
Intel® Internet Exchange
Architecture Software
Development Kit
Software Framework Getting Started Guide

March 2004

Document Number: C53937-002

2 Intel IXA® SDK Software Framework Getting Started Guide

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN
INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked �reserved� or �undefined.� Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The Intel IXA® SDK may contain design defects or errors known as errata which may cause the product to deviate from published specifications.
Current characterized errata are available on request.

This document and the software described in it are furnished under license and may only be used or copied in accordance with the terms of the
license. The information in this document is furnished for informational use only, is subject to change without notice, and should not be construed as a
commitment by Intel Corporation. Intel Corporation assumes no responsibility or liability for any errors or inaccuracies that may appear in this
document or any software that may be provided in association with this document. Except as permitted by such license, no part of this document may
be reproduced, stored in a retrieval system, or transmitted in any form or by any means without the express written consent of Intel Corporation.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling
1-800-548-4725 or by visiting Intel's website at http://www.intel.com.

Copyright © 2004, Intel Corporation

Intel is a registered trademark of Intel Corporation or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

http://www.intel.com

Intel IXA® SDK Software Framework Getting Started Guide 3

Contents

Contents
1 About This Publication...7

1.1 Audience...7
1.2 How to Use This Publication...7
1.3 Other Sources of Information..8

2 Overview..9
2.1 Portability Framework Overview ...9
2.2 SDK Software Framework in General...10
2.3 Understanding the Directories ..11

2.3.1 Applications Directory ..11
2.3.2 Building Blocks Directory ...11
2.3.3 Library Directory ..12

3 Running Applications on the Developer Workbench Simulator ...13

4 Running Applications on Hardware ...17
4.1 Connecting to a Packet Generator ...17
4.2 Windows 2000/XP with VxWorks Systems...17

4.2.1 IPv4 Forwarding Application on Hardware Using Core Components18
4.3 Red Hat/Monta Vista Linux Systems ..19

4.3.1 Setting up Linux Minicom for Egress and Ingress NPUs20
4.3.2 IPv4 Forwarding Application on an Intel® IXDP2400 Using Core Components21
4.3.3 IPv6 Forwarding Application on an Intel® IXDP2400 Using Core Components23
4.3.4 10x1GB IPv4/v6 Forwarding Application on Intel® IXDP2800 Using Core Compo-

nents25
4.4 Using the Advanced Development Platform�s Copper Ethernet Ports................................30

5 Debugging Applications on the Developer Workbench Simulator ...33
5.1 Application Packet Flow Overview..33

5.1.1 Packet Metadata..33
5.1.2 Packet Buffer ...34
5.1.3 Dispatch Loop Variables ..34

5.2 Debugging oc48_pos_ipv4_ingress..34

6 Working With Core Components ...39
6.1 Handling of Exception Packets by Core Components ..39
6.2 Creating a Core Component ...40
6.3 Porting Core Components from VxWorks to Linux ...45

6.3.1 Porting Guidelines ...46
6.4 Adding a New Core Component ...47
6.5 Adding Top Level Projects..48
6.6 Configuring the System Application..49

6.6.1 Image Configurations...50
6.6.2 Properties Used by the System Application...52

7 Adding Microblocks to an Application..55
7.1 Changing the Application..55

4 Intel IXA® SDK Software Framework Getting Started Guide

Contents

7.2 Creating a New Application .. 55
7.3 Modifying Source Files ... 56
7.4 Building a New Project.. 58

8 Using Resource Manager for Linux ... 61
8.1 Building the Libraries .. 61
8.2 Running the Resource Manager... 62

9 Routing Table and L2 Table .. 65
9.1 Routing Table ... 65

9.1.1 Populating the Routing Table for IPv4 Ping Tests ... 65
9.1.2 Populating the Routing Table for IPv6 Ping Tests ... 67

9.2 L2 Table.. 68
9.2.1 Layer 2 Table Manager.. 68

A IXDP2401 Application Tutorial... 73
A.1 Using the oc12_pos_gbeth_2401 Application .. 73

A.1.1 Overview of the oc12_pos_gbeth_2401 Application.. 73
A.1.2 Working with the oc12_pos_gbeth_2401 Application .. 76

A.2 Debugging the oc12_pos_gbeth_2401 Application ..79
A.2.1 Application Packet Flow Overview...79
A.2.2 Debugging oc12_pos_gbeth_2401.. 80

Intel IXA® SDK Software Framework Getting Started Guide 5

Contents

Revision History

Date Revision Description

March 2004 002 Intel® IXA SDK 3.51

November 2003 001 SDK 3.5. Added IPv6 Application Information

6 Intel IXA® SDK Software Framework Getting Started Guide

Contents

Intel IXA® SDK Software Framework Getting Started Guide 7

About This Publication 1

This publication, the Intel® Internet Exchange Architecture Software Development Kit Software
Framework Getting Started Guide, provides an overview of the Intel® Internet Exchange
Architecture (Intel® IXA) SDK Software Framework CD and guides you through the following
tasks:

• running an example application on the Developer Workbench simulator

• running an IPv4 example application on the Intel® IXDP2400 Advanced Development
Platform using core components

• running an IPv6 example application on the Intel® IXDP2400 Advanced Development
Platform using core components

• running an IPv4/IPv6 forwarding example application on the Intel® IXDP2800 Advanced
Development Platform

• running an example application on the Intel® IXDP2401 Advanced Development Platform

• debugging an example application on the Developer Workbench simulator

• creating a new core component

• porting an existing core component from VxWorks* to Linux

• writing and running a network application in Microengine C using the Intel® Internet
Exchange Architecture Portability Framework

• adding a microblock to an application

1.1 Audience

This publication is intended for software developers who will design, develop, and deliver network
applications that must process packets at high speed. It assumes that you are familiar with the
following:

• C Programming

• realtime network applications

• Developer Workbench that is included with the Intel® IXA SDK Tools CD

1.2 How to Use This Publication

Refer to this publication after you have installed the Intel® Internet Exchange Architecture
Software Development Kit Tools CD, the Intel IXA® SDK Firmware and Drivers CD (if you are
working with an Advanced Development Platform) and the Intel IXA® SDK Software Framework
CD.

The information in this publication is organized as follows:

8 Intel IXA® SDK Software Framework Getting Started Guide

About This Publication

• Chapter 2, “Overview” provides an overview of the Intel® Internet Exchange Architecture
Portability Framework and a directory tour of the Intel IXA® SDK.

• Chapter 3, “Running Applications on the Developer Workbench Simulator” includes steps for
running an example application on the Developer Workbench simulator.

• Chapter 4, “Running Applications on Hardware” contains steps for running example
applications (IPv4 and IPv6) on an Intel® IXDP2400 Advanced Development Platform.

• Chapter 5, “Debugging Applications on the Developer Workbench Simulator” discusses
debugging an example application using break points.

• Chapter 6, “Working With Core Components” contains a variety of information for working
with core components (creating a core component, adding a core component, porting a core
component from VxWorks* to Linux*, etc.) Information about configuring the system
application is also included.

• Chapter 7, “Adding Microblocks to an Application” describes the steps required to change an
existing application, by adding new building blocks, modifying dispatch loops, etc. A dispatch
loop provides the "glue" that combines building blocks to create a meaningful application

• Chapter 9, “Routing Table and L2 Table” provides reference information for the routing table
and the L2 table. Information about populating the routing table to conduct IPv4 and IPv6 ping
tests between your development host and an Intel® IXDP2400 Advanced Development
Platform is also included.

• Chapter 8, “Using Resource Manager for Linux” discusses how to build the Resource Manager
loadable modules for the Linux kernel.

• Appendix A, “IXDP2401 Application Tutorial” provides procedures for running and
debugging an example application on the Intel® IXDP 2401 Advanced Development Platform.

1.3 Other Sources of Information

This manual is part of the Intel® Internet Exchange Architecture Software Development Kit
documentation set, which also includes the following documents:

Note: There are two index.htm files on the CD. One provides a description of the Intel® IXA SDK
Software Framework documentation. The other provides a description of the CP-PDK
documentation. Refer to both for a complete description of all of the documentation on the Intel®
IXA SDK Software Framework CD.

• Intel® IXA Portability Framework: Reference Manual

• Intel® IXA Portability Framework: Developer’s Manual

• Intel® Internet Exchange Architecture (IXA) Software Building Blocks Developer’s Manual

• Intel® Internet Exchange Architecture (IXA) Software Building Blocks Reference Manual

• Intel ® Internet Exchange Architecture (IXA) Software Building Blocks Applications Design
Guide

• Intel® IXA SDK Software Framework Release Notes

Intel IXA® SDK Software Framework Getting Started Guide 9

Overview 2

This chapter begins with a brief overview of the Intel® Internet Exchange Architecture (IXA)
Portability Framework and provides a tour of certain key directories installed with the Intel® IXA
SDK. This overview provides a foundation for understanding the following concepts:

• Applications written with the Intel® Internet Exchange Architecture Software Portability
Framework

• Microblocks

• Combining microblocks to form an application

2.1 Portability Framework Overview

The Intel® IXA Portability Framework comprises a software infrastructure for writing modular
and portable code for network applications for use in VxWorks and Linux configurations. The
Intel® IXA Portability Framework provides the following advantages:

• Application development is accelerated due to the infrastructure libraries provided for
commonly used functions

• Development of high performance applications is supported by including sample applications
running at data rates ranging from OC-12 to OC-192

• Code re-use allows users to leverage their development effort over multiple implementations

• Defined structures provide portability across the IXP2XXX product line architecture

For more details on the Intel® IXA Portability Framework, refer to the Intel® IXA Portability
Framework: Developer’s Manual.

With the tools provided by the Tools CD of the SDK, you can start to develop applications.
Performance-critical portions of applications run on the data plane, handling processing and
forwarding of packets at high speed. The data plane consists of two kinds of processing:

• fast path processing running on the MEv2 microengines

• slow path processing running on the Intel XScale® core

This chapter focuses on coding for the fast path, using an approach that divides fast path processing
into logical networking functions called microblocks. A microblock is a macro or Microengine C
function written using low-level libraries and an infrastructure optimized for fast packet
processing. Microblocks are different from generic macros, because they have a state associated
with them and they operate in a coarse-grain fashion. The libraries and infrastructure enable you to
write microblocks that are independent of each other. This independence improves reusability and
enables you to combine microblocks in different ways to create many applications, each
application precisely fulfilling a particular requirement.

10 Intel IXA® SDK Software Framework Getting Started Guide

Overview

2.2 SDK Software Framework in General

With the applications provided by the Software Framework CD of the SDK, you can start
examining how microblocks are organized in an application. To start looking at the organization of
an application, first consider how its files are organized into the \src directory of the overall SDK
directory structure. The \src directory is located as follows:

• Windows 2000* or Windows XP* development host: <install drive>: IXA_SDK_3.5\src

• Linux Red Hat 7.3 development host: /opt/ixa_sdk_3.5/src

Table 2-1 describes the subdirectories of the src directory.

This chapter will focus on the applications, building_blocks, and library
subdirectories of the src directory.

Table 2-1. src Subdirectory Descriptions

Directory Description

applications

Contains application-specific files in subdirectories named for a data plane application.
Also, some applications are written in both Microengine C and microcode. Where
applicable, the subdirectory wbench_c_project contains files for a Microengine C
application, and the subdirectory wbench_project contains files for a microcode
application.

building_blocks

Contains subdirectories for the pre-written modules or microblocks that are shared across
applications. Microengine C files are identified by the .c suffix, located in subdirectory
named microc. Microcode files have a .uc suffix and are located in a subdirectory named
microcode. For both types of microblock files, there are .h files organized under the
specific application directories.

cp_pdk

Contains the Control Plane Platform Development Kit, which provides the tools necessary
to connect core components through standardized interfaces. For more information, refer
to the CP-PDK Document Index, \documentation\Software-Framework\CP-
PDK\index.htm.
NOTE: The CP-PDK supports the Intel® IXDP2400 Advanced Development Platform

hardware only.

EXAMPLES
Consists of a list of example code written primarily to demonstrate programming concepts
and new features in the hardware. These examples provide simple illustrations of these
concepts and new features.

framework Contains the files for the core component infrastructure, which are used by the
components running on the Intel XScale® core.

include Contains the common include files.

library

Contains the utility functions or macros commonly used by building blocks and
applications�for example, functions for hash table access, CRC computation, endian
swaps, and other low-level tasks. Also, this folder contains microblock libraries used for
buffer and meta data management.

utilities Provides command line functions to create route entries through the WindRiver* VxWorks
shell.

workspace Contains WindRiver* Tornado workspace files for building the entire system: a base project
for each module to inherit, project files for each module, and several make-support files.

Intel IXA® SDK Software Framework Getting Started Guide 11

Overview

2.3 Understanding the Directories

This section will help you understand some of the directories installed by the Software Framework
CD of the Intel® IXA SDK, including the directory structure, the content, and the rules and
rationales.

The directory structure is organized in such a way that the application code is in project directories
while the basic building blocks common to several projects are in a separate, parallel directory
structure. The applications and building blocks are explained in the following subsections.

2.3.1 Applications Directory

The applications are in the directory IXA_SDK_3.5\src\applications with subdirectories
identifying the application. For the IPV4 forwarder on POS media at OC-48 on an ingress
processor example application, the path is as follows:

• Windows*: <install drive>:
\ixa_sdk_3.5\src\applications\ipv4_forwarder\oc48_pos\ingress

• Linux Red Hat*: opt/ixa_sdk_3.5/src/applications/ipv4_forwarder/
oc48_pos/ingress

For Windows*, there are two project-specific subdirectories: wbench_c_project, written in
Microengine C, and wbench_project, written in microcode. In this chapter, we will
concentrate on the Microengine C application. The contents of the wbench_c_project
directory are:

2.3.2 Building Blocks Directory

The building blocks (microblocks) are installed in separate directories under the
IXA_SDK_3.5\src\building_blocks (for Windows*) or opt/ixa_sdk_3.5)/src/
building_blocks (for Linux) directory. Microblocks are written in Microengine C or microcode.
Each of the microblocks implements a specific set of functions. A typical application consists of
more than one microblock combined together to form an application. Imagine microblocks, in the
organization of the Intel® IXA Portability Framework, as a set of “building blocks” that are
available for many applications.

Directory Description

dispatch_loop

Source files that contain the dispatch_loop implementation. The
dispatch loop combines one or more microblocks on a microengine
and implements the data flow between them. It caches commonly
used variables in registers or local memory.

list
Output of the build, mainly the .list files generated during assembly
and compilation. When compiling Microengine C files, the list
directory also contains .obj files.

log Essentially the log of packets at receive and after transmit. These
are useful to verify if the program is functioning correctly.

scripts Script .ind files used in system set up, configuration, setting up
route tables, and similar tasks

streams Packet streams to send as input to the project

oc48_pos_ipv4_ingress.dwp Workbench project file (Windows* only)

12 Intel IXA® SDK Software Framework Getting Started Guide

Overview

The microblocks are modular and independent of other microblocks; under these conditions, they
can be re-used to build different applications. For example, the ipv4 microblock used in the
oc48_pos_diffserv_ingress application can also be used in the oc48_pos_ipv4_ingress application.
Re-use in a number of applications is possible. For more details on building blocks, refer to the
Intel® Internet Exchange Architecture Software Building Blocks Developer’s Manual.

2.3.3 Library Directory

The Intel® IXA Portability framework provides an extensive set of low-level functions written in
Microengine C or microcode. These functions are optimized for high performance and minimal
code space utilization. You can use these library functions directly to create microblocks that are
easy to read, understand, and maintain. The IXA_SDK_3.5\src\library (for Windows*)
or opt/ixa_sdk_3.5)/src/library (for Linux) directory contains the following subdirectories:

Directory Description

dataplane_library

Contains the low-level functions which can be used to perform operations
such as byte_field decrement, creating buffer descriptor freelist, verifying
ipv4 header checksum, and similar low-level tasks. All the functions written
in Microengine C are prefixed with ixp_.

microblocks_library Contains libraries specific to building microblocks, for example, buffer and
metadata management.

xscale
Contains libraries to run core components running on the Intel XScale®
core, for example, fragmentation, route table manager, and L2 table
manager.

Intel IXA® SDK Software Framework Getting Started Guide 13

Running Applications on the Developer
Workbench Simulator 3

This chapter provides procedural information for running an example application (4 Gigabit
Ethernet IPv4 Forwarding Ingress) on the Developer Workbench simulator. The procedures
included in this chapter are designed to clarify the following:

• where the sample applications are located after the Intel® IXA SDK Software Framework CD
is installed

• which settings are required to run example applications in simulation mode

• some of the Developer Workbench features

Use the following procedure to run the 4 Gigabit Ethernet IPv4 Forwarding Ingress application on
the Developer Workbench simulator:

1. Launch the Developer Workbench from the Windows* Start menu (Start> Programs> IXA
SDK 3.5> DevWorkbench).

2. From the Developer Workbench Menu toolbar, select File> Open Project...

3. A Dialog box appears. Navigate to <install drive>:\
IXA_SDK_3.5\src\applications\ipv4_forwarder\4gb_ethernet\ingress\wbench_project\
4gb_ethernet_ipv4_ingress.dwp.

Note: The .dwp file extension is used for Developer Workbench project files. The .dwp file contains
contains project-specific information, including locations of the source/header/script files,
compiler/assembler build settings, project level # define statements and assignments of blocks of
microcode to microengines.

4. Click Open to open the Developer Workbench project.

5.

6. Since the 4 Gigabit Ethernet IPv4 Forwarding Ingress application is written in microcode
(instead of Microengine C), all of the source code files can be found under the Assembler
Source Files folder as shown in the figure below. Click on any one of the files within this
folder to view the source code

7. After the project file has been opened, you must set the project build settings for simulation
mode. From the Developer Workbench Menu toolbar, select Build> Settings...

14 Intel IXA® SDK Software Framework Getting Started Guide

Running Applications on the Developer Workbench Simulator

8. The Build Settings window appears. Under the General tab, verify that the Preprocessor
definitions (common to all microengines) text box contains IXP_SIMULATION. The
IXP_SIMULATION flag is used in the source code to establish the correct settings for running
the application on hardware versus in simulation mode (on the Developer Workbench
transactor).

9. After making changes to the project, you can build the project by selecting Build> Build from
the Developer Workbench Menu toolbar. Alternatively, you can press the F7 key. You can re-
build the project completely by selecting Build> Rebuild from the Developer Workbench
Menu toolbar (you can also use the Alt+F7 key combination).

10. After the project has been built without any errors, you must configure the simulation settings.
To run the application in simulation mode, select Debug> Simulation from the Developer
Workbench Menu toolbar.

11. You can then select Simulation> Options... from the Developer Workbench Menu toolbar to
customize the project settings.

For example, on the History tab, you can choose to collect thread, reference and queue
histories during simulation. See the Developer’s Tools User Guide for more information about
these debugging features.

12. You must then click either the Debug button or select Debug> Start Debugging from the
Developer Workbench Menu toolbar to initialize the simulator. The simulator can run a
number of startup scripts at initialization, such as initializing areas of memory or tables. You
can specify these startup scripts on the Startup tab that appears when you select Simulation>
Options... from the Developer Workbench Menu toolbar. Each Developer Workbench
application on the Intel® IXA SDK includes the appropriate startup scripts.

13. Click the Go button or select Debug>Run Control>Go from the Developer Workbench Menu
toolbar to start the application in simulation mode.

14. To view the status of packets/cells that are transferred over the IXP2XXX media interface,
either click the Packet Simulation Status button or select View> Debug Windows> Packet
Simulation Status from the Developer Workbench Menu toolbar. The window that appears
shows the data rates, packet received/transmitted counts etc:

15. Click the Options button shown in the Simulation Status (shown above) window to specify the
rate at which the data within this window is updated. You can also determine the type of data
that is displayed.

16. Either click the Stop button or select Debug> Run Control> Stop from the Developer
Workbench Menu toolbar to stop the application.

Intel IXA® SDK Software Framework Getting Started Guide 15

Running Applications on the Developer Workbench Simulator

17. Use the Debug> Breakpoint option from the Developer Workbench Menu toolbar to set
breakpoints in the code. Alternatively, you can right-click on a line of code within any of the
microengine threads to set up breakpoints.

18. You can then select Simulation from the Developer Workbench Menu toolbar to specify
individual data streams for the simulator. Each Developer Workbench application includes a
set of data streams to be fed into the simulator. However, these data streams can be modified or
new ones added.

16 Intel IXA® SDK Software Framework Getting Started Guide

Running Applications on the Developer Workbench Simulator

Intel IXA® SDK Software Framework Getting Started Guide 17

Running Applications on Hardware 4

This chapter provides procedural information for running example applications on the Intel®
IXDP2400 Advanced Development Platform (with 4GbEth I/O option card) using core
components. Procedural information is provided for both VxWorks and Linux systems.

Note: For information about running example applications on the hardware without using core
components, refer to the readme files in sub-directories of the IXA_SDK_3.5\src\EXAMPLES\
directory.

4.1 Connecting to a Packet Generator

Before you run any of the example applications included in this chapter, you will need to use fiber
optic cables to connect both the Rx and Tx ports of the development platform to a packet generator.
Connect the packet generator�s Rx port with the platform�s Tx port. Connect the platform�s Rx port
with the packet generator�s Tx port.

Note: If you are using the Advanced Development Platform’s copper Ethernet ports, refer to section
Section 4.4, “Using the Advanced Development Platform’s Copper Ethernet Ports” on page 30.

4.2 Windows 2000/XP with VxWorks Systems

This section provides procedural information for running an IPv4 forwarding application on an
Ethernet pipeline within a Windows 2000 system. Before following the procedures outlined in this
section, you must use the procedures in the Intel® Internet Exchange Architecture Software
Development Kit Tools Installation Guide to set up your system with the following:

� Tornado* 2.2 or later software

� running FTP server

� HyperTerminals for the Ingress and Egress NPUs

� target servers for both the Ingress and Egress NPUs

Note: Before following the procedures in this chapter, ensure that the Tornado 2.2.1 system variable
is set correctly. This is done as follows:

a. In the WIND_BASE directory (e.g: c:\\Tornado2.2.1), run torvars.bat to set the path and envi-
ronment variables.

b. Select My Computer--> Properties-->Advanced --> Environment Variables

c. At the top window, click New. A New User and System Variable window appears, enter the
following settings:

Variable Name: Path

Variable Value: C:\\Tornado2.2.1\\host\\x86-win32\\bin

18 Intel IXA® SDK Software Framework Getting Started Guide

Running Applications on Hardware

4.2.1 IPv4 Forwarding Application on Hardware Using Core
Components

Use the following procedure to run the example IPv4 forwarding application on an Ethernet
pipeline:

1. Connect the packet generator to Port 0 of the Intel® IXDP2400 Advanced Development
Platform.

2. Launch the Developer�s Workbench (Start>Programs>IXA_ SDK 3.5>DevWorkbench)

3. From the File menu, select Open Project....

4. Open the Developer�s Workbench project for the Egress NPU. It is located at
IXA_SDK_3.5\src\applications\ipv4_forwarder\4gb_ethernet\egress\wbench_project\4g
b_ethernet_ipv4_egress.dwp.

5. On a Windows machine, you will need to build uof files for the Egress and Ingress side. Open
the Developers' Workbench and open the project 4gb_ethernet_ipv4_egress.dwp under
IXA_SDK_3.5/src/applications/ipv4_forwarder/4gb_ethernet/egress/wbench_project and
build the uof file.

Open the ingress project (4gb_ethernet_ipv4_ingress.dwp) under IXA_SDK_3.5/src/
applications/ipv4_forwarder/4gb_ethernet/ingress/wbench_project and build the uof file.
You will need to copy these two uof files onto the Linux distribution directory, which is /opt/
xscale_be_test/linux_kernel/xscale_be/ixp2400 in case of release build and /opt/
xscale_be_test/linux_kernel/xscale_be/ixp2400/debug in case of the debug build.

6. Go to the Build menu in the Developer�s Workbench and select Settings.... Under
Preprocessor definitions, remove IXP_SIMULATION and add USE_IMPORT_VAR.

7. Click OK.

8. Return to the Build menu and select Rebuild. This will create a microcode image file for the
Egress.

9. Open the Developer�s Workbench project (in the same Developer�s Workbench instance) for
Ingress NPU located at
IXA_SDK_3.5\src\applications\ipv4_forwarder\4gb_ethernet\ingress\wbench_project\4g
b_ethernet_ipv4_ingress.dwp.

10. Go to the Build menu in the Developer�s Workbench and select Settings.... Under
Preprocessor definitions, remove IXP_SIMULATION and add USE_IMPORT_VAR.

11. Click OK.

12. Return to the Build menu and select Rebuild. This will create a microcode image file for the
Ingress.

13. Open the Tornado* workspace at IXA_SDK_3.5\src\workspace\ixa_sdk_2.2.wsp.

14. Click on the Builds tab in the workspace window. You should look at the
A_oc48_ethernet_egress project. Make sure that the Build type selected for the
A_oc48_ethernet_egress project is "XScalegnube". If you want to run the application in
Debug mode, then right click and select the Build type as "XScalegnube_Debug". Debug
mode will print more information to the screen.

15. Build the A_oc48_ethernet_egress project by right clicking and selecting Rebuild All.

16. In the Tornado* workspace, now look at A_oc48_ethernet_ingress project. Click on the Builds
tab in the workspace window. Make sure that the Build type selected for the
A_oc48_ethernet_ingress project. is "XScalegnube". If you want to run the application in

Intel IXA® SDK Software Framework Getting Started Guide 19

Running Applications on Hardware

Debug mode, then right click and select the Build type as "XScalegnube_Debug". Debug
mode will print more information to the screen.

17. Build the A_oc48_ethernet _ingress project by right clicking and selecting Rebuild All.

18. You can now download the Egress image. Make sure that the name of the Egress target server
is selected in the Tornado* window�s drop down list.

19. Right click on A_oc48_ethernet_egress and select Download A_oc48_ethernet_egress.out.

20. You can now download the Ingress image. Make sure that the name of the Ingress target server
is selected in the Tornado* window�s drop down list.

21. Right click on A_oc48_ethernet_ingress and select Download A_oc48_ethernet_ingress.
out.

22. Start the system application on Egress by running "_ix_sa_entry 1" on the Egress shell. The
Link LED on the platform should go on. Up to this point, the Error LED should have been lit.

23. The system application prints "Started all the microengines". Start the system application on
the Ingress by running "_ix_sa_entry 0" on the Ingress shell.

24. The system application prints "Started all the microengines". Both the Ingress and Egress
shells should no longer be usable.

25. Open two more shells, one Egress and one Ingress.

26. If you want to send packets through the system, then configure the packet generator to send
packets out with a particular destination IPv4 address. For example, you can setup route table
entries as shown below to send packets with a destination address of 32.0.0.1:
On the Ingress shell, add these routes:
addNextHop "20 1 1 0 9180 0 20.0.0.2 0"
addRoute "32.0.0.1 255.255.255.255 20"

Refer to Section 9.1, �Routing Table� on page 65 for more information about populating the
Routing Table.

27. On the Egress shell, add L2 table entries by typing the following command:
addV4EthEntry "1 20.0.0.2 oa:0b:0c:0d:0e:02 0a:0b:0c:0d:0e:01 DEFAULT"

Refer to Section 9.2, �L2 Table� on page 68 for more information about populating the L2
Table.
Refer to Section 9.2.1, �Layer 2 Table Manager� on page 68 for more information about L2
Table Manager commands.

28. Set up the packet generator to send IPv4 packets with destination address 32.0.0.1 (source
address, source/destination MAC address can be anything).
Note: To make it easy to view, make sure you do not send a burst, instead set the packet
generator up to send one packet at a time.

29. Send the packets. The first packet usually doesn�t go through, but subsequent packets should
be received. When you send a 64-byte packet, it should go through a microblock pipeline and
should be received at the packet generator.

4.3 Red Hat/Monta Vista Linux Systems

This section provides procedural information for running IPv4 and IPv6 forwarding applications
on an Ethernet pipeline within a Linux system.

20 Intel IXA® SDK Software Framework Getting Started Guide

Running Applications on Hardware

4.3.1 Setting up Linux Minicom for Egress and Ingress NPUs

This section provides procedural information for initiating a minicom session between the Linux
development host and the Advanced Development Platform’s Egress/Ingress NPUs.

1. Verify that the following Red Hat* 7.3 packages are installed on the development host:

a. DHCP server package (dhcp-2.0pl5-8.i386.rpm). To check if the package is already installed,
issue the following command from the shell prompt:
hostpc# rpm -qa |grep dhcp

If the DHCP server package is not installed, then insert Red Hat 7.3 CD #2, mount the CD-
ROM drive and type the following command from the shell prompt:
hostpc# rpm -i /mnt/cdrom/redhat/RPMS/dhcp-2.0p15-8.i386.rpm

b. TFTP server package (tftp-server-0.28-2.i386.rpm). To check if the package is already
installed, issue the following command from the shell prompt:
hostpc# rpm -qa |grep tftp

If the TFTP server package is not installed, then insert the Red Hat 7.3 CD #3, mount the CD-
ROM drive and type the following command from the shell prompt:
hostpc# rpm -i /mnt/cdrom/redhat/RPMS/tftp-server-0.28-2.i386.rpm

After you install the TFTP server package, you must create a /tftpboot directory. Enter the
following command:
hostpc# mkdir /tftpboot

2. Install the Monta Vista* software with the latest patches. Refer to the Monta Vista
documentation for installation information.

3. Add the following lines to /etc/exports to export the root file system:
/opt/hardhat/devkit/arm/xscale_be/target*(rw,no_root_squash,no_all_squash)
 /opt/xscale_be_test/linux_kernel/xscale_be *(rw,no_root_squash,no_all_squash)

a. Use the following command to restart NFS:
hostpc# /etc/rc.d/init.d/nfs restart

b. Enter the following command to verify that the root file system export is present:
hostpc# exportfs
/opt/hardhat/devkit/arm/xscale_be/target *

4. Copy the Linux kernel image (zImage) to the /tftboot directory with the following command:
hostpc# cp zImage /tftpboot

5. Ensure that the tftp protocol is enabled in the /etc/xinetd.d/tftp file. If required, change
disable=yes to disable=no.

6. Perform a soft reboot on the Advanced Development Platform and restart minicom for both
Egress and Ingress. Type the following command at the Master Redboot prompt:
Master-Redboot> cfg read -n 1
Determine the IP addresses for both the Master and Slave Ethernet interfaces. Ensure that the
development host and the target interfaces reside on the same subnet.

7. Set the correct MAC address in /etc/dhcpd.conf as follows:

 subnet 10.3.31.0 netmask 255.255.255.0 {
 }
 subnet 10.10.10.0 netmask 255.255.255.0 {
 host master {

Intel IXA® SDK Software Framework Getting Started Guide 21

Running Applications on Hardware

 hardware Ethernet 00:90:d7:00:11:1f;
 fixed-address 10.10.10.1;
 option root-path “/opt/hardhat/devkit/arm/xscale_be/target”;
 }
 host slave {
 hardware Ethernet 00:90:d7:00:11:20;
 fixed-address 10.10.10.2;
 option root-path “/opt/hardhat/devkit/arm/xscale_be/target”;
 }
}

8. Run the following command to start inetd on the development host:
hostpc# /etc/rc.d/init.d/xinetd restart

9. Issue the following command on the Egress side:
Master-Redboot> load -r -b 0x1c208000 zImage

10. Use the following command to boot Linux:
Master-Redboot> go 0x1c208000

11. Linux should boot up and display the login prompt. Login as root, without any password.

12. Repeat steps 10 and 11 on the Ingress side.

13. To NFS mount a particular directory on the target, type the following command:
mount -o vers=2 10.10.10.10:/opt/xscale_be_test/linux_kernel/xscale_be /mnt

Note: Once you have setup minicom for Egress and Ingress, you can use the automated scripts located in
opt/ixa_sdk_3.5/src/utilities/linux_setup_minicom directory to launch minicom for the
Egress and Ingress. Copy the following scripts from the opt/ixa_sdk_3.5/src/utilities/
linux_setup_minicom directory to the /minicom directory:

• bootixp.egress

• bootixp.ingress

• start.egress

• start.ingress

You can customize the start.egress and start.ingress scripts based on the IP addresses for your
development host and target.

After the scripts have been copied, you can launch minicom for egress by running ./bootixp.egress
and launch minicom for ingress by running ./bootixp.ingress.

4.3.2 IPv4 Forwarding Application on an Intel® IXDP2400 Using
Core Components

Use the following procedure to run the example IPv4 forwarding application on an Ethernet
pipeline:

1. Set the following environment variables on the Linux host:
export IXA_SDK_DEV=/opt/ixa_sdk_3.5
export PATH=$PATH:/opt/hardhat/devkit/arm/xscale_be/bin
export IXP2XXX_TOOLCHAIN_ROOT=/opt/hardhat/devkit/arm/xscale_be
export IXP2400_KERNEL_SOURCE_ROOT=/opt/hardhat/devkit/lsp/intel-ixdp2400-
arm_xscale_be/linux-2.4.18_mvl30

22 Intel IXA® SDK Software Framework Getting Started Guide

Running Applications on Hardware

Refer to Chapter 8, “Using Resource Manager for Linux” for more information about Linux
environment variables.

2. To build the Egress side application, go to $(IXA_SDK_DEV)/src/applications/
ipv4_forwarder/4gb_ethernet/egress directory and type the following commands:
make -f Makefile.linux_kernel clean
make -f Makefile.linux_kernel

3. To build the Ingress side application, go to $(IXA_SDK_DEV)/src/applications/
ipv4_forwarder/4gb_Ethernet/ingress directory and type the following commands:
make -f Makefile.linux_kernel clean
make -f Makefile.linux_kernel
Note: The command issued in step 2 will also copy the relevant modules to the /opt/
xscale_be_test/linux_kernel/xscale_be directory that has been mounted on the target as /mnt.

4. Copy halMeDrv.o, halMev2_lib.o, libossl.o and uclo_lib.o from $(IXA_SDK_DEV)/
me_tools/bin_linux_kernel_be to the distribution directory (/opt/xscale_be_test/
linux_kernel/xscale_be/ixp2400/debug in case of debug build and /opt/xscale_be_test/
linux_kernel/xscale_be/ixp2400 in case of release build).

5. Copy the following scripts from the $(IXA_SDK_DEV)/src/utilities/run_app directory to
/opt/xscale_be_test/linux_kernel/xscale_be/ixp2400/debug in case of debug build and to
/opt/xscale_be_test/linux_kernel/xscale_be/ixp2400 directory in case of release build:

• startegress.sh

• startingress.sh

• stopegress.sh

• stopingress.sh

6. Launch minicom for Egress and Ingress. (Refer to section Section 4.3.1, “Setting up Linux
Minicom for Egress and Ingress NPUs” on page 20 for more information.)

7. Type one of the following commands on the Egress minicom prompt:
cd /mnt/ixp2400/debug (for debug build)
cd /mnt/ixp2400 (for release build)

8. Run the following command, again at the Egress prompt:
./startegress.sh
This loads all the required Linux kernel modules.

9. A message will appear that reminds you to create the following device nodes on the Egress
side:
mknod /dev/saUtil c 254 0 (this is required to run the system application)
mknod /dev/L2Config c 252 0 (this is required to run the L2 configuration utility)

10. Run the following command to start the system application on the Egress side:
./sa start 1
Note: After the “Started All microengines” message appears, this shell will not be usable. You
must telnet into the Egress IP address to start another shell.

11. On the minicom for Ingress, enter the following command:
cd /mnt/ixp2400/debug (for debug build)
cd /mnt/ixp2400 (for release build)

12. Run the following command:
./startingress.sh
This will load all the required modules on the Ingress side.

Intel IXA® SDK Software Framework Getting Started Guide 23

Running Applications on Hardware

13. A message will remind you to create the following device nodes on the Egress side:
mknod /dev/SaUtil c 254 0 (this is required by the system application)
mknod /dev/RConfig c 253 0 (this is required to run the Route configuration utility)

14. Run the following command to start the system application on the Ingress side:
./sa start 0

15. Add the route to the routing table on the Ingress side by entering the following:
./rconfig addNextHop “9 1 1 0 1500 0 10.10.10.5 0”
./rconfig addRoute “32.0.0.1 255.255.255.255 9”

16. Add the L2 table entry on the Egress side as follows:
./l2config addV4EthEntry “1 10.10.10.5 01:02:03:04:05:06 0a:0b:0c:0d:0e:0f
DEFAULT”

After you have connected port 0 of the IXP2400 to port 0 of the packet generator, send a packet
with IP address 32.0.0.1. This will be forwarded and received by the packet generator.

4.3.3 IPv6 Forwarding Application on an Intel® IXDP2400 Using
Core Components

This section provides procedural information for running an IPv6 forwarding, NATPT and IPv6-v4
tunneling application on an Ethernet pipeline. Before following the procedures in this section, you
must use the procedures in the Intel® Internet Exchange Architecture Software Development Kit
Tools Installation Guide to configure your system with the following:

• MontaVista Linux 3.0, Professional Edition* with latest patches

• start NFS by entering the following command:

/etc/rc.d/init.d/nfs start

• start the xinetd daemon by issuing the following command:

/etc/rc.d/init.d/xinetd start

• start the dhcpd daemon by issuing the following command:

/etc/rc.d/init.d/dhcpd start

• start minicom sessions for the egress and ingress target NPUs

Note: If you are using the Advanced Development Platform’s copper Ethernet ports, refer to Section 4.4,
“Using the Advanced Development Platform’s Copper Ethernet Ports” on page 30.

Use the following procedure to run an IPv6 forwarding, NATPT and IPv6-v4 tunneling application
on an Ethernet pipeline:

1. Set the following environment variables on the Linux development host:

export IXA_SDK_DEV=/opt/ixa_sdk_3.5
export PATH=$PATH:/opt/hardhat/devkit/arm/xscale_be/bin
export IXP2XXX_TOOLCHAIN_ROOT=/opt/hardhat/devkit/arm/xscale_be
export IXP2400_KERNEL_SOURCE_ROOT=/opt/hardhat/devkit/lsp/intel-ixdp2400-
arm_xscale_be/linux-2.4.18_mvl130
Refer to Chapter 8, “Using Resource Manager for Linux” for information about Linux
environment variables.

2. Connect a packet generator to Port 0 of the Intel® IXDP2400 Advanced Development
Platform.

24 Intel IXA® SDK Software Framework Getting Started Guide

Running Applications on Hardware

3. Open the Makefile for the ingress NPU located at
IXA_SDK_3.5\src\applications\ipv4_v6_forwarder\4gb_ethernet\ingress\wbench_projec
t and use the USE_IMPORT_VAR to change the IXP_SIMULATION flag.

4. Generate the microcode image file for the ingress NPU by running the following:

make -f Makefile

5. Open the Makefile for the egress NPU located at
IXA_SDK_3.5\src\applications\ipv4_forwarder\4gb_ethernet\egress\wbench_project and
use the USE_IMPORT_VAR to change the IXP_SIMULATION flag.

6. Generate the microcode image file for the egress NPU by running the following:

make -f Makefile

7. Build and generate all necessary modules required for the IPv6 ingress application by
executing the following commands in the directory /opt/IXA_SDK_3.5/src/applications/
ipv4_v6_forwarder/4gb_ethernet/ingress:

make -f Makefile.linux_kernel clean
make -f Makefile.linux_kernel

8. Build and generate all necessary moduled required for the IPv4 egress application by
executing the following commands in the directory /opt/IXA_SDK_3.5/src/applications/
ipv4_forwarder/4gb_ethernet/egress:

make -f Makefile.linux_kernel clean
make -f Makefile.linux_kernel

9. Mount the host distribution directory by entering the following command at the ingress and
egress minicom prompts:

mount -o vers=2
<hostIpAddress>:/opt/xscale_be_test/linux_kernel/xscale_be/ixp2400/debug /mnt
opt/xscale_be_test/linux_kernel/xscale_be/ixp2400/debug is the distribution directory
where modules and script files are available. The host IP address and distribution directory are
user defined.

10. Insert all related modules at egress by running the startegress.sh script. This script inserts all
related modules for the egress NPU.

11. A message appears that reminds you to create the following device nodes on the egress NPU:

mknod /dev/saUtil c 254 0 (this is required to run the system application)

mknod /dev/L2Config c 252 0 (this is required to run the L2 configuration utility)

12. Insert all related modules at ingress by executing the start6ingress.sh script. This script inserts
all related modules for the ingress NPU.

13. A message appears that reminds you to create the following device nodes on the ingress side:

mknod /dev/saUtil c 254 0 (this is required to run the system application)

mknod /dev/RConfig c 253 0 (this is required to run the route configuration utility)

mknod /dev/NatptConfig c 240 0 (this is required to run the NATPT configuration utility)

mknod /dev/TunnelConfig c 241 0 (this is required to run the TUNNEL configuration utility)

14. Start the system application on the egress NPU by executing the following command at the
egress prompt:

./sa start 1

The link LED on the advanced development platform should go on. Until this point, the Error
LED should have been lit.

Intel IXA® SDK Software Framework Getting Started Guide 25

Running Applications on Hardware

15. The system application outputs the following message:

Started all microengines.
Add a default L2 table entry at the egress prompt. Use the reserved L2 Index 100 as follows:

./l2config addV6EthEntry “100 ff00::0 0a:0b:0c:0d:0e:02 0a:0b:0c:0d:0e:01

This is required for auto address configuration to work properly. Refer to Chapter 9, “Routing
Table and L2 Table” for more information about L2 table manager commands.

16. Start the system application on the ingress NPU by running the following command at the
ingress prompt:

./sa start 2

17. To send packets through the system, configure the packet generator to send packets out with a
particular IPv6 destination address. For example, you can setup route table entries as shown
below to send packets with a destination address of 3ffe:0:100:f102::fe0d:0e0f:

On the ingress shell, add these routes:

./rconfig addNextHopV6 “4 1 2 1 1500 0 0”

./rconfig addRouteV6 “3ffe:0:100:f102::fe0d:0e0f 64 4
On the egress shell, add L2 table entries:

/l2config addV6EthEntry “23ffe:0:100:f102::fe0d:0e0f 00:07:e9:ad:5c:e4
0b:0c:0d:0e:0f:0a DEFAULT”

18. Set up the packet generator to send IPv6 packets with destination address of
3ffe:0:100:f102::fe0d:0d0f

Note: Source address, source/destination MAC address can be set to anything. To make viewing easier,
do not send a burst. Instead, set the packet generator to send one packet at a time.

4.3.4 10x1GB IPv4/v6 Forwarding Application on Intel® IXDP2800
Using Core Components

This section provides procedural information for running an IPv4/v6 forwarding application on an
Intel® IXDP2800 10x1GB Advanced Development platform.

Use the following procedure to run an IPv4/v6 10x1GB forwarding application on an Ethernet
pipeline:

1. Set up the Linux development host. Refer to the steps described in section Section 4.3, “Red
Hat/Monta Vista Linux Systems” on page 19 for the information about how to install, load and
launch the Linux image. These include:

— install MontaVista Linux 3.0 and any patches

— install Intel® IXDP2800 Linux Support Package

— re-build Linux kernel image (zImage)

— Host IP Setup

— TFTP Server (TFTPD) Setup

— DHCP Server (DHCPD) Setup

— NFS Server (NFSD) Setup

2. Setup the minicom console sessions:

26 Intel IXA® SDK Software Framework Getting Started Guide

Running Applications on Hardware

To connect the serial ports from the Intel® IXDP2800 Advanced Development platform to
your PC, use the serial connectors provided with the platform.

On the Linux host system, launch minicom and setup two console sessions: one for Ingress
and one for Egress. Settings are as follows:

— Baud Rate to 9600

— 8 data bits

— No Parity

— 1 Stop bit

— Flow controls set to None.

3. Re-build the Linux kernel with IPv6 support:

To support IPv6, the Linux kernel image needs to be re-built with IPv6 enabled. To do this,
follow the steps below after you have installed MVL 3.0 for the Intel® IXDP2800:

a. Go to the MontaVista* web site, MVzone, to get the ipv6_symbols.patch
(www.mvista.com).

b. On your Linux host, cd to the IXDP2800 LSP directory and copy the patch to this directory:
hostpc# cd /opt/hardhat/devkit/lsp/intel-ixdp2800-arm_xscale_be/linux-
2.4.18_mvl30

c. Export PATH for armtoolchain as follows:
hostpc# export PATH=$PATH:/opt/hardhat/devkit/arm/xscale_be/bin:

d. Apply the patch:
hostpc# patch -p1 < ipv6_symbols.patch

e. Enable the IPv6 in the LSP configuration file and re-build the kernel:
hostpc# make distclean
hostpc# make ixdp2800_config

f. Run xconfig GUI software to enable IPv6 in the configuration file:
hostpc# make xconfig

g. A Linux Kernel Configuration window will appear. Select the Networking Options
button.

h. Scroll down and on the item called The IPv6 protocol (EXPERIMENTAL).

i. Check the y box.

j. Click the Main Menu button.

k. Click Save and Exit button.

l. Continue with the following commands:
hostpc# make oldconfig

hostpc# make dep

hostpc# make zImage

m. When the build process finishes, a new compressed kernel image with IPv6 support is gener-
ated in /opt/hardhat/devkit/lsp/intel-ixdp2800-arm_xscale_be/linux-2.4.18_mvl30/arch/
arm/boot/zImage. Copy the zImage to the tftp boot directory:

hostpc# cp /opt/hardhat/devkit/lsp/intel-ixdp2800-arm_xscale_be/linux-
2.4.18_mvl30/arch/arm/boot/zImage /tftpboot/

4. Launch the Intel® IXDP2800 Advanced Development Platform Ingress and Egress
Processors:

Intel IXA® SDK Software Framework Getting Started Guide 27

Running Applications on Hardware

a. Power up the Intel® IXDP2800 Advanced Development Platform. Type the following
command in the Egress and Ingress minicom consoles:

>Egress> load \\<Host IP>\zImage 0x01008000
>Ingress> load \\<Host IP>\zImage 0x01008000

where <Host IP> is the IP address of the host system and zImage is the Linux kernel image.

b. Enter the following at the Ingress prompt:
>Ingress> launch 0x01008000

c. Enter the following at the Egress prompt:
>Egress> launch 0x01008000

Note: The launch command must be entered on the Ingress first so that the proper PCI initialization
occurs.

d. Both Egress and Ingress processors should boot to the Monta Vista Linux 3.0 login prompt.
You may now login to your target system under username root with no password.

5. Build the Ingress and Egress core components applications:

a. Ensure that the Intel® IXA SDK Tools CD, Intel® IXA SDK Firmware and Drivers CD and
Intel® IXA SDK Software Framework CD are installed on your Linux development host.

b. Define the following environmental variables and path in your Linux development host:
export IXA_SDK_DEV=/opt/ixa_sdk_3.5

export IXP2XXX_TOOLCHAIN_ROOT=/opt/hardhat/devkit/arm/xscale_be

export IXP2800_KERNEL_SOURCE_ROOT=/opt/hardhat/devkit/lsp/intel-ixdp2800-
arm_xscale_be/linux-2.4.18_mvl30

export PATH=$PATH:/opt/hardhat/devkit/arm/xscale_be/bin

c. To build the Ingress core component application, change to the following directory:
/opt/ixa_sdk_3.5/src/applications/ipv4_v6_forwarder/10gb_ethernet/
10x1GbE_ingress

d. Enter the following commands:
$make -f Makefile.linux_kernel clean
$make -f Makefile.linux_kernel

e. To build the Egress core component application, change to the following directory:
/opt/ixa_sdk_3.5/src/applications/ipv4_v6_forwarder/10gb_ethernet/
10x1GbE_egress

f. Enter the following commands:
$make -f Makefile.linux_kernel clean

$make -f Makefile.linux_kernel

Note: The above Ingress and Egress build processes will install all the objects required by the
applications to the distribution directory. This distribution directory is to be NFS-mounted from the
target minicom console later in this procedure. This allows the Egress/Ingress processors to access
the minicom sessions. The default distribution directory is defined as /opt/xscale_be_test/
linux_kernel/scale_be/ixp2800/debug.

6. Build the IPv4/V6 Ingress and Egress microengine images:

a. Install Intel® IXA SDK Tools CD and Intel® IXA SDK Firmware and Drivers CD on a
Windows machine.

b. Launch the Developers Workbench.

28 Intel IXA® SDK Software Framework Getting Started Guide

Running Applications on Hardware

c. Open an Ingress project from the Developers Workbench.
-- Select File -> Open Project
--Select C:\IXA_SDK_3.5\src\applica-
tions\ipv4_v6_forwarder\10gb_ethernet\10x1GbE_ingress\wbench_project\10gb_ethernet_
ingress.dwp
--Under Build->Settings, add USE_IMPORT_VAR in the preprocessor definition box.
--Rebuild the image by selecting Build->Rebuild
--ftp the generated uof file (10gb_ethernet_ixp2800.uof) to the Linux host machine and copy
it to the distribution directory (i.e. /opt/xscale_be_test/linux_kernel/scale_be/ixp2800/
debug).

d. Open the Egress project from the Developers Workbench
-- Select File -> Open project
-- Select C:\IXA_SDK_3.5\src\applica-
tions\ipv4_v6_forwarder\10gb_ethernet\10x1GbE_egress\wbench_project\10x1gb_ethernet
_egress.dwp
--Under Build->Settings, add USE_IMPORT_VAR in the preprocessor definition box.
--Rebuild the image by selecting Build->Rebuild
--ftp the generated uof file (10x1gb_ethernet_egress.uof) to the Linux host machine and copy
it to the distribution directory (i.e. /opt/xscale_be_test/linux_kernel/scale_be/ixp2800/
debug).

7. Run the core component application:

a. On Ingress and Egress minicom windows, type the following command to mount the host
distribution base directory:

mount -o vers=2 10.10.10.10:/opt/xscale_be_test/linux_kernel/xscale_be/mnt
(where 10.10.10.10 is the IP address of the Linux host machine)

b. Go to the distribution directory:
cd /mnt/ixp2800/debug

8. Load the Ingress and Egress application modules by typing the following script commands:
Ingress : ./startingress_2800
Egress : ./startegress_2800

c. Enter the following commands in the order specified:
Ingress : ./sa imi1
Egress : ./sa emi1
Ingress : ./sa imi2
Egress : ./sa emi2
Ingress : ./sa imi3
Egress : ./sa emi3a
Egress : ./sa start 1

d. At this point, the Egress system app prints Started all the microengines and egress minicom
console will freeze. Open a new command terminal from the Linux host machine and from
there, telnet into the Egress target by typing "telnet <Egress IP>". Login to the Egress target
system under username root with no password. Go to the distribution debug directory (i.e. cd
/mnt/ixp2800/debug) and continue to execute the following steps:

Egress : ./sa emi3b
Ingress : ./sa imi4
Egress : ./sa emi4

Repeat the above steps starting from "./sa imi1" if there is a failure at any point. Strict order is
to be maintained between imi1 and emi4 commands.
Ingress : ./sa start 1

Intel IXA® SDK Software Framework Getting Started Guide 29

Running Applications on Hardware

e. At this point, the Ingress system app prints Started all the microengines and ingress
minicom console will be freezed. Open a new command terminal from the Linux host
machine and telnet into the Ingress target by typing "telnet <Ingress IP>". Login to the Ingress
target system under username root with no password. Go to the distribution debug directory
and continue with the next steps for adding route entries and l2 entries.

9. Set IPv4 and IPv6 route tables and L2 table for v4 forwarding or v6 forwarding:

At this point, you may use the commands "./rconfig" and "./l2config" to set up the desired
route table entries on Ingress and l2 entries on Egress for IPv4 or IPv6 data path tests. Please
refer to Chapter 9, “Routing Table and L2 Table”for details on the usage of these utility
commands.

For IPv4 packets, refer to steps a-d. For IPv6 packets, refer to steps e-h.

a. For example, to send IPv4 packets through the system, configure the packet generator to send
packets out with a particular IPv4 destination address. You can setup IPv4 route table as
shown below to send packets with a destination address 141.131.31.1:

b. On the Ingress telnet window, type the following commands:
./rconfig addNextHop "8 2 1 1 1500 0 100.100.100.1 0"
./rconfig addRoute "141.131.31.1 255.255.255.255 8"

c. On the Egress telnet window, type the following command:
./l2config addV4EthEntry "1 100.100.100.1 0a:0b:0c:0e:03:05
08:09:00:0a:0e:01 DEFAULT"

d. setup your packet generator to send IPv4 packets with destination address of 141.131.31.1 to
port 0 of the Intel® IXDP2800 platform. You should get the packet routed back by the system
through port 1.

e. To send IPv6 packets through the system, configure the packet generator to send packets out
with a particular IPv6 destination address. You can setup IPv6 route table as shown below to
send packets with a destination address of 3ffe:5555:6666:6666:7777:7777:8888:8888

f. On the Ingress telnet window, type the following commands:
./rconfig addNextHopV6 "16 2 7 2 1500 0 0"
./rconfig addRouteV6 "3ffe:5555:6666:6666:7777:7777:8888:8888 64 16"

g. On the Egress telnet window, type the following command:
./l2config addV6EthEntry "7 3ffe:5555:6666:6666:7777:7777:8888:8888
0a:0b:0c:0e:03:05 0a:0b:0c:0d:0e:0f DEFAULT"

h. Setup your packet generator to send IPv6 packets with destination address of
3ffe:5555:6666:6666:7777:7777:8888:8888 to port 0 of the IXDP2800 platform. You should
get the packet routed back by the system through port 2.

Note: Source IP address, source/destination MAC addresses can be set to anything. To make viewing
easier, you may set the packet generator to send one packet at a time.

10. Set IPv4 and IPv6 route tables and L2 table for v6/v4 tunneling:

At this point, you may also test the tunneling feature of the system. Use the commands "./
tunnelconfig", "./rconfig" and "./l2config" to enable the tunneling feature and add desired route
entries on Ingress and l2 entries on Egress.

For example, an IPv6 packet can be sent over IPv4 network by encapsulating it in an IPv4
packet. To enable v6/v4 encapsulation in tunneling, you can setup IPv4 and IPv6 route tables
as shown below to send packets with a destination address 3ffe:0:100:f102::fe0d:0e0f

a. On the Ingress telnet window, type the following commands:
./tunnelconfig addStartTunnel "1 2 0 1500 10.0.0.45 0.0.0.0 30 10"
./rconfig addNextHopV6 "3 2 2 2 1500 0 2"

30 Intel IXA® SDK Software Framework Getting Started Guide

Running Applications on Hardware

./rconfig addRouteV6 "3ffe:0:100:f102::fe0d:0e0f 64 3"

./rconfig addNextHop "3 2 2 2 1500 0 10.0.0.45 0"

./rconfig addRoute "10.0.0.45 255.255.255.255 3"

b. On the Egress telnet window, type the following command:
./l2config addV4EthEntry "2 10.0.0.45 00:07:e9:ad:5d:e4 0a:0b:0c:0d:0e:0f

DEFAULT"

Setup your packet generator to send IPv6 packets with destination address of
3ffe:0:100:f102::fe0d:0e0f to port 0 of the Intel® IXDP2800 platform. You should get an IPv4
packet back at port 2 of the system. This IPv4 packet should have the original IPv6 packet
encapsulated by IPv4 header with destination IP address of 10.0.0.45.

Decapsulation is used when an encapsulated IPv4 packet reaches the end of a tunnel. The
process involves stripping the IPv4 header to get the IPv6 packet. This requires the setup of an
end tunnel as described below.

c. On the Ingress telnet window, type the following commands:
./tunnelconfig addEndTunnel "2"
./tunnelconfig addAllowedSource "0x1 10.1.2.3 24"
./rconfig addNextHop "4 2 3 0 1500 0 10.0.0.1 0x2"
./rconfig addRoute "20.1.2.3 255.255.255.255 4"
./rconfig addNextHopV6 "4 2 3 0 1500 0 0"
./rconfig addRouteV6 "3ffe:0:0:3000::0 64 4"

d. On the Egress telnet window, type the following command:
./l2config addV6EthEntry "3 3ffe::0 00:07:e9:ad:5d:e4 0a:0b:0c:0d:0e:0f
DEFAULT"

e. Setup your packet generator to send IPv4/v6 tunneling packets with IPv4 destination address
of 20.1.2.3 and source address of 10.1.2.3. The destination IPv6 address should be set to
3ffe:0:0:3000::0:303 and the IPv6 source address can be set to any valid v6 address. Send the
packet to port 0 of the Intel® IXDP2800 system. You should get an IPv6 packet back at port
0 of the system. This IPv6 packet should have the destination IP address of
3ffe:0:0:3000::0:303.

4.4 Using the Advanced Development Platform’s
Copper Ethernet Ports

The default for the Intel® IXDP2400 Advanced Development Platform�s Ethernet ports is fiber
mode. If you want to use the copper ports on the system, this default setting will need to be
changed in an external header file and the Egress application used by this platform (e.g.
IXA_SDK_3.5\src\applications\ipv4_forwarder\4gb_ethernet_egress) will have to be re-built
using the procedures in either Section 4.2, �Windows 2000/XP with VxWorks Systems� on
page 17 or Section 4.3, �Red Hat/Monta Vista Linux Systems� on page 19.

To use the copper ports, edit the ix_cc_eth_tx.h external header file. It is located at
IXA_SDK_3.5\src\building_blocks\tx\core\ethernet_tx|include\cc. Open the file and search for
the IX_CC_ETH_TX_DRIVER_MODE_DEFAULT string. It is defined in the file as follows:

#define IX_CC_ETH_TX_DRIVER_MODE_DEFAULT(
(DEFAULT_MODE_BLOCK|DEFAULT_ETH_TX_MODE|DEFAULT_PARITY)

Change this entry to the following:

Intel IXA® SDK Software Framework Getting Started Guide 31

Running Applications on Hardware

#define IX_CC_ETH_TX_DRIVER_MODE_DEFAULT
(DEFAULT_MODE_BLOCK|IX_CC_ETH_TX_DRIVER_MODE_GIGA_FULL_DUPLEX
|DEFAULT_PARITY)

All applicable modes are as follows:

Note: The first mode in the list below is for fiber, all others are copper modes for various link speeds.
#define IX_CC_ETH_TX_DRIVER_MODE_FIBER 0x0

#define IX_CC_ETH_TX_DRIVER_MODE_GIGA_HALF_DUPLEX 0x1

#define IX_CC_ETH_TX_DRIVER_MODE_GIGA_FULL_DUPLEX 0x2

#define IX_CC_ETH_TX_DRIVER_MODE_100_HALF_DUPLEX 0x3

#define IX_CC_ETH_TX_DRIVER_MODE_100_FULL_DUPLEX 0x4

#define IX_CC_ETH_TX_DRIVER_MODE_10_HALF_DUPLEX 0x5

#define IX_CC_ETH_TX_DRIVER_MODE_10_FULL_DUPLEX 0x6

Note: Copper ports are not supported by the Intel® IXDP2800 Advanced Development Platform. Only
fiber ports are available. Editing the ix_cc_eth_tx.h as shown in this section will have no effect on
Intel® IXDP2800 operability.

32 Intel IXA® SDK Software Framework Getting Started Guide

Running Applications on Hardware

Intel IXA® SDK Software Framework Getting Started Guide 33

Debugging Applications on the
Developer Workbench Simulator 5

This chapter contains an overview of certain application packet flow concepts and guides you in
debugging the oc48_pos_ipv4_ingress application on the Developer Workbench simulator. As you
step through the application code, you will see how the inter-microengine communication is
implemented and how the packet information is exchanged from one microblock to the next.

5.1 Application Packet Flow Overview

The Intel® IXA Portability Framework uses certain types of structures which are unique to each
packet and which specify the packet characteristics based on which microblocks make routing and
processing decisions. Before debugging an application, it is important to understand the following
packet flow concepts:

• packet metadata

• packet buffer

• dispatch loop variables

The dl_system_ingress_default.h file (found in <install
drive>:\IXA_SDK_3.5\src\library\microblocks_library\include) contains the # defines for
microblock IDs, packet metadata, and packet buffer.

5.1.1 Packet Metadata

Packet metadata is a set of variables which describe the characteristics of the packet, such as the
buffer descriptors, packet length, header type, input port number, etc. By default, packet metadata
is 8 long words in size and stored in SRAM. The packet metadata structure dl_meta_t is defined in
dl_meta.h.

Some of the elements of packet metadata include:

• Amount of packet data in the buffer.

• DRAM offset where the packet begins. Each buffer in the DRAM is 2K or 2048 bytes long and
the start of the packet is 128 bytes from the start of the buffer. Starting the packet at after 128
bytes comes in handy when a microblock has to prepend the header without moving the packet
around in the DRAM. For example, the MPLS Marker microblock inserts an MPLS label
before the IP header and adjusts the offset to 124 bytes.

• Packet length. If the packet length is more than 2K, the microblock learns that the packet is
spread across a chain of buffers.

• Header type. Identifies whether it is a IPv4 packet or IPv6 packet.

34 Intel IXA® SDK Software Framework Getting Started Guide

Debugging Applications on the Developer Workbench Simulator

5.1.2 Packet Buffer

This buffer contains the actual packet data received from the media interface. This is stored in
DRAM and is 2K in size. If the total packet data is more than 2K in size, the microblock uses a
chain of packet buffers. The packet buffer containing the SOP has a head room of 128 to 512 bytes.
This allows room to prepend headers without having to move the packet within the DRAM.

5.1.3 Dispatch Loop Variables

Dispatch loop variables are exchanged from one microblock to another as the packet is passed from
one microblock to the next. Dispatch loop variables include next block and buffer handles.
Therefore, for each packet there will be a corresponding set of dispatch loop variables. After the
current microblock has processed the packet, it sets the next block to the next microblock ID. The
buffer handles uniquely identify where the packet metadata resides in the SRAM and where the
actual packet resides in the DRAM. For instance, when the PacketRx microblock forwards the
packet to the PPP-IPv4 microblock running on a different microengine, PacketRx sets the next
block to BID_POS and writes the following dispatch loop variables to the scratch ring:

• Buffer handle containing start of packet (SOP). This is a 32-bit value where the lower 24 bits
can be used to locate the packet metadata in the SRAM and the actual packet in the DRAM.
The buffer handle structure buf_handle_t is defined in ixp_lib.h.

• Buffer handle containing end of packet (EOP). If the packet is longer than 2K (the default
packet buffer size), this points to the location of the packet buffer which contains the end of the
packet.

Similarly when the PPP-IPv4 microblock forwards the packet to the Queue Manager microblock,
the IPv4 writes the buffer handles for start of packet, end of packet, and the port number.
Depending on the functionality performed by the downstream microengine, the microblocks write
the most relevant packet characteristics to the scratch ring. However, when the PPP microblock
forwards the packet to IPv4Fwder, it sets the dl_next_block to BID_IPV4 and caches dispatch loop
variables to local memory or GPRs.

5.2 Debugging oc48_pos_ipv4_ingress

This section explains how to do certain simple tasks using the Developer Workbench. For details on
the full functionality provided by the Workbench, refer to the IXP2400/IXP2800 Development
Tools User’s Guide.

The exercises in this section will demonstrate:

• how packet information is exchanged from one microengine to another

• how packet characteristics and packet data is organized in SRAM and DRAM

• how the microblocks access and modify these characteristics and the packet header

Perform the following steps to debug the oc48_pos_ipv4_ingress application:

1. Launch the Developer Workbench and build the oc48_pos_ipv4_ingress application project.

2. Click the debug button.

3. Click the Memory Watch button on the toolbar.

Intel IXA® SDK Software Framework Getting Started Guide 35

Debugging Applications on the Developer Workbench Simulator

The memory watch window shows the contents of scratchpad, SRAM, and DRAM.

Set a breakpoint on change on scratchpad. This breakpoint will be hit when a microblock
writes the dispatch loop variables to the next microblock. In this specific example, the
breakpoint will be hit when the PacketRx microblock writes the dispatch loop variables to the
scratch ring between PacketRx and PPP-IPv4. (Refer to DlSink in the dl_source.c file.)

4. Run the application by clicking the Go button on the toolbar.

5. When the first break point is reached, open the file dl_source.c and go to dl_sink(). The
PacketRx microblock uses dl_sink() to write 5 long words, (dlBufHandle, dlEopBufHandle,
dram offset, etc) to the scratch ring.

6. Let the application run until the scratchpad memory gets initialized with the dispatch loop
variables. The memory watch window will show 5 long words written to the scratchpad as
shown below.

7. Using the dispatch loop variables, we can locate the packet metadata in SRAM and packet
buffer in DRAM. The dlBufHandle variable tells that the packet buffer has both SOP and EOP,
which implies that the packet length is less than 2K in size, therefore we can ignore the
dlEopBufHandle. From the lower 24 bits we can derive the SRAM address for the packet
metadata and DRAM address for the packet buffer as follows:
packet metadata address = (dlBufHandle.lw_offset << 2)
packet buffer address = (dlBufHandle.lw_offset << 8)

Note: In practice, the developer can use the library function Dl_BufGetDesc in dl_buf.c to obtain the
packet metadata and the library function Dl_BufGetData in dl_buf.c to obtain the packet address.

8. Given the dlBufHandle = 0xc0000010, the packet metadata resides at SRAM address 0x40.
Add a SRAM watch point for address 0x40:+32. The second long word shows the packet size
and buffer offset from where the packet data starts in the packet buffer.

9. Given the dlBufHandle = 0xc0000010, the packet buffer starts at 0x1000 and the actual packet
data starts at 128 byte offset. Add a DRAM watch point for address 0x1080:+40. The contents
show the PPP header, IP header and IP payload.

36 Intel IXA® SDK Software Framework Getting Started Guide

Debugging Applications on the Developer Workbench Simulator

10. Set a break point on change on the SRAM address to see how the packet metadata gets
updated.

11. Set a break point on change on the DRAM address to see how the PPP decapsulation and
IPvFwder microblocks modify the IP header. The memory watch window will show DRAM,
SRAM, and scratchpad as shown below.

12. When the break point on SRAM address is reached, the packet size and the buffer offset
change. This implies that the PPP_Classify microblock has stripped off the PPP header and
adjusted the packet length and buffer offset. (Note: See _ppp_decap in ppp.c). The ppp header
still exists in the DRAM but from this point onwards, the IPv4Fwder microblock will operate
as if the packet size is 40 bytes and packet starts at offset 130 instead of 128. Also, the
PPP_Classify microblock updates the dlMeta.header_type in the packet metadata to
PPP_IPV4_TYPE. (See _ppp_classify in ppp.c). The memory watch window will show
SRAM as shown below.

13. When the break point on DRAM address is reached, it implies that the IPv4Fwder microblock
has decremented the TTL and updated the checksum in the IP header. The memory watch
window will show DRAM as shown below.

Intel IXA® SDK Software Framework Getting Started Guide 37

Debugging Applications on the Developer Workbench Simulator

To gain a deeper perspective on the concepts and microblocks covered in this chapter, refer to the
following documents:

• Intel® IXA Portability Framework: Developer’s Manual: Dispatch Loop

• Intel® IXA Portability Framework: Reference Manual: Dispatch Loop

For details on the full functionality provided by the Developer Workbench, refer to the IXP2400/
IXP2800 Development Tools User’s Guide.

38 Intel IXA® SDK Software Framework Getting Started Guide

Debugging Applications on the Developer Workbench Simulator

Intel IXA® SDK Software Framework Getting Started Guide 39

Working With Core Components 6

Application development on the data plane consists of two kinds of processing:

• fast path processing running on the MEv2 microengines

• slow path processing running on the Intel XScale® core components

This chapter provides information about working with core components.

6.1 Handling of Exception Packets by Core
Components

Intel XScale® core components are responsible for handling exception path packets. Some
examples of exception packets are as follows:

1. In the case of an Ethernet pipeline, the Ethernet Rx core component handles ARP exception
packets. For details, refer to the Intel® Internet Exchange Architecture (IXA) Software
Building Blocks Developer�s Manual. When you send an ARP request packet from a packet
generator to a Packet Rx microblock, then these packets are sent as exceptions to the Ethernet
Rx core component. The Ethernet Rx core component sends it to the Ethernet Tx core
component over the PCI bridge. The ARP reply will be generated by the Ethernet Tx core
component and it should be received at the packet generator.

2. The IPV4 core component handles several types of exception packets. Some examples of
exception packets handled by IPv4 core component are as follows:

a. no route exception - the IPv4 core component generates an ICMP message. To generate this
type of exception for VxWorks, you should set up the Ingress route table as follows:
addNextHop "20 1 1 0 1500 0 20.0.0.2 0"
addRoute "10.2.2.1 255.255.255.255 20"

Note: If you are running the Ethernet pipeline, then make sure you set up the L2 table
entry on the Egress as described in step 26 in Section 4.2.1, �IPv4 Forwarding
Application on Hardware Using Core Components� on page 18.
You can then send IPv4 packets with a destination IP address of 12.1.2.3 and source IP
address of 10.2.2.1. You should be able to receive the ICMP packet at the packet generator

b. packets requiring fragmentation- for VxWorks, setup a route table on Ingress as follows:
addNextHop "20 1 1 0 1500 0 20.0.0.0.2 0"
addRoute "32.0.0.1 255.255.255 20"

Note: If you are running the Ethernet pipeline, then make sure you set up the L2 table
entry on the Egress as described in step 26 in Section 4.2.1, �IPv4 Forwarding
Application on Hardware Using Core Components� on page 18.
You can then send an IPv4 packet of size 2996 bytes. You should be able to receive
fragments back at the packet generator. Note that MTU setup in next hop database table is
1500. When 2996 bytes of packet is sent, it will undergo fragmentation in the IPv4
Forwarder core component.

3. Support for Ethernet MAC filtering of packets- build the Ingress workbench project after
removing the DISABLE_MAC_FILTERING from the Build->Settings menu in Developer�s
Workbench. Build the Egress and Ingress Tornado* projects.

40 Intel IXA® SDK Software Framework Getting Started Guide

Working With Core Components

a. Download the code onto Ingress and Egress. Refer to Section 4.2.1, �IPv4 Forwarding Appli-
cation on Hardware Using Core Components� on page 18 for an example procedure.

b. Start the system application on both Egress and Ingress.

c. Add the following MAC addresses in MAC filter table on Ingress shell:
addMac("0a:0b:0c:0d:0e:0f 0")
addMac("01:02:03:04:05:06 0")
addMac("01:07:06:04:05:06 0")

d. For Linux applications only, load the mac_config_util.o module by entering the following
command :
insmod mac_config_util.o

e. For Linux applications only, on the ingress side, issue the following command:
mknod /dev/Mconfig c 250 0

f. To test that these MAC addresses are in the MAC filter table, you can call "ix_cc-
eth_rx_dump_mac_filter_tbl" on the Ingress shell of a VxWorks system.

g. You can also try to lookup a particular port information for an entry by calling lookupPort,
as follows:
lookupPort("01:02:03:04:05:06")

This should return a port value of 0.

h. Normally, all the ports are working in promiscuous mode. To get the ports working in unicast
mode, remove the �DISABLE_MAC_FILTERINIG� defined from project GLOB_DEFINE
(if you are working with VxWorks). If you are working with Linux, then remove it in
Makefile.linux_kernel_common. Rebuild the project (VxWorks) or rebuild the application
(Linux).

i. All ports are now set to unicast mode. When sending IPv4 packets through the platform with
destination MAC address set to any of the three MAC addresses listed in step c, these packets
would be forwarded. On the other hand, when sending any IPv4 packet with destination MAC
address not in the table, these packets will be dropped.

Note: For Linux systems, you can send the same type of exception packets. The following examples show
how to add routes and next hops in Linux:
rconfig addNextHop “20 1 1 0 1500 0 20.0.0.2 0”
rconfig addRoute “10.2.2.1 255.255.255.255 20”

6.2 Creating a Core Component

This section provides information about creating a new core component. The following files, all of
which are located in opt/ixa_sdk_3.5/src/include can be modified to accommodate new core
components:

� ix_cc.h- Any common definitions that will be shared between core components, should be
added to this file. For example, the statistics information shared between the Ethernet Tx and
Ethernet Rx core component is included in this file so that it can be accessed by either core
component.

� ix_cc_error.h- This file defines the generic error codes for all core components. For example,
IX_CC_ERROR_NULL.

� ix_cc_macros.h- This file contains definitions and macros that are shared across core
components.

Intel IXA® SDK Software Framework Getting Started Guide 41

Working With Core Components

� ix_cc_properties.h- This file is for the interface property structure used by the core
components when receiving property updates.

� ix_cc_microengines_bindings.h- This file contains all the commIds that are defined by the
core components and needed by the microengines to send up the exception packets. Any
microblock that sends packets to the packet Ids defined by the core components must include
this file. This file is automatically included in the bindings.h file for core components. Each
application has a specific bindings.h file that is located in the application�s include directory
(e.g. src/applications/ipv4_forwarder/4gb_ethernet/include).

Use the following procedures to create a new core component for your application (this example
creates an Ethernet Rx example core component):

Note: Some of the procedural steps below are also explained in Section 6.4, �Adding a New Core
Component� on page 47.

1. To create an Ethernet Rx core component, define an input ID for it in the
ix_cc_microengines_bindings.h file as follows:

/* CommIds 64-74 are reserved for shared commIds between core and
micro-code*/
#define START_SHARED_COMM_IDS 64

/*IPv4 commIds are the same for high and low priority. One is added as
msg and the other as pkt hdlr*/
#define IX_CC_IPV4_PKT_MICROBLOCK_ID (START_SHARED_COMM_IDS + 1)

/* input id for packet handling */
/* Pos Rx communication ids */
#define IX_CC_POS_RX_PKT_ID (IX_CC_IPV4_PKT_MICROBLOCK_ID + 1)

/* Ethernet Rx communications ids */
#define IX_CC_ETH_RX_PKT_ID (IX_CC_POS_RX_PKT_ID + 1)

/* Ethernet Tx communications ids */
#define IX_CC_ETH_TX_PKT_ID (IX_CC_ETH_RX_PKT_ID + 1)

2. The exception codes shared between a particular microblock and core component also has to
be defined in ix_cc_microengines_bindings.h. For example, exception codes shared between
the Ethernet Rx core component and microblock have to be defined as follows:

/* Exception codes for Ethernet Rx microblock and core component */
#define IX_ARP_PACKET 0x01
#define IX_NON_IP_PACKET 0x02

3. Define communication IDs for the core component in bindings.h. For the Ethernet Rx core
component, it would be defined as follows:

enum {
/* IPV4 communication ids */
IX_CC_IPV4_COMMON_ID = IX_CC_START_CORE_COMP_IDS, /* input id for
common packet handling */
IX_CC_IPV4_PKT_STKDRV_ID, /* input id for stack driver packet handling
*/
/*Shared commIds moved to shared bindings file*/
/*IX_CC_IPV4_PKT_MICROBLOCK_HIGH_PRIORITY_ID,*/ /* input id for high

42 Intel IXA® SDK Software Framework Getting Started Guide

Working With Core Components

priority packet handling */
/*IX_CC_IPV4_PKT_MICROBLOCK_LOW_PRIORITY_ID,*/ /* input id for low
priority packet handling */
IX_CC_IPV4_MSG_ID, /* id for message handling */

/* Stack Driver communication ids */
IX_CC_STKDRV_COMMON_ID, /* communication input for common packet
handling */
IX_CC_STKDRV_LOW_PRIORITY_PKT_ID, /* communication input for low
priority packet handling */
IX_CC_STKDRV_HIGH_PRIORITY_PKT_ID, /* communication input for high
priority packet handling */
IX_CC_STKDRV_MSG_ID, /* communication input for message handling */

/* Pos Rx communication ids */
IX_CC_POS_RX_COMMON_ID,
IX_CC_POS_RX_MSG_ID,
/*Shared commIds moved to shared bindings file*/
/*IX_CC_POS_RX_PKT_ID,*/

/* FP Module communication ids */
IX_CC_FP_MODULE_COMMON_ID,
IX_CC_FP_MODULE_MSG_ID,
IX_CC_FP_MODULE_PKT_ID,
IX_CC_FP_MODULE_EGRESS_ID,

/* Eth Rx communication ids */
IX_CC_ETH_RX_COMMON_ID,
IX_CC_ETH_RX_MSG_ID,

/* AtmPosTx communication ids */
IX_CC_ATM_POS_TX_COMMON_ID,
IX_CC_ATM_POS_TX_MSG_ID,
IX_CC_ATM_POS_TX_PROPERTY_MSG_ID,

/* Ethernet Tx communication ids */
IX_CC_ETH_TX_COMMON_ID,
IX_CC_ETH_TX_HIGH_PRIORITY_PKT_ID,
IX_CC_ETH_TX_MSG_ID,
IX_CC_ETH_TX_PROPERTY_MSG_ID,

/* Csix Rx communication ids */
IX_CC_CSIX_RX_COMMON_ID,
IX_CC_CSIX_RX_MSG_ID,

/* CSIX Tx communication ids */
IX_CC_CSIX_TX_COMMON_ID,
IX_CC_CSIX_TX_MSG_ID,

/* QM communication id */
IX_CC_QM_COMMON_ID, /* communication input for common packet
handling */
IX_CC_QM_EGRESS_ID, /* communication input for egress QM for
packets coming from ingress to egress */
IX_CC_QM_MSG_ID, /* communication id for the message input */

Intel IXA® SDK Software Framework Getting Started Guide 43

Working With Core Components

IX_CC_QM_UBLOCK_ID, /* communication id for the packet core to
ublocks input */

/* Message Support communication ids */
IX_CC_MSUP_COMMON_ID,
IX_CC_MSUP_REPLY_EE_0_ID, /* reply input for EE 0 */
IX_CC_MSUP_REPLY_EE_1_ID, /* reply input for EE 1 */
IX_CC_MSUP_REPLY_EE_2_ID, /* reply input for EE 2 */
IX_CC_MSUP_REPLY_EE_3_ID, /* reply input for EE 3 */
IX_CC_MSUP_REPLY_EE_4_ID, /* reply input for EE 4 */

/* System App communication id */
IX_CC_SA_COMMON_ID,

/* WARNING - the values in this enumeration should no exceed
IX_COMM_FIRST_CORE_ID + IX_COMM_LOCAL_ID_NUMBER */
IX_CC_COMMID_LAST
};

4. The input IDs and output IDs bindings have to be defined (as follows for the example Ethernet
Rx core component):

/* START of Ethernet RX INPUT ID definitions */
#define IX_CC_ETH_RX_COMMON_INPUT
IX_RM_COMM_MAKE_LOCAL_ID(IX_CC_ETH_RX_COMMON_ID)
#define IX_CC_ETH_RX_MSG_INPUT
IX_RM_COMM_MAKE_LOCAL_ID(IX_CC_ETH_RX_MSG_ID)
#define IX_CC_ETH_MICROBLOCK_HIGH_PRIORITY_PKT_INPUT
IX_RM_COMM_MAKE_LOCAL_ID(IX_CC_ETH_RX_PKT_ID)
#define IX_CC_ETH_MICROBLOCK_LOW_PRIORITY_PKT_INPUT
IX_RM_COMM_MAKE_LOCAL_ID(IX_CC_ETH_RX_PKT_ID)
/* END of Ethernet RX INPUT ID definitions */

/*START of Ethernet Rx OUTPUT ID definitions */
#define IX_CC_ETH_RX_COMMON_PKT_OUTPUTIX_CC_PKT_DROP /*Non IP packets
are dropped right now*/
#define IX_CC_ETH_RX_ARP_PKT_OUTPUT
IX_RM_COMM_MAKE_ID(IX_CC_ETH_TX_ARP_PKT_INPUT, IX_PEER_SUBSYSTEM, 0)
/*END of Eth Rx OUTPUT ID definitions */

5. Define an identifier in the bindings.h file to be used by the system application:

#define IX_CC_ETH_RX 9

6. For clients interested in dynamic property updates, define them in ix_cc_prop_clients.h.

7. Add the core component that you are created to the list of core components started by System
Application in a particular execution engine. Depending on whether the core component runs
on ingress or egress processor, it has to be added to the ix_sa_registry.xml file.

The Ethernet Rx core component has to be added to IXA SDK 3.5/src/applications/
ipv4_forwarder/4gb_ethernet/ingress/oc48_ethernet_ingress_config/ix_sa_registry.xml as
follows:

<property name="SA_EXEC_ENGINES">
<property name="SA_EE_01" type="uint32" value="1">

44 Intel IXA® SDK Software Framework Getting Started Guide

Working With Core Components

<property name="CC_LIST" type="string" value=~IX_CC_STKDRV IX_CC_IPV4
IX_CC_CSIX_TX IX_CC_QM IX_CC_SCHEDULER IX_CC_ETH_RX~/>
</property>
</property>

8. Create the infrastructure APIs required for the core components. For the Ethernet Rx core
component, these are the required ones based on the functionality needed:

a. ix_error ix_cc_eth_rx_init(ix_cc_handle arg_hCc,
void **arg_ppContext)
This function initializes the Ethernet Rx core component. This primitive will be called and
returned successfully before requesting any service from the Ethernet Rx core component.
This primitive should be called only once to initialize the Ethernet Rx core component. This
function performs allocation of memory for symbols to be patched, creation of 64-bit
counters, registration of packet and message handlers, and allocation and initialization of
internal data structures

b.ix_error ix_cc_eth_rx_fini(ix_cc_handle arg_hCc, void *arg_pContext)
This function terminates the Ethernet Rx core component.

c. ix_error ix_cc_eth_rx_msg_handler(ix_buffer_handle arg_Msg,
ix_uint32 arg_UserData, void *arg_pContext)
This function is the common message handler routine for Ethernet Rx core component. The
Ethernet Rx core component receives messages from other core components through this
message handler function and it internally calls appropriate library function to process the
message. This message handler will be used to update dynamic properties.

d.ix_error ix_cc_eth_rx_low_priority_pkt_handler(ix_buffer_handle
arg_hDataBuffer, ix_uint32 arg_ExceptionCode, void* arg_pContext)
This function is the low priority packet handler routine of the Ethernet Rx core component to
handle non-ARP packets coming from microblock and other core components.

e. ix_error ix_cc_eth_rx_high_priority_pkt_handler(ix_buffer_handle
arg_hDataBuffer, ix_uint32 arg_ExceptionCode, void* arg_pContext)
This function is the high priority packet handler routine of the Ethernet Rx core component
for handling ARP packets.

9. Decide which APIs to expose to clients. The Ethernet Rx core component exposes the
following messaging APIs:
a. ix_error ix_cc_eth_rx_async_get_statistics_info
(ix_cc_eth_rx_statistics_info_context *arg_pMgInfoCtx,
ix_cc_eth_rx_cb_get_statistics_info arg_Callback)

b.ix_error ix_cc_eth_rx_async_get_interface_state
(ix_cc_eth_rx_if_state_context *arg_pStateContext,
ix_cc_eth_rx_cb_get_interface_state arg_Callback)

c.ix_error ix_cc_eth_rx_async_add_mac_addr(ix_uint8 *arg_destMac,
ix_uint32arg_portNum, ix_cc_eth_rx_cb_mac_addr_op arg_Callback, void
*arg_pUserContext)

d.ix_error ix_cc_eth_rx_async_delete_mac_addr(ix_uint8 *arg_destMac,
ix_cc_eth_rx_cb_mac_addr_op arg_Callback, void *arg_pUserContext)

e.ix_error ix_cc_eth_rx_async_lookup_port(ix_uint8 *arg_destMac,
ix_cc_eth_rx_cb_lookup_port arg_Callback, void *arg_pUserContext)

10. Implement internal callback functions for these asynchronous function calls. For the Ethernet
Rx core component, internal callback functions are as follows:
a. static ix_error _ix_cc_eth_rx_icb_get_statistics_info
(ix_error arg_Result, void *arg_pContext, void *arg_Msg,
ix_uint32 arg_MsgLen)

Intel IXA® SDK Software Framework Getting Started Guide 45

Working With Core Components

b.ix_error _ix_cc_eth_rx_icb_get_interface_state(ix_error arg_Result,
void *arg_pContext, void *arg_Msg,ix_uint32 arg_MsgLen)

c.static ix_error _ix_cc_eth_rx_icb_general(ix_error arg_Result,
void *arg_pContext, void *arg_pMsg, ix_uint32 arg_MsgLength)

d.static ix_error _ix_cc_eth_rx_icb_lookup_port
(ix_error arg_Result, void *arg_pContext,void *arg_pMsg,
ix_uint32 arg_MsgLength)

11. Implement library APIs to execute the operations requested in asynchronous calls. For
Ethernet Rx core component, these are as follows:
a. ix_errorix_cc_eth_rx_get_statistics_info
(ix_cc_eth_rx_statistics_info arg_Entity, ix_uint32 arg_Index,
ix_cc_eth_rx_statistics_info_data *arg_pBuffer, void *arg_pContext)

b.ix_error ix_cc_eth_rx_get_interface_state(ix_uint32 arg_PortId,
ix_cc_eth_rx_if_state *arg_pIfState, void *arg_pContext)

c.ix_error ix_cc_eth_rx_add_mac_addr(ix_uint8 *arg_pMacAddr, ix_uint32
arg_PortId, void *arg_pContext)

d.ix_error ix_cc_eth_rx_del_mac_addr(ix_uint8 *arg_pMacAddr,
void *arg_pContext)

e.ix_error ix_cc_eth_rx_lookup_port(ix_uint8 *arg_pMacAddr,
ix_uint32 *arg_pPortNum, void *arg_pContext)

12. For dynamic property updates, you have to implement a set_property library API in each core
component to get the property update from Master core component (stack driver) for
properties this Core Component is interested in. For example, the Ethernet Rx Core
Component is interested in the following interface status property:

ix_error ix_cc_eth_rx_set_property(ix_uint32 arg_PropId,
ix_cc_properties *arg_pProperty, void *arg_pContext)

13. To compile your core component with the build system, you will have to add your core
component to the main project workspace. To add the Ethernet Rx core component to the main
build system, follow the steps listed below:

a. Launch Tornado 2.2 and open ixa_sdk_2.2.wsp located in IXA_SDK_3.5\src\workspace.

b. Right click on ixa_sdk.wsp and then select Add project. Browse to
IXA_SDK_3.5\src\building_blocks\rx\core\ethernet_rx\ethernet_rx.wpj.

c. Since the Ethernet Rx core component will be running on the ingress side of the Ethernet
pipeline, you have to add it to A_oc48_ethernet_ingress project as SUB_PROJS. Select the
Build tab.

d. Right click and select macro as SUB_PROJS.
Add IXA_SDK_3.5\src\building_blocks\rx\core\ethernet_rx as another SUB_PROJS.

e. Right click on A_oc48_ethernet_ingress and select Rebuild All.

6.3 Porting Core Components from VxWorks to Linux

The layered framework of the Intel® IXA SDK allows you to easily port core components from
one operating system to another. The Intel® IXA SDK framework has three layers:

• Operating System Services (OSSL)

• Resource Manager (RM)

• Core Component Infrastructure (CCI)

46 Intel IXA® SDK Software Framework Getting Started Guide

Working With Core Components

Core Components are built on top of Core Component Infrastructure layer. OSSL, RM and CCI
hide core component from the operating system. Core Components do not use any system calls
directly - even malloc() is invoked through the OSSL.

There is one part of the stack driver Core Component that is operating system dependent. It is the
Virtual Interface Device Driver (VIDD) part of the Stack driver Core Component. The VIDD is the
part that takes care of the communication with the local TCP/IP stack. This means that this part of
the stack driver has to be written for each new operating system you want to run Core Components
on.

The primary concern when porting other Core Components from VxWorks to Linux is that there is
no concept of a kernel in VxWorks. In Linux, all the Core Components run as kernel modules.

6.3.1 Porting Guidelines

Keep the following points in mind when porting Core Components from VxWorks to Linux:

• build system for Linux Core Components - a Makefile must be created for building each Core
Component as a Linux kernel module. VxWorks uses Tornado Project for the build system. In
Linux, you must write the Makefiles for each of the components to build each component as a
kernel module.

• user space to kernel space communication - The system application plays the role of the
system designer and is responsible for launching the application. To launch the system
application, there is a need for a user utility to make a call into the system application kernel
module. This is also the case with the route configuration utility and l2 table configuration
utility.

• loading the kernel modules - Here is a brief list of all the points to remember when loading the
kernel modules:

— There is no floating point support in the kernel

— If you need any byte swapping macros to take care of endianness, you would need to
implement these.

— You cannot use printf() or fprintf() for kernel modules. Use ix_ossl_message_log
instead.

— Since fprintf() can't be used in kernel mode, the ix_error_dump() function in src/
library/xscale_utilities/source/error.c has been ported to use ix_ossl_message_log().
As a result of this, 0 needs to be used for the first argument when calling
ix_error_dump().

— There is no support for mathematical functions like atoi(). You will need to implement
any mathematical functions.

• The Stack driver VIDD portion needs to be written from scratch to enable communication with
Linux TCP/IP stack.

• Ethernet Tx core component needs to use new media driver running in kernel mode for the
configuration of the media interface card. In Linux, usually a kernel mode driver can be used
by applications running in user mode through the system calls to open(), close(), and
ioctl(). However since the Ethernet Tx Core Component is also running in kernel mode, direct
function calls into the kernel driver are required. In the Intel® IXA SDK, this is achieved by
writing a set of wrapper functions in the Ethernet Tx core component through the use of an
internal driver API. This wrapper provides the set of API functions similar to the ones
provided by VxWorks. These APIs are currently placed in ix_cc_eth_tx_drv_wrapper.c.

Intel IXA® SDK Software Framework Getting Started Guide 47

Working With Core Components

• To be OS independent, any component C file that earlier included stdlib.h, string.h, errno.h
now has been changed to include ix_ossl.h.

6.4 Adding a New Core Component

When a new core component needs to be started by the system application, take the following
steps:

1. In the application of your choosing - for example, oc48_pos_ingress- find at the end of the
application-specific bindings.h (each application has a unique bindings.h file that is located in
\src\applications\<application_name>\include directory) a list of CCIDs defined (like:
#define IX_CC_IPV4 0).

a. Add an CCID for the new core component before IX_CC_ENUM_LAST.

b. Take the next number and make sure that IX_CC_ENUM_LAST has the value of your new
CCID+1.

2. In the application of your choosing�for example, oc48_pos_ingress�open
IXA_SDK_3.5\src\applications\ipv4_forwarder\oc48_pos\ingress\oc48_pos_ingress_conf
ig\ix_sa_cc_list.c.

a. In the function ix_sa_cc_list, register the init and fini function for your new core
component. The new function call should look like this:
_ix_sa_set_cc(arg_pCC_List,

IX_CC_XXXX, your_init_func, your_fini_func);

where IX_CC_XXXX is the new CC ID you added to bindings.h.

Note: You will need to use a #include directive to include the header that specifies your init and fini
functions.

3. In the configuration of your choosing�for example, oc48_pos_ingress�open
IXA_SDK_3.5\src\applications\ipv4_forwarder\oc48_pos\ingress\oc48_pos_ingress_conf
ig\ix_sa_registry_data.xml.

a. Find the execution engine you want to add your CC to. For example,
<property name="SA_EXEC_ENGINES">

<property name="SA_EE_01" type="uint32" value="1">
<property name="CC_LIST" type="string" value=~IX_CC_XXXX~/>
</property>

</property>

b. Add your CC ID, as you did in src\include\bindings.h, to the CC_LIST property. If there are
other core components specified in this execution engine, just separate the names specified
with a space. Make sure the value is enclosed in tildes: ~value~.

During startup, the system application will call ix_sa_cc_list function for the image
configuration. Your newly added registration call will associate your init and fini functions
with the CC ID. The system application will then create the execution engine which in turn will
create your core component.

48 Intel IXA® SDK Software Framework Getting Started Guide

Working With Core Components

6.5 Adding Top Level Projects

The Intel® IXA SDK provides a number of top-level projects. Eventually, you will want to go
beyond that set of projects:

� To create your own project

� To create an image configuration that the system application will use for your project

Take the following steps to accomplish these two tasks.

1. Create a new directory for your top-level project.

2. Inside the new directory, create another directory of the same name with _config attached.
For example, if you were to have a new top level project directory named test, then you
would create a subdirectory named test_config.

3. In the new config directory, create the directory tree include\sa\internal�for example,
test\test_config\include\sa\internal.

4. Copy from the directory
IXA_SDK_3.5\src\applications\ipv4_forwarder\oc48_pos\ingress\oc48_pos_ingress_conf
ig directory, the following files:

� ix_sa_cc_list.c

� ix_sa_symbols.c

� ix_sa_registry_data.xml

You will use these files as a starting point.

5. Modify the following code in ix_sa_cc_list.c and ix_sa_symbols.c to reflect your new
image configuration name. For example, if your new top level project were named test123,
then you would change the code in the following way:
From:
#if !defined(IX_CONFIGURATION_oc48_pos_ingress)

#error IX_CONFIGURATION_oc48_pos_ingress not defined! Wrong
configuration header.

#endif

To:
#if !defined(IX_CONFIGURATION_test123)
#error IX_CONFIGURATION_test123 not defined! Wrong configuration
header.
#endif

Configure the rest of these files as needed for your image configuration.

6. Modify the ix_sa_registry_data.xml file for your image configuration.

� Make sure to check the properties Target_Config and INGRESS_EGRESS.

� If you do not have microcode, then remove the line:
#include "../wbench_project/dispatch_loop/dl_system.h"

7. In Tornado*, create a new downloadable project.

� Make sure the project name and directory name match.

� Base this project on the A_oc48_pos_ingress project in
IXA_SDK_3.5\src\applications\ipv4_forwarder\oc48_pos\ingress.

Intel IXA® SDK Software Framework Getting Started Guide 49

Working With Core Components

8. Select one of the builds for your new project, and open the properties window.

a. Create a new rule named projectname.out where projectname is the exact same name
as the current project.

b. Select each of the other builds and set this new rule as the default.

9. Select the macros tab and, for each build, change the GLOG_DEFINES macro.

� Change -DIX_CONFIGURATION_oc48_pos_ingress to
-DIX_CONFIGURATION_projectname where projectname is the name of this project.

10. In Tornado, create a new downloadable project in the projectname_config directory.

� Make sure the project name and directory name match.

� Base this project on the oc48_pos_ingress_config project.

11. The new project will have files in it from oc48_pos_ingress_config. Remove
ix_sa_cc_list.c and ix_sa_symbols.c and add these files from your
projectname_config directory. Regenerate dependencies and save.

12. Select one of the builds from the config project, and open the properties dialog.

a. Select the rule sa\internal\internal_registry_data.h and click new/edit.

Tornado currently forces you to specify the path to the .xml file here (using the $(PRJ_DIR)
variable does not work).

b. Change the path to the .xml file to the correct path. For example, if the top level project were
named test and the config project named test_config, then you would change the path
to the xml file to
opt/ixa_sdk_3.5\src\apps\test\test_config\ix_sa_registry_data.xml.
Leave the rest of the command alone.

13. For each build, set projectname.out as the default rule. It will already exist from step 8.

14. Go back into the top level project.

� For each of the builds, setup the SUB_PROJS macro to include the modules you need.

� Most importantly, make sure SUB_PROJS does not include
IXA_SDK_3.5\src\applications\ipv4_forwarder\oc48_pos\ingress\oc48_pos_ingress_
config, and make sure SUB_PROJS does include the path to your new image config
project�for example, src\apps\test\test_config.

6.6 Configuring the System Application

The system application configures the system and provides services. For general information about
the system application, refer to the Internet Exchange Architecture (IXA) Software Building Blocks
Developer�s Manual.

The system application code is broken in two parts: sysapp_common and a variety of image
configurations. Each image configuration has a configuration project, sysapp_common uses the
configuration project to specify all of the custom information for a given image. This sub-section
shows what needs to be done with the configurations and how to add a core component under this
arrangement.

50 Intel IXA® SDK Software Framework Getting Started Guide

Working With Core Components

6.6.1 Image Configurations

The system application configuration consists of three files for each image configuration. Each
image configuration has a project called image\image_config, where image is the name of the
configuration. For example, say image is oc48_pos_ingress, so the directory
IXA_SDK_3.5\src\applications\ipv4_forwarder\oc48_pos\ingress\oc48_pos_ingress contains a
directory oc48_pos_ingress_config with a configuration project
oc48_pos_ingress_config.wpj.

The configuration files are as follows:

� ix_sa_registry_data.xml
This file contains the properties that will be added to the system registry during system
application startup. The properties in this file contain configuration information for the system
application as well as all of the core components.
The format is explained in Section 6.6.1.1, �Format of ix_sa_registry_data.xml� on page 50.

� ix_sa_symbols.c
This file contains the function _ix_sa_patch_symbols which is invoked by the common
system application code. This function patches any microcode symbols that the system
application needs to patch for this image configuration.

� ix_sa_cc_list.c
This file contains the function _ix_sa_cc_list which is invoked by the common system
application code. Inside this function are registered the init and fini functions for each core
component. Additionally, the global variable g_sa_uofFile is defined. This variable
contains the full path to the uof microcode file for this image configuration.

The image configuration project performs the following tasks:

1. Builds ix_sa_symbols.c and ix_sa_cc_list.c.

2. Processes ix_sa_registry_data.xml.
The processing of the xml file generates a header file called internal_registry_data.h. This file
is located in the image_config\include\sa\internal directory and is included by the
common system application code.

6.6.1.1 Format of ix_sa_registry_data.xml

There are three primary sections to the XML file: the header, the C include block, and the
IxaSdkConfig block.

Note: Core components running on Linux do not use the ix_sa_registry_data.xml file to generate
internal_registry_data.h. System and particular application properties are edited manually in the
corresponding internal_registry_data_linux.h file.

Header

The first block in the file is the XML header which looks like this:

<?xml version="1.0"?>

<!DOCTYPE IxaSdkConfig [

<!ELEMENT IxaSdkConfig (property*)>

<!ELEMENT property (property*)>

<!ATTLIST property name CDATA #REQUIRED type CDATA #IMPLIED value CDATA #IMPLIED>

Intel IXA® SDK Software Framework Getting Started Guide 51

Working With Core Components

]>

The header should never be modified. When interpreted by various XML editors, they can indicate
syntax errors while editing this file.

C Include Block

Before processing the XML file, we run it through the C preprocessor. This allows us to use
various shared #define directives instead of using hard coded values. This section contains an
XML comment tag which looks like this:

<!-- START HEADERS

#include "bindings.h"

...

END HEADERS-->

All C preprocessor directives must be specified within this comment block.

Due to the fact that the C preprocessor ignores text in quotes, and the XML specification requires
values to be specified in quotes, we use a tilde instead of quotes� ~ instead of " �when
surrounding a value that contains a preprocessor macro or constant. For example, consider the
following XML:

<property name="ID" type="uint32" value=~QM_TO_CSIX_TX_SCR_RING~/>

In this example, the preprocessor will replace QM_TO_CSIX_TX_SCR_RING with its defined
value. We then replace the tildes with quotes and run the file through the XML parser. If we were to
enclose the above value in quotes instead, the preprocessor will not replace the symbol with its
value and the quoted text would become the value.

Note: This is limited to preprocessor constants. C expressions will not work. For example:

#define MY_VALUE 1+1

The above defined MY_VALUE would expand to the text 1+1 in the XML file. The math will not be
performed. There is no C compiler used here.

IxaSdkConfig Block

This XML file uses two different tags. The first, IxaSdkConfig, opens the block containing
properties to load into the registry at startup. The second, property, defines one of these
properties.

The property tag takes one required option, name, and an optional pair of options, type and
value. type and value must be specified together and can only be included or omitted as a pair.

The system registry defines a property as an object�that is, it can have a value, it can be a
container to other properties, or both. If the pair type and value are omitted, the property simply
becomes a container for other properties but has no value of its own. If the pair type and value
are specified, the property is assigned a value but can still be used to contain other properties. The
outcome of this arrangement is a tree of properties.

A tag and its options are opened and closed as follows.

<IxaSdkConfig>

....

</IxaSdkConfig>

52 Intel IXA® SDK Software Framework Getting Started Guide

Working With Core Components

Notice the forward slash� / �when the tag is closed, just like HTML.

Properties are specified in the same way. If other properties are defined inside of a property, they
become its children in the registry tree. For example, consider the following definition:

<property name="Prop1">

<property name="Prop2">

</property>

</property>

In the above example, Prop1 will be created and Prop2 will be created as a child of Prop1.

Often there will be properties which do not have any children. These can be closed more easily by
adding a forward slash� / �at the end of the tag. For example:

<property name="Prop1">

<property name="Prop2"/>

</property>

Notice how Prop2 is closed with the trailing forward slash and so does not require a separate
</property> closing tag.

Note: Property tags are only valid inside the IxaSdkConfig tag.

There are two types of values that can be assigned to a property: uint32 and string. These
directives simply tell the system application what type of property to create. For example,

<IxaSdkConfig>

<property name="MyAppConfig">

<property name="IPADDR" type="string" value="10.0.0.1"/>

<property name="MTU" type="uint32" value="1500"/>

</property>

</IxaSdkConfig>

6.6.2 Properties Used by the System Application

The System Application properties are all contained as children of the /SystemApp property.
Figure 1, �System Application Property Tree� on page 53 shows the System Application property
tree where the forward slash� / �refers to properties as if they were a directory tree. Table 1
describes each of the properties in Figure 1.

Intel IXA® SDK Software Framework Getting Started Guide 53

Working With Core Components

Figure 1. System Application Property Tree
/SystemApp/

FREELISTS/

FL_MSG/

ELEMENT_COUNT

META_SIZE

DATA_SIZE

FL_01/

ELEMENT_COUNT

SRAM_SIZE

SRAM_CHAN

DRAM_SIZE

DRAM_CHAN

SCRATCH_RINGS/

SR_01/

ID

CHAN

ELEMENT_SIZE

SR_02/ ...

... (*any number of scratch rings)

SA_EXEC_ENGINES/

SA_EE_01/

CC_LIST

SA_EE_02/ ...

... (*any number of execution engines)

MICROENGINES/

ME_01/

CONTEXT_MASK

ME_02/ ...

... (*an entry for each ME to start)

Table 1. System Application Property Descriptions

Property Description

FREELISTS Contains the subproperties that define the message and
packet freelists for the system.
The system application will create these freelists at startup.

FL_MSG Contains the properties for the systems message freelist

ELEMENT_COUNT Number of buffers to put on the msg freelist

META_SIZE Size of the metadata for the buffers in the message freelist

DATA_SIZE Size of the data for the buffers in the message freelist

FL_01 Contains the properties for the systems packet freelist

ELEMENT_COUNT Number of buffers to put on the packet freelist

SRAM_SIZE Size of buffer SRAM area

SRAM_CHAN SRAM Channel

54 Intel IXA® SDK Software Framework Getting Started Guide

Working With Core Components

DRAM_SIZE Size of buffer DRAM area

DRAM_CHAN DRAM Channel

SCRATCH_RINGS Contains scratch ring definitions
The system application will create these scratch rings at
startup.

SR_XX Contains config properties for a given scratch ring
XX is a two digit number. Any number of scratch rings can be
specified where XX is incremented starting with 01: SR_01,
SR_02 and so on.

ID
Id of the scratch ring
This should match microcode.

CHAN Scratch channel.

ELEMENT_SIZE Size of the scratch rings elements
0 = 128 bytes
1 = 256 bytes
2 = 512 bytes
3 = 1024 bytes

SA_EXEC_ENGINES Contains execution engine definitions
Each definition is created by the system application during
startup. When started, these execution engines proceed to
create the core components specified in their CC_LIST
property.

SA_EE_XX Defines an execution engine
XX is the execution engine ID starting with 01. This property
must also have a uint32 value that is equal to XX.

CC_LIST String containing space-separated integers
Each integer is a CC ID to start. The system application
creates a CC using the init and fini functions registered for that
CC ID in ix_sa_cc_list.c.

MICROENGINES Contains properties that specify which microengines (MEs) to
start and the context to start them.

ME_XX Specifies an ME to start
XX is the index of the ME to start: 00 to 07 for the Intel®
IXP2400, 00-15 for the Intel® IXP2800. This property must
also have a uint value that contains the same ME number as
XX.

CONTEXT_MASK The context mask to pass to ix_rm_ueng_start when creating
this ME.

Table 1. System Application Property Descriptions

Property Description

Intel IXA® SDK Software Framework Getting Started Guide 55

Adding Microblocks to an Application 7

This chapter describes the steps involved to modify the existing oc48_pos_ipv4_ingress application
by creating a new microblock, modifying the application’s dispatch loop, rebuilding the project
with new source files, and running the debugger. The information provided in this chapter assumes
you are working with a Windows 2000* development host.

7.1 Changing the Application

This chapter provides procedures for modifying the existing oc48_pos_ipv4_ingress application
and add a new microblock between the PPP_classify and IPV4Fwder microblocks. For the sake of
simplicity, we will add a microblock which receives packets from PPP_Classify, increments a
counter, and forwards the packet to IPv4Fwder. The new microblock is called Count and the new
application is illustrated in Figure 7-1.

Note: In a real life application, the developer may want to make a more complex modification, such as
adding an MPLS Marker microblock to the oc48_pos_ipv4_ingress application.

Figure 7-1. Block Diagram: Modified oc48_pos_ipv4_ingress Application

7.2 Creating a New Application

Use an existing application as a baseline for the new application using the following procedure:

1. Create a folder called wbench_c_practice in the directory
\IXA_SDK_3.5\src\applications\ipv4_forwarder\oc48_pos\ingress

2. Copy all the folders from
\IXA_SDK_3.5\src\applications\ipv4_forwarder\oc48_pos\ingress\wbench_c_project to
the new folder.

3. Now open the project file oc48_pos_ipv4_ingress.dwp in the new folder.

4. The Workbench will prompt that a rebuild is required. Do a rebuild. It should compile with no
errors and warnings.

PPP-
classify

IPv4
Fwd

Queue
Mgr

CSIX Scheduler

CSIX
Tx

Packet
Rx

CSIX
Fabric

Count
(new)

56 Intel IXA® SDK Software Framework Getting Started Guide

Adding Microblocks to an Application

7.3 Modifying Source Files

Use the following procedure to create source files for the new microblock and to modify existing
application files to use the new microblock:

1. Under the folder \IXA_SDK_3.5\src\building_blocks, create a folder called count. Within the
count directory, create subdirectories called microc and include. All *.c source files will be
placed in microc and *.h files in the include subdirectory.

2. Create the count.c file under \IXA_SDK_3.5\src\building_blocks\count\microc as shown
below:

/************************

* File: count.c

*************************/

INLINE void count (void)

{

// standard check to see if this packet is for us

if (dlNextBlock != BID_COUNT)

return ;

sram_incr((volatile void __declspec(sram) *)(COUNT_SRAM_ADDR));

// send to next block

dlNextBlock = BID_IPV4;

return;

}

3. The dl_system_ingress_default.h file includes the microblock IDs for PPP_Classify,
IPv4Fwder, and others. We want to add a new ID for count. We see that the last microblock ID
is BID_MPLSILM, which is defined as 0x29. In the dl_system.h we will add for the count
microblock.

/* PracticeExcersize_begin */

#define BID_COUNT 0x2A

/* PracticeExcersize_END */

4. The dl_system_ingress_default.h file includes the SRAM addresses for the various counters
maintained by the microblocks. For the count microblock, specify the SRAM address where
the microblock will increment the packet count. We see that
CSIX_TX_COUNTERS_SRAM_BASE is set to 0x40300000. We will use the 0x40300200
for the Count microblock. Define the following in dl_system.h.

/* PracticeExcercise_begin */

#define COUNT_SRAM_ADDR 0x40300200

/* PracticeExcersize_end */

5. In the original project, the PPP_Classify sent packets to IPv4Fwd. Now it should send to the
Count microblock. Modify the ppp.c file as shown below:

INLINE void _ppp_classify(void *p_pkt,UINT in_offset)

{

...

if (type == PPP_IPV4)

Intel IXA® SDK Software Framework Getting Started Guide 57

Adding Microblocks to an Application

{

dlMeta.headerType = PPP_IPV4_TYPE;

// dlNextBlock = BID_IPV4;

/* PracticeExcersize_begin */

dlNextBlock = BID_COUNT;

/* PracticeExcersize_begin */

}

...

return;

}

Note: Remember to undo this modification after you complete the procedures in this chapter.

6. Modify the dispatch loop file pos_ipv4.c file to call count() before calling IPv4Fwder as
shown below:

/*--

 * The main function of the dispatch loop

 *--

 */

int main()

{

/*

 * initialize the microblocks

 */

dl_init(); //initialize the dispatch loop

 */

while(1)

{

SIGNAL scratch_put;// signal in scratch write

SIGNAL_MASKsig_mask = 0x0;// mask of signals to wait on

ppp_decap_classify(pkt_hdr,0x0);

/* PracticeExcersize_begin */

count();

/* PracticeExcersize_end */

Ipv4Fwder(pkt_hdr,IP_HDR_OFFSET,pkt_hdr,IP_HDR_OFFSET);

} // end while

return 0;

}

58 Intel IXA® SDK Software Framework Getting Started Guide

Adding Microblocks to an Application

7. Include the count.c file in pos_ipv4.c.

#include "dl_source.c"

#include "ppp.c"

#include "ipv4_fwder.c"

/* PracticeExcersize_begin */

#include "count.c"

/* PracticeExcersize_end */

7.4 Building a New Project

Perform the following steps to build the new application and run the debugger to verify your work:

1. Add the c source file to the project by clicking Project > Insert Compiler Source Files... on
the Developer Workbench Menu toolbar.

Intel IXA® SDK Software Framework Getting Started Guide 59

Adding Microblocks to an Application

2. Add the include patch for count.c in the Build > Settings... dialog’s General tab.

3. Modify the system_setup.ind file by adding the following statement just before
ps_start_packet_receive()
init_sram(0x0, 0x40300200, 0x40300203);
This initializes the SRAM address for the count microblock.

4. Build the project. The project should compile with no errors and warnings.

5. Start debugging. Set a watch point at SRAM address 0x40300200 to see the count being
incremented.

60 Intel IXA® SDK Software Framework Getting Started Guide

Adding Microblocks to an Application

Intel IXA® SDK Software Framework Getting Started Guide 61

Using Resource Manager for Linux 8

This section provides information about how to build IXP2XXX product line Linux kernel libraries
and applications on a Red Hat 7.3 Linux host and how to run applications on IXP2XXX product
line embedded Linux OS. The Resource Manager (RM), Operating System Service Layer (OSSL)
and all applications are implemented as loadable modules for the Linux kernel. The libraries as RM
and OSSL are just modules that provide clients with a set of APIs to call. During
init_module() and cleanup_module() they do not perform any action. It is the
responsibility of the calling application to perform any required initialization.

For complete information about the Resource Manager and Operating System Service Layer, refer
to Intel® Internet Exchange Architecture (IXA) Portability Framework Developer�s Manual.

8.1 Building the Libraries
Separate makefiles have been created for all libraries and applications. They are uniformly named
"Makefile.linux_kernel". The structure of these makefiles is similar between libraries (RM, OSSL)
and applications.

The following variables are relevant to all makefiles:

� IXA_SDK_DEV - should be defined as an environment variable and should point to the top of
the development source tree. This must be set to opt/ixa_sdk_3.5/IXA_SDK_3.5.

� IXP2XXX_TOOLCHAIN_ROOT - should be defined as an environment variable and should
point to the directory that contains the tool chain binaries.
Note: The remainder of this section assumes that the IXP2XXX_TOOLCHAIN_ROOT
variable points to /opt/hardhat/devkit/arm/xscale_be.

� IXP2400_KERNEL_SOURCE_ROOT - should be defined as an environment variable and
should point to the directory of the target kernel source for the IXP2400 LSP.
Note: The remainder of this section assumes that the IXP2400_KERNEL_SOURCE_ROOT
variable points to /opt/hardhat/devkit/lsp/intel-ixdp2400-arm_xscale_be/linux-
2.4.18_mv130.

� IXP2800_KERNEL_SOURCE_ROOT - should be defined as an environment variable and
should point to the directory of the target kernel source for the IXP2800 LSP.
Note: The remainder of this section assumes that the IXP2800_KERNEL_SOURCE_ROOT
variable points to /opt/hardhat/devkit/lsp/intel-ixdp2800-arm_xscale_be/linux-
2.4.18_mv130.

� CONFIG - this can have two values: NATIVE or XSCALE_BE. It defines the build
configuration type. The NATIVE build type is for the host machine, and is intended for
debugging purposes. The XSCALE_BE build type is intended for the target hardware. For the
current release, the default setting is XSCALE_BE.

� IXOS - defines the target OS and should always be set to LINUX.

� BUILD_TYPE - can be set to RELEASE or DEBUG, based on which type of build is desired.
DEBUG will provide the RM, CCI and the applications with verbose, debug output
information. For the current release, the default setting is DEBUG.

62 Intel IXA® SDK Software Framework Getting Started Guide

Using Resource Manager for Linux

� BUILD_MODE - can set to HARDWARE or SIMULATION. HARDWARE is the default
value. However, if the CONFIG variable is set to NATIVE then this value is changed to
SIMULATION.

� HARDWARE_TYPE - can be set to IXP2400 or IXP2800. It defines the target hardware for
which the build is intended. The default value is IXP2400.

� KERNEL_DIR - represents the base directory where the source for the target kernel resides. It
is set to /usr/src/linux-2.4 when the CONFIG variable is set to NATIVE, and will be set to the
value of opt/ai_target/linux when the CONFIG variable is set to XSCALE_BE. While the
first value will rarely change, the second is based on the base directory for the target kernel
installation on the host.

� LINUX_ARCH_DIR - defines the kernel architecture and is currently set to "i386" for
NATIVE and "arm" for XSCALE_BE. In most cases, this value can remain at the default.

� DSTDIR_BASE - represents the base distribution directory. Its default setting is to /opt/
xscale_be_test. This is the base directory where the built modules will be installed.

� SOURCE - represents the list of .c files to be included in the build.

� TARGET - specifies the name of the target module.

The correct command to build for the target is as follows:

make -f Makefile.linux_kernel install

The order for building libraries and modules must be done as follows:

6. rm_lib.o in $IXA_SDK_DEV/src/framework/rm

7. cci_lib.o in $IXA_SDK_DEV/src/framework/cci

In the $(IXA_SDK_DEV)/src/framework directory the make -f Makefile.linux_kernel
install command would build all the above modules.

8.2 Running the Resource Manager
In order to run any kernel applications, given that the directories and variables are set as shown in
Section 8.1, �Building the Libraries,� on page 61 and your target/host configuration is setup
according to the information contained in the Intel® Internet Exchange Architecture Software
Development Kit Tools Installation Guide, follow these steps:

1. On the host system:

a. Edit the file /etc/exports and add a new exported entry /opt/xscale_be_test/linux_kernel/
xscale_be

b. Run /usr/sbin/exportfs -a

c. Run /etc/rc.d/init.d/nfs stop

d. Run /etc/rc.d/init.d/nfs start
That is to export the /opt/xscale_be_test/linux_kernel/xscale_be directory and make it
visible to the target system.

2. On the target system:

a. Boot Linux*.

Intel IXA® SDK Software Framework Getting Started Guide 63

Using Resource Manager for Linux

b. Run mount <host_ip>(host name):/opt /mnt (e.g. mount 10.3.31.224: /opt/
xscale_be_test/linux kernel/xscale_be /mnt)

c. Run cd /mnt/ixp2400/debug

d. Copy the start.sh and stop.sh scripts from $(IXA_SDK_DEV)/test/unit/framework/
linux_kernel_scripts into the above directory

e. Copy $(IXA_SDK_DEV)/test/unit/framework/rm/uof to /mnt/uof (actually /opt/
xscale_be_test/linux_kernel/xscale_be/uof) directory.

f. Run ./start.sh

g. Run insmod test_app_mod.o (e.g. insmod system_api_test_mod.o)

h. Run rmmod test_app_mod (e.g. rmmod system_api_test_mod.o)

i. Run ./stop.sh
Note: For some applications the following command is required insmod cci_lib.o.

64 Intel IXA® SDK Software Framework Getting Started Guide

Using Resource Manager for Linux

Intel IXA® SDK Software Framework Getting Started Guide 65

Routing Table and L2 Table 9

This chapter provides information about the Routing table and the L2 table.

9.1 Routing Table
On the Ingress shell for VxWorks, type route_config. If you�re using Linux, type rconfig on
the Ingress shell. This shows all the supported Routing Table commands with usage syntax and
examples. Some pertinent commands are:

� addNextHop explains the command to add next hop to the system for IPv4.

� addRoute explains the command to add a route to the system for IPv4.

� addNextHopV6 shows how to use the command to add a next hop for IPv6.

� addRouteV6 shows how to use the command to add a route for IPv6.

9.1.1 Populating the Routing Table for IPv4 Ping Tests
This section provides information about populating the route table to conduct IPv4 ping tests
between the external hosts and the development platform (Intel® IXDP2400 Advanced
Development Platform). The procedural information in this section assumes that two hosts (Host 1
and Host 2) are connected to the development platform�s Ethernet data ports via an Ethernet hub, as
shown in Figure 1:

If you want to ping Port 0 from Host 1, follow these steps:

Figure 1. Example System Setup for IPv4 Ping Tests

B1378-01

Port 1: IP 11.0.0.1

Port 0: IP 10.0.0.1
Host 1: IP 10.0.0.101

Ethernet
Hub

Ethernet
Hub

Host

Host

Microblocks
P0

P1

Egress
Intel® IXP2400 Network Processor

Ingress
Intel® IXP2400 Network Processor

Intel®
XScale™ Core Components

Microblocks

Intel®
XScale™ Core Components

Host 2: IP 11.0.0.101

66 Intel IXA® SDK Software Framework Getting Started Guide

Routing Table and L2 Table

1. On the Ingress shell, add the following routes:
addNextHop "0xb 2 25 0 1500 1 10.0.0.1 0"

addRoute "10.0.0.1 255.255.255.255 0xb"

addNextHop "0xc 2 25 0 1500 0 10.0.0.101 0"

addRoute "10.0.0.101 255.255.255.255 0xc"

2. On the Egress shell, add the following L2 table entry:
addV4EthEntry "25 10.0.0.101 00:03:47:bd:f9:dc 0a:0b:0c:0d:0e:0f
DEFAULT"

where 00:03:47:bd:f9:dc is the MAC address of Host 1 and 0a:0b:0c:0d:0e:0f is
the default MAC address for Port 0 of the platform. Usually the MAC address of a host
running Windows 2000* can be found by typing route print from the command window.

3. On host 1, add the following static ARP entry for Port 0 of the platform:
C:\>arp -s 10.0.0.1 0a-0b-0c-0d-0e-0f 10.0.0.101

4. Type the ping command from Host 1as follows and you should get ping replies:
C:\>ping 10.0.0.1

Note: Instead of using static ARP entries, it is possible to discover MAC addresses of both sides by using
ARP. For this method, after you have done step 1 above, use the following command for step 2:

addV4L3Info "25 10.0.0.101 DEFAULT"

You can then skip step 3 and perform step 4 to get the ping replies.

If you want to ping Host 2 from Host 1 or vice versa, conduct steps 1-4 above for adding routes for
Host 1 and perform the following additional steps for adding routes to Host 2:

5. On the Ingress shell, add the following routes:
addNextHop "0xd 2 26 1 1500 1 11.0.0.1 0"
addRoute "11.0.0.1 255.255.255.255 0xd"
addNextHop "0xe 2 26 1 1500 0 11.0.0.101 0"
addRoute "11.0.0.101 255.255.255.255 0xe"

6. On the Egress shell, add the following L2 table entry:
addV4EthEntry "26 11.0.0.1 00:02:b3:1c:f7:97 0b:0c:0d:0e:0f:0a
DEFAULT"

where 00:02:b3:1c:f7:97 is the MAC address of host 2 and 0b:0c:0d:0e:0f:0a is the default
MAC address for Port 1 of the platform. Usually the MAC address of a host running Windows
2000* can be found by typing route print from the command window.

7. On host 2, add the following static ARP entry for Port 1of the platform:
C:\>arp -s 11.0.0.1 0b-0c-0d-0e-0f-0a 11.0.0.101

8. Type the following command from Host 1:
C:\>route add 11.0.0.101 mask 255.255.255.255 10.0.0.1

9. Type the following command from Host 2:
C:\>route add 10.0.0.101 mask 255.255.255.255 11.0.0.1

10. Type the ping command from Host 1 as follows and you should get the ping replies from Host
2:
C:\>ping 11.0.0.101

11. Type the ping command from Host 2as follows and you should get the ping replies from Host
1:
C:\>ping 10.0.0.101

Intel IXA® SDK Software Framework Getting Started Guide 67

Routing Table and L2 Table

9.1.2 Populating the Routing Table for IPv6 Ping Tests
This section provides information about populating the route table to conduct IPv6 ping tests
between the external hosts (either Windows 2000* or Windows XP* with IPv6 patch installed) and
target development platform (Intel® IXDP2400 Advanced Development Platform with Monta
Vista Linux*). The procedural information in this section assumes that two hosts (Host 1 and Host
2) are connected to the development platform�s Ethernet data ports via an Ethernet hub, as shown
in Figure 2:

The ingress application assigns the link local address to the Intel® IXDP2400 Advanced
Development Platform according to RFC 2464 and RFC 2461. The link local IPv6 address and the
MAC address for each port is shown in Table 2:

If you want to ping Host 1 from Host 2, follow these steps:

1. At the ingress prompt, add the following routes:
./rconfig addNextHopV6 "3 1 1 0 1500 0 0"
./rconfig addRouteV6 "3ffe:0:200:f102::fe0e:0f0a 64 3"

Figure 2. Example System Setup for IPv6 Ping Tests

Port 1 IPv6-fe80::090c:0dff:fe0e:0f0a

Port 0 IPv6-fe80::080b:0cff:fe0d:0e0f

Host 1 IPv6-3ffe:0:200:f102::fe0e:f0a

Ethernet
Hub

Ethernet
Hub

Host

Host

Microblocks
P0

P1

Egress
Intel® IXP2400 Network Processor

Ingress
Intel® IXP2400 Network Processor

Intel
XScale® Core Components

Microblocks

Intel
XScale® Core Components

Host 2 IPv6-3ffe:0:100:f102::fe0d:e0f

Table 2. IPv6 Addresses and MAC Addresses for IXP2400 Ports

Port Number IPv6 Address MAC Address

0 fe80::080b:0cff:fe0d:0e0f 0a:0b:0c:0d:0e:0f

1 fe80::090c:0dff:fe0e:0f0a 0b:0c:0d:0e:0f:0a

2 fe80::0e0d:0eff:fe0f:0a0b 0c:0d:0e:0f:0a:0b

3 fe80::0f0e:0fff:fe0a:0b0c 0d:0e:0f:0a:0b:0c

68 Intel IXA® SDK Software Framework Getting Started Guide

Routing Table and L2 Table

./rconfig addNextHopV6 "6 1 2 1 1500 0 0"

./rconfig addRouteV6 "3ffe:0:100:f102::fe0d:0e0f64 6

2. At the egress prompt, add the following L2 table entry:
./l2config addV6EthEntry "1 3ffe:0:200:f102::fe0e:0f0a 00:07:e9:ad:55:5b
0a:0b:0c:0d:0e:0f DEFAULT"
where 00:0f:e9:ad:55:5b is the MAC address of Host 1 and 0a:0b:0c:0d:0e:0f is the default
MAC address for Port 0 of the Advanced Development Platform.
./l2config addV6EthEntry "2 3ffe:0:100:f102::fe0d:0e0f 00:07:e9:ad:58:12
0b:0c:0d:0e:0f:0a DEFAULT"
where 00:07:e9:ad:58:12 is the MAC address of Host 2 and 0b:0c:0d:0e:0f:0a is the default
MAC address for Port 1 of the Advanced Development Platform.

3. Add the following route at Host 1:
C:\>ipv6 rtu 3ffe:0:100:f102::/64 4/fe80::080b:0cff:fe0d:0e0f

4. Add the following route to Host 2:
C:\> ipv6 rtu 3ffe:0:200:f102::/64 4/fe80::090c:0dff:fe0e:0f0a

5. Enter the following ping command from Host 1:
C:\> ping6 3ffe:0:100:f102::fe0d:0e0f
You will get ping replies from Host 2.

6. Enter the following ping command from Host 2:
C:\> ping6 3ffe:0:200:f102::fe0e:0f0a
You will get ping replies from Host 1.

9.2 L2 Table
On the Egress shell, type l2_config. l2_config shows all the supported commands with usage
syntax and examples. Some pertinent commands are as follows:

� addV4L3Info explains the command to add a Next Hop IP address to the system

� addV4EthEntry explains the command to add an entry containing both an IP address and
Ethernet MAC addresses to the system

� addV6EthEntry shows how to use the command to add an L2 entry, containing both the IPv6
and the Ethernet MAC addresses to the system.

Refer to Section 9.2.1, �Layer 2 Table Manager,� on page 68 for complete information about the
commands available in the Layer 2 Table Manager.

9.2.1 Layer 2 Table Manager
The L2 Table contains entries that are copied into packets before being sent out the ETH_TX or
ATM_TX interfaces. The L2 Table is typically populated by an application, such as the CP-PDK,
but may be manually controlled via commands issued from the Tornado shell.

This section describes how to modify the contents of the L2 Table and provides a brief overview of
the L2 Table. It is assumed the appropriate Ingress and Egress images have been downloaded to the
platform.

Intel IXA® SDK Software Framework Getting Started Guide 69

Routing Table and L2 Table

L2 Encapsulation microblocks obtain a 16-bit value from each packet�s meta data (nexthop_id).
This value serves as an index into the L2 Table. When adding or removing entries, the l2Index
value indicates which entry in the L2 Table is affected. The nexthop_id value in packet metadata is
populated by the IPv4 microblock on the Ingress side, according to the contents of the Route Table.
See the Route Table Manager section Intel® Internet Exchange Architecture (IXA) Software
Building Blocks Reference Manual for more information.

The following procedure contains information about controlling the Layer 2 Table Manager:

1. Start a Tornado* shell for the Egress processor.

2. To see a list of commands, type l2_config at the prompt.

3. The following commands are listed:

� addV4AtmEntry

� addV4EthEntry

� addV6EthEntry

� addV4L3Info

� deleteL2Entry

� clearL2Info

� purgeL2tm

� dumpL2tm

4. Type the name of any command to get usage information.

Note: For Linux systems, you must prefix each command with L2config. For example, you would enter
l2config addV4EthEntry to use the addV4EthEntry command.

The following subsections contain information about the various Layer 2 Table Manager
commands.

Note: These commands are a simplification of the L2 Table Manager's API. See the ix_cc_l2tm.h header
file located at IXA_SDK_3.5\src\library\xscale\l2_table_mgr\include\cc or the L2 Table
Manager section of the Intel® Internet Exchange Architecture (IXA) Software Building Blocks
Reference Manual for more information.

9.2.1.1 Adding a Complete Entry for Ethernet/IPv4

Ethernet/IPv4 entries require the following information, which can be set using a single command
as in the Example:

� l2Index (must match a value provided to addNextHop on Ingress)

� IPv4 address for the next hop

� Destination MAC address for the next hop

� Source MAC address for the outgoing port

Example:

-> addV4EthEntry "1 10.3.19.10 0a:0c:14:37:20:a0 cf:30:25:d6:4e:2f"

70 Intel IXA® SDK Software Framework Getting Started Guide

Routing Table and L2 Table

9.2.1.2 Adding a Complete Entry for Ethernet/IPv6

Ethernet/IPv6 entries require the following information, which can be set using a single command
as in the Example:

� l2Index (must match a value provided to addNextHopV6 on Ingress)

� IPv6 address for the next hop

� Destination MAC address for the next hop

� Source MAC address for the outgoing port

Example:

-> addV6EthEntry "1 3ffe:0:0:1000::101 0a:0b:0c:0d:0e:02
0a:0b:0c:0d:0e:01"

9.2.1.3 Adding L3 information

It is possible to add an IP address and let ARP discover the MAC address. When a packet is sent to
the specified IP address, the microblocks will forward the packet to the core because the MAC
addresses are unknown. An ARP request is sent, and when the reply arrives the L2 Table is updated
with the new information. The addV4L3Info command requires the following information:

� l2Index

� IPv4 Address

Example:

-> addV4L3Info "2 10.3.19.11"

9.2.1.4 Clearing L2 information

To remove Ethernet information from a complete entry (for example to force another ARP
request), use clearL2Info. This leaves the entry in the same state as if it had been completely
removed (deleteL2Entry) and re-added (addV4L3Info):

Example:

-> clearL2Info "3"

9.2.1.5 Removing an L2 Entry

To completely remove an L2 entry, use deleteL2Entry. Once an entry has been removed, its
index may be used to add a new entry with different information:

Example:

-> deleteL2Entry "2"

9.2.1.6 Purging the L2 Table

All contents of the L2 Table may be removed with a single command as follows:

-> purgeL2tm

Intel IXA® SDK Software Framework Getting Started Guide 71

Routing Table and L2 Table

9.2.1.7 Printing the contents of the L2 Table

To see a listing of the contents of the L2Table, use the following command:

-> dumpL2tm

Note: For Linux systems, enter l2config dumpL2tm.

72 Intel IXA® SDK Software Framework Getting Started Guide

Routing Table and L2 Table

Intel IXA® SDK Software Framework Getting Started Guide 73

IXDP2401 Application Tutorial A

The information in this appendix provides procedures for running and debugging a Windows 2000 example
application on the Intel® IXDP2401 Advanced Development Platform. The appendix is organized as follows:

� �Using the oc12_pos_gbeth_2401 Application�contains descriptions of a sample application, its data flow, and
the files it uses. This section also includes exercises that allow you to perform tasks such as building the
application and enabling logging.

� �Debugging the oc12_pos_gbeth_2401 Application� discusses debugging the application using break points.

A.1 Using the oc12_pos_gbeth_2401 Application
This section discusses a sample application that implements IPv4 forwarding running on POS and media at the OC-
12 rate and on Gigabit Ethernet. The application is written using the Intel® IXA Portability Framework. This
chapter contains the following topics:

� A high-level description of the oc12_pos_gbeth_2401 application, including the directories and the files used

� A set of exercises to help you become familiar with the contents and structure of the oc12_pos_gbeth_2401
application.

A.1.1 Overview of the oc12_pos_gbeth_2401 Application
The oc12_pos_gbeth_2401 application receives POS or Ethernet frames that carry IPv4 datagrams. The frames are
assembled into IPv4 packets and the Layer-2 (Ethernet or PPP) headers are removed. Data comes in through the
MSF into RBUFs. The data in the RBUFs is reassembled into PPP or Ethernet frames. For each frame, the Layer-2
header (PPP or Ethernet) is removed to yield an IP datagram.

The IPv4 microblock performs an RFC 1812 header check. Next a Longest Prefix Match (LPM) lookup is
performed and the packets are segmented and transmitted over the appropriate port. The result of the LPM lookup
determines which port is used to transmit the packet.

A.1.1.1 Building Blocks Relationship

The following figure shows the relationship of the blocks in a single chip configuration and the destination of the
packets.

74 Intel IXA® SDK Software Framework Getting Started Guide

IXDP2401 Tutorial

Figure 3. Block Diagram: oc12_pos_gbeth_2401 Application

The oc12_pos_gbeth_2401 project uses the following microblocks:

Microblock Path and Description

packet_rx
C:\IXA_SDK_3.5\src\building_blocks\rx\microengine\packe
t_rx\
Packet receive operations

ppp_decap
C:\IXA_SDK_3.5\src\building_blocks\rx\microenginel2_dec
ap\ppp_decap\
PPP decapsulation operations

ethernet_decap
C:\IXA_SDK_3.5\src\building_blocks\rx\microengine\l2_de
cap\ethernet_decap
Ethernet decapsulation operations

ipv4_fwder
C:\IXA_SDK_3.5\src\building_blocks\ipv4\
IPV4 forwarder

L2_validate --

qm
C:\IXA_SDK_3.5\src\building_blocks\queue_manager\qm_
packet\
Queue manager

scheduler
C:\IXA_SDK_3.5\src\building_blocks\scheduler\scheduler_
packet\
Packet scheduler

ppp_encap
C:\IXA_SDK_3.5\src\building_blocks\tx\microengine\l2_en
cap\ppp_encap\
PPP encapsulation operations

uE 0:0

uEs 0:1, 0:2, 1:3

uE 0:3

uE 1:1

uE 1:2

uE 1:0

Ethernet
Packet Rx

E
th

 D
ec

ap
/

C
la

ss
ify

Packet
Scheduler

Packet
QM

POS Packet Tx

PPP Encap

IP
v4

 F
w

d

L2
Va

lid
at

e Ethernet
Packet Tx

Eth Encap

Functional pipeline

POS Packet Rx

communication w ith core
components

PP
P

D
ec

ap
/

C
la

ss
ify

Intel IXA® SDK Software Framework Getting Started Guide 75

IXDP2401 Tutorial

A.1.1.2 Application-Specific Files

The directory C:\IXA_SDK_3.5\src\applications\ipv4_forwarder\0c12_pos_gbeth_2401\
wbench_project contains the files specific to this application. The following subsections examine the contents
of this directory.

A.1.1.2.1 dispatch_loop Subdirectory

The building blocks can be combined into many applications, using a dispatch loop which implements the packet
data flow for an application. Consider the dispatch loop as the application-specific "glue code" which integrates the
building blocks into one application.

The following related files are maintained under the \dispatch_loop directory:

ethernet_encap
C:\IXA_SDK_3.5\src\building_blocks\tx\microengine\l2_en
cap\ethernet_encap
Ethernet encapsulation operations

packet_tx
C:\IXA_SDK_3.5\src\building_blocks\tx\microengine\packe
t_tx\
Packet transmission operations

File Description

dispatch_loop.h Contains global configurable parameters for the dispatch loop.

dl_system.h

Contains all the compile time defines specific to this application, for
example:
Flags specific to running this application in simulation or hardware
Sizes of queue arrays
Base addresses for the lookup and statistics tables
Block IDs for the microblocks included in this application
dl_system.h also sets the source and the destination microblocks.

dl_source.uc

The actual implementation of the packet data flow. Contains macros for
dl_sink and dl_source for POS and IPv4 Blocks. These macros ensure
that the microblocks remain independent from the other microblocks in
the application. The functions also hide application-specific inter-
microblock communications from the individual microblocks. For
example, whether the microblocks communicate through next neighbor
registers or through a scratch ring.

pos_eth_ipv4.uc

Contains code, which binds the L2 Classifier and IPv4 Fwd into an
application such that the L2 Classifier receives packets from Packet_Rx
through dl_source. After removing POS or Eth header, the packet
undergoes IP lookup and header update, and the updated packet is
sent to Queue Manager through dl_qm_sink.

system_init.uc
Contains code, which does all the initialization to get the system up and
running. Typically it initializes all the various rings, creates the buffer
free list, initializes the various cache (meta, ip header etc).

pkt_header_cache.uc IP header caching macros. The macros support PPP (POS) and
Ethernet encapsulation.

76 Intel IXA® SDK Software Framework Getting Started Guide

IXDP2401 Tutorial

A.1.1.2.2 list Subdirectory

This folder is initially empty. After you build an application using the Developer Workbench, this folder contains
all the list files that are created.

A.1.1.2.3 log Subdirectory

This folder is initially empty. After you run the application on the Transactor, this folder contains all the log files
created for the packets received and transmitted. These log files may be analyzed by scripts to verify that the output
is correct.

A.1.1.2.4 scripts Subdirectory

This folder contains all the files used to initialize the various tables in SRAM and DRAM prior to running the
application on the Transactor�for example, creating the route tables, initializing the statistics counters, and similar
tasks.

A.1.1.2.5 streams Subdirectory

This folder contains the different types of packet streams created to simulate traffic while running the application
on the Transactor.

A.1.2 Working with the oc12_pos_gbeth_2401 Application
The following procedure is an exercise where you will perform some action, then get a mini-assignment about the
file(s) you�ve opened:

1. Open Workbench by clicking Start > Programs > IXA SDK 3.5 > DevWorkbench

2. Click on File > Open Project.

3. The oc12_pos_gbeth_2401 application is in the following directory:

CC:\IXA_SDK_3.5\src\applications\ipv4_forwarder\0c12_pos_gbeth_2401\
wbench_project.

Select the oc12_pos_gbeth_2401.dwp file.

Intel IXA® SDK Software Framework Getting Started Guide 77

IXDP2401 Tutorial

4. On the right side of the Workbench window, select the File View tab to display the files for this project. You
can expand the list of Compiler Source Files to see the list of the *.h and *.uc files in the application.
Double-click on any file to open it in the Workbench.

Exercises:

a. Open the file dl_system.h, search for POS_RX_NEXT1. What is this set to?

b. Open the file packet_rx.uc. Where is this file located? Search for dl_sink.

c. Open the file dl_source.uc. Where is this file located?

d. Open the file pos_eth_ipv4.uc. Where is the dispatch loop for PPP_Classify and IPv4Fwd?
(Hint: search for dl_source.)

e. Open the file ppp.uc. Where is this file located? Search for ppp_classify.

f. Open the file ipv4_fwder.uc. Where is this file located? What does the sub routine Ipv4Fwder do?

g. In the ipv4_fwder.uc file, search for IPV4_NEXT1. What is IPV4_NEXT1 set to?
(Search in dl_system.h).

h. Open the file qm_packet_code.uc. What does this file contain?

Now we know how to search for the microblocks used to build an application and examine the dispatch loop for the
application.

78 Intel IXA® SDK Software Framework Getting Started Guide

IXDP2401 Tutorial

5. To build the application, click the Build button on the toolbar.
The application should compile with 0 errors and warnings. The list files can be examined in the subdirectory

:C:\IXA_SDK_3.5\src\apps\oc12_pos_gbeth_2401\wbench_project\list
. The application should compile with 0 errors and warnings.The list files can be examined in the subdirectory:C:\IXA_SDK_3.1\src\apps\oc12_pos_gbeth_2401\wbench_project\list

6. Before running the application, let�s check the data stream the application will receive. Click Simulation >
Data Streams on the menu bar. We see that a stream has been selected.

We can see the contents of the packet by clicking on Edit Stream->Edit Frame. Where is the corresponding
file for this stream?

7. To enable logging for the packets received by the application, click Simulation > Packet Simulation Options
> Port Logging. Verify that the Enable Logging and Log frame numbers options are enabled. Check the path
for the log file.

To start the debugger, click the spider button on the tool bar. Let the application run for about 12000 cycles.To see the number of packets sent and received, click the Packet Simulation Status button on the tool bar. Now go to the log folder and open the log files. What do you see?.To start the debugger, click the spider button on the tool bar.

Intel IXA® SDK Software Framework Getting Started Guide 79

IXDP2401 Tutorial

8. .To start the debugger, click the Debug button on the tool bar.
Let the application run for about 12000 cycles.

9. .To see the number of packets sent and received, click the Packet Simulation Status button on the tool bar.

10. Now go to the log folder and open the log files. What do you see?

A.2 Debugging the oc12_pos_gbeth_2401 Application
This chapter contains an overview of certain application packet flow concepts and guidelines for debugging the
oc12_pos_gbeth_2401 application on the Transactor. Stepping through the application code, shows how the inter-
microengine communication is implemented and how the packet information is exchanged from one microblock to
the next.

A.2.1 Application Packet Flow Overview
The Intel® IXA Portability Framework uses certain types of structures which are unique to each packet and which
specify the packet characteristics based on which microblocks make routing and processing decisions. Before
debugging an application, it is important to understand the following packet flow concepts:

� dispatch loop variables

� packet metadata

� packet buffer

The dl_ingress_system_default.h file (found in
C:\IXA_SDK_3.5\src\library\microblocks_library\include)
contains the # defines for microblock IDs, packet metadata, and packet buffer.

A.2.1.1 Dispatch Loop Variables

Dispatch loop variables are exchanged from one microblock to another as the packet is passed from one microblock
to the next. Dispatch loop variables include next block and buffer handles, for example. Therefore, for each packet
there will be a corresponding set of dispatch loop variables. After the current microblock has processed the packet,
it sets the next block to the next microblock ID. The other variables uniquely identify where the packet metadata
resides in the SRAM and where the actual packet resides in the DRAM. For instance, when the PacketRx
microblock forwards the packet to the PPP-IPv4 microblock running on a different microengine, PacketRx sets the
next block to BID_POS and writes the following dispatch loop variables to the scratch ring:

� Buffer handle containing start of packet (SOP). This is a 32-bit value where the lower 24 bits can be used to
locate the packet metadata in the SRAM and the actual packet in the DRAM.
The buffer handle structure buf_handle_t is defined in ixp_lib.h.

� Buffer handle containing end of packet (EOP). If the packet is longer than 2K, this points to the location of the
packet buffer which contains the end of the packet.

80 Intel IXA® SDK Software Framework Getting Started Guide

IXDP2401 Tutorial

Similarly, when the PPP-IPv4 microblock forwards the packet to the Queue Manager microblock, the IPv4 writes
the buffer handles for start of packet, end of packet, and the port number. Depending on the functionality performed
by the downstream microengine, the microblocks write the most relevant packet characteristics to the scratch ring.
However, when the PPP microblock forwards the packet to IPv4Fwder, it sets the dl_next_block to
BID_IPV4 and caches dispatch loop variables to local memory or GPRs.

A.2.1.2 Packet Metadata

Packet metadata is a set of variables that describes the characteristics of the packet, such as the buffer descriptors,
packet length, header type, input port number, etc. By default, packet metadata is 8 long words in size and is stored
in SRAM.

Some of the elements of packet metadata include:

� Amount of packet data in the buffer.

� DRAM offset where the packet begins. Each buffer in the DRAM is 2K or 2048 bytes long and the start of the
packet is 128 bytes from the start of the buffer. Starting the packet at a 128 byte offset comes in handy when a
microblock has to prepend the header without moving the packet around in the DRAM. For example, the
MPLS Marker microblock inserts an MPLS label before the IP header and adjusts the offset to 124 bytes.

� Packet length. If the packet length is more than 2K, the microblock learns that the packet is spread across a
chain of buffers.

� Header type. Identifies whether it is a IPv4 packet or a IPv6 packet.

A.2.1.3 Packet Buffer

This buffer contains the actual packet data received from the media interface. This is stored in DRAM and is 2K in
size. If the total packet data is more than 2K in size, the microblock uses a chain of packet buffers. The packet
buffer containing the SOP has headroom of 128 to 512 bytes. This allows room to prepend headers without having
to move the packet within the DRAM.

A.2.2 Debugging oc12_pos_gbeth_2401
This section explains how to do certain simple tasks using the Developer Workbench. For details on the full
functionality provided by the Workbench, refer to the Development Tools User’s Guide on the Intel® IXA SDK
Tools CD.

The exercises in this section will demonstrate:

� how packet information is exchanged from one microengine to another

� how packet characteristics and packet data is organized in SRAM and DRAM

� how the microblocks access and modify these characteristics and the packet header

Perform the following steps to debug the oc12_pos_gbeth_2401 application:

1. Build the oc12_pos_gbeth_2401 application project and click the Debug button.

2. Click the Memory Watch button on the toolbar:

3. The Memory Watch window shows the contents of scratchpad, SRAM, and DRAM. Set a breakpoint on
change on scratchpad. This breakpoint will be hit when a microblock writes the dispatch loop variables to the
next microblock. In this specific example, the breakpoint will be hit when the PacketRx microblock writes the

Intel IXA® SDK Software Framework Getting Started Guide 81

IXDP2401 Tutorial

dispatch loop variables to the scratch ring between PacketRx and PPP-IPv4. (Refer to dl_sink in the
dl_source.uc file.)

4. Run the application by clicking on the Go button on the toolbar.

5. When the first break point is reached, open the file dl_source.uc and go to dl_sink. The PacketRx
microblock uses dl_sink) to write 5 long words, (dlBufHandle, dlEopBufHandle, dram offset, etc)
to the scratch ring.

6. Let the application run until the scratchpad memory gets initialized with the dispatch loop variables.

7. Using the dispatch loop variables, locate the packet metadata in SRAM and packet buffer in DRAM. The
dlBufHandle variable tells that the packet buffer has both SOP and EOP, which implies that the packet length is
less than 2K in size, therefore we can ignore the dlEopBufHandle. From the lower 24 bits we can derive the
SRAM address for the packet metadata and DRAM address for the packet buffer as follows:
packet metadata address = (dlBufHandle.lw_offset << 2)
packet buffer address = (dlBufHandle.lw_offset << 8)

Note: In practice, use the library function Dl_BufGetDesc in dl_buf.uc to obtain the packet
metadata and the library function Dl_BufGetData in dl_buf.uc to obtain the packet
address.

8. Given the dlBufHandle = 0xc0000010, the packet metadata resides at SRAM address 0x40. Add a SRAM
watch point for address 0x40:+32. The second long word shows the packet size and buffer offset from where
the packet data starts in the packet buffer.

9. Given the dlBufHandle = 0xc0000010, the packet buffer starts at 0x1000 and the actual packet data starts
at 128 byte offset. Add a DRAM watch point for address 0x1080:+40. The contents show the PPP header, IP
header, and IP payload.

10. Set a break point on change on the SRAM address to see how the packet metadata gets updated.

11. Set a break point on change on the DRAM address to see how the PPP decapsulation and IPvFwder
microblocks modify the IP header.

12. When the break point on the SRAM address is reached, the packet size and the buffer offset change. This
implies that the PPP_Classify microblock has stripped off the PPP header and adjusted the packet length and
buffer offset. (Note: See _ppp_decap in ppp.uc). The ppp header still exists in the DRAM but from this
point onwards, the IPv4Fwder microblock will operate as if the packet size is 40 bytes and packet starts at
offset 130 instead of 128. Also, the PPP_Classify microblock updates the dlMeta.header_type in the
packet metadata to PPP_IPV4_TYPE. (See _ppp_classify in ppp.uc).

13. When the break point on the DRAM address is reached, it implies that the IPv4Fwder microblock has
decremented the TTL and updated the checksum in the IP header.

To gain a deeper perspective on the concepts and microblocks covered in this debugging exercise, refer to the
following documents on the Intel® IXA SDK Software Framework CD:

� Intel® Internet Exchange Architecture (IXA) Portability Framework Developer�s Manual

� Intel® Internet Exchange Architecture (IXA) Portability Framework Reference Manual

For details on the full functionality provided by the Developer Workbench, refer to the Development Tools User’s
Guide on the Intel® IXA SDK Tools CD.

82 Intel IXA® SDK Software Framework Getting Started Guide

IXDP2401 Tutorial

	Software Framework Getting Started Guide
	About This Publication 1
	1.1 Audience
	1.2 How to Use This Publication
	1.3 Other Sources of Information

	Overview 2
	2.1 Portability Framework Overview
	2.2 SDK Software Framework in General
	2.3 Understanding the Directories
	2.3.1 Applications Directory
	2.3.2 Building Blocks Directory
	2.3.3 Library Directory

	Running Applications on the Developer Workbench Simulator 3
	Running Applications on Hardware 4
	4.1 Connecting to a Packet Generator
	4.2 Windows 2000/XP with VxWorks Systems
	4.2.1 IPv4 Forwarding Application on Hardware Using Core Components

	4.3 Red Hat/Monta Vista Linux Systems
	4.3.1 Setting up Linux Minicom for Egress and Ingress NPUs
	4.3.2 IPv4 Forwarding Application on an Intel® IXDP2400 Using Core Components
	4.3.3 IPv6 Forwarding Application on an Intel® IXDP2400 Using Core Components
	4.3.4 10x1GB IPv4/v6 Forwarding Application on Intel® IXDP2800 Using Core Components

	4.4 Using the Advanced Development Platform’s Copper Ethernet Ports

	Debugging Applications on the Developer Workbench Simulator 5
	5.1 Application Packet Flow Overview
	5.1.1 Packet Metadata
	5.1.2 Packet Buffer
	5.1.3 Dispatch Loop Variables

	5.2 Debugging oc48_pos_ipv4_ingress

	Working With Core Components 6
	6.1 Handling of Exception Packets by Core Components
	6.2 Creating a Core Component
	6.3 Porting Core Components from VxWorks to Linux
	6.3.1 Porting Guidelines

	6.4 Adding a New Core Component
	6.5 Adding Top Level Projects
	6.6 Configuring the System Application
	6.6.1 Image Configurations
	6.6.1.1 Format of ix_sa_registry_data.xml

	6.6.2 Properties Used by the System Application

	Adding Microblocks to an Application 7
	7.1 Changing the Application
	7.2 Creating a New Application
	7.3 Modifying Source Files
	7.4 Building a New Project

	Using Resource Manager for Linux 8
	8.1 Building the Libraries
	8.2 Running the Resource Manager

	Routing Table and L2 Table 9
	9.1 Routing Table
	9.1.1 Populating the Routing Table for IPv4 Ping Tests
	9.1.2 Populating the Routing Table for IPv6 Ping Tests

	9.2 L2 Table
	9.2.1 Layer 2 Table Manager
	9.2.1.1 Adding a Complete Entry for Ethernet/IPv4
	9.2.1.2 Adding a Complete Entry for Ethernet/IPv6
	9.2.1.3 Adding L3 information
	9.2.1.4 Clearing L2 information
	9.2.1.5 Removing an L2 Entry
	9.2.1.6 Purging the L2 Table
	9.2.1.7 Printing the contents of the L2 Table

	IXDP2401 Application Tutorial A
	A.1 Using the oc12_pos_gbeth_2401 Application
	A.1.1 Overview of the oc12_pos_gbeth_2401 Application
	A.1.1.1 Building Blocks Relationship
	A.1.1.2 Application-Specific Files

	A.1.2 Working with the oc12_pos_gbeth_2401 Application

	A.2 Debugging the oc12_pos_gbeth_2401 Application
	A.2.1 Application Packet Flow Overview
	A.2.1.1 Dispatch Loop Variables
	A.2.1.2 Packet Metadata
	A.2.1.3 Packet Buffer

	A.2.2 Debugging oc12_pos_gbeth_2401

