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1 Introduction 
This document provides information on the forwarding plane (FP) module of the Control Plane 
Platform Development Kit (CP-PDK) that resides on the data plane. The FP module utilizes a FP 
Application Program Interface (API), such as, the IXA SDK 3.51 for IXP2400/2800, for 
interfacing with the underlying Network Processing Unit (NPU). The FP module receives the 
National Processing Forum (NPF) API invocations from the backend API of the CP-PDK 
transport plug-in and maps them to the corresponding FP API invocations. The FP module is also 
responsible for binding and reporting capabilities of the forwarding plane to the control plane. 

The FP module, with this release of the CP-PDK, is targeted for VxWorks* and Linux* operating 
systems. In VxWorks based data plane, the FP module invokes the forwarding plane API (FPAPI) 
directly, such as, IXA SDK 3.51. For Linux-based data plane, as the FPAPI can reside in the 
kernel mode, an additional control messaging layer, exposing ioctl based APIs, exposes the 
FPAPI. But the overall design of the FP module remains the same. 

The current FP module is designed to work with the IXA SDK 3.51 as the FPAPI. The FP module 
consists of a portable layer and an NPU platform-specific layer. The portable layer is independent 
of the FPAPI.  

1.1 Terminology 
Table 1 lists terms used in this document and provides expansion for each term. 

Table 1.   Terminology table 

Terms Expansion 

ARP Address Resolution Protocol 

CC Core Component Packet Processing Entity 

Control Element (CE), 
Control Plane (CP) 

 In a separated control/data system, refers to the processor(s) responsible for control and configuration 
of forwarding elements. Used interchangeable with Control Plane (CP) 

COPS Common Open Policy Service Protocol 

CORBA Common Object Request Broker Architecture (http:www.omg.org) 

CP-PDK Control Plane Platform Development Kit 

EE Execution Engine 

FEC Forward Equivalence Class 

FIB Forward Information Base 

ForCES Forwarding and Control Element Separation protocol, currently being standardized at IETF 

Forwarding Element 
(FE), Forwarding Plane 
(FP) 

 In a separated control/data system, refers to the processor(s) responsible for fast path forwarding of 
data. Used interchangeably with FP. 

ICMP Internet Control Message Protocol 

9 
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Intel© XScale™ core Forms the core of the IXP 2400 and 2800  

IXA Internet eXchange Architecture 

IXP 1200, IXP 
2400/2800 

Network processors in Intel’s IXA family.  

L2T Layer 2 Table maintained by the IXA SDK 3.51 

MPLS Multiprotocol Label Switching 

NHLFE Next Hop Label Forwarding Entry 

NHT Next Hop Table maintained by the IXA SDK 3.51 

NPF Network Processing Forum 

OSPF Open Shortest Path First (routing protocol) 

PT Prefix Table maintained by the IXA SDK 3.51 

RIP Routing Information Protocol 

1.2 References 

Table 2 lists documents referenced in, or related to, this document.  

Table 2.   Reference table 

Reference Description 

[1] CP-PDK Software Architecture Overview 

[2] CP-PDK Configuration and Management API Reference 

[3] CP-PDK Forwarding Plane Plug-in API Reference 

[4] CP-PDK IPv4 API Reference 

[5] CP-PDK Differentiated Services API Reference 

[6] CP-PDK Co-located Transport Plug-in Design Reference 

[7] CP-PDK Protocol Support Services Design Reference 

[8] An Architecture for Differentiated Services. RFC 2475. http://www.ietf.org 

[9] Differentiated Services Quality of Service Policy Information Base. IETF Internet Draft. 
http://www.ietf.org/internet-drafts/draft-ietf-diffserv-pib-09.txt 
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2 Overview 
The deployment of the CP-PDK programming APIs for the IXP family of network processors is 
shown in Figure 1. The applications invoke the NPF APIs on the control plane. The API 
invocation is handled by the corresponding CP-PDK module and is directed to the forwarding 
plane through the FP plug-in API invocation, which abstracts out the interconnection layer.  

The interconnection layer can use ForCES or COPS, or shared memory in the case of co-located 
control and forwarding planes. For more information, refer to CP-PDK co-located transport plug-
in design reference [6]. For this release, the CP-PDK uses separate optimized transport channels 
for control/data. The overall architecture of the forwarding plane module in the CP-PDK is shown 
in Figure 1. 

R o u t in g
C a c h e

M a n a g e r

L D P
M a n a g e r

Q o S
M a n a g e r

A p p
U t i l i ty

C o n f ig
A p p

O
S 

Ab
st

ra
ct

io
n 

Se
rv

ic
e

(O
SA

S)

O
S
P
F

R
I
P

B
G
P

N a m e s p a c e

C
E-FE connection

(ForC
ES/C

O
PS)

F o r w a r d in g  p la n e

N P F  A P I Im p le m e n ta t io n

C o n tr o l  p la n e

T ra n s p o r t  p lu g in

T ra n s p o r t  p lu g in

F P  M o d u le

P a c k e t
H a n d le r

R
S
V
P

V ir tu a l In te r fa c e s

L a b e l
M a n a g e r

IP v 4
M a n a g e r

M P L S
M a n a g e r

B in d in g
&

D is c o v e ry

D if fS e rv
M a n a g e r

C o m m o n  ( lo g ,
lo c k ,  c a l lb a c k ,

d a ta ty p e s )

B a c k e n d  A P I

F P  P lu g in  A P I

N P F  A p p lic a t io n  A P I N P F  M a n a g e m e n t  A P I

IX A  S D K

D a ta  P la n e  ( fa s t  p a th  fo rw a rd in g  c o m p o n e n ts )  -
C o re  C o m p o n e n ts ,  m ic ro b lo c k s ,  e tc .

. . . . .  O th e r
M a n a g e rs

 

Figure 1: FP module in CP-PDK 

The current design of the forwarding plane module is targeted for the Intel® IXP2XXX series of 
network processors making invocations into the IXA SDK 3.51 API.  
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2.1 Requirements 

Following are the high-level requirements of the FP module: 

• Must map the NPF API invocations to forwarding plane operations. The current NPF APIs 
includes IPv4, IPv6, and configuration and management (C&M). 

• Must be completely portable to other operating systems so that it is easy to use the same 
design/code to a different platform on a different operating systems, such as, VxWorks* 
and Linux*. 

• Must be modular so that any additional functionality can be added easily. For example, it 
should be easy to add packet handler functionality to correspond to a top level NPF packet 
handler API on the control plane. 

• Development environment must be easy to use for external customers of the PDK. It 
should be easy to conditionally compile functionality and add new modules. For example, 
it should be easy to compile the FP module without the MPLS support, if there were no 
forwarding plane support for MPLS, but with QoS. 

• Release 2.11 is for VxWorks/Linux and using IXA SDK 3.51. 

• The translator component of each FP plug-in manager should be portable across the 
network processors.  

2.2 Design Considerations/Assumptions 

Following are some assumptions made to simplify the design. 

• The FP module assumes the existence of a programming API, IXA SDK 3.5 API in the 
case of the Intel® IXP2400/2800, for the FP. This API presents a programming interface to 
the FP that is based on an NPU. 

• If the IXA SDK changes, the platform-specific components of the FP module must be re-
written. 

2.3 Dependencies 

The FP module registers call backs with he backend APIs. All messages from the FP module to 
the transfer plug-in and vice versa go through the backend APIs. 

2.3.1 Backend API 

The backend API sits between the FP module and the transport plug-in. The backend API provides 
the support for the following: 

• Support for binding/shutdown 

• NPF application level APIs – IPv4 and C&M. 

14 
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• Event notification, such as, link status down/up 

• Packet handling – for transporting PDUs to/from the control plane. 

The backend API provides an interface that the FP invokes. This API supports the C&M of the FP, 
such as, adding/deleting routes and setting IP addresses. There is a definite correspondence 
between the NPF API, the FP plug-in API, the backend API and the FP specific APIs, such as, the 
CC APIs in IXA SDK 3.51. This is shown in Figure 2.  

The backend API provides a query interface for the B&D functionality. Through this interface, the 
FE capabilities are reported to the CP. For example, the presence of MPLS data plane components 
makes the FP MPLS capable. This abstraction is provided to the transport plug-in through this 
query interface. For more details on the backend API, please refer Section 3 of this document. The 
transport plug-in exposes the backend API. 

NPF APIs
IPv4, Config & Mgmt., MPLS, Diff Serv, etc.

NPF APIs

FP Plug in API

Backend API

Forwarding Plane API
(IXA SDK 2.0, IXA SDK 3.0, etc.)

From applications

Process NPF API invocations, if
required.

Map NPF parameters to
underlying NPU

NPU

Send NPF API parameters to
specific forwarding plane

Send NPF API parameters across
interconnect/transport plugin

Figure 2: Translating NPF APIs to platform-specific APIs 

2.4 IXA SDK  

It is assumed that the reader is familiar with the Internet eXchange Architecture (IXA) and related 
documents. 
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3 FP Module Design 
The FP module resides on the forwarding plane and receives the NPF API invocations from the 
CP through the backend API. It then maps them to the underlying forwarding components. It is 
specific to the forwarding plane being used.  

For example, the IXP 2400-based FP exposes the IXA SDK 3.51 as its forwarding plane API 
(FPAPI). In the case of the IXP 2400, the FP module maps the NPF API invocation to IXP API 
invocations. For example, the npf_if_set_ipaddr() invocation of the NPF API would 
result in the invocation of the ix_cc_async_set_properties() interface by this module. 
In the case of the Linux*-based forwarding plane, the FP module would make IOCTL calls to the 
IXA SDK 3.51 

It supports the binding and discovery of the forwarding plane. It provides a query interface 
through which the backend API can get information about the FP capabilities and the FP 
attributes. FE capabilities like number of ports, individual port properties such as L2 attributes 
(MTU), link speed, and port type are obtained during discovery. 

In the case of IXA SDK 3.51, maintaining the blade ID information in the tables enables the inter-
FE communication. Inter-FE can be label based and it treats the setting up of inter-FP forwarding 
as setting up of generic MPLS Labels on the MPLS CC.  

The CP-PDK 1.05 release provided an MPLS-enabled or label-switching based solution for 
forwarding packets between the various forwarding planes, so as to provide the control plane 
applications with the semantics uniform with that of a single-box router. This module enables the 
setting up of inter-FP forwarding by adding the corresponding MPLS-labels to the label switching 
tables of the FP through the interface provided by the MPLS CC. This label-based support is not 
present in the CP-PDK 2.11 due to unavailability of required data plane components. 

The FP module comprises of portable translators and platform-specific components. It is designed 
for modularity and extensibility. 

3.1 High-level Overview 

Figure 3: Forwarding plane module components Iiterfacing with IXA SDK 3.51 shows the 
internals of the FP module. The FP module has the following components,  

1. FP boot manager 

2. Number of FP plug-in managers, each one of which consists of the following: 

• A Translator – This is a platform/OS independent component that translates NPF APIs, 
performs any required processing and invokes the platform-specific implementation 
module 

• A platform-specific low-level API implementation – This module is specific to the 
platform being used (IXA SDK 3.51). 

19 
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Figure 3: Forwarding plane module components Iiterfacing with IXA SDK 3.51 

The transport plug-in and the each of the FP plug-in manager translator communicate through the 
backend API. Each translator dispatches the NPF API invocations to the respective platform-
specific component API. The FP module has the algorithms to translate NPF API functions into 
forwarding plane-specific ones.  

For example, the add label NPF MPLS API invocation assumes that the forwarding plane has the 
capability to do classification and marking. This functionality is embedded into two CCs in the 
Forwarding plane. The FP module gets the NPF API invocation and makes the two IXA SDK API 
calls corresponding to the single NPF MPLS API invocation. 

3.2 FP Module and IXA SDK 3.51 

CP-PDK 2.11 is targeted for IXA SDK 3.51, designed to work on Intel® IXP 2400 and Intel® 
IXP2800 network processors. Refer to the IXA SDK documentation for more details regarding the 
differences between IXA SDK 2.0 and IXA SDK 3.5. One of the main components of IXA SDK 
3.51 is what is termed a core component. In brief, a core component can be a packet processing 
entity. The PDK interfaces with several IXA SDK core components – IPv4 core component (CC), 
stack driver, and interface CC.  
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A brief introduction about the working of the core components is required here to understand 
some of the design decisions that have been made in the PDK, especially the FP module, to work 
with the IXA SDK.  

3.11.1 Execution Engines and Core Components 

All core components execute in the context of an execution engine (EE). A typical configuration 
would have an execution engine on the ingress IXP running all the core components, such as, 
IPv4, stack driver, and ingress RX. An execution engine is a thread of execution – it is a kernel 
thread in Linux* and a task in VxWorks*.  

Each core component is required to export a set of user-defined functions –initialization and 
termination functions, one or more packet, message, or event handlers. The core component 
Infrastructure (CCI) provides support for handling the packets and messages in the core 
components. It also provides an execution engine that can be fine-tuned depending on the system 
requirements. 

3.2.1 FP Module Execution Engine and Core Components 

Most of the IXA SDK core components run on the ingress side – this is a configuration issue and 
does not affect the design. Components such as IPv4 and stack driver core components run on the 
ingress. The FP module also runs on the ingress side on the XScale. The interface transmit core 
component of IXA SDK and the L2 table manager run on the egress side.  

In order to interact with these components, the FP module has an egress core component and an 
ingress mirror CC. The ingress and egress communicate with each other via the interconnect, a 
CSIX switch fabric. These components are shown in Figure 4. In the figure, there are two 
execution engines. This is a configuration issue and does not affect the design. All the core 
components execute in the context of one of these execution engines. The FP module ingress CC 
can be configured to run in either of the execution engines.  

Most of the APIs exposed by the core components are asynchronous in nature. Due to this, the FP 
module has to register callbacks that can report any error/status conditions, or responses for 
queries such as statistics, interface attributes, and so on, from the underlying core component. The 
IXA SDK core component processes these messages and returns the responses as messages. The 
reply message is converted to a callback in the utility execution engine. The callback function 
registered by the client gets invoked.  

As shown in the figure, the FP module egress CC executes in the context of the IXA SDK 
execution engine – the same execution engine that runs the interface transmit CC and ARP 
module. Here the FP module egress CC interacts with the L2 table manager also. 
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Figure 4: Overview of FP module components interaction with core components 

3.3 FP Boot Manager 

This section provides information on the FP boot manager The boot manager is responsible for the 
boot-up and the shutdown of the forwarding plane. 
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3.3.1 Functionality 

The main responsibility of the FP boot manager is the initialization and shutdown of the 
forwarding plane module of the CP-PDK. It performs any platform-specific initializations and 
starts up all the FP plug in managers. Each manager has to expose its initialization and shutdown 
routines to the FP boot manager, which is described in detail in Section 3.4.4.  

After initializing all the FP plug in managers, the FP boot manager runs the forwarding plane. This 
would result in initializing the binding process to a control plane. Once the communication with 
the control plane is established, the FP boot manager becomes passive and waits for a shutdown 
message from the control plane. 

Some platform-specific initializations are performed in the FP boot manager. For PDK 1.1/2.0, an 
IXA SDK 3.51-specific FP boot manager performs the initializations, such as, creating an 
execution engine. 

3.3.2 Execution Context 

The FP boot manager is the main execution context for the forwarding plane module. In the case 
of a remote control plane, the FP boot manager has the main function.  

3.3.3 Initialization 

The order in which the FP plug-in managers are started could be platform-dependent. The current 
initialization sequence is shown in Figure 5. 

FP Manager Binding &
Discovery

IPv4 Mgr

[1] BENDAPI_Initialize ()

Back end API

[3] fpm_bd_mgr_init ()

[4] fpm_cm_mgr_init ()

[6] fpm_ipv4_mgr_init ()

FP-specific
FP Mgr

[2] fpm_mgr_init ()

CM Mgr

 

Figure 5: Forwarding plane modules initialization sequence 
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3.3.4 Shutdown 

The order, in which the FP plug-in managers are shutdown, could be platform-dependent. The 
current shutdown sequence is shown in Figure 6. 

FP Manager Binding &
Discovery

IPv4 Mgr

[1] fpm_fpmgr_shutdown ()

Back end API

[3] fpm_cm_mgr_shutdown ()

[5] fpm_ipv4_mgr_shutdown ()

[9] BENDAPI_Shutdown ()

FP-specific
FP Mgr

[2] fpm_bd_mgr_shutdown ()

Config Mgr

 

Figure 6: Shutdown sequence of forwarding plane modules 

3.4 FP Plug-in Managers 

Each FP plug-in manager handles a specific functional operation governed by a set of CCs. For 
example, the IPv4 manager handles all the IPv4 support by working with the IPv4 CC. They 
register the callback functions with the backend API, and handle the dispatching of the backend 
API invocations to the forwarding plane specific module.  

As explained in Section 3.1, each manager is composed of a translator component and a platform-
specific component. The translator provides a generic interface for each of the FP plug-in 
managers. It serves as an abstraction for the forwarding plane API specific component. This makes 
it easier to port all the FP plug-in managers to a different forwarding plane. For example, a Linux* 
based FE will have Linux-specific components talking to the translators. 

The callbacks registered by each translator to the backend module are described in the external 
API sections, which are explained below for each of the FP plug-in managers. These external APIs 
are defined as down-calls. The translator also exposes up-calls, as part of the external API, which 
is invoked by the platform-specific component on completion of the down-call request.  

On each down-call, the translator prepares a translator context comprised of a correlator from the 
backend API to identify the instance of the user call and a pointer to memory to be filled by the 
platform-specific component. This translator context is passed to the respective platform-specific 
component function that invokes the IXA SDK 3.51.  

As a part of the IXA SDK 3.51 invocation, the platform-specific component passes a user context 
and a callback function wherever necessary. The user context comprises of pointers to the 
translator context and the request completion indicator that is used to determine a down-call 
request completion. For each IXA SDK 3.51 invocation a user context is allocated. The 
relationship between the translator and the user context is represented in Figure 7.  
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user_context
(user_context
specific info)

user_context
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specific info)
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t specific
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translator_context
memory allocated by the translator to be filled by the

plaform sp. comp. for respective request.
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translator

memory for reqCmp_Indctr, allocated once by the
platform specific comp. in the context of the one

down-call from the translator. It is decremented for
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Figure 7: Relationship between translator and platform-specific user contexts 

3.4.1 Requirements of Each Manager 

• Initialization and shutdown routines – These routines are exposed to the FP boot 
manager and are invoked in an appropriate order during initialization and shutdown of the 
FP module.  

• Translator – The translator interprets NPF messages and is independent of the platform 
and operating system. It should manage the memory (malloc and free) for requests that 
need information to be filled by the platform-specific component before the up-call. 

• Platform-specific mapping – This converts the API parameters into the platform-
specific implementation, also it hides any of the NPU-specific implementation details from 
its corresponding translator. 

3.4.2 Translator 

Each translator receives callbacks from the backend API, interprets the NPF API invocation and 
dispatches it to the correct platform-specific implementation. On initialization, each translator 
registers callbacks with the backend API. Once this is successful, it calls into the initialization 
routine of the respective platform-specific component. On shutdown, each translator de-registers 
the callback with the backend API and then calls into the shutdown routine of the respective 
platform-specific component. Some of the translators have extra logic, such as, the translator in 
MPLS manager interacts with the IPv4 manager for setting up classifier during an LSP setup. 

Each of the down-calls, explained in the external API section for specific FP plug-in managers, 
requires the invocation of the up-call counterpart to indicate the translator request completion, 
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such as, fpm_cm_mgr_set_L2_attributes(), and fpm_ipv4_mgr_add_prefix(). 
The up-calls indicate the completion of a request to the control plane via the backend API via the 
BENDAPI_Report_Status(). 

The translator performs the following steps: 

1. Registers callbacks for CM down-calls with BENDAPI. 

2. On each down-call, it parses the backend API /NPF structures. It passes the necessary 
information to the platform-specific component along with the translator context. If the 
down-call expects informationon the up-call, it allocates memory for this as part of the 
translator context, which is passed down to the platform-specific component. The 
translator context is a container for the correlator passed by the down-call from the 
backend API and memory for the request-specific response information for this down-
call. 

3. Each execution of the up-call invokes BENDAPI_Report_Status() to report status 
and to pass on any information got in the up-call. It is also responsible to free any 
memory allocated during the invocation of the respective down-call. 

3.4.3 Platform-Specific Component 

Each low-level implementation is responsible for invoking the appropriate IXA SDK 3.51 API. 
They basically map a NPF API invocation to the corresponding IXA SDK 3.51 API invocation. 
The platform-specific components expose internal APIs that are invoked by the translator down-
call. 

Most of the platform-specific APIs have a callback counterpart function whose address is passed 
while invoking the corresponding IXA SDK 3.51 API. When each of these callback functions is 
invoked on completion of an IXA SDK 3.51 API, it updates the translator context appropriately by 
filling in the request-specific info structure passed in the down-call as part of the translator context 
and updates the request completion counter.  

Once all the callbacks of a down-call request is received, it calls into the respective translator up-
call indicating completion of the request determined by the respective translator context. In certain 
cases, where the call into the IXA SDK 3.51 API does not take a callback function, the platform-
specific component function calls the translator up-call in the same context of the down-call.  

The platform-specific component performs the following functions: 

1. Responsible for populating the request specific information, such as, statistics 
information, in the translator context for each callback from the IXA SDK. 

2. Invokes the IXA SDK 3.51 as appropriate. 

3. Invokes the translator up-call once all the callbacks for a down-call request are received. 
If the IXA SDK 3.51 API does not take a callback function, then the translator up-call is 
invoked on the return of the IXA SDK 3.51 API invocation. 

4. Maintains the request completion indicator counter (reqComp_Indctr), which is 
updated upon every callback from the IXA SDK 3.51. The parameter is synchronized 
between the down-call into the IXA SDK 3.51 and the callback with the help of a lock. 

5. Maintains a list of pending callbacks to help in resource management. 
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3.4.4 Memory Management 

Each translator and platform-specific component is responsible to free the resources allocated by 
it. The translator is responsible to manage memory for the translator context that might include the 
memory for the request structure to be filled. The platform-specific component is responsible to 
manage the memory for the user context and other resource pointers it contains like request 
completion indicator.  

When the FP module is being shutdown, any resources allocated for the pending requests should 
be freed. To achieve this each FP plug-in manger maintains a list of information on the pending 
callbacks. This list is updated on every callback from the IXA SDK 3.51. On the shutdown of each 
manager, the pending list is walked through and the resources are freed and the corresponding up-
call is invoked, freeing up the resources tied to the respective translator context. 

In a situation when some pending callbacks from the IXA SDK 3.51 never get invoked, the 
platform-specific components need to free up the resources for the respective user contexts. The 
translator components should free up their respective memory allocated to the translator context. 
Each entry in the pending callback list comprises of a timestamp, a type to specify the down-call 
requesting function, and the pointer to the user context.  

A thread checks the status of the pending callbacks at regular intervals and frees up those expired 
pending callback resources and invokes the respective translator up-call with a failure result status. 
The translator reports the status to the backend module, and free up its own resources.  

3.4.5 Exception Handling 

The FP module converts exceptions to actions raised by the forwarding plane into the CP-PDK 
understandable exceptions. For example, in case of the IXP API, an add prefix call can fail 
generating an IXAPI_FAILURE. This has to be converted to a CP-PDK defined exception, such 
as, FPPI_FAILURE, and passed on to the backend API. 

The subsequent sections describe in detail each of the FP plug-in managers currently implemented 
in the PDK. 

3.5 FP Module on Linux* 

In order to have the Forwarding Plane ported to Linux or any other standard OS, some issues need 
to be considered. For example, some of the things that need to be done are: 

• IPv4: Map all IPv4 calls to interface with the core component in Linux kernel. For example, the 
NPF IPv4 add prefix call might translate to making a write system call in Linux to add this route 
to the FIB (Forwarding Information Base). The IPv4 Manager has to handle this.  

• C&M: C&M handles configuring of ports and/or interfaces. For example, setting IP address, 
MTU, link speed, and so on The C&M must make all core component API calls through write 
system call into the Linux kernel.  

• Handling packets: Data packets that are destined to control plane applications should be 
redirected through the PDK. There can be two scenarios: a) The packet may be meant for a legacy 
application using the socket() interface b) The packet may be meant for an application that makes 
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use of NPF Packet Handler APIs. PDK 2.11 supports the first case only. Similarly, PDK must 
capture all outgoing packets from the Linux IP stack and tunnel them to the Forwarding Plane.  

The above examples of what needs to be done are not exhaustive. This just aims to show how the 
FP Module can be easily extended to work on any traditional OS. 

3.5.1 FP Module Design for Linux 

As the IXA SDK 3.51 for the Linux operating system is located in the kernel space, the FP 
Module needs to interact with the Linux kernel.  The  OS-specific component of each of the FP 
Plug-in managers resides in the kernel space as shown in .  Each translator interacts with a Shim 
Layer to communicate to its respective OS-specific component.  This shim layer exposes the 
cumulative APIs of all the core components, or in other words, the shim layer has proxy 
implementations for each of the core component APIs. When a down-call comes via the translator 
the appropriate proxy API on the shim layer is invoked. The proxy core component API does the 
following: 

• Creates shim layer context for the IXA_SDK API call (This context maintains 
information such as the client regiatered call back function to be called, client context 
information etc.) 

• Passes the context to the OS-specific component by invoking a write system call 

Since the OS-specific component must expose system calls such as read and write, it is 
implemented as a character device. 

Since the core components are in kernel space, the core components cannot directly call the client 
defined callback function. Therefore, the shim layer passes its own function as the callback 
function to the core component. We refer to these functions as proxy callback functions. Proxy 
callback functions format a response message and put it in a queue maintained by the shim layer in 
the kernel. 

The reader thread of shim layer polls on a callback descriptor (socket or file descriptor) by 
blocking on a read().  Whenever a response message is received, the reader thread retrieves the 
corresponding context and invokes the client registered callback. Figure 8 shows the architecture 
of the FP module for the Linux OS. 

The support for this is implemented in subsequent releases of the CP-PDK (post 2.0) and IXA 
SDK 3.51. 
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Figure 8: FP Module for Linux 

3.5.2 Initialization 

The initialization function for the Shim layer is executed when the kernel module is inserted. This 
function registers the character device with the kernel. Since the shim layer exposes APIs for all of 
the core components there is only one character device. 

The pseudocode for the module initialization function is as follows: 

 
/* The following is the file operations structure for the 
character device. The device implements read() and write() calls 
*/ 

 

static struct file_operations shim_fops = { 

         read: sh_read, 

         write: sh_write, 

}; 
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int init_module (void) 

{ 

    Call register_chrdev( ) with major number, character device 
name and file operations structure as inputs; 

    Initialise the queue; 

} 

Once the character device is created, a node must be created in /dev/ directory with a command as 
follows (Major number is assumed to be 224 and minor number 0): 

mknod  /dev/shim c 224 0    

Now that the node is created any user mode application can open this device, read and write into 
it. 

3.5.3 Shutdown 

The shutdown function of the shim layer is invoked when the module is removed from the kernel. 
This function unregisters the character device from the kernel. 

The pseudocode for the cleanup function is as follows: 

 
void cleanup_module (void) 

{ 

    Call unregister_chrdev( ) function with major number and 
device name as parameters; 

    Release allocated memory, eg: queue etc; 

} 

3.5.4 Data Structures 

For each request that is sent to the core component, the Shim layer maintains a context in the user 
space. This context maintains information such as the module to which this request is directed, the 
action that needs to be done etc. The component name and the action uniquely identify the core 
component function that must be invoked. This context is used when the callback function is 
invoked. However, when a callback function is invoked corresponding to an event there will not 
be any context to it. Following is the structure that is maintained for each request. 

 
typedef struct 

{ 

   SH_COMPONENT           compName;      /* Indicates the core 
component to 

                                            which                             

                                            this request is 
directed */   

    void*                userContext;   /* Client information */ 

    void*                callback;      /*  Client defined 
callback  
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                                            function */ 

    union                               /* The action identifies 
the core 

                                           component call 

                                           to be made */ 

    { 

         SH_IPV4_ACTION          ipv4Action; 

         SH_FPM_ACTION           fpmAction; 

         SH_STKDRV_ACTION        stkdrvAction; 

     } u; 

     ix_error            requestStatus;  /* The error code will be 
set if  

                                            an error is 
encountered                                                                  

                                            in the request path */ 

     ix_error            responseStatus; /* The error code will be 
set if  

                                            the callback  

                                            returns an error */ 

     void*               params[MAX_NUM_PARAMS];  /* Pointers to  

                                                     parameter 
structures */ 

} SH_Context_t;    

 

The component name and the action parameters uniquely identify the core component function 
that will be invoked. The parameters to the core component call are passed as pointers in the 
params field of the above structure. 

The following is the data structure used to hold the callback data in the kernel queue. It is 
explained in detail later. 

 
typedef struct  

{ 

    SH_ResponseMessageHeader respHeader;  /*Header information */   

    struct 

    { 

         ix_uint32         length;       /* Number of bytes in the 
next  

                                             field */ 

         void*             responseData; /* Call back data */ 

     }   outData[MAX_NUM_RESP];      

} SH_GeneralResponseMessage; 

 

typedef struct  

{ 

   SH_COMPONENT           compName;       /* Indicates the core 
component  
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                                            that originated  

                                            this response */ 

    void*                 shContext;      /* Client information */ 

    ix_error              responseStatus; /* This error code will 
be set 

                                             if the callback 
returns error */ 

    union                                 /* The action identifies 
the  

                                            core component call               

                                            made */ 

    { 

         SH_IPV4_ACTION           ipv4Action; 

         SH_FPM_ACTION            fpmAction; 

         SH_STKDRV_ACTION         stkdrvAction; 

     } u; 

} SH_ResponseMessageHeader; 

The following enumeration is used to list down the core components supported. 

 
typedef enum { 

    SH_IPV4_CC, 

    SH_FPM_CC, 

    SH_FPM_DATA_CC, 

    SH_STKDRV_CC 

} SH_COMPONENT; 

Data Structure for IPv4 Manager 

The IPv4 Manager can initiate one of the following actions. 

typedef enum { 

    SH_IPV4_ASYNC_ADD_ROUTE, 

    SH_IPV4_ASYNC_DEL_ROUTE, 

          SH_IPV4_ASYNC_UPDATE_ROUTE, 

    SH_IPV4_GET_ROUTE, 

         SH_IPV4_ASYNC_LOOKUP_ROUTE, 

    SH_IPV4_ASYNC_FLUSH_PREFIX, 

    SH_IPV4_ASYNC_FLUSH_NHOP, 

    SH_IPV4_ASYNC_UPDATE_NHOP, 

    SH_IPV4_ASYNC_ADD_NHOP, 

    SH_IPV4_ASYNC_DEL_NHOP, 

    SH_IPV4_ASYNC_GET_NHOP 

} SH_IPV4_ACTION; 
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Following are the actions that can be initiated on FPM core component.  

typedef enum { 

     SH_FPM_REGISTER_LINKST, 

     SH_FPM_REGISTER_IPV4EXCP, 

           SH_FPM_REGISTER_PKTHDLR, 

     SH_FPM_DEREGISTER_LINKST, 

     SH_FPM_DEREGISTER_IPV4EXCP, 

           SH_FPM_DEREGISTER_PKTHDLR, 

     SH_FPM_ADD_L2ENTRY, 

           SH_FPM_ASYNC_ADD_L2ENTRY, 

     SH_FPM_DEL_L2ENTRY, 

           SH_FPM_ASYNC_DEL_L2ENTRY, 

     SH_FPM_ADD_ARPENTRY, 

           SH_FPM_ASYNC_ADD_ARPENTRY, 

    SH_FPM_DEL_ARPENTRY, 

         SH_FPM_ASYNC_DEL_ARPENTRY, 

        SH_FPM_FLUSH_ARP, 

    SH_FPM_EVENT_LINKST, 

         SH_FPM_EVENT_IPV4EXCP, 

       SH_FPM_CONFIG_CPADDR 

} SH_FPM_ACTION; 

Data Structure used by Configuration Manager 

The Configuration Manager may initiate one of the following actions on the stack driver core component. 

typedef enum { 

   SH_STKDRV_GET_NUMPORTS, 

   SH_STKDRV_GET_PROPERTY, 

   SH_STKDRV_SET_PROPERTY 

} SH_STKDRV_ACTION; 

3.5.5 Invocation of a SDK call 

The following are the steps involved while making an asynchronous SDK call.  

• The backend API makes a call into the FP Module translator (eg: fpm_ipv4_mgr_add_prefix) 

• The FP Module translator calls the platform specific function (eg: ipv4_add_prefix) 

• The platform specific function calls the core component function  - this function is proxy to the actual IXA 
SDK API and is implemented in the user space.  

• The proxy core component function constructs a shim layer context and makes a write system call to 
invoke the core component API 
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• The shim layer calls SDK function (eg: ix_cc_ipv4_async_add_route) passing its own (eg: sh_ipv4_cb) 

callback function 

• The callback function in the shim layer (eg: sh_ipv4_cb) gets called which puts the callback data into the 
kernel queue and makes the character device readable 

• The user thread that blocks on the read() call is unblocked 

• The user thread reads a SH_GeneralResponseMessage structure 

• The user thread invokes the client registered callback function 

In case of a synchronous SDK call, the core component function is called in the same thread of execution as the 
write system call and there is no response message in this case. 

3.5.6 External APIs of the Character Device 

The FP Module translator calls the write() function on the character device to invoke a SDK call. The pseudocode 
for the write function of the shim layer is as follows: 

uint32_t sh_write( ) 

{ 

    reqstMessage = (SH_Context_t *)data; 

             /* Determine the core component on which the function 
is  

                to be invoked */ 

    switch (reqstMessage->compName) 

    { 

        case SH_IPV4_CC: 

            switch (reqstMessage->u.ipv4Action) 

            { 

                case SH_IPV4_ASYNC_ADD_ROUTE: 

                         Call function 
ix_cc_ipv4_async_add_route() with  

                         sh_ipv4_cb as the callback function and 
parameters 

                         retrieved from reqstMessage->params[0],  

                         reqstMessage->params[1] etc. 

 

                         If the core component function call 
fails,  

                         set ix_error in reqstMessage-
>requestStatus and 

                         return -1 to indicate error; 

                         break; 

                case SH_IPV4_GET_ROUTE: 
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                         Call function ix_cc_rtmv4_get_route() 
with  

                         sh_ipv4_cb as the callback function and 
parameters 

                         retrieved from reqstMessage->params[0],  

                         reqstMessage->params[1] etc. 

                          

                         If the core component function call 
fails,  

                         set ix_error in reqstMessage-
>requestStatus and 

                         return -1 to indicate error; 

                         break; 

                case SH_IPV4_ASYNC_DEL_ROUTE: 

                        Call function 
ix_cc_ipv4_async_delete_route() with  

                        sh_ipv4_cb as the callback function and 
parameters 

                        retrieved from reqstMessage->params[0],  

                        reqstMessage->params[1] etc. 

                          

                        If the core component function call fails,  

                        set ix_error in reqstMessage-
>requestStatus and 

                        return -1 to indicate error; 

                        break; 

                case SH_IPV4_ASYNC_FLUSH_PREFIX: 

                         Call function 
ix_cc_ipv4_async_purge_routes() with 

                         sh_ipv4_cb as the callback function and 
parameters 

                         retrieved from reqstMessage->params[0],  

                         reqstMessage->params[1] etc. 

                          

                         If the core component function call 
fails,  

                         set ix_error in reqstMessage-
>requestStatus and 

                         return -1 to indicate error; 

                         break; 

               case SH_IPV4_ASYNC_UPDATE_NHOP: 

                        Call function 
ix_cc_ipv4_async_update_next_hop()  

                        with sh_ipv4_cb as the callback  function 
and 

                        parameters retrieved from reqstMessage-
>params[0],  

                        reqstMessage->params[1] etc. 

                         

                        If the core component function call fails,  
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                        set ix_error in reqstMessage-
>requestStatus and 

                        return -1 to indicate error; 

                        break; 

               case SH_IPV4_ASYNC_ADD_NHOP: 

                        Call function 
ix_cc_ipv4_async_add_next_hop()  

                        with sh_ipv4_cb as the callback function 
and 

                        parameters retrieved from reqstMessage-
>params[0], 

                        reqstMessage->params[1] etc. 

                        

                        If the core component function call fails,  

                        set ix_error in reqstMessage-
>requestStatus and 

                        return -1 to indicate error; 

                        break; 

               case SH_IPV4_ASYNC_GET_NHOP: 

                        Call function ix_cc_rtmv4_get_next_hop()  

                        with sh_ipv4_cb as the callback function 
and 

                        parameters retrieved from reqstMessage-
>params[0],  

                        reqstMessage->params[1] etc. 

                         

                        If the core component function call fails,  

                        set ix_error in reqstMessage-
>requestStatus and 

                        return -1 to indicate error; 

                        break; 

               case SH_IPV4_ASYNC_DEL_NHOP: 

                        Call function 
ix_cc_ipv4_async_delete_next_hop()  

                        with sh_ipv4_cb as the callback function 
and 

                        parameters retrieved from reqstMessage-
>params[0],  

                         reqstMessage->params[1] etc. 

                          

                         If the core component function call 
fails,  

                         set ix_error in reqstMessage-
>requestStatus and 

                         return -1 to indicate error; 

                         break; 

               case SH_IPV4_ASYNC_FLUSH_NHOP: 

                        Call function ix_cc_ipv4_async_purge_rtm()  

                        with sh_ipv4_cb as the callback function 
and 
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                        parameters retrieved from reqstMessage-
>params[0], 

                        reqstMessage->params[1] etc. 

                        

                        If the core component function call fails,  

                        set ix_error in reqstMessage-
>requestStatus and 

                        return -1 to indicate error. 

                        break; 

                 

                default: 

                       /* Error: Not a valid action */ 

              } 

             break;   /* IPv4 case ends here */ 

 

        case SH_FPM_CC: 

                 /* Call the core component function based on 
action  

                    field of fpmStruct */ 

             switch (reqstMessage->u.fpmAction) 

            { 

                 case SH_FPM_REGISTER_LINKST: 

                                                      Call 
function ix_cc_fpm_register_link_status_cb() with  

                                                      
sh_onCB_cc_link_status as the callback function; 

 

                                                      If the core 
component function call fails, set  

                         ix_error in reqstMessage->requestStatus 
and 

                         return -1 to indicate error; 

                         break; 

                                     case 
SH_FPM_REGISTER_IPV4EXCP: 

                                                      Call 
function ix_cc_fpm_register_ipv4_exception_cb() with  

                                                      
sh_onCB_cc_ipv4_exception  as the callback function; 

 

                                                      If the core 
component function call fails, set  

                         ix_error in reqstMessage->requestStatus 
and 

                         return -1 to indicate error; 

                         break; 

                                     case SH_FPM_REGISTER_PKTHDLR: 

                                                     Call function 
ix_cc_fpm_register_pkt_hdlr_cb() with  
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sh_write_packet  as the callback function; 

 

                                                      If the core 
component function call fails, set  

                         ix_error in reqstMessage->requestStatus 
and 

                         return -1 to indicate error; 

                         break; 

                                     case 
SH_FPM_DEREGISTER_LINKST: 

                                                      Call 
function ix_cc_fpm_deregister_link_status_cb(). 

                                         

                                                      If the core 
component function call fails, set  

                         ix_error in reqstMessage->requestStatus 
and 

                         return -1 to indicate error; 

                         break; 

                                     case 
SH_FPM_DEREGISTER_IPV4EXCP: 

                                                       Call 
function ix_cc_fpm_deregister_ipv4_exception_cb(); 

 

                                                       If the core 
component function call fails, set  

                         ix_error in reqstMessage->requestStatus 
and 

                         return -1 to indicate error; 

                         break; 

                                     case 
SH_FPM_DEREGISTER_PKTHDLR: 

                                                      Call 
function ix_cc_fpm_deregister_pkt_hdlr_cb(). 

                                                       

                                                       If the core 
component function call fails, set  

                                                       ix_error in 
reqstMessage->requestStatus and 

                                                       return -1 
to indicate error; 

                                                       break; 

                 case SH_FPM_ASYNC_ADD_L2ENTRY: 

                         Call function 
ix_cc_fpm_async_add_l2_entry()  

                         with sh_fpm_cb as the callback function 
and  

                         parameters retrieved from reqstMessage-
>params[0],  

                         reqstMessage->params[1] etc. 
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                         If the core component function call 
fails, set  

                         ix_error in reqstMessage->requestStatus 
and 

                         return -1 to indicate error; 

                         break; 

                 case SH_FPM_ASYNC_DEL_L2ENTRY: 

                         Call function 
ix_cc_fpm_async_del_l2_entry()  

                         with sh_fpm_cb as the callback function 
and  

                         parameters retrieved from reqstMessage-
>params[0],  

                         reqstMessage->params[1] etc. 

                          

                         If the core component function call 
fails,  

                         set ix_error in reqstMessage-
>requestStatus and 

                         return -1 to indicate error; 

                         break; 

                  case SH_FPM_ASYNC_ADD_ARPENTRY: 

                         Call function 
ix_cc_fpm_async_add_arp_entry()  

                         with sh_fpm_cb as the callback function 
and  

                         parameters retrieved from reqstMessage-
>params[0],  

                         reqstMessage->params[1] etc. 

                          

                         If the core component function call 
fails, set  

                         ix_error in reqstMessage->requestStatus 
and 

                         return -1 to indicate error; 

                         break; 

                  case SH_FPM_ASYNC_DEL_ARPENTRY: 

                         Call function 
ix_cc_fpm_async_del_arp_entry()  

                         with sh_fpm_cb as the callback function 
and  

                         parameters retrieved from reqstMessage-
>params[0],  

                         reqstMessage->params[1] etc. 

                          

                         If the core component function call 
fails, set  

                         ix_error in reqstMessage->requestStatus 
and 

                         return -1 to indicate error; 
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                         break; 

                                         case SH_FPM_EVENT_LINKST: 

                         Call function 
ix_cc_fpm_register_link_status_cb  

                         with sh_cc_link_status as the callback 
function. 

 

                         If the core component function call 
fails, set 

                         ix_error in reqstMessage->requestStatus 
and  

                         return -1 to indicate error. 

                         break; 

                   default: 

                         /* This action is not supported by the 
FPM CC */ 

             } 

             break; 

        /* Handle other core component functionality here */ 

        default: 

                /* There is no support for this core component */ 

    } 

         Return the number of bytes written – this is same as the 
number  

         of bytes passed in the input buffer; 

} 

Each OS specific module registers its own callback function with the core component that proxies the client 
registered callback function. Following functionality must be executed by each such callback function: 

• Allocate kernel memory for a structure of type SH_GeneralResponseMessage 

• Fill in the above structure including the response data 

• Put the message in the kernel queue 

• Make the character device readable by releasing the semaphore 

Note: The above method of passing the response data to the user space requires two copies – the first one is done 
inside the proxy callback function that copies the callback response into the kernel queue and the second copy is 
done from the kernel queue to the user space when the read system call is called. A different approach can be that 
the user space module passes a pointer to a pre-allocated memory along with the request itself and the proxy 
callback function copies the callback response directly into the user space. The second approach requires only one 
copy. However, the second approach cannot handle events. Since the first approach can handle both asynchronous 
calls and events, it has been adopted in the design. 
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sh_ipv4_cb() is the callback function in the kernel for all IPv4 CC calls. The pseudocode for this function is given 
below: 

ix_error sh_ipv4_cb( ) 

{ 

     Set the error code in responseStatus in shim context; 

     Fill in the fields of a structure of type 
SH_GeneralResponseMessage; 

     Put the structure in the queue; 

     Make the character device readable by executing a give 
operation on the semaphore; 

} 

 

sh_fpm_cb() is the callback function in the kernel for all FPM CC 
calls. 

ix_error sh_fpm_cb( ) 

{ 

     Set the error code in responseStatus in shim context; 

     Fill in the fields of a structure of type 
SH_GeneralResponseMessage; 

     Put the structure in the queue; 

     Make the character device readable by executing a give 
operation on the semaphore; 

} 

The following is the sh_read() function implemented in the character device. 

uint32_t sh_read( ) 

{ 

     Check if there is any response queued, if present  

              take first available response,  

              copy it to the user buffer and  

              dequeue the node; 

    If there is no response queued,  

              block on the semaphore by executing a take 
operation; 

              When unblocked,  

                   take the available response and pass it to the 
user; 

} 

3.5.7 Reader Thread 

There must be a thread created in the user space that blocks on read( ) on the character device. This thread is created 
in the initialization function of the shim module. 

 

NPF_RET sh_init( ) 
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{ 

    Open the character device and get the file descriptor; 

    Create a thread and pass the file descriptor on to the thread; 

} 

The user thread that blocks on the read() call gets unblocked when the proxy callback functions put a message in the 
queue. The thread then reads the message. There can be one or more callback functions per core component. 

The thread starts its execution at the following function. This function keeps reading from the character device as far 
as data is available on the device. If there is no data available, the thread blocks on the read() function call.  

The buffer that the read thread gets from the kernel has data in the following format: 

 

 SH_ResponseMessageHeader     Length           Data               Length                 Data

 

uint32_t sh_reader_thread( ) 

{ 

    char         buf[MAX_RESPONSE_SIZE];   /* Static buffer 
allocated to  

                                              read the response  

                                              data from the kernel 
*/ 

    SH_ResponseMessageHeader*        respHdr; 

 

    Block on read() function call; 

    /* The following functionality is executed when read() is 
unblocked */ 

    Get callback response data in a buffer; 

    respHdr = (SH_ResponseMessageHeader *)buf; 

    switch(respHdr->compName) 

     { 

          case SH_IPV4_CC: 

           If the respHdr->u.ipv4Action denotes an event 

                 Get the callback function from the list of 
functions  

                 based on component name  

                 and action and call it; 

           else 

               Call the function denoted by respHdr-
>shContext.callback; 

          break; 

          case SH_FPM_CC:  

            If the respHdr->u.fpmAction denotes an event 

                 Get the callback function from the list of 
functions  
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                 based on component name  

                 and action and call it; 

           else 

                Call the function denoted by respHdr-
>shContext.callback; 

           break; 

           default: 

               /* This core component is not supported */ 

      }   

    Free the shim context; 

    Go back and block on read again; 

} 

3.5.8 Handling Events 

The user space shim layer maintains a list of callback functions for different events. Each node in the list will have 
the following information: 

typedef struct  

{ 

   SH_COMPONENT           compName;      /* Indicates the core 
component  

                                            that originated 

                                            this response */ 

   void*                  callback;      /* Callback function to 
be called */ 

    union                                /* The action identifies 
the  

                                            core component call 

                                              made */ 

    { 

         SH_IPV4_ACTION           ipv4Action; 

         SH_FPM_ACTION            fpmAction; 

         SH_STKDRV_ACTION         stkdrvAction; 

     } u; 

} SH_EventInfo_t; 

 

When events such as link up/down, IPv4 direct host attach are generated, they will be delivered to the user similar to 
the way a callback response is delivered. However, in the case of events there is no shim context. Based on the 
component name and the action, the user defined callback function will be chosen and called. 

3.5.9 Handling Data Packets 

The data packets are handled in the linux kernel itself. A network device is implemented as a  kernel module that 
registers with the kernel for IP protocol IPPROTO_VIP.  All the tunneled data packets that are exchanged between 
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the Control Plane and the Forwarding Plane are sent with protocol set to IPPROTO_VIP.  The data packets 
exchanged between the control plane and the forwarding plane have the format as shown below: 

 
IP Header 2           Meta Data         IP Header 1                                         IP Payload

IP Header 2 will have the protocol set to IPPROTO_VIP. The meta data contains the packet length and the port 
information. 

The network device must support the following IOCTL commands: 

SIOCCPADDRESS: Used to initialize the Control Plane IP address 

SIOCREGISTERHNDLR: Used to register a callback function with the fpm 

The Packet Handler module in the User Space is responsible for initializing the Control Plane IP address in the 
network device  and to have the network device register the callback function with the fpm. 

When a tunneled packet is received from the Control Plane, the receive function of the network device will be 
called.  

The packet that is delivered to the receive function will have the following format: 

 

 
Meta Data         IP header                      Payload

The pseudocode for the receive function is as follows: 

int vipip_rcv ( struct sk_buff *skb) 

{ 

    Strip off the metadata from the packet; 

    Call ix_cc_fpm_sync_send_packet to deliver the packet to the 
core component; 

} 

 

vipip_tunnel_write() is the function that will be registered with the fpm module.  

The packet that is received at the vipip_tunnel_write() function will look as follows: 

 

 IP Header                Payload 

The pseudocode for the function will be as follows: 

int vipip_tunnel_write( ) 
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{ 

      Add the metadata to the packet; 

      Add an IP header with the protocol set to IPPROTO_VIP; 

      Send the packet by calling IPTUNNEL_XMIT() macro; 

} 

3.5.10 Memory Management 

When the FP Module issues a request to the character device, the character device will not copy the parameters of 
the SH_Context_t again but will pass them to the core component functions. There is no need to make a copy of the 
request because the write( ) call returns only after the core component call returns. The FP Module that has allocated 
memory for the request, must free them. 

When the user thread issues a read() call, it must pass a pointer to a user space buffer. The character device will 
copy the response data into the user memory. 

3.6 Binding and Discovery  

This section gives an overview of the B&D FP plug-in manager. 

3.6.1 Functionality 

This module is responsible for: 

• Initializing the communication with a control plane, sending a bind request 

• Reporting of the FP capabilities and attributes to the transport plug-in through the backend 
API. 

The different capabilities reported by this module are: 

• FE-wide capabilities - Number of ports, individual port attributes like MTU,  and link 
speed 

Since PDK 2.11 does not contain QOS/MPLS data plane, the QOS/MPLS capabilities are not 
reported. 

3.6.2 Execution Context 

This module is initialized by the FP boot manager and runs in the same context. Once all the FP 
module components are initialized, the FP boot manager initiates the bind sequence by calling into 
this module. The capability reporting is in the context of the backend API, which receives 
responses from the Control Plane. 
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3.6.3 Initialization 

The FP boot manager initializes this module during the start up of the forwarding plane. Since this 
module registers callbacks with the backend API, it has to be initialized after the backend API 
(transport plug-in). 
 

FPPI_RET fpm_bd_mgr_init { 

 register callback with backend API for BIND RESPONSE message 

 register callback with backend API for UNBIND message 

 register callback with backend API for CAPABILITY REPLY message 
} 

3.6.4 Shutdown 

This module is shutdown by the FP boot manager. Since this module should de-register the 
callbacks with the backend API, it must be shutdown before backend API (transport plug-in). 

 

FPPI_RET fpm_bd_mgr_shutdown { 

 De-register callback with backend API for BIND RESPONSE message 

 De-register callback with backend API for UNBIND message 

 De-register callback with backend API for CAPABILITY message 
} 

3.6.5 External API 

The FP boot manager invokes the fpm_bd_mgr_start()function after the performance of all 
initializations. This function calls into the configuration and management manager (CMM) to get 
FE-wide capabilities. This call also returns some system-wide IPv4 properties, such as, whether 
the Equal Cost Multi Path (ECMP) routing is supported by the underlying data plane. As 
mentioned earlier, the calls into the CMM are all asynchronous. Therefore, B&D registers a 
callback that is invoked when the CMM gets the properties from the stack driver. When the CMM 
has all the FE properties from the Stack driver, it invokes the callback registered by B&D.  
fpm_bd_mgr_start () 

{ 

fpm_cm_mgr_get_fecaps (fe_name); 

} 

The callback function mentioned below is called by the CMM when it has retrieved all the FE 
capabilities. The B&D stores the FE capabilities and sends a bind request to the CE with the FE 
ID, such as, blade ID from the underlying IXA SDK. 
bd_mgr_report_fecaps_cb (uint32_t fe_id, FPPI_FECaps* fecaps) 
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{ 

store fecaps (this is needed later to send a capability report) 

send bind request (fe_id); 
} 

3.6.6 On Bind Response 

This function is registered as a callback with the backend API for receiving the bind response from 
the control plane. The backend API invokes this function in response to a bind request.  

The B&D now sends a capability report message through the backend API reporting the FE 
capabilities that are stored earlier. 

[6] Send bind request

Back end API Binding &
Discovery

[1] register callback for  BIND RESPONSE

Config. & Mgmt
Manager

[3] fpm_cmm_get_caps

[7] Invoke Bind
Response
Callback

[5] Callback with FE
properties

return

Stack
Driver

[4] Query properties

[2] fpm_bd_start()

[8] Send CAPABITY
REPORT

 

Figure 10: Querying capabilities from FP plug in managers 

3.7 Packet Handler 

This section gives an overview of the packet handler in the FP module. 

3.7.1 Functionality 

In the case of physically separated control and forwarding planes, routing protocols and/or 
applications might be executing on the remote control plane. To an external device, the separated 
CE-FE looks like a single box with a set of interfaces. The packets destined to the 
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applications/protocols running on the control plane reach the forwarding plane first, where the 
decision has to be taken as to where these packets should be sent.  

For example, in the case of OSPF running on the control plane, route updates,  and hello 
messages, the OSPF expects must be captured and tunneled to the control plane, where the OSPF 
sockets are open. The details of this support can be found in the protocol support services design 
reference, and only some relevant sections are touched upon here for clarity. 

Support for packet handling on the forwarding plane consists of the following: 

• Capture locally directed/control packets: This has to be done in a platform-specific 
manner. Subsequent sections will describe the support on IXA SDK 3.51 (for IXP 2400 
and 2800).  

• Tunnel packets to the control plane: This is done in a fairly simple manner. The 
packet handler of the FP module gets the packet and sends it to the control plane through 
the transport plug-in using the backend API.  

• Receive outgoing packets/PDUs from control plane: Packets going out of the 
control plane arrive through the transport plug-in and reaches the packet handler. This has 
to be sent out now on the correct egress interface. 

• Transmit PDUs/packets out of the correct egress interface: This is platform 
specific. The details of how this is done for different platforms are explained subsequently.  

For a co-located VxWorks-based CP and FP, the packets going out from or coming into the PDK 
client stacks are handled completely by the IXA SDK 3.51 components through the local VIDD 
and stack driver core components.  

For CP-PDK 2.11 and remote control plane stacks, locally destined packets from the stack driver 
reach the FP module ingress core component. From the FP module ingress core component, the 
packets are tunneled to the control plane. The details of this tunneling protocol can be found in the 
transport plug-in design reference. Outbound packets from the control plane reach the FP module 
ingress CC and are sent to the stack driver for transmission. 

 

 

3.8 Configuration and Management Manager (CMM) 

This section gives an overview of the C&M FP plug-in manager.  

3.8.1 Functionality 

The CMM is responsible for setting and getting properties like IP address, MTU, and link-speed. 
It is responsible for getting the capabilities of the FE as a part of the FE B&D process. 
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3.8.2 Execution Context 

All the C&M manager down-calls execute in the context of the backend API callback functions 
registered during the initialization time. Where the calls into the IXA SDK 3.51 are synchronous, 
then the up-calls execute in the context of the backend API callback functions, for example, 
fpm_cm_mgr_set_L3_attrib(). If the calls into the IXA SDK 3.51 are asynchronous then 
up-calls execute in the context of the callbacks from the IXA SDK 3.51, for example, 
fpm_cm_mgr_get_fecaps(). 

3.8.3 Initialization 

The FP boot manager invokes the initialization function fpm_cm_mgr_init (). This function 
registers the callbacks with the backend API for setting and getting interface properties and 
statistics and invokes the platform-specific initialization function. The platform-specific 
component queries for the maximum number of ports and stores the value into a global variable.  

3.8.4 Shutdown  

The FP boot manager invokes the shutdown function fpm_cm_mgr_shutdown (). This 
function de-registers the callbacks from the backend API and invokes the platform-specific 
shutdown function.  

3.8.5 Data Structures 

This section provides information on the data structures used by the C&M FP plug-in manager. 

3.8.5.1 Translator-Related Structures: 

Stores the generic translator's context: 
typedef struct 

{  

 uint32_t cbCorrelator; // Higher-level instance differentiator, opaque to the FP 
module.  
} cm_TranslatorContext_t; 

 

Stores the translator's context related to getting num of ports: 
typedef struct 

{ 

 char get_fecaps; // Boolean, 1 indicates fecaps is to be retrieved 
 char *fename; // pointer to the name of the FE 
 uint32_t *port_num; // memory allocated for holding port number 
 uint32_t cbCorrelator; // Higher-level instance differentiator, opaque to the FP 
module. 
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} cm_portnum_TranslatorContext_t; 

Stores the translator's context related to getting the FE caps. : 
typedef struct 

{ 

 FPPI_FE_Caps *fecaps; //Pointer to memory allocated for FE caps. 
 uint32_t cbCorrelator; // Higher-level instance differentiator, opaque to the FP 
module. 
} cm_fecaps_TranslatorContext_t; 

 

Stores the translator's context related to getting the FE statistics: 
typedef struct { 

 npf_L3StatsEntry_t *stats_list; // memory allocated for statistics. 
 uint32_t num_entries; //number of ports 
 uint32_t cbCorrelator; //Higher-level instance differentiator, opaque to the FP 
module. 
} cm_L3_stats_TranslatorContext_t; 

3.8.5.2 Platform-Specific Component-Related Structures 

Stores the user context related to getting the port number: 
typedef struct 

{ 

 cm_portnum_TranslatorContext_t *t_c; //Translator context. 
} cm_portnum_UserContext_t; 

Stores the user context related to getting the FE caps:  
typedef struct 

{ 

 cm_fecaps_TranslatorContext_t *t_c; //Translator context. 
} cm_fecaps_UserContext_t; 

Stores the user context related to getting the FE caps: 
typedef struct { 

 uint32_t *reqComp_Indctr; //Pointer to counter to keep track 
of translator request completion 

 cm_L3_stats_TranslatorContext_t *t_c; //Translator context. 
 uint32_t port_index; //Port index 
 uint32_t portId;  //Id of the port. 
} cm_L3_stats_UserContext_t; 

Stores the pending user context info: 
typedef struct { 

 uint32_t type; //Type of down-call 
 uint32_t timestamp; //Time stamp indicating the time of down-call 
 void * u_c; //pointer to the u_c 
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} cm_uc_info; 

3.8.6 External API  

All the external APIs, except the fpm_cm_get_fe_caps(), initialize and shutdown the APIs 
that are registered with the backend API 

fpm_cm_mgr_get_fecaps()  

Syntax 
void fpm_cm_mgr_get_fecaps(bd_mgr_callback arg_Callback,char 
*fename) 

Description 

This function extracts the fename information and invokes the platform-specific component 
cm_get_fe_caps() to get the FE capabilities. The B&D manager invokes this function. 

The platform-specific function in turn invokes the stack driver API to get the required capabilities 
of the FE. Once the platform-specific component calls into the translator up-call, 
(fpm_cm_mgr_get_fecaps_upcall) the FE capability is sent to the B&D manager. 

Parameters 

arg_Callback  Callback function to pointer to call into Binding Discovery Manager 
when the FE capabilities are available 

fename   Pointer to the Forwarding Element 

Return Values  

None 

fpm_cm_mgr_get_fecaps_upcall()  

Syntax 
int32_t fpm_cm_mgr_get_fecaps_upcall(int32_t result, 
cm_fecaps_TranslatorContext_t *t_c) 

Description 

This function is invoked by the platform-specific component in response to the FE capability 
query. 

Parameters 

result  Result of the down-call request, (-1 indicates failure) 

t_c  Pointer to the translator context containing FE capabilities and the higher-level 
correlator 

Return Values 

• 0  - Success  

• -1 - Failure 
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fpm_cm_mgr_set_L2_attributes() 

Syntax 
void fpm_cm_mgr_set_L2_attributes(FPPI_CBCORRELATOR cbcorrelator, 
FPPI_CNTEXT context, void *response_data) 

Description 

This function extracts the information from the data pointed by the response_data pointer and 
invokes the platform-specific component cm_set_L2_attributes(). This pointer is cast 
npf_L2IntfAttrsList_t structure defined in the backendapi_types.h. 

Parameters 

• cbcorrelator Callback Correlator, identifying instance of the call 

• context Callback context 

• response_data Pointer to packaged data from the backend API 

Return Values 

None 

fpm_cm_mgr_set_L2_attributes_upcall()  

Syntax 
int32_t fpm_cm_mgr_set_L2_attributes_upcall(int32_t result, 
cm_TranslatorContext_t *t_c) 

Description 

This function is invoked by the platform-specific component in response to set L2 attributes. 

Parameters 

• result Result of the down-call request, -1 means failure. 

• t_c Pointer to the translator context containing higher-level correlator. 

Return Values 

• 0  - Success  

• -1 - Failure 

fpm_cm_mgr_set_L3_attributes () 

Syntax 
void fpm_cm_mgr_set_L3_attributes(FPPI_CBCORRELATOR cbcorrelator, 
FPPI_CNTEXT context, void *response_data) 

Description 

This function extracts the information from the data pointed by the response_data pointer and 
invokes the platform-specific component cm_set_L3_attributes.  

When the IP address is configured on an interface, the CMM invokes the IPv4 Manager for adding 
the following routes: 
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1. Add subnet route with L2 Index = 0 

2. Add directed broadcast route 

3. Add exact match route 

Parameters 

• Cbcorrelator Callback correlator, identifying instance of the call. 

• Context  Callback context. 

• response_data Pointer to packaged data from the backend API containing L3 Attribute 
   information (npf_L3IntfAttrsList_t)  

Return Values 

None 

fpm_cm_mgr_set_L3_attributes_upcall()  

Syntax 
int32_t fpm_cm_mgr_set_L3_attributes_upcall(int32_t result, 
cm_TranslatorContext_t *t_c) 

Description 

This function is invoked by the platform-specific component in response to set L3 attributes. 

Parameters 

• Result Result of the down-call request, -1 means failure 

• t_c Pointer to the translator context containing higher-level correlator 

Return Values 

• 0  - Success  

• -1 - Failure 

fpm_cm_mgr_delete_L3_attributes () 

Syntax 
void fpm_cm_mgr_set_L3_attributes(FPPI_CBCORRELATOR cbcorrelator, 
FPPI_CNTEXT context, void *response_data) 

Description:  

This function extracts the information from the data pointed by the response_data pointer and 
invokes the platform-specific component cm_delete_L3_attributes(). 

Parameters 

• cbcorrelator Callback correlator, identifying instance of the call. 

• context  Callback context. 

• response_data Pointer to packaged data from the backend API containing L3   
   attribute information (npf_L3IntfAttrsList_t). 
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Return Values 

None 

fpm_cm_mgr_delete_L3_attributes_upcall()  

Syntax 
int32_t fpm_cm_mgr_delete_L3_attributes_upcall(int32_t result, 
cm_TranslatorContext_t *t_c) 

Description 

This function is invoked by the platform-specific component in response to delete L3 attributes. 

Parameters 

• result Result of the down-call request, -1 means failure. 

• t_c Pointer to the translator context containing higher-level correlator. 

Return Values 

• 0  - Success  

• -1 - Failure 

fpm_cm_mgr_get_L3_stats () 

Syntax 

void fpm_cm_mgr_get_L3_stats(FPPI_CBCORRELATOR cbcorrelator, 
FPPI_CNTEXT context, void *response_data) 

Description 

This function extracts the information from the data pointed by the response_data pointer 
and invokes the platform-specific component cm_get_L3_stats(). 

Parameters 

• cbcorrelator Callback correlator, identifying instance of the call. 

• context  Callback context. 

• response_data Pointer to packaged data from the backend API containing port ID  
   information (npf_PortList_t).  

Return Values 

None 

fpm_cm_mgr_get_L3_stats_upcall()  

Syntax 
int32_t fpm_cm_mgr_get_L3_stats _upcall(int32_t result, 
cm_L3_stats_TranslatorContext_t *t_c) 

Description 
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This function is invoked by the platform-specific component in response to L3 stats query. 

Parameters 

• result Result of the down-call request, -1 means failure. 

• t_c Pointer to the translator context containing higher-level correlator and L3 
   statistics. 

Return Values 

• 0  - Success  

• -1 – Failure 

3.8.7 Platform-Specific Component APIs 

The stack driver core component helps in configuration and management of the interfaces. The 
statistics information is managed by the respective TX/RX core components.  

Most of the calls to the IXA SDK 3.51 are asynchronous in behavior and the result of the request 
is available in the callback from the IXA SDK 3.51. 

Table 3.  Config manager platform-specific component to IXA SDK 3.51 mapping table 

Platform-Specific 
Function 

Notes Core Component IXA SDK 3.51 API 

cm_get_fecaps() This call invokes two calls 
into the IXA SDK 3.0. One 
to get the number of ports, 
and then to get the 
properties for all the ports. 
Once the properties are 
available, the CM 
manager’s respective up-
call  is invoked. 

Stack Driver ix_cc_stkdrv_aync_get_num_ports() 

ix_cc_stkdrv_aync_get_property() 

cm_get_l3_stats() Invokes two calls one to 
Rx CC to get the RX Stats, 
and one to FP CC to get 
the Tx side stats. The FP 
CC invokes calls into the 
egress side and calls back 
once the stats are 
available. 

Ethernet Interface 
RX 

 

FP CC 

 

ix_cc_eth_rx_async_get_statistics_info –  

 

ix_cc_fpm_async_get_statistics_info(). This 
call invokes the egress API via the egress FP 
CC.  

cm_set_L2_attributes() Invokes call to set the link 
speed, MTU, and so on., 
by appropriately filling out 
the property ID and the 
properties structure 

SDK properties  ix_cc_async_set_property  

cm_set_L3_attributes Invokes call to set IP 
addresses, by 
appropriately filling out the 
property ID and the 
properties structure 

SDK Properties ix_cc_async_set_property 
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cm_delete_L3_attributes() Invokes call to set IP 

addresses, by 
appropriately filling out the 
property ID and the 
properties structure 

SDK Properties ix_cc_async_set_property 

The following sections describe the implementation details of both the translator and platform-
specific component for CM manager for getting statistics. The other APIs are implemented in a 
similar way. 

3.8.8 Setting and Deleting properties 

The calls into the stack driver properties API to set and delete properties are synchronous and the 
status is reported in the context of the backend API down call. The calls to get the properties, such 
as getting port number or FE capabilities, are asynchronous and status is reported to the CP in the 
context of the IXA SDK 3.51 callback.  

3.8.9 Getting Statistics 

Only fpm_cm_mgr_get_L3_statistics() is supported. To get these statistics, Ethernet 
RX and TX external messaging APIs have to be invoked. Invoking the Ethernet RX core 
component gets the RX statistics. As the Ethernet TX resides on the egress side, the CM manager 
invokes the FP CC on the ingress side. The ingress FP CC sends message to the FP CC in the 
egress side that in turn calls into the ethernet TX CC for statistics information. Following 
sequence diagram and pseudo code helps to understand the implementation details for statistics 
gathering for two ports.  
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Figure 11: Sequence diagram for getting Ethernet statistics for two ports 
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fpm_cm_mgr_get_L3_statistics(cbCorrelator) 

{ 

 num_ports = 2; 

- allocate memory for translator context (t_c) 

- fill out the fields of t_c 

t_c->stat_list = memory to hold stat into for num_ports 

t_c->cbCorrelator  = cbCorrelator;  

 

- call platform-specific component 

cm_get_L3_statistics(t_c, num_ports); 

} 

cm_get_L3_statistics(t_c, num_ports) 

{ 

 - allocate memory for reqComp_Indctr 

 - set reqComp_Indctr to num_ports, i.e. 2 

for(i = 0;i < num_ports; ++i) 

{ 

for (j = 0; j < 2; ++j) 

{ 

- allocate memory for user context (u_c) 

- fill out this u_c fields 

u_c->reqComp_indctr = reqComp_Indctr; 

u_c->t_c = t_c 

u_c->port_index = i; 

- call into the IXA SDK 3.5 

if(j == 0) //to get RX stats 

{ 

ix_cc_eth_rx_async_get_statistics_info(u_c, 
cm_L3_stat_callback_rx);  

} 

if(j == 1)//to get TX stats 

{ 

ix_cc_fpm_rx_async_get_statistics_info(u_c, 
cm_L3_stat_callback_tx); 

} 

} 

} 

} 

cm_L3_stat_callback_rx(result, u_c, pBuffer) 

{ 
 //check if all calls have completed 
if (*u_c-> reqComp_indctr != 0) 
{ 
*u_c-> reqComp_indctr--; 
//copy statistics information for the correct port_index 
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copy_rx_info(u_c->t_c->stat_list, pBuffer) 
} 
if (*u_c-> reqComp_indctr == 0) 
{ 
fpm_cm_mgr_L3_stat_upcall(t_c); 
free_counter(); 
} 
ree_this_user_context_resources(); 
} 
 
cm_L3_stat_callback_tx(result, user_context, pBuffer) 

{ 
 //check if all calls have completed 
if (*u_c-> reqComp_indctr != 0) 
{ 
*user_context-> reqComp_indctr--; 
//copy statistics information for the correct port_index 
copy_tx_info(u_c->t_c->stat_list, pBuffer) 
} 
if (*u_c-> reqComp_indctr == 0) 
{ 
fpm_cm_mgr_L3_stat_upcall(t_c); 
free_counter(); 
} 
free_this_user_context_resources(); 
} 
fpm_cm_mgr_L3_stat_upcall(t_c) 
{ 
Call BackendAPI_Status_Report(t_c->cbCorrelator, 
t_c->stat_list)}; 
free_stat_info();  
} 
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3.8.10 Getting Port Properties 

BidingDiscovery Manager FP ModuleTranslator FP Module
Platform Sp. Comp.

IXASDK30

fpm_cm_mgr_get_fecaps()

cm_get_port_num()

ix_cc_stkdrv_async_get_port_num()

fpm_cm_get_fecaps_upcall()

fpm_cm_mgr_get_fecaps_cb()

cm_get_port_num_cb()

ix_cc_stkdrv_async_get_property()

cm_get_port_property_cb()

cm_get_port_num_upcall()

cm_get_fecaps_()

Down Calls
Callbacks from IXASDK3.0
Up Calls

Decoder
Ring

 

Figure 12: Sequence diagram for getting port properties 

The B&D manager calls into the CM manager for FE capabilities during the FE bind operation. 
Figure 12: Sequence diagram for getting port properties depicts the sequence of events. As a first 
step the number of ports is requested from the IXA SDK 3.51. This information is available on the 
callback from the stack driver CC. The number of ports is made available to the CMM translator 
via the up-call. The translator now builds the required translator context that comprises the 
allocation for the FE caps for this number of ports, and invokes into the platform-specific 
component. The translator up-call is invoked once the properties for all the ports are available. The 
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CMM translator calls back the binding and discovery manager with the requested information on 
FE capabilities.  

3.9 IPv4 Manager 

This section gives an overview of the IPv4 FP plug-in manager.  

3.9.1 Functionality 

The IPv4 FP plug-in manager maps IPv4 NPF calls to IPv4 and Ethernet RX  core components, 
via the ingress FP core component, for route and ARP table management respectively. 

The IPv4 FP plug-in manager’s translator registers callback functions with the backend API for 
the various services like adding/deleting routes, and next hops . The platform-specific component 
interacts with the IXA SDK 3.51 API. 

3.9.2 Execution Context 

All the IPv4 manager down-calls execute in the context of the backend API callback functions 
registered during the initialization time. In the cases where the calls into the IXA SDK 3.51 are 
synchronous, the up-calls execute in the context of backend API callback functions, such as, 
fpm_ipv4_mgr_flush_prefixes(). If the calls into the IXA SDK 3.51 are asynchronous 
then up-calls execute in the context of the callbacks from the IXA SDK 3.51, for example, 
fpm_ipv4_mgr_add_prefix(). 

3.9.3 Initialization 

The FP boot manager invokes the initialization function fpm_ipv4_mgr_init (). This 
function registers callbacks with the backend API for setting up route tables in the IPv4 CC and 
invokes the platform-specific initialization function. 

3.9.4 Shutdown  

The FP boot manager invokes the shutdown function fpm_ipv4_mgr_shutdown (). This 
function de-registers the callbacks from the backend API and invokes the platform-specific 
shutdown function. 

 

3.9.5 Data Structures 

This section provides information on the data structures used by the IPv4 FP plug-in  manager. 
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3.9.5.1 IPv4 Translator-related Structures 

typedef struct { 

    NPF_RET            retStatus; 

    npf_AddressType_t  type;  

    union 

    { 

        NPF_IPv4Address_t        ipv4Addr; 

        NPF_MediaAddressEntry_t  l2Addr; 

    } u; 

} npf_IPv4_Status_t; 

typedef struct 

{ 

npf_IPv4_Status_t *status; // Pointer to structures containing 
status info. for each //add/delete/update request. 

 uint32_t num_entries; // number of add/delete/update entries 

 uint32_t cbType; //Type of down-call request 

 uint32_t cbCorrelator; // Higher-level instance 
differentiator, opaque to the FP module. 

} ipv4_TranslatorContext_t; 

3.9.5.2 IPv4 Platform Component-related Structures 

typedef struct 

{ 

 uint32_t *reqComp_Indctr; // Pointer to counter to keep 
track of translator request completion 

 ipv4_TranslatorContext_t *t_c; // Translator context. 

 uint32_t index; //index indicating the offset of the this 
u_c 

} ipv4_UserContext_t; 

3.9.6 External API  

All the external APIs are registered with the backend API except the initialize and shutdown APIs 
that are called by the FP boot manager. 

fpm_ipv4_mgr_upcall()  

Syntax 
int32_t fpm_ipv4_mgr_upcall(int32_t result, 
ipv4_TranslatorContext_t *t_c) 

Description 

This function is invoked by the platform-specific components in response to 
adding/deleting/updating prefixes, next hops or ARPs. 

Parameters 
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• result Result of the down-call request, -1 means failure. 

• t_c Pointer to the translator context containing the higher-level correlator and status  
  of adding next hops. 

Return Values 

• 0  - Success  

• -1 - Failure 

fpm_ipv4_mgr_add_next_hop() 

Syntax 
void fpm_ipv4_mgr_add_next_hop(FPPI_CBCORRELATOR cbcorrelator, 
FPPI_CNTEXT context, void *response_data) 

Description 

This function extracts the information from the data pointed by the response_data pointer and 
invokes the platform-specific component ipv4_add_next_hop().  

The platform-specific function in turn adds entries to the next hop table and L2 table. To indicate 
the completion of the request the platform-specific component calls into the translator up-call 
(fpm_ipv4_mgr_upcall), and status of adding next hops is sent to the backend module. 

Parameters 

• cbcorrelator Callback correlator, identifying instance of the call. 

• context  Callback context. 

• response_data Pointer to packaged data from the backend API containing next hop 
    information.  

Return Values 

None 

fpm_ipv4_mgr_delete_next_hop () 

Syntax  
void fpm_ipv4_mgr_delete_next_hop(FPPI_CBCORRELATOR cbcorrelator, 
FPPI_CNTEXT context, void *response_data) 

Description 

This function extracts the information from the data pointed by the response_data pointer and 
invokes the platform-specific component ipv4_delete_next_hop(). 

The platform-specific function in turn deletes entries in the next hop table and L2 table. To 
indicate the completion of the request the platform-specific component calls into the translator up-
call (fpm_ipv4_mgr_delete_next_hop_upcall), and status of deleting next hops is sent 
to the backend module.  

Parameters 

• cbcorrelator  Callback correlator that identifies the instance of the call. 

• context   Callback context. 
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• response_data  Pointer to packaged data from the backend API containing  

    next-hop information.  

fpm_ipv4_mgr_add_prefix () 

Syntax 
void fpm_ipv4_mgr_add_prefix(FPPI_CBCORRELATOR cbcorrelator, 
FPPI_CNTEXT context, void *response_data) 

Description 

This function extracts the information from the data pointed by the response_data pointer and 
invokes the platform-specific component ipv4_add_prefix(). 

The platform-specific function in turn adds entries in the prefix table in the ingress. To indicate the 
completion of the request, the platform-specific component calls into the translator up-call and 
status of adding prefixes is sent to the backend module. 

Parameters 

• cbcorrelator  Callback correlator, identifying instance of the call. 

• context   Callback context. 

• response_data  Pointer to packaged data from the backend APIcontaining  
    prefix information.  

Return Values 

None 

fpm_ipv4_mgr_update_prefix () 

Syntax 
void fpm_ipv4_mgr_update_prefix(FPPI_CBCORRELATOR cbcorrelator, 
FPPI_CNTEXT context, void *response_data) 

Description 

This function extracts the information from the data pointed by the response_data pointer and 
invokes the platform-specific component ipv4_update_prefix(). 

The platform-specific function in turn updates entries to the prefix table in the ingress for the 
existing NHID. To indicate the completion of the request, the platform-specific component calls 
into the translator up-call, and status of update is sent to the backend module. 

Parameters 

• cbcorrelator  Callback correlator, identifying instance of the call. 

• context   Callback context. 

• response_data  Pointer to packaged data from the backend API containing the  
    prefix information. 

Return Values 

None 
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fpm_ipv4_mgr_delete_prefix () 

Syntax 
void fpm_ipv4_mgr_delete_prefix (FPPI_CBCORRELATOR cbcorrelator, 
FPPI_CNTEXT context, void *response_data) 

Description 

This function extracts the information from the data pointed by the response_data pointer and 
invokes the platform-specific component ipv4_delete_prefix(). This pointer is cast to 
next-hop structure defined in the backendapi_types.h. 

The platform-specific function in turn deletes entries in the prefix table in the ingress. To indicate 
the completion of the request, the platform-specific component calls into the translator up-call 
(fpm_ipv4_mgr_upcall), and status of delete is sent to the backend module. 

Parameters 

• cbcorrelator Callback correlator, identifying instance of the call. 

• context  Callback context. 

• response_data Pointer to packaged data from the backend API containing prefix 
    information.  

Return Values 

None 

fpm_ipv4_mgr_flush_prefixes () 

Syntax 
void fpm_ipv4_mgr_flush_prefixes(FPPI_CBCORRELATOR cbcorrelator, 
FPPI_CNTEXT context, void *response_data) 

Description 

This function invokes the platform-specific component ipv4_flush_prefixes(). The 
platform-specific function, in turn, deletes all routes and next-hops from the prefix and next-hop 
tables. 

Parameters 

• cbcorrelator  Callback correlator, identifying instance of the call. 

• context   Callback context. 

• response_data  NULL.  

Return Values 

None 

fpm_ipv4_mgr_flush_next_hops () 

Syntax 
void fpm_ipv4_mgr_flush_prefixes(FPPI_CBCORRELATOR cbcorrelator, 
FPPI_CNTEXT context, void *response_data) 
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Description 

This function invokes the platform-specific component ipv4_flush_prefixes(). The 
platform-specific function, in turn, deletes all routes and next-hops from the prefix and next-hop 
tables. 

Parameters 

• cbcorrelator  Callback correlator, identifying instance of the call. 

• context   Callback context. 

• response_data  NULL.  

Return Values 

None 

fpm_ipv4_mgr_add_arp () 

Syntax 
void fpm_ipv4_mgr_add_arp (FPPI_CBCORRELATOR cbcorrelator, 
FPPI_CNTEXT context, void *response_data) 

Description 

This function extracts the information from the data pointed by the response_data pointer and 
invokes the platform-specific component ipv4_add_arp(). 

The platform-specific function in turn adds entries to the ARP table on the egress. To indicate the 
completion of the request, the platform-specific component calls into the translator up-call 
(fpm_ipv4_mgr_upcall), and status of adding ARP is sent to the backend module. 

Parameters 

• cbcorrelator  Callback correlator, identifying instance of the call. 

• context   Callback context. 

• response_data  Pointer to packaged data from the backend API containing  
    ARP information. 

Return Values 

None 

fpm_ipv4_mgr_delete_arp () 

Syntax 
void fpm_ipv4_mgr_delete_arp (FPPI_CBCORRELATOR cbcorrelator, 
FPPI_CNTEXT context, void *response_data) 

Description 

This function extracts the information from the data pointed by the response_data pointer and 
invokes the platform-specific component ipv4_delete_arp().This pointer is cast to next 
hop structure defined in the backendapi_types.h. 
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The platform-specific function in turn deletes entries in the ARP table in the ingress. The 
platform-specific function in turn adds entries to the ARP table on the egress. To indicate the 
completion of the request, the platform-specific component calls into the translator up-call 
(fpm_ipv4_mgr_delete_arp_upcall), and status of delete is sent to the backend module. 

Parameters 

• cbcorrelator  Callback correlator, identifying instance of the call. 

• context   Callback context. 

• response_data  Pointer to packaged data from the backend API.  

Return Values 

None 

fpm_ipv4_mgr_flush_arps () 

Syntax 
void fpm_ipv4_mgr_flush_arps(FPPI_CBCORRELATOR cbcorrelator, 
FPPI_CNTEXT context, void *response_data) 

Description 

This function invokes the platform-specific component ipv4_flush_arps(). The platform-
specific function in turn deletes all routes and next hops from the ARP tables. 

Parameters 

• cbcorrelator  Callback correlator, identifying instance of the call. 

• context   Callback context. 

• response_data  NULL.  

Return Values 

None 

3.9.7 Platform-Specific Component APIs 

The IPv4 core component helps maintain three tables that are consulted for every incoming 
packet. These three tables are: 

1. Prefix table (PT): This table resides on the ingress processor of the IXP nNetwork 
processor. The entries are indexed by prefixes and the look-up yields Next-hop ID 
(NHID) passed down from the client stacks through NPF APIs.  

2. Next-hop table (NHT): This table resides on the ingress processor of the IXP network 
processor. The entries are indexed by NHID and yield the L2 ID and the blade IDs in 
addition to other parameters. 

3. L2 table (L2T): This table resides on the egress processor of the IXP network processor. 
The entries are indexed by L2 IDs and yield the L2 encapsulation header for the outgoing 
packet. 
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There are three lookups for every incoming packet traversing the IXP2000 series network 
processor. In brief, when a packet comes into the router the first (PT) lookup gives the NHID and 
then the second (NHT) lookup gives the blade ID and the L2 ID for that blade; for Ethernet based 
media type this blade ID information is used for a third (L2T) lookup on the egress to get the 
layer-2 encapsulation and the packet is eventually sent out. In case of POS media type, there is no 
L2T lookup. The L2 table management is done via the FP CC API. Whereas the L2T is specific to 
a blade, the exact same PT and NHT are maintained in all the blades of a multi-blade router. 

Most of the calls to the IXA SDK 3.51 are asynchronous in behavior and the result of the request 
is available in the callback from the IXA SDK 3.51. The FP module communicates with the egress 
side via the FP CC. Table 4 gives the platform-specific component API to IXA SDK 3.51 API 
mapping. 

Table 4.  IPv4 platform-specific component API to IXA SDK 3.51 API mapping table 

Platform-Specific 
Function 

Notes Core Components IXA SDK 3.51 API 

ipv4_add_next_hop() Invokes calls to populate 
the Next hop table and in 
case of Ethernet Tx/Rx 
interfaces the L2 table is 
also populated. 

IXA SDK supports updating 
next hop; in case of 
Ethernet the existing L2 
entry is deleted before the 
newer L2 entry is added. 

IPv4 

 

FP CC 

 

 

IPv4 

 

FP CC 

FP CC 

ix_cc_ipv4_async_add_next_hop() 

 

ix_cc_fpm_sync_add_L2_entry() 

 

 

ix_cc_ipv4_async_update_next_hop() 

 

ix_cc_fpm_sync_del_L2_entry() 

ix_cc_fpm_sync_add_L2_entry() 

ipv4_delete_next_hop() Invokes calls to delete the 
next hop table and in case 
of Ethernet, the 
corresponding L2 entry via 
the FP CC API. 

IPv4 

FP CC 

ix_cc_ipv4_async_delete_next_hop() 

ix_cc_fpm_sync_del_L2_entry() 

ipv4_flush_next_hops() Invokes calls to purge the 
route and Next hop tables 
and the L2 table. 

IPv4 ix_cc_ipv4_async_purge_rtm() 

ix_cc_fpm_async_purge_L2_table() 

ipv4_add_prefix() Invokes calls to add route 
entry in the route table. 

IPv4 ix_cc_ipv4_async_add_route() 

ipv4_update_prefix() Invokes calls to update 
route entry in the route 
table. 

IPv4 ix_cc_ipv4_async_update_route() 

ipv4_delete_prefix() Invokes calls to delete route 
entry in the route table. 

IPv4 ix_cc_ipv4_async_delete_route() 

ipv4_flush_prefixes() Invokes calls to purge the 
route table. 

IPv4 ix_cc_ipv4_async_purge_routes() 
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ipv4_add_arp() Invokes calls to add ARP 
entry in the ARP  table. 

FP CC ix_cc_fpm_async_add_arp() 

ipv4_delete_arp() Invokes calls to delete ARP 
entry in the ARP table. 

FP CC ix_cc_fpm_async_delete_arp() 

ipv4_purge_arp() Invokes calls to purge ARP 
table. 

FP CC ix_cc_fpm_async_purge_arp() 

The following sections give the implementation details for adding routes and next hops. The other 
APIs (like adding/deleting ARPs, purging routes etc) are implemented in a similar way. 

Figure 13 shows NPF to IXA SDK 3.51 mapping for adding next hops and routes. As can be seen, 
when the fpm_add_next_hop() comes along, the IPv4 manager makes two calls to the IXA 
SDK 3.51; one to add entry to the next hop table on the ingress and the other to populate the L2 
table on the egress side. The NHIDs in the figure are passed from the NPF compliant client stacks. 
The dotted lines in red in Figure 13 show the calls related to updating the next hop for an existing 
NHID. 
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if the old_l2index  is valid  then do  following::
1. FP Module calls  ix_cc_ipv4_async_update_next_hop()

2. Add new entries into L2 table
3.  Delete the old entry from the L2 table

ix_cc_ipv4_async_update_next_hop
(nhid, bid, old_l2index, new_l2index,

portID, nhaddr, mtu, flags) ix_cc_fp_async_delete_l2_entry
( l2index, nhaddr,outPort)

Figure 13: NPF-FP module-IXA SDK 3.51 mapping 

3.9.8 Adding Routes and Next Hops 

Adding a route assumes that next-hop is previously added for the particular NHIDs. For more 
details on this, refer to IPv4 module in the CP [4]. As the calls into the IXA SDK 3.51 are 
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asynchronous, the status of each call is indicated in the respective callback function in platform-
specific component. When all callbacks for the respective down-calls have arrived, the translator 
up-call is invoked and the cumulative status is given to the backend API via the 
ipv4_Status_t structure. The sequence diagram in Figure 14 and pseudo code helps to 
understand the implementation details for adding two routes for an existing next-hop.  

Backend API FP ModuleTranslator FP Module
Platform Sp. Comp.

IXASDK30

fpm_ipv4_mgr_add_prefix_cb()

ipv4_add_prefix()

ix_cc_ipv4_async_add_route(prefix = a)

ipv4_add_route_cb()

BENDAPI_Report_Status()

Wait for all routes to be added
reqComp_indctr = 0

ix_cc_ipv4_async_add_route(prefix = b)

ipv4_add_route_cb()

fpm_ipv4_mgr_add_prefix_upcall()

Down Calls
Callbacks from IXASDK430
Up Calls

Decoder
Ring

 

Figure 14: Sequence diagram for adding a route 

 

 
 

 71 

Control Plane-PDK 2.11 



Forwarding Plane Module 
Design Specification 

R                       
fpm_ipv4_mgr_add_prefix(cbCorrelator, route_info) 

{ 

 num_routes = 2; 

 - allocate memory for the translator context (t_c) 

 - Allocate memory to hold status info for num_routes 

- Fill the t_c fields 

 for ( num_routes) 

{ 

t_c->status[i].type = NPF_IPv4_ADDRESS; 

t_c->status[i]. u.ipv4Addr = route_info[i].addr; 

t_c->cbCorrelator = cbCorrelator; 

} 

- call platform-specific component. 

ipv4_add_prefix(translator_context, route_info, num_routes); 

} 

ipv4_add_prefix(t_c, route_info, num_routes) 

{  

 -  allocate memory for reqComp_Indctr 

 - set reqComp_Indctr to num_routes, i.e. 2 

for(i=0;i<num_routes;++i) 

{ 

 - allocate memory for user context (u_c) 

 - Fill u_c fields 

u_c->reqComp_Indctr = reqComp_Indctr; 

u_c->translator_context = translator_context; 

u_c->index = i; 

- call IXA SDK 3.5 

ix_cc_ipv4_async_add_route(u_c, route_info, 
ipv4_add_route_callback()); 

} 

} 

ipv4_add_route_callback(result, user_context) 

{  

 uint32_t indctr = *u_c->reqComp_indctr; 

//check to see if all the callbacks have arrived 

if (indctr != 0) 

 { 

- decrement reqComp_indctr(*u_c->reqComp_indctr--) 

Set the error status for this request 

u_c->t_c->status[u_c->index].retStatus = result;  

} 

if (indctr == 0) 

 { 

- call the translator upcall 

fpm_ipv4_mgr_add_route_upcall(translator_context); 

free_counter; 
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} 

free_this_user_context_resources(); 

} 

fpm_ipv4_mgr_add_route_upcall(t_c) 

{ 

Call BackendAPI_Status_Report(translator_context->cbCorrelator,  

t_c->status); 

free_status_memory(); 

free routeinfo() 

} 

NPF defines an efficient way of updating the Next-hop. As per this definition there is no need to 
re-download the prefixes if a next-hop changes. Refer to CP IPv4 module document [4] for more 
information. As the L2T is specific to the blade, the new next-hop information might imply L2T 
update of another blade and the L2T entry in the original blade needs to be deleted. The flow chart 
in Figure 15 gives the algorithm to ensure proper synchronization of the L2T in all the blades.  

fp m _ ip v 4 _ m g r_ a d d _ n e x t_ h o p ()

is  n e w  B la d e  ID
=

m y  b la d e  ID

Y E S

N O
in v o k e

ix_ c c _ fp _ a s y n c _ a d d _ L 2 _ e n try (n e w _ L 2 In d e x)

in v o k e
ix_ c c _ ip v 4 _ a s y n c _ u p d a te _ n e x t_ h o p ()

in v o k e
ix_ c c _ fp _ a s y n c _ d e le te _ L 2 _ e n try (o ld _ L 2 In d e x)

is
 o ld _ L 2 in d e x

p o p u la te d
?

Y E S

in v o k e
ix_ c c _ ip v 4 _ a s y n c _ a d d _ n e x t_ h o p ()

e n d

N O

is  b la d e  id
=

m y  b la d e  ID

Y E S

N O

 

Figure 15: Algorithm to manage the L2 table for adding Next-hop 
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3.9.9 Adding/Deleting ARP Entries 

The ARP table is maintained in the egress side of the FE. So, when the add ARP entry request 
comes to the IPv4 manager, it invokes the ingress FP core component (FP CC) via the 
ix_cc_fp_async_add_arp() . The FP CC is responsible for communicating with the egress 
FP CC, which in-turn invokes the TX Ethernet CC. On Completion of the request, the ingress FP 
CC calls back the IPv4 manager’s platform-specific component. The status reporting to the 
backend API is done in the similar way as done for add route status reporting. The type field in the 
ipv4_Status_t is set to indicate MAC address. 

3.10 Event Manager 

This is responsible for propagating events, such as, port-up and port-down, to the transport plug-in 
through the backend API’s event notification interface. 

3.10.1 Functionality 

The event manager handles events arising from the underlying NPU. It currently supports the link 
up/ link down events. It generates a backend API event notification whenever it detects a change 
in the Link State. 

3.10.2 Execution Context 

The event handler thread executes in its own context, sending event notification upwards through 
the backend API event notification mechanism.  

3.10.3 Initialization 

On initialization, the event handling thread is created.  

3.10.4 Shutdown  

On shutdown, the event handler thread is destroyed. 

3.10.5 IXA SDK 3.51 Implementation 

The linkstate module determines the state of the IXP interface. It receives an event from the 
ingress FP CC on the link status change. 
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3.11 ATM Manager 

This section gives an overview of the ATM FP plug-in manager.  

3.11.1 Functionality 

The ATM FP plug-in manager maps the ATM NPF calls to ATM core components for 
creating/deleting/getting statistics of Port/VCC/AAL2 channel. 

The ATM FP plug-in manager’s translator registers the callback functions with the backend API 
for  various services like adding/deleting Port, VCC, AAL2 channel and so on. The platform-
specific component interacts with the IXA SDK 3.51 API. 

3.11.2 Execution Context 

All the ATM manager down-calls execute in the context of the backend API callback functions 
registered during the initialization time. All the ATM manager up-calls are asynchronous and they 
execute in the context of the callbacks from the IXA SDK 3.51. 

3.11.3 Initialization 

The FP boot manager invokes the initialization function fpm_atm_conn_mgr_init (). This 
function registers the callbacks with the backend API for setting/deleting/getting statistics of 
Port/VCC in the ATM CC and invokes the platform-specific initialization function. 

3.11.4 Shutdown  

The FP boot manager invokes the shutdown function fpm_atm_mgr_shutdown (). This 
function de-registers the callbacks from the backend API and invokes the platform-specific 
shutdown function. 

3.11.5 Data Structures  

This section provides information on the data structures used by the ATM FP plug-in manager. 

3.11.5.1 ATM Platform-Specific Data Structures 

For the IXA_SDK_3.1 ATM SAR CC platform, the ATM translator maintains three hash lists. 
One each for ports and VCCs created. If the AAL type of the VCC connection is AAL2, then the 
VCC hash node also has an AAL2 Hash List.  

One of the main reasons for maintaining this hash list is to maintain the mapping between the 
port/VCC/AAL2 Id provided by the CP-PDK user and the corresponding port/VCC/AAL2 handle 
provided by the IXA_SDK_3.1 ATMSAR CC. 
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The following data structures are used for maintaining the hash list and the correlators used for 
communicating with the IX_SDK_3.1 ATMSAR CC. 
typedef struct 

{ 

 NPF_VccAddr_t conection;  /* VPI/VCI */ 

 NPF_uint32_t portId;  /* Port Id */ 

 NPF_IfHandle_t upperIfHandle; /* Upper Interface 
Handle */ 

 NPF_IfAAL_t  aalType;  /* AAL Type */ 

 PdkHashCb   aal2ChanIdHashList;/* AAL 2 Hash List 
Control Block */ 

} limePointAtmVccHashInfo_t; 

 

typedef struct 

{ 

 NPF_uint16_t aal2Cid;  /* AAL2 Channel Id */ 

 NPF_uint16_t aal2Handle;  /* AAL2 Handle */ 

}limePointAtmAal2HashInfo_t; 

 

typedef struct 

{ 

 NPF_uint32_t portId;  /* Port Id */ 

 NPF_uint16_t portHandle;  /* Port Handle */ 

 DList   vccHashInfoList; /* Linked List of VCCs 
mapped to this port */ 

}limePointAtmPortHashInfo_t; 

 

tyepdef struct 

{ 

 NPF_uint32_t  portId; /* Port Id */ 

 FPPI_CBCORRELATOR  corr;  /*  Correlator */ 

}limePointPortCorrelator_t; 

 

typedef struct 

{ 

 NPF_VccAddr_t  connection; /* VPI/VCI */ 

 NPF_uint32_t  portId; /* Port Id */ 

 FPPI_CBCORRELATOR  corr;  /* Correlator */ 

 NPF_IfAAL_t   aalType; /* AAL Type */ 

}limePointVccCorrelator_t; 

 

tyepdef struct 

{ 

 NFP_VccAddr_t  connection; /* VPI/VCI */ 

76 
Intel Confidential 



R 
                 FP Module Design 

 NPF_uint32_t  portId; /* Port Id */ 

 NPF_uint16_t  aal2Cid; /* AAL2 Channel Id */ 

 FPPI_CBCORRELATOR  corr;  /* Correlator */ 

}limePointAal2Correlator_t; 

3.11.6 External API  

All the external APIs are registered with the backend API, except the initialize and shutdown APIs 
that are called by the FP boot manager. 

fpmIfATM_IfAttrSetFunc()  

Syntax 
Void fpmIfATM_IfAttrSetFunc(FPPI_CBCORRELATOR 
cbcorrelator,FPPI_CONTEXT context, void *response_data) 

Description 

This function extracts the information from the data pointed by the response_data pointer and 
invokes the platform-specific component ix_cc_atmsar_async_port_create().  

On a dual processor system like Angel Island, the CP-PDK runs on the ingress, and the ATMSAR 
main CC resides on the egress processor. This function internally sends the received port attribute 
information to the egress, where the platform-specific 
ix_cc_atmsar_async_port_create function is called. 

The platform-specific function in turn creates the ATM port with the port speed attributes passed 
to it. To indicate the completion of the request, the platform-specific component calls the ATM 
translator callback function LimePointPortCreateCBFunc. In the callback function, if the 
status of the port create operation is successful, then the ATM translator adds the port information 
in its port hash list. Each node in the port hash list contains the following information:  

• Port Id 

• Port Handle, which is the handle returned by the ATM SAR CC 

• List of ATM VCCs mapped to this port. When the port is deleted, this information is 
needed to delete all the VCCs associated with this port.  

Parameters 

• cbcorrelator  Callback correlator that identifies the instance of the call 

• context   Callback context 

• response_data  Pointer to packaged data from the backend API containing the  
    ATM port attributes information 

Return Values 

None 

fpmIfATM_IfDeleteFunc()  

Syntax 
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Void fpmIfATM_IfDeleteFunc(FPPI_CBCORRELATOR 
cbcorrelator,FPPI_CONTEXT context, void *response_data) 

 

Description 

This function extracts the information from the data pointed by the response_data pointer and 
invokes the platform-specific component ix_cc_atmsar_async_port_remove().  

Currently on a dual processor system like Angel Island, the CP-PDK runs on the ingress, and the 
ATMSAR main CC resides on the egress processor. This function retrieves the port handle stored 
in ATM translators port hash list and then sends this port handle information to the egress, where 
the platform-specific ix_cc_atmsar_async_port_remove function is called. 

The platform-specific function removes the ATM port. To indicate the completion of the request, 
the platform-specific component calls the ATM translator callback function 
LimePointPortDeleteCBFunc. In the callback function, if the status of the portdelete 
operation is success, then the ATM translator removes the port information from its port hash list. 
Then it calls the platform-specific component ix_cc_atmsar_asyn_vc_remove function to 
delete all the VCCs mapped to this port. 

Parameters 

• cbcorrelator  Callback correlator that identifies the instance of the call 

• context   Callback context 

• response_data  Pointer to the packaged data from the backend API containing  
    the ATM port ID information 

Return Values 

None 

fpmIfATM_IfGenStatsGetFunc()  

Syntax 
Void fpmIfATM_IfGenStatsGetFunc(FPPI_CBCORRELATOR 
cbcorrelator,FPPI_CONTEXT context, void *response_data) 

Description 

This function extracts the information from the data pointed by the response_data pointer and 
invokes the platform-specific component ix_cc_atmsar_async_get_port_stats().  

On a dual processor system like Angel Island, the CP-PDK runs on the ingress, and the ATMSAR 
main CC resides on the egress processor. This function retrieves the port handle stored in the 
ATM translators port hash list and then sends this port handle information to the egress where the 
platform-specific ix_cc_atmsar_async_get_port_stats function is called. 

The platform-specific function in turn gets the statistics of the ATM port. To indicate the 
completion of the request, the platform-specific component calls the ATM translator callback 
function  LimePointPortStatsGetCBFunc.  

Parameters 

• cbcorrelator  Callback correlator that identifies the instance of the call 

78 
Intel Confidential 



R 
                 FP Module Design 

• context   Callback context 

• response_data  Pointer to the packaged data from the backend API containing  
    the ATM port ID information 

Return Values 

None  

fpmIfATM_VccSetFunc()  

Syntax 
Void fpmIfATM_VccSetFunc(FPPI_CBCORRELATOR 
cbcorrelator,FPPI_CONTEXT context, void *response_data) 

Description 

This function extracts the information from the data pointed by the response_data pointer and 
invokes the platform-specific component ix_cc_atmsar_async_vc_create().  

On a dual processor system like Angel Island, the CP-PDK runs on the ingress, and the ATMSAR 
main CC resides on the egress processor. This function internally sends the received VCC attribute 
information to the egress, where the platform-specific ix_cc_atmsar_async_vc_create 
function is called. 

The platform-specific function in turn creates the ATM VCC with the attributes passed to it. To 
indicate the completion of the request, the platform-specific component calls the ATM translator 
callback function LimePointVccCreateCBFunc. In the callback function, if the status of the 
VCC create operation is success, then the ATM translator adds the VCC information in its VCC 
hash list. Each node in the VCC hash list contains the following information:  

• VPI/VCI value 

• Port Id 

• VCC handle which is the handle returned by ATM SAR CC 

• Upper interface handle used for slow path packets. This is needed to inform the layer 3 of 
the layer-3 interface from which the packet was received. 

• AAL type  

• Hash list of AAL2 channels mapped to this VCC. This field is used only for AAL2 
connections. 

The ATM translator also adds the information of the newly created VCC in the VCC list of the 
port on which the VCC is mapped. 

Parameters 

• cbcorrelator  Callback correlator that  identifies the instance of the call 

• context   Callback context 

• response_data  Pointer to the packaged data from the backend API containing  
    the ATM VCC attributes information 

Return Values 

None 
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fpmIfATM_VccBindFunc()  

Syntax 
Void fpmIfATM_VccBindFunc(FPPI_CBCORRELATOR 
cbcorrelator,FPPI_CONTEXT context, void *response_data) 

Description 

This function extracts the information from the data pointed by the response_data pointer and 
stores the layer-3 interface handle in the Hash Node of the associated VCC in the VCC hash List. 

Parameters 

• cbcorrelator  Callback correlator that identifies the instance of the call 

• context   Callback context 

• response_data  Pointer to the packaged data from the backend API containing  
    the ATM VCC  information and the Layer-3 interface handle 

Return Values 

None 

fpmIfATM_VccDelFunc()  

Syntax 
Void fpmIfATM_VccDelFunc(FPPI_CBCORRELATOR 
cbcorrelator,FPPI_CONTEXT context, void *response_data) 

Description 

This function extracts the information from the data pointed by the response_data pointer and 
invokes the platform-specific component ix_cc_atmsar_async_vc_remove().  

On a dual processor system like Angel Island, the CP-PDK runs on the ingress whereas the 
ATMSAR Main CC resides on the egress processor. This function retrieves the VCC handle 
stored in ATM translators VCC hash List and then sends this VCC handle information to the 
egress where the platform-specific ix_cc_atmsar_async_vc_remove function is called 
and then, the platform-specific function removes the ATM VCC.  

To indicate the completion of the request, the platform-specific component calls the ATM 
translator callback function LimePointVccDelCBFunc. In the callback function, if the status 
of the VCC delete operation is successful, then the ATM translator removes the VCC information 
from its VCC hash list. It also removes the information about this VCC from VCC list of the port 
to which this VCC is mapped. 

Parameters 

• cbcorrelator  Callback correlator that identifies the instance of the call 

• context  Callback context 
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• response_data  Pointer to the packaged data from the backend API containing  
    the ATM VCC ID information 

 

Return Values 

None 

fpmIfATM_VccStatsGetFunc()  

Syntax 
Void fpmIfATM_VccStatsGetFunc(FPPI_CBCORRELATOR 
cbcorrelator,FPPI_CONTEXT context, void *response_data) 

Description 

This function extracts the information from the data pointed by the response_data pointer and 
invokes the platform-specific component ix_cc_atmsar_async_get_vc_stats().  

On a dual processor system like Angel Island, the CP-PDK runs on the ingress and the ATMSAR 
main CC resides on the egress processor. This function retrieves the VCC handle stored in ATM 
translators VCC hash list and then sends this VCC handle information to the egress where the 
platform-specific ix_cc_atmsar_async_get_vc_stats function is called andthen the 
platform-specific function gets the statistics of  the ATM VCC.  

To indicate the completion of the request, the platform-specific component calls the ATM 
translator callback function LimePointVccStatsGetCBFunc. 

Parameters 

• cbcorrelator  Callback correlator that identifies the instance of the call 

• context   Callback context 

• response_data  Pointer to the packaged data from the backend API containing  
    the ATM VCC ID information 

Return Values 

None 

fpmIfATM_AAL2_ChannelSetFunc()  

Syntax 
Void fpmIfATM_IfAttrSetFunc(FPPI_CBCORRELATOR 
cbcorrelator,FPPI_CONTEXT context, void *response_data) 

Description 

This function extracts the information from the data pointed by the response_data pointer and 
checks if the VCC to which the AAL2 channel is mapped exists or not. In case the VCC exists, it 
invokes the platform-specific component ix_cc_atmsar_async_cid_create().  

On a dual processor system like the Angel Island, the CP-PDK runs on the ingress, and the 
ATMSAR main CC resides on the egress processor. This function internally sends the received 
AAL2 channel attribute information to the egress, where the platform-specific 
ix_cc_atmsar_async_cid_create function is called. 
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The platform-specific function in turn creates the AAL2 channel with the attributes passed to it. 
To indicate the completion of the request, the platform-specific component calls the ATM 
translator callback function LimePointAal2ChanSetCBFunc. In the callback function, if the 
status of the AAL2 channel create operation is success, then the ATM translator adds the AAL2 
information in the AAL2 hash list of the VCC to which the AAL2 channel is mapped. Each node 
in the AAL2 Hash list contains the following information:  

• AAL2 channel Id 

• AAL2 handle which is the handle returned by ATM SAR CC 

Parameters 

• cbcorrelator  Callback correlator that identifies the instance of the call 

• context   Callback context 

• response_data  Pointer to packaged data from the backend API containing 
    ATM AAL2 channel attributes information 

Return Values 

None 

Note Currently, the IXA_SDK_3.1 ATMSAR CC supports only AAL5, and hence the CP-PDK 
support for AAL2 has not been integrated/tested with IXA_SDK_3.1 ATMSAR CC for AAL2. 

fpmIfATM_AAL2_ChannelDelFunc()  

Syntax 
Void fpmIfATM_AAL2_ChannleDelFunc(FPPI_CBCORRELATOR 
cbcorrelator,FPPI_CONTEXT context, void *response_data) 

Description 

This function extracts the information from the data pointed by the response_data pointer and 
invokes the platform-specific component ix_cc_atmsar_async_cid_remove().  

On a dual processor system like the Angel Island, the CP-PDK runs on the ingress whereas the 
ATMSAR main CC resides on the egress processor. This function retrieves the AAL2 channel 
handle stored in the ATM translators AAL2 hash list and then sends this AAL2 handle 
information to the egress, where the platform-specific ix_cc_atmsar_async_cid_remove 
function is called. 

The platform-specific function removes the ATM AAL2 channel. To indicate the completion of 
the request, the platform-specific component calls the ATM translator callback function 
LimePointAAL2ChanDelCBFunc. In the callback function, if the status of the AAL2 channel 
delete operation is successful, then the ATM translator removes the AAL2 information from the 
AAL2 hash list of the VCC to which the AAL2 channel is mapped.  

Parameters 

• cbcorrelator  Callback correlator that identifies the instance of the call 

• context   Callback context 

• response_data  Pointer to packaged data from the backend API containing 
     AAL2 channel ID information 
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Return Values 

None 

Note Currently, the IXA_SDK_3.1 ATMSAR CC supports only AAL5, and hence the CP-PDK 
support for AAL2 has not been integrated/tested with IXA_SDK_3.1 ATMSAR CC for AAL2. 

3.12 QOS Manager  

This section gives an overview of the QOS FP plug-in manager. 

3.12.1.1 Functionality 

QOS manager provides mediation between the CP data and the SDK FP data.  

This module maintains detailed information about the DPEs like handles, attributes, associations 
and DPE state. The DPE state takes any one of the following states:  

• IDLE   

• INUSE 

During the creation of DPE, it is in the IDLE state and when it is associated with another DPE, its 
state becomes INUSE. The DPE can be deleted only in the IDLE state. All SDK APIs are used in 
the asynchronous mode. 

1. On the request of NPF_DS_DPE_CREATE, new DPE state (fpm_qos_dpe_t) is 
created and stored in the DpeList. This state holds information about handles, state, 
number of associations, flow ID, port, and DPE attributes. On creation of the classifier, 
new flow ID is generated. No mechanism is provided to aggregate the different 
classifications into one flow ID. For each classifier element create, class id is generated 
based on DSCP value. If DSCP value is other than AF, BF or EF, classid 15 is 
assigned. EF DSCP value is given high priority followed by AF class. 

2. To add DSCP classifier, it is expected user must specify set of DSCP values in one 
request. 

3. On callback from the SDK, response is generated to the CP. On error, the classifier entry 
is deleted from the DpeList. Refer ix_cc_classifier_6t_api.h and 
ix_cc_classifier_6t_msg.h for parameters details.  

4. On the request of NPF_DS_DPE_ADD_ASSOCIATE between CLASSIFIER and 
METER, meter state is stored locally till the MARKER and METER association is made 
because SDK meter and the marker are embedded together. When the marker is 
associated with the meter, the SDK API is called to create meter entry. The METER DPE 
is created at the ingress or the egress depending upon on the interface direction field. 

5. On the request of NPF_DS_DPE_ADD_ASSOCIATE, between the DROPPER and the 
CLASSIFIER, or DROPPER and MARKER, the IX_CC_FPM message is send to create 
the dropper entry at the egress side. Since the DROPPER is maintained at the egress side, 
all the DROPPER operations (XXX_add_entry, XXX_update_entry, 
XXX_remove_entry, and XXX_statistics) make use of the message 
communication between the ingress and the egress. 
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6. On the request of NPF_DS_DPE_DELETE_ASSOCIATE, between the DROPPER and 

the CLASSIFIER, or DROPPER and MARKER, the SDK API is called to remove the 
dropper entry and the state of DROPPER is set to IDLE. 

7. On the request of the NPF_DS_DPE_DELETE_ASSOCIATE, between the MARKER 
and the METER, the state of the MARKER is set as IDLE and no SDK API is called. 
This is because of the embedding of the MARKER and the METER together. 

8. On the request of the NPF_DS_DPE_DELETE_ASSOCIATE, between the METER and 
the CLASSIFER, the SDK API is called to remove the METER entry. On success, the 
state of the METER is set to IDLE. 

9. When the DPE entry is created in the SDK, number of associations filed is incremented 
and the state is set to INUSE. When the DPE entry is deleted in the SDK, number of 
associations filed is decremented and the state is set to IDLE, when DPE has no 
associations. 

10. On the request of NPF_DS_DPE_STATISTICS METER or MARKER DPE, the SDK 
METER request is made and the response is generated on the SDK callback. 

11. On the request of NPF_DS_DPE_DELETE, entry is removed from the DpeList and 
SUCCESS is returned if the DPE state is IDLE. Otherwise, an error is returned.  

3.12.1.2 Execution Context 

All the QOS Manager down-calls execute in the context of the backend API callback functions 
registered during the initialization time. In the cases where the calls into the IXA SDK 3.51 are 
synchronous then the up-calls execute in the context of the backend API callback functions. 

3.12.1.3 Initialization 

The FP boot manager invokes the initialization function fpm_qos_mgr_init (). This function 
registers callbacks with the backend API for DPE operations.  

3.12.1.4 Shutdown  

The FP boot manager invokes the shutdown function qos_cm_mgr_shutdown (). This function de-
registers the callbacks from the backend API and invokes the platform-specific shutdown function.  

3.12.1.5 Data Structures  

The following section describes the important data structures and description of the individual 
fields. 
typedef struct fpm_qos_dpe 

{ 

    QOS_DPE_State_t     state; 

    uint32_t            assocs; 

    NPF_DS_DpeHandle_t  dpeHandle;      /* DPE handle */ 

    NPF_DS_DpeHandle_t  prevDpeHandle;  /* DPE handle */ 

    NPF_DS_DpeDirection_t dir;          /* Direction, 
INGRESS/EGRESS */ 
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    ix_uint32           flowId;         /* Flow id */ 

    ix_uint32           classId;        /* Calss id, relative 
Queue id */ 

    FPPI_PortID         port;           /* Port */ 

    NPF_DS_Dpe_t        dpe;            /* DPE attributes */ 

    void                *temp;          /* Used for temporary 
storage */ 

} fpm_qos_dpe_t; 

3.13 Run-time Configuration of the Forwarding Plane 

The forwarding plane can be executed in the co-located mode with the control plane or in a remote 
mode on a different host. In case of the remote CP, the forwarding Plane executable is started from 
the command line with the following command: 
ForwardingPlane <fe-name> <localhost-ip-address> <router_config> 

The fe-name consists of the following two parts:  

1. Name  

2. An unique numeric ID  

The numeric ID is the instance ID in the PDK namespace. So if the fe-name is FE_0, then the FE 
is located in namespace under /System/0/FE/0/ 

The router_config determines the behavior of the forwarding plane, whether it should 
behave as an IPv4 forwarder or as an ingress LER with QOS. The following 
router_config(s) are currently supported: 

IPv4 Router: Configuration to do pure IPv4 routing. It requires a different Dispatch Loop. 

In case of the co-located CP and FP, the CP must provide the above configuration settings options. 
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