C Language Programming: Homework \#7 Assigned on 12/17/2013(Tuesday), Due on 12/31/2013(Tuesday)

This homework is the extension of homework \#4.

1. Read the original IDs in each bucket from an input file and stored them in original_bucket[m], m is the number of original buckets and
original_bucket[m] are array of the following user-defined type:
typedef struct \{
int old_index;
int size;
int *id;
\} bucket_type;
bucket_type original_bucket[m]

Direct mapping.

2. Assume the original buckets of numbers are already stored in array original_bucket $[m][n]$, where there are m buckets with maximum size $=n$. As stated in homework 4, all the original buckets must be sorted in the decreasing order of bucket sizes (by using function qsort() provided by C library) before applying new mapping algorithm to store the numbers in the original buckets into the new_buckets $[M][N]$ (declared as int new_buckets $[M][N])$ where N can be set to be equal or larger than n and M is smaller than m.
3. Modify your homework 4 so that your program can answer
A. which original bucket is stored in which sorted bucket before compression,
B. which original bucket is stored in which new bucket after compression,
C. given the new bucket i, how many original buckets are contained in new bucket i and what are the indices of these original buckets contained in new bucket i.
D. Compute the compression ratio (N) defined as ratio of the number of original IDs before and after compression, where $N \geq n$ and draw a curve for compression ratio(N) with $\mathrm{N}=n$ to $3 n$ to show how compression ratio varies.

