RedBoot™ User’s Guide

Document Version R1.24, August 2001
© 2001 Red Hat, Inc.

This material may be distributed only subject to the terms and conditions set forth in the Open Publication License, v1.0
or later (the latest version is presently available at http://www.opencontent.org/openpub/).

Distribution of substantively modified versions of this document is prohibited without the explicit permission of the copy-
right holder.

Distribution of the work or derivative of the work in any standard (paper) book form is prohibited unless prior permission
is obtained from the copyright holder.

http://www.opencontent.org/openpub/

Copyright

Red Hat, the Red Hat Shadow Man logo®, eCos™, RedBoot™, GNUPro®, and Insight™ aretrade-
marks of Red Hat, Inc.

Sun Microsystems® and Solaris® are registered trademarks of Sun Microsystems, Inc.

SPARCP? is aregistered trademark of SPARC International, Inc., and is used under license by Sun
Microsystems, Inc.

Intel® is a registered trademark of Intel Corporation.

Motorola™ is a trademark of Motorola, Inc.

ARM® is aregistered trademark of Advanced RISC Machines, Ltd.
MIPS™ is atrademark of MIPS Technologies, Inc.

Toshiba® is aregistered trademark of the Toshiba Corporation.

NEC® is aregistered trademark if the NEC Corporation.

Cirrus Logic® is a registered trademark of Cirrus Logic, Inc.

Compaq® is aregistered trademark of the Compag Computer Corporation.
Matsushita™ is a trademark of the Matsushita Electric Corporation.
Samsung® and CalmRISC™ are trademarks or registered trademarks of Samsung, Inc.
Linux® is aregistered trademark of Linus Torvalds.

UNIX® is aregistered trademark of The Open Group.

Microsoft®, Windows®, and Windows NT® are registered trademarks of Microsoft Corporation,
Inc.

All other brand and product names, trademarks, and copyrights are the property of their respective
owners.

Warranty

eCos and RedBoot are open source software, covered by the Red Hat eCos Public License, and
you are welcome to change it and/or distribute copies of it under certain conditions. The supplied
version of eCos and/or RedBoot is supported for customers of Red Hat. See http://sources.red-
hat.com/ecos/license-overview.html

For non-customers, eCos and RedBoot software has NO WARRANTY.

Becausethissoftwareislicensed free of charge, there are no warrantiesfor it, to the extent permitted
by applicable law. Except when otherwise stated in writing, the copyright holders and/or other
parties provide the software “as is’ without warranty of any kind, either expressed or implied,
including, but not limited to, the implied warranties of merchantability and fitness for a particular
purpose. The entire risk as to the quality and performance of the software is with you. Should the
software prove defective, you assume the cost of all necessary servicing, repair or correction.

In no event, unlessrequired by applicable law or agreed to in writing, will any copyright holder, or
any other party who may modify and/or redistribute the program as permitted above, be liable to
you for damages, including any general, special, incidental or consequential damages arising out
of the use or inability to use the program (including but not limited to loss of data or data being
rendered inaccurate or losses sustained by you or third parties or afailure of the program to operate
with any other programs), even if such holder or other party has been advised of the possibility of
such damages.

http://sources.redhat.com/ecos/license-overview.html

How to Contact Red Hat

Red Hat Corporate Headquarters

2600 Meridian Parkway

Durham NC 27713 USA

Telephone (toll free): +1 888 REDHAT 1 (+1 888 733 4281)
Telephone (main line): +1 919 547 0012

Telephone (FAX line): +1 919 547 0024

Website: http://www.redhat.com/

http://www.redhat.com/

Contents

RedBoot™ User's Guide

L0} 0)7/ 1T | 0 2
LAY 2= 14 = 10 3
HOW t0 CONtACt REA HAL oot et e ettt ees 4
Chapter 1 Getting Started with RedBoot... 8
1.1 More information about RedBootonthe web..............coooii i 8

1.2 Installing ReABOOL ettt 9

1.3 USer INteI aCe . . oo 9

1.4 Configuring the RedBoot ENVIrONMENtooiiiiii e eeaeens 9

1.4.1 Target Network Configuration..............oooiiiiii i 9

1.4.2 Host Network Configuration.......... ... 10

1421 Enable TFTP on Red Hat LinUX 6.2ccoivviieeiiiiiinne, 11

1.4.2.2 Enable TFTPon Red Hat LinUX 7ooiiiiiii e 11

1.4.2.3 Enable BOOTP/DHCP server on Red Hat Linux.................... 11

1.4.2.4 RedB0Ot NEtWOrK gatewaycviiiiiiiiii e, 12

143 VerifiCatioN ..o e 12

Chapter 2 RedBoot Commands and Examples...................................... 13
2.1 1o T 1T o) o 1 13

2.2 RedBoot Editing COMMANASttt 14

2.3 CommON COMMANGAS ...ttt ettt et e e ettt e e e e e eeeeeeans 15

2.3 1 CONNECHIVILY. . ettt et et ettt e et e 15

2.3.2 GENEIAL . e e 16

2.3.3 DOWNIOAA PrOCESS . .. ttettitte ettt ittt ettt e e et 17

2.4 Flash Image System (FIS)ooiiiiiii e e e aas 19

25 Persistent State Flash-based Configuration and Control..................coooiiiiiiiiin 22

2.6 Executing Programs from RedBOOt.uuu 25
Chapter 3 Rebuilding RedBOOt ... 27
3.1] Yo 11T 1) o 27

3.1.1 Configuration export fileso 28

3.1.11 Making RedBoot for RAM Startupoovviiiiieiiiiiiaan. .. 28

3.1.2 Platform specific INStrUCHIONScooiiiii e 29

Chapter 4 Updating RedBOOt ... 30
4.1 o] (oo 18 Tox 1[0 I 30

4.1.1 Start RedBoot, Running from flash. ... 30

4.1.2 Load and start a different version of RedBoot, running from RAM 30

4.1.3 Update the primary RedBoot flashimageccoovviiiiiiiiii i, 31

4.1.4 Reboot; run RedBoot from flash............c.cooiiiiii 31

Chapter 5 Installation and Testingcccoooiiiiiii 33

51

5.2

5.3

54

55

(037 7e3 (o] o TSN [0 13012 1 O 33
LS 00 R O 1Y T 33
5.1.2 Initial Installation Method........ ... 33
L0 I O T o oo o = 34
5.1.4 Using RedBoot with ARM Bootloaderoviiiiiiiiiiiiiiiiiiiiie e 34
5.1.5 Flash Managementii it 35

5.15.1 Updating the primary RedBootimagecccoviiiiinnnnn 35

5.1.5.2 Updating the secondary RedBootimageccvvvvvnnn 35
5.1.6 Special RedBoot CommMandsccoiiiiiiiiiiiiii i 35
5.1.7 1Q80310 Hardware TestS.iiiiiiiiie it ettt 36
5.1.8 Rebuilding REABOOL ..o 36
Lo 00 R T |1 =T U o] £ 37
L0t 0t O T 1Y =T 0 4T Y/ =T o S 38
5.1.11 RESOUICE USAQE ...ttt et ettt ettt ettt et 39
INtEl SALL00 (BIULUS) ..ttt ettt e ettt e e et et e e e e e ettt nnnns 40
LI R O 1V T 40
5.2.2 Initial Installation Method 40
5.2.3 Special RedBoot Commandscoiiiiiiiiiiiiii e 40
Lo S |V = 4T 0/ = o 40
B5.2.5 RESOUICE USAQE ...ttt ettt ettt 41
5.2.6 Rebuilding REdBOOL ..o 41
INtel StrONQAIM EBSA 285 ...ttt ettt 42
LR 0 A 1T = 42
5.3.2 Initial Installation Method 42
5.3.3 Flash Managementii i 42

5.3.3.1 Updating the primary RedBootimagecvvvviinnnnns 42

5.3.3.2 Updating the secondary RedBootimageccccevvvvinn 42
5.3.4 Communication ChannelS e 42
5.3.5 Special RedBoot Commandsccoiiiiiiiiiiiiii i 42
B5.3.6 MEMOIY MaAPS .ottt ettt 43
B5.3.7 RESOUICE USAQE ittt ittt ettt et 43
5.3.8 Building eCos Test Cases to run with old RedBOoOtScccvvviiiininnnnn.. 43
5.3.9 Rebuilding REABOOL ... 44
Intel SA1100 Multimedia Boardeuuuuiiiii e 45
LS R O 1Y T 45
5.4.2 Initial Installation Method 45
5.4.3 Special RedBoot Commandsooiiiiiiiiiiii 45
544 MEMOIY Ma DS ittt e e e e 45
545 RESOUICE USBQE ittt ittt et et e 46
5.4.6 Rebuilding REdBOOLcoiiiiiii 46
INtel SALL10 (ASSADEL) ... e a7
ST T80 R O 1V T 47
5.5.2 Initial Installation Method 47
5.5.3 Flash management e a7

5.5.3.1 Updating the primary RedBootimagecvvvviinnnnn 47

5.5.3.2 Updating the secondary RedBootimageccvvvvnnn 47

Vi

554
555
55.6
55.7

Special RedB0o0ot COMMANASuuuti ettt enns a7

=70 00 V1Y F= T 01 P 47
RESOUICE USAgE ... e 48
Rebuilding REABOOLcoiiiiii e e e 48

Vi

1 Getting Started with RedBoot

RedBoot™ isan acronym for "Red Hat Embedded Debug and Bootstrap”, and is the standard em-
bedded system debug/bootstrap environment from Red Hat, replacing the previous generation of
debug firmware: CygMon and GDB stubs. It provides a complete bootstrap environment for a
range of embedded operating systems, such as embedded Linux and eCos™, and includesfacilities
such as network downloading and debugging. It also provides a simple flash file system for boot
images.

RedBoot provides awide set of tools for downloading and executing programs on embedded target
systems, as well astools for manipulating the target system’s environment. It can be used for both
product devel opment (debug support) and for end product deployment (flash and network booting).

Here are some highlights of RedBoot’s capabilities:

* Boot scripting support

» Simple command line interface for RedBoot configuration and management, accessible via
serial (terminal) or Ethernet (telnet)

» Integrated GDB stubs for connection to a host-based debugger via serial or ethernet. (Ethernet
connectivity is limited to local network only)

» Attribute Configuration - user control of aspects such as system time and date (if applicable),
default Flash image to boot from, default failsafe image, static | P address, etc.

» Configurable and extensible, specifically adapted to the target environment

* Network bootstrap support including setup and download, viaBOOTP, DHCP and TFTP
» X/YModem support for image download via serial

* Power On Self Test

Although RedBoot isderived from Red Hat eCos, it may be used as ageneralized system debug and
bootstrap control software for any embedded system and any operating system. For example, with
appropriate additions, RedBoot could replace the commonly used BIOS of PC (and certain other)
architectures. Red Hat is currently installing RedBoot on all embedded platforms as a standard
practice, and RedBoot is now generally included as part of all Red Hat Embedded Linux and eCos
ports. Users who specifically wish to use RedBoot with the eCos operating system should refer
to the Getting Started with eCos document, which provides information about the portability and
extendability of RedBoot in an eCos environment.

1.1 More information about RedBoot on the web

Information about the RedBoot product, including information about details of porting, customiza-
tion, training and technical support services from Red Hat, is available from the RedBoot Product
web site.

The RedBoot Net Distribution web site contains downloadable sources and documentation for all
publically released targets, including the latest features and updates.

http://www.redhat.com/embedded/technologies/redboot/
http://sources.redhat.com/redboot/

1.2 Installing RedBoot

Toinstall the RedBoot package, follow the procedures detailed in the accompanying README.

Although there are other possible configurations, RedBoot is usually run from the target platform’s
flash boot sector or boot ROM, and is designed to run when your system is initially powered on.
The method used to install the RedBoot image into non-volatile storage varies from platform to
platform. In general, it requires that the image be programmed into flash in situ or programmed
into theflash or ROM using adevice programmer. 1n some casesthiswill be done at manufacturing
time; the platform being delivered with RedBoot already in place. In other cases, you will have
to program RedBoot into the appropriate device(s) yourself. Installing to flash in situ may require
special cabling or interface devices and software provided by the board manufacturer. The details
of this installation process for a given platform will be found in Installation and Testing. Once
installed, user-specific configuration options may be applied, using thef conf i g command, pro-
viding that persistent data storage in flash is present in the relevant RedBoot version. See Section
1.4 for details.

1.3 User Interface

RedBoot provides acommand line user interface (CLI). At the minimum, thisinterfaceis normally
available on a seria port on the platform. If more than one serial interface is available, RedBoot
is normally configured to try to use any one of the ports for the CLI. Once command input has
been received on one port, that port is used exclusively until reset. If the platform has networking
capabilities, the RedBoot CLI is also accessible using thet el net access protocol. By default,
RedBoot runst el net on port TCP/9000, but thisis configurable and/or settable by the user.

RedBoot also contains a set of GDB "stubs’, consisting of code which supports the GDB remote
protocol. GDB stub modeisautomatically invoked whenthe’$' character appears asthefirst char-
acter of acommand line. The platform will remain in GDB stub mode until explicitly disconnected
(viathe GDB protocol). The GDB stub mode is available regardless of the connection method,;
either serial or network. Note that if a GDB connection is made via the network, then specia care
must be taken to preserve that connection when running user code. eCos contains special network
sharing code to allow for this situation, and can be used as amodel if this methodology isrequired
in other OS environments.

1.4 Configuring the RedBoot Environment

Once installed, RedBoot will operate fairly generically. However, there are some features that
can be configured for a particular installation. These depend primarily on whether flash and/or
networking support are available. The remainder of this discussion assumes that support for both
of these optionsis included in RedBoot.

1.4.1 Target Network Configuration

Each node in a networked system needs to have a unique address. Since the network support in
RedBoot is based on TCP/IP, this addressis an IP (Internet Protocol) address. There are two ways

for asystemto “know” its|P address. First, it can be stored locally on the platform. Thisisknown
as having a static IP address. Second, the system can use the network itself to discover its IP
address. Thisis known as adynamic IP address. RedBoot supports this dynamic IP address mode
by use of the BOOTP (a subset of DHCP) protocol. In this case, RedBoot will ask the network
(actually some generic server on the network) for the |P address to use.

% NOTE

Currently, RedBoot only supports BOOTP. In future releases, DHCP may also be supported,
but such support will be limited to additional data items, not |ease-based address allocation.

The choice of IP address type is made viathe f conf i g command. Once a selection is made, it
will be stored in flash memory. RedBoot only queries the flash configuration information at reset,
so any changes will require restarting the platform.

Hereis an example of the RedBoot f conf i g command, showing network addressing:

RedBoot > fconfig -1

Run script at boot: false

Use BOOTP for network configuration: false
Local |P address: 192.168.1.29

Default server |P address: 192.168.1.101
GDB connection port: 9000

Net wor k debug at boot tine: false

In this case, the board has been configured with a static 1P address listed as the Local |P address.
The default server | P address specifies which network node to communicate with for TFTP service.
This address can be overridden directly in the TFTP commands.

If the selection for Use BOOTP for network configurationhadbeentrue,theseIP
addresses would be determined at boot time, via the BOOTP protocol. The final number which
needsto be configured, regardless of |P address selection mode, isthe GDB connecti on port.
RedBoot allowsfor incoming commands on either the avail able serial portsor viathe network. This
port number is the TCP port that RedBoot will use to accept incoming connections.

These connections can be used for GDB sessions, but they can also be used for generic RedBoot
commands. In particular, it is possible to communicate with RedBoot via the telnet protocol. For
example, on Linux®:

% tel net redboot _board 9000
Connect ed to redboot _board
Escape character is “"]’.
RedBoot >

1.4.2 Host Network Configuration

RedBoot may require two different classes of service from a network host:

e dynamic IP address allocation, using BOOTP
* TFTP service for file downloading

Depending on the host system, these services may or may not be available or enabled by default.
See your system documentation for more details.

10

In particular, on Red Hat Linux, neither of these services will be configured out of the box. The
following will provide a limited explanation of how to set them up. These configuration setups
must be done asr oot on the host or server machine.

1.4.2.1 Enable TFTP on Red Hat Linux 6.2
1. Ensurethat you have the tftp-server RPM package installed. By default, thisinstallsthe TFTP
server in adisabled state. These steps will enable it:
2. Make sure that the following line is uncommented in the control file/ et ¢/ i net d. conf
tftp dgram udp wai t r oot [usr/sbin/tcpd /fusr/sbin/in.tftpd
3. If it was necessary to change the line in Step 2, then the inetd server must be restarted, which
can be done via the command:

service inet rel oad

1.4.2.2 Enable TFTP on Red Hat Linux 7

1. Ensure that the xinetd RPM isinstalled.
2. Ensure that the tftp-server RPM isinstalled.
3. Enable TFTP by means of the following:

/ sbin/chkconfig tftp on

Reload the xinetd configuration using the command:

/ sbin/service xinetd rel oad

Create the directory /tftpboot using the command
nkdir /tftpboot

% NOTE

Under Red Hat 7 you must address files by absolute pathnames, for example: /tft p-
boot / boot . i ng not/ boot . i ng, asyou may have done with other implementations.

1.4.2.3 Enable BOOTP/DHCP server on Red Hat Linux

First, ensure that you have the proper package, dhcp (not dhcpd) installed. The DHCP server
provides Dynamic Host Configuration, that is, IP address and other data to hosts on a network.
It does this in different ways. Next, there can be a fixed relationship between a certain node and
the data, based on that node' s unique Ethernet Station Address (ESA, sometimes called a MAC
address). The other possibility is simply to assign addresses that are free. The sample DHCP con-
figuration file shown does both. Refer to the DHCP documentation for more details.

--------------- /etc/dhcpd.conf -------mmmmmm

default-1ease-time 600

max- | ease-time 7200;

option subnet-mask 255.255.255.0

opti on broadcast-address 192.168. 1. 255
opti on dommi n-nane-servers 198.41.0.4, 128.9.0.107

11

opti on dommi n-nane “bogus. conf;

al | ow boot p;

shar ed- net wor k BOGUS {

subnet 192.168. 1.0 netnmask 255.255.255.0 {
option routers 192.168.1.101;
range 192.168.1.1 192. 168. 1. 254;

}

}

host nbx {
har dwar e et hernet 08:00: 3E: 28: 79: BS;
fi xed-address 192. 168. 1. 20;
filename “/tftpboot/192.168. 1. 21/zI mage”;
default-lease-time -1;
server-nane “srvr.bugus. conf;
server-identifier 192.168.1.101;
opti on host-name “mbx”;

}
Once the DHCP package has been installed and the configuration file set up, type:

service dhcpd start

1.4.2.4 RedBoot network gateway

RedBoot cannot communicate with machines on different subnets because it does not support rout-
ing. It always assumes that it can get to an address directly, therefore it always tries to ARP and
then send packets directly to that unit. This means that whatever it talks to must be on the same
subnet. If you need to talk to a host on adifferent subnet (even if it's on the same ‘wire'), you need
to go through an ARP proxy, providing that there is a Linux box connected to the network which
is able to route to the TFTP server. For example: / proc/ sys/ net/i pv4/ conf/<inter-
face>/ proxy_ar p where<interface>should be replaced with whichever network interfaceis
directly connected to the board.

1.4.3 Verification

Once your network setup has been configured, perform simple verification tests as follows:

» Reboot your system, to enable the setup, and then try to ‘ping’ the target board from a host.

* Once communication has been established, try using the RedBoot |oad command to download
afile from a host.

12

2 RedBoot Commands and Examples
2.1 Introduction

RedBoot provides three basic classes of commands:

* Program loading and execution
» flash image and configuration management
* Miscellaneous commands
Given the extensible and configurable nature of eCos and RedBoot, there may be extended or en-
hanced sets of commands available.
The basic format for commands is:
RedBoot > COMVAND [-S] [-s val]operand
Commands may require additional information beyond the basic command name. In most cases

thisadditional information is optional, with suitable default values provided if they are not present.
The type of information required affects how it is specified:

[-S]
An optional switch. If this switch is present, then some particular action will take place. For ex-
ample in the command
RedBoot> fis init -f

the -f switch indicates to perform afull file system initialization.

[-s val]

An optional switch which requires an associated value. For example the command:
RedBoot > | oad -b 0x00100000 data_file

specifies downloading afile (via TFTP) into memory, relocating it to location 0x00100000.

oper and

Thisformat isused in a case where acommand has one operand which must always be present (no
-sisrequired since it is always implied). For example the command

RedBoot > go 0x10044
specifies executing the code starting at location 0x10044.

Thelist of available commands, and their syntax, can be obtained by typing hel p at the command
line:

RedBoot > hel p

Manage al i ases kept in FLASH nenory
al i as nane [val ue]

Set/ Query the system consol e baud rate
baudrate [-b <rate>]

Manage nachi ne caches
cache [ON | OFF]

Di spl ay/ switch consol e channe
channel [-1]| <channel nunber>]

13

Di spl ay di sk partitions

di sks
Di spl ay (hex dunmp) a range of nenory
dunp -b <location> [-]1 <Iength>]
Manage flash i nages
fis {cnds}
Manage configuration kept in FLASH nenory
fconfig [-i] [-1] [-n] [-f] | nickname [val ue]

Execute code at a location
go [-w <timeout>] [entry]
Hel p about hel p?
hel p [<t opi c>]
Load a file
load [-r] [-v] [-d] [-h <host>] [-m {TFTP | xyzMODEM | disk}]
[-b <base_address>] <file_nane>
Net wor k connectivity test

ping [-v] [-n <count>] [-t <tinmeout>] [-i <IP_addr]
-h <I P_addr>
Reset the system
reset
Di spl ay RedBoot version information
ver si on

Commands can be abbreviated to their shortest unique string. Thus in the list above, d, du, dum
and dump are all valid for the dump command. The f conf i g command can be abbreviated f c,
but f would be ambiguous with f i s.

Thereisone additional, special command. When RedBoot detects $ asthefirst character in acom-
mand, it switches to GDB protocol mode. At this point, the eCos GDB stubs take over, allowing
connections from a GDB host. The only way to get back to RedBoot from GDB mode isto restart
the platform.

The standard RedBoot command set is structured around the bootstrap environment. These com-
mands are designed to be simple to use and remember, while still providing sufficient power and
flexibility to be useful. No attempt has been made to render RedBoot as the end-all product. As
such, things such as the debug environment are left to other modules, such as GDB stubs, which
are typically included in RedBoot.

The command set may be also be extended on a platform basis.

2.2 RedBoot Editing Commands

RedBoot uses the following line editing commands.

* Delete (OX7F) or Backspace (0x08) moves the cursor back one character and erases what isthere
destructively.

Themention of ~ isinthe context of thef conf i g command. Thiscommand uses some special
line-editing features. When certain characters appear alone on the input line, a behavior is
elicited.

e " (caret) switch to editing the previous item in the f confi g list. If fconfig edits item A,
followed by item B, pressing » when changing item B, allows you to change item A. Thisis
similar to the up arrow.

* . (period) stop editing any further items. This does not change the current item.

14

» Return (blank line) leaves the value for thisitem unchanged. Currently it isnot possibleto step
through the value for the start-up script; it must always be retyped.

2.3 Common Commands
The general format of commandsiis:
conmand <options, paraneters>

Elements are separated by the space character. Other control characters, such as Tab or editing keys
(insert) are not currently supported.

Numbers, such as amemory location, may be specified in either decimal or hexadecimal (requires
a 0x prefix).

Commands may be abbreviated to any unique string. For example, | o0 is equivaent to | oa and
| oad.

2.3.1 Connectivity
ping - Check network connectivity ping

ping [-v] [-n <count>] [-] <length>] [-t <tinmeouts>] [-r
<rate>][-i <IP_addr>] -h <IP_addr>

The ping command checks the connectivity of the local network by sending special (ICMP)
packets to a specific host. These packets should be automatically returned by that host. The
command will indicate how many of these round-trips were successfully completed.

Arguments
-V Be verbose, displaying information about each packet sent.
-n <count> Controls the number of packetsto be sent. Default is10if -nis
not specified.
-t <timeout> How long to wait for the round-trip to complete, specified in
milliseconds. Default is 1000ms (1 second).
-r <rate> How fast to deliver packets, i.e. time between successive sends.

Default is 1000ms (1 second). Specifying "-r 0" will send packets
as quickly as possible.

-| <length> Each packet contains some amount of payload data. This option
specifies the length of that data. The default is 64 and the valueis
restricted to the range 64 .. 1400.

-i <local 1P> This alows the ping command to override its local network
address. While thisis not recommended procedure, it can help
diagnose some situations, for example where BOOTP is not
working properly.

-h <host P> The address of the other device to contact.

15

2.3.2 General

alias name [value]

The al i as command is used to maintain simple command line aliases. These aliases are
shorthand for longer expressions. When the pattern %{ name} appears in a command line,
including a script, the corresponding value will be substituted.

Aliases are kept in RedBoot’ s non-volatile configuration area, i.e. Flash memory.

Thisisan example of setting an alias. Noticethe use of aquoted string when the value contains
spaces.

RedBoot > alias SBUF "-b 0x100000"
Updat e RedBoot non-vol atile configuration - are you sure (y/n)? vy
. Unl ock from Ox50f 80000- 0x50f cO000: .
. Erase from 0x50f 80000- 0x50f cO000: .
. Program from 0x0000b9e8- 0x0000c9e8 at 0x50f 80000:
. Lock from 0x50f 80000- 0x50f c0000: .

This example shows querying of an alias, as well as how it might be used.

RedBoot > al i as SBUF

"SBUF = '-b 0x100000’

RedBoot > d 9% SBUF}

0x00100000: FEO3 OOEA 0000 0000 0000 0000 0000 0000 |................ |

0x00100010: 0000 0000 0000 0000 0000 0000 0000 0000 |................ |
baudrate [-b value]

This command sets the baud rate for the system serial console. If the platform supports non-
volatile configuration data, then the new value will be saved and used when the system isreset.

cache [ON | OFF]
This command is used to manipulate the caches on the processor.
With no options, this command specifies the state of the system caches.
When an option is given, the caches are turned off or on appropriately.
channel [-1|<channel number>]
With no arguments, this command displays the current console channel number.

When passed an argument of 0 upwards, this command switches the console channel to that
channel number. The mapping between channel numbers and physical channels is platform
specific.

When passed an argument of -1, this command reverts RedBoot to responding to whatever
channel receives input first, as happens when RedBoot initially starts execution.
cksum -b <location> -l <length>

Computes the POSIX checksum on a range of memory (either RAM or FLASH). The value
printed can be compared with the output from the Linux program ’chksum’.

disks

16

This command is used to list disk partitions recognized by RedBoot.
dump -b <location> [-] <length>]
Display (hex dump) arange of memory.

This command displays the contents of memory in hexadecimal format. It is most useful for
examining a segment of RAM or flash. Note that it could be detrimental if used on memory
mapped hardware registers.

The memory is displayed at most sixteen bytes per line, first as the raw hex value, followed
by an ASCII interpretation of the data.

RedBoot > du -b 0x100 -1 0x80

0x00000100: 3C60 0004 6063 2000 7C68 03A6 4E80 0020 |<'..‘c .|h..N.
0x00000110: 0000 0000 0000 0000 0000 0000 0000 0000 |...........c..... |
0x00000120: 0000 0000 0000 0000 0000 0000 0000 0000 |.........c.u..... |
0x00000130: 0000 0000 0000 0000 0000 0000 0000 0000 |.........c.v..... |
0x00000140: 0000 0000 0000 0000 0000 0000 0000 0000 |........c.vn.... |
0x00000150: 0000 0000 0000 0000 0000 0000 0000 0000 |...........c..... |
0x00000160: 0000 0000 0000 0000 0000 0000 0000 0000 |........c.vu.... |
0x00000170: 0000 0000 0000 0000 0000 0000 0000 0000 |.........c.v..... |
RedBoot > d -b OxfeO00b000 -1 0x80

OxFEOOB000O: 2025 700A 0000 0000 4174 7465 6D70 7420 | %p..... At t enpt
OxFEOOB010: 746F 206C 6F61 6420 532D 7265 636F 7264 |to |oad S-record
OxFEOOB020: 2064 6174 6120 746F 2061 6464 7265 7373 | data to address|
OxFEOOB030: 3A20 2570 205B 6E6F 7420 696E 2052 414D |: % [not in RAM
OxFEOOB040: 5D0A 0000 2A2A 2A20 5761 726E 696E 6721 |]...*** \Warning!
OxFEOOB050: 2043 6865 636B 7375 6D20 6661 696C 7572 | Checksum fail ur
OxFEOOB060: 6520 2D20 4164 6472 3A20 256C 782C 2025 |e - Addr: % x, %
OxFEOOBO70: 3032 6C58 203C 3E20 2530 326C 580A 0000 | 02I X <> 9%®@2I X. ..
OxFEOOB080: 456E 7472 7920 706F 696E 743A 2025 702C | Entry point: %p,

reset
Reset the system.

This command resetsthe platform. On many targets thisis equivalent to a power-on reset, but
on othersit may just cause ajump to the architecture’ sreset entry resulting in areinitialization
of the system.

version
Display RedBoot version information.
This command simply displays version information about RedBoot.

RedBoot > ver si on

RedBoot (tm) debug environment - built 09:12:03, Feb 12 2001
Platform XYZ (PowerPC 860)

Copyright (C 2000, 2001, Red Hat, Inc

RAM 0x00000000- 0x00400000

RedBoot >

2.3.3 Download Process
load

Thel oad command is used to download datainto the target system. Data can be loaded via
a network connection, using either the TFTP protocol, or the console serial connection using

17

the X/Y modem protocol. Files may also be loaded directly from local filesystems on disk.
Files to be downloaded may either be executable images in SREC format or raw data. The
format of the command is:

load {file}[-v][-d][-b location][-r][-m {xmodeni|lynodeni|[t f t p]|[di sk]}] [-h host_I P_ad-
dr ess]

Arguments

file

The name of the file on the TFTP server or the local disk. Details of how thisis
specified for TFTP are host-specific. For local disk files, the name must be in
disk: filename format. The disk portion must match one of the disk names listed
by the disks command.

Display a small spinner (indicator) while the download isin progress. Thisisjust
for feedback, especially during long loads. Note that the option has no effect when
using a serial download method since it would interfere with the protocol.

Decompress gzipped image during download.

Specify the location in memory to which the file should be loaded. Executable
images normally load at the location to which the file was linked. This option
alowsthe file to be loaded to a specific memory location, possibly overriding any
assumed location.

Download raw data. Normally, the load command is used to load executable images
into memory. This option allows for raw data to be loaded. If this option is given,
-b will also be required.

The -m option is used to select the download method. The choices are:
xmodem, ymodem

serial download using standard protocols over the console serial port. When
using this method, the file parameter is not required.

tftp

network based download using the TFTP protocol.
disk

load afile from local disk.

Used explicitly to name a host computer to contact for the download data. This
works in TFTP mode only.

RedBoot > | 0 redboot. ROM -b 0x8c400000
Addr ess offset = 0x0c400000
Entry point: 0x80000000, address range: 0x80000000-0x8000f e80

18

2.4 Flash Image System (FIS)

If the platform has flash memory, RedBoot can use this for image storage. Executable images, as
well as data, can be stored in flash inasimplefile store. Thef i s command is used to manipulate
and maintain flash images.

The available f i s commands are:
fisinit [-f]
This command is used to initialize the flash Image System (FIS). It should only be executed

once, when RedBoot isfirst installed on the hardware. Subsequent executions will cause loss
of datain the flash (previously saved images will no longer be accessible).

If the- f optionisspecified, all blocks of flash memory will be erased as part of this process.

RedBoot > fis init -f
About to initialize [format] flash inage system - are you sure (y/n)? n

fis[-c] [-d] list

Thiscommand liststheimages currently availablein the FIS. Certain images used by RedBoot
have fixed names. Other images can be manipulated by the user.

If the -c option is specified, the image checksum is displayed instead of the Mem Addr field.

If the -d option is specified, the image dat al engt h is displayed instead of the length
[amount of flash used]. The dat al engt h is the length of data within the allocated flash
image actually being used for data.

RedBoot > fis |ist

Narme flash addr Mem addr Length Entry point

RedBoot 0xA0000000 0xA0000000 0x020000 0x80000000

RedBoot [backup] 0xA0020000 0x8C010000 0x010000 0x8C010000

RedBoot config OXAOFC0000 OxAOFC0000 0x020000 0x00000000

FIS directory OxAOFE0000 OxAOFE0000 0x020000 0x00000000

RedBoot > fis list -c

Narme flash addr Checksum Length Entry point

RedBoot 0xA0000000 0x34C94A57 0x020000 0x80000000

RedBoot [backup] 0xA0020000 0x00000000 0x010000 0x8C010000

RedBoot config OxAOFC0000 0x00000000 0x020000 0x00000000

RedBoot config OXAOFE0000 0x00000000 0x020000 0x00000000

fisfree

This command shows which areas of the flash memory are currently not in use. In use means
that the block contains non-erased contents. Sinceit is possibleto force an image to be loaded
at a particular flash location, this command can be used to check whether that location isin
use by any other image.

% NOTE

Thereis currently no cross-checking between actual flash contents and the image direc-
tory, which mansthat there could be a segment of flash which is not erased that does not
correspond to a named image, or vice-versa.

19

RedBoot > fis free
0xA0040000 .. 0xA07C0000
0xA0840000 .. OxAOFC0000

fiscreate -b <mem_base> -| <length> [-f <flash_addr>] [-e <entry_point>] [-r <ram_addr>]
[-s <data_length>] [-n] <name>

This command creates an image in the FIS directory. The data for the image must exist in
RAM memory before the copy. Typically, you would use the RedBoot | oad command to
load an image into RAM and thenthef i s cr eat e command to writeit to flash.

Arguments
name The name of the file, as shown in the FIS directory.
-b Thelocation in RAM used to obtain theimage. Thisis arequired option.

-l The length of the image. If the image already exists, then the length is inferred
from when the image was previously created. If specified, and the image exists, it
must match the original value.

-f The location in flash for the image, which will be inferred for extant images if not
specified. If thisis not provided, the first freeVblock which islarge enough will be
used. Seefis free.

-e The execution entry address. Thisis used if the starting address for an image is
not known, or needs to be overridden.

-r Thelocation in RAM when theimageisloaded via fi s | oad. Thisonly needsto
be specified for images which will eventually loaded viafi s | oad. Fixed images,
such as RedBoot itself, will not need this.

-S The length of the actual data to be written to flash. If not present then the image
length (-1) valueis assumed. If the value given by -sislessthan -1, the remainder of
the image in flash will be left in an erased state. Note that by using this option it is
possible to create a completely empty flash image, for example to reserve space for
use by applications other than RedBoot.

-n If -nis specified, then only the FIS directory is updated, and no datais copied
from RAM to flash. This feature can be used to recreate the FIS entry if it has
been destroyed.

RedBoot > fis create RedBoot -f 0xa0000000 -b 0x8c400000 -1 0x20000
An image naned ‘ RedBoot’ exists - are you sure (y/n)? n
RedBoot > fis create junk -b 0x8c400000 -1 0x20000
. Erase from 0xa0040000- 0xa0060000: .
.. Program from 0x8c400000- 0x8c420000 at 0xa0040000: .
. Erase from 0xaOf e0000- 0xa1000000: .
. Program from 0x8c7d0000- 0x8c7f 0000 at OxaOf e0000: .

If you are loading an existing file, then the fis create command will provide some values automat-
ically, such as the flash address and flash length.

fisload [-b <memory load address>] [-c] [-d] nhame
This command is used to transfer an image from flash memory to RAM.

20

Once loaded, it may be executed using the go command. If -b is specified, then the image is
copied from flash to the specified addressin RAM. If -b is not specified, the image is copied
from flash to the load address given when the image was created.

Arguments
name The name of the file, as shown in the FIS directory
-b Specify the location in memory to which the file should be loaded. Executable

images normally load at the location to which the file was linked. This option
allows the file to be loaded to a specific memory location, possibly overriding any
assumed location.

-C Compute and print the checksum of the image data after it has been loaded into
memory.
-d Decompress gzipped image while copying it from flash to RAM.

RedBoot > fis | oad RedBoot [backup]
RedBoot > go

fis delete name

This command removes an image from the FIS. The flash memory will be erased as part of
the execution of this command, as well as removal of the name from the FIS directory.

RedBoot > fis |ist

Narme flash addr Mem addr Lengt h Entry point
RedBoot 0xA0000000 OxA0000000 0x020000 0x80000000
RedBoot [backup] 0xA0020000 0x8C010000 0x020000 0x8C010000
RedBoot config 0xAOFCO000 OxAOFCO000 0x020000 0x00000000
FIS directory OxAOFEO000 OxAOFEO0000 0x020000 0x00000000

j unk 0xA0040000 0x8C400000 0x020000 0x80000000
RedBoot > fis del ete junk
Del ete image ‘junk’ - are you sure (y/n)? vy

. Erase from 0xa0040000- 0xa0060000:
. Erase from OxaOf e0000- 0xal000000: .
. Program from 0x8c7d0000- 0x8c7f 0000 at OxaOf e0000:

fislock -f <flash_addr> -I <length>

Thiscommand is used to write-protect (lock) aportion of flash memory, to prevent accidental
overwriting of images. In order to make make any modifications to the flash, a matching
unlock command must be issued. This command is optional and will only be provided on
hardware which can support write-protection of the flash space.

% NOTE

Depending on the system, attempting to writeto write-protected flash may generateerrors
or warnings, or be benignly quiet.

RedBoot fis | ock -f 0xa0040000 -1 0x20000
. Lock from 0xa0040000- 0xa0060000: .

21

fisunlock -f <flash_addr> -I <length>

Thiscommand is used to unlock a portion of flash memory forcibly, allowing it to be updated.
It must be issued for regions which have been locked before the FIS can reuse those portions
of flash.
RedBoot fis unlock -f 0xa0040000 -1 0x20000
. Unl ock from 0xa0040000- 0xa0060000: .

fiserase -f <flash_addr> -| <length>
Thiscommand is used to erase a portion of flash memory forcibly. Thereisno cross-checking
to ensure that the area being erased does not correspond to a loaded image.
RedBoot > fis erase -f 0xa0040000 -1 0x20000
. Erase from 0xa0040000- 0xa0060000:

fiswrite -b <location> -| <length> -f <flash addr>
Writes data from RAM at <location> to flash.

2.5 Persistent State Flash-based Configuration and Control

RedBoot providesflash management support for storage in the flash memory of multiple executable
images and of non-volatile information such as | P addresses and other network information.

RedBoot on platforms that support flash based configuration information will report the following
message the first time that RedBoot is booted on the target:

flash configuration checksumerror or invalid key

This error can be ignored if no flash based configuration is desired, or can be silenced by running
thef conf i g command asdescribed below. At thispoint you may alsowishtorunthefi s init
command. See other fis commands in Section 2.4.

Certain control and configuration information used by RedBoot can be stored in flash.

The details of what information is maintained in flash differ, based on the platform and the con-
figuration. However, the basic operation used to maintain this information is the same. Using the
fconfig -1 command, the information may be displayed and/or changed.

If the optional flag - i is specified, then the configuration database will be reset to its default state.

If the optional flag - | is specified, the configuration datais simply listed. Otherwise, each config-
uration parameter will be displayed and you are given a chance to changeit. The entire value must
be typed - typing just carriage return will leave avalue unchanged. Boolean values may be entered
using thefirst letter (t for true, f for false). At any time the editing process may be stopped simply
by entering a period (.) on the line. Entering the caret (*) moves the editing back to the previous
item. See “RedBoot Editing Commands’, Section 2.2.

If any changes are made in the configuration, then the updated data will be written back to flash
after getting acknowledgement from the user.

22

If the optional flag - n is specified (with or without - |) then “nicknames’ of the entries are used.
These are shorter and less descriptive than “full” names. The full name may also be displayed by
adding the - f flag.

Thereason for telling you nicknamesisthat aquick way to set asingle entry is provided, using the
format

RedBoot > fconfig ni cknane val ue

If no valueis supplied, the command will list and prompt for only that entry. If avalueis supplied,
then the entry will be set to that value. You will be prompted whether to write the new information
into flash if any change was made. For example

RedBoot > fconfig -1 -n
boot _script: false
boot p: fal se
bootp_ny_ip: 10.16.19.176
boot p_server _i p: 10.16.19. 66
gdb_port: 9000
net _debug: fal se
RedBoot > fconfig bootp_my_ip 10.16.19.177
bootp_ny_ip: 10.16.19.176 Setting to 10.16.19. 177
Updat e RedBoot non-vol atile configuration - are you sure (y/n)? vy
Unl ock from 0x507c0000- 0x507e0000:
Erase from 0x507c0000- 0x507e0000: .
Pr ogram from 0x0000a8d0- 0x0000acd0 at 0x507c0000:
... Lock from 0x507c0000- 0x507e0000:
RedBoot >
One item which is always present in the configuration data is the ability to execute a script at boot
time. A sequence of RedBoot commands can be entered which will be executed when the system

starts up. Optionally, atime-out period can be provided which allows the user to abort the startup
script and proceed with normal command processing from the console.

RedBoot > fconfig -1

Run script at boot: false

Use BOOTP for network configuration: false
Local | P address: 192.168.1.29

Default server |P address: 192.168.1.101
GDB connection port: 9000

Net wor k debug at boot tine: false

The following example sets a boot script and then shows it running.

RedBoot > fconfig
Run script at boot: false t
Boot script:
Enter script, terminate with enpty line
>> fi i
Boot script tineout: 0 10
Use BOOTP for network configuration: false .
Updat e RedBoot non-vol atile configuration - are you sure (y/n)? vy
Er ase from OxaOf c0O000- OxaOf e0000: .
... Program from 0x8c021f 60- 0x8c022360 at 0Oxa0Of c0000:
RedBoot >
RedBoot (tm) debug environnent - built 08:22:24, Aug 23 2000
Copyright (C) 2000, Red Hat, Inc.

RAM 0x8c000000- 0x8c800000
flash: 0xa0000000 - 0xal000000, 128 bl ocks of 0x00020000 bytes ea.

23

Socket Conmuni cations, Inc: Low Power Ethernet CF Revision C\
5V/ 3.3V 08/27/98 I P: 192.168.1.29, Default server: 192.168.1.101 \
== Executing boot script in 10 seconds - enter "C to abort

RedBoot > fi i
Narme flash addr Mem addr Lengt h Entry point
RedBoot 0xA0000000 0xA0000000 0x020000 0x80000000

RedBoot [backup] 0xA0020000 0x8C010000 O0x020000 0x8C010000
RedBoot config OxAOFC0000 OxXAOFCO0000 0x020000 0x00000000
FIS directory OxAOFEO000 OxAOFEO000 0x020000 0x00000000
RedBoot >

NOTE

The bold characters above indicate where something was entered on the console. Asyou can
see, thefi |i command at the end came from the script, not the console. Once the script is
executed, command processing reverts to the console.

On many targets, RedBoot may be configured to run from ROM or it may be configured to run
from RAM. Other configurations are also possible. All RedBoot configurations will execute the
boot script, but in certain casesit may be desirableto limit the execution of certain script commands
to one RedBoot configuration or the other. This can be accomplished by prepending { <st ar t up
t ype>} tothecommands which should be executed only by the RedBoot configured for the spec-
ified statrtup type. The following boot script illustrates this concept by having the ROM based
RedBoot load and run the RAM based RedBoot. The RAM based RedBoot will then list flash im-

ages.

RedBoot > fco

Run script at boot: false t

Boot script:

Enter script, termnate with enpty line

>> {ROMfis | oad RedBoot [backup]

>> {ROM go

>> {RAMfis |i

>>

Boot script tineout (1000nms resolution): 2
Use BOOTP for network configuration: false

Updat e RedBoot non-volatile configuration - are you sure (y/n)? vy
Unl ock from 0x007c0000- 0x007e0000:
Erase from 0x007c0000- 0x007e0000: .
Pr ogram from 0xa0015030- 0xa0016030 at 0x007df 000:
Lock from 0x007c0000- 0x007e0000:
RedBoot > reset
... Resetting.
+Et hernet et hO: MAC address 00: 80: 4d: 46: 01: 05
| P: 192.168. 1. 153, Default server: 192.168.1.10

RedBoot (tm bootstrap and debug environnent, version UNKNOMN - built 17:37:36, Aug 14 2001

Platform |1@0310 (XScal e)
Copyright (C) 2000, 2001, Red Hat, Inc.

RAM 0xa0000000- 0xa2000000, 0xa001b088-0xalfdf 000 avai l abl e

FLASH: 0x00000000 - 0x00800000, 64 bl ocks of 0x00020000 bytes each.
== Executing boot script in 2.000 seconds - enter "C to abort
RedBoot > fis | oad RedBoot [backup]

24

RedBoot > go
+Et hernet et hO: MAC address 00: 80: 4d: 46: 01: 05
| P: 192.168.1.153, Default server: 192.168.1.10

RedBoot (tm bootstrap and debug environnent, version UNKNOMWN - built 13:03:47, Aug 14 2001

Platform |1@0310 (XScal e)
Copyright (C) 2000, 2001, Red Hat, Inc.

RAM 0xa0000000- 0xa2000000, 0xa0057f e8- 0xalf df 000 avail abl e

FLASH: 0x00000000 - 0x00800000, 64 bl ocks of 0x00020000 bytes each.
== Executing boot script in 2.000 seconds - enter "C to abort
RedBoot > fis Ii

Narme FLASH addr Mem addr Length Entry point
RedBoot 0x00000000 0x00000000 0x00040000 0x00002000
RedBoot [backup] 0x00040000 0xA0020000 0x00040000 0xA0020040
RedBoot config 0x007DFO00 0x007DFO00 0x00001000 0x00000000
FIS directory 0x007E0000 O0x007E0000 0x00020000 0x00000000
RedBoot >

2.6 Executing Programs from RedBoot

Once an image has been loaded into memory, either viathe | oad command or thefi s | oad
command, execution may be transfered to that image.

NOTE

The image is assumed to be a stand-al one entity, as RedBoot gives the entire platform over to
it. Typical examples would be an eCos application or a Linux kernel.

go - Execute a program
The format of the go command is:

RedBoot> go [-w tine] [l ocation]

Execution will beginat | ocat i on if specified. Otherwise, the entry point of the last image
loaded will be used.

The - woption gives the user t i me seconds before execution begins. The execution may be
aborted by typing ctri+c on the console. This mode would typically be used in startup scripts.

exec - Execute a Linux kernel image

NOTE

This command is not available for al platforms. Its availability isindicated in specific
platform information in Chapter 5.

Arguments

[-w tineout]

25

<l oad addr> [-] <length]]

<randi sk addr>

<ramdi sk | engt h>]]

"kernel conmand |ine"] [<entry_point>]

[T
o wnw =T

Thiscommand is used to execute anon-eCos application, typically aLinux kernel. Additional
information may be passed to the kernel at startup time. This command is quite special (and
unigue from the’go’ command) in that the program being executed may expect certain envi-
ronmental setups, for example that the MMU is turned off, etc.

The Linux kernel expects to have been loaded to a particular memory location (OxC0008000
in the case of the SA1110). Since thismemory isused by RedBoot internally, it isnot possible
to load the kernel to that location directly. Thusthe requirement for the"-b" option which tells
the command where the kernel has beenloaded. When the exec command runs, theimage will
berelocated to the appropriate location before being started. The"-r" and "-s" options are used
to pass information to the kernel about where a statically loaded ramdisk (initrd) is located.

The "-c" option can be used to pass textual "command line" information to the kernel. If the
command line data contains any puncuation (spaces, etc), then it must be quoted using the
double-quote character '™’ If the quote character isrequired, it should be written as’\"’.

26

3 Rebuilding RedBoot
3.1 Introduction

In normal circumstancesit isonly necessary to rebuild RedBoot if it has been modified, for exam-
pleif you have extended the command set or applied patches. See the Getting Sarted with eCos
document, which provides information about the portability and extendability of RedBoot in an
eCos environment.

Most platform HALs provide configuration export files. Before proceding with the following pro-
cedures, check “Configuration export files’, Section 3.1.1 first, which may simplify the processfor
your platform.

RedBoot is configured and built using configuration technology based on Configuration Descrip-
tion Language (CDL). The detailed instructions for building the command-linetool ecosconfi g
on Linux can be found in host/README. For example:

nkdi r $TEMP/ r edboot - bui | d

cd $TEMP/ r edboot - bui | d

$ECOSDI R host / configure --prefix=$TEMP/ redboot -build --wth-tcl=/usr
make

The simplest version of RedBoot can be built by setting the environment variable ECOS_REPOS-
ITORY to point at the eCos/RedBoot source tree, and then typing:
ecosconfig new TARGET redboot

ecosconfig tree
make

where TARGET is the eCos name for the desired platform, for example assabet. You will need to
have set the environment variable ECOS_REPOSITORY to point at the eCos/RedBoot source tree.
Values of TARGET for each board are given in the specific installation details for each board in
Chapter 5, Installation and Testing.

The above command sequence would build a very simple version of RedBoot, and would not in-
clude, for example, networking, FLASH or Compact Flash Ethernet support on targets that sup-
ported those. Such features could be included with the following commands:

ecosconfig new TARGET redboot

ecosconfig add flash

ecosconfig add pcntia net_drivers cf_eth_drivers

ecosconfig tree
make

In practice, most platform HALSs include configuration export files, described in Section 3.1.1, to

ensure that the correct configuration of RedBoot has been chosen to avoid needing to worry about
which extra packages to add.

The above commands would build a version of RedBoot suitable for testing. In particular, the
result will run from RAM. Since RedBoot normally needs to be installed in ROM/flash, type the
following:

cat >RedBoot ROM ecm <<EOF
cdl _conponent CYG HAL_STARTUP {
user _val ue ROM

27

i

ECF

ecosconfig i nport RedBoot ROM ecm
ecosconfig tree

make

This set of commands will adjust the configuration to be ROM oriented.

Each of these command sequences creates multiple versions of RedBoot in different file formats.
The choice of which file to use will depend upon the actual target hardware and the tools available
for programming ROM/flash. The files produced (typically) are:

install/bin/redboot.elf Thisisthe complete version of RedBoot, represented in ELF
format. It is most useful for testing with tools such as embedded I CE, or other debug tools.

i nstall/bin/redboot. srec Thisversion hasbeen converted to Motorola S-record format.

i nstall/bin/redboot. bi n Thisversion has been flattened; that is, al formatting informa-
tion removed and just the raw image which needs to be placed in ROM/flash remains.

The details of putting the RedBoot code into ROM/flash are target specific. Once complete, the
system should come up with the RedBoot prompt. For example, the version built using the com-
mands above looks like:

RedBoot (tm) debug environnent - built 07:54:25, COct 16 2000

Pl atform Assabet devel opnent system (StrongARM 1110)

Copyright (C 2000, Red Hat, Inc.

RAM 0x00000000- 0x02000000

flash: 0x50000000 - 0x50400000, 32 bl ocks of 0x00020000 bytes ea.

Socket Communi cations, Inc: Low Power Ethernet CF Revision C

5V/ 3.3V 08/ 27/ 98

| P: 192.168.1.29, Default server: 192.168.1.101
RedBoot >

3.1.1 Configuration export files

To help with rebuilding RedBoot from source, some platforms HAL s provide configuration export
files. First locate the configuration export filesfor your platform in the eCos sourcerepository. The
RAM and ROM startup configuration exports can usually be found in adirectory named "misc" in
the platform HAL in the eCos source repository, named:

1432 Feb 1 13:27 misc/redboot RAM ecm
1487 Feb 1 14:38 nisc/redboot ROM ecm

All dates and sizes are just examples.

3.1.1.1 Making RedBoot for RAM startup
Throughout the following instructions, several environmental variables are referred to:
$REDBOOTDIR

Full path to the toplevel RedBoot source release.
$BUILDDIR

Full path to where RedBoot will be built, e.g. r edboot . RAM

28

$ECOS_REPOSITORY

Full path to the RedBoot package source. Typically, thisshould besREDBOOTDIR/ packages.
$TARGET

e.g.atlas mips32_4kc.
$ARCH_DIR

The directory for the architecture, e.g. mips.
$PLATFORM_DIR

The directory for the platform, e.g. atlas.

You must make sure these variables are correctly set in your environment before proceeding, or the
build will fail. The valuesfor $TARGET, $ARCH_DIR and $PLATFORM_DIR for each board are given in
the specific installation details for each board in Chapter 5, Installation and Testing.

With the environment variables set, use the following sequence of commands to build a RedBoot
image suitable for loading into RAM:

nkdi r $BU LDDI R
cd $BU LDDI R
ecosconfi g new $TARCGET redboot
ecosconfig inmport \
${ ECOS_REPCSI TORY}/ hal / ${ ARCH_DI R}/ ${ PLATFORM DI R}/ cur rent / m sc/ r edboot _RAM ecm
ecosconfig tree
make

To build the ROM version, in a different build/config directory, just use the configuration export
filer edboot ROM ecminstead.

The resulting files will be, in each of the ROM and RAM startup build places:

$BU LDDI R/ i nstal | / bi n/ redboot . bin
$BUI LDDI R/i nstal | / bi n/ redboot . el f
$BUI LDDI R/ i nstal | / bi n/ redboot . ing
$BU LDDI R/ i nstal | / bi n/ redboot . srec

Some targets may have variations, or extrafiles generated in addition.

3.1.2 Platform specific instructions

The platform specific information in Chapter 5, Installation and Testing should be consulted, as
there may be other special instructions required to build RedBoot for particular boards.

29

4 Updating RedBoot

4.1 Introduction

RedBoot normally runs from flash or ROM. In the case of flash, it is possible to update RedBoot,
that is, replace it with anewer version, in situ. Thisprocessiscomplicated by the fact that RedBoot
is running from the very flash which is being updated. The following is an outline of the steps
needed for updating RedBoot:

» Start RedBoot, running from flash.

» Load and start a different version of RedBoot, running from RAM.

* Update the primary RedBoot flash image.

* Reboot; run RedBoot from flash.

In order to execute this process, two versions of RedBoot are required; one which runs from flash,
and a separate one which runs solely from RAM. Both of theseimagesaretypically provided as part

of the RedBoot package, but they may aso be rebuilt from source using the instructions provided
for the platform.

The following is a more detailed look at these steps. For this process, it is assumed that the target
is connected to a host system and that there is some sort of serial connection used for the RedBoot
CLI.

4.1.1 Start RedBoot, Running from flash
To start RedBoot, reset the platform.

4.1.2 Load and start a different version of RedBoot, running from
RAM

There are a number of choices here. The basic case is where the RAM based version has been
stored in the FIS (flash Image System). To load and execute this version, use the commands:

RedBoot > fis | oad RedBoot [backup]
RedBoot > go

If thisimage isnot available, or does not work, then an alternate RAM based image must be loaded.
Using the load command:

RedBoot > | oad redboot RAM srec
RedBoot > go

% NOTE

Thedetailsof how to load areinstallation specific. Thefile must be placed somewherethe host
computer can provide it to the target RedBoot system. Either TFTP (shown) or X/Y modem
can be used to download the image into RAM.

30

Once the image is loaded into RAM, it may be used to update the secondary RedBoot image in
flash using the FIS commands. Some platforms support locking (write protecting) certain regions
of the flash, while others do not. If your platform does not support the lock/unlock commands,
simply ignore these steps. Again, the details of these commands (in particular the numeric values)
differ on each target platform, but the ideas are the same:

RedBoot > fis unlock -f <flash addr> -1 <flash | ength>

RedBoot > fis create RedBoot[backup] -f <flash addr> -b <flash source>
-r <inmage addr> -1 <flash | ength>

RedBoot > fis lock -f <flash addr> -1 <flash | ength>

4.1.3 Update the primary RedBoot flash image
At this point, a new version of RedBoot is running on the target, in RAM.
Using the | oad command, download the flash based version from the host.

Since the flash version is designed to load and run from flash, the image must be relocated into
some suitable, available, RAM location. The details of this are target platform specific (found in
the target appendix), but the command will look something like this:

RedBoot > | oad redboot _ROM srec -b <flash source>

This command loads the flash image into RAM at f | ash_sour ce, using the TFTP protocol via
anetwork connection. Other optionsare available, refer to the command sectionon | oad for more
details.

Once the image is loaded into RAM, it must be placed into flash using the FIS commands. Some
platforms support locking (write protecting) certain regions of the flash, while others do not. If
your platform does not support the lock/unlock commands, simply ignore these steps. Again, the
details of these commands (in particular the numeric values) differ on each target platform, but the
ideas are the same:

RedBoot > fis unlock -f <flash addr> -1 <flash | ength>

RedBoot > fis create RedBoot -f <flash addr> -b <flash source> -1 <flash | ength>
-s <data | ength>
RedBoot > fis lock -f <flash addr> -I <flash addr>

% NOTE

RedBoot will display a number of lines of information as it executes these commands. Also,
the size (-s) value for the create operation should be determined from the output provided as
part of the file download step.

It is not required, but it does allow for improved image validity checking in the form of an
image checksum.

4.1.4 Reboot; run RedBoot from flash

Once the image has been successfully written into the flash, simply reboot the target and the new
version of RedBoot will be running.

31

% NOTE

There may be times when RedBoot does not exist on the hardware, thus making step 1 im-
possible to do. In these cases, it should be possible to get to step 2 by using GDB. If thisis
possible, the appropriate steps are provided with the target documentation.

32

5 Installation and Testing

5.1 Cyclone IQ80310
5.1.1 Overview

RedBoot supports both serial portsand the built-in ethernet port for communication and downloads.
The default serial port settings are 115200,8,N,1. RedBoot also supports flash management for the
onboard 8MB flash. Several basic RedBoot configurations are supported:

» RedBoot running from the board’ s flash boot sector.

* RedBoot running from flash address 0x40000, with ARM bootloader in flash boot sector.
* RedBoot running from RAM with RedBoot in the flash boot sector.

* RedBoot running from RAM with ARM bootloader in flash boot sector.

A special RedBoot command: di ag is used to access a set of hardware diagnostics provided by
the board manufacturer.

5.1.2 Initial Installation Method

The board manufacturer provides a DOS application which is capable of programming the flash
over the PCI bus, and this is required for initial installations of RedBoot. Please see the board
manual for information on using this utility. In general, the process involves programming one of
the two flash based RedBoot configurations to flash. The RedBoot which runs from the flash boot
sector should be programmed to flash address 0x00000000. RedBoot that has been configured to
be started by the ARM bootloader should be programmed to flash address 0x00004000.

Four sets of prebuilt files are provided in a tarball and zip format. Each set corresponds to one
of the four supported configurations and includes an ELF file (.elf), a binary image (.bin), and an
S-record file (.srec).

For RedBoot running fromthe flash boot sector
bi ns/ cycl one-rom bi n

bi ns/cycl one-romel f

bi ns/ cycl one-rom srec

For RedBoot running from flash address 0x40000:
bi ns/ cycl one-ronma. bin

bi ns/ cycl one-roma. el f

bi ns/ cycl one-roma. srec

For RedBoot running from RAM with RedBoot in the flash boot sector:
bi ns/ cycl one-ram bi n

bi ns/cycl one-ram el f

bi ns/ cycl one-ram srec

For RedBoot running from RAM wi th ARM boot| oader in the flash boot sector
bi ns/ cycl one-ranma. bi n

bi ns/ cycl one-rama. el f

bi ns/ cycl one-rama. srec

33

Initial installations deal with the flash-based RedBoots. Installation and use of RAM based Red-
Boots is documented elsewhere.

To install RedBoot to run from the flash boot sector, use the manufacturer’ s flash utility to install
the bins/cyclone-rom.bin image at address zero.

To install RedBoot to run from address 0x40000 with the ARM bootloader in the flash boot sector,
use the manufacturer’ s flash utility to install the bins/cyclone-roma.bin image at address 0x40000.

After booting the initial installation of RedBoot, this warning may be printed:

flash configuration checksumerror or invalid key

Thisis normal, and indicates that the flash must be configured for use by RedBoot. Even if the
above message is not printed, it may be a good ideato reinitialize the flash anyway. Do thiswith
the fi s command:

RedBoot > fis init
About to initialize [format] flash inage system- are you sure (y/n)? vy
*** |nitialize flash I nage System
War ni ng: device contents not erased, sonme bl ocks nmay not be usable
. Unl ock from 0x007e0000-0x00800000: .
. Erase from 0x007e0000- 0x00800000: .
. Program from Oxalf d0000- Oxalf d0O400 at 0x007e0000:
... Lock from 0x007e0000- 0x00800000: .
Fol | owed by the fconfig comrand:
RedBoot > fconfig
Run script at boot: false
Use BOOTP for network configuration: false
Local I P address: 0.0.0.0 192.168.1. 153
Default server |P address: 0.0.0.0 192.168.1.10
GDB connection port: 0 1000
Net wor k debug at boot tinme: false
Updat e RedBoot non-vol atile configuration - are you sure (y/n)? vy
. Unl ock from 0x007c0000- 0x007e0000:
. Erase from 0x007c0000- 0x007e0000: .
. Program from 0xa0013018- 0xa0013418 at 0x007c0000: .
. Lock from 0x007c0000- 0x007e0000:

5.1.3 Error codes

RedBoot uses the two digit LED display to indicate errors during board initialization. Possible
error codes are:

88 - Unknown Error
55 - 12C Error

FF - SDRAM Error
01 - No Error

5.1.4 Using RedBoot with ARM Bootloader

RedBoot can coexist with ARM toolsin flash on the1 Q80310 board. Inthisconfiguration, the ARM
bootloader will occupy the flash boot sector while RedBoot is located at flash address 0x40000.
The sixteen position rotary switch isused to tell the ARM bootloader to jump to the RedBoot image
located at address 0x40000. RedBoot is selected by switch position 0 or 1. Other switch positions
are used by the ARM firmware and RedBoot will not be started.

34

5.1.5 Flash management

5.1.5.1 Updating the primary RedBoot image

To update the primary RedBoot images, follow the procedures detailed in Section 4.1.3, but the
actual numbers used with the flags in the sample commands should be:

ARM bootloader in flash boot sector

-f 0x40000
-b 0xa0100000
-1 0x40000

RedBoot in flash boot sector

-f 0
-b 0xa0100000
-1 0x40000

5.1.5.2 Updating the secondary RedBoot image

ARM bootloader in flash boot sector

-f 0x80000
-b 0xa0020000
-r 0xa0020000
-1 0x40000

RedBoot in flash boot sector

-f 0x40000
-b 0xa0020000
-r 0xa0020000
-1 0x40000

5.1.6 Special RedBoot Commands

A special RedBoot command, diag, isused to access a set of hardware diagnostics provided by the
board manufacturer. To access the diagnostic menu, enter diag at the RedBoot prompt:

RedBoot > di ag

Entering Hardware Di agnostics - Disabling Data Cache!l - Menory Tests
Repeati ng Menory Tests

- 16C552 DUART Serial Port Tests

4 - Rotary Switch S1 Test for positions 0-3

5 - seven Segnent LED Tests

6 - Backpl ane Detection Test

-

8

9

w N

- Battery Status Test
- External Tiner Test
- 182559 Ethernet Configuration

10 - 182559 Ethernet Test

11 - Secondary PCl Bus Test

12 - Primary PCl Bus Test

13 - 1 960Rx/303 PCl Interrupt Test
14 - Internal Tinmer Test

15 - GPI O Test

35

0 - quit Enter the nenu itemnunber (0 to quit):

Tests for various hardware subsystems are provided, and some tests require special hardware in
order to execute normally. The Ethernet Configuration item may be used to set the board ethernet
address.

5.1.7 1Q80310 Hardware Tests

- Menory Tests

- Repeating Menory Tests

- 16C552 DUART Serial Port Tests
Rotary Switch S1 Test for positions 0-3
- 7 Segnment LED Tests

- Backpl ane Detection Test

- Battery Status Test

- External Tiner Test

9 - 182559 Ethernet Configuration

10 - 82559 Ethernet Test

11 - 1960Rx/303 PCl Interrupt Test

12 - Internal Tinmer Test

13 - Secondary PCl Bus Test

14 - Primary PCl Bus Test

15 - Battery Backup SDRAM Menory Test
16 - GPIO Test

17 - Repeat-On-Fail Menory Test

18 - Coyonosa Cache Loop (No return)
19 - Show Sof tware and Hardware Revi sion
0 - quit

Enter the nenu item nunmber (0 to quit):

O~NOO U WNPE
'

Tests for various hardware subsystems are provided, and some tests require special hardware in
order to execute normally. The Ethernet Configuration item may be used to set the board ethernet
address.

5.1.8 Rebuilding RedBoot

The build processis nearly identical for the four supported configurations. Assuming that the pro-
vided RedBoot source tree is located in the current directory and that we want to build a RedBoot
that runs from the flash boot sector, the build process is:

% export TOPDI R=' pwd’

% export ECOS_REPCSI TORY=\

${ TOPDI R}/ src/ ecos- noni t or s/ redboot - DATE- i nt el / packages

% nkdir ${TOPDI R}/ buil d

% cd ${TOPDI R}/ bui | d

% ecosconfig new i q80310 redboot

% ecosconfig inmport \

${ ECOS_REPCSI TORY}/ hal / ar nf i 80310/ VERSI ON mi sc/ r edboot _ROM ecm
% ecosconfig tree
% nmake

If adifferent configuration isdesired, simply use the above build process but substitute an alternate
configuration file for the ecosconfig import command, e.g.:

For a RedBoot that runs from flash address 0x40000 with the ARM booloader in the flash boot
sector, use:

% ecosconfig inmport \

36

${ ECOS_REPOSI TORY}/ hal / ar ml i 80310/ VERSI ON/ ni sc/ r edboot _ROVA. ecm
For a RedBoot which runs from RAM with RedBoot |ocated in the flash boot sector, use:

% ecosconfig inmport \
${ ECOS_REPOCSI TORY}/ hal / ar ml i 80310/ VERSI ON/ i sc/ r edboot _RAM ecm

For a RedBoot which runs from RAM with ARM bootloader located in the flash boot sector, use:

% ecosconfig inmport \
${ ECOS_REPCSI TORY}/ hal / ar i i 80310/ VERSI ON mi sc/ r edboot _RAMA. ecm

5.1.9 Interrupts

RedBoot uses an interrupt vector table which is located at address OxAOOOAQQ04. Entriesin this
table are pointers to functions with this protoype::

int irq_handl er(unsigned vector, unsigned data)

On an 1Q80310 board, the vector argument is one of 49 interrupts defined in
hal / arm i 80310/ current/include/ hal _platform.ints. h::

[[*** 80200 CPU ***

#def i ne CYGNUM_HAL_| NTERRUPT_r eser vedO
#def i ne CYGNUM_HAL_I NTERRUPT_PMJ_PMNO_OVFL
#def i ne CYGNUM_HAL_I NTERRUPT_PMJ_PMN1_OVFL
#def i ne CYGNUM_HAL_I NTERRUPT_PMJ_CCNT_OVFL
#def i ne CYGNUM_HAL_I NTERRUPT_BCU_I NTERRUPT
#def i ne CYGNUM_HAL_I NTERRUPT_NI RQ

#def i ne CYGNUM_HAL_I NTERRUPT_NFI Q

/1l See Ch.12 - Performance Mn.
/1 PMJ counter 0/1 overflow
PMJ cl ock overfl ow

// See Ch.11 - Bus Control Unit
/1l external |IRQ

/1 external FIQ

OO WNEO
~
-~

[/ *** XINT6 interrupts ***

#defi ne CYGNUM HAL_| NTERRUPT_DMVA 0 7

#defi ne CYGNUM HAL_| NTERRUPT_DVA 1 8

#defi ne CYGNUM HAL_| NTERRUPT_DMVA 2 9

#def i ne CYGNUM_HAL_| NTERRUPT_GTSC 10 // dobal Time Stanp Counter
#defi ne CYGNUM HAL_| NTERRUPT_PEC 11 // Performance Event Counter
#def i ne CYGNUM HAL | NTERRUPT_AAI P 12 // application accelerator unit

[l *** XINT7 interrupts ***

/1 12Cinterrupts

#def i ne CYGNUM HAL | NTERRUPT_| 2C_TX_EMPTY 13
#def i ne CYGNUM HAL | NTERRUPT | 2C RX_FULL 14
#defi ne CYGNUM HAL_ | NTERRUPT | 2C BUS ERR 15
#defi ne CYGNUM HAL | NTERRUPT | 2C_STOP 16
#def i ne CYGNUM HAL_| NTERRUPT | 2C_LOSS 17
#defi ne CYGNUM_ HAL_| NTERRUPT_| 2C_ADDRESS 18

N N

/1 Messaging Unit interrupts

#defi ne CYGNUM HAL_| NTERRUPT_MESSAGE_0 19
#defi ne CYGNUM HAL | NTERRUPT_MESSAGE 1 20
#def i ne CYGNUM_HAL_| NTERRUPT_DOORBELL 21
#defi ne CYGNUM HAL_| NTERRUPT_NM _DOORBELL 22
#defi ne CYGNUM HAL_| NTERRUPT_QUEUE_POST 23
#defi ne CYGNUM HAL | NTERRUPT_OUTBOUND QUEUE_FULL 24
#defi ne CYGNUM_HAL_| NTERRUPT_| NDEX_ REG STER 25
// PClI Address Translation Unit

#defi ne CYGNUM HAL_| NTERRUPT_BI ST 26

37

/1 *** External board interrupts (XINT3) ***

#defi ne CYGNUM_HAL | NTERRUPT_TI MER 27 |l external tiner
#defi ne CYGNUM HAL_| NTERRUPT_ETHERNET 28 // onboard enet
#defi ne CYGNUM HAL_I| NTERRUPT_SERI AL_A 29 // 16x50 uart A
#define CYGNUM HAL_| NTERRUPT_SERI AL_B 30 // 16x50 uart B

#define CYGNUM HAL_| NTERRUPT_PCI _S INTD 31 // secondary PCl | NTD
/1l The hardware doesn’t (yet?) provide masking or status for these
/1 even though they can trigger cpu interrupts. ISRs will need to

/1 poll the device to see if the device actually triggered the

/1 interrupt.

#define CYGNUM HAL | NTERRUPT_PCI _S INTC 32 // secondary PCl |INTC
#define CYGNUM HAL | NTERRUPT_PCI _S INTB 33 // secondary PCl | NTB
#define CYGNUM HAL_| NTERRUPT_PClI _S INTA 34 // secondary PCl | NTA

/1l *** NM Interrupts go to FIQ ***

#def i ne CYGNUM_HAL_I NTERRUPT_MCU_ERR 35
#def i ne CYGNUM_HAL_I| NTERRUPT_PATU_ERR 36
#def i ne CYGNUM_HAL_I NTERRUPT_SATU_ERR 37
#def i ne CYGNUM_HAL_I NTERRUPT_PBDG_ERR 38
#def i ne CYGNUM_HAL_I| NTERRUPT_SBDG_ERR 39
#def i ne CYGNUM_HAL_I| NTERRUPT_DMAO_ERR 40
#def i ne CYGNUM_HAL_I| NTERRUPT_DMAL1_ERR 41
#def i ne CYGNUM_HAL_| NTERRUPT_DMA2_ERR 42
#def i ne CYGNUM_HAL_I NTERRUPT_MJ_ERR 43
#defi ne CYGNUM HAL_| NTERRUPT_r eser ved52 44
#def i ne CYGNUM_HAL_I NTERRUPT_AAU_ERR 45
#def i ne CYGNUM_ HAL_I NTERRUPT_BI U_ERR 46

[l *** ATU FI Q sources ***
#defi ne CYGNUM HAL | NTERRUPT P_SERR 47
#def i ne CYGNUM HAL_| NTERRUPT_S_SERR 48

The data passed to the ISR is pulled from a data table (hal _i nt errupt _dat a) which im-
mediately follows the interrupt vector table. With 49 interrupts, the data table starts at address

OxAOO0AOCS.

An application may create a normal C function with the above prototype to be an ISR. Just poke
its address into the table at the correct index and enable the interrupt at its source. The return value

of the ISR isignored by RedBoot.

5.1.10 Memory Maps

The first level page table is located at 0xa0004000. Two second level tables are also used. One
second level table is located at 0xa0008000 and maps the first IMB of flash. The other second

level table is at 0xa0008400, and maps the first IMB of SDRAM.

NOTE

The virtual memory mapsin this section use a C and B column to indicate whether or not the

region is cached (C) or buffered (B).
Physi cal Address Range Description

38

0x00000000

0x00001000 0x00001ff f 80312 Internal Registers
0x00002000 Ox007fffff flash Menory

0x00800000 - Ox7fffffff PClI ATU CQut bound Direct W ndow
0x80000000 - Ox83ffffff Primary PCl 32-bit Menory
0x84000000 Ox87ffffff Primary PCl 64-bit Menory
0x88000000 Ox8bf fffff Secondary PCl 32-bit Menory
0x8c000000 Ox8fffffff Secondary PCl 64-bit Menory
0x90000000 0x9000f ff f Primary PCl | O Space
0x90010000 0x9001ffff Secondary PCl 10O Space
0x90020000 OxOf ffffff Unused

0xa0000000 - Oxbfffffff SDRAM

0xc0000000 - Oxefffffff Unused

0xf 0000000 Oxffffffff 80200 Internal Registers
Virtual Address Range C B Description

0x00000000 - 0x00000fff Y Y SDRAM

0x00001000 0x00001fff N N 80312 Internal Registers
0x00002000 - Oxo007fffff Y N flash Menory

0x00800000 ox7fffffff N N PCl ATU Qutbound Direct W ndow
0x80000000 ox83ffffff NN Primary PCl 32-bit Menory
0x84000000 ox87ffffff NN Primary PCl 64-bit Menory
0x88000000 Ox8bffffff N N Secondary PCl 32-bit Menory
0x8c000000 ox8fffffff N N Secondary PCl 64-bit Menory
0x90000000 0x9000ffff NN Primary PCl | O Space
0x90010000 0x9001ffff N N Secondary PCl |0O Space
0xa0000000 - Oxbfffffff Y Y SDRAM

0xc0000000 Oxcfffffff Y Y Cache Flush Region
0xd0000000 0xdoooofff Y N first 4k page of flash

0xf 0000000 Ooxffffffff N N 80200 Internal Registers

0x00000f f f

flash Menory

5.1.11 Resource Usage

The standalone flash based RedBoot image (no ARM bootloader) occupies flash addresses
0x00000000 - Ox0003Kffff.

The flash based RedBoot configured to be booted by the ARM bootloader occupies flash addresses
0x00040000 - 0x0007ffff. Both of these also reserve RAM (0xa0000000 - 0xa001ffff) for RedBoot
runtime uses.

Both RAM based RedBoot configurations are designed to run from RAM at addresses 0xa0020000
- Oxa003ffff. RAM addresses from 0xa0040000 to the end of RAM are available for general use,
such as atemporary scratchpad for downloaded images before they are written to flash.

Theexternal timer isused asapolled timer to provide timeout support for networking and XModem
file transfers.

39

5.2 Intel SA1100 (Brutus)

5.2.1 Overview

RedBoot supports both board serial ports on the Brutus board. The default serial port settings are
38400,8,N,1. flash management is not currently supported.

Two basic RedBoot configurations are supported:

* RedBoot running from the board’ s flash boot sector.
* RedBoot running from RAM with RedBoot in the flash boot sector.

5.2.2 Initial Installation Method

Device programmer is used to program socketecflash parts.

5.2.3 Special RedBoot Commands

None.

5.2.4 Memory Maps

The first level page table is located at physical address OxcO004000. No second level tables are
used.

%;z;?i NOTE

The virtual memory mapsin this section use a C and B column to indicate whether or not the
region is cached (C) or buffered (B).

Physi cal Address Range Description
0x00000000 - OxO0O0Of ffff Boot ROM

0x08000000 - Ox083fffff Application flash
0x10000000 - Ox100fffff SRAM

0x18000000 - O0x180fffff Chip Select 3
0x20000000 - Ox3fffffff PCMCI A

0x80000000 - Oxbfffffff SA-1100 Internal Registers
0xc0000000 - Oxc7ffffff DRAM Bank 0
0xc8000000 - Oxcfffffff DRAM Bank 1
0xd0000000 - Oxd7ffffff DRAM Bank 2
0xd8000000 - Oxdfffffff DRAM Bank 3
0xe0000000 - Oxe7ffffff Cache d ean

Virtual Address Range C B Description
0x00000000 - Ox003fffff Y Y DRAM Bank O
0x00400000 - OxO007fffff Y Y DRAM Bank 1
0x00800000 - OxO00bfffff Y Y DRAM Bank 2
0x00c00000 - OxOOffffff Y Y DRAM Bank 3
0x08000000 - Ox083fffff Y Y Application flash

40

0x10000000 -
0x20000000 -
0x40000000 -
0x80000000 -
0xe0000000 -

Ox100fffff
Ox3fffffff
0x400f ffff
OxXbf ffffff
Oxe7ffffff

SRAM

PCMCI A

Boot ROM

SA-1100 Internal Registers
Cache C ean

<zZ=<zZ<
<zZz=<zZZ

5.2.5 Resource Usage

The flash based RedBoot image occupies flash addresses 0x40000000 - 0x4000ffff. The RAM
based RedBoot image occupies RAM addresses 0x10000 - Ox2ffff. RAM addresses from 0x30000
to the end of RAM are available for general use such as a temporary scratchpad for downloaded
images before they are written to flash. The SA11x0 OS timer is used as a polled timer to provide
timeout support for XModem file transfers.

5.2.6 Rebuilding RedBoot

The instructions in Chapter 3, Rebuilding RedBoot should be followed. The values for TARGET,
ARCH_DIR and PLATFORM_DIR on this platform are “brutus’, “arm” and “sallx0/brutus’ re-
spectively. Note that the configuration export files supplied in the hal / ar mf sal11x0/ br u-
t us/ VERSI ON m sc directory in the RedBoot source tree should be used.

41

5.3 Intel StrongArm EBSA 285

5.3.1 Overview

RedBoot uses the single EBSA-285 serial port. The default serial port settings are 38400,8,N,1. If
the EBSA-285 is used as ahost on a PCI backplane, ethernet is supported using an Intel PRO/100+
ethernet adapter.

Management of onboard flash is also supported. Two basic RedBoot configurations are supported:

» RedBoot running from the board’ s flash boot sector.
* RedBoot running from RAM with RedBoot in the flash boot sector.

5.3.2 Initial Installation Method

A linux application is used to program the flash over the PCI bus. Sources and build instructions
for this utility are located in the RedBoot sources in:

.../ packages/ hal / ar ni ebsa285/ current/support/|inux/safl _util

5.3.3 Flash management

5.3.3.1 Updating the primary RedBoot image

To update the primary RedBoot images, follow the procedures detailed in Section 4.1.3, but the
actual numbers used with the flags in the sample commands should be:

-f 0x41000000
-b 0x100000
-1 0x20000

5.3.3.2 Updating the secondary RedBoot image

To update the secondary RedBoot images, follow the procedures detailed in Section 4.1.2, but the
actual numbers used with the flags in the sample commands should be:

-f 0x41040000
-b 0x20000
-r 0x20000
-1 0x20000

5.3.4 Communication Channels
Serial, Intel PRO 10/100+ 82559 PCI ethernet card.

5.3.5 Special RedBoot Commands
None.

42

5.3.6 Memory Maps

Physical and virtual mapping are mapped one to one on the EBSA-285 using afirst level pagetable
located at address 0x4000. No second level tables are used.

%i:zjzi NOTE

The virtual memory mapsin this section use a C and B column to indicate whether or not the
region is cached (C) or buffered (B).

Addr ess Range C B Description
0x00000000 - Ox007fffff Y Y SDRAM

0x40000000 - Ox400fffff N N 21285 Registers
0x41000000 - 0x413fffff Y N flash

0x42000000 - Ox420fffff N N 21285 CSR Space
0x50000000 - Oxh5offffff Y Y Cache O ean
0x78000000 - Ox78ffffff N N Qutbound Wite Flush
0x79000000 - Ox7cOfffff NN PC |ACK/ Config/10O
0x80000000 - Oxffffffff NY PC Mnory

5.3.7 Resource Usage

The flash based RedBoot image occupies flash addresses 0x41000000 - 0x4101ffff. It also reserves
the first 128K bytes of RAM for runtime uses. The RAM based RedBoot image occupies RAM
addresses 0x20000 - Ox3ffff. RAM addresses from 0x40000 to the end of RAM are available for
general use such asatemporary scratchpad for downloaded images before they are written to flash.

Timer3isused asapolled timer to provide timeout support for networking and XModem file trans-
fers.

5.3.8 Building eCos Test Cases to run with old RedBoots

If using older versions of RedBoot, the default configuration for EBSA-285 will send diagnostic
output to the serial line only, not over an ethernet connection. To allow eCos programs to use
RedBoot to channel diagnostic output to GDB whether connected by net or serial, enable the con-
figuration option

CYGSEM HAL_VI RTUAL_VECTOR DI AG
"Do diagnostic IO via virtual vector table"

located here in the common HAL configuration tree:

"eCos HAL"
"ROM noni tor support™
"Enabl e use of virtual vector calling interface"
"Do diagnostic IO via virtual vector table"

Other than that, no special configuration is required to use RedBoot.

If you have been using built-in stubs to acquire support for thread-aware debugging, you can still
do that, but you must only use the serial device for GDB connection and you must not enable the

43

option mentioned above. However, it is no longer necessary to do that to get thread-awareness,
RedBoot is thread aware.

5.3.9 Rebuilding RedBoot

The instructions in Chapter 3, Rebuilding RedBoot should be followed. The values for TAR-
GET, ARCH_DIR and PLATFORM_DIR on this platform are “ebsa285”, “arm” and “ ebsa285”
respectively. Note that the configuration export files supplied inthehal / ar ml ebsa285/ VER-
SI ON m sc directory in the RedBoot source tree should be used.

44

5.4 Intel SA1100 Multimedia Board

5.4.1 Overview

RedBoot supports both board serial ports. The default serial port settings are 38400,8,N,1. flash
management is also supported. Two basic RedBoot configurations are supported: n

* RedBoot running from the board’ s flash boot sector.
* RedBoot running from RAM with RedBoot in the flash boot sector.

5.4.2 Initial Installation Method

A device programmer is used to program socketed flash parts.

5.4.3 Special RedBoot Commands

None.

5.4.4 Memory Maps

The first level page table is located at physical address OxcO004000. No second level tables are
used.

§2222§ NOTE

The virtual memory mapsin this section use a C and B column to indicate whether or not the
region is cached (C) or buffered (B).

Physi cal Address Range Description

0x00000000 - OxOO0Of ffff Boot flash

0x08000000 - Ox083fffff Application flash
0x10000000 - Ox107fffff SA- 1101 Board Registers
0x18000000 - Ox180fffff Ct 8020 DSP

0x18400000 - Ox184fffff XBusReg

0x18800000 - 0x188fffff SysRegA

0x18c00000 - Ox18cfffff SysRegB

0x19000000 - Ox193fffff Spare CPLD A
0x19400000 - Ox197fffff Spare CPLD B
0x20000000 - Ox3fffffff PCMCI A

0x80000000 - Oxbfffffff SA1100 Internal Registers
0xc0000000 - OxcO7fffff DRAM Bank 0O

0xe0000000 - Oxe7ffffff Cache d ean

Virtual Address Range C B Description
0x00000000 - Ox007fffff Y Y DRAM Bank O
0x08000000 - Ox083fffff Y Y Application flash
0x10000000 - Ox100fffff N N SA-1101 Registers
0x18000000 - 0Ox180fffff N N Ct8020 DSP
0x18400000 - 0x184fffff N N XBusReg

45

0x18800000 - 0x188fffff N N SysRegA

0x18c00000 - Ox18cfffff N N SysRegB

0x19000000 - 0x193fffff N N Spare CPLD A

0x19400000 - 0x197fffff N N Spare CPLD B

0x20000000 - Ox3fffffff N N PCMCA

0x50000000 - Ox500fffff Y Y Boot flash

0x80000000 - Oxbfffffff N N SA1100 Internal Registers
0xc0000000 - OxcO7fffff N Y DRAM Bank O

0xe0000000 - Oxe7ffffff Y Y Cache C ean

5.4.5 Resource Usage

The flash based RedBoot image occupies virtual addresses 0x50000000 - 0x5000ffff. The RAM
based RedBoot image occupiesvirtual addresses 0x10000 - Ox2ffff. RAM addresses from 0x30000
to the end of RAM are available for general use such as a temporary scratchpad for downloaded
images before they are written to flash.

The SA11x0 OStimer is used as a polled timer to provide timeout support for XModem file trans-
fers.

5.4.6 Rebuilding RedBoot

The instructions in Chapter 3, Rebuilding RedBoot should be followed. The values for
TARGET, ARCH_DIR and PLATFORM_DIR on this platform are “sal100mm”, “arm” and
“sal1x0/sal100mm” respectively. Note that the configuration export files supplied in the
hal / ar mf sal1x0/ sal1100nm VERSI ON m sc directory in the RedBoot source tree should
be used.

46

5.5 Intel SA1110 (Assabet)

5.5.1 Overview

RedBoot supports the board serial port and the compact flash ethernet port. The default serial port
settings are 38400,8,N,1. RedBoot also supports flash management on the Assabet. Two basic
RedBoot configurations are supported:

* RedBoot running from the board’ s flash boot sector.
* RedBoot running from RAM with RedBoot in the flash boot sector.

5.5.2 Initial Installation Method

A Windows or Linux utility isused to program flash over parallel port driven JTAG interface. See
board documentation for details on in situ flash programming.

The flash parts are a so socketed and may be programmed in a suitable device programmer.

5.5.3 Flash management

5.5.3.1 Updating the primary RedBoot image

To update the primary RedBoot images, follow the procedures detailed in Section 4.1.3, but the
actual numbers used with the flags in the sample commands should be:

-f 0x50000000
-b 0x60000
-1 0x10000

5.5.3.2 Updating the secondary RedBoot image

To update the secondary RedBoot images, follow the procedures detailed in Section 4.1.2, but the
actual numbers used with the flags in the sample commands should be:

-f 0x50010000
-b 0x20000
-r 0x20000
-1 0x10000

5.5.4 Special RedBoot Commands

None.

5.5.5 Memory Maps

The first level page table is located at physical address 0xcO004000. No second level tables are
used.

47

NOTE

The virtual memory mapsin this section use a C and B column to indicate whether or not the
region is cached (C) or buffered (B).

Physi cal Address Range Description

0x00000000 - OxO7ffffff flash

0x08000000 OxOf ffffff SA- 1111 Board fl ash
0x10000000 Ox17ffffff Board Registers

0x18000000 Ox1fffffff Et her net

0x20000000 - Ox2fffffff SA-1111 Board PCMCI A
0x30000000 Ox3fffffff Conpact Fl ash

0x40000000 - Ox47ffffff SA-1111 Board

0x48000000 - Ox4bffffff GFX

0x80000000 Oxbfffffff SA-1110 Internal Registers
0xc0000000 Oxc7ffffff DRAM Bank 0O

0xc8000000 Oxcfffffff DRAM Bank 1

0xd0000000 - Oxd7ffffff DRAM Bank 2

0xd8000000 - Oxdfffffff DRAM Bank 3

0xe0000000 Oxe7ffffff Cache d ean

Virtual Address Range C B Description

0x00000000 - OxO1ffffff Y Y DRAM Bank O

0x08000000 - OxOfffffff Y Y SA-1111 Board flash
0x10000000 Oox17ffffff N N Board Registers
0x18000000 ox1fffffff N N Ethernet

0x20000000 - Ox2fffffff N N SA-1111 Board PCMCI A
0x30000000 ox3fffffff N N Conpact Flash
0x40000000 - Ox47ffffff N N SA-1111 Board
0x48000000 - Ox4bffffff N N GFX

0x50000000 - Ox57ffffff Y Y flash

0x80000000 - Oxbfffffff N N SA-1110 Internal Registers
0xc0000000 - Oxciffffff N Y DRAM Bank O

0xe0000000 - Oxe7ffffff Y Y Cache Cean

The flash based RedBoot image occupies virtual addresses 0x50000000 - 0Ox5001ffff.

5.5.6 Resource Usage

The RAM based RedBoot image occupies RAM addresses 0x20000 - Ox5ffff. RAM addresses
from 0x60000 to the end of RAM are available for general use such as atemporary scratchpad for
downloaded images before they are written to flash.

The SA11x0 OS timer is used as a polled timer to provide timeout support for network and XMo-
dem file transfers.

5.5.7 Rebuilding RedBoot

The instructions in Chapter 3, Rebuilding RedBoot should be followed. The values for TARGET,
ARCH_DIR and PLATFORM_DIR on this platform are “assabet”, “arm” and “sallx0/assabet”
respectively. Note that the configuration export filessupplied inthehal / ar m sal1x0/ assa-
bet / VERSI OV m sc directory in the RedBoot source tree should be used.

48

Index

B
T 8 10
enabling ON RE Hat LiNUXeii e e e eenes 11
C
0 P 9
commands
(05010111070 1 [PP 15
(00 0T 1 1 71 15
JOWNIOAA. e 17
=01 T 14
B e 19
=S L= 0 TS (o 19
(0707 16
COMMANAS ANA EXAIMPIES ...ttt et e et e et aans 13
configuration
NEEWOTK . . . et et e et 10
ST 00 10 9
configuration and control
flash-Dased 22
coNfigUIration EXPOIt FIlES 28
configuring the RedBOOt ENVITONMENTttt 9
CONNECTIVITY COMMANGS.. ...ttt ettt et e e et e a e e e e e e a e aneanaans 15
Cyclone 1Q80310
INSEAIING ANA TESHING ... e e 33
L@ 0 [/ o o 8
D
13] o 1 10
enabling ON ReA Hat LiNUXeii et eeaas 11
(0 [0)11V g1 oo ot 1111 0 =TT 17
E
<000 LS oo 1 o 27
€dItiNG COMMENASttt et et ettt aaeeanes 14
ENVIroNMENt CONFIGUIALIONu ettt ettt et e e e aeaaeens 9
EXECULING PrOGIAIMIS. . .ttt et ettt et ettt e ettt et ettt et e e et ettt e e e et et et e et e eaeeenes 25
F
FCONFIQ COMIMANG e et aee 10
LS00 1110 =T T 19
flash and/or NEtWOrKIiNG SUPPOIT ettt ae e n 9

49

flash image System COMMANAS.u e e e aas 19

flash-based configuration and CONLIOl...........c.oiuiiiii e 22
G

(€15 = oTolg] 1= o1 Fo] o 1 7o HAN 10
BB SIUDS .. 8-9
gENEral COMMIBNASttt ettt et et et e e e et et e et aeneanes 16
H

hoSt NEtWOrK CONFIQUIALION e e aens 10
I

installing and testing

(@Yot o] 0= 1 13022 1 0 33

INtEl SATI00 (BIULUS) ettt e e e et et et e e e e e e e 40

Intel SA1100 MUltIMEAIaBOArd.ouuneie it 45

INtEl SALLI0 (ASSADEL) .. .ttt 47

Intel StroNQAIM EBSA 285 i 42
installing and testing REABOOL ..ot e 33
installing RedBoot

(0TS 0TS 0 000 0 = 9
Intel SA1100 Multimedia Board

INSEAIlING ANA TESHING ... ee e e 45
Intel SA1110 (Assabet)

INSEAIlING ANA TESHING ...t 47
Intel StrongArm EBSA 285

INSEAIING ANA TESHING ... e e e 42
Intel-SA1100 (Brutus)

INSEAIING ANA TESHING ... e 40
[P addreSStypeo 9-10
N
NEEWOTIK CONTIGUIALIONttt ettt e et e e e e e r e eeeeenaens 9

POt ... 10
LT VY0 S0 = (Y 12
NEEWOIK VENTICAIIONt nens 12
networking and/or flash SUPPOIt ... e e 9
P
persistent state flash-based configuration and control ... 22
R
FEDUIAING REABOOLt e et e e eaeneaaens 27
Red Boot

OEHING STAITEA ... e 8

50

Red Hat Linux

eNabling TETP ON VEISION B.2. ottt et e eeaans 11

ENADIING TETP ON VEISION 7. ..ttt e aans 11
RedBoot

COMMANAS ANA EXAMPIESttt e 13

EUITING COMMEANGS ...ttt et e e ettt et e e et e e ateaneanaans 14

ENVIroNMENt CONFIGUIALIONttt et e e e e et aeas 9

EXECULING PrOONAIMIS. . .ttt ettt et ettt e e e e et ettt et et et et et et e e e aaesaeee e nteaneeneans 25

INSEAIING ANA TESHING ...t e 33

FEOUIIAING ..o e e 27

07 F= 11 o 30
RedBoot installation

(0TS 0TS 0] 000 0 = 9
RedBOOt NEWOIK QalBWAYt e e ee e 12
RedBOOL S CaPailitiESt 8
T
target NEtWOrK CONFIQUIALION e 9
LI P 9
L= 17 9-10
TFTP

enabling ON Red Hal LINUX 6.2ottt et 11

enabling 0N REO Hal LiINUX 7. ..t et eaaens 11
TETP COMMANGS. . ..ot ettt ae e 10
U
P 9
07070 P2 1o T = | =T P 30
01] 1= = o 9
Vv
VETICAiON (NEIWOIK)ttt ettt e nees 12

51

	toc
	RedBoot User's Guide
	Copyright
	Warranty
	How to Contact Red Hat
	1 Getting Started with RedBoot
	1.1 More information about RedBoot on the web
	1.2 Installing RedBoot
	1.3 User Interface
	1.4 Configuring the RedBoot Environment
	1.4.1 Target Network Configuration
	NOTE

	1.4.2 Host Network Configuration
	1.4.2.1 Enable TFTP on Red Hat Linux 6.2
	1.4.2.2 Enable TFTP on Red Hat Linux 7
	NOTE

	1.4.2.3 Enable BOOTP/DHCP server on Red Hat Linux
	1.4.2.4 RedBoot network gateway

	1.4.3 Verification

	2 RedBoot Commands and Examples
	2.1 Introduction
	2.2 RedBoot Editing Commands
	2.3 Common Commands
	2.3.1 Connectivity
	2.3.2 General
	2.3.3 Download Process

	2.4 Flash Image System (FIS)
	NOTE
	NOTE

	2.5 Persistent State Flash-based Configuration and Control
	NOTE

	2.6 Executing Programs from RedBoot
	NOTE
	NOTE

	3 Rebuilding RedBoot
	3.1 Introduction
	3.1.1 Configuration export files
	3.1.1.1 Making RedBoot for RAM startup

	3.1.2 Platform specific instructions

	4 Updating RedBoot
	4.1 Introduction
	4.1.1 Start RedBoot, Running from flash
	4.1.2 Load and start a different version of RedBoot, running fro
	NOTE

	4.1.3 Update the primary RedBoot flash image
	NOTE

	4.1.4 Reboot; run RedBoot from flash
	NOTE

	5 Installation and Testing
	5.1 Cyclone IQ80310
	5.1.1 Overview
	5.1.2 Initial Installation Method
	5.1.3 Error codes
	5.1.4 Using RedBoot with ARM Bootloader
	5.1.5 Flash management
	5.1.5.1 Updating the primary RedBoot image
	5.1.5.2 Updating the secondary RedBoot image

	5.1.6 Special RedBoot Commands
	5.1.7 IQ80310 Hardware Tests
	5.1.8 Rebuilding RedBoot
	5.1.9 Interrupts
	5.1.10 Memory Maps
	NOTE

	5.1.11 Resource Usage

	5.2 Intel SA1100 (Brutus)
	5.2.1 Overview
	5.2.2 Initial Installation Method
	5.2.3 Special RedBoot Commands
	5.2.4 Memory Maps
	NOTE

	5.2.5 Resource Usage
	5.2.6 Rebuilding RedBoot

	5.3 Intel StrongArm EBSA 285
	5.3.1 Overview
	5.3.2 Initial Installation Method
	5.3.3 Flash management
	5.3.3.1 Updating the primary RedBoot image
	5.3.3.2 Updating the secondary RedBoot image

	5.3.4 Communication Channels
	5.3.5 Special RedBoot Commands
	5.3.6 Memory Maps
	NOTE

	5.3.7 Resource Usage
	5.3.8 Building eCos Test Cases to run with old RedBoots
	5.3.9 Rebuilding RedBoot

	5.4 Intel SA1100 Multimedia Board
	5.4.1 Overview
	5.4.2 Initial Installation Method
	5.4.3 Special RedBoot Commands
	5.4.4 Memory Maps
	NOTE

	5.4.5 Resource Usage
	5.4.6 Rebuilding RedBoot

	5.5 Intel SA1110 (Assabet)
	5.5.1 Overview
	5.5.2 Initial Installation Method
	5.5.3 Flash management
	5.5.3.1 Updating the primary RedBoot image
	5.5.3.2 Updating the secondary RedBoot image

	5.5.4 Special RedBoot Commands
	5.5.5 Memory Maps
	NOTE

	5.5.6 Resource Usage
	5.5.7 Rebuilding RedBoot

