

IPv4 Control Plane
Design Specification
Control Plane-Platform Development Kit 2.11

March 2004

R

ii Intel Confidential

Information in this document is provided in connection with Intel® products and services. No license, express or
implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in
Intel's Terms and Conditions of Sale for such products and services, Intel assumes no liability whatsoever, and Intel
disclaims any express or implied warranty, relating to sale and/or use of Intel® products and services including liability
or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or
other intellectual property right. Intel products and services are not intended for use in medical, life saving, or life
sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Copyright© 2004 Intel Corporation.

* Other brands and names are the property of their respective owners.

R

Contents
IPv4 Control Plane.. i

Contents.. iii

Part 1: Overview .. 7

1 Overview.. 9
1.1 Purpose and Scope.. 9
1.2 Requirements ... 9
1.3 Assumptions and Dependencies.. 9
1.4 Terminology.. 10
1.5 References.. 10

Part 2: IPv4 Component Design... 13

2 IPv4 Component Design... 15
2.1 IPv4 Component High-Level Overview... 15
2.2 IPv4 Component Block Diagram... 15

2.2.1 NPF IPv4 Unicast Service API Interface ... 15
2.2.2 IPv4 Manager.. 16
2.2.3 Transport Plug-in – IPv4 FPPAPI.. 16
2.2.4 Transport Plug-in – IPv4 Backend API.. 16
2.2.5 Forwarding Modules – IPv4 Module.. 16
2.2.6 Interconnect .. 16

2.3 Dependencies... 17
2.4 External API .. 17
2.5 Internal API ... 17

Part 3: IPv4 Control Plane Manager... 19

3 IPv4 Control Plane Manager .. 21
3.1 Initialization and Shutdown... 21

3.1.1 IPv4 Manager Startup ... 21
3.1.2 IPv4 Component Shutdown .. 21

3.2 Functional Decomposition .. 21
3.2.1 CP Request Handler Module .. 22
3.2.2 FP Request Handler Module... 22
3.2.3 Transaction Handler Module ... 22
3.2.4 User Module.. 23
3.2.5 IPv4 Manager Module ... 23
3.2.6 Namespace Interface Module ... 23

3.3 Data Decomposition .. 23
3.3.1 Data-block Breakdown.. 23

iii
Control Plane PDK 2.11

R

3.3.2 Data Structures Linkage.. 25
3.4 Discrete API Design Details .. 31

3.4.1 IPv4 Initialization and Multi-user Support .. 31
3.4.2 Discrete API Flow Example – Create Prefix Table.............................. 32

3.5 Unified API Design Details .. 34
3.5.1 Mapping Details .. 34
3.5.2 Unified API Flow – Example.. 35

3.6 Common Design Considerations.. 37
3.6.1 IPv4 Manager and Namespace Interaction Details 37
3.6.2 Table Finite State Machine ... 40
3.6.3 IPv4 Mgr – Request Finite State Machine... 41
3.6.4 Locking.. 42
3.6.5 Directly Connected Hosts.. 42
3.6.6 IXA SDK-Specific Design .. 42

3.7 Modularity... 44
3.8 Design for Multiple FE Support... 44

Part 4: NPF API to FPP API Mapping ... 47

4 NPF API to FPP API Mapping... 49

Figures
Figure 1. IPv4 component block diagram.. 18
Figure 2 IPv4 control plane manager – block diagram.. 22
Figure 3 Data Structure Linkage in CP-PDK IPv4 module 26
Figure 4 Initialization and multi-user support of IPv4 module.................................. 32
Figure 5 NPF API flow from user application- example... 33
Figure 6 Mapping between unified and discrete calls ... 35
Figure 7 Unified API flow – example... 37
Figure 8 IPv4 manager and namespace interaction ... 39
Figure 9 FSM table ... 40
Figure 10 IPv4 NPF API request FSM .. 41
Figure 11 Hypothetical network arrangements ... 43
Figure 12 NPF API to FPP API mapping .. 49

Tables
Table 1. Terminology table.. 10
Table 2. Reference table... 10
Table 3. IPv4Mgr_t table... 27
Table 4. IPv4UserInfo table... 27
Table 5. IPv4FppInfo table.. 28
Table 6. IPV4EventUserInfo_t table.. 28
Table 7. IPV4EventHndlrInfo_t table... 28
Table 8. IPV4Table_t table ... 29
Table 9. IPV4TransInfo_t table ... 29

iv
Intel Confidential

R

Table 10. IPV4UsrReqInfo_t table.. 30
Table 11. IPV4ReqToFEInfo_t table... 31
Table 12. IPV4TransFPInfo_t table .. 31
Table 13: FE Next-Hop Table ... 43

Revision History
Revision Description Date Author

2.11 Updated for Release 2.11 March 2004 Amit Kaul

2.1 Updated for Release 2.1 December 2003 Amit Kaul

2.0 Updated for Release 2.0 August 2003 Amit Kaul

v

Control Plane-PDK 2.11

Part 1: Overview

R

1 Overview

1.1 Purpose and Scope

This document provides information on the internal design of the IPv4 component of Control
Plane-Platform Development Kit (CP-PDK). This includes description and design of the main
internal data structures as well as algorithms used within the component.

This document describes the design of the IPv4 component. It does not describe the IPv4
Application Program Interface (API) implemented by this component. For definitions on API,
refer to IPv4 API Reference [7].

The intended audience for this document includes:

• Developers implementing and maintaining the IPv4 component

• Test engineers performing Quality Assurance (QA) on the IPv4 component

• Application developers who need a better understanding of the underlying implementation
of APIs.

• IPv4 API implementation is the code that implements Network Processing Forum (NPF)
IPv4 application APIs. This comprises various subcomponents within control as well as
forwarding plane that are responsible for actions such as

o Validating input

o Maintaining state per API call , such as, callback data. Refer to [2 for more details on
callback model

o Contacting FP plug-in API to send requests to the forwarding elements (FEs)

1.2 Requirements

IPv4 component must implement the complete set of IPv4 APIs as specified by NPF IPv4 Unicast
Forwarding Service API implementation agreement. It must also follow the semantics and
behavior outlined in PDK Framework Reference [2].

1.3 Assumptions and Dependencies

The following assumptions are made in design:

• PDK APIs assume the existence of a compliant namespace present on the system. This
namespace provides handles to access objects, such as, virtual router and interface.

• A route is made of a prefix and next-hop. In this document, the terms – a route, a prefix,
and next-hop, are used interchangeably.

9
Control Plane-PDK 2.11

http://www.npforum.org/techinfo/IPv4_IA.pdf
http://www.npforum.org/techinfo/IPv4_IA.pdf

IPv4 Design
Design Specification

R
• The design as defined in this document assumes IPv4 application would be able to pass on

the table handle that it gets after creating the table using IPv4 NPF API in IPv4 interface
management API of NPF_IfIPv4FibSet.

• IPv4 API implementation uses FP plug-in APIs to communicate with multiple FEs.

• If there is any error in any sub-operation, that might be part of a bigger operation targeted
towards the forwarding plane, an error return status for the main operation is provided to
the application.

1.4 Terminology

Table 1 lists terms used in this document and provides an expansion for each term.

Table 1. Terminology table

Term Description

CE Control Element

FE Forward Element

IXA Internet eXchange Architecture

NPF Network Processing Forum

PDK Platform Development Kit

CP Control Plane

FP Forwarding Plane

FPP / FPPI Forwarding Plane plug-in

IA Implementation Agreement (Approved Draft in NPF)

L2 Layer 2

1.5 References

Table 2 lists documents referenced in, or related to, this document.

Table 2. Reference table

Reference Document Name

[1] Forwarding Plane Module – Design Reference

[2] NPF API Framework Reference

10

Intel Confidential

R
 Overview

Reference Document Name

[3] Software Architecture Overview

[4] Topology and Label Manager Design Reference

[5] Namespace Design Reference

[6] FP Module Core Component Design Reference

[7] NPF IPv4 API Implementation Agreement

 11

Control Plane-PDK 2.11

Part 2: IPv4 Component Design

intel
Are the terms API and component being used interchangeably?
If yes, pick one and stick with it throughout.
If no, define where each is used.

R

2 IPv4 Component Design

2.1 IPv4 Component High-Level Overview

The primary tasks of IPv4 component NPF API implementations include:

• Validating input from applications

• Maintaining state associated with API calls from applications

• Communicating with forwarding elements through FP plug-in.

The API implementation has no knowledge of inter-FE forwarding details.

Any request from the application to IPv4 manager module can be split into three parts:

• Input validation

• Sending request to FP

• Returning a result to the client

In between the validation and route download, it gives data to FP plug-in. After API
implementation receives this callback, it can complete the task of downloading routes, or if
necessary, indicate an error to the client.

If API implementation has to handle multiple application requests while waiting for several
outstanding requests to complete, it must store state and some context for each request to keep
track of stage of operation.

The data structures used to store the state for FP plug-in calls and the state required for user
application interaction are described in detail in later sections of this document.

2.2 IPv4 Component Block Diagram

Figure 1 depicts relationship between the control plane and the forwarding plane. It also depicts
sub-modules within each plane that are related to IPv4 implementation in CP-PDK.

As shown in the figure 1, the CP-PDK IPv4 comprises sub modules as explained in following sub-
sections that exist in both control plane as well as forwarding plane.

2.2.1 NPF IPv4 Unicast Service API Interface

The applications written prior to the CP-PDK uses NPF IPv4 unicast service API. This API
conforms to latest IPv4 implementation published in the NPF Website.

15
Control Plane-PDK 2.11

intel
Are the terms API and component being used interchangeably?
If yes, pick one and stick with it throughout.
If no, define where each is used.

IPv4 Design
Design Specification

R

2.2.2 IPv4 Manager

This sub-module is the core of IPv4 implementation in the CP-PDK and takes care of maintaining
context and information related to calls from the user application to the forwarding plane. This
sub-component also takes care of interacting with other auxiliary modules in CP-PDK suite. This
document concentrates on design and logic applicable in this module.

2.2.3 Transport Plug-in – IPv4 FPPAPI

This sub-module takes care of packing information related to the operation that the user has asked
for, from control plane to remote forwarding plane. This part of transport plug-in resides in the
control element. If both control and forwarding plane components are co-located, then there is no
need for any transport plug-in module.

2.2.4 Transport Plug-in – IPv4 Backend API

This sub-module takes care of unpacking information related to the operation from control plane.
This part of transport plug-in resides in every forwarding element that can be the communication
target of control element.

2.2.5 Forwarding Modules – IPv4 Module

This sub-component resides in every target-forwarding element. This module has its own state
machine and maintains context similar to how it is maintained in IPv4 manager in control plane. It
also invokes asynchronous calls into core component infrastructure bundled in each FE, core-
component APIs of IPv4 forwarder and other related core components in Software Development
Kit.

Refer to FP Module Core Component Design Reference [6] for more details about this module.

2.2.6 Interconnect

When the forwarding plane is at a remote location, communication between the control plane and
the forwarding plane, can happen through a variety of interconnect technologies. Intel’s offering
of CP-PDK abstracts various inter-connect technologies using FORCes.

Details of other auxiliary modules , such as, namespace, PDK manager, L2 manager that are
shown in figure 1 are not within the scope of this document. This document lists some basic
interactions between IPv4 manager and other auxiliary modules.

16

Intel Confidential

R
 IPv4 Component Design

2.3 Dependencies

IPv4 manager depends on several other internal PDK components. IPv4 uses namespace and
configuration and management to add and find objects and their attributes, such as, FEs and tables.
It depends on the interface management module to associate a prefix or FIB table with an IPv4
interface. IPv4 component uses FP plug-in API to communicate with forwarding planes. It also
depends on PDK manager to initialize and shutdown.

At present, no other PDK component has dependency on IPv4.

2.4 External API

IPv4 manager implements IPv4 application API as described in NPF IPv4 API Implementation
Agreement [7]. Refer to this document for details on external API. As a part of CP-PDK release
2.11, IPv4 module is going to support unified APIs by providing mapping in control plane to the
underlying implementation of discrete APIs. NPF IPv4 service API brings this out as explained in
Section 2.2.1.

2.5 Internal API

IPv4 components interact with other PDK framework modules using specific internal API
interfaces as exposed by the target module Figure

The various PDK framework modules that IPv4 manager depends on are:

• L2ID manager

• Namespace

• PDK manager

Most of these modules describe APIs that start with pdk_ prefix.

 17

Control Plane-PDK 2.11

IPv4 Design
Design Specification

R

Legend:

NPF Confromant - IPv4 Application(1) NPF Confromant - IPv4 Application(2)

NPF IPv4 Service API Interface

IPv4 Control-Plane
Manager

PDK
Manager

Namespace
Binding

&
Discovery

Interface
Manager

Packet
Handler

L2Id
Manager

Transpot Plugin : [IPV4 FPPI API]

Fo
rC

ES
M

es
sa

ge
s

CE-FE
Interconnect

Transpot Plugin :
[IPV4 Backend API]

IPV4 FP Module

SDK Core Component
IPv4 Forwarder

IPv4
Forwarder

uBlock

Transpot Plugin :
[IPV4 Backend API]

IPV4 FP Module

SDK Core Component
IPv4 Forwarder

IPv4
Forwarder

uBlock

Forwarding
Element (FE1) Forwarding

Element (FE2)

Control
Element (CE)

IPv4 CP-PDK Design Scope

Auxilliary Modules

Design Scope Of this
Document

Figure 1. IPv4 component block diagram

18

Intel Confidential

intel
This paragraph doesn't explain clearly what the following data structures are. They do however, explain what they are not. Can we clarify? What is GET??

intel
Please write some content for this heading.

intel
Who is it?? FP Plug-in?

intel
Who is it??

intel
Should or must???

Part 3: IPv4 Control Plane
Manager

R

3 IPv4 Control Plane Manager
This section covers the information on design of IPv4 control plane manager.

3.1 Initialization and Shutdown

3.1.1 IPv4 Manager Startup

PDK manager invokes startup routine for IPv4 manager. IPv4 manager uses namespace, C&M,
and FP plug-in API, so these components must be initialized before starting IPv4 component.

Startup routine has the following responsibilities:

• Initialize internal data structures , such as, lists to maintain invocation state

• Set initialization flag

• Register callbacks with other internal components

• Register for interface events

• Register for FE events

3.1.2 IPv4 Component Shutdown

PDK manager calls IPv4 shutdown routine. This routine is responsible for releasing resources
currently in use and terminating any communication with other internal components. This routine
causes all outstanding application callbacks to be invoked to indicate errors to the client
applications. Shutdown responsibilities are as follows:

• Reset initialization flag so no additional API calls can be made by applications

• Deregister callbacks with other PDK components

• Invoke all application callbacks to indicate error.

• Release resources , such as, locks and memory

Since IPv4 must deregister callbacks, the CM and FP plug-in API components should be shut
down after IPv4.

3.2 Functional Decomposition

The Figure displays various blocks within an IPv4 module that can handle different
functionalities of IPv4 control plane manager.

21
Control Plane-PDK 2.11

IPv4 Design
Design Specification

FP Request Handler Module

CP Request Handler Module

User Module Namespace
Interface
Module

IPV4 Manager
Module

(Main Module)

 Transaction
Handler
Module

Table Sub-
Module

 R

22
Intel Confidential

Figure 2 IPv4 control plane manager – block diagram

3.2.1 CP Request Handler Module

This module handles requests that flow from NPF interface module. It is responsible for keeping
the context and state of all pending requests to forwarding plane (FP) request handler module.
Context of a request from NPF application is information , such as, correlator, verbosity, callback-
handle, and table-handle.

3.2.2 FP Request Handler Module

This module handles requests that are to be sent to different FEs using the FEIds. Namespace
interface module exposes the API to know the FEId associated with a particular table on which the
operation is targeted. This module keeps the pending state for all the requests that are sent to each
forwarding element through ForCES messages. An example of context related to request to FP is -
FPP correlator and return status.

3.2.3 Transaction Handler Module

This module handles overall transaction for a request as it flows from user application to
forwarding plane. If there are multiple FEs as target to an operation, this module has the logic to
link one CP request to multiple FP requests in pending state. When one or more FP request is
completed, this module has the logic to return valid error or success status to NPF application.

R
 IPv4 Control Plane Manager

3.2.4 User Module

This module handles various SAPI user registrations with IPv4 module in CP-PDK. It has one
more sub-module that handles event user registrations. This has the facility to take care of
multithreaded user application. It also holds list of tables that are created within each user context.

This module contains routines that manipulate tables associated with each user. Each user can
have a maximum of one FIB table or a pair of next-hop and prefix tables. Keeping this design
consideration, if the same NPF application registers with IPv4 module, with two different context
values in the registration API, this is equivalent to two user applications handling two different
FIB tables for IPv4 manager.

3.2.5 IPv4 Manager Module

This is the main module in IPv4 control plane manager. This module has the module level lock
and counters. The module handles initialization and shutdown of IPv4 manager through PDK
manager.

3.2.6 Namespace Interface Module

This module is used to interface with the namespace module in control plane. It has the logic to
add, update or delete IPv4 tables in namespace using its API. It also has the logic to add or remove
associations between various interfaces and FE nodes in namespace tree.

3.3 Data Decomposition

3.3.1 Data-block Breakdown

This section gives details of the various data-blocks in IPv4 control plane manager. Figure 2
illustrates how these blocks are linked and Section 3.3.2 has details regarding each member of the
data structure. The following sections briefly explain main data blocks and speak of the rationale
behind having these in the design.

IPv4 manager block

The Ipv4 manager block supports the following key features:

• This data block is the primary block that handles the initialization and shutdown requests of
IPv4 control plane manager module.

• It contains a lock that is used to protect counters , such as, fppi_counters and all other
variables or arrays that are within its scope.

• This data block holds the list of user blocks. At initialization time, this list is empty. User
blocks are added to this list as and when registration is received from the NPF application
(NPF_IPV4UC_Register). This data block also holds the list of event user blocks
(NPF_IPV4UC_EventRegister). Please refer to Section 3.4.1 for more details on this
support for multi-user in IPv4 manager design.

 23

Control Plane-PDK 2.11

IPv4 Design
Design Specification

R
• Another important sub-block held by this block is FPPInfo block. This block holds all

relevant information that is needed for a FP request to be sent to multiple FEs. It also has a
list of FP requests that are sent down to FP.

This block is instantiated globally and is accessible to every file.

IPv4 User block

This data block is part of a list that is hived from the main IPv4 manager block. The Ipv4block
supports the following key features:

• It is created whenever there is a registration request from user applicaton. Unique key for
this data block is the context value that is sent by user application at the time of
registration. Whenever there is a new registration, a check is made to make sure that
context given by application is not present.

• Another unique key for search is cbHndl, that is the value of the callback handle given to
the user by IPv4 manager. For every subsequent NPF API request coming from NPF
Application after registration, a search is done based on cbHndl field in the list of users.

• This block is protected by a lock that is intended to perform the following:

o Support multithreaded user

o Protect variables , such as, counters that exist in this block

• This block also holds a list of control plane transactions that in turn contain control plane
requests. This is a transient list and lasts from when a request is received from NPF
application to when the callback is returned to the NPF application.

• This block also contains an array of the tables created using IPv4 NPF APIs for this user.
The reason for keeping these tables within the scope of the user is that all the table creation
is done by giving the cbHndl as a parameter in those functions, unless the registration has
not happened. A table cannot be added without adding a user block. Refer to Section 3.4.2
for further details on the steps in creation of a table.

• For a single user, there can be only one FIB table or pair of prefixes and next hop tables.
This requirement is present in NPF IPv4 IA document. As far as design to be implemented
in IPv4 manager is concerned, creation of a user is considered as a creation of a router type
node. The reason for doing that is because the intent of user application to create a router
node is registration. Please refer to Section 3.6.1 for information on steps in this process.

IPv4 Event user block

According to NPF IPv4 IA, such as, registration by user application for IPv4 unicast service API
callbacks, user application can also register with IPv4 manager to register the callback handlers for
events , such as, TABLE_EMPTY from forwarding plane, with a different context value.

Currently, the IPv4 Forwarder core component in SDK 3.5 is not slated to give events as defined
in NPF IPv4 API.

Note: As a part of the design exercise for this release of CP-PDK, IPv4 control plane manager
does not have functions and related code, except data structures defined in the Figure .

IPv4 Table block

The following are key features of IPv4 table block:

24
Intel Confidential

R
 IPv4 Control Plane Manager

• Stores common table information, such as, state and type in this data block.

• Key to search the array is the handle. This array is fixed in size and depending on whether
the APIs being used for the user are unified or discrete, four table blocks or three table
blocks are filled. In case of unified APIs, for each FIB table created explicitly by user
application, there are two discrete tables created by the unified mapping logic internally,
that is prefix table and next-hop table. That makes it three table instances. Fourth table
would be the address resolution table that user application will create in both unified and
discrete APIs mode.

• This block also contains logic to associate FIB table with the pair of internally created
prefix and next-hop tables for unified support.

IPv4 CP Transaction block

The following are key features of IPv4 CP transaction block:

• Unique key for user block is user correlator and internal correlator values. User correlator
(usr_correlator) stores correlator value that user application sends in each NPF API.
Internal correlator (int_correlator) holds the current value of the counter
(intCorrelCntr) present in user block.

• This data block has a type member that can differentiate whether this is a discrete or
unified transaction.

• It contains the entire context that is retained when an actual request is received from NPF
application , such as, appVerbosity event.

• It contains the gluing logic between control plane request and possible multiple forwarding
plane requests going to multiple FEs. This is handled by having pointers to FP requests,
and counters to check whether all the requests to FP were returned back.

• In case of the unified mapping logic, this data block is created when the unified API
request comes from the user application. It contains logic to have an array of pointers to
internally create discrete transaction blocks for quick access. Please refer to Section 3.5.2
for further details on this logic.

3.3.2 Data Structures Linkage

Due to the asynchronous nature of PDK implementation, it is necessary to cache state for API
calls and to keep track of registered callbacks. In addition, the common callback library is used to
invoke application callbacks. Please refer to NPF API Framework Reference [2] for more details.

Figure depicts the broad level data-structure linkage in the IPv4 manager. Please refer to Section
2.2.2 for more information. This section does not give any design details about other sub-modules
, such as, IPv4 FP-plug-in API, IPv4 Backend API and IPv4 module in forwarding plane. Please
refer to Figure to check how these modules fit into the whole IPv4 System design.

 25

Control Plane-PDK 2.11

IPv4 Design
Design Specification

R

numFEWait
numFEToSend
*reqFePtrArray

initialized
lock
hndlCntr

userList
eventUserList

fppInfo

IPV4Mgr_t

IPV4FppInfo_t

members

DList

context
hndlrList

IPV4EventUserInfo_t

*evntCallFunc
evntArray
evntCbHndl

IPV4EventHndlrInfo_t

DList

user_lock

cbFunc

nhIdCntr
intCorrelCntr
unifiedTransCpList

transCpList
unifiedTransCpList
numTables
tableArray

IPV4UserInfo_t

intHandle
extHandle
state
type
tblHndlMap

numFeTotal
*feIdArray

Array

enum

transPend

int_correlator
*usrReq
*usrInfo

transFpInfo

*mapTransInfo
*tableInfo

IPV4TransInfo_t

pointer

state
feId
retStatus
*transInfo

IPV4ReqToFEInfo_t

correlator

appVerbosity
tableType
transType
reqType
callbackHandle
tblHandle
*nhopCntxt
*prefixCntxt
*addResCntxt
*transInfo

IPV4UsrReqInfo_t

DList

pointer

IPV4TransFPInfo_t

members

IPV4TableInfo_t

enum

IPV4_TRANS_DISC
IPV4_TRANS_UNIF

Array
pointer

IPV4_TABLE_TYPE_PREFIX,
IPV4_TABLE_TYPE_NHOP,

IPV4_TABLE_TYPE_ADDRES,
IPV4_TABLE_TYPE_FIB

pfxTblInfo
nhopTblInfo

numMapTrans
*mapTransArray
unifReqState
cbResp

IPV4MapTransInfo_t

members

IPV4UnifHndlMap_t

DList

fppiCorrCntr
reqFpList
numFpCB
cbInfoArray

DList

Legend:

Key to search in List
Fields introduced for Unified
Support

cbType
*cbFunc
cbHndl

IPV4FppCBInfo_tArray

enum

IPV4_TABLE_TYPE_PREFIX,
IPV4_TABLE_TYPE_NHOP,

IPV4_TABLE_TYPE_ADDRES,
IPV4_TABLE_TYPE_FIB

pointer

numEntries
nhopArray
nhIdArray

IPV4NhopCntxt_t

IPV4_USR_UNIF,
IPV4_USR_DISCenum

numEntries
prefixArray

IPV4PrefixCntxt_t

numEntries
addResArray

IPV4AddResCntxt_t

Members

26
Intel Confidential

context
cbHndl
usrType

usr_correlator

fppi_correlator

Figure 3 Data Structure Linkage in CP-PDK IPv4 module

R
 IPv4 Control Plane Manager

IPv4Mgr_t

Table 6. IPv4Mgr_t table

Member Description

Initialized TRUE: IPv4 manager has already been initialized

FALSE: IPv4 manager has not been initialized

Lock This lock is used to protect all counters and other unprotected variables that are within the
scope of this structure

HndlCntr A global counter that is incremented each time any user application has to be given a handle
(Handle = hndlCntr++)

UserList DList of data structures that have context for each user application, such as, IPV4UserInfo_t,
that registers callbacks for NPF IPv4 service APIs

EventUserList DList of Data Structures that have context for each user application, such as,
IPV4EventUserInfo_t, that registers callback for NPF IPv4 events

fppInfo This structure contains FPP specific information that is accumulated once in PDK startup

IPV4UserInfo_t

Table 7. IPv4UserInfo table

Member Description

Context The unique value that the user application provides to the IPv4 manager during registration

cbHndl The handle that IPv4 module returns back to the user application on registration

usrType Describes the option that the user application has chosen. It can be:

IPV4_USR_UNIF

IPV4_USR_DISC

The value in this field is set based on whether the user application sends
NPF_IPv4UC_CreatePrefixTable (IPV4_USR_DISC) or NPF_IPv4UC_CreateFibTable
(IPV4_USR_UNIF).

This value cannot be reset once it is set.

user_lock This lock takes care of multi-threaded user application trying to access various structures
hiving from this structure

cbFunc This is the callback function that user registers with IPv4 manager

nhIdCntr Next-hop ID counter used to generate NH-IDs internally, in case of mapping from unified to
discrete next-hop routines

This field in only valid in case of unified mapping

intCorrelCntr This is a counter used to assign internal correlator to the discrete requests that are triggered
by a Unified API

 27

Control Plane-PDK 2.11

IPv4 Design
Design Specification

 R
This field in only valid in case of unified mapping

unifiedTransCpList Holds the list of transactions that are created in case unified API requests are sent to CP-PDK
Ipv4 module.

transCpList Holds the list of transactions that are created in case discrete API requests are sent to CP-
PDK IPv4 module.

numTables Specify the maximum number of tables. CPPDK IPV4 supports three tables: Prefix, Next-Hop
and Address Resolution tables per user in case the mode is discrete. For unified mode, one
extra table would be FIB table along with three discrete tables to take care of mapping.

Default value = 4 .

tableArray This is an array of tables per user

IPV4FppInfo_t

Table 8. IPv4FppInfo table

Member Description

fppiCorrCntr Counter used to assign FPPI correlator values to the requests going from IPv4 manager
towards FPPI

reqFpList DList of the requests that are targeted towards forwarding plane

numFpCB Number of forwarding plane callbacks that are to be registered. Value of this decides the size
of cbInfoArray field

cbInfoArray An array of callbacks registered with FPPI, and each node has information , such as, the
callback function and the callback handle returned by FPPI (IPV4FppCBInfo_t)

IPV4EventUserInfo_t

Table 9. IPV4EventUserInfo_t table

Member Description

Context Similar to the IPV4UserInfo_t context member variable, this member is also used to identify a
user application that wants to handle events from forwarding plane

hndlrList DList of event handlers that are registered with the forwarding plane IPv4 module

IPV4EventHndlrInfo_t

Table 10. IPV4EventHndlrInfo_t table

Member Description

evntCallFunc Pointer to the callback function registered for handling the events

evntArray Array of events that the user application has registered for

evntCbHndl Handle that is returned back to the user application

28
Intel Confidential

R
 IPv4 Control Plane Manager

IPV4Table_t

Table 11. IPV4Table_t table

Member Description

inthandle A Handle that is returned to the user application, on creation of the table. The user application
must use this handle, whenever it needs to communicate with IPV4 Module. For example,
add, delete, query entries.

Exthandle This handle is returned to the user application only on creation of the prefix and FIB table.

This handle is an external handle and the user application should use to communicate with IM
module while calling IfIPv4FibSet. Please refer to Section 3.2.6 for further details.

State This variable holds the current state of the table. Please refer to Section 3.6.2 for further
details

Type This variable gives information on type of table this structure holds

IPv4_TABLE_TYPE_PREFIX

IPv4_TABLE_TYPE_NHOP

IPv4_TABLE_TYPE_ADDRES

Ipv4_TABLE_TYPE_FIB

tblHndlMap This IPV4UnifHndlMap_t contains a pair of handles, each pointing to internally created prefix
and next-hop table respectively

numFeTotal NumFetotal contains the total number of FEs that this table is associated with. The IPV4
module gets this information from the namespace after the IfIPv4FibSet is done by the user
application.. If the interfaces passed in this APIs belong to multiple FEs, then this table is also
associated with multiple FEs.

Currently, the FP support is only for single FIB table for single FEs.

feIdArray This is an array of feIds that is equal to the numFeTotal.

IPV4TransInfo_t

Table 12. IPV4TransInfo_t table

Member Description

transPend There are two conditions: true and false.

True: Transaction is pending and callback to the user application cannot be returned

False: Transaction is over and if there is any callback to be returned to the user application, it
can be given

usr_correlator This has the value of the user correlator that the user application provides per transaction. For
unified API, the meaning of this is different. Please refer to Section 3.5.2 for further details.

int_correlator This variable stores internal correlator value for discrete API requests that are generated by
IPv4 manager internally, in response to one unified API from user application. Please refer to
Section 3.5.2 for further details and exact usage semantics.

 29

Control Plane-PDK 2.11

IPv4 Design
Design Specification

 R
In case of a discrete call, value of this is 0.

It is applicable only for Unified Mapping logic

usrReq This member holds user application information and context for request that has to be used
when the callback to the user application is given.

usrInfo This is a back pointer to IPV4UserInfo_t structure for backward reference

transFpInfo This is IPV4TransFpInfo_t that contains FPP related information and statistics for a
transaction to FPP. This information helps in defining logic of collating multiple FP requests for
a single CP user Application request.

tableInfo Pointer to the table for that this transaction is active. If the table is deleted by the user
application when there are pending transactions, this field is used.

IPV4UsrReqInfo_t

Table 13. IPV4UsrReqInfo_t table

Member Description

Correlator This field holds the correlator that the user application sends along with the NPF API request

appVerbosity This variable holds the report of whether the user application wants a callback or not

NPF_REPORT_ALL = 1

NPF_REPORT_NONE = 2

NPF_REPORT_ERRORS = 3

tableType Depending on the API type, the user request handler module fills in the right table type. For
example, when a request like NPF_IPv4UC_AddPrefixEntry is received, the table type is
assigned to IPV4_TABLE_TYPE_PREFIX

Possible options are:

IPV4_TABLE_TYPE_PREFIX

IPV4_TABLE_TYPE_NHOP

IPV4_TABLE_TYPE_ADDRES

IPV4_TABLE_TYPE_FIB

transType The transType field is filled in depending on the type of API that is received from the user
application, which can be one of the following:

IPV4_TRANS_DISC

IPV4_TRANS_UNIF

reqType This field holds the type of request that is received. Possible values are taken from the
NPF_IPv4UC_CallbackType_t.

nhopCntxt This is the temporary context that is stored in this request when it is targeted to NextHop table.
This context is used while interacting with the L2Id manager for L2Id generation and updates.

prefixCntxt This is the temporary context that is stored in this request when it is targeted to the FIB table.
This context is used only in case of unified APIs.

addResCntxt This is the temporary context that is stored in this request when it is targeted to the address
resolution table. This context is used while interacting with the L2Id manager for L2Id

30
Intel Confidential

R
 IPv4 Control Plane Manager

generation and updates.

transInfo This is a pointer to the transaction data structure.

IPV4ReqToFEInfo_t

Table 14. IPV4ReqToFEInfo_t table

Member Description

fppi_correlator This variable holds the FPPI correlator that is used to send the request to the FPPI

State This field holds the current state of the request to the FE. Possible values are:

REQ_TO_FE_PENDING

REQ_TO_FE_SENT

REQ_TO_FE_CBACK_RECVD

FeId FE ID of the target FE for this request

retStatus Return status – error/success

transInfo Back pointer to the transaction to which this belongs

IPV4TransFPInfo_t

Table 15. IPV4TransFPInfo_t table

Member Description

numFEWait Number of FEs from which we have not received the callbacks. Please refer to Section 3.8 for
further details

numFEToSend Number of FEs to which this request is to be sent.

reqFePtrArray This contains the array of pointers to the actual FP requests

3.4 Discrete API Design Details

3.4.1 IPv4 Initialization and Multi-user Support

This section explains steps in initialization of IPv4 manager and steps that explain how multiple
user applications register with different context values.

 31

Control Plane-PDK 2.11

IPv4 Design
Design Specification

32
Intel Confidential

PDK User App 1

NPF_IPv4UC_Register

npf_pdk_init()
:::>>>

pdk_ipv4_int()

PDK
Manager

NPF IPv4 API Interface
In

te
rn

al
 F

un
ct

io
na

l C
al

ls

cbHndlCntr =0

userList

IPV4Mgr_t

DList

L2Id
Manager

l2Idm_init()

1

2

3

IPV4Mgr_t

Context =1
cbHndl =1

IPV4UserInfo_t

PDK User App 2

5

IPV4Mgr_t

Context =1
cbHndl =1

IPV4UserInfo_t

Context =2
cbHndl =2

NPF_IPv4UC_Register

2

cbHndlCntr = 1

userList DList

cbHndlCntr =2

userList DList

cbHandle =1

4

cbHandle =2

6

R

(context=1,)
(context=2,)

Figure 4 Initialization and multi-user support of IPv4 module
1. PDK manager calls initialization routine of IPv4 module that is

pdk_IPv4_init().This creates the main structure IPV4Mgr_t and initializes other
member variables accordingly.

2. Within pdk_IPv4_init(), the L2Id manager is initialized by calling
l2idm_init().

3. First user application registers by calling NPF_IPv4UCRegister with context =1.
This is a unique key for this user that is stored inside IPv4 manager by creating a new
structure IPV4UserInfo_t and adding it to DList from the main structure
IPV4Mgr_t.

4. From the callback counter cbHndlCntr, the handle is given back to the user
application. This handle information is also stored in IPV4UserInfo_t structure just
created that is cbHandle = 1

5. Repeat Step 3 with context = 2

6. Repeat Step 4. Here cbHandle = 2

3.4.2 Discrete API Flow Example – Create Prefix Table

This section explains a simple API flow from the user application to IPv4 Manager.

R
 IPv4 Control Plane Manager

PDK User App

NPF_IPv4UC_PrefixTableHandleCreate(cbHandle
=x

PDK
Manager

NPF IPv4 API Interface

In
te

rn
al

 F
un

ct
io

na
l C

al
ls

IPV4Mgr_t

DList Context =1
cbHandle =x

tableArray
IPV4UserInfo_t

NameSpace

1

DList usr_correlator=4

IPV4TransInfo_t

usr_correlator =4

IPV4ReqToCPInfo_t

Array

Handle
type

IPV4Table_t

IPV4_TABLE_TYPE_PREFIX,

A) Clear pending transaction
and request state
B) Give the callback to user

DList Context =1
cbHandle =x

tableArray
IPV4UserInfo_t Array

Handle
type

IPV4Table_t

IPV4Mgr_t

NPF_IPv4UC_PrefixCreateResp_t

32

4

6

PDK FPPI API Interface

5

,correlator = 4,)

Figure 5 NPF API flow from user application- example
1. Request to create a prefix table is received. User application sends the correlator for this

transaction as 4 shown in Figure . After searching based on cbHandle = x,
IPV4UserInfo_t structure is looked for.

2. A check is conducted for any transactions already pending with this correlator. If the
result is yes, then return error. If the result is no, then a new transaction structure
IPV4TransInfo_t is created.

3. New IPV4ReqToCP_t that stores all needed context for this request.

4. Check is done in IPV4UserInfo_t structure if any table of the same type is present.
In this release of CP-PDK, more than one table of the same type is not allowed for a
single user. If the table is already present, an error is returned. If the table is not present,
then create IPV4TableInfo_t structure.

5. There are some interactions with namespace that are explained in Section 3.6.1, in order
to get the handle for this table. Please refer to Section 3.6.1for more information.

 33

Control Plane-PDK 2.11

IPv4 Design
Design Specification

R
6. Both IPV4TransInfo_t and IPV4ReqToCP_t structures, known as transient

structures, are deleted after giving the callback with relevant status back to the user
application.

3.5 Unified API Design Details

For this release of CP-PDK, the IPv4 module conforms to IPv4 unicast service API
implementation agreement. As a part of this agreement, mandatory support has to be provided for
unified support. Since it does not support unified support, supporting single FIB table instead of
two different tables for prefix and next-hop table, the mapping support has to be provided in IPv4
manager that maps unified APIs to discrete APIs.

Following are the requirements for unified support:

• User application is transparent to any mapping functions provided by IPv4 component.

• NHID in case of discrete next-hop APIs is to be provided by user application. In case of
unified, this is generated within the layer. This results in a new NHID being generated
whenever a new FIB entry addition is requested. This can result in increase in size of the
routing table in forwarding plane.

• Every time there is a delete request for a FIB entry, it would result in a query to the
forwarding plane and back to control plane to fetch the valid NHID from forwarding plane.
This would result in performance hit.

• In case any discrete API resulting from a unified call fails and other call succeeds, the
return value for the unified would be error. Application cannot get exact error value in
these cases.

3.5.1 Mapping Details

This section provides information on the mapping logic between unified and discrete calls. This
mapping is defined statically in the implementation.

34
Intel Confidential

R
 IPv4 Control Plane Manager

N
PF

 IP
v4

 A
PI

 In
te

rfa
ce

PD
K

U
se

r A
pp

NPF_IPv4UC_FIBTableHandleCreate()

IP
V4

 U
ni

f ie
d-

D
is

cr
et

e
Tr

an
s l

at
io

n
La

ye
r

NPF_IPv4UC_FibTableHandleDelete()

NPF_IPv4UC_FibEntryAdd()

NPF_IPv4UC_FibEntryDelete()

NPF_IPv4UC_FibTableFlush()

NPF_IPv4UC_FibTableAttributeQuery()

NPF_IPv4UC_FibEntryQuery()

NPF_IPv4UC_PrefixTableHandleCreate()

NPF_IPv4UC_NextHopTableHandleCreate()

NPF_IPv4UC_PrefixTableHandleDelete()

NPF_IPv4UC_NextHopTableHandleDelete()

NPF_IPv4UC_PrefixEntryAdd()

NPF_IPv4UC_NextHopEntryAdd()

NPF_IPv4UC_PrefixEntryDelete()

NPF_IPv4UC_NextHopEntryDelete()

NPF_IPv4UC_PrefixTableFlush()

NPF_IPv4UC_NextHopTableFlush()

NPF_IPv4UC_PrefixTableAttributeQuery()

NPF_IPv4UC_NextHopTableAttributeQuery()

NPF_IPv4UC_PrefixEntryQuery()

NPF_IPv4UC_NextHopEntryQuery()

NHId generated
internally in
IPv4 Module

IPv4 Module
genrates query
request to FP,
to get NHId,
before sending
NHEntryDelete()

IPv4 Module
genrates query
request to FP,
to get NHId,
before sending
NHEntryQuery()

Figure 6 Mapping between unified and discrete calls

3.5.2 Unified API Flow – Example

This section defines an example flow of a unified API call resulting in multiple discrete calls
towards forwarding plane. It also defines the creation and deletion of data structures during the
flow.

Figure depicts flow for NPF_IPv4UC_FibEntryAdd () and data structure creation/deletion
in this case. It assumes that target tables are already created and the associations are already
established between FIB table and prefix, next-hop tables.

Following are the steps as defined in the figure 7.

7. NPF_IPV4UC_FibEntyAdd() is received by IPv4 manager with correlator = 4 and
tableHandle = y.

8. From UserContext = x, IPV4UserInfo_t structure is identified.
IPV4TransInfo_t structure is created with usr_correlator = 4,
int_correlator = 0, transType = IPv4_TRANS_TYPE_UNIFIED.

 35

Control Plane-PDK 2.11

IPv4 Design
Design Specification

R
9. From tableHandle = y, table IPV4Table_t structure is identified from

IPV4UserInfo_t structure. This table should already have been created and has
prefix and next-hop tables with table handles as n and m associated. After verifying that
the association is proper and taking the two discrete table handles, the two counters
nhIdCntr and intCorrelCntr in IPV4UserInfo_t structure are incremented.

10. Taking the handle values and the counter values, two new transactions are created for
generating two new discrete requests internally. These two transactions have the same
usr_correlator = 4 as the one from which they originated. They have new
correlator values generated from intCorrelCntr assigned to other variable called
int_correlator. While generating the actual discrete API request, both the
correlators are checked. If int_correlator is set, then it is given preference over
usr_correlator. A check is done that these two transactions are of type
IPv4_TRANS_DISCRETE.

The association between these three transactions can be detected using the fact that all of these
have the same usr_correlator = 4 value. For quick access, the transaction that is of type
IPv4_TRANS_UNIFIED has pointers to the mapped transactions. On getting response for all the
mapped transactions, the transPend field in unified transaction is false.

11. Taking table handle values further, and the correlator values from int_correlator,
two APIs are selected from the mapping already defined for FibEntryAdd that is
PrefixEntryAdd and NextHopEntryAdd.

12. PrefixEntryAdd is generated with relevant values

13. NextHopEntryAdd is generated with relevant values. After this step, the flow is
similar to the flow of discrete API implementation.

36
Intel Confidential

R
 IPv4 Control Plane Manager

Handle =n
type

PDK User App

NPF_IPv4UC_FibEntryAdd(cbHandle =x

PDK
Manager

NPF IPv4 API Interface

In
te

rn
al

 F
un

ct
io

na
l C

al
ls

Context =1
cbHandle =x

tableList

IPV4UserInfo_t
L2Id

Manager

1

DList

IPV4TransInfo_t

Handle = y
type
union{

}

2

4

PDK FPPI API Interface

IPV4_TABLE_TYPE_PREFIX

NPF_IPv4UC_PrefixEntryAdd(cbHandle =x NPF_IPv4UC_NextHopEntryAdd(cbHandle =x

Handle =m
type IPV4_TABLE_TYPE_NHOP

3

6 75

IPV4TransInfo_t

usr_correlatorl=4
int_correlator=0
transType
numMapTrans =2
*mapTransArray

,
correlator = 4, tableHandle=y)

nhIdCntr = 5
intCorrelCntr =9

NhTblHndl=m
PfxTblHndl=n

IPV4_TABLE_TYPE_FIB

,
correlator = 10, tableHandle=n)

,
correlator =11 , tableHandle=m, NhId = 6)

usr_correlator =4
int_correlator =10
transType

usr_correlator=4
int_correlator =11
transType

IPV4_TRANS_UNIFIED IPV4_TRANS_DISCRETE

Figure 7 Unified API flow – example

3.6 Common Design Considerations

3.6.1 IPv4 Manager and Namespace Interaction Details

This section gives brief details about how IPv4 manager interacts with namespaces while creating
tables. This section acts as a requirement section for changes to be made in IPv4 interface
management module.

As shown in the Figure , there are two interfaces at the top that the user application has to use in
order to create and set a FIB/Prefix table.

These two interfaces are:

• NPF IPv4 unicast Service API

• NPF IPv4 interface management API

 37

Control Plane-PDK 2.11

IPv4 Design
Design Specification

R
It is recommended that the user application follow the steps in the order as mentioned in the
Figure 8 as the IPv4 unicast SAPI has API to create a table. The API to set this table to the right
IPv4 interface is not available within IPv4 unicast SAPI but it is available in IPv4 interface
management API.

At the time of writing this document, the IPv4 interface management document has FIB table
handle as its parameter when associating the table with the interface. It does not explicitly expect
prefix table handle typedef in its parameter. Since, the fundamental data-type of all the handles
is uint32, it is assumed that prefix table handle can be used in place of FIB table handle
argument. Using the same assumption, namespace handle has been passed as prefix/FIB table
handle to user application. If, there is a change in the data-type of namespace handle, then there
should be an explicit conversion and mapping logic between these two.

38
Intel Confidential

R
 IPv4 Control Plane Manager

PDK User App

NPF IPv4 API Interface

In
te

rn
al

Fu
nc

tio
na

l C
al

ls

IPV4Mgr_t

DList

tableList

IPV4UserInfo_t

NPF_IPv4UC_PrefixTableCreate() /
NPF_IPv4UC_FibTableCreate()

Array
Handle = 5

3

NPF Namespace API

npf_ns_create()

1

Namespace Module

/

0

sys

IP RouterIf

0

2

npf_ns_create(

0

 Explicit

Association

If Attrib : IPv4 Interface

NPF I/F Mgmt

NPF_IfIPv4FIBSet(if_HandleArray,
If_fibHndl)

7

npf_ns_addAssociate(
)

Design Note
CP-PDK supports one FIB per FE.

To Support above Logic :
Step 9 : Before calling for the association with one or more
interfaces, check if any FE associated with these interfaces is
already associated with any FIB/Prefix Table.
If YES : Then return FAILURE
If NO : Then proceed and do association.

6
NPF_IfCreateAndSet()

1
2

Implicit Association

FE

0

4.1

npf_ns_create(

4.2

SUCCESS
hNameSpace = 5

If_fibHndl = 5

5
1

NPF_IPv4UC_Register()

8
9

2

IPV4Table_t

/sys/0/If/2…

/sys/0/router/0,
NPF_NS_INSTNODE, NPF_NS_ROUTER

…

if_HandleArray,
tblHndl

/sys/0/router,
NPF_NS_TYPENODE, NPF_NS_ROUTER

Figure 8 IPv4 manager and namespace interaction

 39

Control Plane-PDK 2.11

IPv4 Design
Design Specification

R
3.6.2 Table Finite State Machine

This section provides information on various states of a table for example prefix, next-hop, FIB,
and ARP request tables. It also gives details about various events/triggers that result in transition
from one state to another.

In this table, there are a few errors that are not implemented in the SDK For example, when we
call AddEntries() and if the table is full, the IPv4 Forwarder CC should return TBL_FULL
error. Until this is implemented, FSM does not go to TABLE_FULL state.

At the time of prefix or FIB table creation, when the state becomes TABLE_EMPTY, the IPv4
manager interacts with the namespace module to create an entry. At the time of their deletion,
when the state goes to TABLE_DELETED, the IPv4 manager again interacts with namespace
module to delete the entry.

TABLE_EMPTY

AddEntries()

TABLE_ENTRIES_EXIST

TABLE_DELETED

DeleteHandle()
TABLE_FULL

C
reateH
andle

DeleteEntries() /
AddEntries()/
QueryEntries()/
TableQuery()

Tx: AddEntries()/
Rx:Error : TBL_FULL AddEntries()/

QueryEntries()/
TableQuery()

DeleteEntries()

FlushTable()

FlushTable()

D
e-allocate
allthe

related
context

TableQuery()

TABLE_INIT

DeleteHandle()

DeleteHandle()

DeleteEntries()
Rx: TBL_EMPTY

Figure 9 FSM table

40
Intel Confidential

R
 IPv4 Control Plane Manager

3.6.3 IPv4 Mgr – Request Finite State Machine

This section details the Finite State Machine (FSM) of a request from the point it is received from
the user application till callback for the request is given back to the user application or, the state is
removed immediately after the request is given to the FPP module.

REQ_TO_FE_PENDING

REQ_TO_FE_SENT

REQ_TO_FE_CBACK_RCVD

REQ_TO_FE_ERROR
FE Found ; R

eq Sent

Callback Received

Pass to User App Callback;
Delete the context

Error In Processing

If User wants no Callback
Delete the memory

Delete the memory

Figure 10 IPv4 NPF API request FSM

 41

Control Plane-PDK 2.11

IPv4 Design
Design Specification

R
3.6.4 Locking

IPv4 Component uses coarse-grained locking. There is a mutex for the main IPv4 module, IPv4
manager acquired for all the cases where the variables have to be modified, for example,
incrementing counters, assigning pointers. When IPv4 calls into the FP plug-in, it must first
release the global lock.

There is a lock for each IPv4 user to make sure that if there is a multithreaded user application, it
can work fine. This lock, , such as, the IPv4 manager lock is invoked and released for the duration
during which any variable is incremented or decremented within the scope of user.

For every DList structure in IPv4 control plane manager, there is a lock that is invoked by DList
library. The library protects accessing DLists and IPv4 does not have its own specific locks for
DList operations.

3.6.5 Directly Connected Hosts

In release 1.2, the logic for special handling of direct connected hosts existed inside the IPv4
Module. In the release 2.11, the events are given to the user application and no special processing
is done inside the CP-PDK. It is left to the user application to check for the missing routing table
and add the relevant routes using the IPv4 SAPI.

3.6.6 IXA SDK-Specific Design

The following elements are necessary to be compatible with an IXA SDK-specific data plane.
They can be easily replaced or extended to support other data planes.

3.6.6.1 L2Id Generation

When one or more next-hops are added to IXA SDK implementation, a unique ID, L2ID, is passed
for each FEID/next-hop address pair. Forwarding element next-hop tables maintain a mapping
between next-hop identifiers, next-hop addresses, L2Ids, and FEIDs. L2ID is used as a mapping to
next-hop L2 addresses in the egress L2 table. NHIDs are used as a mapping to a network
destination address. To illustrate L2ID usage, consider the hypothetical network arrangement in
the following figure:

42
Intel Confidential

R
 IPv4 Control Plane Manager

CP

FEs

a.b.c.d m.n.o.pi.j.k.le.f.g.h

Network Cloud

1 32

Next Hop

Destination

L2ID 100

A B C D

100102

NPF
Router

105
212

118

Figure 11 Hypothetical network arrangements

NPF router in Figure contains four forwarding elements, each with multiple network interfaces.
Each interface on the FEs connects to one of four next-hop forwarding devices. Three destination
devices exist across a network cloud. The destination device number maps to an NHID. This
arrangement produces the next-hop table shown in the following table.

Note: All the possible entries are not shown in the table.

Table 16: FE Next-Hop Table

 43

Control Plane-PDK 2.11

NHID NHAddr L2ID FEID

1 a.b.c.d 100 A

 e.f.g.h 102 A

 i.j.k.l 100 B

2 a.b.c.d 100 A

 m.n.o.p 105 C

IPv4 Design
Design Specification

 R
3 i.j.k.l 212 D

 i.j.k.l 118 C

In order to support Equal Cost Multi-Path(ECMP) algorithms in future versions of this module,
multiple next-hop addresses can be associated with a NHID. Since L2ID is unique to a specific
FEID, they can be identical for a given NHID. This can be seen in Table 16 for NHID 1 where an
L2ID of 100 is used twice, each time for a different FEID. On FEID A, L2ID 100 maps to next-
hop address a.b.c.d and on FEID B L2ID 100 maps to next-hop address i.j.k.l.

L2ID management module maintains all relationships and mappings represented in Table 16. On
any given FE, an L2ID can be mapped to an L2 next-hop address without any correlation to a
NHID. L2ID manager also maintains this information to make sure that each L2ID is unique
within a given FE.

3.7 Modularity

Since no other components depend on IPv4, it is easy to either replace the implementation or stub
out the implementation completely. As long as NPF API behavior and contracts are adhered to,
internal implementation is not really important to external applications that can use IPv4
component. It is also possible to not compile IPv4 component and leave it out of PDK entirely.

3.8 Design for Multiple FE Support

This section gives basic details about the support for multiple FEs. For further details, please refer
to IPv4 Manager in Forwarding Plane Module – Design Reference [1].

After getting details about FEs such as FEID that are associated with the target table, the IPv4 FP
request handler module sends separate forwarding plane API to individual FE through FP plug-in
API that goes down to IPv4 module in FE using the transport plug-in framework. This FP
Transaction Handler module handles the logic of collating all the responses from the different FEs.
Please refer to Section 3.2.2 for more details.

Logic for handling multiple FEs is handled by IPV4TransInfo_t member by the name
IPV4TransFPInfo_t. Refer to the description of various fields within this structure in Section
3.3.2.

At the start of sending one or multiple requests to one or multiple FEs for a single control plane
request received from NPF user application, use numFeToSend == numFEWait. Whenever
a callback is received from a particular FE, value of numFEWait is decremented till it reaches
zero. Once it reaches zero, a consolidated error or success return value is returned to control plane
/ NPF application.

If any one of the FEs return error status, the consolidated error report to the NPF user application
is error.

Handling of array of entries in a single NPF request is handled by IPv4 module in forwarding
plane residing on each FE. This design avoids sending individual requests for each entry in the
array from CP to FP and this increases the performance and error probability. Please refer to

44
Intel Confidential

R
 IPv4 Control Plane Manager

Forwarding Plane Module – Design Reference [1] for more details of the design for handling array
of entries in forwarding plane IPv4 manager.

 45

Control Plane-PDK 2.11

Part 4: NPF API to FPP API
Mapping

R

4 NPF API to FPP API Mapping
Figure 12 illustrates mapping of the NPF APIs to forwarding plane plug-in APIs.

ix_cc_ipv4_async_delete_route
(ipaddr, mask)

NPF

Control Plane
Ensures that the addNexthop() is before addPrefixe()

generates l2index by hasing nexthop addr,

Forwarding Plane (maps NPF structures to IXA structs)

NPF_IPv4UC_PrefixEntryAdd
(array of <prefix,
 prefixlen, nhid)>

NPF_IPv4UC_NextHopEntryAdd
(nhid, array of<outintf, nexthopaddr, weight>)

fppapi_addNextHop
(feid, nhid, array <bladeid, old_l2index, new_l2index,

nexthopaddr,portId, mtu,flags)>

ix_cc_ipv4_async_add_route
(prefix, prefixlen, nhid)

ix_cc_ipv4_async_add_next_hop
(nhid, bid, old_l2index, new_l2index,

portID, nhaddr, mtu, flags)

ix_cc_fp_async_add_l2_entry
(l2index, nhadr,outPort)

IPv4
manager

namespace
getbladeid

NPF_IPv4UC_PrefixEntryDelete(
array of <prefix, nhid)>

fppapi_deletePrefix
(feid,array of <prefix, nhid>)

fppapi_delnextHop
(feid, nhid, array of npf stuff)

ix_cc_async_delete_next_hop
(nhid)

NPF_IPv4UC_NextHopEntryDelete(nhid,
array of<outintf, nexthopaddr, weight>)

fppapi_addPrefix
(feid,array<nhid, prefix>)

L2id
Manager

getL2Id()

if the old_l2index is valid then do following::
1. FP Module calls ix_cc_ipv4_async_update_next_hop()

2. Add new entries into L2 table
3. Delete the old entry from the L2 table

ix_cc_ipv4_async_update_next_hop
(nhid, bid, old_l2index, new_l2index,

portID, nhaddr, mtu, flags) ix_cc_fp_async_delete_l2_entry
(l2index, nhaddr,outPort)

Figure 12 NPF API to FPP API mapping

49
Control Plane-PDK 2.11

IPv4 Design
Design Specification

R
Forwarding plane API expects an FE Id for each call to the FP plug-in, that is used to identify the
FE to that the call is directed. The add/delete next-hop calls in the FP plug-in, additionally expect
the L2 Id. FP is unable to handle adding prefixes without the corresponding next-hop. The
application recommends adding prefixes before adding the corresponding next hop.

For more details on this mapping, refer forwarding plane module – design reference [1].

intel
Before each piece of code, provide one sentence describing what it does as you have done in Section 5.4.

	Overview
	Purpose and Scope
	Requirements
	Assumptions and Dependencies
	Terminology
	References

	IPv4 Component Design
	IPv4 Component High-Level Overview
	IPv4 Component Block Diagram
	NPF IPv4 Unicast Service API Interface
	IPv4 Manager
	Transport Plug-in – IPv4 FPPAPI
	Transport Plug-in – IPv4 Backend API
	Forwarding Modules – IPv4 Module
	Interconnect

	Dependencies
	External API
	Internal API

	IPv4 Control Plane Manager
	Initialization and Shutdown
	IPv4 Manager Startup
	IPv4 Component Shutdown

	Functional Decomposition
	CP Request Handler Module
	FP Request Handler Module
	Transaction Handler Module
	User Module
	IPv4 Manager Module
	Namespace Interface Module

	Data Decomposition
	Data-block Breakdown
	Data Structures Linkage

	Discrete API Design Details
	IPv4 Initialization and Multi-user Support
	Discrete API Flow Example – Create Prefix Table

	Unified API Design Details
	Mapping Details
	Unified API Flow – Example

	Common Design Considerations
	IPv4 Manager and Namespace Interaction Details
	Table Finite State Machine
	IPv4 Mgr – Request Finite State Machine
	Locking
	Directly Connected Hosts
	IXA SDK-Specific Design
	L2Id Generation

	Modularity
	Design for Multiple FE Support

	NPF API to FPP API Mapping

