable for main page lifetime. Another aaeyar-obj-age , set that for
component objects.

gen-pageid Always returns 0, which is the main page ID.

gen-modtimgpagelD (mt) Returns the next modification time of the given pdgagelD. If the given ID is 0, it uses
the main page lifetime random variable; otherwise it usesctimponent object lifetime
random variable.

An example of using PagePool/CompMath is availablesictl/ex/simple-webcache-comp.tcl.

38.4.3 PagePool/ProxyTrace

The above two page pool synthesize request stream to a sweflpage by two random variables: one for request interval,
another for requested page ID. Sometimes users may want coonplicated request stream, which consists of multiple
pages and exhibits spatial locality and temporal localithere exists one proposal (SURGE [3]) which generates such
request streams, we choose to provide an alternative soluise real web proxy cache trace (or server trace).

The class PagePool/ProxyTrace uses real traces to drivdagion. Because there exist many web traces with different
formats, they should be converted into a intermediate forpedore fed into this page pool. The converter is available
at http://mash.cs.berkeley.edu/dist/vint/webcachesefconv.tar.gz. It accepts four trace formats: DEC proage (1996),

UCB Home-IP trace, NLANR proxy trace, and EPA web serverdralt converts a given trace into two files: pglog and
reglog. Each line in pglog has the following format:

[<serverID> <URL_ID> <PageSize> <AccessCount>]

Each line, except the last line, in reglog has the followingnfat:

[<time> <clientID> <serverlD> <URL_ID>]

The last line in reqglog records the duration of the entiregrand the total number of unique URLS:
i <Duration> <Number_of URL>

346

PagePool/ProxyTrace takes these two file as input, and asetthdrive simulation. Because most existing web proxyesac
do not contain complete page modification information, wease to use a bimodal page modification model [7]. We allow
user to select% of the pages to have one random page modification intervadrgéor, and the rest of the pages to have
another generator. In this way, it's possible to48t pages to be dynamic, i.e., modified frequently, and the tasits Hot
pages are evenly distributed among all pages. For examgdenae 10% pages are dynamic, then if we sort pages into a list
according to their popularity, then pages 0, 10, 20,are dynamic, rest are static. Because of this selection amésim, we
only allow bimodal ratio to change in the unit of 10%.

In order to distribute requests to different requestorsi;gimulator, PagePool/ProxyTrace maps the client ID inrdees to
requestors in the simulator using a modulo operation.

PagePool/ProxyTrace has the following major OTcl methods:

get-poolsize Returns the total number of pages.
get-duration Returns the duration of the trace.
bimodal-ratio Returns the bimodal ratio.
set-client-numnum) Set the number of requestors in the simulation.
gen-reques{ClientID) Generate the next request for the given requestor.
gen-sizePagelD Returns the size of the given page.

bimodal-ratio{ratio) Set the dynamic pages to brtio)*10 percent. Note that this ratio changes in
unit of 10%.

ranvar-dp(ranval Set page modification interval generator for dynamic pagésilarly, ranvar-
sp(ranvaj sets the generator for static pages.

set-reqfile(file) Set request stream file, as discussed above.
set-pdfile(file) Set page information file, as discussed above.
gen-modtimgPagelD (LastModTime Generate next modification time for the given page.

An example of using PagePool/ProxyTrace is availablesatl/ex/simple-webcache-trace.tcl.

38.4.4 PagePool/Client

The class PagePool/Client helps caches to keep track o pagjdent in cache, and to store various cache-relateahiiation
about pages. It is mostly implemented in C++, because it inlgnased internally and little functionality is needed bseus.
It has the following major C++ methods:

e get _page(const char * name) - Returns a pointer to the page with the given name.

e add_page(const char *name, int size, double mt, double et, double age) - Add a page
with given size, last modification time (mt), cache entrydiget), and page lifetime (age).

e remove_page(const char * name) - Remove a page from cache.

This page pool should support various cache replacemeaotitdms, however, it has not been implemented yet.

38.4.5 PagePool/WebTraf

The class PagePool/WebTraf is a standalone Web traffic nibdteutilizes PagePool framework. However, this class has
nothing to do with the HttpApp classes. Because we are omdydsted in using it to study Web traffic pattern here, and do

347

not want to be bothered with the burden of transmitting HT ERders, etc. It has the following two major data structures.
Details can be found in ns/webcache/webtraf.cc and ns/aatistwebtraf.h, the architecture WebTraf model is alssdbo
described in [10], Section 2.4, paragraph 3-4 and the appénd.

e WebTrafSession - aclass that models Web user session. It is defined as follows

class WebTrafSession : public TimerHandler {

public:
WebTrafSession(WebTrafPool *mgr, Node =*src, int np, int id) : rvinterPage_(NULL),
rvPageSize (NULL), rvinterObj_(NULL), rvObjSize_(NULL), mgr_(mgr), src_(src),
nPage_(np), curPage_(0), donePage_(0), id_(id), interPa geOption_(1) {}
virtual ~WebTrafSession();

/I Queried by individual pages/objects

inline RandomVariable *& interPage() { return rvinterPage_; }
inline RandomVariable *& pageSize() { return rvPageSize_; }
inline RandomVariable *& interObj() { return rvinterObj_; }
inline RandomVariable *& objSize() { return rvObjSize_; }

void donePage(void * CintData); // all the pages within this
/I session have been sent
void launchReq(void * ClIntData, int obj, int size);
inline int id() const { return id_; }
inline WebTrafPool * mgr() { return mgr_; }
private:
virtual void expire(Event e = 0); // Lanuch request for a page
virtual void handle(Event +xe); [/ schedule the timer for next page

RandomVariable *rvinterPage_, *rvPageSize_, *rvinterObj_, *rvObjSize_;
WebTrafPool * mgr_;

Node* src_; [/l One Web client (source of request) per session

nt nPage_; // number of pages per session

int curPage_; // number of pages that have been sent

int id_; // page ID

int interPageOption_;

}
e WebPage- a class that models Web Page. It is defined as follows:

class WebPage : public TimerHandler {

public:
WebPage(int id, WebTrafSession * sess, int nObj, Node * dst)
id_(id), sess_(sess), nObj_(nObj), curObj_(0),
doneObj_(0), dst_(dst) {}
virtual ~WebPage() {}
inline void start() { // Call expire() and schedule the next o ne if needed
void doneObject() { // All the objects within this page have b een sent
inline int id() const { return id_; }
Node* dst() { return dst_; }
inline int curObj() const { return curObj_; }
inline int doneObj() const { return doneObj_; }
private:
virtual void expire(Event * = 0) { // Launch request for an object
virtual void handle(Event +xe) { /| schedule the timer for the next object

348

int id_; // object ID

WebTrafSession * sess_; // the session that requested this page
int nObj_; // number of object in this page

int curObj_ ; // number of object that have been sent

Node* dst_; // server that this page has been requested from

Following is a list of related OTcl methods to the WebTraksla

set-num-sessiofnumber-of-sessign set the total number of sessions in the WebTraf pool.
set-num-servefnumber-of-server set the total number of servers.
set-num-clientnumber-of-client set the total number clients.

set-interPageOptiofoption) There are two ways to interpréaiter-pagetime: One is the time be-
tween the start of two consecutive page downloads by the seser
and the other is the time between the end of previous pageldadn
and the start of the following page by the same user. $optionbe
set to either 0 or 1 (default is 1). When $option is set to 1,stheond
interpretation is used for "inter-page" time. The first mpt@tation is
adopted when $option is set to 0. Note the resulted traffiomel using
the first interpretation is much higher than the second jpm&ation.

doneObj(webpagé all the objects in $webpage have been sent.
set-serve(id) (node set $node as server $id.
set-client(id) (node set $node as client $id.
recycle(tcp) (sink) Recycle a TCP source/sink pair.
create-sessiofsession-index(pages-per-sess
(launch-time (inter-page-ry (page-size-ry
(inter-obj-rv) (obj-size-ry Create a Web session. $session-index is the sesson indagessper-

sess is the total number of pages per session. $launchgisession
starting time. $inter-page-rv is the random variable trerteyates page
inter-arrival time. $page-size-rv is the random varialblattgenerates
number of objects per page. $inter-obj-rv is the randomalde that
generates object inter-arrival time. $obj-size-rv is taedom variable
that generates object size.

The example script is available at ns/tcl/ex/web-traffialso see ns/tcl/ex/large-scale-web-traffic.tcl foz néa large-scale
web traffic simulation)

38.5 Web client

Class Http/Client models behavior of a simple web browsegeherates a sequence of page requests, where requeslinter
and page IDs are randomized. It's a pure OTcl class inhefited Http. Next we’'ll walk through its functionalities and
usage.

Creating a client First of all, we create a client and connect it to a cache anckla server. Currently a client is only
allowed to connect to a single cache, but it's allowed to emhmo multiple servers. Note that this has to be cal¢dER
the simulation starts (i.e., aft®ns run is called). This remains true for all of the following mettsoghd code examples of
Http and its derived classes, unless explicitly said.

349

Assuming $server is a configured Http/Server.
set client [new Http/Client $ns $node] # client resides on this node
$client connect $server ;# connecting client to server

Configuring request generation For every request, Http/Client uses PagePool to generatadom page ID, and use a
random variable to generate intervals between two conseaeiuests?

$client set-page-generator $pgp # attach a configured PagePool
$client set-interval-generator $ranvar # attach a random variable

Here we assume that PagePools of Http/Client share the stroépages as PagePools of the server. Usually we simplify
our simulation by letting all clients and servers share Hraes PagePool, i.e., they have the same set of pages. Whemther
multiple servers, or servers’ PagePools are separatedtfroge of clients’, care must be taken to make sure that evientc
sees the same set of pages as the servers to which they atesdtta

Starting After the above setup, starting requests is very simple:

$client start-session $cache $server # assuming $cache is a configured Http/Cache

OTcl interfaces Following is a list of its OTcl methods (in addition to thoséherited from Http). This is not a complete
list. More details can be found mg'tcl/webcache/http-agent.tcl.

send-requegservej (type) (pageid (args send a request of page $pageid and type $type to $server.nijheequest
type allowed for a client is GET. $args has a format identtoathat of
$attributes described idttp::enter-page

start-sessioficache (servel start sending requests of a random page to $server via $cache

start(caché (servej before sending requests, populate $cache with all paghs tlient's Page-
Pool. This method is useful when assuming infinite-sizedhea@nd we
want to observe behaviors of cache consistency algorithrateady state.

set-page-generatgpagepodl attach a PagePool to generate random page IDs.
set-interval-generatdranvall attach a random variable to generate random request itgerva

38.6 Web server

Class Http/Server models behavior of a HTTP server. Its gardition is very simple. All that a user needs to do is to @eat
a server, attach a PagePool and wait:

set server [new Http/Server $ns $node] H attach $server to $node
$server set-page-generator $pgp ;# attach a page pool

2Some PagePool, e.g., PagePool/Math, has only one pageaatbtk it always returns the same page. Some other PageRgoPagePool/Trace, has
multiple pages and needs a random variable to pick out a range.

350

An Http/Server object waits for incoming requests afterudation starts. Usually clients and caches initiates cotioe to
an Http/Server. But it still has its oneonnect method, which allows an Http/Server object to actively ceetrio a certain
cache (or client). Sometimes this is useful, as explain@d@st/TLC1::set-groups{} imgtcl/test/test-suite-webcache.tcl.

An Http/Server object accepts two types of requests: GETIBI®I GET request models normal client requests. For every
GET request, it returns the attributes of the requested.pdd® request models If-Modified-Since used by TTL algorigim
for cache consistency. For every IMS (If-Modified-Sincejuest, it compares the page modification time given in theesg
and that of the page in its PagePool. If the time indicatederéquest is older, it sends back a response with very simaJl s
otherwise it returns all of the page attributes with resposize equal the real page size.

38.7 Web cache

Currently 6 types of web caches are implemented, includiedise class Http/Cache. Its five derived subclasses ireptem
5 types of cache consistency algorithms: Plain old TTL, &ded@ TL, Omniscient TTL, Hierarchical multicast invalidan,
and hierarchical multicast invalidation plus direct resje

In the following we’'ll only describe the base class Http/@acbecause all the subclasses involves discussion of cache
sistency algorithms and it does not seem to be appropriate he

38.7.1 Http/Cache

Class Http/Cache models behavior of a simple HTTP cache inthite size. It doesn’t contain removal algorithm, nor
consistency algorithm. It is not intended to be used byfitdather, it is meant to be a base class for experimentiniy wit
various cache consistency algorithms and other cacheitigts.

Creation and startup Creating an Http/Cache requires the same set of paramestétti@Client and Http/Server. After
creation, a cache needs to connect to a certain server. Nat¢his creation can also be done dynamically, when a réques
comes in and the cache finds that it's not connected to theisddowever, we do not model this behavior in current code.
Following code is an example:

set cache [new HttpCache $ns $node] H attach cache to $node
$cache connect $server ;# connect to $server

Like Http/Server, an Http/Cache object waits for requeatsd(packets from server) after it's initialized as above. eéWh
hierarchical caching is used, the following can be useddaterthe hierarchy:

$cache set-parent $parent ;# set parent cache

Currently all TTL and multicast invalidation caches suggoerarchical caching. However, only the two multicastdlida-
tion caches allows multiple cache hierarchies to interraige

OTcl methods Although Http/Cache is a SplitObject, all of its methods imr®©Tcl. Most of them are used to process an
incoming request. Their relations can be illustrated whik flowchart below, followed by explainations:

351

send cached page
/
cache-hit() — is-consistent() ignore the request
get-request() \ refetch-pending()
cache-miss() ——» send-request() \ refetch()

Figure 38.4: Handling of incoming request in Http/Cache

get-requestclient) (type) (pageid The entry point of processing any request. It checks if tiyggiested page $pageid
exists in the cache’s page pool, then call eitteche-hit or cache-miss

cache-misgclient) (type) (pageid This cache doesn’t have the page. Send a request to servear@nt cache) to
refetch the page if it hasn't already done so. Register ftiiea list so that when
the cache gets the page, it'll forward the page to all cligrie have requested the
page.

cache-hit(client) (type) (pageid Checks the validatity of the cached page. Ifit’s valid, s$aolient the cached page,

otherwise refetch the page.

is-consistentclient) (type) (pageid Returns 1 if $pageid is valid. This is intended to be overiby subclasses.

refetch(client) (type) (pageid Refetch an invalid page from server. This is intended to berridden by sub-
classes.

38.8 Putting together: a simple example

We have seen all the pieces, now we present a script whichda®a complete view of all pieces together. First, we build
topology and other usual initializations:

set ns [new Simulator]

Create topology/routing

set node(c) [$ns node]

set node(e) [$ns node]

set node(s) [$ns node]

$ns duplex-link $node(s) $node(e) 1.5Mb 50ms DropTail
$ns duplex-link $node(e) $node(c) 10Mb 2ms DropTalil
$ns rtproto Session

Next we create the Http objects:

HTTP logs

set log [open "http.log" w]

Create page pool as a central page generator. Use PagePool/ Math

set pgp [new PagePool/Math]

set tmp [new RandomVariable/Constant] H # Page size generator
$tmp set val_ 1024 # # average page size

$pgp ranvar-size $tmp

352

set tmp [new RandomVariable/Exponential]
$tmp set avg_ 5
$pgp ranvar-age $tmp

set server [new Http/Server $ns $node(s)]

tral page pool

$server set-page-generator $pgp
$server log $log

set cache [new Http/Cache $ns $node(e)]
$cache log $log

set client [new Http/Client $ns $node(c)]
set tmp [new RandomVariable/Exponential]
$tmp set avg_ 5

$client set-interval-generator $tmp

$client set-page-generator $pgp

$client log $log

set startTime 1

set finishTime 50

$ns at $startTime "start-connection”
$ns at $finishTime "finish"

Page age generator
;# # average page age

Create a server and link it to the cen-

Create a cache

Create a client
Poisson process as request sequence
;# # average request interval

simulation start time
simulation end time

Then we define a procedure which will be called after simafasitarts. The procedure will setup connections among g Ht

objects.

proc start-connection {} {
global ns server cache client
$client connect $cache
$cache connect $server

$client start-session $cache $server

At the end, the usual closing:

proc finish {} {
global ns log
$ns flush-trace

flush $log
close $log
exit 0

}

$ns run

This script is also available atgtcl/ex/simple-webcache.tcl. Examining its outitp.log , one will find that the result
of the absense cache consistency algorithm results in & lstate hits. This can be easily remedied by replacing “new
Http/Cache” line with:set cache [new Http/Cache/TTL $ns $node(e)] . For more complicated cache con-

sistency algorithm examples, segtcl/test/test-suite-webcache.tcl.

353

38.9 Http trace format

The trace file of Http agents are constructed in a similar watha SRM trace files. It consists of multiple entries, each of
which occupies one line. The format of each entry is:

Time | ObjectID | Object Values

There are three types of objects: clie@){cache E) and server$). Following is a complete enumeration of all possible
events and value types associated with these three typdgent®.

Object Type| Event Type| Values

E HIT (Prefix)

E MISS (Prefix) z (RequestSize

E IMS (Prefix) z (Size) t (CacheEntryTimg

E REF p (PagelD s (ServerlD z (Size

E UPD p (PagelD m (LastModifiedTime z (PageSizg
s (ServerlD

E GUPD z (PageSize

E SINV p (PagelD m (LastModTime z (PageSize

E GINV p (PagelD m (LastModTime

E SPF p (PagelD c (DestCachg

E RPF p (PagelD c (SrcCache

E ENT p (PagelD m (LastModifiedTime z (PageSize
s (ServerlD

C GET p (PagelD s (PageServerlbz (RequestSize

C STA p (PagelD s (OrigServerlD | (StaleTime

C RCV p (PagelD s (PageServerlDI (ResponseTimez (PageSize

S INV p (PagelD m (LastModifiedTimé z (Size)

S UPD p (PagelD m (LastModifiedTimé z (Size

S SND p (PagelD m (LastModifiedTime z (PageSizg
t (Requesttype

S MOD p (PagelD n (NextModifyTime)

(Prefix is the information common to all trace entries. It includes:

p (PagelD ‘ c<RequestCIientID‘ s (PageServerlD

Short Explaination of event operatians

354

Object Type| Event Type| Explaination
E HIT Cache hit. PageSererID is the id of the “owner” of the page.
E MISS Cache miss. In this case the cache will send a request tover se fetch the page.
E IMS If-Modified-Since. Used by TTL procotols to validate an expgi page.
E REF Page refetch. Used by invalidation protocols to refetchmanlidated page.
E UPD Page update. Used by invalidation protocols to “push” upslat
from parent cache to children caches.
E SINV Send invalidation.
E GINV Get invalidation.
E SPF Send a pro forma
E RPF Receive a pro forma
E ENT Enter a page into local page cache.
C GET Client sends a request for a page.
C STA Client gets a stale hit. OrigModTime is the modification time
in the web server, CurrModTime is the local page’s modifmatime.
C RCV Client receives a page.
S SND Server send a response.
S UPD Server pushes a page update to its “primary cache”. Usedvajidiation protocol only.
S INV Server sends an invalidation message. Used by invalidptiatocol only.
S MOD Server modified a page. The page will be modified nexNaxtModify Time).

38.10 Commands at a glance

Following are the web cache related commands:

set server [new Http/Server <sim> <s-node>]
This creates an instance of an Http server at the specifietbge>. An instance of the simulator <sim> needs to be passed
as an argument.

set client [new Http/Client <sim> <c-node>]
This creates an instance of a Http client at the given <c-rode

set cache [new Http/Cache <sim> <e-node>
This command creates a cache.

set pgp [new PagePool/<type-of-pagepool>]

This creates a pagepool of the type specified. The diffeygist of pagepool currently implemented are:
PagePool/Math, PagePool/CompMath, PagePool/Proxyarat®agePool/Client. See section 38.4 for details on Otcl
interface for each type of Pagepool.

$server set-page-generator <pgp>

$server log <handle-to-log-file>

The above commands consist of server configuration. Fiesséinver is attached to a central page pool <pgp>. Next it is
attached to a log file.

client set-page-generator <pgp>
$client set-interval-generator <ranvar>

355

$client log <handle-to-log-file>

These consist configuration of the Http client. It is attattoea central page pool <pgp>. Next a random variable <ranvar
is attached to the client that is used by it (client) to geteeirtervals between two consecutive requests. Lastlylibetds
attached to a log file for logging its events.

$cache log <log-file>
This is part of cache configuration that allows the cachedgdtevents in a log-file.

$client connect <cache>
$cache connect <server>
Once the client, cache, and server are configured, they ndseldonnected as shown in above commands.

$client start-session <cache> <server>
This starts sending request for a random page from the dhbehie <server> via <cache>.

356

Chapter 39

Worm Model

In this chapter, we describe a scalable worm propagatiorehiods namely the detailed-network and abstract-network (DN-
AN) model. It combines packet-level simulations with atiglyvorm spreading model. As shown in Figure 39.1, we model
the Internet with two parts: detailed, and abstract part. efailed-network could be an enterprise-network or the pétw
run by an ISP. It simulates network connectivity and paciatgmission. Users can evaluate worm detection algorithms
the detailed network. On the other hand, we abstract theofeke Internet with a mathematical model, namely suscégptib
infectious-removal (SIR) model (refer to [13] for detailddscriptions). Compared to the detailed network, we ordgkr
several state variables in the abstract world, such as theauof infected hosts. The interaction between DN and AN is
through actual packet transmissions, that is, the probaffic generated by compromised hosts in both parts.

For detailed description on DN-AN model, please refer to duaft paper. We implement the worm propagation model as
applications. The source code can be foundret/apps/worm.{cc,h}. There is also a sample script to iltatt the DN-AN
model under ng/tcl/ex/worm.tcl.

39.1 Overview

We implement the worm propagation model with three classass WormApp, DnhWormApp, and AnWormApp .
class WormApp ndclass DnhWormApp re used in the detailed network, representing invulnerabtevulnerable hosts
respectivelyclass AnWormApp s the abstract network. Currently, our model only suppoié¥tbased worms.

An vulnerable host is compromised upon receiving a probexckpt. Then, it chooses a target host (randomly or with gerta
preference to local neighbors) to scan. Probing packete haweffect on invulnerable hosts. When the abstract network
receives probing packets, it updates its current states.

probing
traffic .-~

the rest
unprotected
Internet

the protected network

Figure 39.1:The DN-AN model.

357

39.2 Configuration

To set up simulation scenario, we first build the detailedvoek. We also need to create one extra node to represent the
abstract network, and connect it to the detailed network.

For nodes in the detailed network, we first attadlessagePassing agent to each node:

set a [new Agent/MessagePassing]
$n attach $a $probing_port

If the node represents a vulnerable host, wealass DnhWormApp

set w [new Application/Worm/Dnh]
$w attach-agent $a

Otherwise, we configure the node as invulnerable:

set w [new Application/Worm]
$w attach-agent $a

We configure the abstract network as:

set a [new Agent/MessagePassing]
$na attach $a $probing_port

set w [new Application/Worm/An]
$w attach-agent $a

In order for the abstract network to receive probing pacgetserated by nodes within the detailed networks, we needeo u
manual routing. There are some extra configuration for ttstrabt-network node:

set p [$na set dmux_]
$p defaulttarget $a
[$na entry] defaulttarget $p

39.3 Commands at a glance

Some common parameters can be configured through TCL script:

ScanRate # the rate that a compromised host sends probing pac kets
ScanPort # the vulnerable service port number
ScanPacketSize # the size of worm probing packets

By default, compromised hosts scan the Internet randomby.cev also simulate local-scanning worm by setting the ocal
scanning probability:

358

$w local-p 0.5

Following are some commands to configure parameters foribieact network:

$w beta 0.1 # infection parameter
$w gamma O # removal parameter

$w addr-range 2000 200000 # the address space of the abstract network
$w dn-range 0 1999 # the address space of the detailed network
$w v_percent 0.01 # the percentage of vulnerable hosts in the abstract network

359

Chapter 40

PackMime-HTTP: Web Traffic Generation in
NS-2

The PackMime Internet traffic model was developed by resemscin the Internet Traffic Research group at Bell Labs,
based on recent Internet traffic traces. PackMime includemdel of HTTP traffic, called PackMime-HTTP. The traffic
intensity generated by PackMime-HTTP is controlled by tite parameter, which is the average number of new connaction
started each second. The PackMime-HTTP implementatios-i developed at UNC-Chapel Hill, is capable of generating
HTTP/1.0 and HTTP/1.1 (persistent, non-pipelined) cotinas.

PackMime-HTTP in ns-2 uses DelayBox (see Chapter 22), a faathveloped at UNC-Chapel Hill for delaying and/or
dropping packets in a flow according to a distribution. D&ay can be used with PackMime-HTTP to simulate a "cloud" of
clients and servers that have different round-trip timestléneck link speeds, and amounts of packet loss (see dOm3dre
information).

The PackMime HTTP traffic model is described in detail in tbkofving paper: J. Cao, W.S. Cleveland, Y. Gao, K. Jeffay,
F.D. Smith, and M.C. Weigle , “Stochastic Models for GeniegtSynthetic HTTP Source TrafficRroceedings of IEEE
INFOCOM, Hong Kong, March 2004.

40.1 Implementation Details

PackMimeHTTP is an ns object that drives the generation ofMiraffic. Each PackMimeHTTP object controls the opera-
tion of two types of Applications, a PackMimeHTTP server Apgtion and a PackMimeHTTP client Application. Each of
these Applications is connected to a TCP Agent (Full-TGR}te: PackMime-HTTP only supports Full-TCP agents.

Each web server or web client cloud is represented by a singleode that can produce and consume multiple HTTP
connections at a time (Figure 40.1). For each HTTP connecRackMimeHTTP creates (or allocates from the inactive
pool, as described below) server and client Applicatiorgstheir associated TCP Agents. After setting up and stagagh
connection, PackMimeHTTP sets a timer to expire when thé new connection should begin. The time between new
connections is governed by the connection rate paramegpgtied by the user. New connections are started accordititgto
connection arrival times without regard to the completibprevious requests, but a new request between the saméeantidn
server pair (as with HTTP 1.1) begins only after the previ@ggiest-response pair has been completed.

PackMimeHTTP handles the re-use of Applications and Agiiattshave completed their data transfer. There are 5 poet$ us
to maintain Applications and Agents — one pool for inacti¥&PTAgents and one pool each for active and inactive client and

360

PackMime

client cloud server cloud
(ns node) (ns node)

0
i SN

server Applications
and Agents

client Applications
and Agents

Figure 40.1: PackMimeHTTP Architecture. Each PackMimeRT0bject controls a server and a client cloud. Each cloud
can represent multiple client or server Applications. EAgiplication represents either a single web server or a singlb
client.

server Applications. The pools for active Applicationsemsthat all active Applications are destroyed when the Etian
is finished. Active TCP Agents do not need to be placed in a pechuse each active Application contains a pointer to its
associated TCP Agent. New objects are only created whea #temo Agents or Applications available in the inactivelpoo

40.1.1 PackMimeHTTP Client Application

Each PackMimeHTTP client controls the HTTP request sizas dre transferred. Each PackMimeHTTP client takes the
following steps:

e sample the number of requests for this connection from tmebau-of-requests distribution (if the number of requests
is 1, this is a non-persistent connection)

e sample the inter-request times from the inter-requesg-timstribution, if there will be more than 1 request
e sample the HTTP request sizes from the request-size distib

e send the first HTTP request to the server

e listen for the HTTP response

e when the entire HTTP response has been received, the céenadimer to expire when the next request should be
made

e when the timer expires, the next HTTP request is sent, andlibge process is repeated until all requests have been
completed

361

40.1.2 PackMimeHTTP Server Application

Each web server controls the response sizes that are treatsfeThe server is started by when a new TCP connection is
started. Each PackMimeHTTP client takes the followingstep

e listen foran HTTP request from the associated client

e when the entire request arrives, the server samples thersdelay time from the server delay distribution

e set a timer to expire when the server delay has passed

e when the timer expires, the server samples the HTTP resmiresefrom the HTTP response size distribution

e this process is repeated until the requests are exhausteel setver is told how many requests will be sent in the
connection

e send a FIN to close the connection

40.2 PackMimeHTTP Random Variables

This implementation of PackMimeHTTP provides several ned®anVariable objects for specifying distributions of Pack
MimeHTTP connection variables. The implementations waken from source code provided by Bell Labs and modified to
fit into the ns RandomVariable framework. This allows PackidHTTP connection variables to be specified by any type of
ns RandomVariable, which now include PackMimeHTTP-specidhdom variables. The PackMimeHTTP-specific random
variable syntax for TCL scripts is as follows:

e $ns [new RandomVariable/PackMimeHTTPFlowArrive <rate>] , Whererate is the specified Pack-
MimeHTTP connection rate (number of new connections pesrsac

e $ns [new RandomVariable/PackMimeHTTPFileSize <rate> <ty pe>] , wheretype is O for HTTP
requests and 1 for HTTP responses

e $ns [RandomVariable/PackMimeHTTPXmit <rate> <type>] , Wheretype is O for client-side delays
and 1 for server-side delayblote: This random variable is only used in conjunction with DelayBIt returns 1/2 of
the actual delay because it is meant to be used with 2 DelapBdgs, each of which should delay the packets for 1/2
of the actual delay.

40.3 Use of DelayBox with PackMime-HTTP

PackMimeHTTP uses ns to model the TCP-level interactiowéen web clients and servers on the simulated link. To
simulate network-level effects of HTTP transfer througé thouds, we implemented a new ns module called DelayBox (see
22). DelayBox is an ns analog to dummynet, often used in néttestbeds to delay and drop packets. The delay times model
the propagation and queuing delay incurred from the sourdbe edge of the cloud (or edge of the cloud to destination).
Since all HTTP connections in PackMimeHTTP take place betwanly two ns nodes, there had to be an ns object to delay
packets in each flow, rather than just having a static dela®tink between the two nodes. DelayBox also models battkn
links and packet loss on an individual connection basis. DetayBox nodes are used as shown in Figure 40.3. One node is
placed in front of the web client cloud ns node to handle tigde delays, loss, and bottleneck links. The other DeteyB
node is placed in front of the web server cloud ns node to leattid! server-side delays, loss, and bottleneck links.

362

HTTP responses

“--=-=---
web]] web
E — 1] — 11
clients DelayBox DelayBox SEIME S

HTTP requests

Figure 40.2: Example Topology Using PackMimeHTTP and DBtay The cloud of web clients is a single ns node, and the
cloud of web servers is a single ns node. Each of the DelayBdesis a single ns node.

40.4 Example

More examples (including those that demonstrate the uselafyBox with PackMime) are available in tte/ex/packmime/
directory of the ns source code. The validation scrigst-suite-packmime.tcl is in tcl/test/ and can be run
with the commandest-all-packmime from that directory.

test-packmime.tcl

useful constants
set CLIENT O
set SERVER 1

remove-all-packet-headers; # removes all packet headers
add-packet-header IP TCP; # adds TCP/IP headers
set ns [new Simulator]; # instantiate the Simulator
$ns use-scheduler Heap; # use the Heap scheduler

SETUP TOPOLOGY
create nodes
set n(0) [$ns node]

363

set n(1) [$ns node]
create link
$ns duplex-link $n(0) $n(1) 10Mb Oms DropTalil

SETUP PACKMIME
set rate 15
set pm [new PackMimeHTTP]

$pm set-client $n(0); # name $n(0) as client

$pm set-server $n(1); # name $n(1) as server

$pm set-rate $rate; # new connections per second
$pm set-http-1.1; # use HTTP/1.1

SETUP PACKMIME RANDOM VARIABLES
global defaultRNG

create RNGs (appropriate RNG seeds are assigned automatic

set flowRNG [new RNG]
set reqsizeRNG [new RNG]
set rspsizeRNG [new RNG]

create RandomVariables

set flow_arrive [new RandomVariable/PackMimeHTTPFIowAr
set req_size [new RandomVariable/PackMimeHTTPFileSize $
set rsp_size [new RandomVariable/PackMimeHTTPFileSize $

assign RNGs to RandomVariables
$flow_arrive use-rng $flowRNG
$req_size use-rng $reqsizeRNG
$rsp_size use-rng $rspsizeRNG

set PackMime variables
$pm set-flow_arrive $flow_arrive
$pm set-req_size $req_size
$pm set-rsp_size $rsp_size

record HTTP statistics
$pm set-outfile "data-test-packmime.dat"

$ns at 0.0 "$pm start"
$ns at 300.0 "$pm stop"
$ns at 301.0 "exit 0"

$ns run

40.5 Commands at a Glance

ally)

rive $rate]
rate $CLIENT]
rate $SERVER]

The following commands on the PackMimeHTTP class can besaedefrom OTcl:

[new PackMimeHTTP]
Creates a new PackMimeHTTP object.

364

$packmime set-client <node>
Associates the node with the PackMimeHTTP client cloud

$packmime set-server <node>
Associates the node with the PackMimeHTTP server cloud

$packmime set-rate <float>
Set the average number of new connections started per second

$packmime set-req_size <RandomVariable>
Set the HTTP request size distribution

$packmime set-rsp_size <RandomVariable>
Set the HTTP response size distribution

$packmime set-flow_arrive <RandomVariable>
Set the distribution of time between two consecutive cotiaes starting

$packmime set-server_delay <RandomVariable>
Set the web server delay for fetching pages

$packmime start
Start generating connections

$packmime stop
Stop generating new connections

$packmime set-http-1.1
Use HTTP/1.1 distributions for persistent connectionssiad of HTTP/1.0.

$packmime set-run <int>
Set the run number so that the RNGs used for the random vesiahll use the same substream (see Chapter 24 on RNG for
more details).

$packmime active-connections
Output the current number of active HTTP connections todstesherror

$packmime total-connections
Output the total number of completed HTTP connections todsted error

$packmime get-pairs
Return the number of completed HTTP request-response. pa@stcl/ex/packmime/pm-end-pairs.tcl for an
example of usinget-pairs to end the simulation after a certain number of pairs haveptetad.

$packmime set-TCP <protocol>
Sets the TCP type (Reno, Newreno, or Sack) for all connegfiothe client and server clouds - Reno is the default

$packmime set-outfile <filename>
Output the following fields (one line per HTTP request-regpmpair) tdfilename

e time HTTP response completed
e HTTP request size (bytes)
e HTTP response size (bytes)

365

e HTTP response time (ms) — time between client sending HTGRest and client receiving complete HTTP response
e source node and port identifier

e number of active connections at the time this HTTP requespponse pair completed

$packmime set-debug <int>
Set the debugging level:

1: Output the total number of connections created at the étitesimulation

2: Level 1 +

output creation/management of TCP agents and applications
output on start of new connection

number of bytes sent by the client and expected response size
number of bytes sent by server

e 3:Level 2 +
output when TCP agents and applications are moved to the pool

e 4: Level 3+
output number of bytes received each time client or senamive a packet

366

Part VII

Scale

367

Chapter 41

Session-level Packet Distribution

This section describes the internals of the Session-lexek& Distribution implementation ins The section is in two
parts: the first part is an overview of Session configurati®ection 41.1), and a “complete” description of the configara
parameters of a Session. The second part describes thésatale, internals, and the code path of the Session-lacid?
distribution.

The procedures and functions described in this chapter edound in -ngtcl/session/session.tcl.

Session-level Packet Distribution is oriented towardggrering multicast simulations over large topologies. Themory
requirements for some topologies using session level sitious are:

2048 nodes, degree of connectivity =8 40MB
2049-4096 nodes~ 167 MB
4097-8194 nodes~ 671 MB

Note however, that session level simulations ignore qeueéalays. Therefore, the accuracy of simulations that useces
with a high data rate, or those that use multiple sourcesibizdggregated at points within the network is suspect.

41.1 Configuration

Configuration of a session level simulation consists of taag configuration of the session level details themsgSes-
tion 41.1.1) and adding loss and error models to the sessi@h&bstraction to model specific behaviours (Section.2).1

41.1.1 Basic Configuration

The basic configuration consists of creating and configuaingulticast session. Each Sessiba.(a multicast tree) must be
configured strictly in this order: (1) create and configure lession source, (2) create the session helper and attadht
session source, and finally, (3) have the session membarfhpsession.

set ns [new SessionSim] # preamble initialization
set node [$ns node]
set group [$ns allocaddr]

368

Lossy Li,n'i'<
'Lo'ssy Links

/

Figure 41.1: Comparison of Multicast Trees for Detailed $ession Routing

set udp [new Agent/UDP] ;# create and configure the source
$udp set dst_ $group

set src [new Application/Traffic/CBR]

$src attach-agent $udp
$ns attach-agent $node $udp

$ns create-session $node $udp # create attach session helper to src
set rcvr [new Agent/NULL] ;# configure the receiver

$ns attach-agent $node $rcvr

$ns at 0.0 "$node join-group $rcvr $group” # joining the session

$ns at 0.1 "$src start"

A session level simulation scales by translating the togylato a virtual mesh topology. The steps involved in doihig t
are:

1. All of the classifiers and replicators are eliminated. lEaode only stores instance variables to track its node id, an
port ids.

2. Links do not consist of multiple components. Each linkysstbres instance variables to track the bandwidth and delay
attributes.

3. The topology, consisting of links is translated into d@uat mesh.

Figure 41.1 shows the difference between a multicast treeligtailed simulation and one in a session level simulabarice
that the translation process results in a session levellation ignoring queuing delays. For most simulationsalready
ignores processing delays at all of the nodes.

369

41.1.2 Inserting a Loss Module

When studying a protocok(g, SRM error recovery mechanism), it might be useful to studhtgrol behavior over lossy
links. However, since a session level simulation scaleshsyracting out the internal topology, we need additionatinae
nisms to insert a loss module appropriately. This subsecdéscribes how one can create these loss modules to moolel err
scenarios.

Creating a Loss Module Before we can insert a loss module in between a source-exqedir, we have to create the loss
module. Basically, a loss module compares two values taldeghether to drop a packet. The first value is obtained every
time when the loss module receives a packet from a randorablariThe second value is fixed and configured when the loss
module is created.

The following code gives an example to create a uniform Cs$ late.

creating the uniform distribution random variable

set loss_random_variable [new RandomVariable/Uniform]

$loss_random_variable set min_ 0 # set the range of the random variable
$loss_random_variable set max_ 100

set loss_module [new ErrorModel] # create the error model
$loss_module drop-target [new Agent/Null]

$loss_module set rate_ 10 # set error rate ta0.1 = 10/ (100 — 0)
$loss_module ranvar $loss_random_variable H attach random var. to loss module

A catalogue of the random variable distributions was déscriearlier (Chapter 24). A more detailed discussion ofrerro
models was also described earlier in a different chapteaf@r 13).

Inserting a Loss Module A loss module can only be inserted after the correspondiogiver has joined the group. The
example code below illustrates how a simulation script caroduce a loss module.

set sessionhelper [$ns create-session $node $src] ;# keep a handle to the loss module
$ns at 0.1 "$sessionhelper insert-depended-loss $loss_mo dule $rcvr"

41.2 Architecture

The purpose of Session-level packet distribution is to dpgesimulations and reduce memory consumption while main-
taining reasonable accuracy. The first bottleneck obseisvéite memory consumption by heavy-weight links and nodes.
Therefore, in SessionSim (Simulator for Session-levekpadistribution), we keep only minimal amount of stateslfioks

and nodes, and connect the higher level source and recgipbcations with appropriate delay and loss modules. Aipart
ular source in a group sends its data packets to a replidsbrs responsible for replicating the packets for all theereers.
Intermediate loss and delay modules between this reptieait the receivers will guarantee the appropriate endatbebar-
acteristics. To put it another way, a session level simoaéibstracts out the topology, routing and queueing deRgekets

in SessionSim do not get routed. They only follow the esshlglil Session.

370

41.3 Internals

This section describes the internals of Session-level&daistribution. We first describe the OTcl primitives to figuire a
session level simulation (Section 41.3.1); we concludb wibrief note on hos packet forwarding is achieved (Sectio8.2).

41.3.1 Object Linkage

We describe three aspects of constructing a session lewelation inns the modified topology routines that permit the
creation of abstract nodes and links, establish the sesstper for each active source, add receivers to the session b
inserting the appropriate loss and delay models when tlcatwer joins the appropriate group.

Nodes and Links The node contains only its node id and the port number for &x¢agent. A link only contains the values
of its bandwidth and delay.

SessionNode instproc init {} {
$self instvar id_ np_
set id_ [Node getid]
set np_ O

}

SessionSim instproc simplex-link { n1 n2 bw delay type } {
$self instvar bw_ delay
set sid [$nl id]
set did [$n2 id]

set bw_($sid:$did) [expr [string trimright $bw Mb] * 1000000]
set delay ($sid:$did) [expr [string trimright $delay ms] * 0.001]

Session Helper Each active source in a session requires a “session helpég.session helper insis realised through

a replicator. This session helper is created when the useessacreate-session {} to identify the source agent. The
simulator itself keeps a reference to the session helpés instance variable arragession_ , indexed by the source and
destination address of the source.

Note that the destination of source agent must be set beddinegcreate-session {}.
SessionSim instproc create-session { node agent } {
$self instvar session_

set nid [$node id]
set dst [$agent set dst_]

set session_($nid:$dst) [new Classifier/Replicator/Dem uxer]
$agent target $session_($nid:$dst) # attach the replicator to the source
return $session_($nid:$dst) ;# keep the replicator in the SessionSim instance variablayesessi on_

371

Delay and Loss Modules Each receiver in a group requires a delay module that refiectdelay with respect to the
particular source. When the receiver joins a grojgin-group {} identifies all session helpers isession_ . If the
destination index matches the group address the receguiaing, then the following actions are performed.

1. A new slot of the session helper is created and assignée teteiver.

2. The routine computes the accumulated bandwidth and dedtwyeen the source and receiver using the SessionSim

instance proceduregget-bw {} and get-delay {}.

3. A constant random variable is created; it will generatedcan delivery times using the accumulative delay as an

estimate of the average delay.

4. A new delay module is created with the end-to-end bandwilliracteristics, and the random variable generator pro-

vides the delay estimates.

5. The delay module in inserted into the session helper ardiosed between the helper and the receiver.

See Section 41.1.2 for similarly inserting a loss modulesfogceiver.

SessionSim instproc join-group { agent group } {
$self instvar session_

foreach index [array names session_] {
set pair [split $index :]
if {[lindex $pair 1] == $group} {
Note: must insert the chain of loss, delay,
and destination agent in this order:

$session_($index) insert $agent # insert destination agent into session replicator

set src [lindex $pair 0]

set dst [[$agent set node_] id]

set accu_bw [$self get-bw $dst $src]
set delay [$self get-delay $dst $src]

set random_variable [new RandomVariable/Constant] #
$random_variable set avg_ $delay

set delay_module [new DelayModel] H#
$delay_module bandwidth $accu_bw
$delay_module ranvar $random_variable

$session_($index) insert-module $delay_module $agent ;#

41.3.2 Packet Forwarding

;# find accum. b/w and delay

set delay variable

configure the delay module

insert the delay module

Packet forwarding activities are executed in C++. A soummgliaation generates a packet and forwards to its targethwhi
must be a replicator (session helper). The replicator cotie packet and forwards to targets in the active slots whieh
either delay modules or loss modules. If loss modules, ssitetis made whether to drop the packet. If yes, the packet is

372

Figure 41.2: Architectural Realization of a Session Levei8ation Session

forwarded to the loss modules drop target. If not, the losdueforwards it to its target which must be a delay modules Th
delay module will forward the packet with a delay to its targlich must be a receiver application.

41.4 Commands at a glance

Following is a list of session-level related commands:

set ns [new SessionSim|
This command creates an instance of the sessionmode simulat

$ns_ create-session <node> <agent>

This command creates and attaches a session-helper, sHhielically a replicator, for the source <agent> createldeat t
<node>.

373

Chapter 42

Asim: approximate analytical simulation

This chapter describes a fast approximate network simylétsim. Asim solves the steady state of the network using
approximate fixed points. The overall structure is showniguFe 42.1. The user feeds a regular ns script and turns on the
asim flag. Asim would do a fast approximate simulation of teéwvork scenario and would present to the user the drop

probabilities of the routers, the delays and the approx@mggregate throughput of the links and the flows.

In particular, we the following links/traffic are supported

e Drop Tail Queues

e RED Queues

e Bulk TCP flows with FTP traffic
e Short lived TCP flows

The data structures of Asim are populated by a module withinTcl space of ns from the user supplied script.

executing Asim, the results can be accessed using Tcl emitifo use the Asim within a script the user has to use

Simulator set useasim_ 1

Flow state
computation

o Initial
script ™ Parser ™ (onditions Terminal i Network
‘ conditions ? Yes ! etwor
state

Router state
computations

Figure 42.1: The structure of Asim

374

Upon

By default, this flag is setto 0

A simple script is given below

proc addsrc { s } {
global ns
set t [$ns set src_]
lappend t $s
$ns set src_ $t

proc adddst { src } {
global ns
set t [$ns set dst_]
lappend t $src
$ns set dst_ $t

proc finish {} {
global ns fmon
set drops [$fmon set pdrops_]

set pkts [$fmon set parrivals_]
set notDroped [$fmon set pdepartures_]

set overflow_prob [expr 1.0 * $drops / $pkts]
puts [format "tdrops $drops tpkts $pkts o_prob. %7.4f" $ove rflow_prob]
exit 0

}

set N_ 100000

set arrival 0

set available $N_
set endTime_ 200

set ns [new Simulator]
$ns set useasim_ 1
$ns at $endTime_ "finish"

set src_ "™
set dst_ ™

$ns set src_ $src_
$ns set dst_ $dst_

set n(0) [$ns node]

375

set n(1) [$ns node]
set link(0:1) [$ns duplex-link $n(0) $n(1) 1Mbps 50ms RED]

for {set i 0} { $i < 4} {incr i} {

set ltcp($i) [new Agent/TCP]

set ltcpsink($i) [new Agent/TCPSink]
$ns attach-agent $n(0) Sltcp($i)
$ns attach-agent $n(1) $ltcpsink($i)
$ns connect S$licp($i) $ltcpsink($i)

set Iftp($i) [new Application/FTP]
$Iftp($i) attach-agent $ltcp($i)
$ns at 0 "$lftp($i) start”

}

Short term flows
addsrc 1
adddst 0

set pool [new PagePool/WebTraf]

Set up server and client nodes
$pool set-num-client [llength [$ns set src_]]
$pool set-num-server [llength [$ns set dst]]
global n
seti O
foreach s [$ns set src_] {
$pool set-client $i $n($s)
incr i
}
seti O
foreach s [$ns set dst] {
$pool set-server $i $n($s)
incr i

}

Number of Pages per Session
set numPage 100000

$pool set-num-session 1

set interPage [new RandomVariable/Exponential]
$interPage set avg_ 0.5

set pageSize [new RandomVariable/Constant]
$pageSize set val_ 1

set interObj [new RandomVariable/Exponential]
$interObj set avg_ 1

set objSize [new RandomVariable/Constant]
$objSize set val_ 20

376

This is needed
$pool use-asim

$pool create-session 0 $numPage 0 S$interPage $pageSize Jin terObj $objSize

Dumps internal data structures to this dumpfile
$ns asim-dump dumpfile

Calls asim-run
$ns asim-run

Access asim statistics

set | [$ns link $n(0) $n(1)]
puts "after asim run, link bw
puts "after asim run, flow bw

[$ns asim-getLinkTput $I] pac kets"
[$ns asim-getFlowTput $ltcp(0)] packets"

377

Part VIl

Emulation

378

Chapter 43

Emulation

This chapter describes thamulationfacility of ns Emulation refers to the ability to introduce the simulaitmio a live
network. Special objects within the simulator are capalblmwoducing live traffic into the simulator and injectingaffic
from the simulator into the live network.

Emulator caveats:

e While the interfaces described below are not expected tagidrastically, this facility is still under developmentia
should be considered experimental and subject to change.

e The facility described here has been developed under FieeBE5, and use on other systems has not been tested by
the author.

e Because of the currently limited portability of emulatignis only compiled intonse(build it with “make nse”), not
standard ns.

43.1 Introduction

The emulation facility can be subdivided into two modes:

1. opaque mode - live data treated as opaque data packets

2. protocol mode - live data may be interpreted/generated by simulator

In opagque mode, the simulator treats network data as upiatied packets. In particular, real-world protocol fields aot
directly manipulated by the simulator. In opaque mode, digta packets may be dropped, delayed, re-ordered, or dtgudic
but because no protocol processing is performed, protspetific traffic manipulation scenarios (e.g. “drop the TE§sent
containing a retransmission of sequence number 23045")moabe performed. In protocol mode, the simulator is able to
interpret and/or generate live network traffic containingjiiaary field assignmentdo date (Mar 1998), only Opaque Mode

is currently implemented.

The interface between the simulator and live network is jgled by a collection of objects includirtgp agentandnetwork

objects Tap agents embed live network data into simulated packetsiae-versa. Network objects are installed in tap agents
and provide an entrypoint for the sending and receipt ofdia&. Both objects are described in the following sections.

379

When using the emulation mode, a special version of the systhieduler is used: tHeealTime scheduler. This scheduler
uses the same underlying structure as the standard calqundae based scheduler, but ties the execution of evenéalto r
time. Itis described below.

43.2 Real-Time Scheduler

The real-time scheduler implements a soft real-time scleedvhich ties event execution within the simulator to reald.
Provided sufficient CPU horsepower is available to keep up afiriving packets, the simulator virtual time should elys
track real-time. If the simulator becomes too slow to keevitp elapsing real time, a warning is continually produdettié
skew exceeds a pre-specified constant “slop factor” (ctiré@ms).

The main dispatch loop is found in the routiRealTimeScheduler::run() , in the filescheduler.cc . It follows
essentially the following algorithm:

e While simulator is not halted

— get current real time (“now”)
— dispatch all pending simulator events prior to now
— fetch next (future) event if there is one

delay until the next simulator event is ready or a Tcl evercuos

if a tcl event occured, re-insert next event in simulatoméwgieue and continue

otherwise, dispatch simulator event, continue

if there was no future even, check for Tcl events and continue

The real-time scheduler should always be used with the arnlacility. Failure to do so may easily result in the siratalr
running faster than real-time. In such cases, traffic pgs$irough the simulated network will not be delayed by thepero
amount of time. Enabling the real-time scheduler requinesollowing specification at the beginning of a simulaticnist:

set ns [new Simulator]
$ns use-scheduler RealTime

43.3 Tap Agents

The classTapAgent is a simple class derived from the ba%gent class. As such, it is able to generate simulator packets
containing arbitrarily-assigned values within th@common header. The tap agent handles the setting of the comeaaler
packet size field and the type field. It uses the packet B/peLIVE for packets injected into the simulator. Each tap agent
can have at most one associated network object, althouga than one tap agent may be instantiated on a single simulator
node.

Configuration Tap agents are able to send and receive packets to/fromagiatesiNetwork object. Assuming a network
object$netobj refers to a network object, a tap agent is configured usingétwork method:

set a0 [new Agent/Tap]

380

$a0 network $netobj
$a0 set fid_ 26
$a0 set prio_ 2
$ns connect $a0 $al

Note that the configuration of the flow ID and priority are hlutthrough theAgent base class. The purpose of setting
the flow id field in the common header is to label packets betantp particular flows of live data. Such packets can be
differentially treated with respect to drops, reorderingts. Theconnect method instructs age®a0 to send its live traffic

to the$al agent via the current route through the simulated topology.

43.4 Network Objects

Network objects provide access to a live network. There aversl forms of network objects, depending on the protocol
layer specified for access to the underlying network, in @aidito the facilities provided by the host operating systésse

of some network objects requires special access privilegese noted. Generally, network objects provide an enintpo
into the live network at a particular protocol layer (e.qklj raw IP, UDP, etc) and with a particular access mode (mrdg-
write-only, or read-write). Some network objects provigesialized facilities such as filtering or promiscuous ascg.e.
the pcap/bpf network object) or group membership (i.e. UBRdulticast). The C++ clagdetwork is provided as a base
class from which specific network objects are derived. Thetgvork objects are currently supported: pcap/bpf, ravaife,
UDP/IP. Each are described below.

43.4.1 Pcap/BPF Network Objects

These objects provide an extended interface to the LBNLgtazdpture library (libpcap). (Ség://ftp.ee.lbl.gov/libpcap.tar.Z
for more info). This library provides the ability to captumek-layer frames in a promiscuous fashion from networleife.ce
drivers (i.e. a copy is made for those programs making usép€ap). It also provides the ability to read and write packe
trace files in the “tcpdump” format. The extended interfamevwled bynsalso allows for writing frames out to the network
interface driver, provided the driver itself allows thistian. Use of the library to capture or create live traffic may gro-
tected; one generally requires at least read access tostensg packet filter facility which may need to be arrangedulgh

a system administrator.

The packet capture library works on several UNIX-basedfptats. It is optimized for use with the Berkeley Packet Filte
(BPF) [25], and provides a filter compiler for the BPF pseudoline machine code. On most systems supporting it, a kernel
resident BPF implementation processes the filter code, pplies the resulting pattern matching instructions to res
frames. Those frames matching the patterns are receivedghrthe BPF machinery; those not matching the pattern are
otherwise unaffected. BPF also supports sending linkrl&genes. This is generally not suggested, as an entire gdyope
formatted frame must be created prior to handing it off to BPfis may be problematic with respect to assigning proper
link-layer headers for next-hop destinations. It is geligmeferable to use the raw IP network object for sendingéiekets,

as the system’s routing function will be used to determirgppr link-layer encapsulating headers.

Configuration Pcap network objects may be configured as either associatbdaviive network or with a trace file. If
associated with a live network, the particular networkifstee to be used may be specified, as well as an optional pcaois
flag. As with all network objects, they may be opened for regdir writing. Here is an example:

set me [exec hostname]
set pfl [new Network/Pcap/Live]
$pfl set promisc_ true

381

set intf [$pfl open readonly]

puts "pfl configured on interface S$intf"

set filt "(ip src host foobar) and (not ether broadcast)"
set nbytes [$pfl filter $filt]

puts “filter compiled to $nbytes bytes"

puts "drops: [$pfl pdrops], pkts: [$pfl pkts]"

This example first determines the name of the local systenchwhill be used in constructing a BPF/libpcap filter predi-
cate. Thenew Network/Pcap/Live call creates an instance of the pcap network object for cagfuive traffic. The
promisc_ flag tells the packet filter whether it should configure theelyithg interface in promiscuous mode (if it is sup-
ported). Theopen call activates the packet filter, and may be specifiedeadglonly , writeonly , or readwrite . It
returns the name of the network interface the filter is asgediwith. Theopen call takes an optional extra parameter (not
illustrated) indicating the name of the interface to usedsas where a particular interface should be used on a natied
host. Thdilter method is used to create a BPF-compatible packet filter progvhich is loaded into the underlying BPF
machinery. Thdilter method returns the number of bytes used by the filter preglicttepdrops andpkts methods
are available for statistics collection. They report thentner of packets dropped by the filter due to buffer exhaustimhthe
total number of packets that arrived at the filter, respetyifnotthe number of packets accepted by the filter).

43.4.2 IP Network Objects

These objects provide raw access to the IP protocol, and éifle complete specification of IP packets (including header
The implementation makes use ofeav socket In most UNIX systems, access to such sockets requires-sisgeprivileges.
In addition, the interface to raw sockets is somewhat lemsdstrd than other types of sockets. The cldsswork/IP
provides raw IP functionality plus a base class from whidmeothetwork objects implementing higher-layer protocoks a
derived.

Configuration The configuration of a raw IP network object is comparativ@pple. The object is not associated with
any particular physical network interface; the system’sd&ting capability will be used to emit the specified datagi@ut
whichever interface is required to reach the destinatialregs contained in the header. Here is an example of confgan

IP object:

set ipnet [new Network/IP]
$ipnet open writeonly

$ipnet close

The IP network object supports only thpen andclose methods.

43.4.3 IP/UDP Network Objects

These objects provide access to the system’s UDP impletmmmtgong with support for IP multicast group membership
operationsIN PROGRESS

382

43.5 An Example

The following code illustrates a small but complete simiolascript for setting up an emulation test using BPF and tRok
objects. It was run on a multi-homed machine, and the sirouksgsentially provides routing capability by reading fesm
from one interface, passing them through the simulated or&tvand writing them out via the raw IP network object:

set me "10.0.1.1"
set ns [new Simulator]

$ns use-scheduler RealTime
#
we want the test machine to have ip forwarding disabled, so

check this (this is how to do so under FreeBSD at least)
#

set ipforw [exec sysctl -n net.inet.ip.forwarding]

if S$ipforw
puts "can not run with ip forwarding enabled"
exit 1
#
allocate a BPF type network object and a raw-IP object
#

set bpf0 [new Network/Pcap/Live]
set bpfl [new Network/Pcap/Live]
$bpfO set promisc_ true
$bpfl set promisc_ true

set ipnet [new Network/IP]
set nd0 [$bpfO open readonly fxpO]

set ndl [$bpfl open readonly fxpl]
$ipnet open writeonly

#

try to filter out weird stuff like netbios pkts, arp request s, dns,
also, don't catch stuff to/from myself or broadcasted

#

set notme "(not ip host $me)"

set notbcast "(not ether broadcast)"

set ftp "and port ftp-data"

set fOlen [$bpfO filter "(ip dst host bit) and $notme and $not bcast"]
set fllen [$bpfl filter "(ip src host bit) and $notme and $not bcast"]

puts "filter lengths: $fOlen (bpf0), $fllen (bpfl)"
puts "dev $nd0 has address [$bpfO linkaddr]"
puts "dev $ndl has address [$bpfl linkaddr]"

set a0 [new Agent/Tap]

set al [new Agent/Tap]
set a2 [new Agent/Tap]

383

puts “install nets into taps..."
$a0 network $bpf0
$al network $bpfl
$a2 network $ipnet

set nodeO [$ns node]
set nodel [$ns node]
set node2 [$ns node]

$ns simplex-link $node0 $node2 10Mb 10ms DropTail
$ns simplex-link $nodel $node2 10Mb 10ms DropTail

$ns attach-agent $nodeO $a0
$ns attach-agent $nodel $al
$ns attach-agent $node2 $a2

$ns connect $a0 $a2
$ns connect $al $a2

puts "okey"
$ns run

43.6 Commands at a glance

Following is a list of emulation related commands:

$ns_ use-scheduler RealTime
This command sets up the real-time scheduler. Note that-dimeascheduler should be used with any emulation facility
Otherwise it may result the simulated network running fatan real-time.

set netob [new Network/<network-object-type>]

This command creates an instance of a network object. N&tolgjects are used to access a live network. Currently the
types of network objects available are Network/Pcap/LNetwork/IP and Network/IP/UDP. See section 43.4 for dstail
network objects.

384

Part IX

Visualization with Nam - The Network
Animator

385

Chapter 44

Nam

44.1 Introduction

Nam is a Tcl/TK based animation tool for viewing network slation traces and real world packet tracedata. The design
theory behind nam was to create an animator that is able tblaege animation data sets and be extensible enough sa that i
could be used indifferent network visualization situaioknder this constraint nam was designed to read simpleadioim
event commands from a large trace file. In order to handlelargmtion data sets a minimum amount of information is kept
in memory. Event commands are kept in the file and reread fhanfile whenever necessary.

The first step to use nam is to produce the trace file. The treceditains topology information, e.g., nodes, links, all we
as packet traces. The detailed format is described in th®eet5.1. Usually, the trace file is generated by ns. During a
ns simulation, user can produce topology configurationguainformation, and packet traces using tracing eventssin
However any application can generate a nam trace file.

When the trace file is generated, it is ready to be animatedby tUpon startup, nam will read the tracefile, create topglog
pop up a window, do layout if necessary, and then pause attimbrough its user interface, nam provides control overynan
aspects of animation. These functionalities will be déstiin detail in the USER INTERFACE section.

There are bugs in nam however each successive has becomemmauetstable than the previous one. Please mail ns-
users@isi.edu if you encounter any bugs, or have suggedtomaddiotional desired functionality.

44.2 Nam Command Line Options

nam [-g <geometry>] [-t <graphlnput>] [-i <interval>] [-j < startup time>]
[-k <intial socket port number>] [-N <application name> | [- Cc <cache size>]
[-f <configuration file>] [-r initial animation rate]

[-a]ll-p]l[-S]

[<tracefile(s)>]

Command Line Options

386

<tracefile>

Specify geometry of the window upon startup.

Instruct nam to use tkgraph, and specify input file nam kgraph.
[Information for this option may not be accurate] Speaifiye (real) milliseconds as the screenupdate rate. Thelkedte
Specify the application name of this nam instance. Thigiegtion name may later be used in peer synchronization.
The maximum size of the cache used to store 'active’ obj@ben doing animating in reverse.
Name of the initialization files to be loaded during startin this file, user can define functions which will be calladhe
Create a separate instance of nam.

Print out nam trace file format.

Enable synchronous X behavior so it is easier for graptetsigging. For UNIX system running X only.

is the name of the file containing the trace datsetanimated. If <tracefile> cannot be read, nam will try toropeacefile

44.3 User Interface

Starting up nam will first create the nam console window. Yan bave multiple animations running under the same nam
instance. At the top of all nam windows is a menu bar. For tha nansole there are 'File’ and 'Help’ menus. Under the
'File’ there is a 'New’ command for creating a ns topologyngthe nam editor (under construction) , an 'Open’ command
which allows you to open existing tracefiles, a 'WinList’ corand that popup a window will the names of all currently
opened tracefiles, and a 'Quit’ command which exits nam. Hedg’ menu contains a very limited popup help screen and a
command to show version and copyright information.

Once a tracefile has been loaded into nam (either by usingXtperi’ menu command or by specifying the tracefile on the
command line) an animation window will appear. It has a 'Sayeut’ command which will save the current network layout
to a file and a 'Print’ command which will print the current netrk layout.

The 'Views' menu has 4 buttons:

o New view button: Creates a new view of the same animationt tlescroll and zoom on the newview. All views will
be animated synchronously.

e Show monitors checkbox: If checked, will show a pane at tixetdhalf of window, where moni-tors will be displayed.

e Show autolayout checkbox: If checked, will show a pane atahver half of window, which con-tains input boxes and
a button for automatic layout adjustments. This box will betenabled when using link orientain layouts.

o Show annotation checkbox: If checked, will show a listboxhat lower half of window, which will be used to list
annotations in the ascending order of time.

Below the menu bar, there is a control bar containing 6 bgttariabel, and a small scrollbar(scale). They can be cliagked
any order. We will explain them from left to right.

e Button 1 («) - Rewind. When clicked, animation time will gockaat the rate of 25 times the current screen update rate.

e Button 2 (<) - Backward play. When clicked, animation will played backward with time decreasing.

e Button 3 (square) - Stop. When clicked, animation will pause

e Button 4 (>) - Forward play. When clicked, animation will blayed forward with time increasing.

e Button 5 (») - Fast Forward. When clicked, animation time @i forward at the rate of 25 times the current screen
update rate.

387

e Button 6 (Chevron logo) - Close current animation window.

Time label - Show the current animation time (i.e., simwattime as in the trace file). Rate Slider - Controls the screen
update rate (animation granularity). The current rate $pldiyed in the label above the slider.

Below the first control bar, there is Main Display, which cains a tool bar and a main view pane with two panning scroll

bars. All new views created by menu command 'Views/New viewf have these three components. The tool bar contains
two zoom buttons. The button with an up arrow zooms in, th&puvith a down arrrow zooms out. The two scroll bars are

used to pan the main animation view.

Clicking the left button on any of the objects in the main vieane will pop up a information window. For packet and agent
objects, there is a 'monitor’ button in the popup window. akihg that button will bring out the monitor pane (if it is not
already there), and add a monitor to the object. For link cfisjethere will be a 'Graph’ button. Clicking on that buttoillw
bring up another popup window, where users can select batdmeeving a bandwidth utilization graph or drawing a linkdos
graph of one simplex edge of the duplex link.

Below the user interface objects we have discussed so &e thay or may not be a Monitor pane, depending on whether
the checkbox 'Views/Show monitors’ is set. (The defaultiiset). All monitors will be shown in this pane. A monitor ek
like a big button in the pane. Currently only packets and &geray have monitors.

A packet monitor shows the size, id, and sent time. When tlkgiaeaches its destination, the monitor will still be #er
but will say that the packet is invisible. An agent monitoosls the name of the agent, and if there are any variable traces
associated with this agent, they will be shown there as well.

Below the monitor pane (or in its place if the monitor panétidrere), there is a Time Slider. It looks likea scaled ruleith

a tag 'TIME’ which can be dragged along the ruler. It is useddbthe current animation time. As you drag the 'TIME' tag,
current animation time will be displayed in the time labetfie control bar above. The left edge of the slider repredéets
earliest event time in the trace file and the right edge regmssthe last event time. Clicking left button on the rulest(on
the tag) has the same effect as Rewind or Fast Forward, digygemlthe clicking position.

The Automatic Layout Pane may be visible or hidden. If visjhit is below the time slider. It has three inputboxes and one
relayout button. The labeled input boxes let user adjustautomatic layout constants, and the number of iteratiomsigu
next layout. When user press ENTER in any of the input boxeslick the'relayout’ button, that number of iterations il
be performed. Refer to the AUTOMATIC LAYOUT section for di$aof usage.

The bottom component of the nam window is a Annotation Listhehere annotations are displayed. Anannotation is a
(time, string) pair, which describes a event occuring at tin@e. Refer to ns(1) for functions to generate annotati@wmible-
clicking on an annotation in the listbox will bring nam to ttime when that annotation is recorded. When the pointer is
within the listbox, clicking the right button will stop thenemation and bring up a popup menu with 3 options: Add, Delete
Info. *Add’ will bring up a dialog box with a text input to addrgew annotation entry which has the current animation time.
The user can type an annotation string in the dialog box. é@elwill delete the annotation entry pointed by the pointer
‘Info’ will bring out a pane which shows both the annotationé and the annotation string.

44.4 Keyboard Commands
Most of the buttons have keyboard equivalents. Note they fomiction when the mouse cursor is inside the nam window.

e <return> - Typing a <return> will pause nam if it's not alrgadaused. If nam is paused, <return> will step the
animation one simulated clock tick. (If your keyboard aefmeats, holding down <return> is a goodway to slow-step
through the animation.)

388

e 'p’ or 'P’ - Pause but not step if paused.

e 'c’ or 'C’ - Continue after a pause.

e 'b’ or 'B’ - Decrease animation time for one screen updateiwdl.
e T or 'R’ - Rewind.

e 'f'or’F - Fast Forward.

e 'n’or 'N’ - Jump to time of next event in the tracefile.
e X’ or’X’ - Undo the last rate change.

e U’ or'U’ - Undo the last time slider drag.

e >’ or'’ Increase the granularity (speed up) by 5%.

e '<’or’, Decrease the granularity (slow down) by 5%.
e <space bar> - Toggle the pause state of nam.

e 'q’,'Q’ or <control-c> - Quit.

44.5 Generating External Animations from Nam

Nam animations can be saved and converted to animated gU®BG movies.

To save the frames of your movie, first start nam with yourdrand set it up where you want it to start and adjust other
parameters (step rate, size, etc.) Select 'Record Animatiom the File menu to start saving frames. Each animation
step will be saved in a X-window dump file called “nam%d.xwdiave %d is the frame number. These files can then be
assembled into animated GIFs or MPEGs with the approprizge processing tools.

The following shell script (sh, not csh) converts these fites an animated gif:

for i in * . xwd; do
xwdtoppm <$i |

ppmtogif -interlace -transparent'#e5e5e5’ >‘basename $i xwd'.gif;
done
gifmerge -0 -2 -229,229,229 * gif >movie.gif

Please note that the programs xwdtoppm, ppmtogif, and gifenarenot part of ns. You can get the first two frohitp:
/[download.sourceforge.net/netpbm/ and gifmerge fromhttp://www.the-labs.com/GIFMerge/

44.6 Network Layout

In nam, a topology is specified by alternating node objectls edge objects. But to display the topology in a comprelidasi
way, a layout mechanism is needed. Currently nam provides thyout methods. First, user may specify layout by thedin
orientation. A link orientation is the angle between theedgd a horizontal line, in the interval [O7R During layout,
nam will honor the given link orientation. Generally, it Wilrst choose a reference node, then place other nodes uslng |
orientations and link length. The link length is determitgdink delay and connecting node sizes. This works well foal
and manually generated topologies.

389

Second, when dealing with randomly generated topologiesmay want to do layout automatically. An automatic graph
layout algorithm has been adapted and implemented. The laks of the algorithm is to model the graph as balls (nodes)
connected by springs (links). Balls will repulse each atldrile springs pull them together. This system will (hoglfu
converge after some number of iterations. In practice raftemall number of iterations (tens or hundreds), most small
to medium sized graphs will converge to a visually comprefitga structure. Larger graphs may take a combination of
automatic layout and hand placement to achieve an accepésfolut.

There are 3 parameters to tune the automatic layout pro€sattractive force constant, which controls springs’scéor
between balls. Cr Repulsive force constant, which conttoésrepulsive force between balls. Number of iterations How
many times to run the autolayout procedure.

For small topologies with tens of nodes, using the defauthmeters (perhaps with 20 to 30 more iterations) will suffece
produce a nice layout. But for larger topology, careful paeger tuning is necessary. Following is a empirical methwd t
layout a 100 node random transit stub topologygenerateddoydia Tech’s ITM internet topology modeler. First, set @d a
Crto 0.2, do about 30 iterations, then set Cr to 1.0, Ca to &a€d, then do about 10 iterations, then set Ca to 0.5, Cito 1.
do about 6 iterations.

Third, there is a x,y coordinate style layout. This was degel for use in displaying a wireless topologies in whichhpement
links don’t exist. Using this style, nodes events are givema y coordinate values indicating where those nodes shisuld
placed in a cartesian world.

44.7 Animation Objects

Nam does animation using the following building blocks whare defined below:

Node Nodes are created from 'n’ trace event in trace file. It repnés a source, host, or router. Nam will skip over any
duplicate definitions for the same node. A node may have ghapes, (circle, square, and hexagon), but once created
it cannot change its shape. Nodes can change its color damingation. Nodes can be labeled.

Link Links are created between nodes to form a network topolaggrihally nam links are consist of 2 simplex links. The
trace event'I’ creates two simplex links and does other sgaey setup. Therefore, for a users perspective all links ar
duplex links. Links can be labeled and also can change caolanglthe animation. Links cab be labeled as well.

Queue Queues need to be constructed in nam between two nodes. Aurume s associated to only one edge of a duplex
link. Queues are visualized as stacked packets. Packetdamieed along a line, the angle between the line and the
horizontal line can be specified in the queue trace event.

Packet Packets are visualized as a block with an arrow. The direafahe arrow shows the flow direction of the packet.
Queued packets are shown as little squares. A packet mayoppett from a queue or a link. Dropped packets are
shown as falling rotating squares, and disappear at the &the screen. Unfortunately, due to nam’s design dropped
packets are not visible during backward animation.

Agent Agents are used to separate protocol states from nodes.arbejways associated with nodes. An agent has a name,
which is a unique identifier of the agent. It is shown as a sguéth its name inside, and is drawn next to its associated
node.

390

Chapter 45

Nam Trace

Nam is a Tcl/Tk based animation tool that is used to visudtieens simulations and real world packet trace data. The first
step to use nam is to produce a nam trace file. The nam tracéhfilddscontain topology information like nodes, links,
gueues, node connectivity etc as well as packet trace irdtom In this chapter we shall describe the nam trace foendt
simple ns commands/APIs that can be used to produce topotadigurations and control animation in nam.

The underlying design constraints for nam were that it i€dblhandle large amounts of trace data and that its animation
primitives be adaptable so that it may be used in differepésyof network visualization. As a result, internally narade
information from a file and keeps only a minimum amount of aation event information in memory. Its animation event
has a fairly simple and consistent structure so that it camyndéferent visualization situations.

45.1 Nam Trace Format

The C++ class Trace used for ns tracing is used for nam traxgivgell. Description of this class may be found under section
25.3. The method Trace::format() defines nam format use@un tmace files which are used by nam for visualization of ns
simulations. Trace class method Trace::format() is dbedrin section 25.4 of chapter 25. If the macro NAM_TRACE has
been defined (by default it is defined in trace.h), then tHedehg code is executed as part of the Trace::format() fiamct

if (namChan_ = 0)

sprintf(nwrk_,

"%c -t "TIME_FORMAT" -s %d -d %d -p %s -e %d -c %d
-i %d -a %d -x %s.%s %s.%s %d %s %s",

tt,
Scheduler::instance().clock(),
S,
d,
name,
th->size(),
iph->flowid(),
th->uid(),
iph->flowid(),
src_nodeaddr,
src_portaddr,
dst_nodeaddr,

391

dst_portaddr,
seqno,flags,sname);

A nam trace file has a basic format to it. Each line is a nam evidr# first character on the line defines the type of event and
is followed by several flags to set options on that event. EEaelmt is terminated by a newline character.

<event-type> -t <time> <more flags>...

Depending on the event type, there are different flags fatigwhe time flag.

There are 2 sections in that file, static intial configuratements and animation events. All events with -t * in them are
configuration events and should be at the beginning of theQites thing to note is that nam can also be fed the trace file from
a stream which enables it to be used with realtime applinatiSee the sectiddsing Streams with Realtime Applications

for more information.

Following we describe nam trace file format for differentsdas events and animation objects.

45.1.1 Initialization Events

The first section of a trace file must contain initializatioformation. All initialization events will have the flagg *. This
tells nam that this event needs to be parsed before any domtats started.

Version The following line define the nam version as required to Vigeahe given trace:
V -t <time> -v <version> -a <attr>

Normally there is only one version string in a given tracefiled it is usually the first line of the file. An example is the
following:

V -t » -v 1.0ab -a 0

The flag-v 1.0a5 tells nam that this script requires a version of nam > 1.0a®.nkore information on this event
look at the file tcl/stats.tcl under the procedure nam_aisly

Wireless If you want to use wireless nodes in nam you need the wirefgigization event.
W -t » -x 600 -y 600

This gives nam the size of the layout for the wireless worldhe Tx value is the width and -y is height. For more
information look at the file animator.tcl in the proceduréeimnetwork-model.

Hierarchy Hierarchical address information is defined by:

A -t <time> -n <levels> -0 <address-space size> -c <mcastshi ft> -a <mcastmask> -h
<nth level> -m <mask in nth level> -s <shift in nth level>

This trace gives the details of hierarchy, if hierarchiaddigessing is being used for simulation. Flag <levels>
indicate the total number of hierarchical tiers, which isot flat addressing, 2 for a 2-level hierarchy etc. Flag
<address-space size> denotes the total number of bits used for addressing. flagnth level> specifies
the level of the address hierarchy. Flag <mask> and-s <shift> describes the address mask and the bit shift
of a given level in the address hierarchy, respectivelyeHgan example of a trace for topology with 3 level hierachy:

392

-n 3 -p 0 -0 Oxffffffff -c 31 -a 1
-h 1 -m 1023 -s 22
-h 2 -m 2047 -s 11
-h 3 -m 2047 -s O

*
*
*
*

>>>>r

Look at tcl/netModel.tcl under the nam_addressing prooeéhr more information.

Color Table Entry A table of color entries can be built using:
Cc -t <time> -i <color id> -n <color name>
Nam allows one to associate color names with integers. $hisry useful in coloring packets. The flow id of a packet
is used to color the packet using the corresponding colde ttiry color. Notice the color name should be one of the
names listed in color database in X11 (/usr/X11/lib/rgf).tx

In addition to the above node and link layout events are alsluded in the initialization section.

45.1.2 Nodes

The nam trace format defining node state is:

n -t <time> -a <src-addr> -s <src-id> -S <state> -v <shape> -c <color> -i <l-color> -0
<color>

"n" denotes the node state.

Flags "-t" indicates time and "-a" and "-s" denotes the nattbess and id.

"-S" gives the node state transition. The possible statssiian values are:

e UP, DOWN indicates node recovery and failure.

e COLOR indicates node color change. If COLOR is given, a feifg -c <color> is expected which gives the new
color value. Also, flago is expected so that backtracing can restore the old colonofia.

e DLABEL indicates addition of label to node. If DLABEL is gine a following -l <old-label> -L <new-label> is
expected that gives the old-label, if any (for backtracimgg) current label. Shape gives the node shape. The color of a
node label can be specified via the flag.

"-v" is the shape of the node. The possible values are:

e circle
e box

e hexagon

As an example, the line
n-t x-a4-s4-S UP -v circle -c tan -i tan
defines a node with address and id of 4 that has the shape @fe, @ind color of tan and label-color (-i) of tan.

45.1.3 Links

The nam trace for link states is given by:

| -t <time> -s <src> -d <dst> -S <state> -c <color> -0 orientat ion -r <bw> -D <delay>
where<state> and<color> indicate the same attributes (and the same format) as dedabove in the node state traces.
Flag-o gives the link orientation (angle between link and the hamjz Valid orientation values are:

393

e up
e down

e right

o left

e up-right

e down-right
o up-left

o down-left

e angle between 0 and 2pi
Flags-r and-D give the bandwidth (in Mb) and delay (in ms), respectively.@&le of a link trace is:

|l -t * -s0-d1-S UP -r 1500000 -D 0.01 -c black -o right

45.1.4 Queues

The nam trace queue states is given by:

q -t <time> -s <src> -d <dst> -a <attr>

Queues are visualized in nam as a straight line along whickgta (small squares) are packed. In queue trace evenfiaghe
-a specifies the orientation of the line of the queue (angle betvthe queue line and the horizontal line, counter-closkyvi
For example, the following line specifies a queue that grogrtically upwards with respect to the screen (h@® means
the angle of the queue line is pi/2):

qg-t »-s0-d1-a05

45.1.5 Packets

When a trace line describes a packet, the event type may begti€ae), - (dequeue), r (receive), d (drop), or h (hop).

<type> -t <time> -e <extent> -s <source id> -d <destination i d> -c <conv> -i <id>

<type> is one of:

h Hop: The packet started to be transmitted on the link fromuse® id> to <destination id> and is forwarded to the next
hop.

r Receive: The packet finished transmission and started tedséved at the destination.

d Drop: The packet was dropped from the queue or link from <seid> to <destination id>. Drop here doesn’t distinguish
between dropping from queue or link. This is decided by tlepdime.

+ Enter queue: The packet entered the queue from <source iddetstination id>.

394

- Leave queue: The packet left the queue from <source id> tetidion id>.
The other flags have the following meaning:

-t <time> is the time the event occurred.
-s <source id> is the originating node.
-d <destination id> is the destination node.

-p <pkt-type> is the descriptive name of the type of packet seen. See s&§ib for the different types of packets supported
inns

-e <extent> is the size (in bytes) of the packet.

-c <conv> is the conversation id or flow-id of that session.

-i <id> is the packet id in the conversation.

-a <attr> is the packet attribute, which is currently used as color id.

-X <src-na.pa> <dst-sa.na> <seq> <flags> <snameés taken from ns-traces and it gives the source and destimatide and
port addresses, sequence number, flags (if any) and the typessage. For examplex {0.1 -2147483648.0
-1 - SRM_SESS} denotes an SRM message being sent from node 0 (port 1).

Additional flags may be added for some protocols.

-P <packet type> gives an ASCII string specifying a comma separated list ckpatypes. Some values are:

TCP A tcp data packet.

ACK Generic acknowledgement.

NACK Generic negative acknowledgement.
SRM SRM data packet.

-n <sequence number>gives the packet sequence number.

45.1.6 Node Marking

Node marks are colored concentric circles, boxes, or hexagmund nodes. They are created by:

m -t <time> -n <mark name> -s <node> -c <color> -h <shape> -0 <c olor>

and can be deleted by:

m -t <time> -n <mark name> -s <node> -X

Note that once created, a node mark cannot change its shhpgoEsible choices for shapes are, circle, box, and hexagon
They are defined as lowercase strings exactly as above. Anaamghowing a node mark is:

m -t 4 -s 0 -nml -c blue -h circle

indicating node 0 is marked with a blue circle at time 4.0. fihene of the mark is m1.

395

45.1.7 Agent Tracing

Agent trace events are used to visualize protocol statey @lealways associated with nodes. An agent event has a name,
which is auniqueidentifier of the agent. An agent is shown as a square witheitseninside, and a line link the square to its
associated node

Agent events are constructed using the following format:

a -t <time> -n <agent name> -s <src>

Because ims agents may be detached from nodes, an agent may be deletaioh iwith:

a -t <time> -n <agent name> -s <src> -X

For example, the following nam trace line creates an agemedarm(5) associated with node 5 at time 0:

a -t 0.00000000000000000 -s 5 -n srm(5)

45.1.8 Variable Tracing

To visualize state variables associated with a protocohtagee use feature trace events. Currently we allow a fedture
display a simple variable, i.e., a variable with a singlarealNotice that the value is simple treated as a string (withdite
space). Every feature is required to be associated with entaghen, it can be added or modified at any time after itstagen
is created. The trace line to create a feature is:

f -t <time> -s <src> -a <agentname> -T <type> -n <varname> -v < value> -0 <prev value>
Flag<type> is

v for a simple variable

| foralist

s for a stopped timer

u for an up-counting timer

d for a down-counting timer.

However, onlyv is implemented ims Flag-v <value> gives the new value of the variable. Variable values are Emp
ASCII strings obeying the TCL string quoting conventionsstlvalues obey the TCL list conventions. Timer values are
ASCII numeric. Flago <prev value> gives the previous value of the variable. This is used in bact animation.
Here is an example of a simple feature event:

f -t 0.00000000000000000 -s 1 -n C1_ -a srm(1l) -v 2.25000 -T v

Features may be deleted using:
f -t <time> -a <agent name> -n <var name> -0 <prev value> -X
45.1.9 Executing Tcl Procedures and External Code from witin Nam

There is a special event that can be put in a nam tracefile wdiliotvs us to run different tcl procedures. This event is
represented by event type
v -t <time> -e <nam tcl procedure call>

396

This event is very generic, in that it may execute severdédifit procedures at a given time, as long as it is in one line
(no more than 256 characters). There may be white spaces strihg which are passed as arguments to the tcl procedure.
Unlike other events, the order of flags and the tcl procedaliésimportant.

Here are some examples of this event in use:

Setting playback speed

Normally the user chooses a playback rate via the rate dhdde animation window. A trace file may set the playback rate
via theset_rate_ext command:

v -t <time> -e set _rate_ext <time> <update-peers?>

For example:
v -t 2.5 -e set _rate_ext 20ms 1

For compatibility with earlier versions of nam, tlset_rate command is also supported. Instead of specifying the step
size directly, you us&0 x log,, <time-in-seconds>For example:

v -t 2.5 -16.9897000433602 1

In order to have more readable filegt_rate_ext is preferred.

Annotation

This procedure is used for displaying text annotation atBpé&mes:

v -t <time> -e sim_annotation <time> <unique sequence id> <t ext to display>

For example:
v -t 4 -e sim_annotation 4 3 node 0 added one mark

This line calls a special tcl functiosim_annotation in nam, which inserts the given stringpde 0 added one
mark into nam’s annotation pane. Look Ahimator instproc sim_annotation in tcl/annotation.tcl for the im-
plementation details.

Node Exec Button

In nam releases, version 1.0a10 and later there is suppottdaing external userdefinable scripts or programs from by
clicking on a node button.

v -t 1.0 -e node_tclscript <node_id> <button label> <tcl scr ipt>

This line when read in a tracefile will add an extra button tdeobjects that will execute a tcl script when clicked.

For example:

397

v -t 1.0 -e node_tclscript 2 "Echo Hello" {puts [exec echo hel lo]}

The above line adds a button to node 2’s info window with theeldEcho Hello" and when this button is pressed the shell
command "echo hello" will be run and it's output will be rated to nam and then output to the terminal via the tcl procedur
puts.

The functions that implement the different nam trace fosukscribed above may be found in the following filestrace.cc,
ndtrace.h ndtcl/lib/ns-namsupp.tcl.

45.1.10 Using Streams for Realtime Applications

In addtion to reading from files nam can also read from a streach as STDIN. Here is a little tutorial on how to send a nam
trace stream to nam to make it operate with real-time datat §6me background on how nam works internally. Basictlly,
thinks it is reading from a nam tracefile. The file has a format.tEach line is a nam event. The first character on the line
defines the type of event and is followed by several flags tog@bns on that event. Each event is terminated by a newline
character. A nam tracefile has 2 sections, static configuravents and animation events. All events with -t * in them ar
configuration events and should be sent to nam in one burstslieginning with a # are comment lines. Currently comments
should only be place in the animation section of the file dfterfirst animation event.

First of all you need to pipe your data to nam’s stdin and aéd-fHlag to the nam command.

For example:
% cat wireless.nam | nam -

nam will read the information from stdin

Following is a short wireless animation example. The first pathe script has line with -t * which tells nam that these ar
initial configuration information.

V-t = -v 1.0a5 -a 0
W -t = -x 600 -y 600

The first 2 lines are used in the nam initialization. They nieeble the first 2 lines sent to nam from your program. V is the
minimum nam version needed to correctly run this script. VAngthis is script contains wireless nodes which will be imith
the canvas size of width x and height y.

n-t * -s0-x00-y 0.0 -z 20 -v circle -c black -w
n-t * -s1-x 0.0 -y 200.0 -z 20 -v box -c black -w

Next is the network layout information. The first line n cresn wireless (-w) circular (-v circle) node with id 0 (-s 0) at
position 0.0,0.0 (-x 0.0 -y 0.0). It’s size (-z) is 20 and it@lor (-c) is black. The second is a wireless square (-v baxjen
with id 1 (-s 1) at 0.0,200.0. Each node has to have a uniqueritber given by the -s flag.

* -n 1 -p 0 -0 Oxffffffff -c 31 -a 1

A -t
A -t = -h 1 -m 2147483647 -s O

398

The A event line has to do with setting up hierarchical adslresin nam. It is necessary in wireless nam because paakets a
treated as broadcast to every node.

Now we are done with the configuration part of the nam file. Negtthe animation events. In order for nam to operate in a
close to real-time mode it needs to constantly receive @sdas it is playing it will keeps reading lines from the nace
and playing them back. The sequence of events must be inalogioal order. For example the following lines change the
color of node 1 from black to green back to black and then tolotgain.

n -t 00 -s1-S COLOR -c green -0 black
n -t 0.01 -s 1 -S COLOR -c black -0 green
n -t 0.02 -s 1 -S COLOR -c black -0 black

Notice that the "-t <time>" flags are always increasing. Yaunmot issue one event at -t 0.2 and then another later on at -t
0.1. Nam has an internal counter of time and it executes am ewee it's time counter passes that event time. It will exec
events in chronological order but only if they are given tmithronological order. So the following WILL NOT work.

n -t 0.0 -s 1 -S COLOR -c black -o black
n -t 0.02 -s 1 -S COLOR -c green -0 black
n -t 0.01 -s 1 -S COLOR -c black -0 green

Since nam has its own internal representation of time whictlifferent than current real world time you have to try and
synchronize them. There is no explicit and totally accuvedg to do this but you can have a rough synchronization of time
by having you application periodically send nam events éipathing has happened. We have created a dummy or "no-op"
event (T) for this purpose.

T -t 05

As described above, you MUST feed events to nam in non-deiaigéamestamp order. Successive events at the same time
are OK. Before animating to a given time, nam needs to knowithaot all the events for that time, and so it actually has
to read an event AFTER that time. Therefore if you're drivimgm from an external process in real-time it will refuse to
animate time t until it sees an event at time t+i (for any i >T¥) make nam play out events smoothly, you may therefore need
to generate dummy events with intermediate timestamps@aam knows it can advance). Events of type "T" are dummy
events, so this stream would produce jerky animatation:

n-t10 -s 1 -S COLOR -c green -0 black
n-t20 -s1-S COLOR -c black -0 green
n -t 30 -s1-S COLOR -c black -o black

while this would be animatated much smoother:

-t 0.0
-t 0.5
-t 1.0 -s 1 -S COLOR -c green -0 black
-t 15
2.0 -s 1 -S COLOR -c black -0 green
-t 25
-t 3.0 -s 1 -S COLOR -c black -o black
-t 3.5
-t 4.0

4454543544

399

If nam ever gets to the end of an event stream it will block dredpgrogram will appear as if it has frozen. The screen will
not be updated until it can read another event so you mustreacieed events to nam faster than or as fast as it can read
them. This technique works pretty well and allows nam to laskf it is running in real-time although in reality there ik

a slight delay which is usually acceptable.

One other thing to remember is that your application shoefdtilghese events based on it’s representation of time froemwh
the application started. Also, when sending events to naythould be unbuffered so you will want to fflush(stdoutdeaf
each event.

Another event which you can keep sending to nam would be anwibich will show a the bottom of the nam window.

v -t 0.08 -e sim_annotation 0.08 1 Time is 0.08
v -t 0.09 -e sim_annotation 0.09 2 Time is 0.09
v -t 0.10 -e sim_annotation 0.08 3 Time is 0.10

The 'v' event means that you will execute a tcl script at timeeverything after -e is the script to execute. sim_anmmat
writes a note at the bottom of the screen. The numbers aftaeithe time to write and a unique note id. Notice how |
incremented the note id with each successive note. The nimyds what is written to the screen. For example "Time i80.0
followed by "Time is 0.09", etc...

That is the basic idea behind making nam work in a real-tinshitan. Following are two examples on how to generate
wireless packet animations when using nam. To make a wirélesadcast which is shown as quickly expanding circle you
can use the following.

+ -t 016 -s 0 -d -1 -p AODV -e 100 -c 2 -a 0 -i 0 -k MAC
--t016 -s 0 -d -1 -p AODV -e 100 -c 2 -a 0 -i 0 -k MAC
h-t016 -s 0 -d -1 -p AODV -e 100 -c 2 -a 0 -i 0 -k MAC

'+’ event puts the packet onto the transmission queue '-hevemove the packet from the queue and makes it ready to
broadcast 'h’ send the packet to the next hop which actuallses the animation Here are the meanings of the flags -t time
-s transmitting node id -d destination node id (-1 indicdexsadcast to world) -e size of transmission -c ultimateidatbn

of the packet

To show a packet being send from one particular node to anoieethe following

r-t0255 -s1-d-1-p MAC -e 512 -c 0 -a 0 -i 0 -k MAC
+ -t 0255 -s1-d0-p AODV -e 512 -c 0 -a 0 -i 0 -k MAC
--t0255 -s1-d0 -p AODV -e 512 -c 0 -a 0 -i 0 -k MAC
h -t 0255 -s1-d0 -p AODV -e 512 -c 0 -a 0 -i 0 -k MAC
r -t 0255 -s0-d1-pAODV -e 512 -c 0 -a 0 -i 0 -k MAC

First the packet is received ('r’) from the wireless broastda node 1. It is then added to the outgoing queue ('+’) orerfhd
Next, it is removed from the queue(’-’) and ready to be sentdde 0. Then the packet is sent to the next hop ('h’) node 0.
This will trigger an animation of a line the length of the patkize moving from node 1 to node 0. Finally it is receivet ('r
by node 0 from node 1.

For more nam events you can look at the nam section in the ngahan

Also, you can save a copy of the trace from a realtime souricg tise unix 'tee’ command. For example:

400

% cat wireless.nam | tee saved_tracefile.nam | nam -

Sometimes it is a bug in nam and sometimes it is a problem Wwétway your tracefile is formatted. You may expect nam to
do something that it won’t do. Part of the philosophy in theige of nam is that the detail of an animation is handled by the
tracefile which makes nam more flexible but pushes some ofrtimeadion complexity on to the programmer generating the
tracefile.

45.1.11 Nam Trace File Format Lookup Table

This is a listing of all possible nam trace event codes andalgs associated with them. It was taken from the source gode i
the file parser.cc. You can generate your own table by runmamy -p .

#: comment - this line is ignored

T: Dummy eventto be used in time synchronization

-t <time> time
n node

-t <time> time

-S <int> node id

-v <shape> shape (circle, box, hexagon)

-C <color> color

-z <double> size of node

-a <int> address

-X <double> x location

-y <double> y location

-i <color> label color

-b <string> label

-l <string> label

-0 <color> previous color

-S <string> state (UP, DOWN, COLOR)
-L <string> previous label

-p <string> label location

-P <string> previous label location

-i <color> inside label color

-1 <color> previous inside label color

-e <color> label color
-E <color> previous label color
-u <string> x velocity

-U <string> x velocity

-V <string> vy velocity

-T <double> node stop time
-w <flag> wireless node

401

<time>
<int>
<int>
<double>
<double>
<double>
<orientation>
<string>
<color>
<color>
<string>
<string I>
<string>
<color>
<color>

enqueue packet

time

source id
destination id
transmission rate
delay

length

orientation

label

color

previous color
state (UP, DOWN)
label

previous label
label color
previous label color

-t <time> time

-S <int> source id

-d <int> destination id
-e <int> extent

-a <int> packet color attribute id
-i <int> id

-l <int> energy

-C <string> conversation
-X <comment> comment

-p <string> packet type
-k <string> packet type
dequeue packet

-t <time> time

-S <int> source id

-d <int> destination id
-e <int> extent

-a <int> attribute

-i <int> id

-l <int> energy

-C <string> conversation
-X <comment> comment

-p <string> packet type
-k <string> packet type

402

-t <time>
-S <int>
-d <int>
-e <int>
-a <int>
-i <int>
-l <int>

-C <string>

-X <comment>
-p <string>

-k <string>

-R <double>
-D <double>

time

source id

destination id

extent

attribute
id
energy

conversation

comment

packet type

packet type

wireless broadcast radius
wireless broadcast duration

receive

-t <time> time

-S <int> source id

-d <int> destination id
-e <int> extent

-a <int> attribute

-i <int> id

-l <int> energy

-C <string> conversation
-X <comment> comment

-p <string> packet type

-k <string> packet type

-R <double> wireless broadcast radius
-D <double> wireless broadcast duration
drop line

-t <time> time

-S <int> source id

-d <int> destination id
-e <int> extent

-a <int> attribute

-i <int> id

-l <int> energy

-C <string> conversation
-X <comment> comment

-p <string> packet type
-k <string> packet type

403

session enqueue

-t <time> time

-s <int> source id

-d <int> destination id
-e <int> extent

-a <int> attribute

-i <int> id

-l <int> energy

-C <string> conversation
-X <comment> comment
-p <string> packet type
-k <string> packet type
session dequeue

-t <time> time

-s <int> source id

-d <int> destination id
-e <int> extent

-a <int> attribute

-i <int> id

-l <int> energy

-C <string> conversation
-X <comment> comment
-p <string> packet type
-k <string> packet type
session drop

-t <time> time

-S <int> source id

-d <int> destination id
-e <int> extent

-a <int> attribute

-i <int> id

-l <int> energy

-C <string> conversation
-X <comment> comment

-p <string> packet type

-k <string> packet type
agent

-t <time> time

-S <int> source id

-d <int> destination id

-X <flag> remove agent

-n <string> agent name

404

feature

-t <time> time

-S <int> source id

-d <int> destination id

-X <flag> remove feature

-T <char> type

-n <string> name

-a <string> agent

-V <string> value

-0 <string> previous value
group

-t <time> time

-n <string> name

-i <int> node id

-a <int> group id

-X <flag> remove from group
lan link

-t <time> time

-S <int> source id

-d <int> destination id
-0 <orientation> orientation
-0 <orientation> orientation
mark node

-t <time> time

-n <string> name

-S <int> node id

-C <string> color

-h <string> shape (circle, square, hexagon)
-X <flag> remove mark

routing event

-t <time> time

-S <int> source id

-d <int> destination id

-9 <int> multicast group

-p <packet source> packet source id or *
-n <flag> negative cache

-X <flag> this route timed out
-T <double> timeout

-m <string> mode (iif or oif)

405

execute tcl expression
-t <time> time
-e <tcl expression> tcl script

set trace file version

-t <time> time
-V <string> time
-a <int> time

use nam graph

wireless range

-t <time> time
-X <int> X
-y <int> Y

energy status — for future use
-t <time> time

hierarchical address space configuration — initilizatamly

-t <time> time

-n <int> hierarchy

-p <int> port shift

-0 <hex> port mask

-C <int> mulitcast shift
-a <int> multicast mask
-h <int> hierarchy

-m <int> node shift

-s <int> node mask
color table configuration — initialization only

-t <time> time

-i <int> id

-n <string> color

create packet queue — initialization only

-t <time> time

-S <int> source id

-d <int> destination id

-a <orientation> orientaion

406

X: layoutlan

-t <time> time

-n <string> name

-r <double> rate

-D <double> delay

-0 <orientation> orientation
-0 <orientation> orientation

45.2 Ns commands for creating and controlling nam animatios

This section describes different APIsnghat may be used to manipulate nam animations for obje@slikdes, links, queues
and agents. The implementation of most of these APIs is gwdan ngtcl/lib/ns-namsupp.tcl. Demonstration of nam APIs
may be found imdtcl/ex/nam-example.tcl.

45.2.1 Node

Nodes are created from the "n” trace event in trace file. Eamderrepresents a host or a router. Nam terminates if there
are duplicate definitions of the same node. Attributes digetti node are color, shape, label, label-color, positiotabgl

and adding/deleting mark on the node. Each node can havegp@shaircle (default), square, or hexagon. But once created
the shape of a node cannot be changed during the simulatiifferddt node may have different colors, and its color may
be changed during animation. The following OTcl procedaresused to set node attributes, they are methods of the class
Node:

$node color [color] # sets color of node
$node shape [shape] # sets shape of node
$node label [label] # sets label on node

$node label-color [Icolor] ;# sets color of label

$node label-at [Idirection] ;# sets position of label

$node add-mark [name] [color] [shape] # adds a mark to node
$node delete-mark [name] # deletes mark from node

45.2.2 Link/Queue

Links are created between nodes to form a network topologglinks are internally simplex, but it is invisible to the user
The trace event "I” creates two simplex links and other neagssetups, hence it looks to users identical to a dupléx lin
Link may have many colors and it can change its color duririghation. Queues are constructed in nam between two nodes.
Unlike link, nam queue is associated to a simplex link. Tlaedrevent “q” only creates a queue for a simplex link. In nam,
queues are visualized as stacked packets. Packets aredstdokg a line, and the angle between the line and the haailzon
line can be specified in the trace event “g”. Commands to sdiftgrent animation attributes of a link are as follows:

$ns duplex-link-op <attribute> <value>
The <attribute> may be one of the following: orient, colouegePos, label. Orient or the link orientation defines trgdean
between the link and horizontal. The optional orientatiatues may be difined in degrees or by text like right (0), Figpt

(45), right-down (-45), left (180), left-up (135), left-dm (-135), up (90), down (-90). The queuePos or position @&uguis
defined as the angle of the queue line with horizontal. Examfadr each attribute are given as following :

407

$ns duplex-link-op orient right ;# orientation is set as rig ht. The order
in which links are created in nam
;# depends on calling order of this function.
$ns duplex-link-op color "green"
$ns duplex-link-op gqueuePos 0.5
$ns duplex-link-op label "A"

45.2.3 Agent and Features

Agents are used to separate protocol states from nodes.araaways associated with nodes. An agent has a name, which
is a unique identifier of the agent. It is shown as a square igthame inside, and a line link the square to its associated
node. The following are commands that support agent tracing

$ns add-agent-trace <agent> <name> <optional:tracefile>
$ns delete-agent-trace <agent>
$ns monitor-agent-trace <agent>

Once the above command is used to create an agent in nanmthratacevar method of thensagent can be used to create
feature traces of a given variable in the agent. For exantipéefollowing code segment creates traces of the vari@hlein
an SRM agen$srm(0) :

$ns attach-agent $n($i) $srm(0)

$ns add-agent-trace $srm($i) srm(0)

$ns monitor-agent-trace $srm(0) ;# turn nam monitor on from the start
$srm(0) tracevar C1_

45.2.4 Some Generic Commands

$ns color <color-id> defines color index for nam. Once specifiedor-id can be used in place of the color
name in nam traces.

$ns trace-annotate <annotation> inserts an annotation in nam. Notice thatdnnotation> contains white
spaces, it must be quoted using the double quote. An exarfiplis aould bebns at $time "$ns trace-annotate
"Event A happened™ This annotation appears in the nam window and is used to@gifrying of nam by events.

$ns set-animation-rate <timestep> causes nam to set the animation playout rate to the giverstapevalue.
Time is in seconds, with optional prefixes (for example, 1 §e&ond, or 2ms is 0.002 seconds).

408

Part X

Other

409

Chapter 46

Educational use of NS and NAM

This chapter is about usingsand nam for educational purposess a discrete event simulator and supports various flavors
of TCP, many different models of unicast and multicast mgitalongwith different multicast protocols. It supportsioie
networking including local and satellite networks. It alsapports applications like web caching. Andises nam, an
animation tool, developed in Tcl/Tk, to visualize the siatidn packet traces which is created by runnivsgcripts. Thus
nsand nam could be used together to easily demonstrate diffastworking issues in a classroom environment. In this
chapter we’'ll talk mostly about an educational scriptsatatse that we have developed. We'll also talk about how toase

to run namtrace files.

46.1 Using NS for educational purposes

We have developed a web-based interface specifically to ttathe above mentioned educational need of usisg the
classrooms. This web-interface is serviced by a database sdripts that could be used for classroom demonstratimiea
other educational purposes. It can be foundtgi://www.isi.edu/nsnam/script_in¥his page also serves as an interface for
uploading or submitting similar scripts to the inventorg. &en though we currently have only a few scripts in the itwgn

to start with, we hope that the inventory will eventually grim size with script contributions from all of you. In the foling
paragraphs we shall talk more about this educational stiiplex webpage.

46.1.1 Installing/building/running ns

In order to run the educational scripts mentioned in theipres/section, you would need to have a running versiarsofyour
machine. The homepage fiosis located ahttp://www.isi.edu/nsnam/nSee ns-build page http://www.isi.edu/nsnam/ns/ns-
build.htmlfor downloading and buildingisn your machine. If you want to know about usingo write/run scripts, visit
ngutorial for beginners abttp://www.isi.edu/nsnam/ns/tutorial/index.html

46.1.2 The educational scripts’ inventory page:

The educational script inventory page is locatedtlp://www.isi.edu/nsnam/script_inMt may be used either to search,
browse and download one or more simulation scripts (an@lated files like the namtrace, screenshot, webpage dexgrib
whatever is being demonstrated through the simulatiomhfiiee inventory or to submit simulation scripts to the invewgt
We discuss both the options in the following paragraphs:

410

SEARCH/VIEW/DOWNLOAD NS SCRIPTS: You could search the database using keywords by going toSearth
database” page. You could also browse through the entiedbodaé by going to the “View database” page. The search
function is very basic at the present and we hope to extersithedatabase begins to grow in size. Each script entry
in the database has the following information:

Name of the script

Name of the author, author’s email-id and webpage(if provickd)
Description of what the simulation does.

nsversion required to run the script

Any other comments about script and

The category of the script Currently we have categories of Application, Transport PTé@hd others), Routing (unicast
and multicast), Multicast protocols, Queue managemenglés and Others (to include any other category).

Other related files At the right hand down corner of each entry there might bedittka NamTracefile, a screenshot
and a webpage for the simulation script, if these files/imfation have been submitted by the author along with
the script.

In order to download any script or any of the related files,@inteft-click on the filename and a download dialog box
will appear where you can provide the path to download thedile

SUBMIT NS SCRIPTS TO INVENTORY: Incase you have simulation scripts suitable for classroemahstrations, you
could submit them to the inventory. You haveASLEAST submit the following in order to successfully upload your
script:

Name of author

Author’s E-mailid

Name of script (and path to the location of your script) to conribute
Brief description of script

Version of NS script uses

Category for the script

You mayOPTIONALLY provide the following along with the above required fields:

Author’s WebPage

Namtrace file (namdump for your script simulation)
Screenshot (an image of your nam screen)

Webpage (pointer to webpage you may have for the script)
Other comments, if any

Important: We suggest that you provide the namtracefile alongwith yoripssince many users might want to use the
namtrace only, for visualization, and download script omhyen they want to make any changes to the simulation.

46.2 Using NAM for educational purposes

Inorder to visualize an ns simulation, you need to have th&INdol installed. You could either simply download the nam
binary for your platform or download the nam distributiondaouild in your machine. The link for getting nam binaries as
well as nam source isttp://www.isi.edu/nsnam/nawhich also happens to be the nam homepage.

Steps to use nam in powerpoidtfter opening powerpoint, go to “Slide Show” (visible on ttog menu) and click on “action
buttons”. Select the type of button you prefer. This wouleate a button for your slide. Clicking on your button will pop
up an “Action Setting” window. Inside the window, there islage called “Run Program” where you can define your nam
program to run.

411

Bibliography

[1] C. Alaettinddlu, A.U. Shankar, K. Dussa-Zeiger, and |. Matta. Designiamglementation of MaRS: A routing testbed.
Internetworking: Research and Experienbel7-41, 1994.

[2] Sandeep Bajaj, Lee Breslau, Deborah Estrin, Kevin F2ally Floyd, Padma Haldar, Mark Handley, Ahmed Helmy,
John Heidemann, Polly Huang, Satish Kumar, Steven McCd&tem Rejaie, Puneet Sharma, Kannan Varadhan, Ya Xu,
Haobo Yu, and Daniel Zappala. Improving simulation for netiaresearch. Technical Report 99-702b, University of
Southern California, March 1999. (revised September 1999)

[3] Paul Barford and Mark Crovella. Generating represavdatieb workloads for network and server peformance evalua-
tion. In Proceedings of the ACM SIGMETRIG#ges 151-160, June 1998.

[4] L.S. Brakmo, S. O’'Malley, and L.L. Peterson. TCP vegaswNechniques for congestion detection and avoidance. In
Proceedings of the ACM SIGCOMdages 24—35, October 1994.

[5] L.S. Brakmo, S. O’'Malley, and L.L. Peterson. TCP vegagwNechniques for congestion detection and avoidance.
Technical Report TR 94 04, Department of Computer Scienlkee University of Arizona, Tucson, AZ 85721, February
1994.

[6] R. Brown. Calendar queues: A fast O(1) priority queue liempentation for the simulation event set proble@ommu-
nications of the ACM31(10):1220-1227, October 1988.

[7] Pei Cao and Chengjie Liu. Maintaining strong cache cstesicy in the World-Wide Web. IRroceedings of the IEEE
ICDCS pages 12-21, May 1997.

[8] N. Christin, J. Liebeherr, and T. Abdelzaher. A quania assured forwarding service. Proceedings of IEEE
INFOCOM 2002 volume 2, pages 864—873, New York, NY, June 2002.

[9] S. Deering, D. Estrin, D. Farinacci, V. Jacobson, Chidgng Liu, and L. Wei. An architecture for wise-area multicas
routing. Technical Report USC-SC-94-565, Computer Saebepartment, University of Southern California, Los
Angeles, CA 90089., 1994.

[10] Anja Feldmann, Anna C. Gilbert, Polly Huang, and Walitinger. Dynamics of IP traffic: A study of the role of
variability and the impact of control. pages 301-313, Cadga, MA, USA, August 1999.

[11] S. Floyd, V. Jacobson, C. Liu, S. McCanne, and L. Zhangelfable multicast framework for light-weight sessionslan
application level framing. IfProceedings of the ACM SIGCOMIdages 342—-356, August 1995.

[12] H. T. Friis. A note on a simple transmission formuRroc. IRE 34, 1946.

[13] H. W. Hethcote. The mathematics of infectious diseaS&&M Review42(4):599-653, October 2000.
[14] A. Heybey.Netsim Manual MIT, 1989.

[15] R. Jain.The Art of Computer Systems Performance Analylsibn Wiley and Sons, Inc., 1996.

[16] Pierre LEcuyer. Good parameters and implementationgombined multiple recursive random number generators.
Operations Researcid 7(1):159-164, 1999.

412

[17] Pierre L'Ecuyer. Software for uniform random numbengeation: Distinguishing the good and the badPceedings
of the 2001 Winter Simulation Conferenpages 95-105, December 2001.

[18] Pierre L'Ecuyer, Richard Simard, E. Jack Chen, and W/i@&elton. An object-oriented random number package with
many long streams and substreai®perations Researci2001.

[19] A. Legout and E.W. Biersack. PLM: Fast convergence famalative layered multicast transmission schemes. In
Proceedings of the ACM SIGMETRICEnta Clara, CA, U.S.A., June 2000.

[20] J. Liebeherr and N. Christin. JoBS: Joint buffer mamagat and scheduling for differentiated servicesPtoceedings
of IWQoS 200pages 404-418, Karlsruhe, Germany, June 2001.

[21] J. Liebeherr and N. Christin. Rate allocation and buffeanagement for differentiated serviceSomputer Networks
40(1):89-110, September 2002.

[22] M. Mathis and J. Mahdavi. Forward acknowledgement: itej TCP congestion control. IRroceedings of the ACM
SIGCOMM August 1996.

[23] M. Mathis, J. Mahdavi, S. Floyd, and A. Roman@\CP Selective Acknowledgement OptjdREC 2018 edition, 1996.
[24] S. McCanne and S. Floyd. ns—Network Simulatatp://www-mash.cs.berkeley.edu/ns/

[25] S. McCanne and V. Jacobson. The bsd packet filter: A newitacture for user-level packet capture. pages 259-269,
January 1993.

[26] John Ousterhout. Scripting: Higher-level programgfior the 21st centurdkEEE Computer31(3):23-30, March 1998.

[27] S.K. Park and R.W. Miller., Random number generationo@Gones are hard to findCommunications of the ACM
31(10):1192-1201, October 1988.

[28] Peter Pieda, Jeremy Ethridge, Mandeep Baines, andafa&hallwani. A Network Simulator, Differentiated Services
ImplementationOpen IP, Nortel Networks, 2000.

[29] T. S. RappaportWireless communications, principles and practiBeentice Hall, 1996.
[30] D. Waitzman, C. Partridge, and S.E. Deerilistance Vector Multicast Routing Proto¢c®FC 1075 edition, 1988.

413

