

Configuration and Management API
Reference Guide

Control Plane-Platform Development Kit 2.11
March 2004

R

Information in this document is provided in connection with Intel® products and services. No license, express or
implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in
Intel's Terms and Conditions of Sale for such products and services, Intel assumes no liability whatsoever, and Intel
disclaims any express or implied warranty, relating to sale and/or use of Intel® products and services including liability
or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or
other intellectual property right. Intel products and services are not intended for use in medical, life saving, or life
sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Copyright© 2004 Intel Corporation.

* Other brands and names are the property of their respective owners.

ii Configuration and Management API Reference Guide
Intel Confidential

Contents
1 Configuration and Management .. 7

1.1 Configuration and Management API .. 7
1.2 Terminology.. 7
1.3 Event Management .. 8
1.4 Resolving Events and Callbacks.. 8
1.5 Callback for Event Notification ... 10
1.6 Register Callback for FE Event Notification 10
1.7 Deregister Callback for FE Event Notification11
1.8 Response Data for FE Event Callbacks..11
1.9 Register Callback for Interface Event Notification.......................... 12
1.10 Deregister Callback for Interface Event Notification....................... 13
1.11 Response Data for Interface Event Callbacks................................ 13
1.12 Register Callback for Port Event Notification 14
1.13 Deregister Callback for Port Event Notification 15
1.14 Response Data for Port Event Callbacks....................................... 15
1.15 FE Management... 16
1.16 Get FE Capabilities .. 16

Tables
Table 1. Terminology ...7

Revision History
Revision Description Date Author

2.11 Updated for Release 2.11 March 2004 Shailesh Suman

2.1 Updated for Release 2.1 December 2003 Shailesh Suman

2.0 Updated for Release 2.0 August 2003 Shailesh Suman

iii
Control Plane-PDK 2.11

Part 1: Configuration and
Management

1 Configuration and Management
Configuration and Management (CnM) exposes a mechanism to receive events about the system
comprising Forwarding Element (FE), ports and interfaces. It also provides a synchronous API to query
capabilities of FEs in terms of status, ports, attributes, and so on.

This document describes the Configuration and Management API of the Control Plane Platform
Development Kit (CP-PDK). The CnM API is intended to provide a uniform API to primarily deal with
events related to forwarding elements, ports and interfaces.

1.1 Configuration and Management API
The CP-PDK currently includes the following sets of Configuration and Management APIs:

• Event management: Allows applications to register and receive notifications when certain events
(such as an FE/port status changes (up/ down)) occur in the underlying forwarding plane.

• FE management: Allows applications to query overall FE capabilities. This function is called by
administrative or management applications to know about FE.

1.2 Terminology
Table 1. Terminology

Term Description

Control Element (CE) In a separated control/data system, refers to the processor(s) responsible for control and configuration of
forwarding elements. Used interchangeably with Control Plane (CP).

Control Plane (CP) See Control Element (CE)

CP-PDK Control Plane Platform Development Kit

Forwarding Element (FE) In a separated control/data system, refers to the processor(s) responsible for fast path forwarding of data.
Used interchangeably with FP.

Forwarding Plane (FP) See Forwarding Element (FE)

CnM Configuration and Management

Configuration and Management API
Reference Guide

R

1.3 Event Management
The Event Management API allows applications to register for events that can occur in the underlying
forwarding plane. For example, an application may want to register callbacks for receiving notification
when an FE comes up, a port goes down on an FE, an FE goes down, and so on. This API allows
applications using the CP-PDK APIs to register callbacks for such generic events. The reported events
are sub-divided into the following categories:

1. FE events NPF_EVENT_FE_BIND FE bind has occurred

NPF_EVENT_FE_UP FE has come up

NPF_EVENT_FE_DOWN FE has gone down

2. Interface events NPF_EVENT_IF_UP If the interface is up

NPF_EVENT_IF_DOWN If the interface is down

NPF_EVENT_IF_IPADDR_CHANGE If the IP address has changed

NPF_EVENT_IF_DELETE If the interface is deleted

NPF_EVENT_IF_IPFORWARDING If the IP forwarding status has
changed

3. Port events NPF_EVENT_PORT_UP Port has come up

NPF_EVENT_PORT_DOWN Port has gone down

NPF_EVENT_PORT_MTU_CHANGE Port’s MTU size has changed

NPF_EVENT_PORT_LINKSPEED_CHANGE Port’s LinkSpeed has changed

The Event Management API allows applications to register callbacks for any of the above categories of
events that are invoked when the corresponding events occur on the forwarding plane.

1.4 Resolving Events and Callbacks
The API implementation must guarantee the following behavior with respect to events and callbacks:

If multiple applications register for an event, and the event can occur as the result of an API callback
invoked by any of the applications, the call completion result (callback) must reach only the application
that made the API call, and all other applications must be notified of the event.

For example, if P1 and P2 (applications/processes, and so on) register for an NPF_EVENT_IF_DOWN
event for a particular interface, and P1 makes a Configuration and Management API call to shut down
the same interface. In this scenario, when the FE shuts down the interface, the API implementation
invokes the corresponding callback registered by P1 to indicate the status of the API call.

Additionally, since both P1 and P2 had also registered for the event, the callbacks they had registered
for the NPF_EVENT_IF_DOWN event are also invoked. P1 must resolve the fact that it has received

8
Intel Confidential

Configuration and Management API
Reference Guide

R

both an API call completion and an event callback for the same event that occurred on the forwarding
plane, and possibly ignore the event.

The API implementation should not assume that all events at the CP-PDK API level are exactly
matched by events on the forwarding plane level.

For example, NPF_EVENT_IF_IPADDR_CHANGE (change in the IP address of an interface) is an
event at the PDK API level, since an application might be interested in being notified when the IP
address of an interface changes. The IP address of an interface is changed by an application invoking
the corresponding Configuration and Management API call. When the forwarding element actually
changes the IP address as desired, the call completion status is reported through a corresponding
callback only to the application that invoked the API call to change the IP address. There is, however,
no corresponding asynchronous event from the forwarding element that the IP address of an interface
has been changed.

Accordingly, a corresponding event must also be generated for applications that need to be notified. The
API implementation must resolve such scenarios where call completions must generate corresponding
events to external applications.

The following events are currently supported:

1. NPF_EVENT_FE_BIND: Indicates to an application that an FE is now bound to the CE. This
event results when the CE has just discovered a new FE. At this time, the FE has not been
configured: its ports do not have IP addresses assigned and it does not have a routing table, and
so on. Only a configuration application must register for this event, on which it uses the
Configuration and Management API functions to configure the FE and its properties.
Applications must register for this event in order to configure the new forwarding element and
for supporting hot swap ability of forwarding planes.

2. NPF_EVENT_FE_UP: Generated after configuration application completes all the requests for
this FE bind event.

3. NPF_EVENT_FE_DOWN: Generated if an FE goes down. An additional parameter in the
callback indicates the reason for the event: administrative shutdown, malfunctioning of the FE,
and so on.

4. NPF_EVENT_IF_UP: Indicates that an interface on an FE has come up.

5. NPF_EVENT_IF_DOWN: Indicates that an interface on an FE has gone down.

6. NPF_EVENT_IF_DELETE: This event is generated when a FE goes down for all interfaces
that have configured on the FE.

7. NPF_EVENT_IF_IPADDR_CHANGE: Indicates that the interface’s IP address has been
changed.

8. NPF_EVENT_IF_IPFORWARD_CHANGE: Indicates that the interface’s IP forwarding status
has been changed.

9. NPF_EVENT_PORT_MTU_CHANGE: Indicates that the port’s MTU has been changed.

10. NPF_EVENT_PORT_LINKUP: Indicates that the port’s link went up.

11. NPF_EVENT_PORT_LINKDOWN: Indicates that the port’s link went down.

12. NPF_EVENT_PORT_LINKSPEED_CHANGE: Indicates that the port’s line speed has been
changed.

9
Control Plane-PDK 2.11

Configuration and Management API
Reference Guide

R

1.5 Callback for Event Notification

Syntax
typedef void (*NPF_EVENT_CBFUNC)(

IN: NPF_USERCONTEXT context,

IN: NPF_HANDLE obj_handle,

IN: NPF_EVENT event,

IN: NPF_DATA* response);

Description

The callback function must be registered for any category of events in which an application is
interested. The API implementation invokes the correct callback when any event in the specified
category occurs.

Input Parameters

context Registration context, known and interpreted by the application

obj_handle The NPF_HANDLE to the object on which the event occurred. For example,
if the event was NPF_FE_DOWN, obj_handle is the NPF_HANDLE to the
FE object that went down.

event One of the events is listed in Section 1.4, Resolving Events and Callbacks

response Well-defined data structure that contains relevant information about the
event that occurred

1.6 Register Callback for FE Event Notification
Syntax
NPF_RET npf_fe_event_register (

IN: NPF_USERCONTEXT context,

IN: NPF_EVENT_CBFUNC cb_fn,

OUT: NPF_CBHANDLE fe_evnt_cbhandle);

Description

The registration function for registering a callback for FE events in which an application is interested.
The API implementation invokes the callback function on occurrence of any event in the specified
category.

10
Intel Confidential

Configuration and Management API
Reference Guide

R

Input Parameters

context Registration context, known and interpreted by the application

cb_fn Pointer to the callback function of the prototype defined in the previous
section.

 The events in this category are:

NPF_EVENT_FE_BIND
NPF_EVENT_FE_UP
NPF_EVENT_FE_DOWN

Output Parameters

fe_evnt_cbhandle Unique callback registration handle

1.7 Deregister Callback for FE Event Notification
Syntax
NPF_RET npf_fe_event_deregister (

IN: NPF_CBHANDLE cb_handle);

Description

De-registers a callback from any FE events.

Input Parameters

cb_handle Callback handle, obtained during registration

1.8 Response Data for FE Event Callbacks
The last parameter in the callback function described in Section 1.5, Callback for Event Notification,
NPF_DATA, contains a pointer to event-specific data. Although it is a void pointer, it points to a well-
defined structure, and the application handling the callback must ensure that it casts the pointer to the
correct type before using it. The pointer is passed as a generic void pointer, so the same function
signature can be used for passing event-specific response data. Thus, response data for a different event
could be a different structure. Different structures used for each category or case is explained below:

a. NPF_EVENT_FE_BIND & NPF_EVENT_FE_UP

In this case, a new FE has bound to the system and the application requesting to be notified might be
interested in downloading new configuration information for the new FE. As mentioned earlier, the
applications need not register for this event, if the FE was previously bound to the CE, before the last
reboot.

11
Control Plane-PDK 2.11

Configuration and Management API
Reference Guide

R

The administrative or management applications that desire support for hot swap ability must register for
this event. In this case, the FE configuration information is not known to the API implementation. The
structure passed to the application for this event contains details of the new FE, such as basic system
information, capabilities, number of ports, and so on, as indicated by the following:
typedef struct NPF_FE_ATTRIBS_tag

{

char desc[256]; /* FE description */

char name[128]; /* unique name of FE */

time_t stamp; /* time stamp */

uint32_t id; /* FE ID for this FE */

int num_ports; /* number of ports on this FE */

int status; /* UP, DOWN */

HWADDR hwaddr; /* MAC address, possibly */

IPADDR ipaddr; /* IP address, if any */

} NPF_FE_ATTRIBS;

typedef struct NPF_FE_tag

{

uint32_t id; /* FE ID for this FE, = attribs.id */

NPF_FE_ATTRIBS attribs;

NPF_FE_CAPS caps;

} NPF_FE_t;

b. NPF_EVENT_FE_DOWN

The response data in this case contains the reason for the FE going down. For example, it could contain
a detailed description of the problem that occurred for diagnostic purposes.

1.9 Register Callback for Interface Event Notification
Syntax
NPF_RET npf_if_event_register (IN: NPF_USERCONTEXT context,

IN: NPF_EVENT_CBFUNC cb_fn,
OUT: NPF_CBHANDLE if_evnt_cbhandle);

Description

The registration function for registering a callback for the interface events in which an application is
interested. The API implementation invokes the callback function on occurrence of any event in the
specified category.

12
Intel Confidential

Configuration and Management API
Reference Guide

R

Input Parameters

context Registration context, known and interpreted by the application

cb_fn Pointer to an event callback function as defined in Section 2.2

 The events in this category are:

NPF_EVENT_IF_UP
NPF_EVENT_IF_DOWN
NPF_EVENT_IF_DELETE
NPF_EVENT_IF_IPADDR_CHANGE
NPF_EVENT_IF_IPFORWARDING_CHANGE

Output Parameters

if_evnt_cbhandle An unique callback registration handle

1.10 Deregister Callback for Interface Event Notification
Syntax
NPF_RET npf_if event_deregister (IN: NPF_CBHANDLE cb_handle);

Description

Deregisters a callback from interface events.

Input Parameters

cb_handle Callback handle, obtained during the callback registration

1.11 Response Data for Interface Event Callbacks
The last parameter in the callback function described in Section 1.5, Callback for Event Notification,
NPF_DATA, contains a pointer to the event-specific data. Although it is a void pointer, it points to a
well-defined structure, and the application handling the callback must ensure that it casts the pointer to
the correct type before using it. The pointer is passed as a generic void pointer, so the same function
signature can be used for passing event-specific response data. Thus, response data for each different
event could be a different structure.

Different structures used for each category or case are explained below:
NPF_EVENT_IF_UP

NPF_EVENT_IF_DOWN

NPF_EVENT_IF_DELETE

NPF_EVENT_IF_IPADDR_CHANGE

NPF_EVENT_IF_IPFORWARD_CHANGE

13
Control Plane-PDK 2.11

Configuration and Management API
Reference Guide

R

The response data in all these cases contains the interface attributes in a structure NPF_INTERFACE_t
as defined by the following:
typedef struct NPF_IF_IP_ATTRIBS_tag

{

IPA ipaddr;

IPA submask;

Int ipfwding; /* ENABLED, DISABLED */

} NPF_IF_IP_ATTRIBS;

typedef struct NPF_interface_tag

{

char name[128];

char desc[256];

int status; /* UP, DOWN, TESTING */

int index; /* Interface index */

char vifname[128]; /* virtual interface name */

NPF_IF_IP_ATTRIBS ipattribs;

} NPF_INTERFACE_t;

1.12 Register Callback for Port Event Notification
Syntax
NPF_RET npf_port_event_register (IN: NPF_USERCONTEXT context,

IN: NPF_EVENT_CBFUNC cb_fn,
OUT: NPF_CBHANDLE port_evnt_cbhandle);

Description

The registration function for registering a callback of any port events in which an application is
interested. The API implementation invokes the callback function on occurrence of any event in the
specified category.

Input Parameters

context Registration context known and interpreted by the application

cb_fn Pointer to an event callback function as defined in Section 2.2.

 Currently defined events in this category are:

NPF_EVENT_PORT_LINKUP
NPF_EVENT_PORT_LINKDOWN
NPF_EVENT_MTU_CHANGE
NPF_EVENT_LINKSPEED_CHANGE

Output Parameters

port_evnt_cbhandle Unique callback registration handle

14
Intel Confidential

Configuration and Management API
Reference Guide

R

1.13 Deregister Callback for Port Event Notification

Syntax
NPF_RET npf_port_event_deregister (IN: NPF_CBHANDLE cb_handle);

Description

Deregisters a callback from port events.

Input Parameters

cb_handle Callback handle obtained during the callback registration

1.14 Response Data for Port Event Callbacks
The last parameter in the callback function described in Section 1.5, Callback for Event Notification,
NPF_DATA, contains a pointer to event-specific data. Although it is a void pointer, it points to a well-
defined structure, and the application handling the callback must ensure that it casts the pointer to the
correct type before using it. As the pointer is passed as a generic void pointer, the same function
signature can be used for passing event-specific response data. Thus, response data for each different
event could be a different structure. Different structures used for each category or case is explained
below:
NPF_EVENT_PORT_LINKUP

NPF_EVENT_PORT_LINKDOWN

NPF_EVENT_PORT_MTU_CHANGE

NPF_EVENT_PORT_LINKSPEED_CHANGE

The response data in all these cases contains the port attributes in a structure NPF_PORT_t as defined
by the following:
typedef struct NPF_PORT_ATTRIBS_tag

{

NPF_PORT_TYPE type; /* ETHERNET, ATM, etc. */

int status; /* admin control purpose */

int linkstatus; /* FE reports it */

uint32_t id; /* PortID */

HWADDR macaddr;

Int minTxRate;

int maxTxRate;

int curTxRate;

int MTU;

int internal; /* if it is internal port or not */

} NPF_PORT_ATTRIBS;

15
Control Plane-PDK 2.11

Configuration and Management API
Reference Guide

R

1.15 FE Management

This API supports the overall management of the forwarding plane, and is used by applications that are
aware of the fact that the underlying forwarding plane could be composed of multiple forwarding
elements. The API allows applications to obtain overall properties of, initialize, and shut down a
forwarding element. The administrative or configuration applications can also initialize the properties of
FE during CE/FE initialization.

1.16 Get FE Capabilities

Syntax
NPF_RET npf_fe_get_capabilities(

 IN: uint32_t feId,

 OUT: NPF_FeCapability_t **feCaps);

Description

This is a synchronous nature of call where the capabilities of the specified FE are received when a
feId is given. The capabilities returned are described in Section 1.8, Response Data for FE Event
Callbacks. For a successful function call, the buffer returned has to be freed by the caller application.
For unsuccessful calls the feCaps pointer returned is NULL.

The structure NPF_FeCapability_t is defined as:
typedef struct NPF_FeCapability

{

uint32_t feId; /* FE Identifier */

time_t timeStamp; /* Time Stamp */

IPADDR feIpAddr; /* IP Address of FE blade */

HWADDR feMacAddr; /* MAC Address of FE blade */

Int status; /* Status (Up/Down) of FE */

uint32_t numPorts; /* Number of Ports present in FE */

NPF_PORT_ATTRIBS *ports; /* Port Attributes of numPorts ports */

} NPF_FeCapability_t;

In this struct ports is also a pointer. So for successful calls if numPorts member in struct defined
above is non-zero then feCaps->ports has to be freed first and then fePorts pointer has to be
freed.

Input Parameters

feId Forwarding Element Identifier

feCaps Pointer to Pointer to FE Capabilities

Return Values

NPF_SUCCESS API call has been successfully made

NPF_FAILURE API Call has failed

16
Intel Confidential

	Configuration and Management
	Configuration and Management API
	Terminology
	Event Management
	Resolving Events and Callbacks
	Callback for Event Notification
	Register Callback for FE Event Notification
	Deregister Callback for FE Event Notification
	Response Data for FE Event Callbacks
	Register Callback for Interface Event Notification
	Deregister Callback for Interface Event Notification
	Response Data for Interface Event Callbacks
	Register Callback for Port Event Notification
	Deregister Callback for Port Event Notification
	Response Data for Port Event Callbacks
	FE Management
	Get FE Capabilities

