

Binding and Discovery
Design Specification
Control Plane-Platform Development Kit 2.11

March 2004

R

ii Intel Confidential

Information in this document is provided in connection with Intel® products and services. No license, express or
implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in
Intel's Terms and Conditions of Sale for such products and services, Intel assumes no liability whatsoever, and Intel
disclaims any express or implied warranty, relating to sale and/or use of Intel® products and services including liability
or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or
other intellectual property right. Intel products and services are not intended for use in medical, life saving, or life
sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Copyright© 2004 Intel Corporation.

* Other brands and names are the property of their respective owners.

R

Contents
Binding and Discovery .. i

Contents.. iii

Part 1: Introduction ... 5

1 Introduction... 7
1.1 Purpose/Scope... 7
1.2 Terminology.. 8
1.3 References.. 8

Part 2: Overview .. 9

2 Overview.. 11
2.1 High-Level Functionality Overview... 11
2.2 Design Considerations, Assumptions, and Dependencies.................... 12

Part 3: Component Design ... 15

3 Component Design... 17
3.1 High-Level Overview.. 17
3.2 Dependencies... 17
3.3 External API .. 17

3.3.1 Initialization ... 17
3.3.2 Shutdown .. 18

3.4 Implementation Details.. 18
3.4.1 Execution Context ... 18
3.4.2 Initialization ... 18
3.4.3 Shutdown .. 19
3.4.4 Module Use Scenarios .. 19
3.4.5 Internal API ... 22
3.4.6 Data Structures ... 23

Figures
Figure 1: Binding and discovery module in CP-PDK... 11
Figure 2: Sequence of events that occur during an FE/Port capability event.......... 20

Tables
Table 1. Terminology table.. 8
Table 2. Reference table... 8

iii
Control Plane PDK 2.11

R

Revision History
Revision Description Date Author

2.11 Updated for Release 2.11 March 2004 Udaya Shankar

2.1 Updated for Release 2.1 December 2003 Udaya Shankar

2.0 Updated for Release 2.0 August 2003 Udaya Shankar

iv
Intel Confidential

Part 1: Introduction

R

1 Introduction
Network elements such as switches and routers can be classified into three logical operational
components:

• Control plane

• Forwarding plane

• Management plane

The control plane controls and configures the forwarding plane and the forwarding plane
manipulates the network traffic. The control plane executes different signaling or routing protocols
and provides all the routing information to the forwarding plane.

The forwarding plane makes decisions based on this information and performs operations on
packets such as forwarding, classification, filtering, and so on.

An orthogonal management plane manages the control and forwarding planes. For example, the
control plane in a router executes routing protocols, the forwarding plane performs hardware-
based switching, and the management plane starts or stops routing process, and performs logging.

The introduction of standardized Application Program Interface (API) within the above-mentioned
planes can help system vendors, Original Equipment Manufacturer (OEM), and end-users of these
network elements to mix and match components available from different vendors to achieve a
device of their choice. The Network Processing Forum (NPF) API is designed for this purpose, as
it presents a flexible and well-known programming interface to the control plane applications. It
makes the existence of multiple forwarding planes, as well as vendor-specific details, transparent
to control plane applications.

The hardware properties and nature of interconnect used between the control and the forwarding
planes are isolated. Thus, the protocol stacks and network processors available from different
vendors can be easily integrated with the NPF APIs. The APIs included in the Control Plane
Platform Development Kit (CP-PDK) are based on the NPF APIs. For more information about
NPF, refer to http://www.npforum.org/.

This document specifies the design of the binding and discovery module implemented for the CP-
PDK. The binding and discovery module is responsible for discovering the capabilities of the
underlying forwarding planes when they bind to the control plane. This module exposes uniform
semantics for the discovery of the forwarding planes, their resources, and capabilities to the other
CP-PDK modules.

1.1 Purpose/Scope

This document provides information needed to implement and/or maintain the binding and
discovery module of the CP-PDK.

7
Control Plane-PDK 2.11

http://www.npforum.org/.

Binding and Discovery Design
Design Specification

R
1.2 Terminology

Table 1 lists terms used in this document and provides an expansion for each term.

Table 1. Terminology table

Term Description

B&D Binding and Discovery

C&M Configuration and Management

CE Control Element

CP-PDK Control Plane Platform Development Kit

FE Forwarding Element

ForCES Forwarding and Control Element Separation protocol

IXA Internet Exchange Architecture

NPF Network Processing Forum

PDK Platform Development Kit

1.3 References

Table 2 lists documents referenced in, or related to, this document. All of the documents listed in
this table are included with the CP-PDK.

Table 2. Reference table

Reference Document Name

[1] NPF Namespace Specification, NP Forum

[2] CP-PDK API Framework Reference

[3] CP-PDK Software Architecture Overview

[4] CP-PDK Forwarding Plane Plugin API Reference

[5] CP-PDK Transport Plugin Design Reference

[6] CP-PDK Configuration and Management API Reference

8

Intel Confidential

Part 2: Overview

R

2 Overview
The binding and discovery module is responsible for determining the capabilities of newly bound
FEs and adding them to the namespace.

2.1 High-Level Functionality Overview

FE establishes connections to the control plane after performing any FE-specific initialization,
such as, initializing the core components in the Intel® Internet Exchange Architecture (IXA)
platform. The manner in which the connections are established and maintained is beyond the
scope of this document. Connection establishment and maintenance is transport dependent and
must be handled accordingly. These details are addressed by the transport plug-in component of
the PDK.

Figure 1 shows how the binding and discovery module fits into the CP-PDK. For more details on
the CP-PDK, see CP-PDK Software Architecture Overview [3].

Routing
Protocol
Stacks

Application and Management APIs

Forwarding Plane Plugin API

PDK Manager MPLS

Namespace Config and
Mgmt. IPv4

Binding &
Discovery

Topology
Manager

Label
Manager

Forwarding
Element (FE)

Forwarding
Element

Forwarding
Element

Forwarding
Element

To Forwarding Plane
via Interconnect

Transport Protocol
(ForCES/CORBA)

Figure 1: Binding and discovery module in CP-PDK

In the PDK architecture, the control and forwarding planes are physically separated by an
interconnect, such as, Ethernet and PCI. The FE binding process involves establishing connections
between the transport plug-in of the control plane part of the PDK and the individual FEs. After
FE identification, the FE reports its capabilities to the control plane. This includes forwarding
capabilities, number of available ports, individual port capabilities, etc. The binding and discovery
module obtains these FE properties and capabilities and informs relevant control plane
components about them.

11
Control Plane-PDK 2.11

Binding and Discovery Design
Design Specification

R

This module interacts with and populates the namespace module with appropriate objects, such as,
FE and ports, based on the learned capabilities of the forwarding planes.

Note The process of binding and capability discovery can be dynamic. The process supports hot-
swap ability, known as dynamic binding, of the FEs can dynamically bind and unbind to the
system. B&D keeps record of FEs from earlier binds so that namespace, C&M nodes, and
resources created during a previous bind can be reused.

The process of binding and capability discovery of the forwarding plane consists of three distinct
events:

• FE binding to the CE through the transport plug-in: Individual forwarding elements might
be connected to the control plane across different transport mechanisms and protocols. For
example, the CE and FE might be separated by shared memory or a physical interconnect
such as Ethernet. The protocol used for CE-FE communication could be a standard
protocol such as Transport Communication Protocol/Internet Protocol (TCP/IP) or ForCES,
or a proprietary protocol that determines exactly how the FE binds to the CE. For example,
in the case of a simple TCP/IP-based protocol, the FE might bind to a server socket created
on the CE that waits for connection requests from FEs. If the communication protocol
being used was ForCES or a proprietary protocol, connection establishment might occur
after a sequence of FE identification and authentication.

• FE capability discovery: Once the CE-FE connection is established, the FE reports its
capabilities to the CE. This also depends on the protocol used to exchange information
between the CE and FE. For example, the FE can report all its capabilities, such as, FE ID,
number of ports, and individual port capabilities, through one method invocation. The other
possibility is that the CE and FE engage in information exchange that would lead to the CE
obtaining FE capability information over a sequence of information exchanges. The exact
manner in which this information is exchanged and obtained depends on the protocol used.

• Reporting bind event and FE capability to the PDK: Once the transport plug-in has
registered a newly bound FE and discovered its capabilities, this must be reported to the
other PDK modules. This can be done in a manner independent of the underlying transport
plug-in and communication protocol used. This functionality is termed as binding and
discovery. This document details the design of this component of the PDK and its
interactions with other PDK modules and is termed B&D. The location of this module
within the PDK is illustrated in Figure 1.

The FE binding to the CE through the transport plug-in and FE capability discovery events depend
on the transport plug-in. FE and CE use a communication protocol to interact with each other. To
maintain portability of the PDK, the above implementation-specific details must be hidden within
the transport plug-in. This part of the B&D process is termed vendor-specific B&D and is a part of
the transport plug-in implementation. Further details on this are specified as part of the transport
plug-in module.

2.2 Design Considerations, Assumptions, and Dependencies

• This module depends on the FP plug-in API implementation to deliver FE bind events.

• Binding is a 2-step process:

o FP plug-in reports that an FE is trying to bind. This module replies with a Bind
response.

12

Intel Confidential

R
 Overview

o FP plug-in passes in all the information required – FE and its capabilities, all in one
message.

The bind process may be different, such as, an exchange of multiple messages between this
module and the FE before all the capability information is exchanged. The 2-step process is a
choice made in the CP-PDK. It is the responsibility of the FP plug-in API to adhere to this
requirement. If the underlying capability reporting protocol changes, the B&D module should still
be aware of only these two steps.

 13

Control Plane-PDK 2.11

intel
Please write some text for this heading

Part 3: Component Design

R

3 Component Design

3.1 High-Level Overview

The binding and discovery module interacts with the PDK in the following ways:

• Interaction with the FP plug-in API: The binding and discovery module registers
callbacks with the FP plug-in API for receiving notifications:

o When a new FE binds and reports its capabilities

o When the FE reports individual port capabilities

• Interaction with the namespace: When the binding and discovery module discovers
that a new FE has bound to the system, it must populate the namespace module. The exact
mechanism and protocol used to bind an FE and discover its capabilities is handled by the
vendor-specific binding and discovery module within the transport plug-in. It must:

o Create a namespace node corresponding to the new FE and obtain an NPF handle to
the new FE node.

o Check if FE port nodes are also created in the namespace and basic properties
learned from the bind event are configured.

• Interaction with C&M: After creating the required FE and port nodes in the namespace,
use the NPF handle to populate the FE’s properties and capabilities learned from the bind
event.

3.2 Dependencies

The B&D module currently requires a few features from other components of the PDK:

• The transport plug-in must send binding and capability discovery information to this
module.

• The namespace and C&M components must allow this module to add placeholders for the
binding of forwarding planes and their corresponding capabilities.

3.3 External API

External APIs are called PDK manager and are described in 3.3.1 and 3.3.2 sections.

3.3.1 Initialization

The PDK manager initializes this module during PDK startup. Since this module registers
callbacks with the FP plug-in module and allows C&M to register for callbacks, it must be
initialized after the FP plug-in and before C&M has been initialized.

17
Control Plane-PDK 2.11

intel
Please write some content for this heading.

Binding and Discovery Design
Design Specification

R
NPF_RET bd_init();

3.3.2 Shutdown

The PDK manager shuts down this module during PDK shutdown. It must be shut down before
the FP plug-in module.
NPF_RET bd_shutdown();

3.4 Implementation Details

This section describes the design of the B&D module.

3.4.1 Execution Context

The interaction between B&D and other modules of the PDK is explained in the following
contexts:

• During initialization, the PDK manager initializes B&D. B&D executes and registers
callbacks with the FP plug-in module to receive notifications of FE bind events and
FE/Port capability report events.

• The FP plug-in invokes callbacks registered by B&D when an FE binds and reports its
capabilities/attributes. B&D creates new namespace nodes for the new FE and its ports and
calls back C&M to report an FE bind.

3.4.2 Initialization

The PDK manager initializes the B&D module during PDK startup. Since this module registers
callbacks with the FP plug-in module and allows C&M to register for callbacks, it must be
initialized after FP plug-in initialization and before C&M has been initialization.

bd_init()
{

 Initialize context for registering callback - bd_context

 register NPF_FE_BIND event callback with FPAPI
 fpapi_event_register_callback(bd_context, NPF_FE_BIND);

 register PORT_CAPABILITY event callback with FPAPI
 fpapi_event_register_callback(bd_context, NPF_PORT_CAP);

}

18
Intel Confidential

intel
.

intel
Which module?

R
 Component Design

3.4.3 Shutdown

The PDK manager shuts down the B&D module during PDK shutdown. This module must be shut
down before the FP plug-in module.

bd_shutdown
{

 deregister callback for FPPI_FEBind_Event

 deregister callback for FPPI_FEPortCap_Event
}

3.4.4 Module Use Scenarios

This module is functional only during the FE bind process and is responsible for initializing all
FE-related data in the PDK modules, such as, namespace and C&M. This includes all capabilities
of the FE and its individual ports.

Note: This data does not change at runtime, but can only be configured. Once a port reports its FE
and port capabilities, such as congestion control capabilities, queuing, etc., it is then configured.

Line speed, Maximum Transmission Unit (MTU), and IP address are set by an administrative
application. Administrative applications can possibly alter the properties of a port by changing its
line speed, MTU, or other parameters. These, however, do not mean a change in port capability.
Capabilities like Virtual Local Area Network (VLAN) and link aggregation are configurable
properties and do not mean a change in capabilities.

3.4.4.1 FE Bind Event

On receiving an FE Bind event from the FP plug-in, B&D replies with a successful bind response.
This indicates to the FE that the bind was successful and it can go ahead and report its capabilities.

NoteThis is generic as this model can support any kind of negotiation/information exchange that
might be done by the transport plug-in before an FE successfully binds to the CE.

OnFEBind(FPPI_FEID fe_id)
{

 report SUCCESS to FE.

 FPPAPI_feBindReply (fe_id, FPPI_SUCCESSFUL);

}

3.4.4.2 FE/Port Capability Event

The sequence of events that occur during an FE/Port Capability event are shown in Figure and
explained following the figure. This use case is the first interaction that occurs between PDK

 19

Control Plane-PDK 2.11

intel
Which module?

intel
Where are you pointing to by ‘it’?

Binding and Discovery Design
Design Specification

 R
components after an FE bind event and it results in creation of new placeholders for the new FE
and its ports in the namespace and C&M.

FP Plug in
API

Binding &
Discovery

Namespace
Module

Transport
Plugin in FE

[3] Create FE Node

[5] Create Port Nodes

Config Mgmt
Module

[1] FE/Port Capability
Event

[2] FE/Port Capability
Event Callback

with FE/Port
capabilities

Handle to FE

[4] Set FE properties

Create placeholder
for FE data

Handles to ports

Create placeholders
for ports

[6] Set port properties

[8] FE Bind callback

[7] Send Bind Complete to FE

repeated
for every port

Figure 2: Sequence of events that occur during an FE/Port capability event
1. An FE binds to the CE and reports its capabilities, including individual port capabilities.

The exact details of the mechanism of the protocol used and the manner in which
capabilities are reported, are addressed by the transport plug-in.

2. The FP plug-in API now invokes the FE bind callback registered by B&D. The callback
additionally contains parameters, such as, the FE ID, FE-wide capabilities, and other FE-
wide attributes, like model number.

3. B&D now invokes the namespace API to create a new FE node in the namespace
hierarchy. The FE bind is not reported to external applications or other internal modules
till B&D has completed initializing FE-related data in the namespace and C&M modules.
This call internally ensures that a placeholder is created for storing and maintaining the
FE data. A namespace handle is returned to B&D corresponding to the newly created FE
node in the namespace.

The name supplied by the FE identifying itself may be truncated to remove the:

• Leading non-numeric characters, and

• All characters following the end of the first contiguous set of numeric characters.

For Example, FE1 becomes 1, FE23 becomes 23, FE2.3 becomes 2 and FE3-2 becomes 3. The
truncated name should be unique and is used to populate the namespace.

4. Using the namespace handle, B&D acquires an NPF handle to the new FE object and
initializes any FE data received during the bind event. This includes data such as FE ID,
model number, etc.

5. B&D invokes the namespace API to create corresponding port nodes in the namespace
hierarchy under the FE node to which the port belongs. This internally creates a
placeholder for the port data in the C&M module. The FP plug-in API receives

20
Intel Confidential

R
 Component Design

information about the port capabilities of the FE. In the current implementation, each FE
reports its individual port capabilities in one shot. Since this is dependent on the protocol
used, the FP plug-in API always exposes the same behavior to the B&D module. B&D
always expects port capabilities of an individual FE to arrive through a single callback.
The FP plug-in API takes care of aggregating this information if the underlying protocol
changes.

6. B&D now acquires an NPF Handle to the port object and initializes any port-specific
information in the placeholder for the port data just created.

Note: Steps 5 and 6 are repeated for every port on the FE.

7. Initialization is now complete. B&D sends a bind complete message to the FE through
the FP plug-in API. This results in sending a message to the FE indicating that the bind
process was completed successfully on the CE. The bind complete message must be sent
to the FE before invoking the C&M module callback. The reason for this is that, if the
C&M callback is invoked first, it will result in C&M invoking an application callback. If
the application begins making C&M API calls to configure the FE properties, these API
calls might all fail, since the FE has not yet completed the binding process. If the FE
binding process is completed before invoking any callback, subsequent calls to configure
and manage the FEs will probably succeed.

8. B&D invokes the callback registered by the C&M module indicating that a new FE has
bound to the CE and necessary initialization has been performed.

This sequence of events completes the binding and discovery process of a new FE.
On_FEPortCap_Event (FPPI_FEID fe_id, void* response)

{

In params: FE ID,(pointer to struct of) FE capabilities

create node in Namespace - instance node, TYPE = FE, parent = SYSTEM

open the created node

now obtain the NPF HANDLE corresponding to the node created
npf_ns_getDataHandle(fe_ns_handle);

set FE properties using internal API
cm_fe_set_attribs (fe_data_handle, FE_attribs);

for (all ports) {

 create port node in Namespace (TYPE = PORT, parent = fe_handle)
port_ns_handle = npf_ns_create(fe_handle, NPF_PORT);

open the created node
npf_ns_open(port_ns_handle);

now obtain the NPF HANDLE corresponding to the node created
NPF_HANDLE port_data_handle =
npf_ns_getDataHandle(port_ns_handle);

set port properties using internal API
cm_port_set_attribs (port_handle, port_cap_list[index])

}

 21

Control Plane-PDK 2.11

Binding and Discovery Design
Design Specification

R
Now that all NS nodes have been initialized, report bind event to CM
}

3.4.5 Internal API

The FP plug-in API defines the following functions:

• Callback function for FE bind event

• Callback function for port capability event

The only other API function exposed by binding and discovery is the registration and
deregistration functions used by the C&M module for registering/de-registering for the FE bind
event. Since the C&M module is the only consumer for B&D, the registration and de-registration
functions are simple, they do not require the contexts and callback handles associated with the
normal API callbacks.

3.4.5.1 Registering Callback for FE Bind Event

Syntax
NPF_RET bd_bind_register_callback (IN: BD_BIND_CALLBACK
fe_bind_callback);

Description

This function is used by the C&M module to register a callback function for receiving notification
when a new FE binds.

Input Parameters

BD_BIND_CALLBACK Callback function invoked when the event occurs.

3.4.5.2 Deregistering Callback for FE Bind Event

Syntax
NPF_RET bd_bind_deregister_callback ();

Description

The C&M module uses this function to de-register a callback function.

3.4.5.3 Callback for FE Bind Event

Syntax
typedef void (*BD_BIND_CALLBACK) (IN: NPF_HANDLE fe_handle);

Description

This is the callback function registered by C&M module.

22
Intel Confidential

R
 Component Design

Input Parameters

NPF_HANDLE The NPF handle to the newly created FE object (object handle)

3.4.6 Data Structures

All data structures used by B&D are defined by the FP plug-in API [4] and C&M API [6].

 23

Control Plane-PDK 2.11

intel
Please write some text for this heading

intel
Please write some text for this heading

intel
Please write some text for this heading

	Introduction
	Purpose/Scope
	Terminology
	References

	Overview
	High-Level Functionality Overview
	Design Considerations, Assumptions, and Dependencies

	Component Design
	High-Level Overview
	Dependencies
	External API
	Initialization
	Shutdown

	Implementation Details
	Execution Context
	Initialization
	Shutdown
	Module Use Scenarios
	FE Bind Event
	FE/Port Capability Event

	Internal API
	Registering Callback for FE Bind Event
	Deregistering Callback for FE Bind Event
	Callback for FE Bind Event

	Data Structures

