
Intel® IXDP2400/IXDP2800
Advanced Development Platform
I/O Card Driver API Developer’s Manual

January 2004

Document Number: 278671-005

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN
INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, life sustaining applications. Intel may make
changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The Intel IXA SDK may contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.

This document and the software described in it are furnished under license and may only be used or copied in accordance with the terms of the
license. The information in this document is furnished for informational use only, is subject to change without notice, and should not be construed as a
commitment by Intel Corporation. Intel Corporation assumes no responsibility or liability for any errors or inaccuracies that may appear in this
document or any software that may be provided in association with this document. Except as permitted by such license, no part of this document may
be reproduced, stored in a retrieval system, or transmitted in any form or by any means without the express written consent of Intel Corporation.

This document contains information on products in the design phase of development. The information here is subject to change without notice. Do not
finalize a design with this information.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-
4725, or by visiting Intel's web site at http://www.intel.com.

Copyright © Intel Corporation, 2004.

Intel is a registered trademark of Intel Corporation or its subsidiaries in the United States and other countries.

AlertVIEW, i960, AnyPoint, AppChoice, BoardWatch, BunnyPeople, CablePort, Celeron, Chips, Commerce Cart, CT Connect, CT Media, Dialogic,
DM3, EtherExpress, ETOX, FlashFile, GatherRound, i386, i486, iCat, iCOMP, Insight960, InstantIP, Intel, Intel logo, Intel386, Intel486, Intel740,
IntelDX2, IntelDX4, IntelSX2, Intel ChatPad, Intel Create&Share, Intel Dot.Station, Intel GigaBlade, Intel InBusiness, Intel Inside, Intel Inside logo, Intel
NetBurst, Intel NetStructure, Intel Play, Intel Play logo, Intel Pocket Concert, Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel TeamStation,
Intel WebOutfitter, Intel Xeon, Intel XScale, Itanium, JobAnalyst, LANDesk, LanRover, MCS, MMX, MMX logo, NetPort, NetportExpress, Optimizer
logo, OverDrive, Paragon, PC Dads, PC Parents, Pentium, Pentium II Xeon, Pentium III Xeon, Performance at Your Command, ProShare,
RemoteExpress, Screamline, Shiva, SmartDie, Solutions960, Sound Mark, StorageExpress, The Computer Inside, The Journey Inside, This Way In,
TokenExpress, Trillium, Vivonic, and VTune are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and
other countries.

*Other brands and names may be claimed as the property of others.

I/O Card Driver API Developer�s Manual 3

Contents

Contents
1 Document Overview ..9

1.1 Audience...9
1.2 In This Manual ..9
1.3 Other Sources of Information..10

2 Quad Gigabit Ethernet I/O Card ...11
2.1 System Overview..11
2.2 VxWorks Environment ..11

2.2.1 VxWorks MAC Device API...12
2.2.2 Device Configuration ...12
2.2.3 OS Interface...12
2.2.4 Register access layer ..12

2.3 Data Structures...12
2.3.1 Basic Data Type ..12
2.3.2 Structure Passed to ioctl Command ..12
2.3.3 IOCTL_CMD Enumerator ..13

2.3.3.1 MAC Control ioctl Commands..14
2.3.3.2 MAC Receive ioctl Commands ..16
2.3.3.3 MAC Transmit ioctl Commands ...17
2.3.3.4 Global Status and Configuration ioctl Commands19
2.3.3.5 RX FIFO Configuration ioctl Commands..20
2.3.3.6 TX FIFO Configuration ioctl Commands ..22
2.3.3.7 MDIO Interface Related ioctl Commands ..24
2.3.3.8 SPI-3 Configuration ioctl Commands...25
2.3.3.9 SERDES Interface ioctl Commands ..25
2.3.3.10 GBIC Interface ioctl Commands ..27

2.3.4 Error Types ..29
2.3.4.1 Error Types from GbEMAC_Ioctl()...29
2.3.4.2 Error Types from GbEMAC_DeviceStart()...31

2.4 API Usage Model ..32
2.5 VxWorks Driver APIs ..32

2.5.1 GbEMAC_DeviceStart()...33
2.5.2 GbEMAC_DeviceStop() ...34
2.5.3 GbEMAC_Ioctl ...35
2.5.4 GbEMAC_Callback() ...36

2.6 Linux Environment ..37
2.6.1 Linux Character Device Driver APIs ..37
2.6.2 Device Configuration ...38
2.6.3 Operating System Interface ...38
2.6.4 Register access layer ..38

2.7 Data Structures...38
2.7.1 Basic Data Type ..38

2.7.1.1 PORT Status..38
2.7.2 Structure Passed to ioctl Command ..39
2.7.3 GbE_MAC_ERROR Enumerator ..40
2.7.4 IOCTL_CMD Enumerator ..42

2.7.4.1 MAC Control Ioctls ...42

4 I/O Card Driver API Developer�s Manual

UD(Point Reyes)-00017.000 Release3 Portability Framework Ref.doc

Contents

2.7.4.2 MAC Receive Control Ioctls ... 45
2.7.4.3 MAX Transmit Control Ioctls ..46
2.7.4.4 Global Status and Configuration ioctls... 48
2.7.4.5 RX FIFO Configuration ioctl Commands.. 49
2.7.4.6 TX FIFO Configuration Ioctls ... 50
2.7.4.7 MDIO Interface Related ioctl Commands .. 52
2.7.4.8 SPI-3 Configuration ioctl Commands... 53
2.7.4.9 SERDES Interface ioctls .. 53
2.7.4.10 GBIC Module Interface ioctls ... 55

2.8 Support for Multiple Quad Gigabit Ethernet I/O Cards ... 55
2.9 System Dependencies & File Structures .. 55

2.9.1 Device Register Routine .. 56
2.9.2 Device Unregister Routine... 56
2.9.3 Interrupt Handling Routine... 56

2.10 Exported Kernel APIs ...56
2.10.1 Init Module ... 57
2.10.2 GbEMAC_open.. 58
2.10.3 GbEMAC_close ... 59
2.10.4 GbEMAC_ioctl ... 59
2.10.5 GbEMAC_i2s_fasync... 60
2.10.6 Cleanup Module... 61

2.11 Interrupt Handling ... 61
2.12 Functions to Access the Kernel Mode Driver.. 62

2.12.1 Open()... 62
2.12.2 Close() .. 62
2.12.3 ioctl() ... 62
2.12.4 Fcntl().. 63

3 10-Port Gigabit Ethernet Media Card... 65
3.1 Linux Environment .. 65

3.1.1 Design Decomposition... 66
3.1.2 IXF API Module.. 67

3.1.2.1 Feature APIs .. 67
3.1.2.2 Device APIs ... 68

3.1.3 The IXF1110 Device Specific Driver.. 80
3.1.3.1 Common Data Structure .. 80
3.1.3.2 Error Codes..81
3.1.3.3 Ixf1110 Device Driver... 83

3.1.4 Kernel Mode ISR Driver... 89
3.1.5 IXD2810 Driver Unit Tests ... 89

3.2 VxWorks Environment .. 92
3.2.1 Design Decomposition... 92

3.2.1.1 Hardware Layer ... 93
3.2.2 External APIs ...93
3.2.3 Data Structures.. 94

3.2.3.1 ixd2810_Create() .. 95
3.2.3.2 ixd2810_Start() ... 95
3.2.3.3 ixd2810_Stop()..95
3.2.3.4 ixd2810_loctl()... 96

3.2.4 System Components ... 98
3.2.4.1 Auto-Negotiation .. 98

I/O Card Driver API Developer�s Manual 5

Contents

3.2.4.2 doAutoneg..99
3.2.4.3 Interrupt Service Routine ...100

4 Single OC-192 I/O Card ...107
4.1 System Overview..107

4.1.1 Design Decomposition...107
4.2 IXF API Module...108
4.3 Feature APIs...108

4.3.1 Device APIs ...109
4.3.1.1 ixf18100Reset ..109
4.3.1.2 ixf18100InitChip ...110
4.3.1.3 ixf18100GetChipInfo ..111
4.3.1.4 ixf18100InitAlarmCallback ...111
4.3.1.5 ixf18100SetAlarmCfg ...112
4.3.1.6 ixf18100ChipIsr ..112
4.3.1.7 ixf18100SetCfg ..113
4.3.1.8 ixf18100GetCfg ..113
4.3.1.9 ixf18100GetStatus ...114
4.3.1.10 ixf18100GetCounters ...114
4.3.1.11 ixf18100SetOpMode ..115
4.3.1.12 ixf18100GetOpMode..116
4.3.1.13 ixf18100CfgTest...116
4.3.1.14 ixf18100Read...117
4.3.1.15 ixf18100Write ...118
4.3.1.16 ixf18100GetBuildVersion ...119
4.3.1.17 ixf18100InitAllocMemory..120
4.3.1.18 ixf18100DeAllocMemory ..120
4.3.1.19 ixf18100XgmacGetAddress ...121
4.3.1.20 ixf18100XgmacSetAddress..121
4.3.1.21 ixf18100SonetGetWindowSize ..122
4.3.1.22 ixf18100SonetSetWindowSize...122
4.3.1.23 ixf18100SonetGetTrace ...123
4.3.1.24 ixf18100SonetSetTrace ...124
4.3.1.25 ixf18100SonetGetOhBytes ..125
4.3.1.26 ixf18100SonetSetOhBytes...126

4.4 The IXF18100 Device Specific Driver...127
4.4.1 Common Data Structure ..127
4.4.2 Error Codes ...128

4.5 VxWorks and Linux Ixf18100 Device Driver ...130
4.6 Utilities/Tools ..138

4.6.1 Intel Optical Component Management Software (OCMS)138
4.7 The IXDP28192 Driver Unit Tests ..139

5 Single OC-48, Quad OC-12 I/O Card ..141

6 I/O Card Driver API Developer�s Manual

UD(Point Reyes)-00017.000 Release3 Portability Framework Ref.doc

Contents

Figures
2-1 VxWorks Driver Architecture .. 11
2-2 API Driver Library ... 32
2-3 Function Calling Sequence...33
2-4 Linux Driver Architecture .. 37
3-1 Device Driver Design.. 66
3-2 IXF API Model .. 67
3-3 Software Architecture Block Diagram... 92
3-4 Function Calling Sequence...94
3-5 Auto-Negotiation Event Diagram .. 99
3-6 Interrupt Service Routine Diagram ...101
4-1 Device Driver Design.. 107
4-2 IXF API Model .. 108

I/O Card Driver API Developer�s Manual 7

Contents

Tables
2-1 Basic Data Type..12
2-2 MAC Control ioctl Command...14
2-3 MAC Receive Statistics Counters ioctl Commands...16
2-4 MAC Transmit Statistics Counters ioctl commands ..18
2-5 Global Status and Configuration Registers ioctl Commands ..19
2-6 ioctl Commands to Configure the RX FIFO...20
2-7 ioctl Commands to Configure and Monitor the TX FIFO ...22
2-8 ioctl Commands to Configure and Monitor MDIO Interface...24
2-9 ioctl Commands to Configure SPI-3 Interface ...25
2-10 ioctl Commands to Configure SERDES Interface ...25
2-11 ioctl Commands to Control and Monitor GBIC Module ...27
2-12 GbEMAC_Ioctl() Error Types and Description ..29
2-13 GbEMAC_DeviceStart() Error Types and Description ..31
2-14 GbE MAC I/O Card Driver APIs ..33
2-15 Mode Value Interpretation ...34
2-16 Basic Data Type..38
2-17 IOCTL Error Code ...40
2-18 Initialization Error Code...42
2-19 MAC Control IOCTL Commands...43
2-20 MAC Receive Statistics Counters ioctls Commands...45
2-21 MAC Transmit Statistics Counters ioctls ...47
2-22 ioctl Commands for Accessing Global Status and Configuration Registers..............................48
2-23 ioctl Commands to Configure the RX FIFO...49
2-24 IOCTL List to Configure and Monitor the TX FIFO..51
2-25 IOCTLs to Configure and Monitor MDIO Interface ..52
2-26 List of iotcl Commands to Configure the SPI-3 Interface ..53
2-27 IOCTLs used to configure SerDes Interface ...53
2-28 IOCTLs to control and monitor GBIC module..55
2-29 Individual Port Information Interpretation ..55
2-30 APIs provided by the driver in Kernel mode..57
3-1 Feature API Types ..68
3-2 Fatal Error Types and Descriptions...82
3-3 Common Error Types and Descriptions,, ..82
3-4 OHT Error Types and Descriptions , ...82
3-5 Mapper Error Types and Descriptions,..83
7 Interrupt Service Routines...102
4-1 Feature API Types ..109
4-2 Fatal Error Types and Descriptions...129
4-3 Common Error Types and Descriptions,, ..129
4-4 OHT Error Types and Descriptions , ...129
4-5 Mapper Error Types and Descriptions,..130

8 I/O Card Driver API Developer�s Manual

UD(Point Reyes)-00017.000 Release3 Portability Framework Ref.doc

Contents

Revision History

Date Revision Description

08/30/2002 001 Initial draft from HLD

09/27/2002 002 Review feedback

10/07/2002 003 Update to HLD

10/18/2002 004 Review feedback

10/24/2002 005 API update for Pre-release 5

11/27/2002 006 HLD Update

02/20/2003 007 HLD Update Pre-release 6

06/06/2003 008 LLD Updates - Preliminary Release

July 2003 009 3.1 Beta Release

August 2003 010 IXDP2800 and IXDP2850 beta release

January 2003 011 Added revised IXD2810 Linux driver information.

I/O Card Driver API Developer�s Manual 9

Document Overview 1

This document describes add-on media card device driver APIs (Application User Interface) for the
Intel® IXDP2400 and IXDP2800 advanced development platform. This includes media card driver
development for VxWorks and Linux operating systems.

The APIs provide initialization and configuration of the media device including an I/O control path
to get various statistics and error counters. The driver does not support any data-path functionality.

In addition to describing device driver functions, this document describes function calling
sequences, data structures, components and interfaces.

1.1 Audience

The audience of this guide are software developers who will design, develop, and deliver
applications for Intel® IXDP2400 and IXDP2800 advanced development platform. This guide
assumes familiarity with the following:

• Realtime network applications

• C Programming

1.2 In This Manual

This manual includes the following chapters:

• Chapter 1 “Document Overview”

This chapter provides an overview of the document.

• Chapter 2 “Quad Gigabit Ethernet I/O Card”

This chapter describes the Quad GbE Media Card Driver design for VxWorks and Linux. The
driver is implemented as a loadable object module.

• Chapter 3 “10-Port Gigabit Ethernet Media Card”

This chapter describes the 10-port GbE Media Card Driver design for Linux.

• Chapter 4 “Single OC-192 I/O Card”

This chapter describes the API module features and API functions.

• Chapter 5 “Single OC-48, Quad OC-12 I/O Card”

This chapter provides a pointer to information for the Single OC-48, Quad OC-12 I/O Card.

10 I/O Card Driver API Developer�s Manual

Document Overview

1.3 Other Sources of Information

The Intel® IXP2400 Network Processor and Intel® IXP2800 Network Processor is supported by
the following documentation:

� Intel® IXP2400/IXP2800 Development Tools User�s Guide

� Help Topics: Developer Workbench

� Intel® Internet Exchange Architecture (IXA) Portability Framework Developer�s Manual

� Intel® Internet Exchange Architecture (IXA) Portability Framework Reference Manual
This manual provides details for application development.

• Intel® Internet Exchange Architecture (IXA) Software Building Blocks Developer’s Manual

• Intel® Internet Exchange Architecture (IXA) Software Building Blocks Reference Manual

� Intel® IXA SDK Release Notes

� Intel® IXP2400 Network Processor Datasheet

� Intel® IXP2400 Network Processor Hardware Reference Manual

• Intel® IXP2400 Network Processor and Intel® IXP2800 Network Processor Getting Started

• Intel® IXP2400/IXP2800 Network Processor Programmer’s Reference Manual

• Intel® Microengine C Compiler Library Reference

I/O Card Driver API Developer�s Manual 11

Quad Gigabit Ethernet I/O Card 2

2.1 System Overview

The driver for the Quad Gigabit Ethernet (GbE) I/O card is implemented as a loadable module for
both the VxWorks and Linux environments. The GbE I/O card interfaces with the Intel®
IXMB2400 Network Processor Base Card which has dual IXP 2400 units.

The driver for the Quad GbE I/O Card can run exclusively on the Egress NPU of the Intel®
IXMB2400 Network Processor Base Card. Only the Egress NPU has access to slow port of the
GbE Media Card.

The main functionality of the driver is initialization and configuration of the Quad GbE I/O card.

2.2 VxWorks Environment

Figure 2-1 shows an overview of the device driver for VxWorks platform, the environment in
which the driver is to execute, the major components used in the design, and relationship among
the components, followed by component description.

Figure 2-1. VxWorks Driver Architecture

B0905-01

Application

Multi-Port GbE Media Card

VxWorks MAC Device API

Register Access Layer

Device
Configuration

OS
I/F

VxWorks
OS

Service
Callback

Service
Calls

Register Accesses

12 I/O Card Driver API Developer�s Manual

Quad Gigabit Ethernet I/O Card

2.2.1 VxWorks MAC Device API

The driver for the Quad GbE I/O Option Card is implemented as a loadable module. The APIs
provided by this module are a set of high-level functions that are invoked by applications to
initialize and configure the I/O option card.

2.2.2 Device Configuration

The device configuration encompasses initialization and configuration functions. These
configuration functions are invoked by the application to configure the Media Card. See
Section 2.5, “VxWorks Driver APIs” on page 32 for details.

2.2.3 OS Interface

The driver's OS interface provides functions that let the driver use the OS services related to
interrupt handling, memory access etc. This is to ensure the portability and code reuse.

2.2.4 Register access layer

This layer provides functions that read from and write to the device registers. It performs the actual
read/write operation on the registers.

2.3 Data Structures

The data structures used for the driver are discussed here. These data structures incorporate the list
of ioctl commands, used by the user application, to configure the device. The ioctl list
describes the input and output control commands to configure various registers and get their status.
The error enumerator maintains the error number, which is returned by the driver API. The unique
error message corresponding to each error number describes the cause and nature of the error.

2.3.1 Basic Data Type

Table 2-1 defines the basic data types that are used in the driver. These types are defined to ease
portability of the code across different operating systems.

2.3.2 Structure Passed to ioctl Command

The API provided for calling the ioctl command contains a void pointer as one of its argument.
The calling application passes a structure pointer, which maintains the information regarding the
ioctl to be called. This structure is passed after typecasting it with the void * pointer. This
structure, whose pointer is passed by the calling application while using the ioctl command, is
defined below.

Table 2-1. Basic Data Type

Basic Types Description

uint32 32 bit unsigned integer

I/O Card Driver API Developer�s Manual 13

Quad Gigabit Ethernet I/O Card

The ioctl command normally deals with a single register, that is, 32-bits, and some of the specific
ioctl commands need to read two, 32-bits registers. Structure definition for a single 32-bit
register and two 32-bits registers are described below.

ioctl command structure definition for a single register
typedef struct gbe_mac_s_ioctl_ptr {

uint32 portIndex;

uint32 value;

} gbe_mac_iotcl_ptr;

ioctl command structure definition for two registers
typedef struct gbe_mac_s_ioctl_ptr_64 {

uint32 portIndex;

uint32 valueHigh;

uint32 valueLow;

} gbe_mac_iotcl_ptr_64;

Note: This structure definition shown for two registers is used in the GET ioctl commands such as
GET_STN_ADDR, GET_FDFC_ADDR, and GET_MUL_PORT_ADD, where the 48-bit data for the
MAC address is to be read.

2.3.3 IOCTL_CMD Enumerator

The IOCTL_CMD enumerator defines ioctl code used by the calling application. The application
passes the ioctl commands as one of the arguments in the ioctl function call
GbeMAC_Ioctl(). The registers of the device are set by using ioctl commands prefixed by the
word “SET” for setting the register to the given parameter. The ioctl commands prefixed by the
word “GET” are used to get the register value.

Input

portIndex Indicates the port number

value A placeholder for a value, which is either to be set or retrieved in an
ioctl operation.

14 I/O Card Driver API Developer�s Manual

Quad Gigabit Ethernet I/O Card

2.3.3.1 MAC Control ioctl Commands

Table 2-2 explains the ioctl commands used for configuring and monitoring the status of the
registers associated with each MAC port.

Table 2-2. MAC Control ioctl Command (Sheet 1 of 3)

MAC control ioctl commands Description Range Buffer
Size

SET_STN_ADDR Set source MAC address bit 31-0Set source
MAC address bit 47-0 64-bits

GET_STN_ADDR Get source MAC address 64-bits

SET_DUPLEX_MODE Set half/full-duplex operation mode of the MAC 0x00000000 -
0x00000001 32-bits

GET_DUPLEX_MODE Get the MAC operating mode 0x00000000 -
0x00000001 32-bits

SET_FDFC_TYPE Set FDFC Type field of the Transmit Pause
Frame

0x00000000 -
0x0000ffff 32-bits

GET_FDFC_TYPE Get FDFC Type field of the Transmit Pause
Frame

0x00000000 -
0x0000ffff 32-bits

SET_COLLISION_DIST Set limit for the late collisions 0x00000000 -
0x000003ff 32-bits

GET_COLLISION_DIST Get the limit set for late collision 0x00000000 -
0x000003ff 32-bits

SET_COLLISION_THLD Set the limit for excessive collision 0x00000000 -
0x000000ff 32-bits

GET_COLLISION_THLD Get the limit set for excessive collision 0x00000000 -
0x000000ff 32-bits

SET_FCTX_TIMER Set the pause length sent to the receiving
station

0x00000000 -
0x0000ffff 32-bits

GET_FCTX_TIMER Get the pause length set 0x00000000 -
0x0000ffff 32-bits

SET_FDFC_ADDR Set 31-0 bits of the 48-bit globally assigned
multicast pause frame destination address Set
47-32 bits of the 48-bit globally assigned
multicast pause frame destination address

64-bits

GET_FDFC_ADDR Get the Multicast pause frame destination MAC
address 64-bits

SET_IPG_RECEIVE_TIME1 Set the first part of the IPG time for non back-to-
back transmission

0x00000000 -
0x000003ff 32-bits

SET_IPG_RECEIVE_TIME2 Set the second part of the IPG time for non
back-to-back transmission

0x00000000 -
0x000003ff 32-bits

GET_IPG_RECEIVE_TIME_1 Get the first part of IPG time for non back-to-
back transmission

0x00000000 -
0x03ff03ff 32-bits

GET_IPG_RECEIVE_TIME_2 Get the second part of IPG time for non back-to-
back transmission

0x00000000 -
0x03ff03ff 32-bits

SET_IPG_TRANSMIT_TIME Configure IPG time for back-to-back
transmission

0x00000000 -
0x000003ff 32-bits

GET_IPG_TRANSMIT_TIME Get IPG for back-to-back transmission 0x00000000 -
0x000003ff 32-bits

I/O Card Driver API Developer�s Manual 15

Quad Gigabit Ethernet I/O Card

SET_PAUSE_THRESHOLD Set the time between two consecutive pause
frames to keep the link partner in pause mode.

0x00000000 -
0x0000ffff 32-bits

GET_PAUSE_THRESHOLD Get the pause threshold time 0x00000000 -
0x0000ffff 32-bits

SET_MAX_FRAME_SIZE Set the maximum frame size the MAC can
receive and transmit without activating any error.

0x00000000 -
0x00003fff 32-bits

GET_MAX_FRAME_SIZE Get the maximum frame size 0x00000000 -
0x00003fff 32-bits

SET_MAC_IF_MODE Set the MAC operation frequency and mode per
port

0x00000000 -
0x00000007 32-bits

GET_MAC_IF_MODE Get the MAC operation frequency and mode 0x00000000 -
0x00000007 32-bits

SET_FLUSH_TX Set this bit to flush all transmit data. It is set if all
the traffic to a port should be stopped.

0x00000000 -
0x00000001 32-bits

GET_FLUSH_TX Get the status of this bit, 0x00000000 -
0x00000001 32-bits

SET_FC_MODE Set the flow control mode for the RX and TX
MAC

0x00000000 -
0x00000007 32-bits

GET_FC_MODE Get the flow control mode of the RX and TX
MAC

0x00000000 -
0x00000007 32-bits

SET_FC_BACK_PRESSURE_L
EN

Set the minimum length/duration of
backpressure. These six bits holds the value in
bytes.

0x00000000 -
0x0000003f 32-bits

GET_FC_BACK_PRESSURE_L
EN

Get the minimum length/duration of the
backpressure

0x00000000 -
0x0000003f 32-bits

SET_SHORT_RUNT_TH Set the threshold to determine between short
and runt. The 5-bit value holds the value in
bytes.

0x00000000 -
0x0000001f 32-bits

GET_SHORT_RUNT_TH Get the threshold set for the demarcation
between short and runt

0x00000000 -
0x0000001f 32-bits

SET_UNKNOWN_FRAME_STT Used to discard/keep the unknown control
frames. Known control frames are pause
frames.

0x00000000 -
0x00000001 32-bits

GET_UNKNOWN_FRAME_STT Check the action regarding the unknown frames 0x00000000 -
0x00000001 32-bits

GET_RX_CONFIG_WORD This is used in Fiber MAC only for auto
negotiation. The contents of this register are the
“config_word” received from the link partner

0x00000000 -
0x00bfb1e0 32-bits

SET_TX_CONFIG_WORD Set this register which is used in Fiber MAC for
auto-negotiation only. The contents of this
register are sent as the config_word.

0x00000000 -
0x0000ffe0 32-bits

GET_TX_CONFIG_WORD Get the config_word register contents, sent for
auto-negotiation.

0x00000000 -
0x0000ffe0 32-bits

SET_DIV_CONFIG_WORD Set various configuration bits for general use. 0x00000000 -
0x0001ffff 32-bits

Table 2-2. MAC Control ioctl Command (Sheet 2 of 3)

MAC control ioctl commands Description Range Buffer
Size

16 I/O Card Driver API Developer�s Manual

Quad Gigabit Ethernet I/O Card

2.3.3.2 MAC Receive ioctl Commands

Table 2-3 lists the ioctl commands used to monitor the MAC Receive Statistics counters. These
ioctl Commands can be used in polling and the registers are cleared when read. When RX
statistics counter overflows, it gets wrapped back to zero. At the Gbps speed, the 32-bit counters
wrap after approximately 30 seconds. The driver polls these registers and accumulates values in
virtual 64-bit counters (2-32 bit registers) to ensure that the RX statistics counters do not wrap. For
these ioctl commands, the calling application must pass 2-32bit registers to get the 64-bit register
value.

SET_CHANGE_CONFIG Change the port configuration value, eg from
port configuration Fiber to Copper, or link speed,
or mode etc. See Table 2-15, “Mode Value
Interpretation” on page 34 for the interpretation
of the 0-5 bits for this ioctls.

0x00000000 –
0x0000001F 32-bits

GET_DIV_CONFIG_WORD Get the various configuration status 0x00000000 -
0x0001ffff 32-bits

SET_PKT_FILTER_CTL Set this register to allow specific packet types to
be marked for filtering. This is used in
conjunction with the RX FIFO error Frames Drop
Enable Register

0x00000000 -
0x0000003f 32-bits

GET_PKT_FILTER_CTL Get the status regarding the packet filtering 0x00000000 -
0x0000003f 32-bits

SET_MUL_PORT_ADD Set bit 31:0 of the address. This address is used
to compare against multicast frames at the
receiving side if multicast filtering is enabled.Set
bit 47:32 of the address

64-bits

GET_MUL_PORT_ADD Get the Multicast port address. 64-bits

SET_PHY_REGISTER Set the PHY register value

• Bit 0-15 contains the value written to the
register

• Bit 16-20 represents the PHY register
number for the specified port.

0x00000000 –
0x001fffff 32-bits

GET_PHY_REGISTER Get the PHY register value.

In the value, the PHY register number is passed.
0x00000000 –
0x0000ffff 32-bits

Table 2-2. MAC Control ioctl Command (Sheet 3 of 3)

MAC control ioctl commands Description Range Buffer
Size

Table 2-3. MAC Receive Statistics Counters ioctl Commands (Sheet 1 of 2)

MAC RX Stat ioctl
Commands Description Buffer

Size

GET_RX_OCTETS_OK Get the number of bytes received in all legal frames, including all
bytes from the destination MAC address to and including the
CRC. The initial preamble and SFD bytes are not counted.

64-bits

GET_RX_OCTETS_BAD Get the number of bytes received in all bad frames with legal size 64-bits

GET_RX_UC_PKTS Get the total number of unicast packets received, (EBP) 64-bits

GET_RX_MC_PKTS Get the total number of multicast packets received (EBP) 64-bits

GET_RX_BC_PKTS Get the total number of broadcast packets received (EBP) 64-bits

I/O Card Driver API Developer�s Manual 17

Quad Gigabit Ethernet I/O Card

2.3.3.3 MAC Transmit ioctl Commands

Table 2-4 describes the ioctl commands used to monitor the MAC Transmit Statistics counters.
These ioctl commands can be used in polling. The corresponding registers are cleared when read.
When TX statistics counter overflows, it gets wrapped back to zero. At the Gbps speed, the 32-bit

GET_RX_PKTS_64 Get the total number of packets received (IBP) that are 64 octets
in length 64-bits

GET_RX_PKTS_65_127 Get the total number of packets received (IBP) that are [65-127]
octets in length. 64-bits

GET_RX_PKTS_128_255 Get the total number of packets received (IBP) that are [128-255]
octets in length 64-bits

GET_RX_PKTS_256_511 Get the total number of packets received (IBP) that are [256-511]
octets in length. 64-bits

GET_RX_PKTS_512_102
3

Get the total number of packets received (IBP) that are [512-
1023] octets in length 64-bits

GET_RX_PKTS_1024_15
18

Get the total number of packets received (IBP) that are [1024-
1518] octets in length 64-bits

GET_RX_PKTS_1519_MA
X

Get the total number of packets received (IBP) that are >1518
octets in length. 64-bits

GET_RX_FCS_ERR Get the number of frames, received with legal size, but with
wrong CRC field (also called FCS field). 64-bits

GET_VLAN_TAG Get the number of OK frames with VLAN tag 64-bits

GET_RX_DATA_ERR Get the number of frames, received with the legal length with
code violation. 64-bits

GET_RX_ALLIGN_ERR Get the number of frames, with a legal frame size, but containing
less than 8 additional bits 64-bits

GET_RX_LONG_ERR Get the number of frames, bigger than the maximum allowed,
with both OK CRC and the integral number of octets. 64-bits

GET_RX_JABBER_ERR Get the number of frames, bigger than the maximum allowed,
with either a bad CRC or a non-integral number of octets 64-bits

GET_RX_PAUSE_MAC_CT
L Get the number of Pause MAC control frames received 64-bits

GET_RX_UNKNOWN_CTL_
FRAME

Get the number of MAC control frames, received with an op code
different from 0001 (Pause) 64-bits

GET_VLONG_ERR Get the number of frames, bigger than the larger of 2*max frame
size and 50000 bits 64-bits

GET_RUNT_ERR Get the total number of packets, received that are less than 64
octets in length, but longer than or equal to 96 bit times, which
corresponds to a 4- byte frame with a well formed preamble and
SFD

64-bits

GET_SHORT_ERR Get the total number of packets, received that are less than 96 bit
times, which corresponds to a 4- byte frame with a well formed
preamble and SFD.

64-bits

GET_SEQ_ERR Get the number of sequencing errors that occur in Fiber mode. 64-bits

GET_SYMBOL_ERR Get the number of symbol errors, encountered by the PHY 64-bits

Table 2-3. MAC Receive Statistics Counters ioctl Commands (Sheet 2 of 2)

MAC RX Stat ioctl
Commands Description Buffer

Size

18 I/O Card Driver API Developer�s Manual

Quad Gigabit Ethernet I/O Card

counters wrap after approximately 30 seconds. The driver polls these registers and accumulates
values in virtual 64-bit counters (two 32-bit registers) to ensure that the RX statistics counters do
not wrap. For these ioctl commands, the calling application must pass two 32-bit registers to get
the 64-bit register value.

Table 2-4. MAC Transmit Statistics Counters ioctl commands (Sheet 1 of 2)

MAC TX Stat ioctl Commands Description Buffer Size

GET_TX_OCTETS_OK Get the number of bytes transmitted in all legal frames 64-bits

GET_TX_OCTETS_BAD Get the number of bytes transmitted in all bad frames. 64-bits

GET_TX_UC_PKTS Get the total number of unicast packets transmitted.
(EBP) 64-bits

GET_TX_MC_PKTS Get the total number of multicast packets transmitted.
(EBP) 64-bits

GET_TX_BC_PKTS Get the total number of broadcast packets transmitted.
(EBP) 64-bits

GET_TX_PKTS_64 Get the total number of packets transmitted (IBP) that
are 64 octets in length 64-bits

GET_TX_PKTS_65_127 Get the total number of packets transmitted (IBP) that
are [65-127] octets in length 64-bits

GET_TX_PKTS_128_255 Get the total number of packets transmitted (IBP) that
are [128-255] octets in length 64-bits

GET_TX_PKTS_256_511 Get the total number of packets transmitted (IBP) that
are [256-511] octets in length 64-bits

GET_TX_PKTS_512_1023 Get the total number of packets transmitted (IBP) that
are [512 - 1023] octets in length 64-bits

GET_TX_PKTS_1024_1518 Get the total number of packets transmitted (IBP) that
are [1024-1518] octets in length 64-bits

GET_TX_PKTS_1519_MAX Get the total number of packets transmitted (IBP) that
are >1518 octets in length 64-bits

GET_TX_DEFERRED_ERR Get the total number of times, the initial transmission
attempt of a frame is postponed due to another frame
already being transmitted on the Ethernet network.
(HdM)

64-bits

GET_TX_TOTAL_COLLISION Get the sum of all collision events. (HdM) 64-bits

GET_TX_SINGLE_COLLISION Get the number of successfully transmitted frames, on a
particular interface where the transmission is inhibited
by exactly one collision (HdM)

64-bits

GET_TX_MUL_COLLISION Get the number of successfully transmitted frames, on a
particular interface for which transmission is inhibited by
more than one collision. (HdM)

64-bits

GET_LATE_COLLISION Get the number of times, a collision is detected on a
particular interface later than 512 bit-times into the
transmission of a packet. Such frame are terminated
and discarded (HdM)

64-bits

GET_TX_EXCV_COLLISION Get the number of frames, which collides 16 times and
is then discarded by the MAC. Not effecting Multiple
Collisions (HdM)

64-bits

I/O Card Driver API Developer�s Manual 19

Quad Gigabit Ethernet I/O Card

2.3.3.4 Global Status and Configuration ioctl Commands

Table 2-5 lists the ioctl commands used for configuration and monitoring the port status.

GET_TX_EXCV_DEFERRED_ERR Get the number of times frame, for which transmission
is postponed more than 2*MaxFrameSize due to
another frame already being transmitted on the Ethernet
network. This causes the MAC to discard the frame.
(HdM)

64-bits

GET_TX_EXCV_LEN_DROP Get the number of frame, for which transmissions
aborted by the MAC because the frame is longer than
maximum frame size.

64-bits

GET_TX_UNDERRUN Get the number of internal TX error, which causes the
MAC to end the transmission before the end of the
frame because the MAC did not get the needed data in
time for transmission. The frames are lost and a
fragment or a CRC error is transmitted.

64-bits

GET_TX_VLAN_TAG Get the number of OK frames with VLAN tags. 64-bits

GET_TX_CRC_ERR Get the number of frames, which are transmitted with a
legal size, but with the wrong CRC field (also called FCS
field)

64-bits

GET_TX_PAUSE_FRAME Get the number of Pause frames transmitted. 64-bits

GET_FC_COLLISION_SEND Get the number of times the collision is generated on
purpose on incoming frames, to avoid reception of
traffic, while the port is in half-duplex and has flow
control enabled, and have not sufficient memory to
receive more frames. (HdM)

64-bits

Table 2-4. MAC Transmit Statistics Counters ioctl commands (Sheet 2 of 2)

MAC TX Stat ioctl Commands Description Buffer Size

Table 2-5. Global Status and Configuration Registers ioctl Commands (Sheet 1 of 2)

Global Stat and Config ioctl
Commands Description Range Buffer

Size

SET_PORT_STATUS Set the control register for each port in Vallejo
device. To make a port active the bit is set to
high. Bit 3:0

0x00000000 -
0x0000000f 32-bits

GET_PORT_STATUS Get the Port status 0x00000000 -
0x0000000f 32-bits

SET_INTERFACE_MODE Set bit 3:0 1of corresponding register for the
PHY interface mode.0 = Fiber, and 1 = Copper

0x00000000 -
0x0000000f 32-bits

GET_INTERFACE_MODE Get the PHY interface mode for individual port 0x00000000 -
0x0000000f 32-bits

GET_LINK_UP_STATUS Each bit from 3:0 1of the 32-bit corresponding
status register records the status of the Link
Flag for a given port. This command reads this
to get the status of the individual ports.1 = Link
is established

0x00000000 -
0x0000000f 32-bits

GET_RESET_CORE_CLOCK Get the status of the soft reset for the core
cloak system.

0x00000000 -
0x00000001 32-bits

GET_PAUSE_BEHAVIOR Get the Pause packet behavior 0x00000000 -
0x000f000f 32-bits

20 I/O Card Driver API Developer�s Manual

Quad Gigabit Ethernet I/O Card

2.3.3.5 RX FIFO Configuration ioctl Commands

Table 2-6 lists the ioctl commands used to configure the status of the receive FIFO.

SET_MAC_SOFT_RESET Activate per port software reset of the MAC
core

0x00000000 -
0x0000000f 32-bits

GET_MAC_SOFT_RESET Get the status of the software reset of the MAC
core.

0x00000000 -
0x0000000f 32-bits

SET_MDIO_RESET Activate the software reset of the MDIO
module

0x00000000 -
0x00000001 32-bits

GET_MDIO_RESET Get the status regarding the reset activation of
the MDIO module

0x00000000 -
0x00000001 32-bits

SET_UI_ENDIAN_MODE Set microprocessor endian.0 = little endian,1 =
big endian

0x00000000 -
0x01000001 32-bits

GET_UI_ENDIAN_MODE Get microprocessor endian mode 0x00000000 -
0x01000001 32-bits

SET_LED_MODE Set the LED mode Bit 1: Enable/Disable LED
blockBit 0: LED Control

0x00000000 -
0x00000003 32-bits

GET_LED_MODE Get LED status 0x00000000 -
0x00000003 32-bits

SET_LED_FLASH_RATE Set LED flash rate,00 = 100 ms flash rate01 =
250 ms flash rate10 = 500 ms flash rate11 =
Reserved

0x00000000 -
0x00000003 32-bits

GET_LED_FLASH_RATE Get LED flash rate 0x00000000 -
0x00000003 32-bits

SET_LED_FAULT_ACTION Set per-port fault disable/enable the LED
flashing for local or remote faults

0x00000000 -
0x0000000f 32-bits

GET_LED_FAULT_ACTION Get per-port LED fault status 0x00000000 -
0x0000000f 32-bits

GET_JTAG_ID Get the device identification (fixed here) 0x00450013 32-bits

Table 2-5. Global Status and Configuration Registers ioctl Commands (Sheet 2 of 2)

Global Stat and Config ioctl
Commands Description Range Buffer

Size

Table 2-6. ioctl Commands to Configure the RX FIFO (Sheet 1 of 3)

RX FIFO Register ioctl Commands Description Range Buffer
Size

SET_RFIFO_HIGH_WATERMARK Set high watermark for RX FIFO. 0x00000000
- 0x00000fff 32-bits

GET_RFIFO_HIGH_WATERMARK Get RX FIFO high watermark level. 0x00000000
- 0x00000fff 32-bits

SET_RFIFO_LOW_WATERMARK Set low watermark for RX FIFO. 2 0x00000000
- 0x00000fff 32-bits

GET_RFIFO_LOW_WATERMARK Get the RX FIFO low watermark level. 0x00000000
- 0x00000fff 32-bits

GET_RX_FRAME_REMOVED Get the number of frames lost/removed
on individual port when RX FIFO on
this port becomes full or reset. 2

32-bits

I/O Card Driver API Developer�s Manual 21

Quad Gigabit Ethernet I/O Card

SET_RX_FIFO_PORT_RESET Set the soft reset register for each port
in the RX block. Bit 3:01

0x00000000
- 0x0000000f 32-bits

GET_RX_FIFO_PORT_RESET Get the soft reset status in the RX
block.

0x00000000
- 0x0000000f 32-bits

SET_RX_FIFO_ERR_FRAME_STT Set the action to be taken on receiving
error packets, whether such packets
are to be dropped or not. Bit 3:011 =
Frame Drop Enable0 = Frame Drop
Disable

0x00000000
- 0x0000000f 32-bits

GET_RX_FIFO_ERR_FRAME_STT Get the status of the action to be
specified on receiving the error
packets.

0x00000000
- 0x0000000f 32-bits

GET_RX_FIFO_OVERFLOW_STT Get the RX FIFO status, if a FIFO full
situation has occurred. The
corresponding register is cleared on
read. Bit 3:01

0x00000000
- 0x0000000f 32-bits

GET_OUT_SEQUENCE_INFO Get the status of the RX FIFO, when
out of sequence data is detected in the
RX FIFO. The corresponding register is
cleared on read. Bit 3:01

0x00000000
- 0x0000000f 32-bits

GET_DROPPED_PKTS Get the number of packets dropped by
the RX FIFO due to various errors. 2 32-bits

GET_RW_PTR_RX_FIFO Get the value for the read and write
pointer for the RX FIFO.2

0x00000000
- 0xffff0fff 32-bits

GET_OCCUPANCY_RX_FIFO Get the occupancy for RX FIFO. The
corresponding register is read only. 2

0x00000000
- 0x00001fff 32-bits

GET_CAPTURED_PKT_LEN Get the length information of the
captured packet (in bytes) at four ports.
The byte position equals to the port
number.

0x00000000
- 0xffffffff 32-bits

SET_INDIRECT_ADR_CTL The corresponding register provides
the indirect memory access for CPU to
read captured data.

0x00000000
- 0x00000fff 32-bits

GET_INDIRECT_ADR_CTL The corresponding register provides
the indirect memory access for CPU to
read captured data.

0x00000000
- 0x00000fff 32-bits

GET_READ_DATA Get 8 bytes of the read data. 64-bits

SET_CAPTURE_ENABLE_RX_FIFO Set the capture and loop back feature
at different ports.Bit 11:81 = Loop back
enable.Bit 7:0 = Capture Enable Mode,
each pair of bit corresponds to port
number from LSB.

0x00000000
- 0x00000fff 32-bits

GET_CAPTURE_ENABLE_RX_FIFO Get the status of the capture enable
and loopback feature.

0x00000000
- 0x00000fff 32-bits

Table 2-6. ioctl Commands to Configure the RX FIFO (Sheet 2 of 3)

RX FIFO Register ioctl Commands Description Range Buffer
Size

22 I/O Card Driver API Developer�s Manual

Quad Gigabit Ethernet I/O Card

2.3.3.6 TX FIFO Configuration ioctl Commands

Table 2-7 lists the ioctl commands, used to configure and monitor the transmit FIFO.

SET_PRE_PENDING_CRC_ENABLE Set the corresponding register to
prepend every packet with two extra
bytes and also enable the CRC
stripping of the packets.Bit 7:41 =
Enable CRC stripping.Bit 3:01 =
Enable pre-pending, Prepending
should not be enabled in loop back
mode.

0x00000000
- 0x000000ff 32-bits

GET_PRE_PENDING_CRC_ENABLE Get the status of the pre-pending and
CRC stripping feature.

0x00000000
- 0x000000ff 32-bits

SET_MATCHING_PATTERN Set the matching pattern, which is
checked with the TYPE/LEN fields of
every incoming packet to capture
specific packets from data traffic.2

0x00000000
- 0x0000ffff 32-bits

GET_MATCHING_PATTERN Get matching pattern, wet by the
previous ioctl command.

0x00000000
- 0x0000ffff 32-bits

SET_JUMBO_PKT_SIZE Set the jumbo packet size in 8 byte
location. 2

0x00000000
- 0x00000fff 32-bits

GET_JUMBO_PKT_SIZE Get the jumbo packet size set by the
previous ioctl command.

0x00000000
- 0x00000fff 32-bits

GET_PKT_DROP_CAP_FIFO Get the number of packets dropped at
capture FIFO due to FIFO full or bad
packets or during CPU not read the
previous captured packet. 2

32-bits

Table 2-6. ioctl Commands to Configure the RX FIFO (Sheet 3 of 3)

RX FIFO Register ioctl Commands Description Range Buffer
Size

Table 2-7. ioctl Commands to Configure and Monitor the TX FIFO (Sheet 1 of 3)

TX FIFO Register ioctl
Commands Description Range Buffer Size

SET_TFIFO_HIGH_WATERMARK Set high watermark for TX FIFO, for each
port separately.2 32-bits

GET_TFIFO_HIGH_WATERMARK Get high watermark for TX FIFO 32-bits

SET_TFIFO_LOW_WATERMARK Set low watermark for TX FIFO, for each
port separately. 2 32-bits

GET_TFIFO_LOW_WATERMARK Get low watermark for TX FIFO. 32-bits

SET_MAC_THRESHOLD Set the MAC threshold for TX FIFO. 2 32-bits

GET_MAC_THRESHOLD Get the MAC threshold TX FIFO value.2 32-bits

GET_TX_FIFO_OVERFLOW_STT Get the status information as Bit 11:81
FIFO out of sequence event trace
recordBit 7:41 FIFO underflow event
trace recordBit 3:01 FIFO Overflow event
trace record.

0x00000000 -
0x00000fff 32-bits

I/O Card Driver API Developer�s Manual 23

Quad Gigabit Ethernet I/O Card

SET_LOOP_RX_TX Set the respective bit high to perform the
external loop back.Bit 3:01 0 = Normal
Operation1 = The SPI-3 data coming
from the RX block is sent to the TX FIFO
instead of the SPI-3 Receive interface

0x00000000 -
0x0000000f 32-bits

GET_LOOP_RX_TX_STT Get external loop back status 0x00000000 -
0x0000000f 32-bits

SET_TX_FIFO_PORT_RESET Assert/De-assert reset for each port in
TX block.Bit 3:01 set to low to make port
active.

0x00000000 -
0x0000000f 32-bits

GET_TX_TFIFO_PORT_RESET Get status of the port 0x00000000 -
0x0000000f 32-bits

GET_TX_DROP_FRAME Get the number of frames lost/removed,
when TX FIFO on individual port2
becomes full or reset. This register is
clear on read.

32-bits

GET_TX_DROP_PKTS Get the number of packets dropped by
the TX FIFO of individual port2, due to
various errors. This register is cleared on
Read.

32-bits

GET_TX_RW_PTR Get the value of the read write pointer for
the TX FIFO of individual port2. This
register is cleared on read.

0x00000000 -
0x003fffff 32-bits

GET_TX_OCCUPANCY Get the occupancy for the TX FIFO 2.
The corresponding register is read only. 32-bits

SET_TX_INSERT_DATA Insert the 8 bytes data for port 0 64-bits

GET_TX_INSERT_DATA Get the inserted 8-bytes data for each
port2 separately. 64-bits

SET_TX_FIFO_INFO_ADR Set the indirect memory access for CPU
to write/read data to/from individual
insertion FIFO port2.Bit 10 = ResetBit 9 =
WriteBit 8 = ReadBit 7:3 = AddressBit 2:0
= Info

0x00000000 -
0x000007ff 32-bits

GET_TX_FIFO_INFO_ADR Get the above defined status2 0x00000000 -
0x000007ff 32-bits

SET_TX_FIFO_DROP_INSERT Enable independently, the individual TX
FIFO to drop the erroneous packet and
insertion of packet through insertion
FIFO.Bit 7:41 = Set high to enable read
from insertion FIFO.Bit 3:01 = Set high to
discard the error packets in TX FIFO.

0x00000000 -
0x000000ff 32-bits

Table 2-7. ioctl Commands to Configure and Monitor the TX FIFO (Sheet 2 of 3)

TX FIFO Register ioctl
Commands Description Range Buffer Size

24 I/O Card Driver API Developer�s Manual

Quad Gigabit Ethernet I/O Card

2.3.3.7 MDIO Interface Related ioctl Commands

Table 2-8 lists the ioctl commands to configure and monitor the MDIO interface.

GET_TX_FIFO_DROP_INSERT Get the above defined feature in
corresponding SET ioctl.

0c00000000 -
0x000000ff 32-bits

SET_TX_MINI_FRAME_SIZE Set the different minimum length of the
packets to be transmitted to MAC
independently. These values are used to
pad short packets if padding is
enabled.Bit 19:161 = Set bit high to
enable padding of short packets.Bit
15:12 = (for port 3) If the programmed
value is 'N' then the minimum number of
bytes in packet is equal to 'N * 8' bytes.
Where N = A, B, C, D and ESame as
above, bit 11:8,7:4 and 3:0 are for port
2,1,0 respectively.

0x00000000 -
0x000fffff 32-bits

GET_TX_MINI_FRAME_SIZE Get the minimum length of the packet to
be transmitted to the MAC.

0x00000000 -
0x000fffff 32-bits

Table 2-7. ioctl Commands to Configure and Monitor the TX FIFO (Sheet 3 of 3)

TX FIFO Register ioctl
Commands Description Range Buffer Size

Table 2-8. ioctl Commands to Configure and Monitor MDIO Interface

MDIO Interface ioctl
Commands Description Range Buffer

Size

SET_MDIO_CMD_ADDR Bit 20 = Set high to perform operationBit
17:16 = Identify operation to be
performed.Bit 9:8 = address of external
deviceBit 4:0 = Reg Address

0x00000000 -
0x0013031f 32-bits

GET_MDIO_CMD_ADDR Get that value of the MDIO command and
address register.

0x00000000 -
0x0013031f 32-bits

SET_MDIO_SINGLE_RW_DATA Bit 31-16 = MDI Read data from external
deviceBit 15:0 = MDI write data to external
device

0x00000000 -
0x0000ffff 32-bits

GET_MDIO_SINGLE_RW_DATA Get MDI read write data 0x00000000 -
0xffffffff 32-bits

SET_AS_PHY_ADDR Set the PHY address enableBit 3:0 = set
high to enable PHY address [1]

0x00000000 -
0x0000000f 32-bits

GET_AS_PHY_ADDR Get the PHY address status 0x00000000 -
0x0000000f 32-bits

SET_MDIO_CTL Bit 19:16 = Remote Fault StatusBit 3 = MDI
ProgressBit 2 = Set high to enable MDIBit 1
= set high to enable auto-scanBit 0 = select
speed of MDC clock

0x00000000 -
0x0000000f 32-bits

GET_MDIO_CTL Get the MDIO Control status 0x00000000 -
0x000f000f 32-bits

I/O Card Driver API Developer�s Manual 25

Quad Gigabit Ethernet I/O Card

2.3.3.8 SPI-3 Configuration ioctl Commands

Table 2-9 lists the ioctl commands used to configure and monitor the SPI-3 interface

2.3.3.9 SERDES Interface ioctl Commands

Table 2-10 describes the ioctl commands used to configure and monitor the SerDes interface.

Table 2-9. ioctl Commands to Configure SPI-3 Interface

SPI-3 Configure Ioctl commands Description Range Buffer
size

SET_SPI3_TX_CONFIG Set the SPI3 Transmitter and Global
configuration (4x8 mode)

0x00000000
- 0x00ffffff 32-bits

GET_SPI3_TX_CONFIG Get the SPI3 Transmitter and Global
configuration (4x8 mode)

0x00000000
- 0x00ffffff 32-bits

SET_SPI3_RX_CONFIG Configure the SPI-3 Receiver 0x00000000
- 0x0fffffff 32-bits

GET_SPI3_RX_CONFIG Get the SPI-3 Receiver configuration 0x00000000
- 0x0fffffff 32-bits

GET_SPI3_TX_INT_STATUS Get the status of various SPI-3 transmit
error interrupts. (one for each port. [2]

0x00000000
- 0x000001ff 32-bits

GET_SPI3_ADR_PARITY_ERROR Get the number of packets dropped sue to
address parity error.

0x00000000
- 0x000000ff 32-bits

GET_SPI3_PKT_DISABLE_PORT Get number of packets received for
disabled port that has been dropped. [2]

0x00000000
- 0x000000ff 32-bits

GET_SPI3_PKT_SYNC_ERR Get the number of packets received with
full SYNC error (No SOP but EOP) that
has been dropped.

0x00000000
- 0x000000ff 32-bits

GET_SPI3_PKT_SHORT_DROP Get the number of dropped, whose length
is less than 9 bytes.

0x00000000
- 0x000000ff 32-bytes

Table 2-10. ioctl Commands to Configure SERDES Interface (Sheet 1 of 3)

SERDES Interface Ioctl
commands Description Range Buffer

Size

SET_ACDC_COUPLING Set AC or DC coupling on the output of each
SerDes port (Tx and RX are independent)Bit
7:0 = each pair of bits represents the port
number from LSB, and out of that even bit
number is for TX and odd is for RX

0x00000000
- 0x000000ff 32-bits

GET_ACDC_COUPLING Get the AC or DC coupling status 0x00000000
- 0x000000ff 32-bits

SET_SERDES_TX_DRV_COEFF Set the various programmable strength s on
each of the SerDes port

0x00000000
- 0x00ffffff 32-bits

GET_SERDES_TX_DRV_COEFF Get the strength on each of the SerDes Port 0x00000000
- 0x00ffffff 32-bits

SET_TX_DRV_POW_LEVEL Set the power level for each of the SerDes
port. Each byte corresponds to the port
number starting from LSB.

0x00000000
- 0x0000ffff 32-bits

GET_TX_DRV_POW_LEVEL Get the power level for each port 0x00000000
- 0x0000ffff 32-bits

26 I/O Card Driver API Developer�s Manual

Quad Gigabit Ethernet I/O Card

SET_TX_LINK_VALIDATION Configure the link status, and stores that. 0x00000000
- 0x00f03cf0 32-bits

GET_TX_LINK_VALIDATION Get the status of the link validation 0x00000000
- 0x00f03cff 32-bits

SET_TX_RX_POW_DOWN Set the Power-down TX and RX power-down
bits to allow per port power-down of the
unused port.Bit 13:10 = Set bit to high to Tx
Power down per port (each bit from LSB
corresponds to each port number.)Bit 3:0 =
set bit high to RX Power-down per port, port
mapping to the bit is same as above.

0x00000000
-
0x00003c0f

32-bits

GET_TX_RX_POW_DOWN_STT Gets port status regarding individuals TX and
RX power down.

0x00000000
-
0x00003c0f

32-bits

SET_RX_DATA_SYNC Enable the feature, which allows the
incoming data stream to be slipped by one
bit each time the signal is activated.Bit 3:0 =
Set bit high to activate the data
synchronization control per port. Each bit
from LSB maps to the port number.

0x00000000
-
0x0000000f

32-bits

GET_RX_DATA_SYNC
Get the receive data synchronization status.

0x00000000
-
0x0000000f

32-bits

SET_RX_LINK_VALIDATION Setting these bits allows a BIST test to be
carried out to validate the link function.Bit
23:20 = Set high to enable link validation.
Each bit from LSB maps to the respective
port number.Bit 13:10 = Set high to reset link
validation controller. Each bit from LSB maps
to the respective port number. Bit 3:0 = set
high to enable link validation loop back.

0x00000000
- 0x00f03c0f 32-bits

GET_RX_LINK_VALIDATION Get the receive validation status. 0x00000000
- 0x00f03c0f 32-bits

GET_RX_LINK_STT Same as above, but corresponding register
is not cleared when read.

0x00000000
-
0x0000000f

32-bits

SET_RX_PHASE_ROT Control the Phase Rotator in the SerDes Rx
on a per port basis.Bit 23:20 = Set high to
enable phase rotator retard. Each bit from
LSB maps to the respective port numberBit
13:10 = Set high to enable phase rotator.
Each bit from LSB maps to the respective
port number.Bit 3:0 = set high to enable
phase rotator advance. Each bit from LSB
maps to the respective port number

0x00000000
- 0x00f03c0f 32-bits

GET_RX_PHASE_ROT Get the phase rotator status. 0x00000000
- 0x00f03c0f 32-bits

GET_RX_PHASE_ROT_BUS Get phase rotator state in conjunction with
RX phase rotator control.

0x00000000
- 0x00ffffff 32-bits

SET_RX_LATCH_OBSRV_01 Allow the capture of data at the output of the
de-serializer SerDes for port 0 and 1.

0x00000000
-
0x00c00801

32-bits

Table 2-10. ioctl Commands to Configure SERDES Interface (Sheet 2 of 3)

SERDES Interface Ioctl
commands Description Range Buffer

Size

I/O Card Driver API Developer�s Manual 27

Quad Gigabit Ethernet I/O Card

2.3.3.10 GBIC Interface ioctl Commands

Table 2-11 lists the ioctl commands used to control and monitor the GBIC interface

GET_RX_LATCH_OBSRV_01 Get the latch observation for the port 0 and
1.

0x00000000
- 0x00ffffff 32-bits

SET_RX_LATCH_OBSRV_23 Allow the capture of data at the output of the
de-serializer SerDes for port 2 and 3.

0x00000000
-
0x00c00801

32-bits

GET_RX_LATCH_OBSRV_23 Get the latch observation for the port 2 and
3.

0x00000000
- 0x00ffffff 32-bits

GET_RX_SIGNAL_LEVEL Get the status of the Rx input in relation to
the level of the signal being received from
the line.Bit 3:0 = High bit status depicts
Signal, while low for Noise. Each bit from
LSB maps to the respective port number

0x00000000
-
0x0000000f

32-bits

GET_CLOCK_INTERFACE_MODE The register is used to indicate the internal
clock generator of when to sample the new
value of the interface clock mode (speed)
and the interface mode (Copper/Fiber).

32-bits

GET_SERDES_TX_CONFIG
Get the default TX block configuration value.

0x00000000
-
0x000f03c9

32-bits

GET_SERDES_RX_CONFIG
Get the default RX block configuration value

0x00000000
-
0x000f03c9

32-bits

GET_PLL_LOCK Get the status of the PLL lock for the RX and
TX block.

0x00000000
-
0x00000003

32-bits

Table 2-10. ioctl Commands to Configure SERDES Interface (Sheet 3 of 3)

SERDES Interface Ioctl
commands Description Range Buffer

Size

Table 2-11. ioctl Commands to Control and Monitor GBIC Module (Sheet 1 of 2)

GBIC Interface ioctl
commands Description Range Buffer

Size

GET_GBIC_STAUS Get the interface status to the GBIC module when
used in SerDes mode.

0x00000000 -
0x00f03c0f 32-bits

SET_GBIC_CTL Configure the GBIC module 0x00000000 -
0x0001fc0f 32-bits

GET_GBIC_CTL Get the GBIC module configuration 0x00000000 -
0x0001fc0f 32-bits

SET_I2C_CTL_DATA Set the I2C control data 0x00000000 -
0x013ffe00 32-bits

GET_I2C_CTL_DATA, Get the I2C control Data 0x00000000 -
0x0d3fffff 32-bits

SET_PLL_TUNE_1 These registers control and adjust the charge
pumps, VCO, and internal capacitor tuning of the
Serializer/Deserializer blocks, allowing
programming for optimal performance in any given
system configuration.

0x000003ff 32-bits

GET_PLL_TUNE_1 0x000007ff 32-bits

28 I/O Card Driver API Developer�s Manual

Quad Gigabit Ethernet I/O Card

SET_PLL_TUNE_2 0x000003ff 32-bits

GET_PLL_TUNE_2 0x000007ff 32-bits

SET_PLL_TUNE_3 0x000003ff 32-bits

SET_PLL_TUNE_3 0x000007ff 32-bits

Table 2-11. ioctl Commands to Control and Monitor GBIC Module (Sheet 2 of 2)

GBIC Interface ioctl
commands Description Range Buffer

Size

I/O Card Driver API Developer�s Manual 29

Quad Gigabit Ethernet I/O Card

2.3.4 Error Types

This section shows error enumerator structure used for returning an error type and list the error
types returned by the GbEMAC_Ioctl() and GbEMAC_DeviceStart() functions.

Error Enumerator
typedef enum gbe_mac_e_error {

} gbe_mac_error;

2.3.4.1 Error Types from GbEMAC_Ioctl()

Table 2-12 lists the error types returned by the GbEMAC_Ioctl() function.

Table 2-12. GbEMAC_Ioctl() Error Types and Description (Sheet 1 of 3)

Error Types Numeric
value Description

SUCCESS 0x0000 The operation is performed
successfully.

IOCLT_ERROR_INPUT_REG_VALUE_OUT_OF_RANGE 0x0405 The input value for register to
be set

ERROR_DEVICE_ALREADY_INITIALIZED 0x401

PLL_NOT_LOCKED 0x402

ISR_REGISTERTATION_FAILED 0x403

ISR_DISABLE_FAILED 0x404

IOCLT_ERROR_INPUT_REG_VALUE_OUT_OF_RANGE 0x405

IOCLT_ERROR_INPUT_PORT_NUMBER_INVALID 0x0406 Input port number not within
[0,3]

IOCTL_ERROR_UNKNOWN_IOCTL_CODE 0x0407 The ioctl code is not valid.

IOCTL_BUFFER_POINTER_NULL 0x0408 Passed ioctl pointer is
NULL.

IOCTL_BUFFER_POINTER_INVALID 0x0409 Passed ioctl pointer is
invalid.

IOCTL_PORT_NOT_OPEN 0x040A The port has not been
initialized

MODE_ALREADY_SET_IN_SPECIFIED_DUPLEX_MODE 0x040B The Duplex mode already set
in the specified mode.

ERROR_INVALID_DUPLEX_MODE 0x040C Given mode is invalid.

FAIL_RX_FIFO_ERRORED_FRAME_DROP_IS_DISABLE 0x040D RX FIFO Error frame drop is
disabled.

ERROR_CONFLICT_WITH_HIGH_WATERMARK 0x040E High watermark level is
lesser to low watermark level.

ERROR_VALID_ONLY_FOR_COPPER_MODE 0x040F The change is valid in only
copper mode.

ERROR_VALID_ONLY_FOR_FIBER_MODE 0x0410 The change is valid in fiber
mode only.

ERROR_MDI_ENABLE_BIT_IS_RESET_IN_MDI_CONTROL
_REG 0x0411 MDI bit in the MDI control

register is reset.

30 I/O Card Driver API Developer�s Manual

Quad Gigabit Ethernet I/O Card

ERROR_CONFLICT_WITH_LOW_WATERMARK 0x0412 Low watermark level is lesser
to high watermark level.

ERROR_NOT_ALLOWED_IN_LOOPBACK_MODE 0x0413 The change is not allowed in
the Loop back mode.

ERROR_CONFLICT_WITH_JUMBO_FRAME_SIZE
0x0414

The defined frame size
conflicts with the Jumbo
frame size.

PLL_TRANSMIT_LOCK_STATUS_FAILED 0x415

IOCTL_READ_VALUE_OUT_OF_RANGE 0x0416 Read value is out of range.

ERROR_NPU_IS_INGRESS 0x417

PCI_ERROR_COULD_NOT_GRAB_SEMAPHORE 0x418

ERROR_MAC_NOT_INITIALIZED 0x0419 MAC had not been initialized
earlier.

ERROR_GET_RMON_STAT_TASK_COULD_NOT_SPAWNED
0x041A

Task for gathering the RMON
statistics could not be
spawned.

MEMORY_ALLOCATION_FAILS 0x041B Memory could not be
allocated.

ERROR_INT_LOCK_FAILED 0x041C Interrupt Lock failed.

ERROR_TASK_LOCK_FAILED 0x041D Task Lock failed

SEMAPHORE_COULD_NOT_CREATED 0x041E Semaphore could not be
created.

ERROR_PT_LONE_MEDIA_CARD_IS_NOT_PRESENT_ON_MED
IA_INTERFACE 0x41f Pt. Lone card is not present

on the Media interface.

ERROR_PT_LONE_MEDIA_CARD_IS_NOT_PRESENT_ON
_SWITCH_FABRIC_INTERFACE 0x0420

Pt. Lone media card is not
present on the switch fabric
interface.

EEPROM_OF_PT_LONE_MEDIA_CARD_ON_MEDIA
_INTERFACE_IS_NOT_PROGRAMMED 0x0421

EEPROM on the Pt. lone
media card on the MEDIA
interface is not programmed.

EEPROM_OF_PT_LONE_MEDIA_CARD_ON_SWITCH_FABRIC
_INTERFACE_IS_NOT_PROGRAMMED

0x0422

EEPROM on the Pt. lone
media card on the Switch
Fabric interface is not
programmed.

ERROR_INVALID_HANDLE 0x0423 Invalid handle passed by the
application.

ERROR_PREVIOUS_MDI_COMMAND_STILL_NOT_COMPLETED 0x0424 Previous MDI command still
not completed.

ERROR_COULD_NOT_PERFORM_MDIO_READ 0x0425 MDIO read fails

ERROR_MDI_RD_WR_DISABLE 0x0426 MDIO single read-write
operation disables.

ERROR_COULD_NOT_PERFORM_MDIO_WRITE 0x0427 MDIO write fails

SPI3_TX_LOCK_FAILED 0x428

NO_MORE_CALLBACK_FOR_INTERRUPT 0x429

CALLBACK_OVER_WRITTEN 0x42a

Table 2-12. GbEMAC_Ioctl() Error Types and Description (Sheet 2 of 3)

Error Types Numeric
value Description

I/O Card Driver API Developer�s Manual 31

Quad Gigabit Ethernet I/O Card

2.3.4.2 Error Types from GbEMAC_DeviceStart()

Table 2-13 lists the error types returned by the GbEMAC_DeviceStart()function.

CALLBACK_REGISTERED 0x42b

INTERRUPT_TYPE_COULD_NOT_RECOGNIZED 0x42c

WARNING_ONLY_LOWER_FOUR_BYTES_ARE_WRITABLE 0x0430

WARNING_ONLY_LOWER_THREE_BITS_ARE_WRITABLE 0x0431

Table 2-12. GbEMAC_Ioctl() Error Types and Description (Sheet 3 of 3)

Error Types Numeric
value Description

Table 2-13. GbEMAC_DeviceStart() Error Types and Description

Error Types Numeric
Value Description

ERROR_DEVICE_ALREADY_INITIALIZED 0x0401 Device is already initialized.

PLL_NOT_LOCKED 0x0402 PLL lock not achieved

ISR_REGISTERTATION_FAILED 0x0403 pciIntConnect() failed

ISR_DISABLE_FAILED 0x0404 pciIntDisconnect () failed

PLL_TRANSMIT_LOCK_STATUS_FAILED 0x0415 PLL lock has not been achieved

32 I/O Card Driver API Developer�s Manual

Quad Gigabit Ethernet I/O Card

2.4 API Usage Model

This usage model describes the usage of the APIs, exported by the driver library, for initializing and
configuring the device. The driver library supports multiple devices.

The driver APIs interface with the calling application to configure and initialize the Quad GbE I/O
card. The APIs are defined in the ixf1104ce_driver_api.h file and the driver API header files
in ixf1104ce_driver_api.h.

The calling application interfaces with the driver API library to open the multiple ports of interest
by passing the port mask to indicate the ports to be opened. On successful completion of this open
call, the application calls an API to perform the change configuration using the IOCTL command.
When the calling application exits, it calls an API to close the ports it has opened earlier.

2.5 VxWorks Driver APIs

This section defines the ways in which the application interfaces with the driver APIs.The Quad
GbE I/O card driver module provides interfaces for the application to access the I/O card registers.

Figure 2-2. API Driver Library

B0905-01

Driver Library

Quad
Gigabit

Ethernet
Media
Card

Port Mask, *Handle

SUCCESS/ERROR

*Handle, Command,
void * structure

SUCCESS/ERROR

Port Mask, *Handle

SUCCESS/ERROR

Application

IN Argument

Legend:

INOUT Argument
Return Value

GbEMAC_DeviceStart (
unit32 arg_PortMask,
unit32 * arg_pHandle,
unit32 arg_mode);

GbEMAC_loctl (
unit32 arg_pHandle,
unit32 arg_IoctlCommand,
void *arg_ploctlStruct);

GbEMAC_DeviceStop (
unit32 arg_PortMask,
unit32 arg_pHandle);

I/O Card Driver API Developer�s Manual 33

Quad Gigabit Ethernet I/O Card

Table 2-14 shows the I/O Card driver APIs.

Figure 2-3 illustrates the calling sequence of each function.

2.5.1 GbEMAC_DeviceStart()

This routine is called by the application to open the device. The GbEMAC_DeviceStart()function
performs the following tasks:

• Initializes the port, whose mask is passed as an argument to this function and configures the
device

• Configures the device in the specified mode. If an illegal mode is specified, the configuration
defaults to the fiber mode.

• Sets the rest of the registers to their default configuration values—initializes the global and per
port registers of the device

• Sets the port state as opened

After initializing and configuring the registers, it calls the interrupt routine to connect the interrupt
handler function to the interrupt vector.

Once the port has been initialized by the calling application, any subsequent call to this API would
return SUCCESS without re-initializing the port again. This function should not be called again
without first calling the GbEMAC_DeviceStop() function.

Note: The header files required to be included in the application code are:

• #include “VxWorks/include/ixf1104ce_driver_api.h”

• #include “common/include/ixf1104ce_ioctl.h”

Table 2-14. GbE MAC I/O Card Driver APIs

API Description

GbEMAC_DeviceStart() Called by the application to open the device

GbEMAC_DeviceStop() Called by the application to close the driver

GbEMAC_Ioctl Called by the application to run an ioctl command

Figure 2-3. Function Calling Sequence

Application

GbEMAC_DeviceStart()

GbEMAC_Ioctl()

GbEMAC_DeviceStop()

1

2 (may be called many times)

3

34 I/O Card Driver API Developer�s Manual

Quad Gigabit Ethernet I/O Card

Syntax
uint32 GbEMAC_DeviceStart (uint32 arg_PortMask

uint32 * arg_pHandle,

uint32 arg_mode);

2.5.2 GbEMAC_DeviceStop()

This function is called by the calling application to close the device in use. This function resets all
the GbE MAC media card configuration registers to zero and sets the port state as CLOSED.

The calling application passes the address of the handle received from the
GbEMAC_DeviceStart() API and this function checks the handle for validity. If the calling
application is the last application using the driver of the specified port, then it sets the port status as
CLOSED and the port is no longer in active state. For using the port again, the application must call
the GbEMAC_DeviceStart() API.

Input

arg_PortMask This mask indicates the ports to be opened�0x00-0xFF

arg_pHandle The driver library writes a handle for the application.

arg_mode Specifies the mode in which the port needs to be opened. The ports
represented by the arg_PortMask are opened in the specified mode by the
argument arg_PortMode. See Table 2-15 for the specified mode value
interpretation.

Table 2-15. Mode Value Interpretation

Bit Position Associated to Value Intepretation

4 SPI-3 Block Mode
0 - SPHY 4x8 Mode
1 - MPHY Mode

3 SPI-3 Parity
0 - Odd Parity
1 - Even Parity

2-0 Channel, duplex and speed selection mode

000 Fiber Mode
001 Copper 1000 Half Duplex Copper
010 Copper 1000 Full Duplex Copper
011 Copper 100 Half Duplex Copper
100 Copper 100 Full Duplex Copper
101 Copper 10 Half Duplex Copper
110 Copper 10 Full Duplex Copper

Output/Returns

Return Type • SUCCESS or a valid gbe_mac_error type

I/O Card Driver API Developer�s Manual 35

Quad Gigabit Ethernet I/O Card

If the calling application is not the last application, it decrements the usage count for that device,
and sets the handle value to zero indicating that the application is no longer interested in using the
driver. This function should be called after the GbEMAC_DeviceStart() has been successfully
called.

Syntax
uint32 GbEMAC_DeviceStop (

uint32 arg_PortMask,

uint32 * arg_pHandle);

2.5.3 GbEMAC_Ioctl

This routine is provided to call an ioctl. This function is the entry point to configure and get
status of the device. This routine performs different functions based upon the function parameter.
This routine calls the gbe_mac_config_handler routine for the implementation of the ioctl
command.

This function can only be called after the GbEMAC_DeviceStart() function has been
successfully called and it ensures validity the calling application by checking the handle returned
by GbEMAC_DeviceStart() function.

Syntax
extern uint32 GbEMAC_Ioctl (

uint32 * arg_pHandle,

uint32 arg_IoctlCommand,

void *arg_pIoctlStruct);

Input

arg_PortMask An 8-bit value that represents the ports to be closed. Each high bit
indicates the port by its position from LSB. [0x00-0xFF]

arg_pHandle The pointer to the handle received from the GbEMAC_DeviceStart()
API and is used to verify the application identity.

Output/Returns

Return Type • SUCCESS or a valid gbe_mac_error type

Input

arg_HandleID A unique handle returned by GbEMAC_DeviceStart().

arg_ioctlCommand The ioctl command which is to be performed. The
corresponding ioctl number is parsed in the driver which
performs the ioctl operation

36 I/O Card Driver API Developer�s Manual

Quad Gigabit Ethernet I/O Card

2.5.4 GbEMAC_Callback()

This function is called by the calling application to register the callback function in the driver and
the driver library calls this function when an interrupt is generated.

The calling application passes the address of the handle received from the
GbEMAC_DeviceStart() API and this function checks the handler for validity of the calling
application, and it is used in removing the associated callback functions in the
GbEMAC_DeviceStop().

Syntax
gbe_mac_error GbEMAC_Callback(

uint32 *arg_Handle,

VOIDFUNCPTR *arg_pCallback,

VOID* arg_pUserContext

);

arg_pIoctlStruct The ioctl structure pointer that contains the port number and
integer pointer. The port number specifies the MAC port to
which this ioctl is intended and the uint32 * points to the
value to be written to the particular resistor for SET ioctl
commands and stores the value read in GET ioctl commands.

Output/Returns

Return Type • SUCCESS or a valid gbe_mac_error type

Input

Input

arg_Handle: A unique handle returned by GbEMAC_DeviceStart().

*arg_pCallback Pointer to the user application function, which is passed to this
API to register with the driver as a callback function.

arg_pUserContext Pointer to the user context passed as a parameter to the
callback function.

Output/Returns

Return Type • SUCCESS—the callback function pointer has been successfully registered

• A valid gbe_mac_error type

I/O Card Driver API Developer�s Manual 37

Quad Gigabit Ethernet I/O Card

2.6 Linux Environment

The following figure shows an overview of the device driver architecture for the Linux platform.
The figure shows the environment in which the driver is to execute, the major components of the
design, and relationship among the components.

2.6.1 Linux Character Device Driver APIs

The driver API is a set of high-level functions that are invoked by applications needing to initialize
and configure the Quad Gigabit Ethernet I/O card. This driver is modeled as a character driver for
Linux platform. The API includes the following function types:

Figure 2-4. Linux Driver Architecture

Application (open/close/ioctl/fcntl)

Pt. Lone Card

Linux

Register Access

Service

Calls

Service

Callback

Register Access Layer

Linux character Device Driver API

OS
I/F

Device

Configuration

User Mode

Kernel Mode

Function Type Description

Init Initializes and configures the device.

Ioctl handlers Performs device configuration and provides status.

Open Updates the status of the port to be opened and
activated.

Close Sets the status of the device to ‘deactivate’ so the
port will no longer be in normal operation.

Fcntl Gets the asynchronous notification (fasync) of the
interrupt in form of the signal.

38 I/O Card Driver API Developer�s Manual

Quad Gigabit Ethernet I/O Card

2.6.2 Device Configuration

The device configuration encompasses the initialization and configuration functions. The ioctls are
provided to alter the basic configuration in the desired mode.

2.6.3 Operating System Interface

The driver's operating system interface provides functions that let the driver use the operating
system services related to interrupt handling and memory access. This is to ensure the portability
and code reuse.

2.6.4 Register access layer

The register access layer provides functions/macros that read from and write to the device registers.

2.7 Data Structures

Data structures incorporate the list of ioctl commands, used by the user application to configure
the device. The ioctl list describes the input/output control commands for configuring various
registers and to get their status. The error enumerator maintains the error number, which is
returned by the driver module, in case an error condition occurs. The unique error message
corresponding to each error number describes the nature of the error. The port status enumerator
maintains the per port status of all the Vallejo MAC on the Quad Gigabit Ethernet I/O Card.

2.7.1 Basic Data Type

Table defines the basic data types that are used in the driver. These types are defined to ease
portability of the code across different operating systems.

Table 2-16. Basic Data Type

2.7.1.1 PORT Status

This example provides the different possible states a port can be in.
typedef enum gbe_mac_e_port_state {

 CLOSED = 0,

 OPENED

} gbe_mac_port_state;

Basic Types Description

uint32 32 bit unsigned integer

I/O Card Driver API Developer�s Manual 39

Quad Gigabit Ethernet I/O Card

2.7.2 Structure Passed to ioctl Command

The API provided for calling the ioctl command contains a void pointer as one of its argument.
The calling application passes a structure pointer, which maintains the information regarding the
ioctl to be called. This structure is passed after typecasting it with the void * pointer. This
structure, whose pointer is passed by the calling application while using the ioctl command, is
defined below.

The ioctl command normally deals with a single register, that is, 32-bits, and some of the specific
ioctl commands need to read two, 32-bits registers. Structure definition for a single 32-bit
register and two 32-bits registers are described below.

ioctl command structure definition for a single register
typedef struct gbe_mac_s_ioctl_ptr {

uint32 portIndex;

uint32 value;

} gbe_mac_iotcl_ptr;

ioctl command structure definition for two registers
typedef struct gbe_mac_s_ioctl_ptr_64 {

uint32 portIndex;

uint32 valueHigh;

uint32 valueLow;

} gbe_mac_iotcl_ptr_64;

Input

portIndex Indicates the port number

value A placeholder for a value, which is either to be set or retrieved in an
ioctl operation.

40 I/O Card Driver API Developer�s Manual

Quad Gigabit Ethernet I/O Card

Note: This structure definition shown for two registers is used in the GET ioctl commands such as
GET_STN_ADDR, GET_FDFC_ADDR, and GET_MUL_PORT_ADD, where the 48-bit data for the
MAC address is to be read.

2.7.3 GbE_MAC_ERROR Enumerator

The error codes, returned by the driver code, are described in the following tables. The IOCTL
Error Code table describes the error codes returned by the IOCTL API, while the Initialiazation
Error Code table describes the errors returned by the open API.

Table 2-17. IOCTL Error Code (Sheet 1 of 3)

Error Code Numeric
Value Description

SUCCESS 0x0000 The operation is performed successfully.

IOCLT_ERROR_INPUT_REG_VALUE_OUT_OF_RANGE, 0x0405 The input value for register to be set

IOCLT_ERROR_INPUT_PORT_NUMBER_INVALID, 0x0406 Input port number not within [0,3]

IOCTL_ERROR_UNKNOWN_IOCTL_CODE, 0x0407 The ioctl code is not valid.

IOCTL_BUFFER_POINTER_NULL, 0x0408 Passed ioctl pointer is NULL.

IOCTL_BUFFER_POINTER_INVALID, 0x0409 Passed ioctl pointer is invalid.

IOCTL_PORT_NOT_OPEN, 0x040A The port has not been initialized

MODE_ALREADY_SET_IN_SPECIFIED_DUPLEX_MODE, 0x040B The Duplex mode already set in the
specified mode.

ERROR_INVALID_DUPLEX_MODE, 0x040C Given mode is invalid.

FAIL_RX_FIFO_ERRORED_FRAME_DROP_IS_DISABLE, 0x040D RX FIFO Errored frame drop is disabled.

ERROR_CONFLICT_WITH_HIGH_WATERMARK, 0x040E High watermark level is lesser to low
watermark level.

ERROR_VALID_ONLY_FOR_COPPER_MODE, 0x040F The change is valid in only copper
mode.

ERROR_VALID_ONLY_FOR_FIBER_MODE, 0x0410 The change is valid in fiber mode only.

ERROR_MDI_ENABLE_BIT_IS_RESET_IN_MDI_CONTROL_REG, 0x0411 MDI bit is reset in the MDI control
register.

ERROR_CONFLICT_WITH_LOW_WATERMARK, 0x0412 Low watermark level is lesser to high
watermark level.

ERROR_NOT_ALLOWED_IN_LOOPBACK_MODE, 0x0413 The change is not allowed in the
Loopback mode.

ERROR_CONFLICT_WITH_JUMBO_FRAME_SIZE, 0x0414 The packet size conflicts with the jumbo
packet size.

PLL_TRANSMIT_LOCK_STATUS_FAILED 0x0415 PLL lock has not been achieved

IOCTL_READ_VALUE_OUT_OF_RANGE, 0x0416 The IOCTL Value read, is out of range.

ERROR_COULD_NOT_COPY_RMON_STAT_FROM_KERNEL_MO
DE 0x0417

The memcpy_tofs fails, as it could not
copy the contents of the kernel space to
the specified user case.

ERROR_MAC_NOT_INITIALIZED, 0x0418 MAC hasn’t been initialized yet.

ERROR_GET_RMON_STAT_TASK_COULD_NOT_SPAWNED, 0x0419 Task for gathering the RMON statistics
could not be spawned.

I/O Card Driver API Developer�s Manual 41

Quad Gigabit Ethernet I/O Card

ERROR_COULE_NOT_OPEN_DEVICE, 0x041a Could not the open the character device
file.

SEMAPHORE_COULD_NOT_CREATED 0x041b Could not create the semaphore

ERROR_PT_LONE_MEDIA_CARD_IS_NOT_PRESENT_ON_MEDI
A_INTERFACE, 0x041c Pt Lone card is not present on the

Media interface.

ERROR_PT_LONE_MEDIA_CARD_IS_NOT_PRESENT_ON_SWIT
CH_FABRIC_INTERFACE, 0x041d Pt Lone media card is not present on

the switch fabric interface.

EEPROM_OF_PT_LONE_MEDIA_CARD_ON_MEDIA_INTERFACE
_IS_NOT_PROGRAMMED, 0x041e EEPROM on the Pt lone media card on

the MEDIA interface is not programmed.

EEPROM_OF_PT_LONE_MEDIA_CARD_ON_SWITCH_FABRIC_I
NTERFACE_IS_NOT_PROGRAMMED, 0x041f

EEPROM on the Pt lone media card on
the Switch Fabric interface is not
programmed.

ERROR_INVALID_HANDLE, 0x0420 Invalid handle passed by the
application.

ERROR_PREVIOUS_MDI_COMMAND_STILL_NOT_COMPLETED, 0x0421 Previous MDI command still not
completed.

ERROR_COULD_NOT_PERFORM_MDIO_READ 0x0422 MDIO read operation could not
performed successfully

ERROR_MDI_RD_WR_DISABLE 0x0423
Could not perform MDIO read/write
operation , as the Rd/WR bit in the MDI
register is disabled.

ERROR_COULD_NOT_PERFORM_MDIO_WRITE 0x0424 MDIO write operation could not
performed successfully

SPI3_TX_LOCK_FAILED 0x0425 SPI3 transmit lock failed.

ERROR_SHARED_MEMORY_NOT_CREATED 0x0426
Shared memory for holding the global
data in the user mode driver could not
be created.

ERROR_SHARED_MEMORY_NOT_LOCKED 0x0427 Shared memory could not lock for
exclusive access of the data.

ERROR_SHARED_MEMORY_NOT_UNLOCKED 0x0428 Shared memory could not be unlocked.

ERROR_SHARED_MEMORY_NOT_DESTROYED 0x0429 Shared memory couldn’t be destroyed.

ERROR_SHARED_MEMORY_NOT_DETATCHED 0x042a
Shared memory could not be detached
from the application to which it has been
attached.

ERROR_SHARED_MEMORY_NOT_ATTACHED 0x042b Shared memory could not be attached.

ERROR_SEMAPHORE_NOT_GRABED 0x042c Semaphore could not be grabbed.

INVALID_PORT_MASK 0x042d The port mask passed to the driver
library is invalid.

MEMORY_ALLOCATION_FAILS 0x042e Memory could not be allocated for the
specified task.

ERROR_SP_CSR_BASE_COULD_NOT_MAPPED 0x042f Slow port registers could not be
mapped, using mmap system call.

WARNING_ONLY_LOWER_FOUR_BYTES_ARE_WRITABLE 0x0430 Only bits 0-15 are writable, rest are
reserved.

WARNING_ONLY_LOWER_THREE_BITS_ARE_WRITABLE 0x0431 Only bits 0-2 are writable, rest are
reserved.

Table 2-17. IOCTL Error Code (Sheet 2 of 3)

Error Code Numeric
Value Description

42 I/O Card Driver API Developer�s Manual

Quad Gigabit Ethernet I/O Card

Table 2-18. Initialization Error Code

The application calling an IOCTL function expects the return value, in case an error is returned it
uses the returned value to map the error enumerator to get the error message. The returned value
can be used as an index to the array of the error messages.

2.7.4 IOCTL_CMD Enumerator

The IOCTL_CMD enumerator defines various ioctls used by the application. The application
passes ioctl command code as one of the arguments in the ioctl() system call. The registers
of the device are set by using the “SET” ioctl commands. The “SET” prefixes are used for
setting the register to the given parameter. The “GET” prefixes are the ioctl commands used to
get the register value. The ioctl command list is provided in the following tables.

2.7.4.1 MAC Control Ioctls

Table 2-19 explains the ioctls1 used for configuring and monitoring the status of the registers
associated with each MAC port.

NO_MORE_CALLBACK_FOR_INTERRUPT 0x0432 Number of callback functions supported
by the driver are full.

ERROR_PORT_ALREADY_OPENED 0x0440 Specified port is already opened.

ERROR_INPUT_PORT_NUMBER_INVALID 0x0441 Passed input port number is invalid.

ERROR_DEVICE_NOT_OPENED 0x0442 Device could not be opened.

ERROR_PORT_NOT_OPEN 0x0443 Specified port is still not opened.

ERROR_CALLED_IOCTL_FAILED 0x0444 Called Ioctl has encountered an error.

Error code Numeric
Value Description

REGISTRATION_FAILED 0x0400
GbEMAC Module can
not be registered with the
kernel.

ERROR_DEVICE_ALREADY_INITIALIZED 0x0401 Device is already
initialized.

PLL_NOT_LOCKED 0x0402 PLL lock not achieved

INTERRUPT_INSTALLATION_FAILED 0x0403
ISR could not be
registered with the
interrupt vector.

INTERRUPT_FREEING_FAILED 0x0404
ISR could not be
unregistered from the
interrupt vector.

Table 2-17. IOCTL Error Code (Sheet 3 of 3)

Error Code Numeric
Value Description

1. The Port Number should be given separately, as a parameter to the buffer, whose pointer is passed as an argument to the ioctl command

I/O Card Driver API Developer�s Manual 43

Quad Gigabit Ethernet I/O Card

Table 2-19. MAC Control IOCTL Commands (Sheet 1 of 3)

IOCTL Command
MAC control ioctls Description Defined

Value
Buffer
Size

SET_STN_ADDR_LOW Set source MAC address bit 31-0 0xe200 32-bits

SET_STN_ADDR_HIGH Set source MAC address bit 47-0 0xe201 32-bits

GET_STN_ADDR Get source MAC address 0xe300 64-bits

SET_DUPLEX_MODE Set half/full-duplex operation mode of the MAC 0xe202 32-bits

GET_DUPLEX_MODE Get the MAC operating mode 0xe302 32-bits

SET_FDFC_TYPE Set FDFC Type field of the Transmit Pause Frame 0xe203 32-bits

GET_FDFC_TYPE Get FDFC Type field of the Transmit Pause Frame 0xe303 32-bits

SET_COLLISION_DIST Set limit for the late collisions 0xe204 32-bits

GET_COLLISION_DIST Get the limit set for late collision 0xe304 32-bits

SET_COLLISION_THLD Set the limit for excessive collision 0xe205 32-bits

GET_COLLISION_THLD Get the limit set for excessive collision 0xe305 32-bits

SET_FCTX_TIMER Set the pause length sent to the receiving station 0xe206 32-bits

GET_FCTX_TIMER Get the pause length set 0xe306 32-bits

SET_FDFC_ADDR_LOW Set 31-0 bits of the 48-bit globally assigned multicast pause
frame destination address 0xe207 32-bits

SET_FDFC_ADDR_HIGH Set 47-32 bits of the 48-bit globally assigned multicast pause
frame destination address 0xe208 32-bits

GET_FDFC_ADDR Get the Multicast pause frame destination MAC address 0xe307 64-bits

SET_IPG_RECEIVE_TIME1 Set the first part of the IPG time for non back-to-back
transmission 0xe209 32-bits

SET_IPG_RECEIVE_TIME2 Set the second part of the IPG time for non back-to-back
transmission 0xe20a 32-bits

GET_IPG_RECEIVE_TIME Get the IPG time for non back-to-back transmission 0xe309 32-bits

SET_IPG_TRANSMIT_TIME Configure IPG time for back-to-back transmission 0xe20b 32-bits

GET_IPG_TRANSMIT_TIME Get IPG for back-to-back transmission 0xe30b 32-bits

SET_PAUSE_THRESHOLD Set the time between two consecutive pause frames to keep
the link partner in pause mode. 0xe20c 32-bits

GET_PAUSE_THRESHOLD Get the pause threshold time 0xe30c 32-bits

SET_MAX_FRAME_SIZE Set the maximum frame size the MAC can receive and
transmit without activating any error. 0xe20d 32-bits

GET_MAX_FRAME_SIZE Get the maximum frame size 0xe30d 32-bits

SET_MAC_IF_MODE Set the MAC operation frequency and mode per port 0xe20e 32-bits

GET_MAC_IF_MODE Get the MAC operation frequency and mode 0xe30e 32-bits

SET_FLUSH_TX Set this bit to flush all transmit data. It is set if all the traffic to a
port should be stopped. 0xe20f 32-bits

GET_FLUSH_TX Get the status of this bit, 0xe30f 32-bits

SET_FC_MODE Set the flow control mode for the RX and TX MAC 0xe210 32-bits

GET_FC_MODE Get the flow control mode of the RX and TX MAC 0xe310 32-bits

44 I/O Card Driver API Developer�s Manual

Quad Gigabit Ethernet I/O Card

SET_FC_BACK_PRESSURE_LEN Set the minimum length/duration of backpressure. These six
bits holds the value in bytes. 0xe211 32-bits

GET_FC_BACK_PRESSURE_LEN Get the minimum length/duration of the backpressure 0xe311 32-bits

SET_SHORT_RUNT_TH Set the threshold to determine between short and runt. The 5-
bit value holds the value in bytes. 0xe212 32-bits

GET_SHORT_RUNT_TH Get the threshold set for the demarcation between short and
runt 0xe312 32-bits

SET_UNKNOWN_FRAME_STT Used to discard/keep the unknown control frames. Known
control frames are pause frames. 0xe214 32-bits

GET_UNKNOWN_FRAME_STT Check the action regarding the unknown frames 0xe314 32-bits

GET_RX_CONFIG_WORD
This is used in Fiber MAC only for auto negotiation. The
contents of this register are the “config_word” received from
the link partner

0xe315 32-bits

SET_TX_CONFIG_WORD
Set this register which is used in Fiber MAC for auto-
negotiation only. The contents of this register are sent as the
config_word.

0xe216 32-bits

GET_TX_CONFIG_WORD Get the config_word register contents, sent for auto-
negotiation. 0xe316 32-bits

SET_DIV_CONFIG_WORD Set various configuration bits for general use. 0xe217 32-bits

GET_DIV_CONFIG_WORD Get the various configuration status 0xe317 32-bits

SET_PKT_FILTER_CTL
Set this register to allow specific packet types to be marked for
filtering. This is used in conjunction with the RX FIFO errored
Frames Drop Enable Register

0xe218 32-bits

GET_PKT_FILTER_CTL Get the status regarding the packet filtering 0xe318 32-bits

SET_MUL_PORT_ADD_LOW
Set bit 31:0 of the address. This address is used to compare
against multicast frames at the receiving side if multicast
filtering is enabled.

0xe219 32-bits

SET_MUL_PORT_ADD_HIGH Set bit 47:32 of the address 0xe21a 32-bits

GET_MUL_PORT_ADD 0xe319 64-bits

SET_PHY_REGISTER

Set the PHY register value

Bit 0-15 contains the value written to the register, and

Bit 16-20 represents the PHY register number for the specified
port.

0xe244 32-bits

GET_PHY_REGISTER
Get the PHY register value

In the value, the PHY register number is passed.
0xe398 32-bits

Table 2-19. MAC Control IOCTL Commands (Sheet 2 of 3)

I/O Card Driver API Developer�s Manual 45

Quad Gigabit Ethernet I/O Card

2.7.4.2 MAC Receive Control Ioctls

Table 2-20 presents the ioctls which are used to monitor the MAC Receive Statistics counters
contents. These ioctls can be used in polling. These registers are cleared when read. When RX
statistics counter overflows, it gets wrapped back to zero. At the Gbps speed, the 32-bit counters
wrap after approximately 30 seconds. The driver polls these registers and accumulates values in
virtual 64-bit counters (2-32 bit registers) to ensure that the RX statistics counters do not wrap. So
for these IOCTLs the user needs to pass 2-32bit registers to get the 64-bit register value.

SET_CONFIG_MODE

Change the port configuration value, e.g. from port
configuration Fiber to Copper, or link speed, or mode etc.

The interpretation of the 0-5 bits for this ioctls is as follows,

Bit Value Description

4 1 SPHY 4x8 Mode

 0 MPHY Mode

3 0 ODD Parity

 1 EVEN Parity

0 – 2 000 Fiber Mode

 001 1000 Half Duplex Copper

 010 1000 Full Duplex Copper

 011 100 Half Duplex Copper

 100 100 Full Duplex Copper

 101 10 Half Duplex Copper

 110 10 Full Duplex Copper

Ioctl Command is 0xe245.

32-bits

SET_PORT_INIT_ENABLE This particular IOCTL is called from the open routine in the
kernel mode driver, to increment the soft count of the port. 0xe242 32-bits

SET_PORT_STATE_CLOSE
This particular IOCTL is called from the close routine in the
kernel mode driver, to decrement/update the soft count of the
port.

0xe243 32-bits

Table 2-19. MAC Control IOCTL Commands (Sheet 3 of 3)

Table 2-20. MAC Receive Statistics Counters ioctls Commands (Sheet 1 of 2)

IOCTL Commands
MAC RX Stat ioctls Description Defined

Value
Buffer
Size

GET_RX_OCTETS_OK

Get the number of bytes received in all legal frames,
including all bytes from the destination MAC address to and
including the CRC. The initial preamble and SFD bytes are
not counted.

0xe31a 32-bits

GET_RX_OCTETS_BAD Get the number of bytes received in all bad frames with
legal size 0xe31b 32-bits

GET_RX_UC_PKTS Get the total number of unicast packets received, (EBP) 0xe31c 32-bits

GET_RX_MC_PKTS Get the total number of multicast packets received (EBP) 0xe31d 32-bits

GET_RX_BC_PKTS Get the total number of broadcast packets received (EBP) 0xe31e 32-bits

GET_RX_PKTS_64 Get the total number of packets received (IBP) that are 64
octets in length 0xe31f 32-bits

GET_RX_PKTS_65_127 Get the total number of packets received (IBP) that are [65-
127] octets in length. 0xe320 32-bits

GET_RX_PKTS_128_255 Get the total number of packets received (IBP) that are
[128-255] octets in length 0xe321 32-bits

46 I/O Card Driver API Developer�s Manual

Quad Gigabit Ethernet I/O Card

2.7.4.3 MAX Transmit Control Ioctls

The MAC Transmit Statistics Counters ioctls table describes the ioctl commands used to
monitor the MAC Transmit Statistics counters contents. These commands can be used in polling.
The corresponding registers are cleared when read . When TX statistics counter overflows, it gets
wrapped back to zero. At the Gbps speed, the 32-bit counters wrap after approximately 30
seconds. The driver polls these registers and accumulates values in virtual 64-bit counters (2-32 bit
registers) to ensure that the RX statistics counters do not wrap. For these ioctl commands the
application must pass two 32-bit registers to get the 64-bit register value.

GET_RX_PKTS_256_511 Get the total number of packets received (IBP) that are
[256-511] octets in length. 0xe322 32-bits

GET_RX_PKTS_512_1023 Get the total number of packets received (IBP) that are
[512-1023] octets in length 0xe323 32-bits

GET_RX_PKTS_1024_1518 Get the total number of packets received (IBP) that are
[1024-1518] octets in length 0xe324 32-bits

GET_RX_PKTS_1519_MAX Get the total number of packets received (IBP) that are
>1518 octets in length. 0xe325 32-bits

GET_RX_FCS_ERR Get the number of frames, received with legal size, but with
wrong CRC field (also called FCS field). 0xe326 32-bits

GET_VLAN_TAG Get the number of OK frames with VLAN tag 0xe327 32-bits

GET_RX_DATA_ERR Get the number of frames, received with the legal length
with code violation. 0xe328 32-bits

GET_RX_ALLIGN_ERR Get the number of frames, with a legal frame size, but
containing less than 8 additional bits 0xe329 32-bits

GET_RX_LONG_ERR
Get the number of frames, bigger than the maximum
allowed, with both OK CRC and the integral number of
octets.

0xe32a 32-bits

GET_RX_JABBER_ERR
Get the number of frames, bigger than the maximum
allowed, with either a bad CRC or a non-integral number of
octets

0xe32b 32-bits

GET_RX_PAUSE_MAC_CTL Get the number of Pause MAC control frames received 0xe32c 32-bits

GET_RX_UNKNOWN_CTL_FRAME Get the number of MAC control frames, received with an op
code different from 0001 (Pause) 0xe32d 32-bits

GET_VLONG_ERR Get the number of frames, bigger than the larger of
2*maxframesize and 50000 bits 0xe32e 32-bits

GET_RUNT_ERR

Get the total number of packets, received that are less than
64 octets in length, but longer than or equal to 96 bit times,
which corresponds to a 4- byte frame with a well formed
preamble and SFD

0xe32f 32-bits

GET_SHORT_ERR
Get the total number of packets, received that are less than
96 bit times, which corresponds to a 4- byte frame with a
well formed preamble and SFD.

0xe330 32-bits

GET_SEQ_ERR Get the number of sequencing errors that occur in Fiber
mode. 0xe331 32-bits

GET_SYMBOL_ERR Get the number of symbol errors, encountered by the PHY 0xe332 32-bits

Table 2-20. MAC Receive Statistics Counters ioctls Commands (Sheet 2 of 2)

I/O Card Driver API Developer�s Manual 47

Quad Gigabit Ethernet I/O Card

Table 2-21. MAC Transmit Statistics Counters ioctls (Sheet 1 of 2)

IOCTL Commands
MAC TX Stat ioctls Description Defined

Value
Buffer
Size

GET_TX_OCTETS_OK Get the number of bytes transmitted in all legal frames 0xe333 32-bits

GET_TX_OCTETS_BAD Get the number of bytes transmitted in all bad frames. 0xe334 32-bits

GET_TX_UC_PKTS Get the total number of unicast packets transmitted. (EBP) 0xe335 32-bits

GET_TX_MC_PKTS Get the total number of multicast packets transmitted. (EBP) 0xe336 32-bits

GET_TX_BC_PKTS Get the total number of broadcast packets transmitted. (EBP) 0xe337 32-bits

GET_TX_PKTS_64 Get the total number of packets transmitted (IBP) that are 64
octets in length 0xe338 32-bits

GET_TX_PKTS_65_127 Get the total number of packets transmitted (IBP) that are [65-
127] octets in length 0xe339 32-bits

GET_TX_PKTS_128_255 Get the total number of packets transmitted (IBP) that are
[128-255] octets in length 0xe33a 32-bits

GET_TX_PKTS_256_511 Get the total number of packets transmitted (IBP) that are
[256-511] octets in length 0xe33b 32-bits

GET_TX_PKTS_512_1023 Get the total number of packets transmitted (IBP) that are [512
- 1023] octets in length 0xe33c 32-bits

GET_TX_PKTS_1024_1518 Get the total number of packets transmitted (IBP) that are
[1024-1518] octets in length 0xe33d 32-bits

GET_TX_PKTS_1519_MAX Get the total number of packets transmitted (IBP) that are
>1518 octets in length 0xe33e 32-bits

GET_TX_DEFERRED_ERR
Get the total number of times; the initial transmission attempt
of a frame is postponed due to another frame already being
transmitted on the Ethernet network. (HdM)

0xe33f 32-bits

GET_TX_TOTAL_COLLISION Get the sum of all collision events. (HdM) 0xe340 32-bits

GET_TX_SINGLE_COLLISION
Get the number of successfully transmitted frames, on a
particular interface where the transmission is inhibited by
exactly one collision (HdM)

0xe341 32-bits

GET_TX_MUL_COLLISION
Get the number of successfully transmitted frames, on a
particular interface for which transmission is inhibited by more
than one collision. (HdM)

0xe342 32-bits

GET_LATE_COLLISION
Get the number of times, a collision is detected on a particular
interface later than 512 bit-times into the transmission of a
packet. Such frame are terminated and discarded (HdM)

0xe343 32-bits

GET_TX_EXCV_COLLISION
Get the number of frames, which collides 16 times and is then
discarded by the MAC. Not effecting TxMultipleCollisions
(HdM)

0xe344 32-bits

GET_TX_EXCV_DEFERRED_ERR

Get the number of times frame, for which transmission is
postponed more than 2*MaxFrameSize due to another frame
already being transmitted on the Ethernet network. This
causes the MAC to discard the frame. (HdM)

0xe345 32-bits

GET_TX_EXCV_LEN_DROP
Get the number of frame, for which transmissions aborted by
the MAC because the frame is longer than maximum frame
size.

0xe346 32-bits

GET_TX_UNDERRUN

Get the number of internal TX error, which causes the MAC to
end the transmission before the end of the frame because the
MAC did not get the needed data in time for transmission. The
frames are lost and a fragment or a CRC error is transmitted.

0xe347 32-bits

48 I/O Card Driver API Developer�s Manual

Quad Gigabit Ethernet I/O Card

2.7.4.4 Global Status and Configuration ioctls

The following table describes the ioctl commands used for configuration and monitoring the
port status.

GET_TX_VLAN_TAG Get the number of OK frames with VLAN tags. 0xe348 32-bits

GET_TX_CRC_ERR Get the number of frames, which are transmitted with a legal
size, but with the wrong CRC field (also called FCS field) 0xe349 32-bits

GET_TX_PAUSE_FRAME Get the number of Pause frames transmitted. 0xe34a 32-bits

GET_FC_COLLISION_SEND

Get the number of times the collision is generated on purpose
on incoming frames, to avoid reception of traffic, while the port
is in half-duplex and has flow control enabled, and have not
sufficient memory to receive more frames. (HdM)

0xe34b 32-bits

Table 2-21. MAC Transmit Statistics Counters ioctls (Sheet 2 of 2)

IOCTL Commands
MAC TX Stat ioctls Description Defined

Value
Buffer
Size

Table 2-22. ioctl Commands for Accessing Global Status and Configuration Registers (Sheet
1 of 2)

IOCTL Commands
Global Stat and Config ioctls Description Defined

Value
Buffer
Size

SET_PORT Set the control register for each port in Vallejo device. To make a
port active the bit is set to high. Bit 3:0 a 0xe21b 32-bits

GET_PORT Get the Port status 0xe34c 32-bits

SET_INTERFACE_MODE
Set bit 3:0 of corresponding register for the PHY interface mode.

0 = Fiber, and 1 = Copper
0xe21c 32-bits

GET_INTERFACE_MODE Get the PHY interface mode for individual port 0xe34d 32-bits

GET_LINK_UP_STATUS

Each bit from 3:0 of the 32-bit corresponding status register
records the status of the Link Flag for a given port. This
command reads this to get the status of the individual ports.

1 = Link is established

0xe34e 32-bits

SET_RESET_CORE_CLOCK Activate/inactivate the soft reset for the core clock system. 0xe21d 32-bits

GET_RESET_CORE_CLOCK Get the status of the soft reset for the core cloak system. 0xe34f 32-bits

SET_PAUSE_BEHAVIOR

Set behavior of the individual port on receiving the Pause Packet.

Bit 19:16 Pause Packet Forward

Bit 3:0 Pause Packet Corruption

0xe21e 32-bits

GET_PAUSE_BEHAVIOR Get the Pause packet behavior 0xe350 32-bits

SET_MAC_SOFT_RESET Activate per port software reset of the MAC core 0xe21f 32-bits

GET_MAC_SOFT_RESET Get the status of the software reset of the MAC core. 0xe351 32-bits

SET_MDIO_RESET Activate the software reset of the MDIO module 0xe220 32-bits

GET_MDIO_RESET Get the status regarding the reset activation of the MDIO module 0xe352 32-bits

SET_UI_ENDIAN_MODE

Set microprocessor Endian.

0 = little Endian,

1 = big Endian

0xe221 32-bits

GET_UI_ENDIAN_MODE Get microprocessor Endian mode 0xe353 32-bits

I/O Card Driver API Developer�s Manual 49

Quad Gigabit Ethernet I/O Card

2.7.4.5 RX FIFO Configuration ioctl Commands

The following table describes the ioctl commands used to configure the receive FIFO, and to get
the status of the receive FIFO.

SET_LED_MODE

Set the LED mode

Bit 1: Enable/Disable LED block

Bit 0: LED Control

0xe222 32-bits

GET_LED_MODE Get LED status 0xe354 32-bits

SET_LED_FLASH_RATE

Set LED flash rate,

00 = 100 ms flash rate

01 = 250 ms flash rate

10 = 500 ms flash rate

11 = Reserved

0xe223 32-bits

GET_LED_FLASH_RATE Get LED flash rate 0xe355 32-bits

SET_LED_FAULT_ACTION
Set per-port fault disable

Disable/enable the LED flashing for local or remote faults
0xe224 32-bits

GET_LED_FAULT_ACTION Get per-port LED fault status 0xe356 32-bits

GET_JTAG_ID Get the device identification (fixed here) 0xe357 32-bits

a. Bit position M:N corresponds to the port number, where M = N + 3, with one to one mapping. Means bit N corresponds to
port 0, bit N+1 corresponds to port 1, and so on.

Table 2-22. ioctl Commands for Accessing Global Status and Configuration Registers (Sheet
2 of 2)

IOCTL Commands
Global Stat and Config ioctls Description Defined

Value
Buffer
Size

Table 2-23. ioctl Commands to Configure the RX FIFO (Sheet 1 of 2)

IOCTL Commands
RX FIFO Register ioctls Description Defined

Value
Buffer
Size

SET_RFIFO_HIGH_WATERMARK Set high watermark for RX FIFO. a 0xe225 32-bits

GET_RFIFO_HIGH_WATERMARK Get RX FIFO high watermark level. 0xe358 32-bits

SET_RFIFO_LOW_WATERMARK Set low watermark for RX FIFO. 0xe226 32-bits

GET_RFIFO_LOW_WATERMARK Get the RX FIFO low watermark level. 0xe359 32-bits

GET_RX_FRAME_REMOVED Get the number of frames lost/removed on individual port
when RX FIFO on this port becomes full or reset. 0xe35a 32-bits

SET_RX_FIFO_PORT Set the soft reset register for each port in the RX block. Bit
3:0 0xe227 32-bits

GET_RX_FIFO_PORT Get the soft reset status in the RX block. 0xe35b 32-bits

SET_RX_FIFO_ERR_FRAME_STT

Set the action to be taken on receiving errored packets,
whether such packets are to be dropped or not. Bit 3:0

1 = Frame Drop Enable

0 = Frame Drop Disable

0xe228 32-bits

GET_RX_FIFO_ERR_FRAME_STT Get the status of the action to be specified on receiving the
errored packets. 0xe35c 32-bits

50 I/O Card Driver API Developer�s Manual

Quad Gigabit Ethernet I/O Card

2.7.4.6 TX FIFO Configuration Ioctls

The following table describes the ioctl commands used to configure and monitor the transmit FIFO.

GET_RX_FIFO_OVERFLOW_STT
Get the RX FIFO status, if a FIFO full situation has
occurred. The corresponding register is cleared on read. Bit
3:0

0xe35d 32-bits

GET_OUT_SEQUENCE_INFO
Get the status of the RX FIFO, when out of sequence data is
detected in the RX FIFO. The corresponding register is
cleared on read. Bit 3:0

0xe35e 32-bits

GET_DROPPED_PKTS Get the number of packets dropped by the RX FIFO due to
various errors. 0xe35f 32-bits

GET_RW_PTR_RX_FIFO Get the value for the read and write pointer for the RX FIFO. 0xe360 32-bits

GET_OCCUPANCY_RX_FIFO Get the occupancy for RX FIFO. The corresponding
register is read only. 0xe361 32-bits

GET_CAPTURED_PKT_LEN Get the length information of the captured packet (in bytes)
at four ports. The byte position equals to the port number. 0xe362 32-bits

GET_INDIRECT_ADR_CTL The corresponding register provides the indirect memory
access for CPU to read captured data. 0xe363 32-bits

GET_READ_DATA Get 8 bytes of the read data. 0xe364 64-bits

SET_CAPTURE_ENABLE_RX_FIFO

Set the capture and loop back feature at different ports.

Bit 11:8 = Loopback enable.

Bit 7:0 = Capture Enable Mode, each pair of bit corresponds
to port number from LSB.

0xe229 32-bits

GET_CAPTURE_ENABLE_RX_FIFO Get the status of the capture enable and loopback feature. 0xe365 32-bits

SET_PRE_PENDING_CRC_ENABLE

Set the corresponding register to prepend every packet with
two extra bytes and also enable the CRC stripping of the
packets.

Bit 7:4 = Enable CRC stripping.

Bit 3:0 = Enable pre-pending,

Pre-pending should not be enabled in loopback mode.

0xe22a 32-bits

GET_PRE_PENDING_CRC_ENABLE Get the status of the pre-pending and CRC stripping feature. 0xe366 32-bits

SET_MATCHING_PATTERN
Set the matching pattern, which is checked with the TYPE/
LEN fields of every incoming packet to capture specific
packets from data traffic.

0xe22b 32-bits

GET_MATCHING_PATTERN Get matching pattern, wet by the previous ioctl command. 0xe367 32-bits

SET_JUMBO_PKT_SIZE Set the jumbo packet size in 8 byte location. 0xe22c 32-bits

GET_JUMBO_PKT_SIZE Get the jumbo packet size set by the previous ioctl
command. 0xe368 32-bits

GET_PKT_DROP_CAP_FIFO
Get the number of packets dropped at capture FIFO due to
FIFO full or bad packets or during CPU not read the
previous captured packet.

0xe369 32-bits

a. The Port Number should be given separately, as a parameter to the buffer, whose pointer is passed as an argument to the ioctl
command.

Table 2-23. ioctl Commands to Configure the RX FIFO (Sheet 2 of 2)

IOCTL Commands
RX FIFO Register ioctls Description Defined

Value
Buffer
Size

I/O Card Driver API Developer�s Manual 51

Quad Gigabit Ethernet I/O Card

Table 2-24. IOCTL List to Configure and Monitor the TX FIFO (Sheet 1 of 2)

IOCTL Command
TX FIFO Register ioctls Description Defined

Value
Buffer
Size

SET_TFIFO_HIGH_WATERMARK Set high watermark for TX FIFO, for each port separately. 0xe22d 32-bits

GET_TFIFO_HIGH_WATERMARK Get high watermark for TX FIFO 0xe36a 32-bits

SET_TFIFO_LOW_WATERMARK Set low watermark for TX FIFO, for each port separately. 0xe22e 32-bits

GET_TFIFO_LOW_WATERMARK Get low watermark for TX FIFO. 0xe36b 32-bits

SET_MAC_THRESHOLD Set the MAC threshold for TX FIFO. 0xe22f 32-bits

GET_MAC_THRESHOLD Get the MAC threshold TX FIFO value. 0xe36c 32-bits

GET_TX_FIFO_OVERFLOW_STT

Get the status information as

Bit 11:8 FIFO out of sequence event trace record

Bit 7:4 FIFO underflow event trace record

Bit 3:0 FIFO Overflow event trace record.

0xe36d 32-bits

SET_LOOP_RX_TX

Set the respective bit high to perform the external loopback.

Bit 3:0 0 = Normal Operation

1 = The SPI-3 data coming from the RX block is sent to the
TX FIFO instead of the SPI-3 Receive interface

0xe230 32-bits

GET_LOOP_RX_TX_STT Get external loopback status 0xe36e 32-bits

SET_TX_FIFO_PORT
Assert/De-assert reset for each port in TX block.

Bit 3:0 set to low to make port active.
0xe231 32-bits

GET_TX_TFIFO_PORT Get status of the port 0xe36f 32-bits

GET_TX_DROP_FRAME
Get the number of frames lost/removed, when TX FIFO on
individual port becomes full or reset. This register is clear on
read.

0xe370 32-bits

GET_TX_DROP_PKTS
Get the number of packets dropped by the TX FIFO of
individual port, due to various errors. This register is cleared
on Read.

0xe371 32-bits

GET_TX_RW_PTR Get the value of the read write pointer for the TX FIFO of
individual port. This register is cleared on read. 0xe372 32-bits

GET_TX_OCCUPANCY Get the occupancy for the TX FIFO . The corresponding
register is read only. 0xe373 32-bits

SET_TXINSERT_DATA Insert the 8 bytes data for port 0 0xe232 64-bits

GET_TXINSERT_DATA Get the inserted 8-bytes data for each port separately. 0xe374 64-bits

SET_TXFIFO_INFO_ADR

Set the indirect memory access for CPU to write/read data to/
from individual insertion FIFO port.

Bit 10 = Reset

Bit 9 = Write

Bit 8 = Read

Bit 7:3 = Address

Bit 2:0 = Info

0xe233 32-bits

GET_TXFIFO_INFO_ADR Get the above defined status 0xe375 32-bits

52 I/O Card Driver API Developer�s Manual

Quad Gigabit Ethernet I/O Card

2.7.4.7 MDIO Interface Related ioctl Commands

The following table describes the ioctl commands to configure and monitor the MDIO interface.

SET_TXFIFO_DROP_INSERT

Enable independently, the individual TX FIFO to drop the
erroneous packet and insertion of packet through insertion
FIFO.

Bit 7:4 = Set high to enable read from insertion FIFO.

Bit 3:0 = Set high to discard the error packets in TX FIFO.

0xe234 32-bits

GET_TXFIFO_DROP_INSERT Get the above defined feature in corresponding SET ioctl. 0xe376 32-bits

SET_TX_MINI_FRAME_SIZE

Set the different minimum length of the packets to be
transmitted to MAC independently. These values are used to
pad short packets if padding is enabled.

Bit 19:16 = Set bit high to enable padding of short packets.

Bit 15:12 = (for port 3) If the programmed value is ‘N’ then the
minimum number of bytes in packet is equal to ‘N * 8’ bytes.
Where N = A, B, C, D and E

Same as above, bit 11:8,7:4 and 3:0 are for port 2,1,0
respectively.

0xe235 32-bits

GET_TX_MINI_FRAME_SIZE Get the minimum length of the packet to be transmitted to the
MAC. 0xe377 32-bits

Table 2-24. IOCTL List to Configure and Monitor the TX FIFO (Sheet 2 of 2)

IOCTL Command
TX FIFO Register ioctls Description Defined

Value
Buffer
Size

Table 2-25. IOCTLs to Configure and Monitor MDIO Interface

IOCTL Commands
MDIO Interface Ioctls Description Defined

Value
Buffer
Size

SET_MDIO_CMD_ADDR

Bit 20 = Set high to perform operation

Bit 17:16 = Identify operation to be performed.

Bit 9:8 = address of external device

Bit 4:0 = Reg Address

0xe236 32-bits

GET_MDIO_CMD_ADDR Get that value of the MDIO command and address register. 0xe378 32-bits

SET_MDIO_SINGLE_RW_DATA
Bit 31-16 = MDI Read data from external device

Bit 15:0 = MDI write data to external device
0xe237 32-bits

GET_MDIO_SINGLE_RW_DATA Get MDI read write data 0xe379 32-bits

SET_AN_PHY_ADDR
Set the PHY address enable

Bit 3:0 = set high to enable PHY address []
0xe238 32-bits

GET_AN_PHY_ADDR Get the PHY address status 0xe37a 32-bits

SET_MDIO_CTL

Bit 19:16 = Remote Fault Status

Bit 3 = MDI Progress

Bit 2 = Set high to enable MDI

Bit 1 = set high to enable auto-scan

Bit 0 = select speed of MDC clock

0xe239 32-bits

GET_MDIO_CTL Get the MDIO Control status 0xe37c 32-bits

I/O Card Driver API Developer�s Manual 53

Quad Gigabit Ethernet I/O Card

2.7.4.8 SPI-3 Configuration ioctl Commands

The following tables describes the ioctl commands to configure and monitor SPI-3 interface.

2.7.4.9 SERDES Interface ioctls

The following table describes the ioctl commands to configure and monitor SerDes interface.

Table 2-26. List of iotcl Commands to Configure the SPI-3 Interface

IOCTL Commands
SPI-3 Configure Ioctls Description Defined

Value
Buffer
size

SET_SPI3_TX_GLOBAL_CONFIG Set the SPI3 Transmitter and Global configuration (4x8 mode) 0xe23a 32-bits

GET_SPI3_TX_GLOBAL_CONFIG Get the SPI3 Transmitter and Global configuration (4x8 mode) 0xe37d 32-bits

SET_SPI3_RX_CONFIG Configure the SPI-3 Receiver 0xe23b 32-bits

GET_SPI3_RX_CONFIG Get the SPI-3 Receiver configuration 0xe37e 32-bits

GET_SPI3_TX_INT_STATUS Get the status of various SPI-3 transmit error interrupts. (one
for each port. [] 0xe37f 32-bits

SET_SPI3_TX_INT_ENABLE Configure the interrupt enable for the various interrupt
states.[] 0xe23c 32-bits

GET_SPI3_TX_INT_ENABLE Get the interrupt status, 0xe380 32-bits

GET_SPI3_ADR_PARITY_ERROR Get the number of packets dropped sue to address parity
error. 0xe381 32-bits

GET_SPI3_PKT_DISABLE_PORT Get number of packets received for disabled port that has
been dropped. [] 0xe382 32-bits

GET_SPI3_PKT_SYNC_ERR Get the number of packets received with full SYNC error (No
SOP but EOP) that has been dropped. 0xe383 32-bits

GET_SPI3_PKT_SHORT_DROP Get the number of dropped, whose length is less than 9 bytes. 0xe384 32-bytes

Table 2-27. IOCTLs used to configure SerDes Interface (Sheet 1 of 2)

IOCTL Commands
SERDES Interface Ioctls Description Defined

Value
Buffer
Size

SET_ACDC_COUPLING

Set AC or DC coupling on the output of each SerDes port (Tx
and RX are independent)

Bit 7:0 = each pair of bits represents the port number from
LSB, and out of that even bit number is for TX and odd is for
RX

0xe23d 32-bits

GET_ACDC_COUPLING Get the AC or DC coupling status 0xe385 32-bits

SET_SERDES_TX_DRV_COEFF Set the various programmable strength s on each of the
SerDes port 0xe23e 32-bits

GET_SERDES_TX_DRV_COEFF Get the strength on each of the SerDes Port 0xe386 32-bits

SET_TX_DRV_POW_LEVEL
Set the power level for each of the SerDes port.
Each byte corresponds to the port number
starting from LSB.

0xe23f 32-bits

GET_TX_DRV_POW_LEVEL Get the power level for each port 0xe387 32-bits

SET_TX_LINK_VALIDATION Configure the link status, and stores that. 0xe240 32-bits

GET_TX_LINK_VALIDATION Get the status of the link validation 0xe388 32-bits

54 I/O Card Driver API Developer�s Manual

Quad Gigabit Ethernet I/O Card

SET_TX_RX_POW_DOWN

Set the Power-down TX and RX power-down bits to allow per
port power-down of the unused port.

Bit 13:10 = Set bit to high to Tx Power down per port (each bit
from LSB corresponds to each port number.)

Bit 3:0 = set bit high to RX Power-down per port, port
mapping to the bit is same as above.

0xe241 32-bits

GET_TX_RX_POW_DOWN_STT Gets status of each port regarding individuals TX and RX
power down. 0xe389 32-bits

SET_RX_DATA_SYNC

Enable the feature, which allows the incoming data stream to
be slipped by one bit each time the signal is activated.

Bit 3:0 = Set bit high to activate the data synchronization
control per port. Each bit from LSB maps to the port number.

0xe242 32-bits

GET_RX_DATA_SYNC Get the receive data synchronization status. 0xe38a 32-bits

SET_RX_LINK_VALIDATION

Setting these bits allows a BIST test to be carried out to
validate the link function.

Bit 23:20 = Set high to enable link validation. Each bit from
LSB maps to the respective port number.

Bit 13:10 = Set high to reset link validation controller. Each bit
from LSB maps to the respective port number.

 Bit 3:0 = set high to enable link validation loopback.

0xe243 32-bits

GET_RX_LINK_VALIDATION Get the receive validation status. 0xe38b 32-bits

GET_RX_LINK_STT Same as above, but corresponding register is not cleared
when read. 0xe38c 32-bits

SET_RX_PHASE_ROT

Control the Phase Rotator in the SerDes Rx on a per port
basis.

Bit 23:20 = Set high to enable phase rotator retard. Each bit
from LSB maps to the respective port number

Bit 13:10 = Set high to enable phase rotator. Each bit from
LSB maps to the respective port number.

Bit 3:0 = set high to enable phase rotator advance. Each bit
from LSB maps to the respective port number

0xe244 32-bits

GET_RX_PHASE_ROT Get the phase rotator status. 0xe38d 32-bits

GET_RX_PHASE_ROT_BUS Get phase rotator state in conjunction with RX phase rotator
control. 0xe38e 32-bits

SET_RX_LATCH_OBSRV_01 Allow the capture of data at the output of the de-serializer
SerDes for port 0 and 1. 0xe245 32-bits

GET_RX_LATCH_OBSRV_01 Get the latch observation for the port 0 and 1. 0xe38f 32-bits

SET_RX_LATCH_OBSRV_23 Allow the capture of data at the output of the de-serializer
SerDes for port 2 and 3. 0xe246 32-bits

GET_RX_LATCH_OBSRV_23 Get the latch observation for the port 2 and 3. 0xe390 32-bits

GET_RX_SIGNAL_LEVEL

Get the status of the Rx input in relation to the level of the
signal being received from the line.

Bit 3:0 = High bit status depicts Signal, while low for Noise. .
Each bit from LSB maps to the respective port number

0xe391 32-bits

GET_SERDES_TX_CONFIG Get the default TX block configuration value. 0xe392 32-bits

GET_SERDES_RX_CONFIG Get the default RX block configuration value 0xe393 32-bits

GET_PLL_LOCK Get the status of the PLL lock for the RX and TX block. 0xe394 32-bits

Table 2-27. IOCTLs used to configure SerDes Interface (Sheet 2 of 2)

IOCTL Commands
SERDES Interface Ioctls Description Defined

Value
Buffer
Size

I/O Card Driver API Developer�s Manual 55

Quad Gigabit Ethernet I/O Card

2.7.4.10 GBIC Module Interface ioctls

The following table describes the ioctl commands to control and monitor the interface to the GBIC
modules when used in SerDes mode.

2.8 Support for Multiple Quad Gigabit Ethernet I/O
Cards

The driver supports the existence of the multiple Quad Gigabit Ethernet I/O cards on the baseboard.
These two cards can sit on the Media interface, and on the Switch Fabric interface. Both the cards
are identical. The individual card information is opaque from the application, since the application
treats both cards as merged and interprets that there are a total of eight ports supported. The
application passes the port number from [0-7] to access the ports. This port number is parsed in the
driver, and is identified for the respective card. Card 0 implies the Quad Gigabit Ethernet I/O card
on the Media interface, and the Card 1 implies the Quad Gigabit Ethernet I/O card on the Switch
Fabric interface.

Table 2-29. Individual Port Information Interpretation

In this kernel mode, the driver treats both cards as a single device. The differentiation is made on
the minor number assigned to the ports. For the minor number [0-3], card 0, (the Quad Gigabit
Ethernet I/O card) on the Media interface is referenced, and for the minor number [4-7], card 1,
which is on the Switch Fabric interface, is referenced.

2.9 System Dependencies & File Structures

The main system files used are as follows:

• module.h – used for dynamic loading of the modules into kernel

• kernel.h – contains the function prototype

• fs.h – defines the file table structures

Table 2-28. IOCTLs to control and monitor GBIC module

IOCTL Command
GBIC Interface Ioctls Description Defined

Value Buffer Size

GET_GBIC_STAUS Get the interface status to the GBIC module when
used in SerDes mode. 0xe395 32-bits

SET_GBIC_CTL Configure the GBIC module 0xe247 32-bits

GET_GBIC_CTL Get the GBIC module configuration 0xe396 32-bits

SET_I2C_CTL_DATA, Set the I2C control data 0xe248 32-bits

GET_I2C_CTL_DATA, Get the I2C control Data 0xe397 32-bits

Port Number passed by the
Application Associated PtLone media card Port number on the respective Media

Card

0-3 Card 0 0-3

4-7 Card 1 0-3

56 I/O Card Driver API Developer�s Manual

Quad Gigabit Ethernet I/O Card

The implementation of the driver as a loadable module requires the following operating system
primitives for registering and removing the device.

2.9.1 Device Register Routine

The following routine is called in the Init_Module() function internally, while the insmod
command is executed.

int register_chrdev(uint32 major, const char *name, struct
file_operations *fops);

This routine registers the device under a free major number, as returned by the kernel. The “major”
argument is the major number being requested, “name” is the name of the device, which appears in
/proc/devices, and “fops” is the pointer to an array of function pointers, used to invoke driver’s
entry points.

2.9.2 Device Unregister Routine

When a module is unloaded from the system, the major number must be released. This routine is
used to unregister the device.

int unregister_chrdev(uint32 major, const char *name);

This routine is called from the module’s cleanup function. The argument “major” is the number
being released and the “name” is the name of the associated device.

2.9.3 Interrupt Handling Routine

In the kernel mode driver, the ISR are implemented using the system functions. This ISR generates
a signal, “SIGIO” on getting an interrupt, and this signal is handled in the application that uses the
driver.

2.10 Exported Kernel APIs

This section defines the ways in which external APIs interface with the module being designed.
Internal function routines are the same and applicable for both the modes. The basic difference lies
in their calling functions, and the parameters passed to the respective APIs.

The following table describes the APIs and their respective brief description for the driver in both
the modes. It gives an overview of the common functionality between the kernel mode and user
mode driver.

I/O Card Driver API Developer�s Manual 57

Quad Gigabit Ethernet I/O Card

Table 2-30. APIs provided by the driver in Kernel mode

2.10.1 Init Module

This function is invoked on inserting the driver module (via insmod).

Syntax
uint32 init_module (void)

{

return gbe_mac_error;

}

Input

NULL

Example
uint32 init_module (void)

{

Checks the presence of the device by reading I2C EEPROM.

Registers the driver as a character device with the kernel.

Verifies the slow port access to the registers of the MAC.

Connects the ISR to the interrupt vector.

Calls gbe_mac_config (device_number, port_mask, port_mode) routine to
configure:

API Name Description

Init Module
This function is invoked on inserting the driver module (using insmod). This
routine registers the driver as a character device, initialize configure the Vallejo
MAC’s, and enable all ports

GbEMAC_open This routine is invoked on the device open call. This routine updates the status
of the port to open and activated. It registers the ISR to the interrupt vector.

GbEMAC_ioctl This function is the entry point to perform configuration and get status of the
device.

 GbEMAC_close
This routine is invoked on the device close call. This routine sets the status of
the device to deactivate and the port is no longer being in normal operation. It
unregistered the ISR from the interrupt vector.

GbEMAC_i2s_fasync
This function is called by the system call “fcntl” to register the user application
with the specific device to receive the signal, if the interrupt comes from this
device.

Cleanup Module

This function is invoked when the module has to be removed from the kernel. It
un-registers the device and de-allocates memory. Before closing the device, it
checks if the ISR is still connected to interrupt vector, if so, it un-registers the
ISR before unregistering the driver.

Returns

Return Type • gbe_mac_error Code

58 I/O Card Driver API Developer�s Manual

Quad Gigabit Ethernet I/O Card

Top level global registers.

Exits giving gbe_mac_error, if above calls fails.

Configure the requisite per port MAC registers.

Assign the MAC address to each port.

Call Delay ()to Introduce 1 µSec delay for clock to stabilize.
Make port start by enabling them.

Exits giving gbe_mac_error, if above calls fails anywhere.

Exits giving ERROR CODE if above calls fails.

Performs error check at each step above mentioned, and generates ERROR CODE on
error.

return gbe_mac_error;

}

2.10.2 GbEMAC_open

This function is invoked on the device open call. It checks the port status before opening the port.
The very first call to this function registers the interrupt handler routine to the in the kernel.

Syntax
uint32 GbEMAC_open (struct inode *GbEMAC_inode,struct file *GbEMAC_file)

Example
uint32 GbEMAC_open (struct inode *GbEMAC_inode,

{

struct file *GbEMAC_file)
Increments the usage count.

Retrieves the minor number from the GbEMAC_inode.

Calculates the card for which the open call is intended.

Checks the device state, and if a new port has to open, calls the associated
ioctl to enable the particular port.

Checks error condition at each step, and generates ERROR CODE if any error has
occurred.

Inputs

struct inode This pointer points to the inode structure defined in the linux/fs.h system header file.
It includes the mount structures. This is used to retrieve the minor number.

struct file This pointer points to a file structure, which defines the set of functions implemented
in this driver. Here GbEMAC_open, GbEMAC_close, and GbEMAC_ioctls are
the elements of this structure, since these functions are implemented.

Returns

Return Type • gbe_mac_error Code

• Success

I/O Card Driver API Developer�s Manual 59

Quad Gigabit Ethernet I/O Card

return SUCCESS;

}

2.10.3 GbEMAC_close

This function is invoked on the device close call. This routine will set the status of the device to
deactivate and the port will no longer be in normal operation.

Syntax
uint32 GbEMAC_close (struct inode *GbEMAC_inode,

 struct file *GbEMAC_file)

Example
uint32 GbEMAC_close (

 struct inode *GbEMAC_inode,

 struct file *GbEMAC_file)

{

Decrement the usage count

Retrieve the minor number from the GbEMAC_inode

Set the port as CLOSED, which are not used by any other application.

Check error condition at each step, and generate ERROR CODE if any error has
occurred.

return SUCCESS;

}

2.10.4 GbEMAC_ioctl

This routine is provided to call an ioctl. This routine calls the config_handler routine for
the implementation of the ioctl command.

Input

Struct inode* This pointer points to the inode structure defined in the

linux/fs.h system header file. It includes the mount

structures. This is used to retrieve the minor number.

Struct file* This pointer points to a file structure, which defines the set

of functions implemented in this driver. Here GbEMAC_open,

GbEMAC_close, and GbEMAC_ioctls are the elements of this

structure, since these functions are implemented.

Returns

Return Type gbe_mac_error Code

60 I/O Card Driver API Developer�s Manual

Quad Gigabit Ethernet I/O Card

Syntax
uint32 GbEMAC_ioctl (struct inode *GbEMAC_inode,

 struct file * GbEMAC_file,

 uint32 ioctl_command,

 void *ioctl_struct);

Example
uint32 GbEMAC_Ioctl (

 struct inode *GbEMAC_inode,

 struct file * GbEMAC_file,

 uint32 ioctl_command,

 void * ioctl_struct)

{

Check for the port state to which this ioctl intended,

If port close, log error message,

Call gbe_mac_config_handler (arg_ioctlCommand, arg_pIoctlStruct); for actual
implementation of the ioctl command

Check error condition at each step, and generate ERROR CODE if encounters any
error

 return gbe_mac_error;

}

2.10.5 GbEMAC_i2s_fasync

This function is called by the system call “fcntl” to register the user application with the specific
device to receive the signal, if the interrupt comes from this device. This function internally stores
the “fd” of the calling application in a queue. The driver sends the signal SIGIO to the user
processes that have called this function with ASYNCH flag.

Input

struct inode *
GbEMAC_ino
de

Pointer to inode structure

struct file *
GbEMAC_fil
e

Pointer to file structure

uint32
ioctl_comman
d

The ioctl number to be implemented

void *
ioctl_struct Points to the IOCTL_PTR, which is typecast to the void pointer

Returns

Return Type • gbe_mac_error Code

I/O Card Driver API Developer�s Manual 61

Quad Gigabit Ethernet I/O Card

Note: This function is called by the application for receiving notification through a signal SIGIO of the
occurrence of interrupt regarding change in link status. The application callback handler should
call the IOCTL GET_LINK_UP_STATUS to get port status.

2.10.6 Cleanup Module

This function is invoked when the module is removed from the kernel. It will unregister the device
and deallocate memory.

Syntax
void cleanup_module (void)

Input

NULL

Return

NULL

Example
void cleanup_module (void)

{

First check the usage count; kernel will never be able to unload the module if
the counter doesn't drop to zero.

Unregister the driver from the kernel, iff usage count is zero.

Check for the Interrupt handler, if that is still installed, then uninstall
that Interrupt Handler.

Check error code at each step, and generate ERROR CODE on encountering any
error

return NULL;

}

2.11 Interrupt Handling

The Linux kernel provides the routine request_irq(), which connects a routine to a
hardware interrupt. Its counter part is free_irq () which frees the connected interrupt. It
connects a user defined C routine to an interrupt vector. These system routines are provided in
<linux/sched.h> header file. A routine connected to an interrupt is called an Interrupt
Service Routine (ISR).

This request_irq () routine is called in the GbEMAC_open() when the device is first
opened, init_module (). When an interrupt is generated, it is captured by the system, and
intern it set the corresponding bit high in the interrupt register. This intern calls the
gbe_mac_isr () function, which is connected to the interrupt vector. This function first
detects that which interrupt is generated and is intended for which gigabit MAC port, and then calls

62 I/O Card Driver API Developer�s Manual

Quad Gigabit Ethernet I/O Card

the related ISR for the appropriate action. Here, the corresponding function conveys the message
related to the interrupt. The free_irq () is called just before closing the device in the
cleanup_module ().

2.12 Functions to Access the Kernel Mode Driver

The following system calls are used to access kernel driver APIs from mode applications. These
functions expect a character device to be opened using the open() function. Applications can
then send different commands to get or set values in the kernel driver. The system call close() is
used to close the device.

2.12.1 Open()

This function is called by the application to open the device, which in turn calls the
GbEMAC_open() API to open the device. See Section

Syntax
int open(const char *pathname, int flags);

Input

2.12.2 Close()

This function is called by the application to close the device, which in turn calls
GbEMAC_close() API to close the device. See Section

Syntax
int close(int fd);

Input

2.12.3 ioctl()

This function is called by the application to call the ioctl command, which in turn Calls
GbEMAC_ioctl() to send set/get commands. See GbEMAC_ioctl.

pathname The name of the character device file to be opened.

flags Mode in which the character device file to be opened,
[O_RDWR].

fd The file descriptor returned by the open call earlier.

I/O Card Driver API Developer�s Manual 63

Quad Gigabit Ethernet I/O Card

Syntax
int ioctl(int fd, unsigned int IoctlCmd, void * IoctlPtr);

Input

2.12.4 Fcntl()

This function registers the user callback functions to an array, and when the interrupt occurs, all the
respective functions are called. Internally this call calls GbEMAC_i2s_fasync() API for
callback registration. See Section

Syntax
int fcntl(int fd, int cmd, long arg);

Input

fd The file descriptor returned by the open call earlier.

IoctlCmd The IOCTL command to be executed.

IoctlPtr The pointer of the user defined structure is type caste�d and
passed to the kernel using this command. This structure is
updated by the kernel mode driver with the appropriate result
value.

fd The file descriptor returned by the open call earlier.

cmd Command to be performed.

arg Passed the PID of itself, getting by the getpid() function call.

64 I/O Card Driver API Developer�s Manual

Quad Gigabit Ethernet I/O Card

I/O Card Driver API Developer�s Manual 65

10-Port Gigabit Ethernet Media Card 3

The IXD2810 is a 10-port Gigabit Ethernet (GbE) add-on media card for the IXDP2800 Network
Processor advanced development platform. The IXD2810 consists of a media interface to the
network processors of the IXDP2800, an IXF1110 MAC and line interfaces that connect to
transmit (Tx) and receive (Rx) optical fibers.

The scope of the device driver is limited to initialization and configuration of the MAC device on
the IXD2810 card and providing an I/O control path to access IXD2810 registers. The driver does
not support any data-path functionality.

Refer to the following sections for operating system-specific IXD2810 device driver API
information:

• Section 3.1, “Linux Environment”

• Section 3.2, “VxWorks Environment”

3.1 Linux Environment

The IXD2810 device driver discussed in this section is for the Monta Vista* Linux operating
system on the Intel® IXDP2800 Advanced Development Platform.

66 I/O Card Driver API Developer�s Manual

10-Port Gigabit Ethernet Media Card

3.1.1 Design Decomposition

The IXD2810 device driver and the supporting software is designed to be modular and portable.
There is no need for synchronization between the Master and Slave NPUs.

The device driver for the IXD2810 has the following components:

• IXF API module

• IXF1110 device-specific driver

• IXF1110 interrupt-specific module

Figure 3-1. Device Driver Design

I/O Card Driver API Developer�s Manual 67

10-Port Gigabit Ethernet Media Card

3.1.2 IXF API Module

The IXF API provides a common and consistent interface for supported IXF devices. For each
supported device, the IXF API provides device specific functions, as well as common interface
functions for features that are not specific to a particular device. The following diagram illustrates
the IXF API, feature API, and device API layers.

The IXF API provides IXF1110-specific functions for general device configuration, while access
to the Ethernet functional block of the IXF1110 is provided by interface functions that are coupled
with the functionality of the block in question. In addition, the IXF API also provides generic read
and write access to the devices.

The IXF API interfaces to multiple devices (whether of the same or different types) simultaneously.
The IXF API provides the application with a 'chip ID' that is used to reference the device it is
accessing.

The IXF API itself provides little implementation of any functionality. Instead, it directs the call to
the appropriate device API, which in turn implements the IXF API function for a specific device.

3.1.2.1 Feature APIs

The feature APIs are the upper layers of Figure 3-2. Each 'feature' has its own API, and provides a
common interface to the functionality of different devices. Each device may have its own
implementation of a feature API, as the implementation may differ from device to device.

Each feature API function signature must match the corresponding IXF API function exactly, as it
is a feature API function that actually provides the implementation for the IXF API function. As a
result, the application has a common interface to functionality that is shared by several devices.
Feature APIs are independent of each other; as for some devices (IXF11100, for example) subsets
of the complete feature set must work properly.

Figure 3-2. IXF API Model

68 I/O Card Driver API Developer�s Manual

10-Port Gigabit Ethernet Media Card

There are different types of Feature APIs:·

3.1.2.2 Device APIs

The device APIs are the bottom layers of Figure 3-2. Each device has its own API that provides
device-specific implementation of IXF API functions. The Device APIs could be described as
'composite' APIs, as each Device API consists of device- specific functions, plus the feature APIs
for all features that the device supports. The Device API function signatures must match the
corresponding IXF API functions exactly, as it is a device API function that actually provides the
implementation for almost all IXF API functions.

The IXF1110 API module provides API calls to access the chip. This API includes the functions
described in the following subsections:

ixf1110Reset

Resets the chip, then reconfigures it.

Syntax
extern bb_Error_e

Ixf1110Reset(bb_ChipData_t *pChipData,

bb_ChipSegment_t *ptSegment,

bb_SelResetType_e resetType);

Table 3-1. Feature API Types

Type Description

Device
specific

Specific to a device. Examples of this include global registers and global
configuration.

Common Common to all (or at least the vast majority of) devices. Functionality
includes resetting the device, getting the device ID/version, and generic
read and write access.

Functionality
based

Provides interfaces for the following blocks:
- SPI4
- Ethernet

I/O Card Driver API Developer�s Manual 69

10-Port Gigabit Ethernet Media Card

Input

Returns

ixf1110InitChip

Initializes the chip based upon the configuration passed in by pChipData.

Note: The chip will be set offline (tri-stated and interrupts disabled) while initializing.

Syntax
extern bb_Error_e

Ixf1110InitChip(bb_ChipData_t *pChipData,

InitRegTable_t *pTable);

Input

Returns

ixf1110GetChipInfo

Gets the chip version and ID numbers.

pChipData bb_ChipData_t*I Initializes chip data

ptSegment bb_ChipSegment_t* Chip section or block to reset,
inclusive of channel (where required)

ResetType bb_SelResetType_e Type of reset to perform:
bb_RESET_RX_FIFO
bb_RESET_TX_FIFO
bb_RESET_XGMAC
bb_RESET_CORE_CLK
bb_RESET_XGMAC_ALL
bb_RESET_RX_FIFO_ALL
bb_RESET_TX_FIFO_ALL

bb_Error_e Error

b_NO_ERROR Success

pChipData bb_ChipData_t*I Initializes chip data

pTable InitRegTable_t* Initializes data to be committed to
the chip

bb_Error_e Error

b_NO_ERROR Success

70 I/O Card Driver API Developer�s Manual

10-Port Gigabit Ethernet Media Card

Syntax
extern bb_Error_e

Ixf1110GetChipInfo (bb_ChipData_t *pChipData,

 bb_ChipInfo_t *pChipInfo);

Input

Returns

ixf1110InitAlarmCallback

Sets the pointer to the Alarm Callback Method. This is a user-defined function that can be called at
the end of the ixf1110_ChipIsr routine allowing further processing of the collected alarm
data.

Syntax
extern bb_Error_e

Ixf181110InitAlarmCallback(bb_ChipData_t *pChipData,

 AlarmCallBack pAlarmCallbackArg);

Input

Returns

ixf1110SetAlarmCfg

Sets the alarm configuration.

pChipData bb_ChipData_t* Initializes chip data

bb_Error_e Error

b_NO_ERROR Success

pChipInfo
ixf18110_ChipInfo_t*

place to return chip information:

IXD2810 board version
IXD2810 board ID

pChipData bb_ChipData_t* Initializes chip data

pAlarmCallback AlarmCallBack Points to an Alarm Callback function

bb_Error_e Error

b_NO_ERROR Success

I/O Card Driver API Developer�s Manual 71

10-Port Gigabit Ethernet Media Card

Syntax
extern bb_Error_e

Ixf1110SetAlarmCfg(bb_ChipData_t *pChipData,

bb_ChipSegment_t *section,

bb_AlarmType_e AlarmType,

void *pAlarmCfg);

Input

Returns

ixf1110ChipIsr

This function is called to handle all interrupts that have been indicated by the chip. The interrupts
are handled according to the hierarchy.

Syntax
extern bb_Error_e

Ixf1110ChipIsr(bb_ChipData_t *pChipData);

Input

Returns

ixf1110SetCfg

This function sets the configuration of POS watermarks, POS flow control, and the chip's GFC
role.

pChipData bb_ChipData_t*I Initializes chip data

section bb_ChipSegment_t* Chip section or block

pAlarmCfg bb_AlarmType_e Alarm type to configure

pAlarmCfg void* Alarm configuration data

bb_Error_e Error

b_NO_ERROR Success

pChipData bb_ChipData_t* Initializes chip data

bb_Error_e Error

b_NO_ERROR Success

72 I/O Card Driver API Developer�s Manual

10-Port Gigabit Ethernet Media Card

Syntax
extern bb_Error_e

Ixf1110SetCfg(bb_ChipData_t *ptChipData,

bb_ChipSegment_t *ptSegment,

bb_SelConfig_e SelCfg);

Input

Returns

ixf1110GetCfg

This function retrieves configuration information.

Syntax
extern bb_Error_e

Ixf1110GetCfg(bb_ChipData_t *ptChipData,

bb_ChipSegment_t *ptSegment,

bb_SelConfig_e SelCfg);

Input

Returns

ixf1110GetStatus

Retrieves the status of the Rx AIS, Input Clock Activity, and far-end GFC role.

pChipData bb_ChipData_t*I Initializes chip data

ptSegment bb_ChipSegment_t* Block or section to configure

SelCfg bb_SelConfig_e Selects configuration type

bb_Error_e Error

b_NO_ERROR Success

pChipData bb_ChipData_t*I Initializes chip data

ptSegment bb_ChipSegment_t* Block or section to retrieve from

SelCfg bb_SelConfig_e Status type

bb_Error_e Error

b_NO_ERROR Success

I/O Card Driver API Developer�s Manual 73

10-Port Gigabit Ethernet Media Card

Note: The test for the far-end GFC Role depends upon having active ATM traffic.

Syntax
extern bb_Error_e

Ixf1110GetStatus(bb_ChipData_t *pChipData,

bb_ChipSegment_t *section,

bb_SelStatus_e selStatus,

void *pStatus);

Input

Returns

ixf1110GetCounters

Retrieves a set of Rx/Tx counters for a selected OHT type, ATM or POS, on a per-channel basis.

Syntax
extern bb_Error_e

Ixf1110GetCounters(bb_ChipData_t *ptChipData,

bb_ChipSegment_t *ptSection,

 bb_SelCounters_e eCounter,

void *pCounters);

pChipData bb_ChipData_t*I Initializes chip data

section bb_ChipSegment_t* Block or section to retrieve status
from

SelStatus bb_SelStatus_e The status type to retrieve

bb_Error_e Error

b_NO_ERROR Success
pStatusvoid* Place to put Status

74 I/O Card Driver API Developer�s Manual

10-Port Gigabit Ethernet Media Card

Input

Returns

ixf1110Read

Syntax
extern bb_Error_e

Ixf1110Read(bb_ChipData_t *pChipData,

bb_Word_Size_t wordSize,

ulong address,

ushort length,

void *buffer);

pChipData bb_ChipData_t*I Initializes chip data

ptSection bb_ChipSegment_t* Chip block or segment

eCounter bb_SelCounters_e The set of counters to retrieve

bb_Error_e Error

b_NO_ERROR Success
pCounters

void*
A pointer to a Counter Structure that corresponds to the Selected Counters to
retrieve.

I/O Card Driver API Developer�s Manual 75

10-Port Gigabit Ethernet Media Card

Input

Returns

ixf1110SetChipOnline

Sets one or more of the ports online.

Syntax
extern bb_Error_e

Ixf1110SetChipOnline(bb_ChipData_t *pChipData,

bb_ChipSegment_t *section);

Input

Returns

ixf1110SetChipOffline

Set one or more of the ports offline.

pChipData bb_ChipData_t*I Initializes chip data

wordSize bb_Word_Size_t* Enum size of data to be read:
ONE_BYTE = 1
TWO_BYTES = 2
FOUR_BYTES = 4
EIGHT_BYTES = 8

address ulong Offset from chip base address to
begin read

length ushort Number of words to read

buffer Void* Pointer to a structure in which to
place the read results

bb_Error_e Error

b_NO_ERROR Success

buffer void* Buffer contains read results

pChipData bb_ChipData_t*I Initializes chip data

ptSegment bb_ChipSegment_t* Chip section to set online, inclusive
of channel

bb_Error_e Error

b_NO_ERROR Success

76 I/O Card Driver API Developer�s Manual

10-Port Gigabit Ethernet Media Card

Syntax
extern bb_Error_e

Ixf1110SetChipOffline(bb_ChipData_t *pChipData,

bb_ChipSegment_t *section);

Input

Returns

ixf1110Write

Syntax
extern bb_Error_e

Ixf1110Write(bb_ChipData_t *pChipData,

bb_Word_Size_t wordSize,

ulong address,

ushort length,

void *buffer);

pChipData bb_ChipData_t*I Initializes chip data

ptSegment bb_ChipSegment_t* Chip section or block to set offline
inclusive of channel

bb_Error_e Error

b_NO_ERROR Success

I/O Card Driver API Developer�s Manual 77

10-Port Gigabit Ethernet Media Card

Input

Returns

ixf1110GetBuildVersion

Returns information specific to the driver build.

Syntax
extern bb_Error_e

Ixf1110GetBuildVersion(bb_ChipData_t *pChipData,

char *drvName,

char *date,

ushort *buildVer,

ushort *buildRev);

pChipData bb_ChipData_t*I Initializes chip data

wordSize bb_Word_Size_t* Enum size of data to be read:
ONE_BYTE = 1
TWO_BYTES = 2
FOUR_BYTES = 4
EIGHT_BYTES = 8

address ulong Offset from chip base address to
begin write

length ushort Number of words to write

buffer Void* Pointer to a structure that contains
the data to be written

bb_Error_e Error

b_NO_ERROR Success

78 I/O Card Driver API Developer�s Manual

10-Port Gigabit Ethernet Media Card

Input

Returns

ixf1110InitAllocMemory

Allocates memory to support the driver data structures.

Syntax
extern bb_Error_e

Ixf1110InitAllocMemory(bb_ChipData_t *pChipData);

Input

Returns

ixf1110DeAllocMemory

Deallocates the memory used to support the driver data structures.

pChipData bb_ChipData_t*I Initializes chip data

drvName Char* Character pointer to a buffer for the
driver name

date Char* Character pointer to a buffer for the
driver date

buildVer ushort Variable for build version

buildRev ushort Variable for build revision

bb_Error_e Error

b_NO_ERROR Success
drvName

Char*
Character pointer to a buffer containing the driver name

date

Char*
Character pointer to a buffer containing the driver date

buildVer

ushort
Variable containing build version

buildRev

ushort
Variable containing build revision

pChipData bb_ChipData_t*I Initializes chip data

bb_Error_e Error

b_NO_ERROR Success

I/O Card Driver API Developer�s Manual 79

10-Port Gigabit Ethernet Media Card

Syntax
extern bb_Error_e

Ixf1110DeAllocMemory(bb_ChipData_t *pChipData);

Input

Returns

ixf1110XgmacGetAddress

Syntax
extern bb_Error_e

Ixf1110XgmacGetAddress(bb_ChipData_t *pChipData,

bb_ChipSegment_t *section,

IxfApi_MacAddress_t *pMacAddress);

Input

Returns

ixf1110XgmacSetAddress

Function Definition
extern bb_Error_e

Ixf1110XgmacSetAddress(bb_ChipData_t *pChipData,

bb_ChipSegment_t *section,

pChipData bb_ChipData_t*I Initializes chip data

bb_Error_e Error

b_NO_ERROR Success

pChipData bb_ChipData_t*I Initializes chip data

section bb_ChipSegment_t* Chip block or section

address Void* Pointer to a buffer for the 48-bit
MAC address to be read

Type Description

bb_Error_e Error

b_NO_ERROR Success
address

void*
Pointer to a buffer that contains the 48-bit MAC address read

80 I/O Card Driver API Developer�s Manual

10-Port Gigabit Ethernet Media Card

IxfApi_MacAddress_t *pMacAddress);

Input

Returns

3.1.3 The IXF1110 Device Specific Driver

3.1.3.1 Common Data Structure

The driver’s common, or main, data structure is of the type bb_ChipData_t. This structure is used
by most of the API routines at the IXF and devie layers. This main data structure encompasses the
entire chip (in this case, the IXF1110) and alarm configuration. The common structure data
members are listed in the following structure.
typedef struct /* Complete Data for a Chip */

{

 bb_RegPointer_type BaseAddress; /* Base Address of chip */

 bb_ChipType_e ChipType; /* Type of Chip */

 void* pChipCfg; /* Pointer to Chip Specific Configuration */

 void* pAlarmCfg; /* Pointer to Chip Specific Alarm Config */

 void* funcPtr; /* Pointer to the chip's api func's */

} bb_ChipData_t;

The structure ixf1110_ChipCfg_t is in the ixf1110_cnfg_d.h file. This structure is a member of
bb_ChipData_t and is comprised of structures which contain configuration data for the different
functions within the chip. For a complete list of ixf1110 data structures, refer ixf1110_xxx_d.h
files (where xxx is the functional block within the chip).
typedef struct

{

 ixf1110_Spi4Cfg_t Spi4Cfg; /* SPI-4 block */

 ixf1110_RxCfg_t RxCfg; /* Global Rx block */

 ixf1110_TxCfg_t TxCfg; /* Global Tx block */

 ixf1110_SerDesCfg_t SerDesCfg; /* SerDes block */

 ixf1110_GlbStatusCfg_t GlbStatusCfg; /*Global Status & config block*/

 ixf1110_GbicCfg_t GbicCfg; /*GBIC block*/

 ixf1110_XgmacCfg_t XgmacCfg; /*MAC control block*/

} ixf1110_ChipCfg_t;

pChipData bb_ChipData_t*I Initializes chip data

ptSection bb_ChipSegment_t* Chip block or section

address Void* Pointer to a buffer for the 48-bit
MAC address to be written

bb_Error_e Error

b_NO_ERROR Success

I/O Card Driver API Developer�s Manual 81

10-Port Gigabit Ethernet Media Card

3.1.3.2 Error Codes

The following tables contain a complete list of error codes returned by the driver.

Error Enumerator
typedef enum

{

 bb_NO_ERROR = 0, /* Returned by Driver for no error */

82 I/O Card Driver API Developer�s Manual

10-Port Gigabit Ethernet Media Card

Table 3-2. Fatal Error Types and Descriptions

Table 3-3. Common Error Types and Descriptions,,

Table 3-4. OHT Error Types and Descriptions ,

Error Description

bb_FATAL_ERROR Fatal error codes should be defined here

bb_GENERAL_ERROR Catch all type of error

bb_NULL_ADDRESS_ASSIGNED A NULL Base Address has been assigned

Error Description

bb_NO_CHIP_DATA =
bb_COMMON_ERROR_OFFSET pChipData = 0

bb_NULL_BASE_ADDR BaseAddress = 0, for chip

bb_INV_BASE_ADDR BaseAddress not for initialized chip

bb_INV_CHIP_TYPE Chip type not supported

bb_NO_CHIP_CFG pChipCfg = 0, for chip

bb_NO_ALARM_CFG pAlarmCfg = 0, for chip, but Alarm cfg needed

bb_UNDEF_ALARM_BITS An XxxAlarmCfg uses undefined alarm bits

bb_STM_MODE_MISMATCH Mismatch between h/w and s/w cfg of STM-0/1

bb_INV_SEL_OH_BYTE Invalid SelOhByte

bb_INV_SEL_OH_BYTES Invalid SelOhBytes

bb_INV_SEL_COUNTERS Invalid SelCounters

bb_INV_CHAN_TEST Invalid Test Channel

bb_INV_PARAMETER Invalid parameter, generic error

bb_INV_CHIP_SEGMENT Chip segment is invalid

bb_NULL_ARG null pointer passed as argument to function

bb_INV_BLOCK_OPERATION operation not supported on this block

bb_FN_NOT_SUPPORTED function not supported

Error Description

bb_JN_TRACE_WRITE_FAIL =
bb_OHT_ERROR_OFFSET Write of Expected/Rx/Tx J0,J1,J2 Trace failed

bb_INV_EXP_JN_FMT The Expected Jn Format is invalid

bb_TX_J1_FOR_RPTR Cannot set Tx J1 trace for repeater

bb_POH_PASSTHRU Illegal call; all POH bytes passed through

bb_OHT_NOT_IN_TEST OHT must be in test mode, to introduce errors

bb_TX_J0_NOT_CPU For Terminal or ADM, Tx J0 source must = CPU

bb_INV_EXP_J1_FMT An Invalid Expected J1 Format found

bb_INV_TX_J1_FMT An Invalid Tx J1 Format found

bb_NO_OHT_NU_CFG pNuBytes = 0

I/O Card Driver API Developer�s Manual 83

10-Port Gigabit Ethernet Media Card

Table 3-5. Mapper Error Types and Descriptions,

3.1.3.3 Ixf1110 Device Driver

The IXF API device driver for the IXF1110 device is implemented in standard ANSI C, which
allows the code to be highly portable. The code is fully re-entrant. The Linux kernel version under
which this driver will function is 2.4. The user should familiarize him or her self with the IXF API
User's Guide. This guide should be used as a companion to this document and it goes into more
depth with the actual routines. The driver runs as a kernel module under Linux. The kernel module
under Linux does not implement any communication to user mode space, it is to be used only by
other kernel mode code. The user can either interface to the IXF API or the Device Specific Driver
Layer in order to accomplish his goal.

The driver exports an interrupt handling routine (IxfApiChipIsr) to handle alarms. See the
IxfApiChipIsr API section to learn how to handle the low level interrupts from the processor and
call the IxfApiChipIsr, to handle the alarms within the device.

Most of the API routines accept a handle describing the type of device, where the device is located,
and some configuration structures. Many API routines expect a "section" parameter, this tells the
routine the location of the item the user wants to set or retrieve. An example of what should be

bb_NOT_PROTECTING_MAIN not Main Terminal or ADM, or no Protection h/w

 bb_NOT_TERM_ADM This function valid only for Terminal or ADM

bb_INV_BKUP_OHT Invalid Protection Allocation

bb_INV_SEL_OHT_CFG Invalid SelOhtCfg Value Used

bb_TRACE_ACCESS_FAIL Trace read or write has failed

bb_INV_TRACE_FORMAT Invalid trace format selected

bb_INV_TRACE_TYPE Invalid trace type selected

Error Description

bb_INV_PORT_NUM =
bb_MAPPER_ERROR_OFFSET Invalid PortNum

bb_NO_MPR_CFG pMprCfg = 0

bb_INV_ALM_SPEC Invalid AlmSpec

bb_NO_ADM_CFG pAdmCfg = 0

bb_NOT_ADM This chip not configured as an ADM

bb_INV_TIMESLOT ADM timeslots = 0, or 1-28

bb_GET_J2_TYP_ERR

bb_SET_J2_TYP_ERR

bb_SET_J2_LEN_ERR,

bb_PORT_NOT_N2_ENBLD

bb_INV_SIG_LBL

bb_INV_SEL_AUTO_FDBK Invalid Auto Feedback spec

bb_INV_TEST_CNFG

bb_Error_e

Error Description

84 I/O Card Driver API Developer�s Manual

10-Port Gigabit Ethernet Media Card

populated in the section (of type bb_ChipSegment_t) is the channel number. Another expected
parameter in many of the API routines will be an enumerated type applicable to the functionality of
the routine. Again, the IXF API User's Guide should be referenced for more information. The
following API descriptions attempts to highlight the possible values for each routine as well as
alternative device specific routines the user can use.

IXFApiInit

This routine initializes the driver with the base address and chip type and returns a handle. API
calls made after this call will use this handle. The valid value for the base address is the proper
physical or virtual address of the device in the system and the chip type should be set to
bb_1110_CHIP. Under Linux, the calling code is expected to pass the handle returned from
ioremap() for the correct virtual address.

IxfApiInitChip

This routine sends an internal RAM-based initialization table of register values to the device. The
table is identified in the structure bb_Chip_Data_t, a pointer to which is passed to this function as
an input parameter.

IxfApiAllocDataStructureMem

This routine dynamically allocates memory within the pChip_Data parameter for members that
need dynamic allocation. The user calls this routine to enable alarm capabilities and chip
initialization. This routine must be called before IxfApiGetCfg, IxfApiSetCfg, and
IxfApiSetAlarmCfg are used. The pChipData pointer must be initialized via IxfApiInit prior to
calling this function.

IxfApiDeAllocMemory

This routine frees all memory allocated during the IxfApiAllocDataStructureMem call.

IxfApiSetAlarmCfg

This routine is used to modify interrupt enable masks for a specific set of interrupts.

IxfApiReset

This routine resets all or some portion of the device. The alternative device specific driver would be
Ixf1110Reset. The valid values for the ResetType enumeration parameter are:
bb_RESET_RX_FIFO

bb_RESET_TX_FIFO

bb_RESET_XGMAC

bb_RESET_CORE_CLK

bb_RESET_XGMAC_ALL

bb_RESET_RX_FIFO_ALL

bb_RESET_TX_FIFO_ALL

I/O Card Driver API Developer�s Manual 85

10-Port Gigabit Ethernet Media Card

IxfApiGetChipInfo

This routine returns the chip related information. This routine retrieves a pointer to the
bb_ChipInfo_t containing the chip id and chip version numbers. The alternative to this routine for
the device specific driver would be Ixf1110GetChipInfo.

typedef struct /* Information set by the hardware */

{

 uchar ChipVersion; /* Chip Version */

 ushort ChipId; /* Chip ID */

 ushort VendorID /*Vendor ID*/

} bb_ChipInfo_t;

IxfApiSetCfg

This routine is used to configure the chip. Many types of configurations can be performed with the
combinations of SetCfg. The configuration is passed within the pChipData variable. Valid enum
values for sections within the ifx1110 chip are:

• ixf_eXGMAC0

• ixf_eXGMAC1

• ixf_eXGMAC2

• ixf_eXGMAC3

• ixf_eXGMAC4

• ixf_eXGMAC5

• ixf_eXGMAC6

• ixf_eXGMAC7

• ixf_eXGMAC8

• ixf_eXGMAC9

• ixf_eGLBL

• ixf_eRX

• ixf_eTX

• ixf_eSPI4

• ixf_eSERDES

• ixf_eGBIC

IxfApiGetCfg

This routine is used to get the configuration of the chip. Many types of configurations can be
performed with the combination of GetCfg. The chip configuration is returned within the
pChipData variable. The same valid enum values for sections used in IxfApiSetCfg apply to this
function as well.

86 I/O Card Driver API Developer�s Manual

10-Port Gigabit Ethernet Media Card

IxfApiGetStatus

This routine returns status information. The status returned is comprised of register or register bit
values that provide various status information from the device.

IxfApiGetCounters

This routine retrieves counter values. This can be in the form of a single counter or a group of
counters. The alternative device specific routine is Ixf1110GetCounters. The enums for valid
sections or blocks in the device where counter(s) may be retrieved are:

• ixf_eXGMAC0

• ixf_eXGMAC1

• ixf_eXGMAC2

• ixf_eXGMAC3

• ixf_eXGMAC4

• ixf_eXGMAC5

• ixf_eXGMAC6

• ixf_eXGMAC7

• ixf_eXGMAC8

• ixf_eXGMAC9

• ixf_eRX

• ixf_eTX

The valid individual counter request values are:

• ixf_eXGMACX:

— bb_XGMAC_TX_OCT_OK_FRM_CNT

— bb_XGMAC_TX_OCT_BAD_FRM_CNT

— bb_XGMAC_TX_UC_FRM_CNT

— bb_XGMAC_TX_MC_FRM_CNT

— bb_XGMAC_TX_BC_FRM_CNT

— bb_XGMAC_TX_64_OCT_FRM_CNT

— bb_XGMAC_TX_65_TO_127_OCT_FRM_CNT

— bb_XGMAC_TX_128_TO_255_FRM_CNT

— bb_XGMAC_TX_256_TO_511_FRM_CNT

— bb_XGMAC_TX_OK_512_TO_1023_CNT

— bb_XGMAC_TX_OK_1024_TO_15XX_CNT

— bb_XGMAC_TX_OK_15XX_TO_MAX_CNT

— bb_XGMAC_TX_DEFERRED_CNT

— bb_XGMAC_TX_TOTAL_COL_CNT

I/O Card Driver API Developer�s Manual 87

10-Port Gigabit Ethernet Media Card

— bb_XGMAC_TX_SINGLE_COL_CNT

— bb_XGMAC_TX_MULTI_COL_CNT

— bb_XGMAC_TX_LATE_COL_CNT

— bb_XGMAC_TX_EXCESS_COL_ERR_CNT

— bb_XGMAC_TX_EXCESS_DEFER_RCV_CNT

— bb_XGMAC_TX_EXCESS_LEN_DROP_CNT

— bb_XGMAC_TX_UNDERRUN_CNT

— bb_XGMAC_TX_TAGGED_CNT

— bb_XGMAC_TX_CRC_ERR_CNT

— bb_XGMAC_TX_PAUSE_FRM_CNT

— bb_XGMAC_TX_FLOW_CTL_COL_SEND_CNT

— bb_XGMAC_RX_OCT_OK_FRM_CNT

— bb_XGMAC_RX_OCT_BAD_FRM_CNT

— bb_XGMAC_RX_UC_FRM_CNT

— bb_XGMAC_RX_MC_FRM_CNT

— bb_XGMAC_RX_BC_FRM_CNT

— bb_XGMAC_RX_64_OCT_FRM_CNT

— bb_XGMAC_RX_65_TO_127_OCT_FRM_CNT

— bb_XGMAC_RX_128_TO_255_FRM_CNT

— bb_XGMAC_RX_256_TO_511_FRM_CNT

— bb_XGMAC_RX_OK_512_TO_1023_CNT

— bb_XGMAC_RX_OK_1024_TO_15XX_CNT

— bb_XGMAC_RX_OK_15XX_TO_MAX_CNT

— bb_XGMAC_RX_FCS_ERR_CNT

— bb_XGMAC_RX_TAGGED_CNT

— bb_XGMAC_RX_DATAQ_ERROR_CNT

— bb_XGMAC_RX_ALIGN_ERR_CNT

— bb_XGMAC_RX_LONG_ERR_CNT

— bb_XGMAC_RX_JABBER_ERR_CNT

— bb_XGMAC_RX_PAUSE_RCV_CNT

— bb_XGMAC_RX_UNKNOWN_FRM_CNT

— bb_XGMAC_RX_VERY_LONG_ERR_CNT

— bb_XGMAC_RX_RUNT_ERR_CNT

— bb_XGMAC_RX_SHORT_ERR_CNT

88 I/O Card Driver API Developer�s Manual

10-Port Gigabit Ethernet Media Card

— bb_XGMAC_RX_CARRIER_EXT_ERR_CNT

— bb_XGMAC_RX_SEQUENCE_ERR_CNT

— bb_XGMAC_RX_SYMBOL_ERR_CNT

— bb_XGMAC_COUNTERS /*All XGMACX counters. */

• ixf_eRX:

— bb_RX_FRMS_REMOVED_0_CNT

— bb_RX_FRMS_REMOVED_1_CNT

— bb_RX_FRMS_REMOVED_2_CNT

— bb_RX_FRMS_REMOVED_3_CNT

— bb_RX_FRMS_REMOVED_4_CNT

— bb_RX_FRMS_REMOVED_5_CNT

— bb_RX_FRMS_REMOVED_6_CNT

— bb_RX_FRMS_REMOVED_7_CNT

— bb_RX_FRMS_REMOVED_8_CNT

— bb_RX_FIFO_ERR_FRMS_DROP_CNT

— bb_RX_FIFO_OVR_FRMS_CNT

• ixf_eTX:

— bb_TX_FRMS_REMOVED_0_CNT

— bb_TX_FRMS_REMOVED_1_CNT

— bb_TX_FRMS_REMOVED_2_CNT

— bb_TX_FRMS_REMOVED_3_CNT

— bb_TX_FRMS_REMOVED_4_CNT

— bb_TX_FRMS_REMOVED_5_CNT

— bb_TX_FRMS_REMOVED_6_CNT

— bb_TX_FRMS_REMOVED_7_CNT

— bb_TX_FRMS_REMOVED_8_CNT

— bb_TX_FRMS_REMOVED_9_CNT

IxfApiGenericRead

This routine will read data from the device from the offset specified. The routine is passed a pointer
to a structure of type bbChipData to identify the chip base address and type. Additionally, wordSize
identifies the number of bytes in a word, address is the offset from the base address, and length
indicates the number of words to read. A void pointer to buffer into which the read data is placed is
also passed to the routine.

I/O Card Driver API Developer�s Manual 89

10-Port Gigabit Ethernet Media Card

IxfApiGenericWrite

This routine will write data to the device from the offset specified. The parameters are the same as
the IxfApiGenericRead with the exception that buffer contains data to be written to the indicated
address.

IxfApiInitAlarmCallback

This routine registers a callback with the driver. The callback will be called whenever any alarm
occurs in the system. The argument for this routine is a function pointer pointing to the callback
function.

IxfApiChipIsr

 This routine handles alarms. Its only parameter is the handle.

IxfApiGetMacAddress

This routine retrieves the 48-bit MAC address.

IxfApiSetMacAddress

This routine sets the 48-bit MAC address.

3.1.4 Kernel Mode ISR Driver

A separate loadable kernel module is supplied as part of the IXD2810 Linux device driver for the
purpose of hardware interrupt support. The interrupt driver is the ixd2810IntMod.o and is kept
separate from the device access driver in order to maintain platform independence. All platform
specific code for the IXD2810 media card is in the ixd2810IntMod.o module. The application first
performs the call to the IxfApiInit() function to obtain the bb_ChipData_t handle from the IXF
driver for the device in question. This handle is then passed to the ixd2810IntMod.o module via the
call to IXD2810 ISR initialization function:

int ixd2810IsrInit

 (

 bb_ChipData_t *pChipData/* */

)

The call to ixd2810IsrInit will connect the driver to the interrupt via OS provided calls and LSP
provided information about the hardware specifics.Once initialized, the ixd2810IntMod.o module
will serve as the ISR for the device and service all hardware interrupts. Once an interrupt occurs
and is serviced, the ixd2810IntMod.o module will perform a call to the IxfApiChipIsr() function in
the device access driver.

3.1.5 IXD2810 Driver Unit Tests

These tests will be conducted only on the IXDP2810 daughter card independent of rest of the
system. These tests will be considered complete if all tests yield a "PASSED" result.

90 I/O Card Driver API Developer�s Manual

10-Port Gigabit Ethernet Media Card

IxfApiInit Test
• Configure IXFAPI driver for the IXF1110 device.

• Tests return status of the routine.

IxfApiInitChip Test
• Initializes the device with a certain configuration.

• Tests return status of the routine.

IxfApiAllocDataStructureMem Test
• Configure IXF API driver to allocate any necessary memory needed by the device driver.

• Tests return status of the routine.

IxfApiDeAllocMemory Test
• Configure IXF API driver to deallocate any memory allocated during the

IxfApiAllocDataStructureMem.

• Tests return status of the routine.

IxfApiGetStatus Test
• Retrieves a certain status values from the device functional blocks.

• Tests return status of the routine.

IxfApiReset Test
• Writes a certain configuration to the device using IxfApiInitChip then uses this Reset routine

to reset the entire device. Once this is done, a comparison of the known default values is done.

• Tests return status of the routine.

IxfApiInitAlarmCallback Test
• Initializes the alarm callback mechanism.

• Tests return status of the routine.

IxfApiChipIsr Test
• Retrieves chip ISR status from the device.

• Tests return status of the routine.

IxfApiGetCounters Test
• Retrieves a certain counter value from the device.

• Tests return status of the routine.

I/O Card Driver API Developer�s Manual 91

10-Port Gigabit Ethernet Media Card

IxfApiGetChipInfo Test
• Retrieves the IXD2810 board ID from the device and compares the value to what is expected.

• Tests return status of the routine.

IxfApiSetChipOnline Test
• Brings some or all of the ports online.

• Tests return status of the routine.

IxfApiSetChipOffline Test
• Brings some or all of the ports offline.

• Tests return status of the routine.

IxfApiSetAlarmCfg Test
• Edits the interrupt enable masks in the device.

• Tests return status of the routine.

IxfApiGetBuildVersion Test
• Retrieves the build version from the driver and compares the value to what is expected.

• Tests return status of the routine.

IxfApiGenericRead Test
• Retrieves the current value in the same location as what the IxfApiGenericWrite wrote to and

compare the value

• Tests return status of the routine.

IxfApiGenericWrite Test
• Writes a certain value to a certain location then the GenericRead will compare.

• Tests return status of the routine.

IxfApiSetCfg Test
• Writes a certain configuration table to a certain block, then IxfApiGetCfg will be called to read

the values back.

• Tests return status of the routine.

IxfApiGetCfg Test
• Used in IxfApiSetCfg Test above.

• Tests return status of the routine.

92 I/O Card Driver API Developer�s Manual

10-Port Gigabit Ethernet Media Card

3.2 VxWorks Environment

The IXD2810 device driver discussed in this section is for the VxWorks* operating system on the
Intel® IXDP2800 Advanced Development Platform. The device driver for the IXDP2810 is
implemented as a downloadable module for the VxWorks environment.

3.2.1 Design Decomposition

Figure 3-3 shows the design of the device drivers and the environment in which the driver executes.
The figure also shows the major components used in the design, and the relationship among those
components:

The blocks shown in the hardware level include system hardware controllers used by the IXD2810
media card as well as the media card itself. The modules, shown in the device driver software layer
form the IXD2810 Device Driver Library, which provides the driver interface to the hardware.

The functions in the application layer are typical network applications that use the APIs provided
by the device driver to communicate with the hardware functions. The IXD2810 configuration
driver is implemented as a library. The application can access the IXD2810 card by communicating
with the Device Register function.

Figure 3-3. Software Architecture Block Diagram

I/O Card Driver API Developer�s Manual 93

10-Port Gigabit Ethernet Media Card

The device register I/O driver function is a classic I/O driver for the IXD2810 register address
space. This function provides the I/O control library for initialization and configuration of the
MAC device. The library defines functions, such as ixd2810_Start(), ixd2810_Stop(), and
ixd2810_Ioctl(), available to the network application program to configure and access
IXD2810 media card.

The auto-negotiation I/O function configures the link ports on start-up. This function detects the
capabilities of the other devices (over a common link), and it adjusts its transmit and receive (Tx
and Rx) signals to match those of a link partner. The device driver handles the auto-negotiation
privately, which appears transparent to the network application program.

The interrupt service routine handles the interrupts mapped to the NPU interrupt space. The
interrupts are wire-or’ed together in the hardware, which directs the architecture of the interrupt
service routine to identify the interrupt type from the IXD2810 registers. The interrupt service
function provides the mechanism to respond to different types of interrupts and also provides
queues to service the requests.

3.2.1.1 Hardware Layer

There are only two hardware modules shown in the context to the software architecture. Since these
are the only modules that provide an interface from the NPU to the IXD2810 media card, the
memory controller provides the physical address mapping of the IXD2810 register block to the
NPU address space. The interrupt controller provides the mapping of the IXD2810 interrupts to the
NPU interrupt map.

3.2.2 External APIs

The device driver provides the application interfaces to the IXD2810 Media Card for VxWorks
platform that runs on the Intel® IXDP2800 Advanced Development Platform. The functions of the
driver are used to access the IXD2810 registers. Figure 3-4 shows the calling sequence from the
application to the device library functions. The label describes the functionality of each procedure.
Each label contains a number that increases counterclockwise. This number represents the step in
which each function should be called. For example, ixd2810_Create() should be the first
function called and ixd2810_Stop() the last.

The driver application entry points for the IXD2810 Media Card and module implementations are
described in the following sections.

94 I/O Card Driver API Developer�s Manual

10-Port Gigabit Ethernet Media Card

3.2.3 Data Structures

The device driver maintains the state of every device using an array of the IXD2810_DEV data
structure. The driver accesses a particular device structure in the device array by using the device
ID. The content of the IXD2810_DEV structure and the device array are shown as follows.
typedef struct _ixd2810_dev

{

 DEV_HDRdevHdr;

 uint32_tdevId; /* device ID */

 uint32_t vbase; /* virtual address base */

 uint32_tgbicStatus;/* GBIC Status */

 BOOL created; /* TRUE if this device has been created */

 BOOL isRunning; /* device current status/mode */

 int intCnt; /* interrupt count */

 int intLevel; /* interrupt level */

 int taskId; /* task ID spawn */

 SEM_ID mutexSem; /* mutex semaphore */

 SEM_ID syncSem; /* sync semaphore */

 DEV_PORTS ports[N_PORTS];/* ports on device */

} IXD2810_DEV;

 LOCALIXD2810_DEV ixd2810Dev[N_DEVICES];

Figure 3-4. Function Calling Sequence

I/O Card Driver API Developer�s Manual 95

10-Port Gigabit Ethernet Media Card

3.2.3.1 ixd2810_Create()

This function performs the creation and initialization of the device structure specified by the device
identification, devId. The function queries the system for the presence of the IXD2810 card via the
board ID register. If the IXD2810 card is not found, then an error is returned. Otherwise, the
function proceeds to create and initialize the device structure for corresponding to the device
devId.
STATUS ixd2810_Create(uint32_t devId);

The function body pseudocode is as follows:

• Verify that the devId is valid device identification. Otherwise, return an error.

• Get a pointer to the device structure indexed by the devId.
 pDev = &ixd2810Dev[devId];

• Verify that the device has not previously been created. If so, return an error.

• Retrieve the board ID and verify that it is valid. If it is not valid, return an error.

• Initialize the device structure internal variables. This step includes, storing a copy of the device
ID, storing the name assigned to the device, assign the interrupt level to this device, and
created a semaphore for synchronization purposes and save it in the device structure.

3.2.3.2 ixd2810_Start()

This function performs the execution process of the specified IXD2810 device, devId. This
function completes auto-negotiation for all ports, and installs the IXD2810 device interrupt
handler. This function should not be called again without first calling the ixd2810_Stop()
function.
STATUS ixd2810_Start(uint32_t devId);

The function body pseudocode is as follows:

• Verify that the devId is a valid device identification. Otherwise, return an error.

• Get a pointer to the device structure indexed by the devId.
 pDev = &ixd2810Dev[devId];

• Verify that the device has been created. If it has not been created, return an error.

• Verify that the device is not executing. If it is executing, return an error.

• Perform auto-negotiation for each port.
 for(p = 0; p < N_PORTS; p++)
 if (doAutoneg(pDev, p) == ERROR)
 return ERROR;

• Install the interrupt handler.
 if (ixdp2810IntDevInit(pDev) == ERROR)
 return ERROR;

3.2.3.3 ixd2810_Stop()

This function disables the port receive and transmit operations, and resets the SPI4-3 and GBIC
interfaces for the device devId. This function should be called after the ixd2810_Start() has
been successfully called. Otherwise, ixd2810_Stop() will return without making any changes to
the MAC device.
STATUS ixd2810_Stop(uint32_t devId);

96 I/O Card Driver API Developer�s Manual

10-Port Gigabit Ethernet Media Card

The function body pseudocode is as follows:

• Verify that the devId is valid device identification. Otherwise, return an error.

• Get a pointer to the device structure indexed by the devId.
 pDev = &ixd2810Dev[devId];

• Verify that the device is executing. If false, return an error.

• Release the interrupt handler.
 ixd2810IntDevRelease(pDev);

• Delete the device semaphore.
 semFlush(pDev->syncSem);
 semDelete(pDev->syncSem);

3.2.3.4 ixd2810_loctl()

The device driver provides an I/O control function to the application program for accessibility to
the IXD2810 registers. presents the ixd2810_Ioctl() function declaration.

This function is the entry point to perform configuration and get status of the device. This function
can only be called once the IXD2810 has been started, that is, after the ixd2810_Start()
function has been successfully called. This function performs the different functions accesses
based upon the cmd parameter.

The first parameter, devid, expected by the ixd2810Ioct(), identifies the IXD2810 card. The
second parameter determines the type of command being requested by the application program.
The device library defines two basic I/O commands, namely, read and write. The application
program can request a read, or get, instruction from the device by passing the
IXD2810_IOCTL_GET macro to ixd2810_Ioctl(). Similarly, to request a write, or put,
instruction to the device, the application should pass the IXD2810_IOCTL_SET macro to
ixd2810_Ioctl().

The third parameter, stBlock, provides the specific of the I/O control command.

 STATUS IXD2810Ioctl(
 uint32_t devId,
 uint32_t cmd,
 block_t *stBlock

The function body pseudocode is as follows:

• Verify that the devId is valid device identification. Otherwise, return an error.

• Get a pointer to the device structure indexed by the devId.
 pDev = &ixd2810Dev[devId];

• Verify that the device has been created and is executing. If false, return an error.

• Call the corresponding function depending on the cmd parameter. The following sections
describe the corresponding function bodies for the ixd2810IoctGet() and
ixd2810IoctSet().

 switch(cmd)
 {
 case IXD2810_IOCTL_GET:
 status = ixd2810IoctlGet(pDev, stBlock);
 break;
 case IXD2810_IOCTL_SET:
 status = ixd2810IoctlSet(pDev, stBlock);

I/O Card Driver API Developer�s Manual 97

10-Port Gigabit Ethernet Media Card

 break;
 default:
 (void) errnoSet (S_ioLib_UNKNOWN_REQUEST);
 status = ERROR;
 break;
 }

Example of ixd2810IoctlGet()
switch(stBlock->blockId)
 {
 case PORT0_BLOCK thru PORT9_BLOCK:
 case GLOBAL_BLOCK:
 case TX_BLOCK:
 case RX_BLOCK:
 case SPI42_BLOCK:
 case SERDES_BLOCK:
 for(regOffset = 0; regOffset < stBlock->regNum; regOffset++)
 IXD2810_REG_GET(pDev->vbase +
 BLOCK_REG_ADRS(stBlock->blockId, stBlock->startingReg +
 regOffset),
 stBlock->data[regOffset]);
 break;
 case GBIC_BLOCK:
 for(regOffset = 0; regOffset < stBlock->regNum; regOffset++)
 IXD2810_REG_GET(pDev->vbase + GBIC_BASE +

 stBlock->startingReg + regOffset, stBlock->data[regOffset]);
 break;
 case BOARDID_BLOCK:
 IXD2810_REG_GET(pDev->vbase + IXD2810_BOARDID_OFFSET,

 stBlock->data[1]);
 break;
 default:
 Block is not defined.

Example of ixd2810IoctlSet()
/* access registers indexed by blocks on the memory map */
switch(stBlock->blockId)
{
 case PORT0_BLOCK thru PORT9_BLOCK:
 case GLOBAL_BLOCK:
 case SPI42_BLOCK:
 case SERDES_BLOCK:
 for(regOffset = 0; regOffset < stBlock->regNum; regOffset++)
 {
 IXD2810_REG_SET(pDev->vbase +
 BLOCK_REG_ADRS(stBlock->blockId, stBlock->startingReg +
 regOffset),
 stBlock->data[regOffset]);
 }
 break;
 case GBIC_BLOCK:
 for(regOffset = 0; regOffset < stBlock->regNum; regOffset++)
 {
 IXD2810_REG_SET(pDev->vbase + GBIC_BASE +
 stBlock->startingReg + regOffset,
 stBlock->data[regOffset]);
 }

98 I/O Card Driver API Developer�s Manual

10-Port Gigabit Ethernet Media Card

 break;
 case TX_BLOCK:
 case RX_BLOCK:
 case BOARDID_BLOCK:

 Block is read-only; unable to modify its content.

 default:
 Block is not defined.
}

The BLOCK_REG_ADRS macro calculates the absolute memory block location within the memory
map using the given block b and register r. The macro is defined as follows:
#define BLOCK_REG_ADRS(b, r) (((b & 0xf) << 7) + r)

3.2.4 System Components

3.2.4.1 Auto-Negotiation

The auto-negotiation function drives the auto-negotiation on the IXF1110 Ethernet MAC in fiber
mode. Figure 3-5 demonstrates the sequence of operation functions in auto-negotiation.

The IXD2810 only supports fiber mode Ethernet, so when auto-negotiation is triggered, the system
is started in fiber mode and the fiber mode algorithm is initiated for the MAC device ports on the
board. In fiber mode:

• Advertise capability and start auto-negotiation.

• Determine the mode of operation.

• If the mode is supported, configure IXF1110. If the mode is not supported, disable port and
generate error message.

I/O Card Driver API Developer�s Manual 99

10-Port Gigabit Ethernet Media Card

3.2.4.2 doAutoneg

(IXD2810_DEV *pDev, uint32_t port)
 fiberAutoNeg(pDev, port);/* fiber auto-negotiation */
 /* Fiber mode only supports giga speed and full duplex */
 if (pDev->ports[port].link == UP) {/* link up */
 if ((pDev->ports[port].speed == SPEED_1000) &&
 (pDev->ports[port].duplex == FULL))
 configMac(pDev, port); /* Configure MAC */
 else
 disablePort(pDev,port); /* Disable port */
 }
 else /* link down */
 disablePort(pDev, port);

void fiberAutoNeg

(IXD2810_DEV *pDev, uint32_t port)
 /* Start auto-negotiation */
 IXD2810_REG_GET(vbase + BLOCK_REG_ADRS(port, DIV_CONFIG_WORD),
 divData);
 divData |= DC_Autoneg_Enable;
 IXD2810_REG_SET(vbase + BLOCK_REG_ADRS(port, DIV_CONFIG_WORD),
 divData);

 /* Poll Rx Config Word to determine when AN is complete or timeout */
 for(delay = 0; delay < AN_TIMEOUT; delay++) {
 delayUSec(10000); /* 10 msec delay */
 IXD2810_REG_GET(vbase + BLOCK_REG_ADRS(port, RX_CONFIG_WORD),

Figure 3-5. Auto-Negotiation Event Diagram

100 I/O Card Driver API Developer�s Manual

10-Port Gigabit Ethernet Media Card

 rxData);
 if (rxData & RC_An_Complete)
 break;
 }

 if (delay < AN_TIMEOUT) {
 /* Speed is fixed at giga */
 pDev->ports[port].speed = SPEED_1000;

 /* Get port status from Rx Config Word */
 if (rxData & RC_Half_Duplex)
 pDev->ports[port].duplex = HALF;
 if (rxData & RC_Full_Duplex)
 pDev->ports[port].duplex = FULL;
 /* Link is up when autoneg is enabled and finished */
 pDev->ports[port].link = UP;
 }
 else { /* timeout has occurred */
 pDev->ports[port].link = DOWN;
 }

void configMac

(IXD2810_DEV *pDev, uint32_t port)
 /* Set link up*/
 IXD2810_REG_GET(pDev->vbase + LINK_LED_ENABLE, data);
 data |= LINK_UP(port);
 IXD2810_REG_SET(pDev->vbase + LINK_LED_ENABLE, data);

 /* Enable port */
 IXD2810_REG_GET(pDev->vbase + PORT_ENABLE, data);
 data |= PORT_EN(port);
 IXD2810_REG_SET(pDev->vbase + PORT_ENABLE, data);

void disablePort

(IXD2810_DEV *pDev, uint32_t port)
 IXD2810_REG_GET(pDev->vbase + PORT_ENABLE, data);
 data &= (ENABLE_BOUNDARY - PORT_EN(port));
 IXD2810_REG_SET(pDev->vbase + PORT_ENABLE, data);

 IXD2810_REG_GET(pDev->vbase + LINK_LED_ENABLE, data);
 data &= (ENABLE_BOUNDARY - LINK_UP(port));
 IXD2810_REG_GET(pDev->vbase + LINK_LED_ENABLE, data);

3.2.4.3 Interrupt Service Routine

The interrupt service routines are provided to handle specialized interrupts that are mapped to the
NPU address in the reference platform. The interrupts supported are TX_FAULT, RX_LOSS, and
MOD_DEF as shown in Figure 3-6. The structure of the interrupt operation is shown in the state
diagram as follows:

I/O Card Driver API Developer�s Manual 101

10-Port Gigabit Ethernet Media Card

The service routine is in an inactive state until a MAC interrupt gets trigged. Once an interrupt is
generated, the interrupt is identified and appropriate state transition takes place according to the
interrupt. In each state, the interrupt is serviced as specified in the state. The RX_LOSS_INT and
TX_FAULT_INT are forwarded to the service state. The MOD_DEF_INT is serviced such that for
any identified port, the state of the link for the selected port is checked and accordingly switched to
either link up or down state. The wire-or’ed interrupt is serviced by executing all three interrupt
states in sequence. Once any state terminates, the system return to interrupt wait state. Work done
in each state is mapped to an independent function, as shown in the following table:

Figure 3-6. Interrupt Service Routine Diagram

102 I/O Card Driver API Developer�s Manual

10-Port Gigabit Ethernet Media Card

The body descriptions for all functions forming the interrupt handler module in VxWorks
environments is as follows:

STATUS ixd2810IntDevInit(IXD2810_DEV *pDev)

 /* launch a task to serve the mod def irq at task level */

 taskId = taskSpawn(pDev->devHdr.name, TASK_PRIORITY,

 TASK_OPTS, TASK_STACK_SIZE, (FUNCPTR) ixd2810ModDefIsr,

 (int) pDev, 0, 0, 0, 0, 0, 0, 0, 0, 0);

 pDev->taskId = taskId;

 /* connect isr to interrupt handler */

 (void) intConnect((VOIDFUNCPTR*) INUM_TO_IVEC(pDev->intLevel),

 (VOIDFUNCPTR) ixd2810Intr, (int) pDev);

 /* enable interrupt */

 intEnable(pDev->intLevel);

 /* Enable interrupt in GBIC control register */

 IXD2810_REG_SET(pDev->vbase + GBIC_CONTROL, GC_INT_ENABLE);

 /* Read GBIC status value */

 IXD2810_REG_GET(pDev->vbase + GBIC_STATUS, pDev->gbicStatus);

STATUS ixd2810IntDevRelease(IXD2810_DEV *pDev)

 /* Disable interrupt in GBIC control register */

 IXD2810_REG_SET(pDev->vbase + GBIC_CONTROL, GC_INT_DISABLE);

Table 7. Interrupt Service Routines

Interrupt Name Handler Function Description

RX_LOSS_INT

void ixd2810RxLossIsr (
IXD2810_DEV *pDev,
uint32_t irq,
uint32_t status
)

Generates RX loss message for
the identified device and port.

TX_FAULT_INT

void ixd2810TxFaultIsr (
IXD2810_DEV *pDev,
uint32_t irq,
uint32_t status
)

Generates TX loss message for
identified device and port.

MOD_DEF_INT

void ixd2810ModDefIsr (
IXD2810_DEV *pDev,
uint32_t irq,
uint32_t status
)

The sequence of operation of
the service routine is as follows:
- If module was present before
interrupt, display �module
removed on port.�
- If module was not present
before interrupt, start auto-
negotiation on port.

I/O Card Driver API Developer�s Manual 103

10-Port Gigabit Ethernet Media Card

 intDisable(pDev->intLevel);

 taskDelete(pDev->taskId);

void ixd2810Intr(IXD2810_DEV *pDev)

 /* Read GBIC status register */

 IXD2810_REG_GET(pDev->vbase + GBIC_STATUS, gstatus);

 /* Find which bit(s) changed */

 irq = gstatus ^ pDev->gbicStatus;

 if (irq & GS_Rx_Loss)

 {

 ixd2810RxLossIsr(pDev, irq, gstatus);

 irqServiced = TRUE;

 }

 if (irq & GS_Tx_Fault)

 {

 ixd2810TxFaultIsr(pDev, irq, gstatus);

 irqServiced = TRUE;

 }

 if (irq & GS_Mod_Def)

 {

 semGive(pDev->syncSem);

 irqServiced = TRUE;

 }

void ixd2810RxLossIsr(IXD2810_DEV *pDev, uint32_t irq, uint32_t status)

 for (port = 0; port < N_PORTS; port++, rxBitIndex <<= 1)

 {

 if (irq & rxBitIndex)

 { /* bit changed for this port */

 if (status & rxBitIndex)

 disablePort(pDev, port);

 else

 enablePort(pDev, port);

 }

 }

void ixd2810TxFaultIsr(IXD2810_DEV *pDev, uint32_t irq, uint32_t status)

 for (port = 0; port < N_PORTS; port++, txBitIndex <<= 1)

 {

 if (irq & txBitIndex)

 { /* bit changed for this port */

 if (status & txBitIndex)

 dprintf("Tx fault appeared on MAC%d port%d.\n",

 pDev->devId, port);

 else

 dprintf("Tx fault disappeared on MAC%d port%d.\n ",

104 I/O Card Driver API Developer�s Manual

10-Port Gigabit Ethernet Media Card

 pDev->devId, port);

 }

 }

void ixd2810ModDefIsr(IXD2810_DEV *pDev)

 FOREVER

 {

 /* exclusive access */

 semTake(pDev->syncSem, WAIT_FOREVER);

 /* Read GBIC status register */

 IXD2810_REG_GET(pDev->vbase + GBIC_STATUS, status); /* bits 9:0 */

 /* Find which bit(s) changed */

 irq = status ^ pDev->gbicStatus;

 for (port = 0; port < N_PORTS; port++, modBitIndex <<= 1)

 {

 if (irq & modBitIndex) /* bit changed for this port */

 {

 /* if bit=1, module is not present */

 if (status & modBitIndex)

 {

 disablePort(pDev, port);

 autoFlag[pDev->devId][port] = 0;

 }

 else

 { /* if bit=0, module is present */

 autoFlag[pDev->devId][port] = 1;

 }

 }

 }

 /* auto-negotiation each port */

 for (port = 0; port < N_PORTS; port++)

 {

 if (autoFlag[pDev->devId][port] == 1)

 {

 /* Start auto-negotiation */

 /* Put in immediate task queue */

 queue_task(&stModDefTask, &tq_immediate);

 /* Muse mask as bottom half */

 mark_bh(IMMEDIATE_BH);

 /* Clear auto-negotiation flag */

 autoFlag[pDev->devId][port] = 0;

 break;

 }

 }

 } /* FOREVER */

I/O Card Driver API Developer�s Manual 105

10-Port Gigabit Ethernet Media Card

void ixd2810RxLossIsr

(IXD2810_DEV *pDev, uint32_t irq, uint32_t status)

void ixd2810TxFaultIsr

(IXD2810_DEV *pDev, uint32_t irq, uint32_t status)

void ixd2810ModDefIsr

(IXD2810_DEV *pDev)
 /* Read GBIC status register */

 IXD2810_REG_GET(pDev->vbase + GBIC_STATUS, status); /* bits 9:0 */

 /* Find which bit(s) changed */

 irq = status ^ pDev->gbicStatus;

 for (port = 0; port < N_PORTS; port++, modBitIndex <<= 1)

 {

 if (irq & modBitIndex) /* bit changed for this port */

 {

 /* if bit=1, module is not present */

 if (status & modBitIndex)

 {

 disablePort(pDev, port);

 autoFlag[pDev->devId][port] = 0;

 }

 else

 { /* if bit=0, module is present */

 autoFlag[pDev->devId][port] = 1;

 }

 }

 }

 /* auto-negotiation each port */

 for (port = 0; port < N_PORTS; port++)

 {

 if (autoFlag[pDev->devId][port] == 1)

 {

 /* Put in immediate task queue */

 queue_task(&stModDefTask, &tq_immediate);

 /* Muse mask as bottom half */

 mark_bh(IMMEDIATE_BH);

 /* Clear auto-negotiation flag */

 autoFlag[pDev->devId][port] = 0;

 break;

 }

 }

106 I/O Card Driver API Developer�s Manual

10-Port Gigabit Ethernet Media Card

void getModState

(void *ptr)
 /* Retrieve task data */

 ClientData *stData = (ClientData *)ptr;

 pDev = stData->pDev;

 port = stData->port;

 /* do auto-negotiation on current port */

 doAutoneg(pDev, port);

 /* Queue the next auto-negotiation task */

 while (++port < N_PORTS) {

 if (iAutoFlag[port] == 1) {

 stDevData.iDev = iDev;

 stDevData.port = port;

 queue_task(&stModDefTask, &tq_immediate);

 mark_bh(IMMEDIATE_BH);

 iAutoFlag[port] = 0;

 break;

 }

 }

I/O Card Driver API Developer�s Manual 107

Single OC-192 I/O Card 4

4.1 System Overview

The IXD28192 is a single-channel, full-duplex, OC-192 Packet over SONET (POS), Ethernet
LAN, and Ethernet WAN media board for the IXDP2800.

The IXDP28192 line card plugs into the main board of the IXDP2800. The IXDP28192 consists of
a media interface to the network processors of IXDP2800, the IXF18100 framer, and the line
interface to connect to transmit and receive optical fibers. The device driver is implemented as a
downloadable module for both the VxWorks and Linux environments.

4.1.1 Design Decomposition

The IXDP28192 device driver and the supporting software is designed to be modular and portable.
There is no need for synchronization between the Master and Slave NPUs.

The device driver for the IXDP28192 has the following components:

• IXF API Module

• The IXF18100 Device Specific Driver

Figure 4-1. Device Driver Design

IXD28192 Media Card

Socket Interface (Device Side)

IXF API

IXF18100 Device Driver

Socket Interface (Client Side)

GUI

TCP/IP
connection

Hardware

Software

Client Protocol layer

Server Protocol layer

Target

Host

Device
Specific

APIs

Software/API block diagram

108 I/O Card Driver API Developer�s Manual

Single OC-192 I/O Card

• Intel Optical Component Management Software (OCMS) - Graphical User Interface (GUI)
Configuration Tool

• Proprietary Protocol System

• Communication Server

4.2 IXF API Module

The IXF API provides a common and consistent interface for supported IXF devices. For each
supported device, the IXF API provides device specific functions, as well as common interface
functions for features that are not specific to a particular device. The following diagram illustrates
the IXF API, feature API, and device API layers.

The IXF API provides IXF18100 specific functions for general device configuration, while access
to the POS, Ethernet, and other functional blocks of the IXF18100 is provided by interface
functions.In addition, the IXF API also provides generic read and write access to the devices.

The IXF API interfaces to multiple devices (whether of the same or different types) simultaneously.
The IXF API provides the application with a 'chip ID' that is used to reference the device it is
accessing.

4.3 Feature APIs

Each 'feature' has its own API, and provides a common interface to the functionality of different
devices. Each device may have its own implementation of a feature API, as the implementation
may differ from device to device.

Each Feature API function signature must match the corresponding IXF API function exactly, as it
is a Feature API function that actually provides the implementation for the IXF API function. As a
result, the application has a common interface to functionality that is shared by several devices.
Feature APIs are independent of each other; as for some devices (IXF18100, for example) subsets
of the complete feature set must work properly.

Figure 4-2. IXF API Model

ixf18100 Device API

IXF API

ixf6192 Device API

SONET
feature

Ethernet
feature

Common
feature

SONET
feature

Ethernet
feature

Common
feature

GFP
feature

POS
feature

SONET
feature

Cross
connect
feature

Common
feature

...

I/O Card Driver API Developer�s Manual 109

Single OC-192 I/O Card

There are different types of Feature APIs:·

4.3.1 Device APIs

Each device has its own API that provides device-specific implementation of IXF API functions.
The Device APIs could be described as 'composite' APIs, as each Device API consists of device-
specific functions, plus the feature APIs for all features that the device supports. The Device API
function signatures must match the corresponding IXF API functions exactly, as it is a device API
function that actually provides the implementation for almost all IXF API functions.

The IXF18100 API module provides API calls to access the chip. This API includes the functions
described in the following sections:

4.3.1.1 ixf18100Reset

Resets the chip, then reconfigures it.

Syntax
extern bb_Error_e

Ixf18100Reset(bb_ChipData_t *pChipData,

bb_ChipSegment_t *ptSegment,

bb_SelResetType_e resetType);

Table 4-1. Feature API Types

Type Description

Device
specific

Specific to a device. Examples of this include global registers and global
configuration.

Common Common to all (or at least the vast majority of) devices. Functionality
includes resetting the device, getting the device ID/version, and generic
read and write access.

Functionality
based

Provides interfaces for the following blocks:
POS
GFP
SONET
SPI4
ATM
Ethernet
PCS

110 I/O Card Driver API Developer�s Manual

Single OC-192 I/O Card

Input

Returns

4.3.1.2 ixf18100InitChip

Initializes the chip based upon the configuration passed in by pChipData.

Note: The chip will be set offline (tri-stated and interrupts disabled) while initializing.

Syntax
extern bb_Error_e

Ixf18100InitChip(bb_ChipData_t *pChipData,

InitRegTable_t *pTable);

pChipData bb_ChipData_t*I Initializes chip data

ptSegment bb_ChipSegment_t* Resets chip section or block

ResetType f18100_ResetType_e Type of reset to perform:
bb_RESET_GFP_TX_INTF
bb_RESET_GFP_RX_INTF
bb_RESET_GFP_CPU_INTF
bb_RESET_GFP_TX_FCS
bb_RESET_GFP_RX_FCS
bb_RESET_GFP_RX_FSM
bb_RESET_GFPbb_RESET_CHIP
bb_RESET_LINE_INTF
bb_RESET_SPI_INTF
bb_RESET_APS_INTF

bb_Error_e Error

b_NO_ERROR Success

I/O Card Driver API Developer�s Manual 111

Single OC-192 I/O Card

Input

Returns

4.3.1.3 ixf18100GetChipInfo

Gets the chip version and ID numbers.

Syntax
extern bb_Error_e

Ixf18100GetChipInfo (bb_ChipData_t *pChipData,

 bb_ChipInfo_t *pChipInfo);

Input

Returns

4.3.1.4 ixf18100InitAlarmCallback

Sets the pointer to the Alarm Callback Method. This is a user-defined function that can be called at
the end of the ixf18100_ChipIsr routine allowing further processing of the collected alarm
data.

Syntax
extern bb_Error_e

Ixf18100InitAlarmCallback(bb_ChipData_t *pChipData,

 AlarmCallBack pAlarmCallbackArg);

pChipData bb_ChipData_t*I Initializes chip data

pTable InitRegTable_t* Initializes data to be committed to
the chip

bb_Error_e Error

b_NO_ERROR Success

pChipData bb_ChipData_t* Initializes chip data

bb_Error_e Error

b_NO_ERROR Success

pChipInfo
ixf18100_ChipInfo_t

Chip information:

ChipVersion
ChipId

112 I/O Card Driver API Developer�s Manual

Single OC-192 I/O Card

Input

Returns

4.3.1.5 ixf18100SetAlarmCfg

Sets the alarm configuration.

Syntax
extern bb_Error_e

Ixf18100SetAlarmCfg(bb_ChipData_t *pChipData,

bb_ChipSegment_t *section,

bb_AlarmType_e AlarmType,

void *pAlarmCfg);

Input

Returns

4.3.1.6 ixf18100ChipIsr

This function is called to handle all interrupts that have been indicated by the chip. The interrupts
are handled according to the hierarchy.

Syntax
extern bb_Error_e

Ixf18100ChipIsr(bb_ChipData_t *pChipData);

pChipData bb_ChipData_t* Initializes chip data

pAlarmCallback AlarmCallBack Points to an Alarm Callback function

bb_Error_e Error

b_NO_ERROR Success

pChipData bb_ChipData_t*I Initializes chip data

section bb_ChipSegment_t* Chip section or block

pAlarmCfg bb_AlarmType_e Alarm type to configure

pAlarmCfg Void* Alarm configuration data

bb_Error_e Error

b_NO_ERROR Success

I/O Card Driver API Developer�s Manual 113

Single OC-192 I/O Card

Input

Returns

4.3.1.7 ixf18100SetCfg

This function sets the configuration of POS watermarks, POS flow control, and the chip's GFC
role.

Syntax
extern bb_Error_e

Ixf18100SetCfg(bb_ChipData_t *ptChipData,

bb_ChipSegment_t *ptSegment,

bb_SelConfig_e SelCfg);

Input

Returns

4.3.1.8 ixf18100GetCfg

This function retrieves configuration informaiton.

Syntax
extern bb_Error_e

Ixf18100GetCfg(bb_ChipData_t *ptChipData,

bb_ChipSegment_t *ptSegment,

bb_SelConfig_e SelCfg);

pChipData bb_ChipData_t* Initializes chip data

bb_Error_e Error

b_NO_ERROR Success

pChipData bb_ChipData_t*I Initializes chip data

ptSegment bb_ChipSegment_t* Block or section to configure

SelCfg bb_SelConfig_e Selects configuration type

bb_Error_e Error

b_NO_ERROR Success

114 I/O Card Driver API Developer�s Manual

Single OC-192 I/O Card

Input

Returns

4.3.1.9 ixf18100GetStatus

Retrieves the status of the Rx AIS, Input Clock Activity, and far-end GFC role.

Note: The test for the far-end GFC Role depends upon having active ATM traffic.

Syntax
extern bb_Error_e

Ixf18100GetStatus(bb_ChipData_t *pChipData,

bb_ChipSegment_t *section,

bb_SelStatus_e selStatus,

void *pStatus);

Input

Returns

4.3.1.10 ixf18100GetCounters

Retrieves a set of Rx/Tx counters for a selected OHT type, ATM or POS, on a per-channel basis.

pChipData bb_ChipData_t*I Initializes chip data

ptSegment bb_ChipSegment_t* Block or section to retrieve from

SelCfg bb_SelConfig_e Status type

bb_Error_e Error

b_NO_ERROR Success

pChipData bb_ChipData_t*I Initializes chip data

section bb_ChipSegment_t* Block or section to retrieve status
from

SelStatus bb_SelStatus_e The status type to retrieve

bb_Error_e Error

b_NO_ERROR Success
pStatusvoid* Place to put Status

I/O Card Driver API Developer�s Manual 115

Single OC-192 I/O Card

Syntax
extern bb_Error_e

Ixf18100GetCounters(bb_ChipData_t *ptChipData,

bb_ChipSegment_t *ptSection,

 bb_SelCounters_e eCounter,

void *pCounters);

Input

Returns

4.3.1.11 ixf18100SetOpMode

Syntax
extern bb_Error_e

Ixf18100SetOpMode(bb_ChipData_t *pChipData,

 bb_ChipSegment_t *section,

 bb_OperMode_e opMode,

 void *pModeCfg);

pChipData bb_ChipData_t*I Initializes chip data

ptSection bb_ChipSegment_t* Chip block or segment

eCounter bb_SelCounters_e The set of counters to retrieve

bb_Error_e Error

b_NO_ERROR Success
pCounters

void*
A pointer to a Counter Structure that corresponds to the Selected Counters to
retrieve.

116 I/O Card Driver API Developer�s Manual

Single OC-192 I/O Card

Input

Returns

4.3.1.12 ixf18100GetOpMode

Syntax
extern bb_Error_e

Ixf18100GetOpMode(bb_ChipData_t *pChipData,

 bb_ChipSegment_t *section,

 bb_OperMode_e *opMode,

 void *pModeCfg);

Input

Returns

4.3.1.13 ixf18100CfgTest

Runs a specific test on the IX18100 chip.

Syntax
extern bb_Error_e

Ixf18100CfgTest(bb_ChipData_t *pChipData,

bb_ChipSegment_t *ptSegment,

bb_TestType_e testType,

pChipData bb_ChipData_t*I Initializes chip data

section bb_ChipSegment_t* Chip block or segment to set

opMode bb_OperMode_e* Mode to set

pModeCfg Void* Configuration data to commit to
device

bb_Error_e Error

b_NO_ERROR Success

pChipData bb_ChipData_t*I Initializes chip data

section bb_ChipSegment_t* Chip block or segment to set

opMode bb_OperMode_e* Mode to get

pModeCfg Void* Configuration data to retrieve

bb_Error_e Error

b_NO_ERROR Success

I/O Card Driver API Developer�s Manual 117

Single OC-192 I/O Card

void *pTestCfg);

Input

Returns

4.3.1.14 ixf18100Read

Syntax
extern bb_Error_e

Ixf18100Read(bb_ChipData_t *pChipData,

bb_Word_Size_t wordSize,

ulong address,

ushort length,

void *buffer);

pChipData bb_ChipData_t*I Initializes chip data

section bb_ChipSegment_t* Chip block or segment to test

testType bb_TestType_e Type of test

bb_Error_e Error

b_NO_ERROR Success
pTestCfg

void*
A pointer to a Structure containing the test results.

118 I/O Card Driver API Developer�s Manual

Single OC-192 I/O Card

Input

Returns

4.3.1.15 ixf18100Write

Syntax
extern bb_Error_e

Ixf18100Write(bb_ChipData_t *pChipData,

bb_Word_Size_t wordSize,

ulong address,

ushort length,

void *buffer);

pChipData bb_ChipData_t*I Initializes chip data

wordSize bb_Word_Size_t* Enum size of data to be read:
ONE_BYTE = 1
TWO_BYTES = 2
FOUR_BYTES = 4
EIGHT_BYTES = 8

address ulong Offset from chip base address to
begin read

length ushort Number of words to read

buffer Void* Pointer to a structure in which to
place the read results

bb_Error_e Error

b_NO_ERROR Success

buffer Buffer contains read results

I/O Card Driver API Developer�s Manual 119

Single OC-192 I/O Card

Input

Returns

4.3.1.16 ixf18100GetBuildVersion

Returns information specific to the driver build.

Syntax
extern bb_Error_e

Ixf18100GetBuildVersion(bb_ChipData_t *pChipData,

char *drvName,

char *date,

ushort *buildVer,

ushort *buildRev);

pChipData bb_ChipData_t*I Initializes chip data

wordSize bb_Word_Size_t* Enum size of data to be read:
ONE_BYTE = 1
TWO_BYTES = 2
FOUR_BYTES = 4
EIGHT_BYTES = 8

address ulong Offset from chip base address to
begin write

length ushort Number of words to write

buffer Void* Pointer to a structure that contains
the data to be written

bb_Error_e Error

b_NO_ERROR Success

120 I/O Card Driver API Developer�s Manual

Single OC-192 I/O Card

Input

Returns

4.3.1.17 ixf18100InitAllocMemory

Allocates memory to support the driver data structures.

Syntax
extern bb_Error_e

Ixf18100InitAllocMemory(bb_ChipData_t *pChipData);

Input

Returns

4.3.1.18 ixf18100DeAllocMemory

Deallocates the memory used to support the driver data structures.

pChipData bb_ChipData_t*I Initializes chip data

drvName Char* Character pointer to a buffer for the
driver name

date Char* Character pointer to a buffer for the
driver date

buildVer ushort Variable for build version

buildRev ushort Variable for build revision

bb_Error_e Error

b_NO_ERROR Success
drvName

Char*
Character pointer to a buffer containing the driver name

date

Char*
Character pointer to a buffer containing the driver date

buildVer

ushort
Variable containing build version

buildRev

ushort
Variable containing build revision

pChipData bb_ChipData_t*I Initializes chip data

bb_Error_e Error

b_NO_ERROR Success

I/O Card Driver API Developer�s Manual 121

Single OC-192 I/O Card

Syntax
extern bb_Error_e

Ixf18100DeAllocMemory(bb_ChipData_t *pChipData);

Input

Returns

4.3.1.19 ixf18100XgmacGetAddress

Syntax
extern bb_Error_e

Ixf18100XgmacGetAddress(bb_ChipData_t *pChipData,

bb_ChipSegment_t *section,

IxfApi_MacAddress_t *pMacAddress);

Input

Returns

4.3.1.20 ixf18100XgmacSetAddress

Function Definition
extern bb_Error_e

Ixf18100XgmacSetAddress(bb_ChipData_t *pChipData,

bb_ChipSegment_t *section,

pChipData bb_ChipData_t*I Initializes chip data

bb_Error_e Error

b_NO_ERROR Success

pChipData bb_ChipData_t*I Initializes chip data

section bb_ChipSegment_t* Chip block or section

address Void* Pointer to a buffer for the 48-bit
MAC address to be read

Type Description

bb_Error_e Error

b_NO_ERROR Success
address

void*
Pointer to a buffer that contains the 48-bit MAC address read

122 I/O Card Driver API Developer�s Manual

Single OC-192 I/O Card

IxfApi_MacAddress_t *pMacAddress);

Input

Returns

4.3.1.21 ixf18100SonetGetWindowSize

Gets the window size for the degraded and excessive error.

Syntax
extern bb_Error_e

Ixf18100SonetGetWindowSize(bb_ChipData_t *pChipData,

bb_ChipSegment_t *section,

bb_WindowSizeMode_e mode,

ulong *value);

Input

Returns

4.3.1.22 ixf18100SonetSetWindowSize

Sets the window size for the degraded and excessive error.

pChipData bb_ChipData_t*I Initializes chip data

ptSection bb_ChipSegment_t* Chip block or section

address Void* Pointer to a buffer for the 48-bit
MAC address to be written

bb_Error_e Error

b_NO_ERROR Success

pChipData bb_ChipData_t*I Initializes chip data

ptSection bb_ChipSegment_t* Chip block or section

mode bb_WindowSizeMode_e Parameter to identify the kind of
error (degraded or excessive) if the
window is being cleared or set

bb_Error_e Error

b_NO_ERROR Success
value

ulong*
Parameter to store the value of the window size

I/O Card Driver API Developer�s Manual 123

Single OC-192 I/O Card

Syntax
extern bb_Error_e

Ixf18100SonetSetWindowSize(bb_ChipData_t *pChipData,

bb_ChipSegment_t *section,

bb_WindowSizeMode_e mode,

ulong value);

Input

Returns

4.3.1.23 ixf18100SonetGetTrace

Get the expected,received ortransmitted J0/J1 Path Trace. The trace string will be returned in the
format set in the corresponding Configuration Format bits.

Syntax
extern bb_Error_e

Ixf18100SonetGetTrace(bb_ChipData_t *ptChipData,

bb_ChipSegment_t *ptSection,

bb_TraceType_e TraceType,

char *pTrace,

ushort *pLength);

pChipData bb_ChipData_t*I Initializes chip data

ptSection bb_ChipSegment_t* Chip block or section

mode bb_WindowSizeMode_e Parameter to identify the kind of
error (degraded or excessive) if the
window is being cleared or set

value ulong Value of the window size

bb_Error_e Error

b_NO_ERROR Success

124 I/O Card Driver API Developer�s Manual

Single OC-192 I/O Card

Input

Returns

4.3.1.24 ixf18100SonetSetTrace

Sets the expected and the Transmit J0/J1 Trace.

Syntax
extern bb_Error_e

Ixf18100SonetSetTrace(bb_ChipData_t *ptChipData,

bb_ChipSegment_t *ptSection,

bb_TraceType_e TraceType,

bb_TraceFormat_e TraceFormat,

pChipData bb_ChipData_t*I Initializes chip data

ChanNum bb_ChipSegment_t* Chip block or segment

TraceType bb_TraceType_e Type of Trace:
bb_EXPECTED_J0
bb_EXPECTED_J1
bb_TX_J0 bb_TX_J1
bb_RX_J0 bb_RX_J1

bb_Error_e Error

b_NO_ERROR Success
pTrace

Char*
Place to return null-terminated Rx Trace String Note: at least 65 bytes long

pLength

Ushort*

I/O Card Driver API Developer�s Manual 125

Single OC-192 I/O Card

Input

 Returns

4.3.1.25 ixf18100SonetGetOhBytes

This funtion will retrieve the specified Overhead Bytes: K1, K2, Expected/Tx C2, HPT RDI in G1.

Syntax
extern bb_Error_e

Ixf18100SonetGetOhBytes(bb_ChipData_t *ptChipData,

bb_ChipSegment_t *ptSection,

bb_SelOhBytes_e SelOhBytes,

void *pOhBytes);

pChipData bb_ChipData_t*I Initializes chip data

ptSection bb_ChipSegment_t* Chip block or segment

TraceType bb_TraceType_e Type of Trace:
bb_EXPECTED_J0
bb_EXPECTED_J1
bb_TX_J0 bb_TX_J1
bb_RX_J0 bb_RX_J1

TraceFormat bb_TraceFormat_e The format of the Trace String
defined as:
bb_64_BYTE_WITH_LF_CR
bb_64_BYTE_FREE_FORM
bb_16_BYTE_WITH_CRC7
bb_1_BYTE
bb_IGNORE_RX_TRACE
bb_DEFAULT_TX_TRACE

pTrace uchar* The null-terminated Trace String.
Note: This Method will format the
pTrace string to comply with the
selected TraceFormat (i.e.: Driver
adds CRC7, or LF/CR, if needed)

bb_Error_e Error

b_NO_ERROR Success

126 I/O Card Driver API Developer�s Manual

Single OC-192 I/O Card

Input

Returns

4.3.1.26 ixf18100SonetSetOhBytes

Sets an Overhead Byte: K1, K2, Expected/Tx C2, HPT RDI in G1.

Syntax
extern bb_Error_e

Ixf18100SonetSetOhBytes(bb_ChipData_t *ptChipData,

bb_ChipSegment_t *ptSection,

bb_SelOhBytes_e SelOhByte,

ushort OhByte);

pChipData bb_ChipData_t*I Initializes chip data

ptSection bb_ChipSegment_t* Chip block or section

SelOhByte bb_SelOhByte_e Specific overhead bytes to get:
bb_RX_MST_BYTES,
bb_RX_HPT_BYTES

bb_Error_e Error

b_NO_ERROR Success
pOhBytes

void*
Place to put Overhead Bytes, of type: bb_RxMstBytes_t*, or
ixf18100_RxHptBytes_t*

I/O Card Driver API Developer�s Manual 127

Single OC-192 I/O Card

Input

Returns

4.4 The IXF18100 Device Specific Driver

4.4.1 Common Data Structure

The driver will pass the common structure to all the functions. The common structure data
members are listed in the following structure.
typedef struct /* Complete Data for a Chip */

{

 bb_RegPointer_type BaseAddress; /* Base Address of chip */

 bb_ChipType_e ChipType; /* Type of Chip */

 void* pChipCfg; /* Pointer to Chip Specific Configuration */

 void* pAlarmCfg; /* Pointer to Chip Specific Alarm Config */

 void* funcPtr; /* Pointer to the chip's api func's */

} bb_ChipData_t;

typedef struct

{

 ixf18100_ChipLevelCfg_t ChipLevelCfg; /* Chip configuration */

 ixf18100_Spi4Cfg_t Spi4Cfg; /* SPI-4 configuration */

#ifndef INCLUDE_18104_LIB

 ixf18100_SonetCfg_t SonetCfg; /* Sonet configuration */

 ixf18100_PosCfg_t PosCfg; /* POS configuration */

 ixf18100_GfpCfg_t GfpCfg; /* GFP configuration */

#endif

#ifndef INCLUDE_18102_LIB

 ixf18100_PcsCfg_t PcsCfg; /* PCS configuration */

 ixf18100_XgmacCfg_t XgmacCfg; /* XGMAC configuration */

#endif

} ixf18100_ChipCfg_t;

This structure ixf18100_ChipCfg_t is in file ixf18100_cnfg_d.h . For a complete list of ixf18100
data structures please refer ixf18100d.h file.

pChipData bb_ChipData_t*I Initializes chip data

ptSection bb_ChipSegment_t* Chip block or section

SelOhByte bb_SelOhByte_e Specific overhead bytes to get:
bb_RX_MST_BYTES,
bb_RX_HPT_BYTES

OhByte ushort Value of the selected overhead byte

bb_Error_e Error

b_NO_ERROR Success

128 I/O Card Driver API Developer�s Manual

Single OC-192 I/O Card

4.4.2 Error Codes

The following tables contain a complete list of error codes returned by the driver.

Error Enumerator
typedef enum

{

 bb_NO_ERROR = 0, /* Returned by Driver for no error */

I/O Card Driver API Developer�s Manual 129

Single OC-192 I/O Card

Table 4-2. Fatal Error Types and Descriptions

Table 4-3. Common Error Types and Descriptions,,

Table 4-4. OHT Error Types and Descriptions ,

Error Description

bb_FATAL_ERROR Fatal error codes should be defined here

bb_GENERAL_ERROR Catch all type of error

 bb_NULL_ADDRESS_ASSIGNED A NULL Base Address has been assigned

Error Description

bb_NO_CHIP_DATA =
bb_COMMON_ERROR_OFFSET pChipData = 0

bb_NULL_BASE_ADDR BaseAddress = 0, for chip

bb_INV_BASE_ADDR BaseAddress not for initialized chip

bb_INV_CHIP_TYPE Chip type not supported

bb_NO_CHIP_CFG pChipCfg = 0, for chip

bb_NO_ALARM_CFG pAlarmCfg = 0, for chip, but Alarm cfg needed

bb_UNDEF_ALARM_BITS An XxxAlarmCfg uses undefined alarm bits

bb_STM_MODE_MISMATCH Mismatch between h/w and s/w cfg of STM-0/1

bb_INV_SEL_OH_BYTE Invalid SelOhByte

 bb_INV_SEL_COUNTERS Invalid SelCounters

bb_INV_CHAN_TEST Invalid Test Channel

bb_INV_PARAMETER Invalid parameter, generic error

bb_INV_CHIP_SEGMENT Chip segment is invalid

bb_NULL_ARG null pointer passed as argument to function

bb_INV_BLOCK_OPERATION operation not supported on this block

bb_FN_NOT_SUPPORTED function not supported

Error Description

bb_JN_TRACE_WRITE_FAIL =
bb_OHT_ERROR_OFFSET Write of Expected/Rx/Tx J0,J1,J2 Trace failed

bb_INV_EXP_JN_FMT The Expected Jn Format is invalid

bb_TX_J1_FOR_RPTR Cannot set Tx J1 trace for repeater

bb_POH_PASSTHRU Illegal call; all POH bytes passed through

bb_OHT_NOT_IN_TEST OHT must be in test mode, to introduce errors

bb_TX_J0_NOT_CPU For Terminal or ADM, Tx J0 source must = CPU

bb_INV_EXP_J1_FMT An Invalid Expected J1 Format found

bb_INV_TX_J1_FMT An Invalid Tx J1 Format found

bb_NO_OHT_NU_CFG pNuBytes = 0

bb_NOT_PROTECTING_MAIN not Main Terminal or ADM, or no Protection h/w

130 I/O Card Driver API Developer�s Manual

Single OC-192 I/O Card

Table 4-5. Mapper Error Types and Descriptions,

4.5 VxWorks and Linux Ixf18100 Device Driver

The IXF API device driver for the IXF18100 device is the same whether it runs under VxWorks or
Linux with a few exceptions. These exceptions are due to #ifdef IXF_LINUX OS conditional
statements and the addition of a Linux OS related support files. The software is implemented in
standard ANSI C, which allows the code to be highly portable and fully reentrant.

The VxWorks kernel version under which this driver will function is 5.5 and the Linux kernel
version is 2.4. The API routines listed below are applicable for both VxWorks and Linux. This
guide should be used as a companion to the IXF API User's Guide which explains the APIs in more
detail. The driver runs as an application in VxWorks and as a kernel module in Linux. The kernel
module for Linux does not implement any communication to user mode. It is only used by other
code that operates in kernel mode.

The driver exports an interrupt handling routine (IxfApiChipIsr) to handle alarms. See the
IxfApiChipIsr section to learn how to handle the low level interrupts from the processor and call
the IxfApiChipIsr to handle the alarms within the device.

 bb_NOT_TERM_ADM This function valid only for Terminal or ADM

bb_INV_BKUP_OHT Invalid Protection Allocation

bb_INV_SEL_OHT_CFG Invalid SelOhtCfg Value Used

bb_TRACE_ACCESS_FAIL Trace read or write has failed

bb_INV_TRACE_FORMAT Invalid trace format selected

bb_INV_TRACE_TYPE Invalid trace type selected

Error Description

bb_INV_PORT_NUM =
bb_MAPPER_ERROR_OFFSET Invalid PortNum

bb_NO_MPR_CFG pMprCfg = 0

bb_INV_ALM_SPEC Invalid AlmSpec

bb_NO_ADM_CFG pAdmCfg = 0

bb_NOT_ADM This chip not configured as an ADM

bb_INV_TIMESLOT ADM timeslots = 0, or 1-28

bb_GET_J2_TYP_ERR

bb_SET_J2_TYP_ERR

bb_SET_J2_LEN_ERR,

bb_PORT_NOT_N2_ENBLD

bb_INV_SIG_LBL

bb_INV_SEL_AUTO_FDBK Invalid Auto Feedback spec

bb_INV_TEST_CNFG

bb_Error_e

Error Description

I/O Card Driver API Developer�s Manual 131

Single OC-192 I/O Card

Most of the API routines accept a handle describing the type of device, where the device is located,
and some configuration structures. Many API routines expect a "section" parameter, this tells the
routine the location of the item the user wants to set or retrieve. An example of what should be
populated in the section (of type bb_ChipSegment_t) is the channel number. Another expected
parameter in many of the API routines will be an enumerated type applicable to the functionality of
the routine. Again, the IXF API User's Guide should be referenced for more information. The
following API descriptions attempt to highlight the possible values for each routine as well as
alternative device specific routines the user can use.

IxfApiInitChip

This routine sends an internal RAM-based initialization table of register values to the device. The
table is identified in the structure bb_Chip_Data_t, a pointer to which is passed to this function as
an input parameter. The valid value for the base address is the proper physical or virtual address of
the device in the system and the chip type should be set to bb_18101_CHIP. Under Linux, the
calling code is expected to pass the handle returned from ioremap() for the correct virtual address.

IxfApiAllocDataStructureMem

This routine dynamically allocates memory within the pChip_Data parameter for members that
need dynamic allocation. The user calls this routine to enable alarm capabilities and chip
initialization. This routine must be called before IxfApiGetCfg, IxfApiSetCfg, and
IxfApiSetAlarmCfg are used. The pChipData pointer must be initialized via IxfApiInit prior to
calling this function.

IxfApiDeAllocMemory

This routine frees all memory allocated during the IxfApiAllocDataStructureMem call.

IxfApiSetAlarmCfg

This routine is used to modify interrupt enable masks for a specific set of interrupts.

IxfApiReset

This routine resets all or some portion of the device. The alternative device specific driver would
be Ixf18100Reset. The valid values for the ResetType enumeration parameter are:

Resets the entire chip:
 bb_RESET_CHIP

Resets portions of the GFP interface:
bb_RESET_GFP_TX_INTF

bb_RESET_GFP_RX_INTF

bb_RESET_GFP_CPU_INTF

bb_RESET_GFP_TX_FCS

bb_RESET_GFP_RX_FCS

bb_RESET_GFP_RX_FSM

bb_RESET_GFP

Resets only the line interface:

132 I/O Card Driver API Developer�s Manual

Single OC-192 I/O Card

bb_RESET_LINE_INTF.

Resets the SPI4 interface:
bb_RESET_SPI_INTF.

Resets the APS interface:
bb_RESET_APS_INTF

IxfApiGetChipInfo

This routine returns the chip related information. This routine retrieves a pointer to the
bb_ChipInfo_t containing the chip id and chip version numbers. The alternative to this routine for
the device specific driver would be Ixf18100GetChipInfo.

typedef struct /* Information set by the hardware */

{

 uchar ChipVersion; /* Chip Version */

 ushort ChipId; /* Chip ID */

} bb_ChipInfo_t;

Alternative for the device specific driver:

typedef struct /* Information set by the hardware */

{

 ushort ChipVersion; /* Chip Version */

 ushort ChipId; /* Chip ID */

} ixf18100_ChipInfo_t;

IxfApiGetTrace

This routine retrieves a SONET J0/J1 trace. These traces are embedded in the SONET overhead
frames and this routine is used to extract the stream of bytes from device. The valid values for the
type of trace the user can retrieve are:

• bb_EXPECTED_J0

• bb_EXPECTED_J1

• bb_RX_J0

• bb_RX_J1

• bb_TX_J0

• bb_TX_J1

IxfApiSetTrace
• This routine sets a SONET J0/J1 trace. The valid values for the type of trace the user can set

are: bb_EXPECTED_J0

• bb_EXPECTED_J1

• bb_RX_J0

• bb_RX_J1

I/O Card Driver API Developer�s Manual 133

Single OC-192 I/O Card

• bb_TX_J0

• bb_TX_J1.

The valid values for the type of trace format are:

• bb_64_BYTE_WITH_LF_CR

• bb_64_BYTE_FREE_FORM

• bb_16_BYTE_WITH_CRC7

• bb_IGNORE_RX_TRACE

• bb_1_BYTE

IxfApiSetCfg

This routine is used to configure the chip. Many types of configurations can be performed with the
combinations of SelCfg. The configuration is passed within the pChipData variable. Valid enum
values for sections within the ifx18100 chip are:

• ixf_eSPI4

• ixf_epos

• ixf_eGFP

• ixf_ePCS

• ixf_eXGMAC

• ixf_eAPS

IxfApiGetCfg

This routine is used to get the configuration of the chip. Many types of configurations can be
performed with the combination of SelCfg. The chip configuration is returned within the
pChipData variable. The same valid enum values for sections used in IxfApiSetCfg apply to this
function as well.

IxfApiGetStatus

This routine returns status information. The status returned is comprised of register or register bit
values that provide various status information from the device.

IxfApiGetCounters

This routine retrieves counter values. This can be in the form of a single counter or a group of
counters. The alternative device specific routine is Ixf18100GetCounters. The enums for valid
sections or blocks in the device where counter(s) may be retrieved are:

• ixf_eSONET

• ixf_eSPI4

• ixf_ePOS

• ixf_eGFP

134 I/O Card Driver API Developer�s Manual

Single OC-192 I/O Card

• ixf_ePCS

• ixf_eAPS

• ixf_eXGMAC

The valid individual counter request values are:

• ixf_eSONET:
bb_OOF_CNT /* Out of Frame Event Counter*/

 bb_B1_BIP_ERR_CNT /* B1 Bip errors */

 bb_B1_BLOCK_ERR_CNT /* B1 Block errors */

 bb_B2_BIP_ERR_CNT /* B2 Bip errors */

 bb_B2_BLOCK_ERR_CNT /* B2 Block errors */

 bb_MST_REI_BIP_ERR_CNT /* REI Bit errors */

 bb_MST_REI_BLOCK_ERR_CNT /* REI Block errors */

 bb_IN_AU_NCNT /* Count of Incoming Negative AU Ptr Justifications */

 bb_IN_AU_PCNT /* Count of Incoming Positive AU Ptr Justifications */

 bb_SONET_COUNTERS /* All SONET counters. */

• ixf_eSPI4:
bb_SPI4_RX_BUS_ERR_CNT

 bb_SPI4_RX_FULL_ERR_CNT

 bb_SPI4_RX_DIP2_ERR_CNT

 bb_SPI4_RX_NO_EOP_ERR_CNT

 bb_SPI4_RX_COUNTERS

 bb_SPI4_TX_BUS_ERR_CNT

 bb_SPI4_TX_PAR_ERR_CNT

 bb_SPI4_TX_FULL_ERR_CNT

 bb_SPI4_TX_NO_EOP_ERR_CNT

 bb_SPI4_TX_COUNTERS

 bb_SPI4_COUNTERS/* All SPI4 counters. */

• ixf_epos:
bb_POS_RX_GOOD_FRM_CNT

 bb_POS_RX_GOOD_BYTE_CNT

 bb_POS_RX_ABORTED_FRM_CNT

 bb_POS_RX_ABORTED_BYTE_CNT

 bb_POS_RX_FCS_ERR_FRM_CNT

 bb_POS_RX_FCS_ERR_BYTE_CNT

 bb_POS_RX_MIN_PLE_CNT

 bb_POS_RX_MAX_PLE_CNT

 bb_POS_RX_COUNTERS

 bb_POS_TX_FRM_CNT

 bb_POS_TX_BYTE_CNT

 bb_POS_TX_COUNTERS

 bb_POS_COUNTERS /* All Counters for POS */

• ixf_eGFP:
bb_GFP_RX_FRM_SBC_HEC_FAIL_CNT

 bb_GFP_RX_FRM_MBC_HEC_CNT

 bb_GFP_RX_FRM_SBT_HEC_FAIL_CNT

 bb_GFP_RX_FRM_MBT_HEC_CNT

 bb_GFP_RX_FRM_EHEC_CNT

 bb_GFP_RX_CTRL_FRM_CRC_ERR_CNT

I/O Card Driver API Developer�s Manual 135

Single OC-192 I/O Card

 bb_GFP_RX_FRM_FCS_ERR_CNT

 bb_GFP_RX_CTRL_FRM_CNT

 bb_GFP_RX_LARGE_FRM_CNT

 bb_GFP_RX_GOOD_FRM_CNT

 bb_GFP_RX_CTRL_INT_CNT

 bb_GFP_RX_THEC_ERR_INT_CNT

 bb_GFP_RX_EHEC_ERR_INT_CNT

 bb_GFP_RX_FCS_ERR_INT_CNT

 bb_GFP_RX_COUNTERS

 bb_GFP_TX_GOOD_FRM_CNT

 bb_GFP_TX_ERR_FRM_CNT

 bb_GFP_TX_COUNTERS

 bb_GFP_COUNTERS/* All GFP counters. */

• ixf_ePCS:
bb_PCS_BER_CNT

 bb_PCS_ERR_BLK_CNT

 bb_PCS_JITTER_ERR_CNT

 bb_PCS_COUNTERS/* All PCS counters. */

• ixf_eAPS:
bb_OOF_CNT /* Out of Frame Event Counter*/

 bb_B1_BIP_ERR_CNT /* B1 Bip errors */

 bb_B1_BLOCK_ERR_CNT /* B1 Block errors */

 bb_B2_BIP_ERR_CNT /* B2 Bip errors */

 bb_B2_BLOCK_ERR_CNT /* B2 Block errors */

 bb_MST_REI_BIP_ERR_CNT /* REI Bit errors */

 bb_MST_REI_BLOCK_ERR_CNT /* REI Block errors */

 bb_SONET_COUNTERS /* All SONET counters. */

• ixf_eXGMAC:
bb_XGMAC_TX_OK_OCTS_CNT

 bb_XGMAC_TX_OK_MLTCAST_FRM_CNT

 bb_XGMAC_TX_OK_BRDCAST_FRM_CNT

 bb_XGMAC_TX_OK_FRM_CNT

 bb_XGMAC_TX_64_OCT_FRM_CNT

 bb_XGMAC_TX_65_TO_127_OCT_FRM_CNT

 bb_XGMAC_TX_128_TO_255_FRM_CNT

 bb_XGMAC_TX_256_TO_511_FRM_CNT

 bb_XGMAC_TX_OK_512_TO_1023_CNT

 bb_XGMAC_TX_OK_1024_TO_15XX_CNT

 bb_XGMAC_TX_OK_15XX_TO_MAX_CNT

 bb_XGMAC_TX_VLAN_FRM_CNT

 bb_XGMAC_TX_PAUSE_CTRL_FRM_CNT

 bb_XGMAC_TX_UNICAST_FRM_CNT

 bb_XGMAC_TX_MAC_CTRL_FRM_CNT

 bb_XGMAC_RX_OK_OCTS_CNT

 bb_XGMAC_RX_OK_MLTCAST_FRM_CNT

 bb_XGMAC_RX_OK_BRDCAST_FRM_CNT

 bb_XGMAC_RX_OK_FRM_CNT

 bb_XGMAC_RX_64_OCT_FRM_CNT

 bb_XGMAC_RX_65_TO_127_OCT_FRM_CNT

 bb_XGMAC_RX_128_TO_255_FRM_CNT

136 I/O Card Driver API Developer�s Manual

Single OC-192 I/O Card

 bb_XGMAC_RX_256_TO_511_FRM_CNT

 bb_XGMAC_RX_OK_512_TO_1023_CNT

 bb_XGMAC_RX_OK_1024_TO_15XX_CNT

 bb_XGMAC_RX_OK_15XX_TO_MAX_CNT

 bb_XGMAC_RX_VLAN_FRM_CNT

 bb_XGMAC_RX_PAUSE_CTRL_FRM_CNT

 bb_XGMAC_RX_UNICAST_FRM_CNT

 bb_XGMAC_RX_MAC_CTRL_FRM_CNT

 bb_XGMAC_RX_ETHER_STATS_USIZE_PKTS_CNT

 bb_XGMAC_RX_ETHER_STATS_OSIZE_PKTS_CNT

 bb_XGMAC_RX_ETHER_STATS_OCTS_CNT

 bb_XGMAC_RX_ETHER_STATS_PKTS_CNT

 bb_XGMAC_RX_ETHER_STATS_FRGMNTS_CNT

 bb_XGMAC_RX_ETHER_STATS_JABBERS_CNT

 bb_XGMAC_RX_FRM_CHK_SEQ_ERR_CNT

 bb_XGMAC_TX_COUNTERS

 bb_XGMAC_RX_COUNTERS

 bb_XGMAC_COUNTERS/* All XGMAC counters. */

IxfApiSetOhBytes

This routine sets Overhead bytes. The alternative routine is the Ixf18100SetOhBytes API. The
valid overhead bytes are:

• ixf_eSONET:
bb_K1

 bb_TX_K1

 bb_K2

 bb_TX_K2

 bb_K1_K2

 bb_K3

 bb_TX_K3

 bb_S1

 bb_TX_S1

 bb_EXPECTED_C2

 bb_RECEIVED_C2

 bb_TX_C2

 bb_G1

 bb_TX_HPT_RDI_IN_G1

 bb_K3_Z4

 bb_M1

 bb_M0

 bb_MNU

 bb_RNU1

 bb_RNU2

 bb_RNU9

 bb_J1

 bb_B3

 bb_F2

 bb_H4

 bb_Z3_F3

 bb_Z4_K3

I/O Card Driver API Developer�s Manual 137

Single OC-192 I/O Card

 bb_Z5_N1

 bb_LINE_OH_BYTES

 bb_PATH_OH_BYTES

• ixf_eAPS:
bb_K1

 bb_K2

 bb_LINE_OH_BYTES

 bb_PATH_OH_BYTES

IxfApiGetOhBytes

This routine retrieves overhead bytes. The alternative routine is the Ixf18100GetOhBytes API.
The valid overhead bytes are:

• ixf_eSONET:

Same as in IxfSetOhBytes.

• ixf_eAPS:
bb_K1

 bb_K2

 bb_S1

 bb_LINE_OH_BYTES

 bb_PATH_OH_BYTES

IxfApiSetOpMode

This routine is used to set the operating mode of the chip. Though the driver and IXF181001
support additional modes, the IXD28192 board is limited to the following valid enum values:

ETHERNET_MODE

 WAN_PHY_MODE

 POS_MODE

IxfApiGetOpMode

This routine is used to get the operating mode of the chip. It is the compliment of
IxfApiSetOpMode.

IxfApiCfgTest

This routine is used to configure the chip in the specified test mode. The valid enum values for
testType in the ixf1810x chip are:

 bb_SYSTEM_LOCAL_LOOPBACK

 bb_SYSTEM_REMOTE_LOOPBACK

 bb_SPI4_TX_LOCK_DIS

 bb_SPI4_TX_FIFO_STATUS

 bb_LINE_LOCAL_LOOPBACK

 bb_LINE_REMOTE_LOOPBACK

138 I/O Card Driver API Developer�s Manual

Single OC-192 I/O Card

IxfApiGenericRead

This routine will read data from the device from the offset specified. The routine is passed a
pointer to a structure of type bbChipData to identify the chip base address and type. Additionally,
wordSize identifies the number of bytes in a word, address is the offset from the base address, and
length indicates the number of words to read. A void pointer to buffer into which the read data is
placed is also passed to the routine.

IxfApiGenericWrite

This routine will write data to the device from the offset specified. The parameters are the same as
the IxfApiGenericRead with the exception that buffer contains data to be written to the indicated
address.

IxfApiInitAlarmCallback

This routine registers a callback with the driver. The callback will be called whenever any alarm
occurs in the system. The argument for this routine is a function pointer pointing to the callback
function.

IxfApiChipIsr

 This routine handles alarms. Its only parameter is the handle.

IxfApiGetWindow

This routine is called to retrieve window related registers.

IxfApiSetWindow

This routine is called to set window related registers.

IxfApiGetMacAddress

This routine retrieves the 48-bit MAC address.

IxfApiSetMacAddress

This routine sets the 48-bit MAC address.

4.6 Utilities/Tools

4.6.1 Intel Optical Component Management Software (OCMS)

The OCMS is a Graphical User Interface, which allows the user to easily configure the device via a
TCP/IP Sockets communication link. OCMS uses Ethernet as its physical layer protocol medium.
In order to configure the device, the user must have the knowledge of the device in order to select
the proper configuration options or the user must have a working configuration file.

I/O Card Driver API Developer�s Manual 139

Single OC-192 I/O Card

More details will be added in the future to this section on the OCMS. As this will not delay driver
development, the intent is to release this document in it's current form.

• Proprietary Protocol System

The protocol is a proprietary protocol that allows the user interface to communicate to the
embedded target. This protocol encodes opcodes on the host side and decodes these same
opcodes on the target side. The protocol depends on the Communication Layer to provide the
means of transporting the data. The protocol depends on the IXF API layer and the OCMS to
carry out the request as specified by the received opcode.

• Communication Layer

This layer provides the standard BSD Sockets support. For VxWorks implementation, the
server will be listening on port 700. In the Linux implementation, the server will be listening
on port 5030.

4.7 The IXDP28192 Driver Unit Tests

These tests will be conducted only on the IXDP28192 daughter card independent of rest of the
system. These tests will be considered complete if all tests yield a "PASSED" result. For further
test coverage of the media card, the user should consult the Deer Island Diagnostic LLD.

• IxfApiInit Test

— §Configure IXFAPI driver for the IXF18100 device.

— §Tests return status of the routine.

• IxfApiInitChip Test

— §Initializes the device with a certain configuration.

— §Tests return status of the routine.

• IxfApiAllocDataStructureMem Test

— §Configure IXFAPI driver to allocate any necessary memory needed by the device driver.

— §Tests return status of the routine.

• IxfApiDeAllocMemory Test

— §Configure IXFAPI driver to deallocate any memory allocated during the
IxfApiAllocDataStructureMem.

— §Tests return status of the routine.

• IxfApiGetCounters Test

— §Retrieves a certain counter value from the device.

— §Tests return status of the routine.

• IxfApiReset Test

— §This test writes a certain configuration to the device using IxfApiInitChip then uses this
Reset routine to reset the entire device. Once this is done, a comparison of the known
default values is done.

— §Tests return status of the routine.

• 5.1.7IxfApiGetChipInfo Test

140 I/O Card Driver API Developer�s Manual

Single OC-192 I/O Card

— §Retrieves the chip id and chip version from the device and compares the value to what is
expected.

— §Tests return status of the routine.

• IxfApiGetBuildVersion Test

— §Retrieves the build version from the driver and compares the value to what is expected.

— §Tests return status of the routine.

• IxfApiGenericRead Test

— §Retrieves the current value in the same location as what the GenericWrite wrote to and
compare the value

— §Tests return status of the routine.

• IxfApiGenericWrite Test

— §Writes a certain value to a certain location then the GenericRead will compare.

— § Tests return status of the routine.

• IxfApiGetTrace Test

§Gets a particular SONET J0/J1 Trace String at the same location in the SetTrace test,
then compares the result to what was expected.

§Tests return status of the routine.

• IxfApiSetTrace Test

— §Sets a particular SONET J0/J1 Trace String at a certain location. This test is used with
the GetTrace routine.

— §Tests return status of the routine.

• IxfApiGetWindowSize Test

— §Retrieves the current value in the window size register and compares the value to what
was written in SetWindowSize.

— §Tests return status of the routine.

• IxfApiSetWindowSize Test

— §Writes a window size value and use the IxfApiGetWindowSize to compare what was
written.

— §Tests return status of the routine.

• IxfApiGetOhBytes Test

— §Gets a particular SONET overhead byte at the same location in the SetOhByte test, then
compares the result to what was expected.

— §Tests return status of the routine.

• IxfApiSetOhBytes Test

— §Sets a particular SONET overhead byte at a certain location. This test is used with the
GetOhByte routine.

— § Tests return status of the routine.

I/O Card Driver API Developer�s Manual 141

Single OC-48, Quad OC-12 I/O Card 5

The documents “Intel® IXF API User Guide” and “Intel® IXF6048 API User Guide” describe the
relevant device driver API and is published on Field Division Business Link (FDBL). Please
contact your Intel representative for access.

142 I/O Card Driver API Developer�s Manual

Single OC-48, Quad OC-12 I/O Card

	Intel® IXDP2400/IXDP2800 Advanced Development Platform
	Document Overview 1
	1.1 Audience
	1.2 In This Manual
	1.3 Other Sources of Information

	Quad Gigabit Ethernet I/O Card 2
	2.1 System Overview
	2.2 VxWorks Environment
	2.2.1 VxWorks MAC Device API
	2.2.2 Device Configuration
	2.2.3 OS Interface
	2.2.4 Register access layer

	2.3 Data Structures
	2.3.1 Basic Data Type
	2.3.2 Structure Passed to ioctl Command
	2.3.3 IOCTL_CMD Enumerator
	2.3.3.1 MAC Control ioctl Commands
	2.3.3.2 MAC Receive ioctl Commands
	2.3.3.3 MAC Transmit ioctl Commands
	2.3.3.4 Global Status and Configuration ioctl Commands
	2.3.3.5 RX FIFO Configuration ioctl Commands
	2.3.3.6 TX FIFO Configuration ioctl Commands
	2.3.3.7 MDIO Interface Related ioctl Commands
	2.3.3.8 SPI-3 Configuration ioctl Commands
	2.3.3.9 SERDES Interface ioctl Commands
	2.3.3.10 GBIC Interface ioctl Commands

	2.3.4 Error Types
	2.3.4.1 Error Types from GbEMAC_Ioctl()
	2.3.4.2 Error Types from GbEMAC_DeviceStart()

	2.4 API Usage Model
	2.5 VxWorks Driver APIs
	2.5.1 GbEMAC_DeviceStart()
	2.5.2 GbEMAC_DeviceStop()
	2.5.3 GbEMAC_Ioctl
	2.5.4 GbEMAC_Callback()

	2.6 Linux Environment
	2.6.1 Linux Character Device Driver APIs
	2.6.2 Device Configuration
	2.6.3 Operating System Interface
	2.6.4 Register access layer

	2.7 Data Structures
	2.7.1 Basic Data Type
	2.7.1.1 PORT Status

	2.7.2 Structure Passed to ioctl Command
	2.7.3 GbE_MAC_ERROR Enumerator
	2.7.4 IOCTL_CMD Enumerator
	2.7.4.1 MAC Control Ioctls
	2.7.4.2 MAC Receive Control Ioctls
	2.7.4.3 MAX Transmit Control Ioctls
	2.7.4.4 Global Status and Configuration ioctls
	2.7.4.5 RX FIFO Configuration ioctl Commands
	2.7.4.6 TX FIFO Configuration Ioctls
	2.7.4.7 MDIO Interface Related ioctl Commands
	2.7.4.8 SPI-3 Configuration ioctl Commands
	2.7.4.9 SERDES Interface ioctls
	2.7.4.10 GBIC Module Interface ioctls

	2.8 Support for Multiple Quad Gigabit Ethernet I/O Cards
	2.9 System Dependencies & File Structures
	2.9.1 Device Register Routine
	2.9.2 Device Unregister Routine
	2.9.3 Interrupt Handling Routine

	2.10 Exported Kernel APIs
	2.10.1 Init Module
	2.10.2 GbEMAC_open
	2.10.3 GbEMAC_close
	2.10.4 GbEMAC_ioctl
	2.10.5 GbEMAC_i2s_fasync
	2.10.6 Cleanup Module

	2.11 Interrupt Handling
	2.12 Functions to Access the Kernel Mode Driver
	2.12.1 Open()
	2.12.2 Close()
	2.12.3 ioctl()
	2.12.4 Fcntl()

	10-Port Gigabit Ethernet Media Card 3
	3.1 Linux Environment
	3.1.1 Design Decomposition
	3.1.2 IXF API Module
	3.1.2.1 Feature APIs
	3.1.2.2 Device APIs

	3.1.3 The IXF1110 Device Specific Driver
	3.1.3.1 Common Data Structure
	3.1.3.2 Error Codes
	3.1.3.3 Ixf1110 Device Driver

	3.1.4 Kernel Mode ISR Driver
	3.1.5 IXD2810 Driver Unit Tests

	3.2 VxWorks Environment
	3.2.1 Design Decomposition
	3.2.1.1 Hardware Layer

	3.2.2 External APIs
	3.2.3 Data Structures
	3.2.3.1 ixd2810_Create()
	3.2.3.2 ixd2810_Start()
	3.2.3.3 ixd2810_Stop()
	3.2.3.4 ixd2810_loctl()

	3.2.4 System Components
	3.2.4.1 Auto-Negotiation
	3.2.4.2 doAutoneg
	3.2.4.3 Interrupt Service Routine

	Single OC-192 I/O Card 4
	4.1 System Overview
	4.1.1 Design Decomposition

	4.2 IXF API Module
	4.3 Feature APIs
	4.3.1 Device APIs
	4.3.1.1 ixf18100Reset
	4.3.1.2 ixf18100InitChip
	4.3.1.3 ixf18100GetChipInfo
	4.3.1.4 ixf18100InitAlarmCallback
	4.3.1.5 ixf18100SetAlarmCfg
	4.3.1.6 ixf18100ChipIsr
	4.3.1.7 ixf18100SetCfg
	4.3.1.8 ixf18100GetCfg
	4.3.1.9 ixf18100GetStatus
	4.3.1.10 ixf18100GetCounters
	4.3.1.11 ixf18100SetOpMode
	4.3.1.12 ixf18100GetOpMode
	4.3.1.13 ixf18100CfgTest
	4.3.1.14 ixf18100Read
	4.3.1.15 ixf18100Write
	4.3.1.16 ixf18100GetBuildVersion
	4.3.1.17 ixf18100InitAllocMemory
	4.3.1.18 ixf18100DeAllocMemory
	4.3.1.19 ixf18100XgmacGetAddress
	4.3.1.20 ixf18100XgmacSetAddress
	4.3.1.21 ixf18100SonetGetWindowSize
	4.3.1.22 ixf18100SonetSetWindowSize
	4.3.1.23 ixf18100SonetGetTrace
	4.3.1.24 ixf18100SonetSetTrace
	4.3.1.25 ixf18100SonetGetOhBytes
	4.3.1.26 ixf18100SonetSetOhBytes

	4.4 The IXF18100 Device Specific Driver
	4.4.1 Common Data Structure
	4.4.2 Error Codes

	4.5 VxWorks and Linux Ixf18100 Device Driver
	4.6 Utilities/Tools
	4.6.1 Intel Optical Component Management Software (OCMS)

	4.7 The IXDP28192 Driver Unit Tests

	Single OC-48, Quad OC-12 I/O Card 5

