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(HTTP) [3], as it is currently used in the Web, incurs manyAbstract
more round trips than necessary (see section 2).

Several researchers have proposed modifying HTTP toThe success of the World-Wide Web is largely due to
eliminate unnecessary network round-trips [21, 27]. Somethe simplicity, hence ease of implementation, of the Hy-
people have questioned the impact of these proposals onpertext Transfer Protocol (HTTP). HTTP, however,
network, server, and client performance.  This paper reportsmakes inefficient use of network and server resources,
on simulation experiments, driven by traces collected fromand adds unnecessary latencies, by creating a new TCP
an extremely busy Web server, that support the proposedconnection for each request.  Modifications to HTTP
HTTP modifications. According to these simulations, thehave been proposed that would transport multiple re-
modifications will improve user’s perceived performance,quests over each TCP connection.  These modifications
network loading, and server resource utilization.have led to debate over their actual impact on users, on

The paper begins with an overview of HTTP (section 2)servers, and on the network.  This paper reports the
and an analysis of its flaws (section 3).  Section 4 describesresults of log-driven simulations of several variants of
the proposed HTTP modifications, and section 5 describesthe proposed modifications, which demonstrate the
some of the potential design issues of the modifiedvalue of persistent connections.
protocol. Section 7 describes the design of the simulation

1. Introduction experiments, and section 8 describes the results.
People use the World Wide Web because it gives quick

2. Overview of the HTTP protocoland easy access to a tremendous variety of information in
The HTTP protocol [1, 3] is layered over a reliableremote locations. Users do not like to wait for their results;

bidirectional byte stream, normally TCP [23]. Each HTTPthey tend to avoid or complain about Web pages that take a
interaction consists of a request sent from the client to thelong time to retrieve.  Users care about Web latency.
server, followed by a response sent from the server to thePerceived latency comes from several sources. Web ser-
client. Request and response parameters are expressed in avers can take a long time to process a request, especially if
simple ASCII format (although HTTP may convey non-they are overloaded or have slow disks. Web clients can
ASCII data).add delay if they do not quickly parse the retrieved data and

An HTTP request includes several elements: a methoddisplay it for the user.  Latency caused by client or server
such as GET, PUT, POST, etc.; a Uniform Resourceslowness can in principle be solved simply by buying a
Locator (URL); a set of Hypertext Request (HTRQ)faster computer, or faster disks, or more memory.
headers, with which the client specifies things such as theThe main contributor to Web latency, however, is net-
kinds of documents it is willing to accept, authenticationwork communication.  The Web is useful precisely because
information, etc; and an optional Data field, used with cer-it provides remote access, and transmission of data across a
tain methods (such as PUT).distance takes time.  Some of this delay depends on

The server parses the request, and takes action accordingbandwidth; you can reduce this delay by buying a higher-
to the specified method. It then sends a response to thebandwidth link.  But much of the latency seen by Web
client, including (1) a status code to indicate if the requestusers comes from propagation delay, and you cannot im-
succeeded, or if not, why not; (2) a set of object headers,prove propagation delay (past a certain point) no matter
meta-information about the ‘‘object’’ returned by the serv-how much money you have.  While caching can help, many
er; and (3) a Data field, containing the file requested, or theWeb access are ‘‘compulsory misses.’’
output generated by a server-side script.If we cannot increase the speed of light, we should at

URLs may refer to numerous document types, but theleast minimize the number of network round-trips required
primary format is the Hypertext Markup Languagefor an interaction. The Hypertext Transfer Protocol
(HTML) [2]. HTML supports the use of hyperlinks (links
to other documents).  HTML also supports the use of in-
lined images, URLs referring to digitized images (usually
in the Graphics Interchange Format (GIF) [7] or JPEG for-
mat), which should be displayed along with the text of the
HTML file by the user’s browser.  For example, if an
HTML page includes a corporate logo and a photograph of



the company’s president, this would be encoded as two The mandatory round trips are:
1. The client opens the TCP connection, resulting ininlined images. The browser would therefore make three

an exchange of SYN packets as part of TCP’s three-HTTP requests to retrieve the HTML page and the two
way handshake procedure.images.

2. The client transmits an HTTP request to the server;
3. Analysis of HTTP’s inefficiencies the server may have to read from its disk to fulfill

the request, and then transmits the response to theI now analyze the way that the interaction between
client. In this example, we assume that the responseHTTP clients and servers appears on the network, with em-
is small enough to fit into a single data packet, al-phasis on how this affects latency.
though in practice it might not.  The server thenFigure 3-1 depicts the exchanges at the beginning of a
closes the TCP connection, although usually thetypical interaction, the retrieval of an HTML document
client need not wait for the connection terminationwith at least one uncached inlined image.  In this figure, before continuing.

time runs down the page, and long diagonal arrows show
3. After parsing the returned HTML document to ex-packets sent from client to server or vice versa.  These

tract the URLs for inlined images, the client opens aarrows are marked with TCP packet types; note that most new TCP connection to the server, resulting in
of the packets carry acknowledgements, but the packets another exchange of SYN packets.
marked ACK carry only an acknowledgement and no new

4. The client again transmits an HTTP request, thisdata. FIN and SYN packets in this example never carry time for the first inlined image.  The server obtains
data, although in principle they sometimes could. the image file, and starts transmitting it to the client.

Therefore, the earliest time at which the client could start
displaying the first inlined image would be four network
round-trip times after the user requested the document.
Each additional inlined image requires at least two further
round trips.  In practice, for documents larger than can fit
into a small number of packets, additional delays will be
encountered.
3.1. Other inefficiencies

In addition to requiring at least two network round trips
per document or inlined image, the HTTP protocol as cur-
rently used has other inefficiencies.

Because the client sets up a new TCP connection for
each HTTP request, there are costs in addition to network
latencies:

• Connection setup requires a certain amount of
processing overhead at both the server and the client.
This typically includes allocating new port numbers
and resources, and creating the appropriate data
structures. Connection teardown also requires some
processing time, although perhaps not as much.

• The TCP connections may be active for only a few
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seconds, but the TCP specification requires that the
host that closes the connection remember certain per-Figure 3-1: Packet exchanges and round-trip times
connection information for four minutes [23] (Manyfor HTTP implementations violate this specification and use a
much shorter timer.)  A busy server could end upShorter, vertical arrows show local delays at either client
with its tables full of connections in thisor server; the causes of these delays are given in italics.
‘‘TIME_WAIT’’ state, either leaving no room forOther client actions are shown in roman type, to the left of new connections, or perhaps imposing excessive con-

the Client timeline. nection table management costs.
Also to the left of the Client timeline, horizontal dotted Current HTTP practice also means that most of these

lines show the ‘‘mandatory’’ round trip times (RTTs) TCP connections carry only a few thousand bytes of data.  I
through the network, imposed by the combination of the looked at retrieval size distributions for two different ser-
HTTP and TCP protocols.  These mandatory round-trips vers. In one, the mean size of 200,000 retrievals was
result from the dependencies between various packet ex- 12,925 bytes, with a median of 1,770 bytes (ignoring
changes, marked with solid arrows.  The packets shown 12,727 zero-length retrievals, the mean was 13,767 bytes
with gray arrows are required by the TCP protocol, but do and the median was 1,946 bytes).  In the other, the mean of
not directly affect latency because the receiver is not re- 1,491,876 retrievals was 2,394 bytes and the median 958
quired to wait for them before proceeding with other ac- bytes (ignoring 83,406 zero-length retrievals, the mean was
tivity. 2,535 bytes, the median 1,025 bytes).  In the first sample,

45% of the retrievals were for GIF files; the second sample
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included more than 70% GIF files.  The increasing use of fore the data, or transmitting a special delimiter after the
JPEG images will tend to reduce image sizes. data.

TCP does not fully utilize the available network While a client is actively using a server, normally neither
bandwidth for the first few round-trips of a connection. end would close the TCP connection.  Idle TCP connec-
This is because modern TCP implementations use a tech- tions, however, consume end-host resources, and so either
nique called slow-start [13] to avoid network congestion. end may choose to close the connection at any point. One
The slow-start approach requires the TCP sender to open its would expect a client to close a connection only when it
‘‘congestion window’’ gradually, doubling the number of shifts its attention to a new server, although it might main-
packets each round-trip time.  TCP does not reach full tain connections to a few servers.  A client might also be
throughput until the effective window size is at least the ‘‘helpful’’ and close its connections after a long idle
product of the round-trip delay and the available network period. A client would not close a TCP connection while
bandwidth. This means that slow-start restricts TCP an HTTP request is in progress, unless the user gets bored
throughput, which is good for congestion avoidance but with a slow server.
bad for short-connection completion latency. A long- A server, however, cannot easily control the number of
distance TCP connection may have to transfer tens of clients that may want to use it. Therefore, servers may
thousands of bytes before achieving full bandwidth. have to close idle TCP connections to maintain sufficient

resources for processing new requests. For example, a
4. Proposed HTTP modifications server may run out of TCP connection descriptors, or may

The simplest change proposed for the HTTP protocol is run out of processes or threads for managing individual
to use one TCP connection for multiple requests.  These connections. When this happens, a server would close one
requests could be for both inlined images and independent or more idle TCP connections.  One might expect a ‘‘least-
Web pages.  A client would open an HTTP connection to a recently used’’ (LRU) policy to work well.  A server might
server, and then send requests along this connection when- also close connections that have been idle for more than a
ever it wishes.  The server would send responses in the given ‘‘idle timeout,’’ in order to maintain a pool of avail-
opposite direction. able resources.

This ‘‘persistent-connection’’ HTTP (P-HTTP) avoids A server would not close a connection in the middle of
most of the unnecessary round trips in the current HTTP processing an HTTP request.  However, a request may have
protocol. For example, once a client has retrieved an been transmitted by the client but not yet received when the
HTML file, it may generate requests for all the inlined server decides to close the connection.  Or, the server may
images and send them along the already-open TCP connec- decide that the client has failed, and time out a connection
tion, without waiting for a new connection establishment with a request in progress.  In any event, clients must be
handshake, and without first waiting for the responses to prepared for TCP connections to disappear at arbitrary
any of the individual requests.  We call this ‘‘pipelining.’’ times, and must be able to re-establish the connection and
Figure 4-1 shows the timeline for a simple, non-pipelined retry the HTTP request. A prematurely closed connection
example. should not be treated as an error; an error would only be

signalled if the attempt to re-establish the connection fails.
4.1. Protocol negotiation

Since millions of HTTP clients and tens of thousands of
HTTP servers are already in use, it would not be feasible to
insist on a globally instantaneous transition from the cur-
rent HTTP protocol to P-HTTP.  Neither would it be prac-
tical to run the two protocols in parallel, since this would
limit the range of information available to the two com-
munities. We would like P-HTTP servers to be usable by
current-HTTP clients.

We would also like current-HTTP servers to be usable
by P-HTTP clients.  One could define the modified HTTP
so that when a P-HTTP client contacts a server, it first
attempts to use P-HTTP protocol; if that fails, it then falls
back on the current HTTP protocol.  This adds an extra
network round-trip, and seems wasteful.
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P-HTTP clients instead can use an existing HTTP design
Figure 4-1: Packet exchanges and round-trip times feature that requires a server to ignore HTRQ fields it does

for a P-HTTP interaction not understand.  A client would send its first HTTP request
using one of these fields to indicate that it speaks the P-HTTP allows the server to mark the end of a response in
HTTP protocol. A current-HTTP server would simply ig-one of several ways, including simply closing the connec-
nore this field and close the TCP connection after respond-tion. In P-HTTP, the server would use one of the other
ing. A P-HTTP server would instead leave the connectionmechanisms, either sending a ‘‘Content-length’’ header be-
open, and indicate in its reply headers that it speaks the
modified protocol.



4.2. Implementation status and may also be used to provide centralized caching for a
community of users [6, 11, 22].We have already published a study of an experimental

Section 4.1 described a technique that allows P-HTTPimplementation of the P-HTTP protocol [21]. In that
systems to interoperate with HTTP systems, without addingpaper, we showed that P-HTTP required only minor
extra round-trips.  What happens to this scheme if both themodifications to existing client and server software and that
client and server implement P-HTTP, but a proxy betweenthe negotiation mechanism worked effectively. The
them implements HTTP [28]? The server believes that themodified protocol yielded significantly lower retrieval
client wants it to hold the TCP connection open, but thelatencies than HTTP, over both WAN and LAN networks.
proxy expects the server to terminate the reply by closingSince this implementation has not yet been widely adopted,
the connection.  Because the negotiation between client andhowever, we were unable to determine how its large-scale
server is done using HTRQ fields that existing proxies mustuse would affect server and network loading.
ignore, the proxy cannot know what is going on.  The

5. Design issues proxy will wait ‘‘forever’’ (probably many minutes) and
A number of concerns have been raised regarding P- the user will not be happy.

HTTP. Some relate to the feasibility of the proposal; others P-HTTP servers could solve this problem by using an
simply reflect the need to choose parameters appropriately. ‘‘adaptive timeout’’ scheme, in which the server observes
Many of these issues were raised in electronic mail by client behavior to discover which clients are safely able to
members of the IETF working group on HTTP; these mes- use P-HTTP.  The server would keep a list of client IP
sages are available in an archive [12]. addresses; each entry would also contain an ‘‘idle timeout’’

The first two issues discussed in this section relate to the value, initially set to a small value (such as one second). If
correctness of the modified protocol; the rest address its a client requests the use of P-HTTP, the server would hold
performance. the connection open, but only for the duration of the per-

client idle timeout. If a client ever transmits a second re-5.1. Effects on reliability
quest on the same TCP connection, the server would in-Several reviewers have mistakenly suggested that allow-
crease the associated idle timeout from the default value toing the server to close TCP connections at will could im-
a maximum value.pair reliability.  The proposed protocol does not allow the

Thus, a P-HTTP client reaching the server through anserver to close connections arbitrarily; a connection may
HTTP-only proxy would encounter 1-second additionalonly be closed after the server has finished responding to

1delays , and would never see a reply to a second requestone request and before it has begun to act on a subsequent
transmitted on a given TCP connection.  The client couldrequest. Because the act of closing a TCP connection is
use this lack of a second reply to realize that an HTTP-onlyserialized with the transmission of any data by server, the
proxy is in use, and subsequently the client would not at-client is guaranteed to receive any response sent before the
tempt to negotiate use of P-HTTP with this server.server closes the connection.

A P-HTTP client, whether it reaches the server through aA race may occur between the client’s transmission of a
P-HTTP proxy or not, might see the TCP connection closednew request, and the server’s termination of the TCP con-
‘‘too soon,’’ but if it ever makes multiple requests in a briefnection. In this case, the client will see the connection
interval, the server’s timeout would increase and the clientclosed without receiving a response.  Therefore, the client
would gain the full benefit of P-HTTP.will be fully aware that the transmitted request was not

The simulation results in section 8 suggest that this ap-received, and can simply re-open the connection and
proach should yield most of the benefit of P-HTTP. It mayretransmit the request.
fail in actual use, however; for example, some HTTP-onlySimilarly, since the server will not have acted on the
proxies may forward multiple requests received on a singlerequest, this protocol is safe to use even with non-
connection, without being able to return multiple replies.idempotent operations, such as the use of ‘‘forms’’ to order
This would trick the server into holding the connectionproducts.
open, but would prevent the client from receiving all theRegardless of the protocol used, a server crash during the
replies.execution of a non-idempotent operation could potentially

cause an inconsistency.  The cure for this is not to compli- 5.3. Connection lifetimes
cate the network protocol, but rather to insist that the server One obvious question is whether the servers would have
commit such operations to stable storage before respond- too many open connections in the persistent-connection
ing. The NFS specification [26] imposes the same require- model. The glib answer is ‘‘no, because a server could
ment.
5.2. Interactions with current proxy servers

Many users reach the Web via ‘‘proxy’’ servers (or
‘‘relays’’). A proxy server accepts HTTP requests for any 1If the proxy forwards response data as soon as it is ‘‘pushed’’
URL, parses the URL to determine the actual server for that by the server, then the user would not actually perceive any extra
URL, makes an HTTP request to that server, obtains the delay. This is because P-HTTP servers always indicate the end of
reply, and returns the reply to the original client.  This a response using content-length or a delimiter, so the P-HTTP

client will detect the end of the response even if the proxy doestechnique is used to transit ‘‘firewall’’ security barriers,
not.



close an idle connection at any time’’ and so would not quests per active connection, the PCB table would contain
necessarily have more connections open than in the current only 2400 TIME_WAIT entries.
model. This answer evades the somewhat harder question PCB tables may be organized in a number of different
of whether a connection would live long enough to carry ways [16]. Depending on the data structures chosen, the
significantly more than one HTTP request, or whether the huge number of TIME_WAIT entries may or may not af-
servers would be closing connections almost as fast as they fect the cost of looking up a PCB-table entry, which must
do now. be done once for each received TCP packet.  Many existing

Intuition suggests that locality of reference will make systems derived from 4.2BSD use a linear-list PCB
this work.  That is, clients tend to send a number of re- table [15], and so could perform quite badly under a heavy
quests to a server in relatively quick succession, and as connection rate.  In any case, PCB entries consume storage.
long as the total number of clients simultaneously using a The simulation results in section 8 show that persistent-
server is ‘‘small,’’ the connections should be useful for connection HTTP significantly reduces the number of PCB
multiple HTTP requests.  The simulations (see section 8) table entries required.
support this. 5.5. Server congestion control
5.4. Server resource utilization An HTTP client has little information about how busy

HTTP servers consume several kinds of resources, in- any given server might be.  This means that an overloaded
cluding CPU time, active connections (and associated HTTP server can be bombarded with requests that it cannot
threads or processes), and protocol control block (PCB) immediately handle, leading to even greater overload and
table space (for both open and TIME_WAIT connections). congestive collapse. (A similar problem afflicts naive im-
How would the persistent-connection model affect resource plementations of NFS [14].) The server could cause the
utilization? clients to slow down, somewhat, by accepting their TCP

If an average TCP connection carries more than one suc- connections but not immediately processing the associated
cessful HTTP transaction, one would expect this to reduce requests. This might require the server to maintain a very
server CPU time requirements.  The time spent actually large number of TCP connections in the ESTABLISHED
processing requests would probably not change, but the state (especially if clients attempt to use several TCP con-
time spent opening and closing connections, and launching nections at once; see section 6).
new threads or processes, would be reduced.  For example, Once a P-HTTP client has established a TCP connection,
some HTTP servers create a new process for each connec- however, the server can automatically benefit from TCP’s
tion. Measurements suggest that the cost of process crea- flow-control mechanisms, which prevent the client from
tion accounts for a significant fraction of the total CPU sending requests faster than the server can process them.
time, and so persistent connections should avoid much of So while P-HTTP cannot limit the rate at which new clients
this cost. attack an overloaded server, it does limit the rate at which

Because we expect a P-HTTP server to close idle con- any given client can make requests.  The simulation results
nections as needed, a busy server (one on which idle con- presented in section 8, which imply that even very busy
nections never last long enough to be closed by the idle HTTP servers see only a small number of distinct clients
timeout mechanism) will use up as many connections as the during any brief interval, suggest that controlling the per-
configuration allows.  Therefore, the maximum number of client arrival rate should largely solve the server congestion
open connections (and threads or processes) is a parameter problem.
to be set, rather than a statistic to be measured. 5.6. Network resources

The choice of the idle timeout parameter (that is, how HTTP interactions consume network resources. Most
long an idle TCP connection should be allowed to exist) obviously, HTTP consumes bandwidth, but IP also imposes
does not affect server performance under heavy load from per-packet costs on the network, and may include per-
many clients.  It can affect server resource usage if the connection costs (e.g., for firewall decision-making).  How
number of active clients is smaller than the maximum- would a shift to P-HTTP change consumption patterns?
connection parameter.  This may be important if the server The expected reduction in the number of TCP connec-
has other functions besides HTTP service, or if the memory tions established would certainly reduce the number of
used for connections and processes could be applied to bet- ‘‘overhead’’ packets, and would presumably reduce the to-
ter uses, such as file caching. tal number of packets transmitted.  The reduction in header

The number of PCB table entries required is the sum of traffic may also reduce the bandwidth load on low-
two components: a value roughly proportional to the num- bandwidth links, but would probably be insignificant for
ber of open connections (states including ESTABLISHED, high-bandwidth links.
CLOSING, etc.), and a value proportional to the number of The shift to longer-lived TCP connections should im-
connections closed in the past four minutes (TIME_WAIT prove the congestion behavior of the network, by giving the
connections). For example, on a server that handles 100 TCP end-points better information about the state of the
connections per second, each with a duration of one network. TCP senders will spend proportionately less time
second, the PCB table will contain a few hundred entries in the ‘‘slow-start’’ regime [13], and more time in the
related to open connections, and 24,000 TIME_WAIT ‘‘congestion avoidance’’ regime. The latter is generally
entries. However, if this same server followed the less likely to cause network congestion.
persistent-connection model, with a mean of ten HTTP re-



At the same time, a shift to longer TCP connections P-HTTP eliminates the cost of slow-start after the first re-
(hence larger congestion windows) and more rapid server quest in a series, NetScape must pay this cost for every
responses will increase short-term bandwidth requirements, HTML file, and for every group of parallel image
compared to current HTTP usage.  In the current HTTP, retrievals.
requests are spaced several round-trip times apart; in P- The multi-connection approach sometimes allows
HTTP, many requests and replies could be streamed at full NetScape to render the text surrounding at least the first N
network bandwidth.  This may affect the behavior of the images (where N is the number of parallel connections)
network. before much of the image data arrives. Some image for-

mats include bounding-box information at the head of the5.7. User’s perceived performance
file; NetScape can use this to render the text long before theThe ultimate measure of the success of a modified HTTP
entire images are available, thus improving UPP.is its effect on the user’s perceived performance (UPP).

This is not the only way to discover image sizes early inBroadly, this can be expressed as the time required to
the retrieval process.  For example, P-HTTP could includeretrieve and display a series of Web pages.  This differs
a new method allowing the client to request a set of imagefrom simple retrieval latency, since it includes the cost of
bounding boxes before requesting the images.  Or, therendering text and images.  A design that minimizes mean
HTML format could be modified to include optionalretrieval latency may not necessarily yield the best UPP.
image-size information (as has been proposed for HTMLFor example, if a document contains both text and
version 3.0 [24]). Either alternative could provide theseveral inlined images, it may be possible to render the text
bounding-box information even sooner than the multi-before fully retrieving all of the images, if the user agent
connection approach.  All such proposals have advantagescan discover the image ‘‘bounding boxes’’ early enough.
and disadvantages, and are the subject of continuing debateDoing so may allow the user to start reading the text before
in the IETF working group on HTTP.the complete images arrive (especially if some of the

Several people have suggested using Transaction TCPimages are initially off-screen).  Thus, the order in which
(T/TCP) [4, 5] to eliminate the delay associated with TCP’sthe client receives information from the server can affect
three-way handshake. T/TCP also reduces the number ofUPP.
TIME_WAIT entries by shortening the duration of theHuman factors researchers have shown that users of in-
TIME_WAIT state.  Therefore, T/TCP solves some of theteractive systems prefer response times below two to four
same problems solved by P-HTTP.  The use of T/TCP withseconds [25]; delays of this magnitude cause their attention
unmodified HTTP (that is, one HTTP request per T/TCPto wander.  Two seconds represents just 28 cross-U.S.
connection) does not reduce the number of times that theround-trips, at the best-case RTT of about 70 msec.
client and server must modify their connection databases,Users may also be quite sensitive to high variance in
nor does it support pipelining.  Most important, T/TCP isUPP. Generally, users desire predictable performance [17].
still an ‘‘experimental’’ protocol and will not be widelyThat is, a user may prefer a system with a moderately high
implemented for many years.  P-HTTP could be deployedmean retrieval time and low variance, to one with lower
immediately, using the existing enormous installed base ofmean retrieval time but a much higher variance.  Since
TCP implementations. If T/TCP becomes widelycongestion or packet loss can increase the effective RTT to
deployed, it should be possible to layer P-HTTP overhundreds or thousands of milliseconds, this leaves HTTP
T/TCP instead of TCP, but this change probably will notvery few round-trips to spare.
yield significant benefits.

6. Competing and complementary approaches Since P-HTTP does not change the basic nature of
HTTP’s mechanisms for communicating request andPersistent-connection HTTP is not the only possible
response information, it should be fully compatible withsolution to the latency problem.  The NetScape browser
most of the proposed extensions to HTTP.  For example,takes a different approach, using the existing HTTP
the Secure HyperText Transfer Protocol (SHTTP) [10]protocol but often opening multiple connections in parallel.
should work just as well with persistent connections, al-For example, if an HTML file includes ten inlined images,
though we have not tested this.NetScape opens an HTTP connection to retrieve the HTML

file, then might open ten more connections in parallel, to 7. Simulation experiment designretrieve the ten image files.  By parallelizing the TCP con-
In order to answer some of the open questions about thenection overheads, this approach eliminates a lot of the

performance of P-HTTP, I decided to simulate the behaviorunnecessary latency, without requiring implementation of a
of a P-HTTP server using input streams taken from the logsnew protocol.
of actual HTTP servers.  This allowed me to explore theThe multi-connection approach has several drawbacks.
effect of various parameter combinations and policies.  TheFirst, it seems to increase the chances for network conges-
use of actual event streams, rather than a synthetic load,tion; apparently for this reason, NetScape limits the number
should produce realistic results.of parallel connections (a user-specifiable limit, defaulting

The specific open questions addressed by these simula-to four).  Several parallel TCP connections are more likely
tions include:to self-congest than one connection.

• Do clients display sufficient locality of reference toSecond, the NetScape approach does not allow the TCP
allow each connection to carry several HTTP re-end-points to learn the state of the network.  That is, while quests (see section 5.3)?



7.1.1. Limitations of the traces used• Does P-HTTP reduce server resource utilization (see
section 5.4)? Traces taken from just two HTTP servers clearly do not

necessarily capture the full range of possible behavior. It• Does the adaptive timeout mechanism, proposed in
may be that other servers see much less (or much more)section 5.2 to deal with unmodified proxy servers,

destroy the utility of the proposal? locality of reference, or that as the client population scales
The simulations were also designed to investigate how the up, the ‘‘working set’’ of simultaneously active clients seen
values of several parameters, including table sizes and by a server could increase beyond the number of available
timeout durations, would affect performance. connections. Because, however, the Election service was

The systems from which the logs were taken use the designed to attract many clients during a brief period, its
NCSA httpd server, version 1.3, with minor modifications traces may come closer to representing the busy servers of
to improve performance.  Since this program generates a the future than would traces from most other contemporary
log without connection durations or fine-grained time- servers.
stamps, I modified the server to generate an additional log Lightly-used servers should see much higher locality of
file with the information necessary to drive the simulations. reference, since they will tend to have far few simul-
The new log includes a connection completion timestamp taneously active clients.  Note also that the corporate server
and the connection duration of each request.  All timing was lightly used during many periods; as figure 7-3 shows,
information was done with a resolution of about 1 msec. a substantial number of its request arrivals were separated

by more than 10 seconds (10,000 msec).7.1. Trace data sets
These simulations do not directly address the completeI used logs from two different servers to drive the

behavior of individual clients, since the traces were made atsimulations. One data set came from the 1994 California
the servers.  One would have to gather client-side tracesElection service, and includes over 1.6 million HTTP re-
from a large set of clients in order to prove that the typicalquests in a ten-day period; the busiest 24-hour period in-
client focusses its attention on a small set of servers forcludes almost 1 million requests.  The other data set came
periods of several seconds or longer.  However, fromfrom a large corporation’s public Web site, and includes
simple observations of how people actually use the Web,3.4 million HTTP requests over approximately 82 days.
one could quite reasonably infer this to be the case.The election service was actually implemented as a set

Nor do these simulations directly address how differentof three individual servers that shared a single alias in the
client caching strategies would affect the results.  Since thehost name space.  Clients tended to load-share among the
traces were generated by real clients, most of whichthree servers.  The corporate server is a single computer.
presumably were using caches, these simulations do reflectAlthough both data sets come from relatively busy ser-
the use of normal client-side caching techniques.vers, they differ in several ways.  The election service was
7.2. Simulator overviewused quite intensively over just a few days.  The corporate

web site encountered far lower peak loads.  The election The simulator, a simple program consisting of about
service saw 24,000 distinct client addresses; the corporate 1400 lines of C code, models the relevant behavior of a
server saw 134,000 clients. P-HTTP server, tracking several kinds of server state.  It

Some of these client addresses represent intermediate maintains a count of the number of open connections, and
proxies, and so aggregate requests from many different simulates the server’s PCB table, so that it can keep track
users. This should not affect the simulation, since one of the number of TIME_WAIT entries.  It can also main-
would see this aggregation with either HTTP or P-HTTP. tain an ‘‘adaptive timeout’’ database of any given size.

Since the two services provide different kinds of infor- Note that the simulator does not simulate the network or
mation, they saw somewhat different access patterns. the clients, nor does it simulate the HTTP or TCP
Figure 7-1 shows the cumulative distribution of retrieval protocols. It simulates only the connection (‘‘session-
sizes (the number of bytes returned by the server for each layer’’) behavior of the server. Client and network be-
request). The election service returned many files shorter havior is provided by the traces of HTTP accesses, and so
than 100 bytes, while the corporate server provided mostly any effect that the modified protocol might have on client
files longer than 1000 bytes. or network behavior is not modelled.  Also, since the

The majority of retrievals from both servers took less simulator sees requests arrive at the same spacing as in the
than 1 second (see figure 7-2).  However, the corporate original HTTP-based trace, these simulations do not ac-
server saw a somewhat larger fraction that took between 1 count for the ‘‘pipelining’’ made possible by P-HTTP; they
and 10 seconds.  The retrievals with very short durations underestimate the potential locality of reference.
were made by nearby clients or proxies. The simulator starts by parsing the log files.  Each log

Figure 7-3 shows the distribution of request interarrival file record is turned into a pair of event records, one for the
times for both servers.  The spike in the distributions near connection-open event and one for the connection-close
10 msec probably reflects the CPU-time cost to dispatch a event. An event record contains a timestamp, an IP ad-
new process for each request; the distributions for each dress, a unique connection ID-number, and flag indicating
individual server in the election service (not shown) con- ‘‘open’’ or ‘‘close.’’ The connection-open timestamp is
tain almost no interarrival times shorter than this peak. derived from the connection-close timestamp and connec-

tion duration, both found in the log file.  After the file is
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Figure 7-1: Cumulative distribution of retrieval sizes
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Figure 7-2: Cumulative distribution of connection durations
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Figure 7-3: HTTP request interarrival times, as seen by server

parsed, the simulator sorts the event records into timestamp If there is no currently-open connection, the simulated
order. server then checks to see if it has any free connection slots

The simulator then goes through the event records, in (the maximum number of simultaneous connections is a
time-sequence order.  If it is simulating an HTTP server parameter of the simulation).  If so, it simply creates a new
(that is, one request per connection), it simply processes the ESTABLISHED record in the PCB table.  Otherwise, it
connection-open and connection-close events verbatim, must make room by closing an idle connection. (The simu-
maintaining the PCB table and removing TIME_WAIT lated server closes the least-recently used connection; this
entries as they reach the 2*MSL age. replacement policy has obvious attractions, but I have not

If the program is simulating a P-HTTP server, it must do investigated other possible policies.)  If no idle connection
more work. For a connection-open event, it checks to see if is available, the new connection is rejected.
a connection to the specified IP address is already open; if During a simulation of a P-HTTP server, a connection-
so, it simply updates its statistics counters.  (Since the serv- close event causes the connection to be marked as idle, but
er logs cannot record the identity of the actual client leaves it in the ESTABLISHED TCP state.
process, I assume that each client host has only one process After each event record is processed, the simulator looks
making HTTP requests. This assumption is safe for single- for connections that have been idle longer than the
user and proxy clients, but is excessively liberal for busy specified idle-timeout parameter; these are moved into the
timesharing clients.  However, I know of no way to correct TIME_WAIT state.  The simulator also looks for connec-
for this effect.) tions that have been in the TIME_WAIT state for the full



2*MSL waiting period, and removes them entirely from the cases, the simulation overestimates the actual number of
PCB table. TIME_WAIT entries slightly (20% or less).  This may be

If the simulation includes the adaptive timeout due to measurement bias on the actual system, since CPU
mechanism (see section 5.2), the simulator maintains a contention may have delayed the logging of the PCB table
table listing the N most recently active clients (N is another contents during periods of heavy load.
parameter). The table entries include the idle-timeout The simulator appears to underestimate the number of
values for each host.  When a client is first seen, it is ESTABLISHED (i.e, open) connections by a much wider
entered into this table with a minimal timeout value.  If a margin. Some of the ESTABLISHED TCP connections
subsequent request arrives from the client before the con- counted in the actual measurements were not HTTP server
nection times out, the simulator increases the client’s idle- connections (for the period shown in figure 7-4, there were
timeout to the maximum value. about 5 non-HTTP connections counted in each sample),

but this cannot account for the factor of two or three dis-7.3. Summary of simulation parameters
crepancy at some points.  In fact, many connections per-The simulator allows specification of these parameters:
sisted in the ESTABLISHED state longer than the server• P-HTTP mode: controls whether the simulated serv-
logs indicate.  The server writes its log record before clos-er uses the HTTP or P-HTTP protocol.
ing the connection, so the logged connection durations• Maximum number of open connections
failed to include the final network round-trip. This dis-

• Idle-timeout: in adaptive-timeout mode, this is max- crepancy does bias the simulation results, but there is no
imum idle timeout. reliable way to repair the logs retroactively.

• 2*MSL timeout: allows simulation of non-standard Figure 7-5 shows how varying the 2*MSL timeout value
timeouts for the TIME_WAIT state. affects the simulated number of TIME_WAIT entries.

• Adaptive-timeout table size: the number of entries
8. Simulation resultsin the recently-active client list, or zero to disable the

adaptive-timeout mechanism. The first simulations compare the behavior of HTTP and
several configurations of P-HTTP, varying the maximum• Initial idle-timeout: in adaptive-timeout mode, the

idle timeout used for clients not known to be using number of connections and the idle-timeout parameter.
P-HTTP. This set of simulations did not include adaptive idle

The simulator reports a set of statistics for each trial, timeouts. For all of the simulations in this section, the
including the total number of HTTP requests seen, the 2*MSL timeout is set to 240 seconds (the value specified in
number of requests refused because too many were already the standard [23]).
open, the total number of TCP connections created, and the The simulations show that for HTTP, the maximum
maximum number of simultaneously open connections. number of simultaneously open TCP connections was
The simulator also reports the maximum number of rather small: 42 connections for the election service, and 30
TIME_WAIT entries in the PCB table, and the maximum connections for the corporate server.  This means that a
number of PCB table entries (including both TIME_WAIT P-HTTP server allowing at least this many simultaneous
and OPEN, but not any other TCP states). connections would never have to refuse a request.

For P-HTTP simulations, the statistics also include the What refusal rates would result if the open-connection
number times a request arrived for a TCP connection that limit were smaller?  Figure 8-1 shows the number of con-
was already open, the number of times a connection was nections refused as a function of the idle-timeout parameter
closed to make room for a new one, and the number of and the maximum-connection limit (C ), for both datamax
connections closed because of idle-timeouts. sets. (Since ‘‘idle timeout’’ is meaningless for HTTP, the

HTTP points are arbitrarily plotted at a ‘‘timeout’’ of 0.57.4. Validation
seconds. Also note that for all of the figures in this section,Does the simulation accurately model reality?  I could
the largest idle timeout simulated was effectively infinite,verify the simulation of the original HTTP protocol against
but is plotted at an x-axis coordinate of 2000 seconds.)measurements made on the election servers, since those
With a maximum of 32 connections, P-HTTP refuses sig-servers logged the contents of their PCB tables every 15
nificantly fewer requests than HTTP. Presumably this isminutes. (I do not have similar logs for the corporate serv-
because many requests that arrive during a period when aller.)
connections are in use come from a host that already ownsFigure 7-4 shows how the simulated and actual values
a connection.  With a maximum of 10 connections,compare, over a busy two-day period for the election ser-
however, P-HTTP refuses significantly more requests thanvice. The curves show instantaneous values sampled every
HTTP. Clearly the refused requests are not coming fromfifteen minutes (of either real or simulated time); I did not
hosts that already own one of the 10 open connections, buttry to compute the mean (or maximum) value over each
it is not clear why this makes things so much worse.  Atsample interval.
any rate, these results suggest that one needs to support atThis simulation set the 2*MSL timeout (for the
least 32 simultaneous connections, for workloads resem-TIME_WAIT state) to 60 seconds, the value used in the
bling the ones studied.operating system actually running the election service.  The

How often does the P-HTTP protocol pay off, in termssimulated number of TIME_WAIT entries in the PCB table
of reduced latency as seen by the user?  One measure ofagrees quite closely with the measured value.  In most
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Figure 8-1: Requests refused due to too many simultaneous connections

this is the number of times a request arrives for an already- tions. Increasing C seems to increase the hit rate, al-max
open connection.  Figures 8-2 and 8-3 show the number of though with diminishing returns once C reaches 3 or 4max
‘‘open-connection hits’’ as a function of the idle-timeout times the minimum required to avoid refusing requests.
parameter, for various limits on C . In each graph, the Note that while P-HTTP could achieve a nearly optimal hitmax
dotted line shows the theoretical best case; this is slightly rate for the election service, the corporate server would not
less than the total number of requests made, because the quite reach this limit, probably because of the much longer
first request from a client can never be a hit (and there may duration of the traces.
be other such ‘‘compulsory misses’’). The best-case hit Figure 8-4 shows the total number of TCP connections
rate for the election service is almost 99%; the best-case hit that would be opened using P-HTTP, as a function of the
rate for the corporate server is about 95%. Even with an idle-timeout and C parameters. (The results for the cor-max
idle timeout of just 2 minutes, the election service would porate server, not shown, are quite similar.)  This is just the
have achieved a 95% hit rate; the corporate server would complement of the number of open-connection hits, except
have achieved 88%. when C is low enough to cause some request refusalsmaxThese graphs suggest that most of the benefit comes with (dotted lines).  For this data set, HTTP opened 1.6 million
an idle timeout of about 60 seconds.  Longer timeouts yield TCP connections.
only a negligible increase in the number of hits, except if A P-HTTP server closes an idle TCP connection for two
the server can support very large numbers of active connec- reasons: either it needs to make room for a request from a
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Figure 8-3: Number of requests arriving for already-open connections (Corporate server)
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Figure 8-4: Number of TCP connections opened (Election service)

different client (a ‘‘forced’’ close), or the connection has In section 5.4, I argued that P-HTTP should dramatically
been idle for longer than the idle-timeout parameter allows. reduce the number of PCB table entries in the
Figures 8-5 and 8-6 show the number of forced closes for TIME_WAIT state.  Even if the number of PCB table
various parameter values; the number of connections closed entries for open connections increased somewhat (because
by idle timeouts is the complement of this number. the server is holding connections open longer), the total

Figure 8-5 implies that the election service would often number of PCB table entries should decrease.
have run into the C limit and be forced to close an idle The simulator counts the number of ESTABLISHEDmax

and TIME_WAIT entries.  (The simulator reports theconnection, unless C were quite large. The curves inmax
peaks, rather than means, of these counts, because the sys-this figure show almost no dependence on the idle-timeout
tem must reserve enough memory to satisfy the peak.parameter for values above 30 seconds or so; that is, unless
Also, the peak size determines the CPU-time cost of PCBC is quite large, few connections would live longmax lookups during periods of heavy load, precisely when thisenough to time out.  Conversely, the corporate server
cost is most problematic.)  An HTTP server, which closeswould have run out of connections much less frequently;
connections quite rapidly, also ends up with many entriesthe curves in figure 8-6 do show a dependence on the idle-
in a variety of short-duration states (primarilytimeout parameter, indicating that many connections could
CLOSE_WAIT and FIN_WAIT), but the simulator did notpersist for hundreds or even thousands of seconds.
model this.  A P-HTTP server with a reasonably good
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Figure 8-5: Number of forced closes of TCP connections (Election service)
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Figure 8-6: Number of forced closes of TCP connections (Corporate server)

open-connection hit rate, and thus a relatively low rate of demand for PCB table entries results in a moderate increase
connection closes, should tie up relatively few PCB table in the memory resource requirements, and potentially a
entries in these short-duration states. large increase in the CPU overhead for managing this table.

Figures 8-7 and 8-8 show the peak number of 8.1. Adaptive timeouts
TIME_WAIT entries for various combinations of How well would P-HTTP perform if servers had to use
parameters. P-HTTP always does significantly better than the adaptive timeout scheme (described in section 5.2) in
HTTP. This holds true even if one looks at the total num- order to deal with HTTP proxies?  That is, what would
ber of PCB table entries (modelled as the sum of the happen to the open-connection hit rate?  A reduction in this
TIME_WAIT entries plus C ).max rate would reduce the benefit of P-HTTP.

Generally, the number of TIME_WAIT entries does not I simulated an adaptive-timeout policy while varying
appear to depend on the idle-timeout parameter, for values several parameters, including the initial timeout and the
above a threshold that varies somewhat with C . This is size of the per-client timeout table. For these simulations, Imax
because most connections are closed before the idle held the maximum number of connections constant (C =max
timeout goes off, and so most of the TIME_WAIT entries 512), in order to avoid confusion.
are generated by forced closes. Figures 8-9 and 8-10 show the results for the number of

However, for large values of C (somewhere around open-connection hits.  Figure 8-10 also shows the resultsmax
500 connections), increasing the idle-timeout parameter ac- for a P-HTTP server without adaptive timeouts (gray
tually increases the number of TIME_WAIT entries. curve); figure 8-9 does not show this curve, which would
Figures 8-5 and 8-6 show that this part of the parameter overlap almost exactly with the curve for the adaptive
space is where forced closes are most likely to occur, be- timeout case with a table size of 10,000 entries, and an
cause the server does not have a big enough pool of free initial timeout of 10 seconds.
connections to draw on.  If connection requests from new With the initial timeout set to 1 second, and even with
hosts, and hence forced closes, occur in bursts, then this the largest simulated table size, the adaptive timeout
would cause a peak in the number of TIME_WAIT entries. scheme fails to capture between 15% (election service) and
Connections closed due to an idle timeout, on the other 24% (corporate server) of the open-connection hits avail-
hand, may be more spread out in time, and so their able to the non-adaptive scheme.  (Note that the vertical
TIME_WAIT entries are less likely to coexist in the PCB scales in figures 8-9 and 8-10 do not start at zero.) So the
table. adaptive timeout scheme does reduce the potential perfor-

This effect suggests that increasing the idle timeout with- mance of P-HTTP, although it would still eliminate 84% of
out bound, while it might improve the open-connection hit the election service’s TCP connections, and 73% of the
rate slightly, would not be a good idea. Increasing the corporate server’s connections.
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8.2. Network loading based on HTTP traces, but we can make some crude in-
ferences from the simulation results.  Under the assumptionHow might P-HTTP affect the load on the network it-
that the number and size of data packets would not changeself? It is hard to predict P-HTTP packet arrival patterns



(although batching of requests and responses could result in and some semantic information (such as which retrievals
some packet-count reduction), the primary statistical effect are for inlined images), it should be possible to simulate the
would be a reduction in the number of TCP ‘‘overhead’’ actual response times seen by the users.
packets sent. Each TCP connection typically involves The simulations done for this paper assumed that a serv-
seven such packets (for SYNs, FINs, and associated ACKs; er would use LRU algorithms for managing two resources:
see figure 3-1). the pool of TCP idle connections, and the table of recently-

On its busiest calendar day, the election service handled active clients (for the adaptive-timeout scheme).  What
737,184 HTTP requests, sending and receiving a total of would happen if the server closed the ‘‘least active’’ idle
12.7 million packets (including retransmissions and failed connection (based on a running load average), instead of
connections). Thus, the average HTTP request involved the least-recently-used connection?  Should the server try
17.25 packets.  If the server had used P-HTTP with C = to keep client hosts that ‘‘hit’’ (i.e., that are obviously usingmax

P-HTTP) in the adaptive-timeout table, in preference to1024 and a fixed idle timeout of 2 minutes, eliminating
more recently active hosts that are not using P-HTTP?  Andmore than 95% of the TCP connections, that would have
should the server be less eager to time out idle connectionseliminated 4.9 million overhead packets, or 38% of the
if the total number is much less than C ? Simpletotal packet load. max

Use of P-HTTP should also improve the dynamics of the modifications to the existing simulator could help answer
Internet, by reducing the number of times an end-host must these and similar questions.
discover the TCP congestion-control window size.  A 95% The simulation results presented in this paper looked at
reduction in the number of TCP connections should cause a connection counts over the course of several days or
significant improvement in network dynamics ‘‘near’’ the months. How would the relative performance of P-HTTP
server: that is, in any bottleneck links common to the paths look over much shorter time scales, such as seconds or
to a large fraction of the clients.  However, since we do not minutes? The simulator could be modified to provide peri-
know how congested these links really were, it is not pos- odic statistics (as in figure 7-4), instead of simply generat-
sible to estimate how much congestion would have been ing totals.
avoided through the use of P-HTTP. Simulations can only go so far. Ultimately, we will not

know how well P-HTTP works until it is widely im-
9. Related work plemented and heavily used.  This experience should also

The argument that P-HTTP will reduce client latency lay to rest any remaining questions about reliability.
without requiring servers to maintain too many open con- A persistent-connection model for Web access poten-
nections is, at its heart, an assertion that HTTP clients show tially provides the opportunity for other improvements to
strong temporal locality of reference.  Several other studies HTTP [20]. For example, if authentication could be done
have looked at locality of reference in the context of net- per-connection rather than per-request, that should sig-
work connections.  One [18] showed that processes com- nificantly reduce the cost of robust authentication, and so
municating on a LAN showed moderately high locality of might speed its acceptance.
reference, although this study did not specifically look at

11. Summary and conclusionsprotocols with short connection durations. Several resear-
chers have looked at the feasibility or performance of inter- The simplicity of HTTP has led to its rapid and
mediary caching servers to reduce the number of high- widespread adoption, and indeed to the explosive growth in
latency network retrievals of files [8, 19], Web pages the number of Internet users.  This simplicity, however,
[6, 11, 22], and Domain Name Service data [9]. The limits the potential performance of HTTP and risks dis-
studies of Web access patterns, in particular, show sig- appointing many of these users.  HTTP misuses TCP, so
nificant locality of reference. HTTP clients suffer from many unnecessary network

round-trips. Meanwhile, HTTP servers must devote exces-
10. Future work sive resources to TCP connection overheads.

The simulations presented in this paper only begin to Persistent-connection HTTP can greatly reduce the
explore the performance implications of P-HTTP.  A more response time, server overheads, and network overheads of
advanced simulator could shed additional light.  For ex- HTTP. The simulations presented in this paper strongly
ample, use of P-HTTP should shorten the response time for support the intuition that, by exploiting temporal locality of
many requests.  This effect will change the order in which reference, P-HTTP can avoid most of the TCP connections
requests are received.  By making some reasonable as- required by HTTP.  P-HTTP should also help an over-
sumptions about the distribution of network round-trip loaded server flow-control its clients.
times, the simulator could generate a modified event trace These simulations also provide some guidance in the
reflecting these shorter times.  This new semi-synthetic choice of P-HTTP server configuration parameters.
trace could then be fed back to the simulator, producing Generally, increasing the maximum number of active con-
somewhat more realistic results. nections (C ) will increase users’ perceived performance,maxA simulation might also be able to show the effect of at the expense of somewhat increased server resource
P-HTTP on the users’ perception of performance.  That is, demands. Increasing the idle timeout improves UPP and,
how rapidly does the client host receive a response to its up to a point, also reduces server PCB table space require-
requests? Again using assumptions about network RTTs, ments.
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