

Microengine Version 2 (MeV2)

Microengine C Compiler Coding Considerations

Version 0.4
June 25, 2003

Microengine C Compiler Coding Considerations

Revision History

Rev. Date Reason for Changes
0.1 03/08/2003 Initial Draft

0.2 04/30/2003 Feedback/clarifications from engineering + addition of new
material

0.3 06/06/2003 Fixing of typos and added clarifications after a formal peer review

0.4 06/25/2003 Retitled document for SDK releases.

Information in this document is provided in connection with Intel® products. No
license, express or implied, by estoppel or otherwise, to any intellectual property
rights is granted by this document. Except as provided in Intel’s Terms and
Conditions of Sale for such products, Intel assumes no liability whatsoever, and
Intel disclaims any express or implied warranty, relating to sale and/or use of
Intel products including liability or warranties relating to fitness for a particular
purpose, merchantability, or infringement of any patent, copyright or other
intellectual property right. Intel products are not intended for use in medical, life
saving, or life sustaining applications.
Intel may make changes to specifications and product descriptions at any time,
without notice.

This document and the software described in it are furnished under license and
may only be used or copied in accordance with the terms of the license. The
information in this document is furnished for informational use only, is subject to
change without notice, and should not be construed as a commitment by Intel
Corporation. Intel Corporation assumes no responsibility or liability for any errors
or inaccuracies that may appear in this document or any software that may be
provided in association with this document. Except as permitted by such license,
no part of this document may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means without the express written consent of
Intel Corporation.
Contact your local Intel sales office or your distributor to obtain the latest
specifications and before placing your product order.
Copies of documents which have an ordering number and are referenced in this
document, or other Intel literature may be obtained by calling 1-800-548-4725 or
by visiting Intel’s Web site at http://www.intel.com.
Copyright © Intel Corporation, 2003
Intel is a registered trademark and XScale is a trademark of Intel Corporation or
its subsidiaries in the United States and other countries
*Other names and brands may be claimed as the property of others.

 ii

Microengine C Compiler Coding Considerations

Abstract
Intel provides an integrated tool suite to developers to allow them to design,
develop, test and deploy applications based on the Intel network processors.
This tool suite consists primarily of a assembler/compiler toolchain for the
Microengine Version 2 (MEv2) target, a cycle-accurate simulation environment,
and a programming framework for writing portable and reusable code.
The microengine target of an Intel network processor has a non-traditional, highly
parallel architecture. It is so designed to address the unique challenges of
network processing at high speeds. The operating environment is such that
application performance is obtained by a complex balance of tradeoffs:
sequential vs. parallel processing, memory and I/O latency hiding, and
communication bus load balancing.
As such, the Microengine C compiler (also referred to as “the compiler” in this
document) has special considerations for those who would program with it versus
an ANSI C compiler designed for a general-purpose processor. This document
outlines many software architecture and code performance topics under this
heading. Some of the sections describe pitfalls - resulting in incorrect functioning
of the code - for a new Microengine C programmer, while others hold tips for
improving compiler optimization. Finally, this document includes discussion on
best known methods for Microengine C debugging, such as understanding the
live range information provided by the compiler and the run-time tools provided
by the Developer’s Workbench.

 iii

Microengine C Compiler Coding Considerations

Table of Contents
Revision History .. ii
Abstract .. iii
Table of Contents ... iv
Overview ...5

Purpose and Scope of this Document ..5
Definitions/Acronyms..6
Related Documents..6

Software Implementation Considerations..7
Variable Live Range Analysis...7

Asynchronous I/O operations ..8
Referring to a variable indirectly ..9
Memory Intrinsics with Variable ref_cnt...11
Live Range Summary..13

Data Alignment...13
Packing Structures ..14
Overriding Natural Alignment ..16

Efficient Structure Access ..17
Sizing of Structure Members ...17
The Use of Unions...19

Miscellaneous Considerations..20
Signed vs. Unsigned Integers..21

Tuning Established Code ..22
Register Spillage ..22

Handling Register Spillage ..22
Functions..23

Inlining Functions ..23
Optimizing Pointer Arguments...24

Miscellaneous Optimizations..25
Conditional Statements ...25
Compiler Defer Slot Filling...26

Debugging Techniques ...27
Compile-time Information ...27

Performance Information...27
Run-Time Debug Tools ..30

Summary...30

 iv

Microengine C Compiler Coding Considerations

Overview

Purpose and Scope of this Document
The purpose of this document is to get new Microengine C programmers writing
correct, functional and optimized code quickly. To do so, the document will cover
three main topics. First, it will highlight the potential pitfalls for ANSI C
programmers new to programming network processors. These are topics for
which unaware programmers will unwittingly prompt the compiler to generate
incorrect code in relation to their actual intent. Second, the document will
discuss tips to help the programmer elicit the best possible code from the
compiler. This class of topics will be for the programmer to keep in mind when
coding, though not implementing them will not result incorrect code, simply
suboptimial. And finally, the document will describe the compile-time and run-
time features of the network processor development tools invaluable for a
programmer to debug his or her Microengine code. These features are part of
both the compiler and the Developer’s Workbench GUI.
It should be noted that readers of this document should already have a strong
understanding of the network processor architecture as well as a basic
knowledge of Microengine C syntax. If not, please consult the latest appropriate
Hardware Reference Manuals and Programmer Reference Manuals for the
former and the Microengine C Language Support Reference Manual for the
latter.

 5

Microengine C Compiler Coding Considerations

Definitions/Acronyms

Term Definition
U32 “unsigned int”

Related Documents

Title Location

Microengine C Compiler Language Support
Reference Manual

IXA SDK 3.1

IXP2800 Hardware Reference Manual IXA SDK 3.1

IXP2400 Hardware Reference Manual IXA SDK 3.1

IXP2400/IXP2800 Programmer’s Reference
Manual

IXA SDK 3.1

 6

Microengine C Compiler Coding Considerations

Software Implementation Considerations
The Microengine C compiler provides a high-level-language programming environment
for the network processors to reduce application development time and reduce the need
for specialized knowledge. That said, there are specific considerations a Microengine C
programmer needs to be made aware of to program with confidence in terms of correct
Microengine behavior and performance. In fact, many of the issues in this section do
not exist the compiler of a general-purpose processor and therefore might not be
obvious on first look.

Variable Live Range Analysis
Register allocation and other compiler optimizations depend on having correct live
range information for register variables. A live range of a register variable is the period
between the definition of this variable and the last use of the defined value. When a
register variable has multiple definitions in the program and each definition has
sequential reads, multiple live ranges are assigned to the same variable. It follows that
multiple reads in the middle of live range are fine, but a write into the same variable in
the middle of a live range will split it.
The compiler automatically calculates the live range of a register variable through code
analysis with the fact that a live range always starts with a write into the variable and
terminates at the point where there is no subsequent read of this written value (i.e. the
last read point). A register variable has the same physical register assigned to it for the
span of one live range; however, it could have different physical registers assigned to it
across different live ranges.
(For more information on how the compiler calculates variable live ranges, please see
the Microengine C Compiler Support Reference Manual.)
There are times, however, where the compiler will not be able to calculate the live range
of a variable correctly. Specifically, the programmer will have to intervene when a
variable is implicitly read or written at a point in the code where the variable is not
referred to by name. For example, some asynchronous memory operations or event
signaling can be done in such a manner. In these cases, the compiler has no way to
figure out the true start or end of the live range through code inspection. This situation
can lead to suboptimal register allocation, or worse, incorrect code generation.
There are some major code constructs that merit the use of the __implicit_read() and
__implicit_write() intrinsic functions to help the compiler with live range analysis. These
intrinsics do not generate any new code per se, but rather, allow the programmer to
manually extend or shorten the live range of a variable by providing a clue to the
compiler as to when a register or signal is being accessed outside of the scope of a
particular thread’s code. The following sections provide several specific examples as to
when the user needs to intervene in live range analysis.

 7

Microengine C Compiler Coding Considerations

Asynchronous I/O operations
Asynchronous I/O operations are those that read or write into a variable not explicitly
under compiler control. Such situations arise mostly commonly with the use of the
“sig_done” token with memory intrinsics, but also in cases where a signal or transfer
register is defined on one Microengine but accessed from another.

Example 1:
SIGNAL sig1;

 SIGNAL_PAIR sig_pair;
 __declspec(sram_read_reg) int sr1[4];
 __declspec(sram_read_reg) int sr2[4];
 sram_read(sr1, 0, 4, sig_done, &sig1);
 dram_read_S(sr2, 0, 4, sig_done, &sig_pair);
 wait_for_all(&sig1, &sig_pair);
 sum += sr1[0] + sr2[0];

At first glance, nothing seems amiss, but in reality the compiler will determine that the
user is not using the entirety of the buffers sr1 and sr2 and truncate the live range of
individual members of an aggregate accordingly. That is, we write into these variables
with the sram and dram reads, but do not consequently read all of the array elements
(in this snippet, only sr1[0] and sr2[0] are read). So, it may attempt to conserve
registers by assigning overlapping register ranges to sr1 and sr2. For example, sram
transfer registers $0 through $3 may be assigned to sr1, and $1 through $4 may be
assigned to sr2.
This is correct if the two memory reads complete in order, since the sum operation only
uses sr1[0] and sr2[0], which are $0 and $1, respectively. But if the sram_read() and
dram_read_S() operations complete out of order, then this assignment will cause
problems. Specifically, when the dram_read_S() operation completes, the data the user
needs will be read into $1. But when the sram_read() operation completes, the contents
of $1 will be overwritten by the four-word read operation starting at $0. In short, the
compiler does not rely on characteristics of specific implementations of the network
processor, but rather makes decisions based upon the general network processor
architecture and the syntax of the C language.
The user must avoid this situation by informing the compiler that the entirety of both
transfer buffers is being used with the __implicit_read() intrinsic.

wait_for_all(&sig1, &sig_pair);
 sum += sr1[0] + sr2[0];
 __implicit_read(&sr1);
 __implicit_read(&sr2);
In this way, the compiler will extend the live range of all array elements of sr1 and sr2,
and thereby not overlap the register allocation.

 8

Microengine C Compiler Coding Considerations

Of course, if the example above only included the one asynchronous sram_read and
wait_for_all pair, there would be no problem. It is usually only in the presence of
multiple asynchronous memory operations could there be a problem. But as a general
rule of thumb, when using a read memory intrinsic with the sig_done token, a user
should place an __implicit_read after the matching wait_for_any or wait_for_all to
manually extend the live range of the memory variable to the correct point in the code.
Other asynchronous reads and writes to transfer registers or signal variables can occur
under the following situations:

• A signal or transfer register that is defined on a remote ME and used on
local ME - the definition/write is not visible from the local program

• A signal or transfer register is defined locally and used on a remote ME -
the reference/read is not visible from the local program

• Special chip hardware that is designed to “push” data into a transfer
register or send a signal, such as the receive state machine of the MSF

Most I/O instructions can overwrite the ME/CTX/XFER through the use of the
indirect_ref token, causing the signal and/or transfer register to be used in the operation
another Microengine or context – and therefore must be defined there. Additionally, the
use of the reflector hardware implicitly will read or write from the transfer register of one
thread to another. In the case of signal variables, asynchronous “reads” or “writes” can
also be the result of using local or chip-wide thread signaling mechanisms.

Note: A “write” of a signal variable is defined to be the point at which a
programmer asks for a signal to be generated from a chip resource, such as a
memory controller. A “read” of a signal variable is defined to be the point
at which a programmer waits on a signal to return (ctx_arb), or branches on a
signal (br_signal or br_!signal).

Referring to a variable indirectly
Normally, all access to a variable declared to be in a register or signal storage class in
Microengine C is done by explicitly referencing the variable name. For example, one
can declare a variable in an sram transfer register and assign it a value with the
following code:

__declspec(sram_write_reg) U32 wr_xfer0;
 wr_xfer0 = 0x1234;
But access to some types of variables can be done without referring to the variable’s
name through special hardware support. Some of the software techniques used in
conjunction with this support is used for performance reasons, while in some cases, it is
actually required to perform a certain hardware function. However, these
hardware/software constructs hold a special challenge for the compiler to correctly
determine the live range of the variables in question.
The following cases fall into this category:

 9

Microengine C Compiler Coding Considerations

• A signal or transfer register is assigned an absolute register number and
read/written without referring to the symbolic name

• A signal has the signal number exposed through signals() or
signal_number() and read/written without referring to the symbolic name -
for example, though local_csr_wr

• A xfer register has address taken and used in indexing reference through
T_INDEX

• A NN register that being referenced indirectly though NN register ring

• A transfer register is read or written or a signal is sent via the cap
calculated addressing instruction from another thread

Example 2:
__declspec(sram_write_reg) U32 wbuf[4];
__declspec(scratch) U32 sc_fun[16];
U32 ti0 = ((__ctx()<<4) | __xfer_reg_number(wbuf)) << 2;
__asm {
 local_csr_wr[T_INDEX, ti0]
 nop
 nop
 nop
 alu[*$index++, --, B, sc_fun[index]]
 alu[*$index++, --, B, sc_fun[index+1]]
 alu[*$index++, --, B, sc_fun[index+2]]
 alu[*$index++, --, B, sc_fun[index+3]]
}
sram_write(wbuf, addr, 4, ctx_swap, &sig);

In this case, the compiler would make the determination that the live range of the wbuf
array elements would start and end at the sram_write call. That is, it would only
determine that wbuf was being read – as a result of the sram_write call, but not ever
written into – as the write happens through the use of the indirect addressing
capabilities of the hardware. Consequently, the compiler would only allocate a physical
register to wbuf on the one line, missing the write into wbuf via the TINDEX CSR.
The correct course of action is to place an __implicit_write() intrinsic before the point of
writing into wbuf indirectly:

__implicit_write(wbuf);
__asm {
 local_csr_wr[TINDEX, wbuf]
 nop
 // etc..

 10

Microengine C Compiler Coding Considerations

Now the live range of wbuf will start at the __implicit_write call and correct register
allocation will take place.

Example 3:
SIGNAL sigRxEvent;
__declspec(sram_read_reg) rsw_pos_phy_t rsw[2];
int rxEventAddr = __signal_number(&sigRxEvent);
int rsw0Addr = __xfer_reg_number(&(rsw[0]));
rxFreeListReg = rsw0Addr | (thread << THREAD_BITS) | \
(this_me << ME_NUM_BITS) | (rxEventAddr << SIGNAL_NUM_BITS);
// Add the thread to the receive freelist
AddThreadToFreelist(rxFreeListReg);
// Wait for signal from MSF receive hardware
wait_for_all(&sigRxEvent);

Another alternative to using the __implicit_write() and __implicit_read() intrinsics is use
of the volatile keyword. The volatile keyword essentially extends the live range of the
variable through the entirety of the program, bypassing live range issues altogether.
However, this method is not recommended in general for variables to be allocated to
registers or local memory as these scarce resources will be eaten up very quickly this
way! That said, for variables that truly need a live range over the whole program,
declaring them to be volatile (as in the case of the rsw variable in the above example) is
the alternative to placing a pair of __implicit_write() and __implicit_read() at the
beginning and end of a program.
So in the example above, declaring the signal and transfer registers used with the
receive hardware to be volatile assures correct code behavior.

volatile SIGNAL sig_RxEvent
volatile __declspec(sram_read_reg) rsw_pos_phy_t rsw[2];

Memory Intrinsics with Variable ref_cnt
The various memory intrinsics provide unfettered access to all of the special features
provided by the memory controllers. For intrinsics that take a “count” parameter, it is
preferred that a programmer uses a constant reference count in the arguments. If not,
the compiler will generate a memory reference with an indirect_ref token, which may or
may not lead to the desired results. The problem is that the compiler does not know the
exact size of the transfer register buffer to be used in the operation and will make a
conservative guess of one without programmer intervention.

 11

Microengine C Compiler Coding Considerations

Example 4:
void main()
{

__declspec(sram_read_reg) mdata[4];
unsigned int data_cnt;
mdata[0] = 0x29;
mdata[1] = 0x39;
mdata[2] = 0x49;
mdata[3] = 0x59;
// Assume data_cnt has not been optimized to a constant
sram_write(mdata, addr, data_cnt, ctx_swap, sig_srwr);
// More code…

 }

When the compiler calculates live range for the mdata array elements, it makes the
conservative guess that only mdata[0] is being read with the sram_write intrinsic.
Unless mdata[1], mdata[2] and mdata[3] are read later by another instruction, their live
range will begin and end with their assignment, and unknown data will be written to
sram.
There are two courses of action one can take. One is to use an __implicit_read to
extend the live range of all members of the mdata array:
 sram_write(mdata, addr, data_cnt, ctx_swap, sig_srwr);
 __implicit_read(mdata);

The other option is to use the indirect reference form of the memory intrinsic:

srsw.refcount = data_cnt;
srsw_ind.ov_ref_count =1;
sram_write_ind(mdata, addr, 4, srsw_ind, ctx_swap, sig_srwr);

The third parameter is the maximum number of longwords that could be written and
must be a constant. The compiler will use that value as the potential length of data
buffer used in the operation – even if at run-time less longwords are actually written to
memory.
Finally, note that the -Qperfinfo=128 command line option will warn a user if the
compiler cannot determine the size of a memory option and needs to generate an
indirect_ref token. An example of the output is below:

myfile.c(45): warning: sram_write(): Size of data access cannot be
determined at compile-time. __implicit_read/write may be needed to
protect xfer buffer. Use of sram_write_ind() is recommended instead.

 12

Microengine C Compiler Coding Considerations

Again, the aim of this warning is to remind the user to more precisely provide the
liverange information for the variable used in the intrinsic. It is recommended that this
option be used for all compilations.

Live Range Summary
The live range of a variable starts at the first point in the code it is written to and ends at
the last read. In the case of signal variables, this should be interpreted as from when
one asks for a signal to when that signal is consumed.
In special cases, the compiler cannot determine the live range of a variable correctly by
itself; the most common being asynchronous I/O references and access to variables
through indirect addressing. For these instances, the programmer needs to intervene
with the use of either the __implicit_read() or __implicit_write() intrinsics or the volatile
keyword to extend or truncate the live range of the variables in question.

Data Alignment
The question of how and where data is placed into various storage types is of utmost
importance for two reasons. First is to make the most efficient use of a given, and
presumably scarce, storage type. And the second is to guarantee the correct behavior
of the compiler accessing variables indirectly (i.e. through pointers) or data not allocated
by the compiler (i.e. packet data off the wire).
In short, misunderstanding how the compiler allocates variables to a storage type and
with what alignment not only has performance implications, but could also affect the
proper behavior of your program.
As such, one should first review the sections on alignment in the Microengine C
Compiler Reference Manual. Then consider the examples in the remainder of this
section:

Example 5:
typedef struct
{
 char member1;
 int member2;
} data1_t;

__declspec(scratch) data1_t good_data;

The natural alignment for the data1_t structure is on a four-byte boundary because the
compiler will place the head of a structure aligned on a boundary relative to its storage

 13

Microengine C Compiler Coding Considerations

type. Large objects in DRAM (>= sixteen bytes) will be aligned on a sixteen-byte
boundary while all others, including anything declared in scratch, sram, local memory or
any type of registers will be aligned on a four-byte boundary.
In addition, the compiler adds padding between elements to maintain individual member
natural alignments. In this case, three bytes of padding will be inserted in between
member1 and member2 so that member2 will fall on a four-byte boundary (since it is an
“int”).
The resulting good_data variable laid out in scratch memory like this:

bytes
0 member1
1

3

padding1

 4

7

member2

For a programmer, there could be two issues here. One is the insertion of three bytes
of padding between member1 and member2, and two is the potential performance
penalty for accessing a structure on a boundary less than the address granularity of the
storage type. Although in this example the structure is aligned well relative to its
storage type (scratch), there are examples in the following sections to discuss this
concern.

Packing Structures
Of course, the compiler adds the padding to improve structure access performance, but
the most obvious issue with the compiler adding padding to a declared structure is that
the size of the structure will be increased accordingly. This might not be a big deal
when the structure is being allocated to a larger storage area like DRAM, but if this
structure is destined for registers, it could lead to running out of a storage resource
prematurely.
Another, less obvious issue with the compiler adding padding to a structure is that
overlaying this structure type on top of non-compiler allocated data will result in
incorrect access to members of that structure.

 14

Microengine C Compiler Coding Considerations

Example 6:
 typedef struct
 {
 U32 mac_addr[3];
 U16 prot_type;
 U32 src_addr;
 U32 dest_addr;
 } hdr_t;
 __declspec(dram) long long *p_packet;
 __declspec(dram) hdr_t *p_header;
 // Assign p_packet a packet buffer address.
 // Then receive a packet into the RBUF.

dram_rbuf_read_ind(p_packet, …);
 p_header = (__declspec(dram) hdr_t *) p_packet;
 if(p_header->dest_addr == OK_ADDRESS) { … }

Consider that the compiler will add two bytes of padding between prot_type and
src_addr to make sure that scr_addr is aligned on a four-byte address. When mapped
onto the packet data from the RBUF, there will be some misalignment of structure
members.

A hdr_t data structure as the compiler is expecting it:
bytes 0

11
12 13 14

15
16 19 20 24

 mac_addr prot_type padding src_addr dest_addr

Actual header from a packet moved from the RBUF to DRAM (no padding!):
bytes 0

11
12 13 14 17 18 21

 mac_addr prot_type src_addr dest_addr

From the above diagrams, it can be seen that accessing src_addr and dest_addr using
the hdr_t pointer will return incorrect data. Specifically, p_header->src_addr will return
the last two bytes of the actual src_addr and the first two of the actual dest_addr
concatenated and p_header->dest_addr will return the last two bytes of the actual
dest_addr and the next two bytes of the rest of the packet.
The compiler provides a means for the programmer to specify that no padding should
be inserted between bit fields or between any members of a structure. Specifically the
__declspec keywords of “packed” and “packed_bits” provide this functionality. In the
example above, a programmer would do well to declare hdr_t as such:

 15

Microengine C Compiler Coding Considerations

typedef struct __declspec(packed)

 {
 U32 mac_addr[3];
 U16 prot_type;
 U32 src_addr;
 U32 dest_addr;
 } hdr_t;

Now the compiler will not insert any padding between prot_type and scr_addr, matching
the “real”, non-compiler maintained data from the wire. Access to all members of the
structure will be logically successful.
Of course, one of the drawbacks to packing data structures is that accessing members
that cross an addressing boundary of the storage type (i.e. 4-byte for registers, SRAM
and SCRATCH; 8-byte for DRAM) will incur extra overhead of bit extraction and/or
concatenation and, possibly the reading/writing of extra memory locations. However, it
is a necessary technique for the sorts of situations mentioned above.

Overriding Natural Alignment
Consider the application of a __declspec(packed) modifier to the structure of Example
5. Now, since padding between member1 and member2 will be removed, access to the
second member of this structure will most likely lead to less than optimized code. The
compiler will need to account for the fact that “member2” will span two 32-bit words.
Still, access to the head of the structure (say, as part of an array) will be aligned to the
storage type.
However, there are cases where access to both the structure members and the whole
structure itself is not optimized. This is most likely to happen when dealing with packed
structures full of small elements, as in the following example:

Example 7
typedef struct __declspec(packed)
{
 char a_count;
 short s_count;
 char b_count;
} count_t;
__declspec(sram1) count_t *pkt_count1;
__declspec(sram2) count_t *pkt_count2;
… // Assign values to pkt_count1;
*pkt_count2 = *pkt_count1;

 16

Microengine C Compiler Coding Considerations

Since the natural alignment of this structure is on a byte boundary, the compiler will
make no assumptions about the position of the structure in memory. Consequently, it
will generate code for the copy operation that will take into account the fact that the
structure might span across two memory words. Structure alignment is not optimized
automatically because of the possibility that the structure will be embedded inside an
array or another structure, calling for the use of the structure’s natural alignment.
However, a user can override the default alignment of a basic or aggregated data type
using the “aligned(n)” __declspec modifier. If the unmodified structure’s natural
alignment is less than the addressable granularity of its storage region, the performance
of whole structure copies can be improved by increasing the alignment to at least this
granularity. That is, if the structure is being allocated to registers, SCRATCH or SRAM
memories, performance would be improved if the structure was aligned on at least a
four-byte boundary, and similarly on an eight-byte boundary for DRAM. To return to the
original example, a better way to typedef the count_t structure would be:

typedef struct __declspec(packed aligned(4))
{
 char a_count;
 short s_count;
 char b_count;
} count_t;
*pkt_count2 = *pkt_count1; // copy performance is improved

More information on the syntax of the aligned(n) modified can be found in the
Microengine C Compiler Support Reference Manual.

Efficient Structure Access
Structures make for convenient vessels to access related pieces of data. With
gratuitous use of structures in most Microengine C programs, the compiler absolutely
needs to be able to access to fields of a structure (including bit fields) efficiently. That
said, there are a few things for a Microengine C programmer to keep in mind when
designing and accessing data structures to help the compiler do so.

Sizing of Structure Members
Structure members with the following characteristics will produce the most efficient
access because of the sizing of registers in the network processors:

• A multiple of four bytes in size

• Fall on a four byte offset from the start of a structure

• Do not cross a 4 byte boundary

 17

Microengine C Compiler Coding Considerations

For members lacking in one or more of these conditions, the compiler will need to
generate extra instructions or memory accesses to extract and/or concatenate data
from one or more registers every time this data is referenced. The following examples
will demonstrate and discuss the repercussions for variables in this category.

Example 8:
 typedef struct __declspec(packed)

{
 char mem1;
 int mem2;
 int mem3;
} mem_test_t;

 typedef struct
 {
 int mem2;
 int mem3;
 char mem1;
 } mem_test_t;

The structure on the left does not follow the three guidelines above for any of its
members. In fact, the members with the most overhead for access are mem2 and
mem3, since both do not start on a four-byte offset and both cross a four-byte boundary
(mem2 lies between byte offset 2 and 5, and mem3 lies between byte offset 6 and 9).
The first member, mem1, is not a multiple of four bytes in size, but is an example of the
second best structure construct. Members, including bit fields, of byte multiples in size
(8, 16 or 24 bits) that follow the other two edicts only require a single ld_field instruction
to operate on such data. And although not in this example, note that bit fields between
1 and 7 bits can be extracted with a single instruction with immediate mask. However
an insert will take 2 instructions.
Of course, by default (i.e. without the packed keyword), the compiler would have placed
24 bits of padding between mem1 and mem2 in order to align mem2 and mem3 on their
natural four-byte boundaries. This would have yielded optimal access to all members of
those sizes in the structure at the cost of restrictions on how the programmer could use
this structure with non-compiler maintained data (see Section 2.2). In either case, the
total size of the structure would still be 12 bytes.
The data structure on the right allows the best possible access for structure members of
those sizes, simply by reordering their declared positions. Here, all members are
aligned on byte boundaries and are of proper sizing to warrant optimal treatment by the
compiler, similar to a non-packed version of the first structure – but without the padding
between members.
Of course, a programmer can create structures with any member sizing and order and
the compiler will do its best to optimize access, but the best possible performance will
be obtained with a little forethought upfront. For some, total structure size or pad-less
data will be a concern and so packing structure members will be necessary at the cost
of a few extra instructions to pack and unpack data. But if at all possible, a software
architect should adhere to the three guidelines concerning structure layout presented
above.

 18

Microengine C Compiler Coding Considerations

The Use of Unions
As an alternate, or perhaps a supplement to the structure member sizing strategies
outlined in the previous section, unions can be used to streamline access to several
structure members at once. This can be critically important if your structure resides in a
high latency memory.

Example 9:
 typedef struct {
 union
 {
 struct {
 U32 a1:16;
 U32 a2:16;
 U32 a3:16;
 U32 a4:16;
 } a_params;
 struct {
 U32 b1;
 U32 b2;
 } b_params;
 };
 } params_t;
 volatile __declspec(sram) params_t param_set;
 void main()
 {
 volatile U32 p1 = 0x1111;
 volatile U32 p2 = 0x2222;
 volatile U32 p3 = 0x3333;
 volatile U32 p4 = 0x4444;
 // Assign each member separately
 param_set.a_params.a1 = p1;
 param_set.a_params.a2 = p2;
 param_set.a_params.a3 = p3;
 param_set.a_params.a4 = p4;

// Format data for a1 and a2 and write into b1
param_set.b_params.b1 = (p1<<16) | p2;
// Format data for a3 and a4 and write into b2
param_set.b_params.b2 = (p3<<16) | p4;

 }

 19

Microengine C Compiler Coding Considerations

Although the compiler may be able to figure out how to combine the “a_params” code
above, it might generate four separate writes to sram, one for each of the a_params’
assignment statements:

/******/ param_set.a_params.a1 = p1;
alu_shf[$0, --, B, a6, <<16]
sram[write, $0, a3, 0, 1], ctx_swap[s2]
/******/ param_set.a_params.a2 = p2;
alu[$0, --, B, b7]
sram[write, $0, a3, 0, 1], ctx_swap[s2]
/******/ param_set.a_params.a3 = p3;
alu_shf[$0, --, B, a7, <<16]
sram[write, $0, a3, 4, 1], ctx_swap[s2]
/******/ param_set.a_params.a4 = p4;
alu[$0, --, B, b0]
sram[write, $0, a3, 4, 1], ctx_swap[s2]

A less straightforward example would include other code between each assignment,
making it more difficult for the compiler to even consider any memory access
optimizations.
In any case, a reduction in memory accesses is guaranteed through the use of the
union in the params_t structure. Here, the four 16-bit a_params members are unioned
with two 32-bit b_params members. By using the later as an alias to write into the
former, four sram writes become two. Of course, the programmer will need to format
the data “by-hand”, explicitly performing the shifting and logical bit operations in code
versus letting the compiler generate such code automatically. But the tradeoff in code
complexity to save accesses to memory is well worth it – just be sure to comment
appropriately to avoid confusion.

/******/ param_set.b_params.b1 = (p1<<16) | p2;
alu_shf[$0, b7, OR, a6, <<16]
sram[write, $0, a3, 0, 1], ctx_swap[s1]
/******/ param_set.b_params.b2 = (p3<<16) | p4;
alu_shf[$0, b0, OR, a7, <<16]
sram[write, $0, a3, 4, 1], ctx_swap[s1]

Miscellaneous Considerations
These tips did not fall under one of the main headings, but are helpful to maximize code
performance.

 20

Microengine C Compiler Coding Considerations

Signed vs. Unsigned Integers
The various basic datatypes, such as integers (“int”) are, by default, signed entities. In
some cases, a small performance benefit can be derived by using the unsigned
versions wherever possible, especially in bitfield structs. Otherwise the compiler may
generate unnecessary ASR instructions to handle sign extension when extracting fields.

Example 10:
typedef struct three_fields
{
 int a1:16;
 int b2: 8;
 int c3: 8;
} three_fields_t;
int result;
three_fields_t my_var;

result = my_var.b2; // implemented with 2 instr, ASR, ALU_SHF

Instead, the preferred method would be to declare three_fields_t with unsigned integer
bit fields as such:

typedef struct three_fields
{
 unsigned int a1:16;
 unsigned int b2: 8;
 unsigned int c3: 8;
} three_fields_t;

And so the following access to a field of such a structure will only take 1 instruction,
instead of two:
result = my_var.b2; // implemented with 1 instr, LD_FIELD

 21

Microengine C Compiler Coding Considerations

Tuning Established Code
After following the good programming practices expounded by the Microengine C
Compiler Support Reference Manual and this document, a programmer should be able
to program logically sound code for the network processors. This next section aims to
bring the programmer to the next level in terms of coding conventions that will lead to
best compiler, and hence, best program performance. It will highlight techniques to
handle register spillage, to improve access to variables in memory, to optimize function
calls and more.

Register Spillage
Not all register candidate variables will be allocated to actual registers by the compiler
either because there simply are not enough registers to handle all variables live at a
certain point in the code or because the address of a variable was taken. In such a
case, the default behavior of the compiler is to automatically “spill” these variables to
one of the following resources based upon the –Qspill=n command line option:

- Next Neighbor registers
- Local Memory
- SRAM Memory

Please see the compiler reference manual for more information on when the compiler
will spill variables, as well as the –Qspill command line option.
When register spillage occurs, the compiler will provide the information of which
variables were spilled, and to which storage type if the –Qperfinfo=1 command line
option is used. In addition, the –Qliveinfo option provides liveness information for all
register variables in the program. More information on these options can be found in
the compiler reference manual and in following sections of this document.

Handling Register Spillage
One option for the programmer is to turn off the automatic spillage feature of the
compiler altogether using –Qspill. In this case, if the compiler cannot allocate all
variables without explicit storage declarations to registers, the compilation will fail and
the programmer will have to perform the rearrangement of data by hand. This is a good
option if you want the programmer to have absolute control over the storage regions for
all variables at all times. However, there are less severe options that can give a
variable-by-variable or code section by code section level of control for the compiler’s
opportunities for register spillage.
First, when a programmer absolutely needs an individual variable to be placed in a
register at all times in the program (ex. frequently accessed variables), the programmer
can explicitly declare the variable with a gp_reg storage type.

 22

Microengine C Compiler Coding Considerations

 Example 11:
unsigned int count1; // a register candidate

 __declspec(gp_reg) unsigned int count2; // must go to a GPR!

If for some reason the compiler cannot allocate the count2 variable to a register, then
the compilation will fail. The programmer will then need to rearrange the code to use
less register variables during the live range of the failed variable.
There could be specific sections of code for which the programmer does not want to see
any variables spilled. The __no_spill_begin() and __no_spill_end() intrinsic functions
provide this functionality. In this way, the no-spilling directive to the compiler is done
relative to a section of code versus on a per variable basis. For example, a variable
with several live ranges could spill in one section of code, but not in any __no_spill
regions. Again, if the compiler cannot figure out how not to spill variables in a
__no_spill region, the compilation will fail.

Note: The current implementation of the compiler does not spill variables
accessed inside a no_spill region for the entirety of the program (i.e. not
just inside the no_spill region). This is not optimal behavior and will be
addressed in future releases of the compiler.

Functions
Due to the lack of a stack in the network processors, the compiler has to incur some
overhead for function calls. And although the compiler has many optimizations to affect
run time performance as little as possible, several programming techniques will provide
the compiler with the most opportunity to do so.

Inlining Functions
The function calling convention in Microengine C is to pass as many enregisterable
arguments as possible, saving the return PC to a register, then performing a hard
branch to the function. This can be quite a bit of overhead, especially in relation to
functions with few lines of actual code.
The alternative is to have a function call inlined at the place in the code in which it was
called. In this case, the compiler does not waste a register unnecessarily for saving the
PC, or waste execution time branching to the function and back.
The inlining of functions is controllable through compiler options as well as through the
use of directives in the C source code. The __forceinline keyword forces the compiler
to inline the function regardless of the size of the function as long as inlining has not
been turned off via the -Obn compiler switches or in debug code via the -Od switch.
The __inline keyword allows the compiler to decide whether or not to inline the function
based on cost/benefit analysis performed by the compiler when explicit inlining is
enabled (-Ob1).

 23

Microengine C Compiler Coding Considerations

On the other hand, a programmer can prevent the compiler from inlining a particular
function while still enabling the general inlining capabilities of the compiler through the
use of the __noinline keyword preceding the function prototype and definition. Although
the compiler tries to balance control store versus performance based upon command
line compiler options, the use of this keyword allows a programmer to precisely control
inlining on a function by function basis.
But in general, use the –Ob2 command line switch to allow the compiler to inline shorter
functions automatically based upon compile time heuristics.

Note: The current implementation of the compiler will still inline functions
defined with the __forceinline keyword even with the –Od switch specified.
This behavior is so to support backward compatibility for older versions of
software, but is subject to future changes.

Optimizing Pointer Arguments
It is sometimes possible to improve the speed of access to function arguments passed
in with pointers.

Example 12:
void foo(MyStruct *p_x)

 {
 // some code using *p_x and assigning *p_x
 }

void main()
 {
 myStruct_t x;
 …
 foo(&x);
 …
 }

In this example, the user wishes to use the function “foo” to modify the contents of the
structure “x”, by passing the address of x to foo. Since general-purpose registers
cannot be accessed with pointers, the compiler cannot place the structure x into
registers. Rather, x will be allocate into other storage regions such as local memory or
sram, slowing down – potentially significantly - access to the data contained in x.
If the programmer can guarantee that the pointer parameter of the function is not
accessed through “unknown” means (for example through another pointer whose
definition is ambiguous or from another thread), then the “restrict” qualifier is placed
directly before the parameter in the function definition. In doing so, the compiler will
automatically perform a “structure copy optimization” which will copy the structure to be
passed to a global temporary structure accessible by the function foo. Both the original

 24

Microengine C Compiler Coding Considerations

and temporary structures can be placed into registers, with a significant performance
gain over a non-restricted pointer parameter. In this case, the function definition would
look like this:

void foo(MyStruct * restrict p_x)
 {
 // Alias-free code using *p_x and assigning *p_x
 }

Again, the restrict keyword should only be used if the programmer can guarantee
controlled pointer access to the data structure in question. The compiler reference
manual provides a list of allowable operations for a restricted pointer, and a command
line switch “-Qperfinfo=256” to help determining any violations of these rules. But
remember that ultimately the programmer is responsible for the safe application of the
restrict keyword.

Miscellaneous Optimizations
These tips did not fall under one of the main headings, but are helpful to maximize code
performance.

Conditional Statements
Compare to zero (==, !=, <, >) rather than the explicit value when possible. This allows
the condition codes to be tested as opposed to the compiler generating a subtract and
then testing of the condition codes.

Example 13:
if(queue_entry->current_buf.sop_flag == 1)
{

do_something();
}

In this case, the compiler will need to generate an extra alu instruction to perform the
subtract-compare. A better implementation is as follows, and uses one less instruction:

if(queue_entry->current_buf.sop_flag != 0)

 25

Microengine C Compiler Coding Considerations

Compiler Defer Slot Filling
In general, the algorithm used in the compiler to fill defer slots is limited to looking in the
basic block immediately above or below a branch or context swap.

Example 14
void cool_function(U32 pass)
{
 if(pass)
 {
 …
 }
 else
 {
 …
 }

gl_foo = gl_a + gl_b;
gl_bar = gl_x + gl_y;

}
Presumably, the if statement will be translated into a branch if equal (BEQ) instruction,
which allows for up to three instructions in the branch shadow to be deferred. However,
the code above does not give the compiler any instructions as candidates to place into
the branch defer slots. This, of course, supposes that the code in the if and else blocks
cannot be moved or are otherwise not candidates to lie in the branch shadow. But if the
gl_foo and gl_bar assignments can be moved freely in the code from a logical
standpoint, then placing them directly above the if statement will provide the compiler
with two more opportunities for optimization.

gl_foo = gl_a + gl_b;
 gl_bar = gl_x + gl_y;

if(pass)
 {

// etc…

 26

Microengine C Compiler Coding Considerations

Debugging Techniques

Compile-time Information
The Microengine C compiler can produce debugging information into the .list file output
to be passed to the linker, including source file to assembly code mapping. In addition,
the compiler will produce a separate .dbg file, used by the Developer’s Workbench in
conjunction with the .list files to provide source-level debugging capabilities.
Specifically, the .dbg file contains variable scope information and datatype definition (ex.
structure field layout) for use in the Data Watch window. In addition, an optional
command line switch prints out various information to help the programmer make
optimal decisions on topics ranging from register spillage to “restrict” pointer violations.

Performance Information
The –Qperfinfo=n command line switch can provide one or more of the following pieces
of compile time information:

n=0 - no information (similar to not specifying)
n=1 - register candidates spilled and where to
n=2 - instruction-level symbol liveness and register allocation (obsolete!)
n=4 - function-level symbol liveness and register allocation (obsolete!)
n=8 - function sizes
n=16 - local memory allocation
n=32 - live range conflicts causing SRAM spills
n=64 - instruction scheduling statistics
n=128 - Warn if the compiler cannot determine a memory I/O transfer size
n=256 - Display information for "restrict" pointer violations
n=512 - Print offsets of potential jump[] targets
n=2048 – Print maximum physical register pressure

Notice each n value above is actually a bit mask for the –Qperfinfo switch. That is, a
user can request multiple informational items from the above list for a given compilation
by OR’ing several n values together. For example, if a user would like to view the
register candidates spilled, local memory allocation and warnings for “restrict” pointer
violations during a compilation, add –Qperfinfo=273 to the compiler command line.
It is recommended that all compilations include n=1 if register spillage is enabled (via
the –Qspill switch) as spilled variables will have various performance implications.
Similarly, other options should be included if the code warrants it (i.e. use n=256 if there
are restricted pointer parameters in your program).
These first three options, along with the last one, had been provided to help the
programmer manage register allocation in the program. However, -Qperfinfo=2 and -
Qperfinfo=4 have been superceded by a new command line switch, -
Qliveinfo=[gr,sr,sw,srw,dr,dw,nn,sig,all] to print out liveness information for all register
allocated variables in a more helpful and user-friendly manner. In fact, it uses a

 27

Microengine C Compiler Coding Considerations

different algorithm – one that more accurately reflects real register allocation – than –
Qperfinfo=2 or –Qperfinfo=4 did. A user can display the register allocation information
for only the register types of interest, by providing one or more of the following –
Qliveinfo options:

gr: GPRs
sr: SRAM read regs
sw: SRAM write regs
srw: SRAM read/write regs
dr: DRAM read regs
dw: DRAM write regs
drw: DRAM read/write regs
nn: NN registers (self mode only)
sig: signals
all: all registers

In short, the –Qliveinfo switch can help the user analyze their program and determine
which code segments have a high “register pressure” and need to be restructured.
The first section of compiler output from the –Qliveinfo=gr command line switch details,
on a function by function basis, the registers live when the function is called (“Live in”),
those live upon completion of the function (“Live out”) and those live both in and out of
the function (“Live through”).

Example 15:
: Live info. of gpr registers for Function meter_calculate_ebs_cbs:

: Live in(11):
: gr.554(_timestamp) gr.555(_timestamp+4)
gr.556(_meter_me_signal_csr) gr.557(_cache_signal_csr)
gr.645(entry) gr.685(result) gr.687(p_sram) gr.740(cgt.1090)
gr.743(cgt.1093) gr.897(..) gr.899(..)
: Live out(9):
: gr.554(_timestamp) gr.555(_timestamp+4)
gr.556(_meter_me_signal_csr) gr.557(_cache_signal_csr)
gr.685(result) gr.687(p_sram) gr.740(cgt.1090) gr.743(cgt.1093)
gr.899(..)
: Live through(7):
: gr.556(_meter_me_signal_csr) gr.557(_cache_signal_csr)
gr.685(result) gr.687(p_sram) gr.740(cgt.1090) gr.743(cgt.1093)
gr.899(..)

The registers are printed out in the following format:
cls.ID(variable_name)

where cls is one of the register classes mentioned above, the ID is a compiler
maintained “virtual register” number and variable_name is the name of the

 28

Microengine C Compiler Coding Considerations

corresponding variable. A variable_name of “..” implies a compiler generated temporary
variable is being used.
Use this information to help determine which functions have maxed out, or are close to
maxing out, register usage. For example, there are 32 available GPRs per thread, so
seeing values close to 32 in the Live parentheses above advises a programmer to pay
special attention to those functions if there is a problem with register spillage.
Following the first section is register liveness on a per-instruction basis. For each line of
code in the program (Microengine C source with corresponding assembly), the “Live
set” of registers is listed. This information lets a programmer further refine the search
for high register pressure areas of code.

Example 16:
: /******/ meter_params[entry].timestamp = timestamp;
: alu[gr.955(..) , 4, +, gr.802(..)]
: Live set(15): gr.554(_timestamp) gr.555(_timestamp+4)
gr.556(_meter_me_signal_csr) gr.557(_cache_signal_csr) gr.651(tmp.27)
gr.685(result) gr.687(p_sram) gr.740(cgt.1090) gr.743(cgt.1093) gr.802(..) gr.803(..)
gr.804(..) gr.897(..) gr.899(..) gr.955(..)
:
: alu[??, --, B, gr.554(_timestamp)]
: Live set(14): gr.554(_timestamp) gr.555(_timestamp+4)
gr.556(_meter_me_signal_csr) gr.557(_cache_signal_csr) gr.651(tmp.27)
gr.685(result) gr.687(p_sram) gr.740(cgt.1090) gr.743(cgt.1093) gr.803(..) gr.804(..)
gr.897(..) gr.899(..) gr.955(..)
: // etc…
Additionally, the –Qperfinfo=2048 switch will provide a quick summary of the lines of
code with the maximum physical register pressure. A example dump looks like this:

Maximum live physical gprs (52) at myfile.c 245
Maximum live physical gprs (52) at myfile.c 203
Maximum live physical gprs (52) at myfile.c 196
Maximum live physical gprs (52) at myfile.c 192

The maximum number of live physical GPRs before spilling is printed along with the file
name and line number of the high register pressure points.

 29

Microengine C Compiler Coding Considerations

 30

Run-Time Debug Tools
When Microengine C based programs are compiled to one or more Microengines with
debug information turned on, the Developer’s Workbench provides several debugging
tools specifically for the compiler, allowing the programmer to debug on a source code
or assembly code level. The Development Tools User’s Guide describes the use of all
such tools, including source/assembly view toggling, data watches and breakpoints.

Summary
A Microengine C programmer must be well versed in both the operation of the network
processor hardware and Microengine C compiler options to write effective and
performance minded code. Experience (i.e. writing code!) is the only way to become a
great programmer, but this document is aimed at shortening the curve by providing
explanations and examples for many of the common pitfalls and performance
considerations for a new Microengine C user.
In addition, the explanations in plain language of the slew of information provided by the
compiler will help a programmer make optimal decisions for data placement and code
structure. And a discussion of the compiler specific debugging features and tools in the
Developer’s Workbench will assist a programmer to debug code quickly from both a
logic and performance point of view.
The tools and documentation are there to support programmers to make the process of
writing and debugging code as easy as possible, but ultimately, it takes a
knowledgeable and well-disciplined programmer to write effective Microengine C code.

	Revision History
	Abstract
	Table of Contents
	Overview
	Purpose and Scope of this Document
	Definitions/Acronyms
	Related Documents

	Software Implementation Considerations
	Variable Live Range Analysis
	Asynchronous I/O operations
	Example 1:

	Referring to a variable indirectly
	Example 2:
	Example 3:

	Memory Intrinsics with Variable ref_cnt
	Example 4:

	Live Range Summary

	Data Alignment
	
	Example 5:

	Packing Structures
	Example 6:

	Overriding Natural Alignment
	Example 7

	Efficient Structure Access
	Sizing of Structure Members
	Example 8:

	The Use of Unions
	Example 9:

	Miscellaneous Considerations
	Signed vs. Unsigned Integers
	Example 10:

	Tuning Established Code
	Register Spillage
	Handling Register Spillage
	Example 11:

	Functions
	Inlining Functions
	Optimizing Pointer Arguments
	Example 12:

	Miscellaneous Optimizations
	Conditional Statements
	Example 13:

	Compiler Defer Slot Filling
	Example 14

	Debugging Techniques
	Compile-time Information
	Performance Information
	Example 15:
	Example 16:

	Run-Time Debug Tools

	Summary

