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Abstract 
Intel provides an integrated tool suite to developers to allow them to design, 
develop, test and deploy applications based on the Intel network processors. 
This tool suite consists primarily of a assembler/compiler toolchain for the 
Microengine Version 2 (MEv2) target, a cycle-accurate simulation environment, 
and a programming framework for writing portable and reusable code. 
The microengine target of an Intel network processor has a non-traditional, highly 
parallel architecture.  It is so designed to address the unique challenges of 
network processing at high speeds.  The operating environment is such that 
application performance is obtained by a complex balance of tradeoffs: 
sequential vs. parallel processing, memory and I/O latency hiding, and 
communication bus load balancing. 
As such, the Microengine C compiler (also referred to as “the compiler” in this 
document) has special considerations for those who would program with it versus 
an ANSI C compiler designed for a general-purpose processor.  This document 
outlines many software architecture and code performance topics under this 
heading.  Some of the sections describe pitfalls - resulting in incorrect functioning 
of the code - for a new Microengine C programmer, while others hold tips for 
improving compiler optimization.  Finally, this document includes discussion on 
best known methods for Microengine C debugging, such as understanding the 
live range information provided by the compiler and the run-time tools provided 
by the Developer’s Workbench.  
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Overview 

Purpose and Scope of this Document 
The purpose of this document is to get new Microengine C programmers writing 
correct, functional and optimized code quickly.  To do so, the document will cover 
three main topics.  First, it will highlight the potential pitfalls for ANSI C 
programmers new to programming network processors.  These are topics for 
which unaware programmers will unwittingly prompt the compiler to generate 
incorrect code in relation to their actual intent.  Second, the document will 
discuss tips to help the programmer elicit the best possible code from the 
compiler.  This class of topics will be for the programmer to keep in mind when 
coding, though not implementing them will not result incorrect code, simply 
suboptimial.  And finally, the document will describe the compile-time and run-
time features of the network processor development tools invaluable for a 
programmer to debug his or her Microengine code.  These features are part of 
both the compiler and the Developer’s Workbench GUI. 
It should be noted that readers of this document should already have a strong 
understanding of the network processor architecture as well as a basic 
knowledge of Microengine C syntax.  If not, please consult the latest appropriate 
Hardware Reference Manuals and Programmer Reference Manuals for the 
former and the Microengine C Language Support Reference Manual for the 
latter. 
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Definitions/Acronyms 

Term Definition 
U32 “unsigned int” 
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Software Implementation Considerations 
The Microengine C compiler provides a high-level-language programming environment 
for the network processors to reduce application development time and reduce the need 
for specialized knowledge.  That said, there are specific considerations a Microengine C 
programmer needs to be made aware of to program with confidence in terms of correct 
Microengine behavior and performance.  In fact, many of the issues in this section do 
not exist the compiler of a general-purpose processor and therefore might not be 
obvious on first look. 

Variable Live Range Analysis 
Register allocation and other compiler optimizations depend on having correct live 
range information for register variables.  A live range of a register variable is the period 
between the definition of this variable and the last use of the defined value.  When a 
register variable has multiple definitions in the program and each definition has 
sequential reads, multiple live ranges are assigned to the same variable.  It follows that 
multiple reads in the middle of live range are fine, but a write into the same variable in 
the middle of a live range will split it.   
The compiler automatically calculates the live range of a register variable through code 
analysis with the fact that a live range always starts with a write into the variable and 
terminates at the point where there is no subsequent read of this written value (i.e. the 
last read point).  A register variable has the same physical register assigned to it for the 
span of one live range; however, it could have different physical registers assigned to it 
across different live ranges.   
(For more information on how the compiler calculates variable live ranges, please see 
the Microengine C Compiler Support Reference Manual.) 
There are times, however, where the compiler will not be able to calculate the live range 
of a variable correctly.  Specifically, the programmer will have to intervene when a 
variable is implicitly read or written at a point in the code where the variable is not 
referred to by name.  For example, some asynchronous memory operations or event 
signaling can be done in such a manner.  In these cases, the compiler has no way to 
figure out the true start or end of the live range through code inspection.  This situation 
can lead to suboptimal register allocation, or worse, incorrect code generation. 
There are some major code constructs that merit the use of the __implicit_read() and 
__implicit_write() intrinsic functions to help the compiler with live range analysis.  These 
intrinsics do not generate any new code per se, but rather, allow the programmer to 
manually extend or shorten the live range of a variable by providing a clue to the 
compiler as to when a register or signal is being accessed outside of the scope of a 
particular thread’s code.  The following sections provide several specific examples as to 
when the user needs to intervene in live range analysis. 
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Asynchronous I/O operations 
Asynchronous I/O operations are those that read or write into a variable not explicitly 
under compiler control.  Such situations arise mostly commonly with the use of the 
“sig_done” token with memory intrinsics, but also in cases where a signal or transfer 
register is defined on one Microengine but accessed from another. 

Example 1: 
SIGNAL sig1; 

 SIGNAL_PAIR sig_pair; 
 __declspec(sram_read_reg) int sr1[4]; 
 __declspec(sram_read_reg) int sr2[4]; 
 sram_read(sr1, 0, 4, sig_done, &sig1); 
 dram_read_S(sr2, 0, 4, sig_done, &sig_pair); 
 wait_for_all(&sig1, &sig_pair); 
 sum += sr1[0] + sr2[0]; 

 
At first glance, nothing seems amiss, but in reality the compiler will determine that the 
user is not using the entirety of the buffers sr1 and sr2 and truncate the live range of 
individual members of an aggregate accordingly.  That is, we write into these variables 
with the sram and dram reads, but do not consequently read all of the array elements 
(in this snippet, only sr1[0] and sr2[0] are read).  So, it may attempt to conserve 
registers by assigning overlapping register ranges to sr1 and sr2.  For example, sram 
transfer registers $0 through $3 may be assigned to sr1, and $1 through $4 may be 
assigned to sr2. 
This is correct if the two memory reads complete in order, since the sum operation only 
uses sr1[0] and sr2[0], which are $0 and $1, respectively.  But if the sram_read() and 
dram_read_S() operations complete out of order, then this assignment will cause 
problems.  Specifically, when the dram_read_S() operation completes, the data the user 
needs will be read into $1. But when the sram_read() operation completes, the contents 
of $1 will be overwritten by the four-word read operation starting at $0.  In short, the 
compiler does not rely on characteristics of specific implementations of the network 
processor, but rather makes decisions based upon the general network processor 
architecture and the syntax of the C language. 
The user must avoid this situation by informing the compiler that the entirety of both 
transfer buffers is being used with the __implicit_read() intrinsic. 

wait_for_all(&sig1, &sig_pair); 
 sum += sr1[0] + sr2[0]; 
 __implicit_read(&sr1);  
 __implicit_read(&sr2); 
In this way, the compiler will extend the live range of all array elements of sr1 and sr2, 
and thereby not overlap the register allocation. 
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Of course, if the example above only included the one asynchronous sram_read and 
wait_for_all pair, there would be no problem.  It is usually only in the presence of 
multiple asynchronous memory operations could there be a problem.  But as a general 
rule of thumb, when using a read memory intrinsic with the sig_done token, a user 
should place an __implicit_read after the matching wait_for_any or wait_for_all to 
manually extend the live range of the memory variable to the correct point in the code. 
Other asynchronous reads and writes to transfer registers or signal variables can occur 
under the following situations: 

• A signal or transfer register that is defined on a remote ME and used on 
local ME - the definition/write is not visible from the local program 

• A signal or transfer register is defined locally and used on a remote ME - 
the reference/read is not visible from the local program 

• Special chip hardware that is designed to “push” data into a transfer 
register or send a signal, such as the receive state machine of the MSF 

Most I/O instructions can overwrite the ME/CTX/XFER through the use of the 
indirect_ref token, causing the signal and/or transfer register to be used in the operation 
another Microengine or context – and therefore must be defined there.  Additionally, the 
use of the reflector hardware implicitly will read or write from the transfer register of one 
thread to another.  In the case of signal variables, asynchronous “reads” or “writes” can 
also be the result of using local or chip-wide thread signaling mechanisms. 
 
Note: A “write” of a signal variable is defined to be the point at which a 
programmer asks for a signal to be generated from a chip resource, such as a 
memory controller.  A “read” of a signal variable is defined to be the point 
at which a programmer waits on a signal to return (ctx_arb), or branches on a 
signal (br_signal or br_!signal). 
 
 

Referring to a variable indirectly 
Normally, all access to a variable declared to be in a register or signal storage class in 
Microengine C is done by explicitly referencing the variable name.  For example, one 
can declare a variable in an sram transfer register and assign it a value with the 
following code: 

__declspec(sram_write_reg) U32 wr_xfer0; 
 wr_xfer0 = 0x1234; 
But access to some types of variables can be done without referring to the variable’s 
name through special hardware support.  Some of the software techniques used in 
conjunction with this support is used for performance reasons, while in some cases, it is 
actually required to perform a certain hardware function.  However, these 
hardware/software constructs hold a special challenge for the compiler to correctly 
determine the live range of the variables in question. 
The following cases fall into this category: 
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• A signal or transfer register is assigned an absolute register number and 
read/written without referring to the symbolic name 

• A signal has the signal number exposed through signals() or 
signal_number() and read/written without referring to the symbolic name - 
for example, though local_csr_wr 

• A xfer register has address taken and used in indexing reference through 
T_INDEX 

• A NN register that being referenced indirectly though NN register ring 

• A transfer register is read or written or a signal is sent via the cap 
calculated addressing instruction from another thread 

Example 2: 
__declspec(sram_write_reg) U32 wbuf[4]; 
__declspec(scratch) U32 sc_fun[16]; 
U32 ti0 = ((__ctx()<<4) | __xfer_reg_number(wbuf)) << 2; 
__asm { 
 local_csr_wr[T_INDEX, ti0] 
 nop 
 nop 
 nop 
 alu[*$index++, --, B, sc_fun[index]] 
 alu[*$index++, --, B, sc_fun[index+1]] 
 alu[*$index++, --, B, sc_fun[index+2]] 
 alu[*$index++, --, B, sc_fun[index+3]] 
} 
sram_write(wbuf, addr, 4, ctx_swap, &sig); 
 

In this case, the compiler would make the determination that the live range of the wbuf 
array elements would start and end at the sram_write call.  That is, it would only 
determine that wbuf was being read – as a result of the sram_write call, but not ever 
written into – as the write happens through the use of the indirect addressing 
capabilities of the hardware.  Consequently, the compiler would only allocate a physical 
register to wbuf on the one line, missing the write into wbuf via the TINDEX CSR. 
The correct course of action is to place an __implicit_write() intrinsic before the point  of 
writing into wbuf indirectly: 

__implicit_write(wbuf); 
__asm { 
 local_csr_wr[TINDEX, wbuf] 
 nop 
 // etc.. 

   10



Microengine C Compiler Coding Considerations 

Now the live range of wbuf will start at the __implicit_write call and correct register 
allocation will take place. 

Example 3: 
SIGNAL sigRxEvent;  
__declspec(sram_read_reg) rsw_pos_phy_t rsw[2]; 
int rxEventAddr  = __signal_number(&sigRxEvent); 
int rsw0Addr   = __xfer_reg_number(&(rsw[0])); 
rxFreeListReg  = rsw0Addr | (thread << THREAD_BITS) | \ 
(this_me << ME_NUM_BITS) | (rxEventAddr << SIGNAL_NUM_BITS); 
// Add the thread to the receive freelist 
AddThreadToFreelist(rxFreeListReg); 
// Wait for signal from MSF receive hardware 
wait_for_all(&sigRxEvent); 
 

Another alternative to using the __implicit_write() and __implicit_read() intrinsics is use 
of the volatile keyword.  The volatile keyword essentially extends the live range of the 
variable through the entirety of the program, bypassing live range issues altogether. 
However, this method is not recommended in general for variables to be allocated to 
registers or local memory as these scarce resources will be eaten up very quickly this 
way!  That said, for variables that truly need a live range over the whole program, 
declaring them to be volatile (as in the case of the rsw variable in the above example) is 
the alternative to placing a pair of __implicit_write() and __implicit_read() at the 
beginning and end of a program.  
So in the example above, declaring the signal and transfer registers used with the 
receive hardware to be volatile assures correct code behavior. 

volatile SIGNAL sig_RxEvent 
volatile __declspec(sram_read_reg) rsw_pos_phy_t rsw[2]; 

Memory Intrinsics with Variable ref_cnt 
The various memory intrinsics provide unfettered access to all of the special features 
provided by the memory controllers.  For intrinsics that take a “count” parameter, it is 
preferred that a programmer uses a constant reference count in the arguments.  If not, 
the compiler will generate a memory reference with an indirect_ref token, which may or 
may not lead to the desired results.  The problem is that the compiler does not know the 
exact size of the transfer register buffer to be used in the operation and will make a 
conservative guess of one without programmer intervention. 
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Example 4: 
void main() 
{ 

__declspec(sram_read_reg) mdata[4]; 
unsigned int data_cnt; 
mdata[0] = 0x29; 
mdata[1] = 0x39; 
mdata[2] = 0x49; 
mdata[3] = 0x59; 
// Assume data_cnt has not been optimized to a constant 
sram_write(mdata, addr, data_cnt, ctx_swap, sig_srwr); 
// More code… 

 } 
 
When the compiler calculates live range for the mdata array elements, it makes the 
conservative guess that only mdata[0] is being read with the sram_write intrinsic.  
Unless mdata[1], mdata[2] and mdata[3] are read later by another instruction, their live 
range will begin and end with their assignment, and unknown data will be written to 
sram. 
There are two courses of action one can take.  One is to use an __implicit_read to 
extend the live range of all members of the mdata array: 
 sram_write(mdata, addr, data_cnt, ctx_swap, sig_srwr); 
 __implicit_read(mdata); 
 
The other option is to use the indirect reference form of the memory intrinsic: 

srsw.refcount = data_cnt; 
srsw_ind.ov_ref_count =1; 
sram_write_ind(mdata, addr, 4, srsw_ind, ctx_swap, sig_srwr); 
 

The third parameter is the maximum number of longwords that could be written and 
must be a constant.  The compiler will use that value as the potential length of data 
buffer used in the operation – even if at run-time less longwords are actually written to 
memory. 
Finally, note that the -Qperfinfo=128 command line option will warn a user if the 
compiler cannot determine the size of a memory option and needs to generate an 
indirect_ref token.  An example of the output is below: 

myfile.c(45): warning: sram_write(): Size of data access cannot be 
determined at compile-time. __implicit_read/write may be needed to 
protect xfer buffer. Use of sram_write_ind() is recommended instead. 
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Again, the aim of this warning is to remind the user to more precisely provide the 
liverange information for the variable used in the intrinsic.  It is recommended that this 
option be used for all compilations. 

Live Range Summary 
The live range of a variable starts at the first point in the code it is written to and ends at 
the last read.  In the case of signal variables, this should be interpreted as from when 
one asks for a signal to when that signal is consumed. 
In special cases, the compiler cannot determine the live range of a variable correctly by 
itself; the most common being asynchronous I/O references and access to variables 
through indirect addressing.  For these instances, the programmer needs to intervene 
with the use of either the __implicit_read() or __implicit_write() intrinsics or the volatile 
keyword to extend or truncate the live range of the variables in question. 

Data Alignment 
The question of how and where data is placed into various storage types is of utmost 
importance for two reasons.  First is to make the most efficient use of a given, and 
presumably scarce, storage type.  And the second is to guarantee the correct behavior 
of the compiler accessing variables indirectly (i.e. through pointers) or data not allocated 
by the compiler (i.e. packet data off the wire). 
In short, misunderstanding how the compiler allocates variables to a storage type and 
with what alignment not only has performance implications, but could also affect the 
proper behavior of your program. 
As such, one should first review the sections on alignment in the Microengine C 
Compiler Reference Manual.  Then consider the examples in the remainder of this 
section: 

Example 5: 
typedef struct  
{ 
 char member1; 
 int member2; 
} data1_t; 

__declspec(scratch) data1_t good_data; 
 

The natural alignment for the data1_t structure is on a four-byte boundary because the 
compiler will place the head of a structure aligned on a boundary relative to its storage 
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type.  Large objects in DRAM (>= sixteen bytes) will be aligned on a sixteen-byte 
boundary while all others, including anything declared in scratch, sram, local memory or 
any type of registers will be aligned on a four-byte boundary. 
In addition, the compiler adds padding between elements to maintain individual member 
natural alignments.  In this case, three bytes of padding will be inserted in between 
member1 and member2 so that member2 will fall on a four-byte boundary (since it is an 
“int”).   
The resulting good_data variable laid out in scratch memory like this: 

bytes  
0 member1 
1 
 

3 

padding1 

 4 
 
 

7 

member2 

 
For a programmer, there could be two issues here.  One is the insertion of three bytes 
of padding between member1 and member2, and two is the potential performance 
penalty for accessing a structure on a boundary less than the address granularity of the 
storage type.  Although in this example the structure is aligned well relative to its 
storage type (scratch), there are examples in the following sections to discuss this 
concern. 

Packing Structures 
Of course, the compiler adds the padding to improve structure access performance, but 
the most obvious issue with the compiler adding padding to a declared structure is that 
the size of the structure will be increased accordingly.  This might not be a big deal 
when the structure is being allocated to a larger storage area like DRAM, but if this 
structure is destined for registers, it could lead to running out of a storage resource 
prematurely.   
Another, less obvious issue with the compiler adding padding to a structure is that 
overlaying this structure type on top of non-compiler allocated data will result in 
incorrect access to members of that structure. 
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Example 6: 
 typedef struct 
 { 
  U32 mac_addr[3]; 
  U16 prot_type; 
  U32 src_addr; 
  U32 dest_addr; 
 } hdr_t; 
 __declspec(dram) long long *p_packet; 
 __declspec(dram) hdr_t *p_header; 
 // Assign p_packet a packet buffer address. 
 // Then receive a packet into the RBUF. 

dram_rbuf_read_ind(p_packet, … ); 
 p_header = (__declspec(dram) hdr_t *) p_packet; 
 if(p_header->dest_addr == OK_ADDRESS) { … } 
 
Consider that the compiler will add two bytes of padding between prot_type and 
src_addr to make sure that scr_addr is aligned on a four-byte address.  When mapped 
onto the packet data from the RBUF, there will be some misalignment of structure 
members. 
 

A hdr_t data structure as the compiler is expecting it: 
bytes 0                                       

11      
12       13 14      

15 
16                 19 20                   24 

 mac_addr prot_type padding src_addr dest_addr 

 
Actual header from a packet moved from the RBUF to DRAM (no padding!): 
bytes 0                                       

11 
12       13 14               17 18                 21 

 mac_addr prot_type src_addr dest_addr 

 
From the above diagrams, it can be seen that accessing src_addr and dest_addr using 
the hdr_t pointer will return incorrect data.  Specifically, p_header->src_addr will return 
the last two bytes of the actual src_addr and the first two of the actual dest_addr 
concatenated and p_header->dest_addr will return the last two bytes of the actual 
dest_addr and the next two bytes of the rest of the packet. 
The compiler provides a means for the programmer to specify that no padding should 
be inserted between bit fields or between any members of a structure.  Specifically the 
__declspec keywords of “packed” and “packed_bits” provide this functionality.  In the 
example above, a programmer would do well to declare hdr_t as such: 
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typedef struct __declspec(packed) 

 { 
  U32 mac_addr[3]; 
  U16 prot_type; 
  U32 src_addr; 
  U32 dest_addr; 
 } hdr_t; 

 
Now the compiler will not insert any padding between prot_type and scr_addr, matching 
the “real”, non-compiler maintained data from the wire.  Access to all members of the 
structure will be logically successful. 
Of course, one of the drawbacks to packing data structures is that accessing members 
that cross an addressing boundary of the storage type (i.e. 4-byte for registers, SRAM 
and SCRATCH; 8-byte for DRAM) will incur extra overhead of bit extraction and/or 
concatenation and, possibly the reading/writing of extra memory locations.  However, it 
is a necessary technique for the sorts of situations mentioned above. 

Overriding Natural Alignment 
Consider the application of a __declspec(packed) modifier to the structure of Example 
5.  Now, since padding between member1 and member2 will be removed, access to the 
second member of this structure will most likely lead to less than optimized code.  The 
compiler will need to account for the fact that “member2” will span two 32-bit words.  
Still, access to the head of the structure (say, as part of an array) will be aligned to the 
storage type. 
However, there are cases where access to both the structure members and the whole 
structure itself is not optimized.  This is most likely to happen when dealing with packed 
structures full of small elements, as in the following example:   

Example 7 
typedef struct __declspec(packed) 
{ 
 char a_count; 
 short s_count; 
 char b_count; 
} count_t; 
__declspec(sram1) count_t *pkt_count1; 
__declspec(sram2) count_t *pkt_count2; 
… // Assign values to pkt_count1; 
*pkt_count2 = *pkt_count1; 
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Since the natural alignment of this structure is on a byte boundary, the compiler will 
make no assumptions about the position of the structure in memory.  Consequently, it 
will generate code for the copy operation that will take into account the fact that the 
structure might span across two memory words.  Structure alignment is not optimized 
automatically because of the possibility that the structure will be embedded inside an 
array or another structure, calling for the use of the structure’s natural alignment. 
However, a user can override the default alignment of a basic or aggregated data type 
using the “aligned(n)” __declspec modifier.  If the unmodified structure’s natural 
alignment is less than the addressable granularity of its storage region, the performance 
of whole structure copies can be improved by increasing the alignment to at least this 
granularity.  That is, if the structure is being allocated to registers, SCRATCH or SRAM 
memories, performance would be improved if the structure was aligned on at least a 
four-byte boundary, and similarly on an eight-byte boundary for DRAM.  To return to the 
original example, a better way to typedef the count_t structure would be: 

typedef struct __declspec(packed aligned(4)) 
{ 
 char a_count; 
 short s_count; 
 char b_count; 
} count_t; 
*pkt_count2 = *pkt_count1; // copy performance is improved 

More information on the syntax of the aligned(n) modified can be found in the 
Microengine C Compiler Support Reference Manual. 

Efficient Structure Access 
Structures make for convenient vessels to access related pieces of data.  With 
gratuitous use of structures in most Microengine C programs, the compiler absolutely 
needs to be able to access to fields of a structure (including bit fields) efficiently.  That 
said, there are a few things for a Microengine C programmer to keep in mind when 
designing and accessing data structures to help the compiler do so. 

Sizing of Structure Members 
Structure members with the following characteristics will produce the most efficient 
access because of the sizing of registers in the network processors: 

• A multiple of four bytes in size 

• Fall on a four byte offset from the start of a structure 

• Do not cross a 4 byte boundary 
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For members lacking in one or more of these conditions, the compiler will need to 
generate extra instructions or memory accesses to extract and/or concatenate data 
from one or more registers every time this data is referenced.  The following examples 
will demonstrate and discuss the repercussions for variables in this category.   

Example 8: 
 typedef struct __declspec(packed) 

{ 
        char mem1; 
        int    mem2; 
        int    mem3; 
} mem_test_t; 

     typedef struct 
     { 
             int    mem2; 
             int    mem3; 
             char mem1; 
     } mem_test_t; 

 
The structure on the left does not follow the three guidelines above for any of its 
members.  In fact, the members with the most overhead for access are mem2 and 
mem3, since both do not start on a four-byte offset and both cross a four-byte boundary 
(mem2 lies between byte offset 2 and 5, and mem3 lies between byte offset 6 and 9).  
The first member, mem1, is not a multiple of four bytes in size, but is an example of the 
second best structure construct.  Members, including bit fields, of byte multiples in size 
(8, 16 or 24 bits) that follow the other two edicts only require a single ld_field instruction 
to operate on such data.  And although not in this example, note that bit fields between 
1 and 7 bits can be extracted with a single instruction with immediate mask.  However 
an insert will take 2 instructions. 
Of course, by default (i.e. without the packed keyword), the compiler would have placed 
24 bits of padding between mem1 and mem2 in order to align mem2 and mem3 on their 
natural four-byte boundaries.  This would have yielded optimal access to all members of 
those sizes in the structure at the cost of restrictions on how the programmer could use 
this structure with non-compiler maintained data (see Section 2.2).  In either case, the 
total size of the structure would still be 12 bytes.   
The data structure on the right allows the best possible access for structure members of 
those sizes, simply by reordering their declared positions.  Here, all members are 
aligned on byte boundaries and are of proper sizing to warrant optimal treatment by the 
compiler, similar to a non-packed version of the first structure – but without the padding 
between members. 
Of course, a programmer can create structures with any member sizing and order and 
the compiler will do its best to optimize access, but the best possible performance will 
be obtained with a little forethought upfront.  For some, total structure size or pad-less 
data will be a concern and so packing structure members will be necessary at the cost 
of a few extra instructions to pack and unpack data.  But if at all possible, a software 
architect should adhere to the three guidelines concerning structure layout presented 
above.   
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The Use of Unions 
As an alternate, or perhaps a supplement to the structure member sizing strategies 
outlined in the previous section, unions can be used to streamline access to several 
structure members at once.  This can be critically important if your structure resides in a 
high latency memory. 

Example 9: 
 typedef struct { 
  union 
  { 
   struct { 
    U32 a1:16; 
    U32 a2:16; 
    U32 a3:16; 
    U32 a4:16; 
   } a_params; 
   struct { 
    U32 b1; 
    U32 b2; 
   } b_params; 
  }; 
 } params_t; 
 volatile __declspec(sram) params_t param_set; 
 void main() 
 { 
  volatile U32 p1 = 0x1111; 
  volatile U32 p2 = 0x2222; 
  volatile U32 p3 = 0x3333; 
  volatile U32 p4 = 0x4444; 
  // Assign each member separately 
  param_set.a_params.a1 = p1; 
  param_set.a_params.a2 = p2; 
  param_set.a_params.a3 = p3; 
  param_set.a_params.a4 = p4; 

// Format data for a1 and a2 and write into b1  
param_set.b_params.b1 = (p1<<16) | p2; 
// Format data for a3 and a4 and write into b2 
param_set.b_params.b2 = (p3<<16) | p4; 

 } 
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Although the compiler may be able to figure out how to combine the “a_params” code 
above, it might generate four separate writes to sram, one for each of the a_params’ 
assignment statements: 

/******/    param_set.a_params.a1 = p1; 
alu_shf[$0, --, B, a6, <<16] 
sram[write, $0, a3, 0, 1], ctx_swap[s2] 
/******/    param_set.a_params.a2 = p2; 
alu[$0, --, B, b7] 
sram[write, $0, a3, 0, 1], ctx_swap[s2] 
/******/    param_set.a_params.a3 = p3; 
alu_shf[$0, --, B, a7, <<16] 
sram[write, $0, a3, 4, 1], ctx_swap[s2] 
/******/    param_set.a_params.a4 = p4; 
alu[$0, --, B, b0] 
sram[write, $0, a3, 4, 1], ctx_swap[s2] 

A less straightforward example would include other code between each assignment, 
making it more difficult for the compiler to even consider any memory access 
optimizations. 
In any case, a reduction in memory accesses is guaranteed through the use of the 
union in the params_t structure.  Here, the four 16-bit a_params members are unioned 
with two 32-bit b_params members.  By using the later as an alias to write into the 
former, four sram writes become two.  Of course, the programmer will need to format 
the data “by-hand”, explicitly performing the shifting and logical bit operations in code 
versus letting the compiler generate such code automatically.  But the tradeoff in code 
complexity to save accesses to memory is well worth it – just be sure to comment 
appropriately to avoid confusion. 

/******/    param_set.b_params.b1 = (p1<<16) | p2; 
alu_shf[$0, b7, OR, a6, <<16] 
sram[write, $0, a3, 0, 1], ctx_swap[s1] 
/******/    param_set.b_params.b2 = (p3<<16) | p4; 
alu_shf[$0, b0, OR, a7, <<16] 
sram[write, $0, a3, 4, 1], ctx_swap[s1] 

Miscellaneous Considerations 
These tips did not fall under one of the main headings, but are helpful to maximize code 
performance. 
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Signed vs. Unsigned Integers 
The various basic datatypes, such as integers (“int”) are, by default, signed entities.  In 
some cases, a small performance benefit can be derived by using the unsigned 
versions wherever possible, especially in bitfield structs.  Otherwise the compiler may 
generate unnecessary ASR instructions to handle sign extension when extracting fields. 

Example 10: 
typedef struct three_fields 
{ 
 int a1:16; 
 int b2:  8; 
 int c3:  8; 
} three_fields_t; 
int result; 
three_fields_t my_var; 

result = my_var.b2; // implemented with 2 instr, ASR, ALU_SHF 
 
Instead, the preferred method would be to declare three_fields_t with unsigned integer 
bit fields as such: 
 

typedef struct three_fields 
{ 
 unsigned int a1:16; 
 unsigned int b2:  8; 
 unsigned int c3:  8; 
} three_fields_t; 

 
And so the following access to a field of such a structure will only take 1 instruction, 
instead of two: 
result = my_var.b2; // implemented with 1 instr, LD_FIELD 
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Tuning Established Code 
After following the good programming practices expounded by the Microengine C 
Compiler Support Reference Manual and this document, a programmer should be able 
to program logically sound code for the network processors.  This next section aims to 
bring the programmer to the next level in terms of coding conventions that will lead to 
best compiler, and hence, best program performance.  It will highlight techniques to 
handle register spillage, to improve access to variables in memory, to optimize function 
calls and more. 

Register Spillage 
Not all register candidate variables will be allocated to actual registers by the compiler 
either because there simply are not enough registers to handle all variables live at a 
certain point in the code or because the address of a variable was taken.  In such a 
case, the default behavior of the compiler is to automatically “spill” these variables to 
one of the following resources based upon the –Qspill=n command line option: 

- Next Neighbor registers 
- Local Memory 
- SRAM Memory 

Please see the compiler reference manual for more information on when the compiler 
will spill variables, as well as the –Qspill command line option. 
When register spillage occurs, the compiler will provide the information of which 
variables were spilled, and to which storage type if the –Qperfinfo=1 command line 
option is used.  In addition, the –Qliveinfo option provides liveness information for all 
register variables in the program.  More information on these options can be found in 
the compiler reference manual and in following sections of this document. 

Handling Register Spillage 
One option for the programmer is to turn off the automatic spillage feature of the 
compiler altogether using –Qspill.  In this case, if the compiler cannot allocate all 
variables without explicit storage declarations to registers, the compilation will fail and 
the programmer will have to perform the rearrangement of data by hand.  This is a good 
option if you want the programmer to have absolute control over the storage regions for 
all variables at all times.  However, there are less severe options that can give a 
variable-by-variable or code section by code section level of control for the compiler’s 
opportunities for register spillage.  
First, when a programmer absolutely needs an individual variable to be placed in a 
register at all times in the program (ex. frequently accessed variables), the programmer 
can explicitly declare the variable with a gp_reg storage type. 
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 Example 11: 
unsigned int count1;     // a register candidate 

 __declspec(gp_reg) unsigned int count2;  // must go to a GPR! 
 

If for some reason the compiler cannot allocate the count2 variable to a register, then 
the compilation will fail.   The programmer will then need to rearrange the code to use 
less register variables during the live range of the failed variable. 
There could be specific sections of code for which the programmer does not want to see 
any variables spilled.  The __no_spill_begin() and __no_spill_end() intrinsic functions 
provide this functionality.  In this way, the no-spilling directive to the compiler is done 
relative to a section of code versus on a per variable basis.  For example, a variable 
with several live ranges could spill in one section of code, but not in any __no_spill 
regions.   Again, if the compiler cannot figure out how not to spill variables in a 
__no_spill region, the compilation will fail.   
 
Note: The current implementation of the compiler does not spill variables 
accessed inside a no_spill region for the entirety of the program (i.e. not 
just inside the no_spill region).  This is not optimal behavior and will be 
addressed in future releases of the compiler. 

Functions 
Due to the lack of a stack in the network processors, the compiler has to incur some 
overhead for function calls.  And although the compiler has many optimizations to affect 
run time performance as little as possible, several programming techniques will provide 
the compiler with the most opportunity to do so. 

Inlining Functions 
The function calling convention in Microengine C is to pass as many enregisterable 
arguments as possible, saving the return PC to a register, then performing a hard 
branch to the function.  This can be quite a bit of overhead, especially in relation to 
functions with few lines of actual code. 
The alternative is to have a function call inlined at the place in the code in which it was 
called.  In this case, the compiler does not waste a register unnecessarily for saving the 
PC, or waste execution time branching to the function and back. 
The inlining of functions is controllable through compiler options as well as through the 
use of directives in the C source code.  The __forceinline keyword forces the compiler 
to inline the function regardless of the size of the function as long as inlining has not 
been turned off via the -Obn compiler switches or in debug code via the -Od switch.  
The __inline keyword allows the compiler to decide whether or not to inline the function 
based on cost/benefit analysis performed by the compiler when explicit inlining is 
enabled (-Ob1). 
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On the other hand, a programmer can prevent the compiler from inlining a particular 
function while still enabling the general inlining capabilities of the compiler through the 
use of the __noinline keyword preceding the function prototype and definition.  Although 
the compiler tries to balance control store versus performance based upon command 
line compiler options, the use of this keyword allows a programmer to precisely control 
inlining on a function by function basis.   
But in general, use the –Ob2 command line switch to allow the compiler to inline shorter 
functions automatically based upon compile time heuristics.   
 
Note: The current implementation of the compiler will still inline functions 
defined with the __forceinline keyword even with the –Od switch specified.  
This behavior is so to support backward compatibility for older versions of 
software, but is subject to future changes. 

Optimizing Pointer Arguments 
It is sometimes possible to improve the speed of access to function arguments passed 
in with pointers.  

Example 12:  
void foo(MyStruct *p_x) 

 { 
  // some code using *p_x and assigning *p_x 
 } 

void main() 
 { 
  myStruct_t x; 
  … 
  foo(&x); 
  … 
 } 

 

In this example, the user wishes to use the function “foo” to modify the contents of the 
structure “x”, by passing the address of x to foo.  Since general-purpose registers 
cannot be accessed with pointers, the compiler cannot place the structure x into 
registers.  Rather, x will be allocate into other storage regions such as local memory or 
sram, slowing down – potentially significantly - access to the data contained in x. 
If the programmer can guarantee that the pointer parameter of the function is not 
accessed through “unknown” means (for example through another pointer whose 
definition is ambiguous or from another thread), then the “restrict” qualifier is placed 
directly before the parameter in the function definition.  In doing so, the compiler will 
automatically perform a “structure copy optimization” which will copy the structure to be 
passed to a global temporary structure accessible by the function foo.  Both the original 
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and temporary structures can be placed into registers, with a significant performance 
gain over a non-restricted pointer parameter.  In this case, the function definition would 
look like this: 
 

void foo(MyStruct * restrict p_x) 
 { 
  // Alias-free code using *p_x and assigning *p_x 
 } 
 
Again, the restrict keyword should only be used if the programmer can guarantee 
controlled pointer access to the data structure in question.  The compiler reference 
manual provides a list of allowable operations for a restricted pointer, and a command 
line switch “-Qperfinfo=256” to help determining any violations of these rules.  But 
remember that ultimately the programmer is responsible for the safe application of the 
restrict keyword. 

Miscellaneous Optimizations 
These tips did not fall under one of the main headings, but are helpful to maximize code 
performance. 

Conditional Statements 
Compare to zero (==, !=, <, >) rather than the explicit value when possible.  This allows 
the condition codes to be tested as opposed to the compiler generating a subtract and 
then testing of the condition codes. 

Example 13: 
if( queue_entry->current_buf.sop_flag == 1 ) 
{ 

do_something(); 
} 
 

In this case, the compiler will need to generate an extra alu instruction to perform the 
subtract-compare.  A better implementation is as follows, and uses one less instruction:  

if( queue_entry->current_buf.sop_flag != 0 ) 
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Compiler Defer Slot Filling 
In general, the algorithm used in the compiler to fill defer slots is limited to looking in the 
basic block immediately above or below a branch or context swap.   

Example 14 
void cool_function(U32 pass) 
{ 
 if(pass) 
 { 
  … 
 } 
 else 
 { 
  … 
 } 

gl_foo = gl_a + gl_b; 
gl_bar = gl_x + gl_y; 

}  
Presumably, the if statement will be translated into a branch if equal (BEQ) instruction, 
which allows for up to three instructions in the branch shadow to be deferred.  However, 
the code above does not give the compiler any instructions as candidates to place into 
the branch defer slots.  This, of course, supposes that the code in the if and else blocks 
cannot be moved or are otherwise not candidates to lie in the branch shadow.  But if the 
gl_foo and gl_bar assignments can be moved freely in the code from a logical 
standpoint, then placing them directly above the if statement will provide the compiler 
with two more opportunities for optimization. 

gl_foo = gl_a + gl_b; 
 gl_bar = gl_x + gl_y; 

if(pass) 
 { 

// etc… 
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Debugging Techniques 

Compile-time Information 
The Microengine C compiler can produce debugging information into the .list file output 
to be passed to the linker, including source file to assembly code mapping.  In addition, 
the compiler will produce a separate .dbg file, used by the Developer’s Workbench in 
conjunction with the .list files to provide source-level debugging capabilities.  
Specifically, the .dbg file contains variable scope information and datatype definition (ex. 
structure field layout) for use in the Data Watch window.  In addition, an optional 
command line switch prints out various information to help the programmer make 
optimal decisions on topics ranging from register spillage to “restrict” pointer violations. 

Performance Information 
The –Qperfinfo=n command line switch can provide one or more of the following pieces 
of compile time information: 

n=0 - no information (similar to not specifying) 
n=1 - register candidates spilled and where to 
n=2 - instruction-level symbol liveness and register allocation (obsolete!) 
n=4 - function-level symbol liveness and register allocation (obsolete!) 
n=8 - function sizes 
n=16 - local memory allocation 
n=32 - live range conflicts causing SRAM spills 
n=64 - instruction scheduling statistics 
n=128 - Warn if the compiler cannot determine a memory I/O transfer size 
n=256 - Display information for "restrict" pointer violations 
n=512 - Print offsets of potential jump[ ] targets 
n=2048 – Print maximum physical register pressure 

Notice each n value above is actually a bit mask for the –Qperfinfo switch.  That is, a 
user can request multiple informational items from the above list for a given compilation 
by OR’ing several n values together.  For example, if a user would like to view the 
register candidates spilled, local memory allocation and warnings for “restrict” pointer 
violations during a compilation, add –Qperfinfo=273 to the compiler command line. 
It is recommended that all compilations include n=1 if register spillage is enabled (via 
the –Qspill switch) as spilled variables will have various performance implications.  
Similarly, other options should be included if the code warrants it (i.e. use n=256 if there 
are restricted pointer parameters in your program). 
These first three options, along with the last one, had been provided to help the 
programmer manage register allocation in the program.  However, -Qperfinfo=2 and -
Qperfinfo=4 have been superceded by a new command line switch, -
Qliveinfo=[gr,sr,sw,srw,dr,dw,nn,sig,all] to print out liveness information for all register 
allocated variables in a more helpful and user-friendly manner.  In fact, it uses a 
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different algorithm – one that more accurately reflects real register allocation – than –
Qperfinfo=2 or –Qperfinfo=4 did.  A user can display the register allocation information 
for only the register types of interest, by providing one or more of the following –
Qliveinfo options: 

gr: GPRs 
sr: SRAM read regs 
sw: SRAM write regs 
srw: SRAM read/write regs 
dr: DRAM read regs 
dw: DRAM write regs 
drw: DRAM read/write regs 
nn: NN registers (self mode only) 
sig: signals 
all: all registers 

In short, the –Qliveinfo switch can help the user analyze their program and determine 
which code segments have a high “register pressure” and need to be restructured. 
The first section of compiler output from the –Qliveinfo=gr command line switch details, 
on a function by function basis, the registers live when the function is called (“Live in”), 
those live upon completion of the function (“Live out”) and those live both in and out of 
the function (“Live through”). 

Example 15: 
: Live info. of gpr registers for Function meter_calculate_ebs_cbs: 

: Live in(11): 
:         gr.554(_timestamp) gr.555(_timestamp+4) 
gr.556(_meter_me_signal_csr) gr.557(_cache_signal_csr) 
gr.645(entry) gr.685(result) gr.687(p_sram) gr.740(cgt.1090) 
gr.743(cgt.1093) gr.897(..) gr.899(..)  
:     Live out(9): 
:         gr.554(_timestamp) gr.555(_timestamp+4) 
gr.556(_meter_me_signal_csr) gr.557(_cache_signal_csr) 
gr.685(result) gr.687(p_sram) gr.740(cgt.1090) gr.743(cgt.1093) 
gr.899(..)  
:     Live through(7): 
:         gr.556(_meter_me_signal_csr) gr.557(_cache_signal_csr) 
gr.685(result) gr.687(p_sram) gr.740(cgt.1090) gr.743(cgt.1093) 
gr.899(..)    

The registers are printed out in the following format: 
cls.ID(variable_name) 

where cls is one of the register classes mentioned above, the ID is a compiler 
maintained “virtual register” number and variable_name is the name of the 
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corresponding variable.  A variable_name of “..” implies a compiler generated temporary 
variable is being used. 
Use this information to help determine which functions have maxed out, or are close to 
maxing out, register usage.  For example, there are 32 available GPRs per thread, so 
seeing values close to 32 in the Live parentheses above advises a programmer to pay 
special attention to those functions if there is a problem with register spillage. 
Following the first section is register liveness on a per-instruction basis.  For each line of 
code in the program (Microengine C source with corresponding assembly), the “Live 
set” of registers is listed.  This information lets a programmer further refine the search 
for high register pressure areas of code. 

Example 16: 
:     /******/   meter_params[entry].timestamp = timestamp; 
:      alu[gr.955(..) , 4, +, gr.802(..) ] 
:     Live set(15): gr.554(_timestamp) gr.555(_timestamp+4) 
gr.556(_meter_me_signal_csr) gr.557(_cache_signal_csr) gr.651(tmp.27) 
gr.685(result) gr.687(p_sram) gr.740(cgt.1090) gr.743(cgt.1093) gr.802(..) gr.803(..) 
gr.804(..) gr.897(..) gr.899(..) gr.955(..)  
:  
:      alu[??, --, B, gr.554(_timestamp) ] 
:     Live set(14): gr.554(_timestamp) gr.555(_timestamp+4) 
gr.556(_meter_me_signal_csr) gr.557(_cache_signal_csr) gr.651(tmp.27) 
gr.685(result) gr.687(p_sram) gr.740(cgt.1090) gr.743(cgt.1093) gr.803(..)  gr.804(..) 
gr.897(..) gr.899(..) gr.955(..)  
: // etc… 
Additionally, the –Qperfinfo=2048 switch will provide a quick summary of the lines of 
code with the maximum physical register pressure.  A example dump looks like this: 

Maximum live physical gprs (52) at myfile.c 245 
Maximum live physical gprs (52) at myfile.c 203 
Maximum live physical gprs (52) at myfile.c 196 
Maximum live physical gprs (52) at myfile.c 192 
 

The maximum number of live physical GPRs before spilling is printed along with the file 
name and line number of the high register pressure points. 
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Run-Time Debug Tools 
When Microengine C based programs are compiled to one or more Microengines with 
debug information turned on, the Developer’s Workbench provides several debugging 
tools specifically for the compiler, allowing the programmer to debug on a source code 
or assembly code level.  The Development Tools User’s Guide describes the use of all 
such tools, including source/assembly view toggling, data watches and breakpoints. 

Summary 
A Microengine C programmer must be well versed in both the operation of the network 
processor hardware and Microengine C compiler options to write effective and 
performance minded code.  Experience (i.e. writing code!) is the only way to become a 
great programmer, but this document is aimed at shortening the curve by providing 
explanations and examples for many of the common pitfalls and performance 
considerations for a new Microengine C user. 
In addition, the explanations in plain language of the slew of information provided by the 
compiler will help a programmer make optimal decisions for data placement and code 
structure.  And a discussion of the compiler specific debugging features and tools in the 
Developer’s Workbench will assist a programmer to debug code quickly from both a 
logic and performance point of view. 
The tools and documentation are there to support programmers to make the process of 
writing and debugging code as easy as possible, but ultimately, it takes a 
knowledgeable and well-disciplined programmer to write effective Microengine C code.   
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