

Microengine Version 2 (MEv2)

Assembly Language Coding Standards

Revision 1.01g

June 2003

 Microengine Version 2

 2

Document History

Version Description
1.01e August/2002 First external release.
1.01f January 2003 Revised title to IXP2400 and IXP2800 Network Processor
1.01g June 2003 Revised title to Microengine Version 2

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO
LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL
PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS
AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER,
AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF
INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR
OTHER INTELLECTUAL PROPERTY RIGHT.

Intel products are not intended for use in medical, life saving, life sustaining applications.
Intel may make changes to specifications and product descriptions at any time, without notice.

Copyright © Intel Corporation, June 2003

Intel is a registered trademark of Intel Corporation or its subsidiaries in the United States and other countries

*Other brands and names may be claimed as the property of others.

 Microengine Version 2

 3

Table of Contents

1 Introduction .. 5

1.1 References... 5
2 Capitalization and Identifiers 6

2.1 Lower Case, with exceptions.. 6
2.2 Descriptive Identifiers.. 6

3 White Space ... 8
3.1 4 Column Indentation... 8
3.2 Spaces after all commas.. 8
3.3 Spaces around Operators, Parentheses................................... 8
3.4 Defer Slots.. 9
3.5 Code Layout.. 9

4 Comments .. 9
4.1 Comment Syntax... 9
4.2 Block Comments.. 10

4.2.1 Array Diagram Indexes... 10
4.3 Exclude from Comments... 10
4.4 Commenting Structured Code.. 11
4.5 Dead Code... 11

5 Pre-Processor Directives 11
5.1 Eighty Columns or Less.. 11
5.2 Header Guards... 12
5.3 #include.. 13
5.4 #define_eval.. 13
5.5 #define... 13
5.6 Pre-processor and Leading Underscores................................. 14
5.7 #undef.. 14
5.8 Well Known Preprocessor Constants..................................... 14

5.8.1 PARANOIA.. 14
5.8.2 MICROCODE... 14
5.8.3 SIMULATION.. 14
5.8.4 LITTLE_ENDIAN, BIG_ENDIAN... 14

5.9 Conditional Compilation... 14
6 Assembler Directives ... 15

6.1 .reg.. 15
6.1.1 .reg read/write... 15

6.2 .begin/.end vs .local/.endlocal....................................... 15
6.3 Use of .begin/.end.. 15
6.4 .sig.. 15
6.5 Signals Shared Between Files.. 16
6.6 Double Signals and mask()... 16
6.7 .init... 16
6.8 .import_var... 16
6.9 .operand_synonym.. 17

7 Instruction Set .. 17
7.1 indirect_ref.. 17

8 Microcode Macros ... 17
8.1 Where to use Macros... 17
8.2 Where NOT to use Macros... 17
8.3 Macro API Selection... 17
8.4 Macro Names... 18
8.5 Microblock Macro Names.. 19
8.6 Macro Parameters and Arguments.. 19

8.6.1 Macro Parameter Type and Range Checking........................... 19
8.6.2 Optional Parameters... 20

8.7 #macro Parentheses.. 21
8.8 Macro Template.. 21

9 File Names ... 22

 Microengine Version 2

 4

10 File Structure ... 22
10.1 Summary API Block Comment... 22
10.2 Header Files.. 22

10.2.1 .UC non-ANSI-C Compatible Pre-processor Extensions.............. 22
10.2.2 .UC Missing ANSI-C Pre-processor Features....................... 23
10.2.3 Transactor Interpreter (.ind) Pre-processor Limitations......... 23

10.3 Fast Code Allowing Breakpoints on Exceptions........................ 23
11 Project Configuration and Build 25

11.1 Require Register Declarations....................................... 25
11.2 Zero Assembler Warnings... 25

12 Project Structure .. 25
12.1 Sharing Microblocks Across Microcode Projects....................... 25

13 Appendix H: Example Header File 26
14 Appendix UC: Example Assembly File 26

 Microengine Version 2

 5

1 Introduction
This standard captures Intel’s “Best Known Methods” for programming syntax and
style using the Microengine Version 2 hardware with microcode assembly language.
Intel/NCG follows these standards so that our customers can best understand,
modify, and re-use our source code.

Assembly Language in this context is the source code consumed by the MEv2
assembler – including the MEv2 instruction set, pre-processor directives,
assembler directives, and microcode macros – as documented in the Programmer’s
Reference Manual.

To conform to this standard, the keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL
NOT, SHOULD, SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL, are to be interpreted as
described in RFC 2119.1

We expect an external version of this document to accompany Intel source code
shipments to customers. We encourage the development of automated tools to ease
compliance with this standard.

Being an assembly language document, the topics are ordered from the bottom-up.
We start with the character set and white space, and move up through comments and
pre-processor directives, assembler directives, instruction set, microcode
macros, file structure and build configuration. But first, some references to
other documents.

1.1 References
• IXA Software Building Blocks Developer’s Manual. Customer documentation

detailing microblocks available on the Intel® Internet Exchange
Architecture (IXA) Software Development Kit (SDK) 3.1.

• IXA Programmer’s Reference Manuals available on the Intel® Internet
Exchange Architecture (IXA) Software Development Kit (SDK)3.1)

1 http://ietf.org/rfc/rfc2119.txt

 Microengine Version 2

 6

2 Capitalization and Identifiers

2.1 Lower Case, with exceptions
Programmers MUST be consistent in the use of case.2 Lower case characters MUST
be used for all assembly source code, with these exceptions.

1. Comments SHOULD be normal English sentences, i.e., starting with a capital
letter and ending with a period.

2. Pre-processor constant tokens definitions MUST be all capitals.
3. CSR names MUST be all capitals.
4. Labels as macro formal parameters (not arguments) MUST be all capitals.

Note that labels themselves, including Label arguments, MUST be lower case,
according to the capitalization rules and the examples shown here.

2.2 Descriptive Identifiers
Identifiers are used to name registers and constants. Identifiers MUST be
descriptive and specific. (E.g. $atm_header, not $xfer). When identifiers
consist of multiple words (or abbreviated words), the words MUST be separated by
underscores.

2 The assembler is currently insensitive to case, however it is expected that it
will be enhanced to be case sensitive to reduce programmer confusion – typically
caused by pre-processor token replacement based on all-capital tokens replacing
register names which are not all-capital.

 Microengine Version 2

 7

// Demonstrate all capitalization rules, identifier rules,
// and common white space rules.

#define MAX_LEGAL_INPUT 0x47 // biggest legal lottery number

// lottery_play
//
// Description:
// Get nothing for something, or go to jail.
// …
#macro lottery_play(out_cash, in_ticket, LIMIT, BAD_TICKET_HANDLER)
 br=byte[in_ticket, 0, LIMIT, BAD_TICKET_HANDLER]
 immed[out_cash, 0]
#endm

.reg cash // global cash balance
immed[cash, 0] // start with no cash

//--
.while(1)
 .begin
 .reg contexts
 …
 local_csr_read[CTX_ENABLES]
 immed[contexts, 0]; immed constant replaced by CSR value
 …
 lottery_play(cash, cash, MAX_LEGAL_LIMIT, state_prison#)
 …
 .end
.endw

//--
state_prison:
 // wind up here when you print your own lottery tickets

 Microengine Version 2

 8

3 White Space

3.1 4 Column Indentation
Code MUST be indented using 4-column granularity. All basic blocks3 MUST be
indented to reflect structure and flow of control. Eg.

Note that the Developer’s Workbench (DWB) editor sets tab stops to 4 spaces, so
tab can be used to secure proper indenting both on the screen and the printed
page. However, other tools sometimes use different tab stops and thus will not
interoperate with DWB. Requests have been made that DWB be enhanced to expand
tabs to the proper number of spaces to address this interoperability issue.
Until it is implemented, programmers MAY globally replace tabs with spaces after
editing with DWB.

3.2 Spaces after all commas
As in English, a comma MUST always be followed by a space.

3.3 Spaces around Operators, Parentheses
Arithmetic operators in expressions MUST always be surrounded by spaces:

While technically an operator, parentheses are exempt from this rule and SHOULD
follow the usage in this example. Constant expressions MUST be fully
parenthesized – they SHALL NOT rely on operator precedence for numerical
correctness. E.g.

3 Basic blocks are logical groups of code that reflect naming scope or flow of
control. Basic blocks make be delimited by pre-processor directives (e.g.
#if/#endif) assembler directives (e.g. .begin/.end) or actual assembly
instructions such as jumps and branches.

#macro indent_demo(out_answer, in_parameter, MAGIC_NUMBER)
.begin
 .reg indent_temp

 immed32(indent_temp, MAGIC_NUMBER)
 .if (in_parameter == 0)
 move(out_answer, indent_temp)
 .else
 move(out_answer, 0)
 .endif
.end
#endm // indent_demo()

sandwich_make(lunch_bag, bread, peanut_butter, jelly)

#if (a < b)

#define BIT_PATTERN (3 | (MY_CONSTANT << 2))

 Microengine Version 2

 9

In several places the instruction set encoding appears to mandate that spaces be
excluded around operators. In reality, these constructs are indivisible tokens.4
E.g.

3.4 Defer Slots
Code in defer slots of instruction X, is always executed in the cycles
immediately following execution of X. Thus, a blank line SHOULD follow the end
of the list of instructions in the defer slot, to emphasize the deferred
instructions are associated with X. E.g.

As shown above, code in defer slots MUST be at the same level of indenting as the
deferring instruction.

3.5 Code Layout
Code SHOULD be written in paragraphs as shown in the appendix. Paragraphs are
logical groups of instructions separated by blank lines. Paragraphs begin with a
comment describing what the paragraph does.

4 Comments

4.1 Comment Syntax
The assembler supports three choices for comment syntax. As .uc files are
processed only by the assembler, .uc files MAY use all three styles.

However, .h files are commonly shared with ANSI-C, C++, and DWB .ind script
files, which have compatibility issues:

1. /* … */ “slash star” syntax is supported by ANSI-C, C++, and .ind.
2. “//” “double-slash” syntax is supported C++ and .ind, but not by ANSI-C.
3. “;” “semicolon” syntax is supported only by the assembler, as it functions

as a command separator in C, C++, and .ind.

Slash star comment syntax MUST be used in .h files, as .h files may be shared
with ANSI-C or C++. Double slash and semicolon comment syntax MUST NOT be used
in .h files.

Semicolon comment syntax MUST be used only in .uc files. Note that unlike other
comments, which are stripped out by the pre-processor, semicolon comments are
carried through the assembler and appear in the dis-assembly display. This can be
quite helpful during debug.

4 Eg. The syntax of the alu_shf[] instruction, which requires no spaces between
the << or >> operators and their parameters n: {<<n, <<indirect, >>n, <<rotn,
>>rotn}, as well as the “b-a” ‘operator’ and the br=ctx instruction.

alu_shf[dest, src_a, b-a, src_b, <<19] ; no space in b-a or <<19
br!=ctx[0, all_threads#] ; no space in br!=ctx

sram[read, …], defer[2]
alu[…]
alu[…]

alu[…]

 Microengine Version 2

 10

4.2 Block Comments
Block comments which may be copied and pasted to documentation SHOULD use /* … */
“slash star” syntax. This eases the editing burden when the comments are
changed.

4.2.1 Array Diagram Indexes
When comments include diagrams showing aggregate data types – such as arrays of
bits in a register, or bytes in a byte stream, the index of the array MUST be
present in the diagram. Either big-endian or little-endian bit and byte order
MAY be used, whatever is consistent with the context. The diagram MUST, however,
illustrate the order.

In this example illustration of 32-bit data structures in memory, smaller
addresses appear toward the top of the figure – as they would appear in a memory
dump on the screen. Bit positions are numbered from the right to the left –
which illustrates little-endian bit-order.

In the array above, as well as the byte sequence below, bytes are numbered from
left to right, which illustrates big-endian byte order.

If the diagrams in code comments are going to make their way into customer
documentation, then the diagram conventions in the code and the customer
documentation MUST use the same endian conventions.

4.3 Exclude from Comments
Source code comments are customer documentation. The following items MUST NOT
appear in source code comments.

1. Exclude reference to personal identifying information, such as employee
names, addresses, phone numbers or e-mail addresses.

2. Exclude reference to Intellectual Property – unless it is intended to be
disclosed with the source code.

3. Exclude discussion of unpublished errata or errata rumored to be present.
4. Exclude discussion of fixes that may potentially happen in some future

hardware or software revision.
5. Exclude references to undocumented features.
6. Comments MAY indicate where and how additional functionality might be

added. However, comments MUST NOT imply any commitment that any party will

/***
 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 <- bits
 +---------------+---------------+---------------+---------------+
 0 | Byte 0 | Byte 1 | Byte 2 | Byte 3 |
 +---------------+---------------+---------------+---------------+
 1 | Byte 4 | Byte 5 | Byte 6 | Byte 7 |
 +---------------+---------------+---------------+---------------+
 2 | Byte 8 | Byte 9 | Byte 10 | Byte 11 |
 +---------------+---------------+---------------+---------------+
***/

/***
 1 1 1 1 1 1 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 … Bytes ->
 +-----------+-----------+---+-----
 |Enet DstAdr|Enet SrcAdr|TYP| IP
 +-----------+-----------+---+-----
***/

 Microengine Version 2

 11

actually provide that functionality at any time, including vague use of
“TBD” or “supplied later”.

7. Exclude slang and profanity.

Comments SHOULD include version information identifying the current file version.
Comments MAY mention previous file versions to summarize significant customer-
visible changes, such as updated APIs. However, exhaustive detailed file
histories belong in source code control and SHOULD NOT appear in file comments.

4.4 Commenting Structured Code
When multiple pre-processor or assembly directives are used to structure the
logic of code flow, it can be difficult for the reader to associate structure
endings with beginnings. (e.g. which .if does this .endif go to?)

Code structure MAY be commented as shown below. Note that the logic of the
comment on the ‘endif’ shows how control entered that block, even if it was the
result of an ‘else’. Subject to the compatibility rules, any of the three
comment syntaxes can be used to clarify code structure.

While these examples are trivial, control structures that are likely to span
multiple pages (e.g. 20 lines or greater) MUST be commented.

4.5 Dead Code
There MUST NOT be any commented-out “dead” code. When multiple builds of the
same source code are necessary, pre-processor directives SHOULD be used for
conditional compilation rather than comments.

5 Pre-Processor Directives

5.1 Eighty Columns or Less
Lines of source code MUST consume 80 columns or less. Note that the assembler
pre-processor line continuation feature (‘\’) is available to continue long
lines. Note also that block comments in the examples are 80 columns wide and can
be used as a guide.

The assembler allows comma separated lists to be continued on the next line
without the use of the ‘\’ operator. In the case of macro invocations, the ‘\’
line continuation character SHALL NOT be used to continue long lines. This is
because it is not needed for these lists, and with the current tools it causes
the disassembly window to be cluttered with white space.
E.g.

.if (WEATHER == SUNNY)
 yard_work_start()
 …
.else // rainy weather
 football_game_watch()
 …
.endif // rainy weather

#while(CASH_ON_HAND > 0)
 shopping_spree()
#endloop // end while(money left to spend)

// Correct
form_l2a_hdr(*n$index++, prepend_byte_cnt, reassy_index, tx_req_word0,
 buf_desc_word2); write l2a_hdr to nn ring

 Microengine Version 2

 12

5.2 Header Guards
Header (.h) files MUST use header guards to prevent multiple includes of the same
file from conflicting. The token for the header guard MUST be constructed by
using the base of the file name in all capital letters (i.e. filename sans
extension), with the dot in the file name replaced by an underscore, and then the
file extension in all capital letters. Therefore:

The header guard MAY define a version number such that code that includes it has
the option to detect a change in versions – perhaps specifying the version that
passed evaluation tests. E.g.

Microcode assembly (.uc) files that are included by other files MUST also use
header guards. E.g.

When used, header guards SHALL occupy the first and last lines of the file.

// Incorrect
form_l2a_hdr(*n$index++, \
 prepend_byte_cnt, \
 reassy_index, \
 tx_req_word0, \
 buf_desc_word2 \
); write l2a_hdr to nn ring

// Correct
form_l2a_hdr(*n$index++, // comment
 prepend_byte_cnt, // comment
 reassy_index, // comment
 tx_req_word0, // comment
 buf_desc_word2 // comment
); write l2a_hdr to nn ring

#ifndef <file_basename>_H
#define <file_basename>_H <OPTIONAL version number>

/* Header file contents here … */

#endif /* <file_basename>_H */

#include <foo.h>

#if (FOO_H != 42)
 #error included unexpected version (FOO_H) of foo.h
#endif

#ifndef <file_basename>_UC
#define <file_basename>_UC <optinal version number>

/* Microcode file contents here … */

#endif /* <file_basename>_UC

 Microengine Version 2

 13

5.3 #include
Each file SHALL #include only those files needed to build itself.

#include directives SHOULD appear in each file before all code.

As in ANSI-C, there are two variants on parameters to #include – <file.h> and
“file.h”. The angle brackets form begins each search with the include-path; the
double-quotes form begins each search relative to the including file; and then
behaves like the angle-bracket form.

The problem with the double-quote form is that when there are multiple levels of
nested includes, the ‘including file’ may not always reside where the programmer
expects. Eg. Say there are multiple versions of include directories on the
include path, say with updated files appearing earlier in the path. An old
version of a file may still be included, even though it appears later on the
include path – because it might be included by another file that appears in the
same directory as the old include file.

The angle bracket form of #include SHOULD be used, except when the double-quote
feature of first searching the directory of the including file is required. For
example, when a project includes files that are in a local sub-directory rather
than on the search path. E.g.

5.4 #define_eval
Both #define and #define_eval create expandable tokens, available for use in
other substitutions. As in ANSI-C, #define does not actually evaluate the
resulting expression. #define_eval, on the other hand, evaluates it’s constant
expression at the time the line is processed.

What this means is that expressions created with #define_eval are effectively
build-time ‘variables’ that can be re-defined by subsequent #define_eval’s at
assembly time. #define_eval is appropriate for use in #for/#while/#repeat loops
etc.

Expressions created with #define that incorporate tokens that are created with
#define_eval may be ‘re-defined’ by subsequent invocations of #define_eval.

Further, the power of #define_eval to re-define a token without complaint is also
a weakness – it allows tokens to be unexpectedly re-defined. For this reason,
#define_eval SHOULD be preceded by a check for previous definition.

Due to these potential problems, and the fact that #define_eval is supported only
in .UC files, #define_eval MUST not be used when #define will suffice.

Note that the Pre-processor will evaluate constant expressions contained in (),
and so that #define_eval is not needed for that purpose.

5.5 #define
There MUST NOT be any “magic number” constants embedded into code. All constants
MUST be #defined using self-explanatory upper-case labels. Eg:

#include “local_sub_directory/header.h”

#define FOOBAR_MASK 0xFF // 256 possible foobars…
and(answer, input, FOOBAR_MASK)

 Microengine Version 2

 14

Exceptions to this rule are permitted where economy of expression does not impact
clarity, and the constants are unlikely to be modified. E.g. comparison with 0
or 1.

5.6 Pre-processor and Leading Underscores
Pre-processor constants that begin with a double underscore ‘__’ SHALL be
reserved for use by the tools and framework.

Pre-processor constants that begin with a single underscore ‘_’, SHALL be
reserved for application independent libraries and header files.

Applications MUST NOT define preprocessor constants with leading underscores
except for explicit interaction with the tools, framework, or libraries. Note
that this applies also to header guards.

5.7 #undef
#undef MUST be used to clean the name space when the end of scope of a constant
definition is reached. For example:

#macro mymac(out_meaning_of_life)
 #define MYMAC_ANSWER 42
 immed32(out_meaning_of_life, MYMAC_ANSWER)
 #undef MYMAC_ANSWER
#endm // mymac()

5.8 Well Known Preprocessor Constants
The following well-known preprocessor constants MAY be used only for the
functions detailed below. When those functions are being performed, these well-
known constants MUST be used.

5.8.1 PARANOIA
Used for all paranoia error checks for debugging. PARANOIA code MAY be left in
released source code to aid in maintenance and debugging future modifications.
However, session-specific DEBUG code MUST be removed.

5.8.2 MICROCODE
Used to enable common header files for C code and microcode. For example, header
files shared between C and assembly that make use of #define_eval MUST protect it
with #ifdef MICROCODE.

5.8.3 SIMULATION
Used to enable common header files for simulation and hardware. As simulation
and hardware environments SHOULD be kept as similar as possible, the need for
distinguishing them with SIMULATION SHOULD be minimized.

5.8.4 LITTLE_ENDIAN, BIG_ENDIAN
LITTLE_ENDIAN is global setting that specified how packet numeric fields are
accessed. Default is BIG_ENDIAN.

5.9 Conditional Compilation
#if or #ifdef support conditional compilation so that the same source code can
support multiple build options. However, released code MUST NOT include any un-
tested or un-supported options – even if conditionally compiled out by default.

 Microengine Version 2

 15

During pre-release development, it can be helpful to use conditional compilation
to manage code changes. Constructs such as #ifdef NOT_YET_TESTED, or #ifndef
ABOUT_TO_DELETE MAY be used for transient code, but along with #if 0, they MUST
not appear in released code.

6 Assembler Directives

6.1 .reg
All registers MUST be declared using .reg. This SHALL be enforced by enabling
the project’s assembler build setting require register declarations.

For maintainability, register declarations SHOULD be grouped near their use, as
shown in the examples in Appendix UC.

6.1.1 .reg read/write
Transfer register declarations MUST limit the use of the registers to READ or
WRITE when the intent of the register is only for reading or only for writing.
E.g.

6.2 .begin/.end vs .local/.endlocal
When registers are explicitly scoped, the .begin and .end directives SHALL be
used, and the .local/.endlocal directives SHALL NOT be used.

6.3 Use of .begin/.end
Use of globally declared registers (those outside any .begin/.end scope) SHOULD
be minimized. When used, they SHOULD be declared one register per line, followed
by a comment explaining what the register is for. In the microblock environment,
global registers SHALL be used only for microblocks that live on a single
microengine or microengine thread, e.g. Queue Manager.

Note that the assembler tracks the minimal “live range” for registers, so
.begin/.end scoping is not necessary to create correct or optimal code. However,
it allows the assembler to identify bugs when registers are used outside their
intended scope. It also promotes a readable and maintainable code structure.

6.4 .sig
All signals MUST be defined using the .sig assembler directive. This SHALL be
enforced by assembling all code with the Require register declarations build
option. Assigning constant values to signals using .addr directive SHOULD be
avoided.

For maintainability, signal declarations SHOULD be grouped near their use, as
shown in the examples in Appendix UC.

.reg read $atm_header // read only

.reg write $cell_padding // write only

.reg $semaphore // read and write

 Microengine Version 2

 16

6.5 Signals Shared Between Files
When signal definitions are shared between files, the signal number MUST be
#defined as a constant in a shared header, and that constant definition consumed
by the files that need to know about the signal, as shown in this example.

6.6 Double Signals and mask()
Read/Modify/Write operations can result in two signals – the 1st for the read, and
the 2nd for the write. This implementation detail is largely hidden by the
assembler, but is exposed when the programmer manipulates signal numbers
directly. When manipulating signal bits, the mask() directive MUST be used to
hide the possible generation of multiple signals. E.g.

In this example mask(sig_foo) is needed rather than a 1, because the atomic
operation generates 2 signal bits.

6.7 .init
The .init directive SHOULD be used to initialize registers and local memory when
the initial constants are known at build time.

6.8 .import_var
.import_var is available only when running on hardware. Such variables MUST also
have default values available to support SIMULATION. E.g.

In dl_system.h:

In microblock specific header:

/* Define shared signal in .h file */
#define MY_SIGNAL_NUMBER <n>

// Consume “global” signal in .uc file
// while limiting its scope
.begin
 .sig foo
 .addr foo MY_SIGNAL_NUMBER
.end

sram[test_and_inc, …]sig_done[sig_foo] // generates 2 signals
alu[wakeup_sigs, wakeup_sigs, or, (mask(sig_foo)), <<&(sig_foo)]
ctx_arb, defer[1]
local_csr_wr[ACT_CTX_WAKEUP, wakeup_sigs]

/* define simulation default for IPV4_ROUTE_TABLE_BASE */

#ifdef SIMULATION
 #define IPV4_ROUTE_TABLE_BASE 0x10000 // only for simulation
#endif

/* on hardware, set IPV4_ROUTE_TABLE_BASE at load time */

#ifndef SIMULATION
 .import_var IPV4_ROUTE_TABLE_BASE /* will be patched by XScale code */
#endif

 Microengine Version 2

 17

The tool chain defines the following well-known import variables,__CHIP_ID,
__CHIP_REVISION, __UENGINE_ID, as detailed in [PRM].

6.9 .operand_synonym
This deprecated operator MUST NOT be used.

7 Instruction Set

7.1 indirect_ref
The max_nn token SHOULD be used when the indirect_ref token is used to change a
reference count, as described in [PRM]. When max_nn cannot be used, e.g. in
macros, max should be used.

Comments MUST be used to describe use of indirect_ref.

8 Microcode Macros

8.1 Where to use Macros
Microcode assembly language macros SHOULD be used for the following reasons:

1. Support code re-use and ease of programming.
2. Hide complexity, particularly hardware dependencies.
3. Code readability and maintainability.

8.2 Where NOT to use Macros
It is possible to over-use the power of macros by attempting to hide too much
detail. The high-level flow of control SHOULD remain easy to follow, modify, and
maintain:

1. Major decisions in program flow SHOULD be explicit (outside the macro).
2. Branches within the macro SHOULD generally be low-level conditionals, or

branches within a fully-implemented algorithm.
3. Thread parallelism, interaction with other threads and units SHOULD NOT be

hidden.

8.3 Macro API Selection
The easiest to use macros are entirely self-contained, and have general APIs that
allow reuse under a wide variety of conditions. Macro APIs SHOULD be chosen so
that everything that controls how a macro expands is specified in its API.
Macros SHOULD NOT access global variables that do not appear as part of the macro
API.

An exception MAY be made for macros that hide global state from their callers.
The global state is private to the macro or macro sub-system and the caller need
not be burdened with knowing about it. E.g.

 Microengine Version 2

 18

Macro expansion depending on global settings outside the macro API SHALL be
limited to the list of well-known global #defines (above).

When functions can’t be fully contained within a macro, the macro API SHOULD
highlight it. For example, the use of an exception handler label in a macro API.

8.4 Macro Names
Macro names SHALL follow the same syntax rules as register identifiers. I.e.
macro names MUST consist of lower case words and abbreviations separated by
underscores.

The macro name itself MUST consist of the following ordered sequence of character
groups:

1. partition prefix. Identification of the sub-system partition. This will
identify a partitioned API group that represents a communication type,
protocol type, or bus interface type, generally a noun.

2. sub-partition. Optional. This can further identify an operation as working
on specific functionality, generally a noun or adjective.

3. verb. This identifies action being performed by the macro.

I.e. <partition_prefix>_<sub-partition>_<verb>()

Examples:

Macro source will consist of external (API) level macros, as well as internal
utility macros. The intent is that the API level macros will maintain a stable
API, and that the internal utility macros may exist just for internal code
maintainability or may not be appropriate to export. Internal utility macro
names MUST begin with a leading underscore. External API macro names MUST NOT
begin with a leading underscore. Eg.

// @last_element does not appear as a parameter in this macro’s API

#macro tbuf_alloc[out_tbuf_element)
 .reg global @last_element
 .init @last_element 0

 alu[out_tbuf_element, …, @last_element]
 …
#endm

ipv4_proc(...) // process an ip datagram
ipv4_verify(...) // verify an ip header
ipv4_cksum_verify(...) // verify an ip header checksum

#macro example_external_demo()
 …
 _example_internal_demo()
 …
#endm // example_external_demo()

 Microengine Version 2

 19

8.5 Microblock Macro Names

Microblocks MUST have the following externally visible macros

<microblock_name>_init()

<microblock_name>()

E.g. ipfilter_init() and ipfilter()

Any macros defined internally by a microblock MUST follow the naming convention
_<microblock_name>_xxx() .e.g _qm_handle_enqueue(). This allows easy
identification of macros belonging to a microblock in the workbench macro
listing.

The format of the macro MUST be per the examples in Appendix UC.

8.6 Macro Parameters and Arguments
Macro parameters are specified in macro definitions, while the term macro
argument refers to macro invocation.

Parameters and arguments SHOULD be ordered as follows:

1. outputs. Results, or registers modified by the macro, including write
transfer registers.

2. output/inputs. Registers that are read and modified by the macro.
3. inputs. Registers read by the macro (not modified).
4. signals and constant inputs. Tokens representing immediate values used by

the macro, including signal names.
5. labels. Symbolic addresses for exception handlers.
6. optional parameters. Tokens which may or may not be supplied.

Exceptions may be made for APIs with uniform handles. In these cases some of the
macros may treat a parameter as an input, while others may treat it as an output.

In the macro definition, macro input/output GPR parameters SHOULD begin with
out_, io_, or in_.5

CONSTANT parameters and arguments MUST be capitalized.

8.6.1 Macro Parameter Type and Range Checking
Input parameters can be invoked with either variable (register) or CONSTANT
arguments. When a macro fails to build for constant arguments, the build SHOULD
fail with an informative message.

When constant arguments have a limited legal range, macros SHOULD check their
range at build time.

5 In the long run we’d prefer that the assembly tools implement macros as in-line
functions with the ability to declare when parameters are inputs or outputs, such
that the assembler can enforce the declarations. But this out_/_io/_in naming
convention at least helps humans perform that checking.

 Microengine Version 2

 20

Example definition:

Example invocation:

Label parameters MUST be capitalized, as they are technically constants. Label
arguments, on the other hand, MUST be lower case, according to the capitalization
rules and the examples shown here.

Use of labels as macro parameters SHOULD be minimized, as they can make the flow
of control difficult to read. As such, they SHOULD be used primarily for the
addresses of exception handlers.

Macros MUST NOT access global state (e.g. registers) that can be passed in
through the macro API. All parameters passed to a macro SHOULD be used in the
macro. Exceptions (E.g. an API with a common handle for multiple macros) MUST
be documented in the block header for the macro.

8.6.2 Optional Parameters
The assembler allows overloading macro definitions so that the same macro name
may correspond to different macros with different number of parameters. This
allows programmers to build macros with optional parameters. When optional
parameters are used, they MUST be last in the parameter list. Eg.

#macro dinner_bill_pay(io_balance, in_cost, ACCOUNT_NO, \
 OVERDRAFT_HANDLER, BAD_PIN_HANDLER)

 #if isnum(in_cost)
 #if (in_cost > MAX_DINNER_BUDGET)
 #error dinner_bill_pay(in_cost) invalid “in_cost”
 #endif
 #endif

 #if (ACCOUNT_NO > MAX_ACCOUNT_NO)
 #error dinner_bill_pay(…, ACCOUNT_NO, …) invalid “ACCOUNT_NO”
 #endif

 //...
#endm

dinner_bill_pay(account_balance, price, MY_ACCOUNT, wash_dishes#,
 pin_re_enter#)
…
wash_dishes#:
 …
pin_re_enter#:
 …

 Microengine Version 2

 21

8.7 #macro Parentheses
Parentheses – ()’ – MUST be used for all #macro definitions and invocations.
(This is to help distinguish them from native assembly language statements and
array subscripting syntax which use []’s’, particularly in the black-and-white
context of paper printouts.)

8.8 Macro Template
The following template MUST be filled in for each externally shared macro
definition. The OPTIONAL fields MAY be filled in when deemed appropriate, but if
used they MUST appear in the order shown using the labels shown.

// <macro_name>
//
// Description:
//
// Parameters:
// Outputs: <brief description>
// In/Outs: <brief description>
// Inputs: <brief description>
// Constants: <brief description>
// Labels: <brief description>
//
// Size: instruction count (OPTIONAL)
//
// Performance: <cycles – possibly multiple cases or estimates> (RECOMMENDED)
//
// Register Use: <type and quantity of registers used> (OPTIONAL)
//
// Signal Use: (OPTIONAL)
//
// Side effects: <global assumptions, shared state use ($nn, RAM)> (OPTIONAL)
//
// See also: <reference to other libs or doc> (OPTIONAL)
//
// Example Usage: <use of macro in a line of code> (OPTIONAL)
//
#macro <macro_name(args...)>
.begin
 .reg <local register names...>
 <code> ; comments
.end
#endm // <macro_name>

#macro label_read(out_answer, in_address)
 _label_read(out_answer, in_address, no_option)
#endm

#macro label_read(out_answer, in_address, in_option)
 _label_read(out_answer, in_address, in_option)
#endm

#macro __label_read(out_answer, in_address, in_option)
 sram[read, …, in_address, …], in_option
 ….
#endm

 Microengine Version 2

 22

The “Example Usage” field is REQUIRED for public APIs, but is OPTIONAL for
private APIs.

If there are numeric limits on the values of macro parameters (eg. 0-1 or 0-63),
they MUST be documented in the Parameter section of the block header. The range
of constant parameters SHOULD be checked with pre-processor directives. The
range of variable parameters MAY be checked at run-time within PARANOIA code.

9 File Names
File base names MUST follow the same syntax rules as identifiers. I.e. File
names MUST consist of lower case words and abbreviations separated by
underscores.

Header files shared between the assembler, C, C++, .ind files SHALL use the .h
extension.

Microcode SHALL appear only in files using the .uc extension.

Reusable macro sub-systems and libraries called <partition_prefix> SHOULD reside
in a file named <partition_prefix>.uc.

Files containing microblocks MUST have names beginning with a prefix denoting the
block. (e.g. all dispatch loop files SHOULD start with dl_*, all Queue Manager
files SHOULD start with qm_. This makes it easy to find files in the file tab in
the workbench. All files of a block are automatically grouped together)

Large microblocks MAY be split into multiple files. When multiple files are used
to implement a single microblock, they MUST use file names structured as in this
example for the ‘ipfilter’ microblock. E.g. ipfilter.uc and filter.h MAY be
joined by ipfilter_init.uc and ipfilter_util.uc.

10 File Structure

10.1 Summary API Block Comment
Files which export macros MUST have a summary of the exported API in block
comment near the top of the file.

10.2 Header Files
Header (.h) files defining system parameters may be included by either assembly
language microcode or the Micro-C compiler. They may also be included by
assembly, C or C++ source files that run on the Intel ® XScale core, or by .ind
files processed by the Transactor’s C-interpreter. When the same file is used in
several of these realms, it MUST employ only features that are compatible in each
realm. Generally ANSI-C pre-processor constructs with ANSI-C style comments are
universal. Some traps to avoid:

10.2.1 .UC non-ANSI-C Compatible Pre-processor Extensions
These constructs do not work in C, C++, or .ind files
• #macro, #endm
• #define_eval
• #repeat, #while, #endloop
• #for, #endloop

 Microengine Version 2

 23

10.2.2 .UC Missing ANSI-C Pre-processor Features
The Assembler pre-processor does not recognize some common ANSI-C pre-processor
idioms:

10.2.3 Transactor Interpreter (.ind) Pre-processor Limitations
The transactor interpreter does not handle some common ANSI-C pre-processor
idioms:

• #if/#elif/#else/#endif6
• #include
• path command works for simulation, but not hardware mode7

10.3 Fast Code Allowing Breakpoints on Exceptions
Code MUST be structured such that it simultaneously meets cycle budget while
still allowing modification and debugging. One method for optimizing cycle
budgets is to remove the exception code from the fast path. E.g.

This structure allows the nominal fast path to test for an exception without any
branches or aborted cycles from empty defer shadows. The exception case pays the
branch cost. It also allows the programmer to place a breakpoint on the
exception handler without it firing in the normal case. A similar example allows
visibility into when polling loops fail:

The same code MAY be written to allow better visibility into the exception case
without any performance penalty on the nominal case:

6 “transactor interpreter support for #if/#elif/#endif”
7 “WB cmd interpreter rejects PATH command”

#define max(a, b) (a > b ? a : b)

while1#:
 …
 br_bset[status_reg, ERROR_BIT, bad_bit_handler#]
 // fast path code executes here after 1 cycle
 …
br[while1#] ; branch to top of nominal loop

// Exception handlers at bottom of file
//--
bad_bit_handler#:
 // exception case code pays for branch latency
 br[while1#] ; return to fast path

while1#:
 …
 check_ring_status#: ; no space for breakpoint
 br_inp_state[ring_full, check_ring_status#] ;keep looping
 // nominal “ring available” code follows
 …
br[while1#]

 Microengine Version 2

 24

while1#:
 …
 check_ring_status#:
 br_inp_state[ring_full, ring_not_available#] ; jump to exception case
 // nominal “ring available code follows”
 …

br[while1#]
//--
// ring not available exception handler
ring_not_status#:
 // exception case code goes here (if any)
 // breakpoints that fire on exception can go here
 br[check_ring_status#]

 Microengine Version 2

 25

11 Project Configuration and Build

11.1 Require Register Declarations
All new projects MUST have the “Require Register Declarations” feature enabled in
the project build settings.

11.2 Zero Assembler Warnings
DWB and the assembler support multiple verbosity levels for assembler warnings.
If the build produces multiple build warnings, then it is difficult for customers
to find new warnings caused by their changes. For this reason, all released code
MUST NOT produce any assembler warnings at verbosity level 3, and SHOULD NOT
produce any assembler warnings at verbosity level 4.

New code MUST NOT be added to address assembler warnings, rather assembler
directives such as .set and .use SHALL be used.

12 Project Structure

12.1 Sharing Microblocks Across Microcode Projects
Since the source for a microblock may be shared across multiple projects the
source code MUST NOT contain references to other microblocks

For example, for a scratch ring used by the POS receive block to send input
requests to the Queue Manager block, the source code for the Queue Manager MUST
only contain references to QM_ENQUEUE_RING_IN and the POS Receive block MUST only
contain references to POS_RING_OUT. The actual values for QM_ENQUEUE_RING_IN and
POS_RING_OUT MUST be defined to the same value in the system header file
“dl_system.h” which is project specific.

This allows the same queue manager code to be reused in a different project where
it may accept enqueue requests from a different microblock e.g. Ipv4.

 Microengine Version 2

 26

13 Appendix H: Example Header File

#ifndef DL_SYSTEM_H
#define DL_SYSTEM_H

/***
 Intel Proprietary

 Copyright (c) 1998-2002 By Intel Corporation. All rights reserved.
 No part of this program or publication may be reproduced, transmitted,
 transcribed, stored in a retrieval system, or translated into any language
 or computer language in any form or by any means, electronic, mechanical,
 magnetic, optical, chemical, manual, or otherwise, without the prior
 written permission of:
 Intel Corporation
 2200 Mission College Blvd.
 Santa Clara, CA 95052-8119
***/

/*
 * dl_system.h
 * System-wide Definitions used at Dispatch Loop Level (1-line abstract)
 */

/*
 * <Top level contents of this file, including exported APIs,
 * assumptions about how the file is used etc.>
 */

/* Global Definitions */

#define MEANING_OF_LIFE 42 /* <reason for global definition> */

#endif /* DL_SYSTEM_H */

14 Appendix UC: Example Assembly File
#ifndef MICROBLOCK_STYLE_UC
#define MICROBLOCK_STYLE_UC 1

/***
 Intel Proprietary

 Copyright (c) 1998-2002 By Intel Corporation. All rights reserved.
 No part of this program or publication may be reproduced, transmited,
 transcribed, stored in a retrieval system, or translated into any language
 or computer language in any form or by any means, electronic, mechanical,
 magnetic, optical, chemical, manual, or otherwise, without the prior
 written permission of:
 Intel Corporation
 2200 Mission College Blvd.
 Santa Clara, CA 95052-8119
***/

// microblock_style.uc
// Demonstrate Assembly Language Coding Standards (1 line file abstract)

// Exported APIs:
// macro_typical_show(io_sum, INCREMENT, EXCEPTION_HANDLER)

 Microengine Version 2

 27

// long_arg_list_show(out_answer, CONSTANT_A, CONSTANT_B, CONSTANT_C,
// CONSTANT_D, CONSTANT_E)

// Assumptions:
// This file may be included by others (and thus uses header guards)

//--
// Included files: (include only those files necessary to build this file)
#include "dl_system.h" // Dispatch Loop level system definitions

//--
// File-wide global definitions

// The Size of meta data (32) in SRAM, expressed in Long words.
// (ie <<2 will give bytes).
#define META_SIZE_LW 0x8

//--
// Global Registers (if any)

.reg example_global_register // Tell briefly what this register is for.

//--
// Global Signals (if any)

.sig example_global_signal // Tell briefly what this signal is for.

//--
// <macro definition>

// <macro_name>
//
// Description:
//
// Parameters:
// Outputs: <brief description>
// In/Outs: <brief description>
// Inputs: <brief description>
// Constants: <brief description>
// Labels: <brief description>
//
// Size: instruction count (OPTIONAL)
//
// Performance: <cycles - possibly multiple cases or estimates> (RECOMMENDED)
//
// Register Use: <type and quantity of registers used> (OPTIONAL)
//
// Signal Use: (OPTIONAL)
//
// Side effects: <global assumptions, shared state use ($nn, RAM)> (OPTIONAL)
//
// See also: <reference to other libs or doc> (OPTIONAL)
//
// Example Usage: <use of macro in a line of code> (OPTIONAL)
//
#macro macro_typical_show(io_sum, in_count, INCREMENT, EXCEPTION_HANDLER)
.begin
 .reg _local_temp, address, $output_data
 .sig _local_sig
 immed[_local_temp, 0x42]
 immed[address, 0]

 Microengine Version 2

 28

 #ifdef _LOCAL_CONSTANT
 #error "_LOCAL_CONSTANT is already defined" (_LOCAL_CONSTANT)
 #endif
 #define _LOCAL_CONSTANT 0x4

 alu[$output_data, --, b, _local_temp]
 sram[write, $output_data, address, count, 1], ctx_swap[_local_sig], defer[2]
 alu[_local_temp, _local_temp, +, INCREMENT]; _local_temp +=
INCREMENT
 alu[_local_temp, _local_temp, +, in_count]; _local_temp += in_count

 alu[io_sum, io_sum, +, _local_temp]
 alu[--, io_sum, -, _LOCAL_CONSTANT]
 bge[EXCEPTION_HANDLER]

 // cleanup name space.
 #undef _LOCAL_CONSTANT
.end
#endm // <macro_name>

#macro long_arg_list_show(out_answer, CONSTANT_A, CONSTANT_B, CONSTANT_C, \
 CONSTANT_D, CONSTANT_E)
 alu[out_answer, out_answer, xor, CONSTANT_A]
 alu[out_answer, out_answer, xor, CONSTANT_B]
 alu[out_answer, out_answer, xor, CONSTANT_C]
 alu[out_answer, out_answer, xor, CONSTANT_D]
 alu[out_answer, out_answer, xor, CONSTANT_E]
#endm

//--
// Main entry point -- Code begins execution here.
//--
main#:
 .reg count
 // run time initialization
 immed[example_global_register, 0]
 immed[count, 0]
//--
while1#:
 macro_typical_show(example_global_register, count, 3, exception_handler#)
 long_arg_list_show(example_global_register, 0x00000055, 0x000000AA,
0x00000088, 0x00000011, 0x42)
 alu[count, count, +, 1]
 br_bset[count, 0, bad_bit_handler#]
 br[while1#]
//--
bad_bit_handler#:
 br[while1#]
//--
exception_handler#:
 immed[example_global_register, 0]
 br[while1#]
//--
#endif /* MICROBLOCK_STYLE_UC */

