
IEEE Standard 754 Floating Point Numbers
Steve Hollasch / Last update 2005-Feb-24

IEEE Standard 754 floating point is the most common representation today for real numbers
on computers, including Intel-based PC's, Macintoshes, and most Unix platforms. This article
gives a brief overview of IEEE floating point and its representation. Discussion of arithmetic
implementation may be found in the book mentioned at the bottom of this article.

What Are Floating Point Numbers?
There are several ways to represent real numbers on computers. Fixed point places a radix
point somewhere in the middle of the digits, and is equivalent to using integers that represent
portions of some unit. For example, one might represent 1/100ths of a unit; if you have four
decimal digits, you could represent 10.82, or 00.01. Another approach is to use rationals, and
represent every number as the ratio of two integers.

Floating-point representation - the most common solution - basically represents reals in
scientific notation. Scientific notation represents numbers as a base number and an exponent.
For example, 123.456 could be represented as 1.23456 × 102. In hexadecimal, the number
123.abc might be represented as 1.23abc × 162.

Floating-point solves a number of representation problems. Fixed-point has a fixed
window of representation, which limits it from representing very large or very small numbers.
Also, fixed-point is prone to a loss of precision when two large numbers are divided.

Floating-point, on the other hand, employs a sort of "sliding window" of precision
appropriate to the scale of the number. This allows it to represent numbers from
1,000,000,000,000 to 0.0000000000000001 with ease.

Storage Layout
IEEE floating point numbers have three basic components: the sign, the exponent, and the
mantissa. The mantissa is composed of the fraction and an implicit leading digit (explained
below). The exponent base (2) is implicit and need not be stored.

The following figure shows the layout for single (32-bit) and double (64-bit) precision
floating-point values. The number of bits for each field are shown (bit ranges are in square
brackets):

Sign Exponent Fraction Bias

第 1 頁，共 7 頁IEEE Standard 754 Floating-Point

2008/5/8http://steve.hollasch.net/cgindex/coding/ieeefloat.html

The Sign Bit

The sign bit is as simple as it gets. 0 denotes a positive number; 1 denotes a negative number.
Flipping the value of this bit flips the sign of the number.

The Exponent

The exponent field needs to represent both positive and negative exponents. To do this, a bias
is added to the actual exponent in order to get the stored exponent. For IEEE single-precision
floats, this value is 127. Thus, an exponent of zero means that 127 is stored in the exponent
field. A stored value of 200 indicates an exponent of (200-127), or 73. For reasons discussed
later, exponents of -127 (all 0s) and +128 (all 1s) are reserved for special numbers.

For double precision, the exponent field is 11 bits, and has a bias of 1023.

The Mantissa

The mantissa, also known as the significand, represents the precision bits of the number. It is
composed of an implicit leading bit and the fraction bits.

To find out the value of the implicit leading bit, consider that any number can be
expressed in scientific notation in many different ways. For example, the number five can be
represented as any of these:

 5.00 × 100
 0.05 × 102
 5000 × 10-3

In order to maximize the quantity of representable numbers, floating-point numbers are
typically stored in normalized form. This basically puts the radix point after the first non-zero
digit. In normalized form, five is represented as 5.0 × 100.

A nice little optimization is available to us in base two, since the only possible non-zero
digit is 1. Thus, we can just assume a leading digit of 1, and don't need to represent it
explicitly. As a result, the mantissa has effectively 24 bits of resolution, by way of 23 fraction
bits.

Putting it All Together

So, to sum up:

1. The sign bit is 0 for positive, 1 for negative.

Single Precision 1 [31] 8 [30-23] 23 [22-00] 127

Double Precision 1 [63] 11 [62-52] 52 [51-00] 1023

第 2 頁，共 7 頁IEEE Standard 754 Floating-Point

2008/5/8http://steve.hollasch.net/cgindex/coding/ieeefloat.html

YKChang
鉛筆

YKChang
鉛筆

2. The exponent's base is two.

3. The exponent field contains 127 plus the true exponent for single-precision, or 1023
plus the true exponent for double precision.

4. The first bit of the mantissa is typically assumed to be 1.f, where f is the field of
fraction bits.

Ranges of Floating-Point Numbers
Let's consider single-precision floats for a second. Note that we're taking essentially a 32-bit
number and re-jiggering the fields to cover a much broader range. Something has to give, and
it's precision. For example, regular 32-bit integers, with all precision centered around zero,
can precisely store integers with 32-bits of resolution. Single-precision floating-point, on the
other hand, is unable to match this resolution with its 24 bits. It does, however, approximate
this value by effectively truncating from the lower end. For example:

 11110000 11001100 10101010 00001111 // 32-bit integer
 = +1.1110000 11001100 10101010 x 231 // Single-Precision Float
 = 11110000 11001100 10101010 00000000 // Corresponding Value

This approximates the 32-bit value, but doesn't yield an exact representation. On the other
hand, besides the ability to represent fractional components (which integers lack completely),
the floating-point value can represent numbers around 2127, compared to 32-bit integers
maximum value around 232.

The range of positive floating point numbers can be split into normalized numbers (which
preserve the full precision of the mantissa), and denormalized numbers (discussed later)
which use only a portion of the fractions's precision.

Since the sign of floating point numbers is given by a special leading bit, the range for

negative numbers is given by the negation of the above values.
There are five distinct numerical ranges that single-precision floating-point numbers are

not able to represent:

Denormalized Normalized Approximate
Decimal

Single
Precision ± 2-149 to (1-2-23)×2-126 ± 2-126 to (2-2-23)×2127 ± ~10-44.85 to ~1038.53

Double
Precision ± 2-1074 to (1-2-52)×2-1022 ± 2-1022 to (2-2-52)×21023 ± ~10-323.3 to ~10308.3

第 3 頁，共 7 頁IEEE Standard 754 Floating-Point

2008/5/8http://steve.hollasch.net/cgindex/coding/ieeefloat.html

YKChang
鉛筆

YKChang
鉛筆

1. Negative numbers less than -(2-2-23) × 2127 (negative overflow)

2. Negative numbers greater than -2-149 (negative underflow)

3. Zero

4. Positive numbers less than 2-149 (positive underflow)

5. Positive numbers greater than (2-2-23) × 2127 (positive overflow)

Overflow means that values have grown too large for the representation, much in the same
way that you can overflow integers. Underflow is a less serious problem because is just
denotes a loss of precision, which is guaranteed to be closely approximated by zero.

Here's a table of the effective range (excluding infinite values) of IEEE floating-point
numbers:

Note that the extreme values occur (regardless of sign) when the exponent is at the
maximum value for finite numbers (2127 for single-precision, 21023 for double), and the
mantissa is filled with 1s (including the normalizing 1 bit).

Special Values
IEEE reserves exponent field values of all 0s and all 1s to denote special values in the
floating-point scheme.

Zero

As mentioned above, zero is not directly representable in the straight format, due to the
assumption of a leading 1 (we'd need to specify a true zero mantissa to yield a value of zero).
Zero is a special value denoted with an exponent field of zero and a fraction field of zero.
Note that -0 and +0 are distinct values, though they both compare as equal.

Denormalized

If the exponent is all 0s, but the fraction is non-zero (else it would be interpreted as zero), then
the value is a denormalized number, which does not have an assumed leading 1 before the
binary point. Thus, this represents a number (-1)s × 0.f × 2-126, where s is the sign bit and f is

Binary Decimal

Single ± (2-2-23) × 2127 ~ ± 1038.53

Double ± (2-2-52) × 21023 ~ ± 10308.25

第 4 頁，共 7 頁IEEE Standard 754 Floating-Point

2008/5/8http://steve.hollasch.net/cgindex/coding/ieeefloat.html

the fraction. For double precision, denormalized numbers are of the form (-1)s × 0.f × 2-1022.
From this you can interpret zero as a special type of denormalized number.

Infinity

The values +infinity and -infinity are denoted with an exponent of all 1s and a fraction of all
0s. The sign bit distinguishes between negative infinity and positive infinity. Being able to
denote infinity as a specific value is useful because it allows operations to continue past
overflow situations. Operations with infinite values are well defined in IEEE floating point.

Not A Number

The value NaN (Not a Number) is used to represent a value that does not represent a real
number. NaN's are represented by a bit pattern with an exponent of all 1s and a non-zero
fraction. There are two categories of NaN: QNaN (Quiet NaN) and SNaN (Signalling NaN).

A QNaN is a NaN with the most significant fraction bit set. QNaN's propagate freely
through most arithmetic operations. These values pop out of an operation when the result is
not mathematically defined.

An SNaN is a NaN with the most significant fraction bit clear. It is used to signal an
exception when used in operations. SNaN's can be handy to assign to uninitialized variables to
trap premature usage.

Semantically, QNaN's denote indeterminate operations, while SNaN's denote invalid
operations.

Special Operations
Operations on special numbers are well-defined by IEEE. In the simplest case, any operation
with a NaN yields a NaN result. Other operations are as follows:

Operation Result

n ÷ ±Infinity 0

±Infinity × ±Infinity ±Infinity

±nonzero ÷ 0 ±Infinity

Infinity + Infinity Infinity

±0 ÷ ±0 NaN

Infinity - Infinity NaN

±Infinity ÷ ±Infinity NaN

±Infinity × 0 NaN

第 5 頁，共 7 頁IEEE Standard 754 Floating-Point

2008/5/8http://steve.hollasch.net/cgindex/coding/ieeefloat.html

Summary
To sum up, the following are the corresponding values for a given representation:

Float Values (b = bias)

Sign Exponent (e) Fraction (f) Value

0 00..00 00..00 +0

0 00..00
00..01

:
11..11

Positive Denormalized Real
0.f × 2(-b+1)

0
00..01

:
11..10

XX..XX
Positive Normalized Real

1.f × 2(e-b)

0 11..11 00..00 +Infinity

0 11..11
00..01

:
01..11

SNaN

0 11..11
10..00

:
11..11

QNaN

1 00..00 00..00 -0

1 00..00
00..01

:
11..11

Negative Denormalized Real
-0.f × 2(-b+1)

1
00..01

:
11..10

XX..XX
Negative Normalized Real

-1.f × 2(e-b)

1 11..11 00..00 -Infinity

1 11..11
00..01

:
01..11

SNaN

1 11..11
10..00

:
11.11

QNaN

第 6 頁，共 7 頁IEEE Standard 754 Floating-Point

2008/5/8http://steve.hollasch.net/cgindex/coding/ieeefloat.html

References
A lot of this stuff was observed from small programs I wrote to go back and forth between
hex and floating point (printf-style), and to examine the results of various operations. The
bulk of this material, however, was lifted from Stallings' book.

1. Computer Organization and Architecture, William Stallings, pp. 222-234 Macmillan
Publishing Company, ISBN 0-02-415480-6

2. IEEE Computer Society (1985), IEEE Standard for Binary Floating-Point Arithmetic,
IEEE Std 754-1985.

3. Intel Architecture Software Developer's Manual, Volume 1: Basic Architecture , (a PDF
document downloaded from intel.com.)

See Also
IEEE Standards Site

Comparing floating point numbers, Bruce Dawson, http://www.cygnus-
software.com/papers/comparingfloats/comparingfloats.htm. This is an excellent article
on the traps, pitfalls and solutions for comparing floating point numbers. Hint —
epsilon comparison is usually the wrong solution.

x86 Processors and Infinity, Bruce Dawson, http://www.cygnus-
software.com/papers/x86andinfinity.html. This is another good article covering
performance issues with IEEE specials on X86 architecture.

© 2001-2005 Steve Hollasch

第 7 頁，共 7 頁IEEE Standard 754 Floating-Point

2008/5/8http://steve.hollasch.net/cgindex/coding/ieeefloat.html

