

Transport Plug-in
Design Specification

Control Plane-Platform Development Kit 2.11
March 2004

<Document Part # /Release # /Order #: XXXXX

R

Information in this document is provided in connection with Intel® products and services. No license, express or
implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in
Intel's Terms and Conditions of Sale for such products and services, Intel assumes no liability whatsoever, and Intel
disclaims any express or implied warranty, relating to sale and/or use of Intel® products and services including liability
or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or
other intellectual property right. Intel products and services are not intended for use in medical, life saving, or life
sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Copyright© 2004 Intel Corporation.

* Other brands and names are the property of their respective owners.

ii Control Plane-PDK 2.11
Intel Confidential

R

Contents
Transport Plug-in ... i
Contents.. iii
Part 1: Introduction ... 5

1 Overview.. 7
1.1 Terminology.. 7
1.2 Reference.. 8

Part 2: Transport Plug-in Architecture .. 9

2 Transport Plug-in Architecture.. 11
2.1 Forwarding Plane Plug-in API (FP Plug-in API) 12
2.2 Plug-in Backend API .. 12
2.3 Transport Protocol... 13

2.3.1 Control Plane Agent .. 13
2.3.2 Forwarding Plane Agent.. 13

2.4 Interconnect Abstraction Layer .. 13

Part 3: Transport Protocol Design... 15

3 Transport Protocol Design... 17
3.1 Overview ... 17
3.2 Protocol Operation... 17
3.3 Protocol Headers and Messages.. 19

3.3.1 FLEX Protocol Header .. 19
3.3.2 FE Binding .. 20
3.3.3 FE Capability Discovery .. 21
3.3.4 FE Topology Discovery ... 23
3.3.5 FE Start Operation .. 23
3.3.6 FE Configuration/Query Messages ... 24
3.3.7 FE Events/Packet Redirection .. 26
3.3.8 CE, FE Unbinding ... 27
3.3.9 Heartbeat .. 28

3.4 Failover Support... 28
3.5 Protocol Encapsulations .. 28

3.5.1 ForCES protocol Encapsulation for TCP.. 28

Part 4: Interconnect Abstraction Layer Design .. 29

4 Interconnect Abstraction Layer Design .. 31
4.1 Packet Buffer Management ... 31
4.2 Datagram API.. 32

Part 5: Transport Plug-in Design ... 35

5 Transport Plug-in Design ... 37

iii
Control Plane-PDK 2.11

Contents R

5.1 Overview ... 37
5.2 Memory Management .. 37
5.3 Threading Model .. 37
5.4 Timeout Mechanism... 37
5.5 Data Structures .. 37
5.6 Pseudo-Code for Control Plane .. 38
5.7 Pseudo-Code for Forwarding Plane ... 39

Part 6: Transport Plug-in Design ... 43

6 Code Generator Design.. 45
6.1 Code Generator Introduction .. 45
6.2 Code Generator Requirements ... 45
6.3 Code Generator Design Considerations .. 45
6.4 Code Generator Design ... 47

6.4.1 Code Generator Parser Design... 47
6.5 Code Generator Code Generation .. 51

Figures
Figure 2: CE-FE information exchange... 18

Tables
Table 1. Terminology table ... 7
Table 2. Reference table... 8
Table 3. Packet buffer encapsulation table ... 32
Table 4. Datagram API function table ... 33

Revision History
Revison Description Date Author

2.11 Updated for Release 2.11 March 2004 Udaya Shankar

2.1 Updated for Release 2.1 December 2003 Udaya Shankar

2.0 Updated for Release 2.0 August 2003 Udaya Shankar

iv
Intel Confidential

Part 1: Introduction

R

1 Overview
Network elements such as switches and routers can be classified into three logical operational
components:

• Control plane

• Forwarding plane

• Management plane

The control plane controls and configures the forwarding plane and the forwarding plane
manipulates the network traffic. The control plane executes different signaling or routing protocols
and provides all the routing information to the forwarding plane.

The forwarding plane makes decisions based on this information and performs operations on
packets such as forwarding, classification, filtering, and so on.

An orthogonal management plane manages the control and forwarding planes. For example, the
control plane in a router executes routing protocols, the forwarding plane performs hardware-
based switching, and the management plane starts or stops routing process or performs logging.

The introduction of standardized Application Program Interface (API) within the above-mentioned
planes can help system vendors, Original Equipment Manufacturer (OEM), and end-users of these
network elements to mix and match components available from different vendors to achieve a
device of their choice. The Network Processing Forum (NPF) services API is designed for this
purpose, as it presents a flexible and well-known programming interface to the control plane
applications.

It makes the existence of multiple forwarding planes, as well as vendor-specific details,
transparent to control plane applications. The hardware properties and nature of interconnect used
between the control and the forwarding planes are isolated. The protocol stacks and network
processors available from different vendors can be easily integrated with the NPF APIs. The APIs
included in the Control Plane Platform Development Kit (CP-PDK) are based on the NPF APIs.
For more information about NPF, refer to http://www.npforum.org/.

This document specifies the high-level design for the transport plug-in module of the CP-PDK.

1.1 Terminology
Table 1 lists terms used in this document and provides an expansion for each term.

Table 1. Terminology table

Term Description

NPF Network Processing Forum

CE Control Element

FE Forwarding Element

ForCES Forwarding and Control Element Separation protocol

PDK Platform Development Kit

7
Control Plane-PDK 2.11

http://www.npforum.org/

Transport Plugin Design
Design Specification

 R
Term Description

COPS Common Open Policy Service protocol

GSMP General Switch Management Protocol

PCI Peripheral Connect Interface

BER Basic Encoding Rules

XML Extensible Markup Language

TLV Type Length Value

1.2 Reference
Table 2 lists documents referenced in, or related to, this document.

Table 2. Reference table

Reference Document

[1] NPF Application Level API Framework; NP Forum, September 2000.

[2] CP-PDK : Software Architecture Overview

[3] CP-PDK : Forwarding Plane Plug-in API Reference

[4] Requirements for Separation of IP Control and Forwarding, IETF draft

[5] ForCES FE Functional Model, IETF draft

[6] ForCES Architectural Framework, IETF draft

[7] COPS Portability Layer Specification

8
Intel Confidential

Part 2: Transport Plug-in
Architecture

R

2 Transport Plug-in Architecture
The control plane and forwarding plane can have different communication mechanism or
protocols to exchange information with each other. These protocols could either be IETF standard
protocols like ForCES/COPS/GSMP or mechanisms such as CORBA, and so on. The planes can
be connected using a number of different types of interconnects. Some examples of such
interconnects are InfiniBand, PCI, various back-plane switching fabrics and shared memory.

The transport plug-in abstracts out the type and the details of the communication mechanisms
from the rest of the PDK implementation, at the same time providing the functionality required for
separation of the CP and FP. It enables plug-and-play functionality for different communication
mechanisms with the rest of the PDK. Different types of transport plug-ins can be placed between
the planes such that CPs and FPs communicate transparently. This section describes the
architecture for a transport plug-in.

The architecture of a transport plug-in is shown in the figure that follows. The plug-in is composed
of four distinct parts:

1. FP Plug-in API - The abstraction API that hides the transport plug-in details and
presents a uniform API that gets invoked by the NPF API implementation modules on the
control plane.

2. Backend API - The API exposed by the transport plug-in on the FP, which is used by
the FP module of the PDK.

In addition to the two APIs above, the transport plug-in includes the following components:

3. Transport Protocol - This is the standard or propriety protocol used to exchange
information between the planes and consists of two agents.

• Control plane agent - Part of the transport protocol that resides on the control
plane and communicates with the FP agent

• Forwarding plane agent - Part of the transport protocol that resides on the FP
and communicates with the CP agent

4. Interconnect abstraction layer - This abstraction layer hides the interconnect details
and is used by the transport protocol to send and receive messages

11
Control Plane-PDK 2.11

Transport Plugin Design
Design Specification

Tr
an

sp
or

t P
lu

gi
n

FP Plugin API

Control Plane AgentC
on

tro
l

Pl
an

e
Fo

rw
ar

di
ng

Pl
an

e

Interconnect Abs.

Interconnect Abs.

Forwarding Plane
Agent

Transport
Protocol

Plugin Backend API

 R

12
Intel Confidential

Figure 1: Transport plug-in architecture

Transport plug-in sends NPF API invocations from the CP to the FP. It is used by the FP for
sending control data to the control plane for processing as well as data packets.

2.1 Forwarding Plane Plug-in API (FP Plug-in API)
Transport plug-in introduces the concept of a FP plug-in API in order to provide an abstraction to
the CP-PDK. This API has been described in detail in [3]. This API allows the CP to send
configuration and other control requests to the FP, receive the responses from the FP as well as
send and receive data packets to and from the FP.

2.2 Plug-in Backend API
The API exposed by the transport plug-in on the forwarding plane, which is used by the FP
module of the PDK. This API has been described in detail in [3]. This API allows the FP module
to receive configuration and other requests from the CP, respond to those requests, as well as send
and receive data packets, such as, RIP and OSPF to and from the CP.

R

 Transport Plug-in Architecture
2.3 Transport Protocol

This can be an IETF standard protocol like ForCES/COPS/GSMP or any other messaging system
such as CORBA that can be used for transporting the messages between the control and the
forwarding plane. The transport protocol implementation consists of the CP agent and the FP
agent.

2.3.1 Control Plane Agent
The control plane agent implements the transport plug-in specific transport protocol and the
messaging. It is invoked by the FP plug-in API and converts the API calls to wire format
messages, sent to the forwarding plane agent.

2.3.2 Forwarding Plane Agent
This agent sits on the forwarding plane, parses the transport protocol messages and generates well-
known messages which are used by the forwarding plane module to invoke the vendor specific
API for the forwarding plane.

2.4 Interconnect Abstraction Layer
This provides an abstraction layer that hides the interconnect technology details from the transport
protocol. The transport protocol uses this layer to send and receive messages without knowing
whether the interconnect is PCI, Infiniband, Ethernet, or some other interconnect.

13
Control Plane-PDK 2.11

Part 3: Transport Protocol Design

R

3 Transport Protocol Design
This section describes the transport protocol design. The protocol can be considered as a
preliminary implementation of the ForCES protocol and is based on the requirements [4],
framework [6] and FE model [5] being defined in the ForCES working group in the IETF. The
protocol described in the sections below is named the FLEX protocol.

3.1 Overview
The ForCES protocol referred to as the FLEX protocol is designed to be a simple, stateless,
request-response protocol between the control and forwarding elements in a system. The protocol
is designed to be lightweight in terms of low message parsing overhead as well as small message
sizes. The protocol has a fixed length header that is 8-bytes long; all messages are 32-bit aligned.
The protocol is easily extensible in several ways. It allows for a separate data model [5], which
will define the data that needs to be exchanged.

It allows different encapsulation methods, such as, TLV, BER, XML, for both the control
messages and the data packets being carried. A separate data channel, such as, GRE tunnel, can be
established to exchange only data packets between control and forwarding elements. It encourages
the use of TLV encapsulation for control messages since it has the lowest overhead. The protocol
supports different interconnect technologies by allowing different encapsulations to be defined for
different interconnects.

It assumes a reliable transport mechanism for the control channel. It has been designed to provide
message level acknowledgements. The FLEX protocol meets all the requirements for separation of
control and forwarding elements defined in [4] including command bundling, message priority,
dynamic association and failover support.

3.2 Protocol Operation
The information exchanged between the CE and FE using the FLEX protocol in the CP-PDK can
be classified into three phases. First is the binding phase, second is the capability & topology
discovery phase, and the third is the configuration/normal operation phase. The following figure
shows the information exchange.

17
Control Plane-PDK 2.11

Transport Plugin Design
Design Specification

 R

C

O

N

T

R

O

L

E

L

E

M

Unbind 13

FE Bind Request
1

F

O

R

W

A

R

D

I

N

G

E

L

Figure 2: CE-FE information exchange

In the binding phase, the FE sends a bind request to the CE, which sends back a bind response to
the FE. The bind response indicates whether the bind was successful or not. During this phase the
encapsulation information is exchanged between the CE and FE, which might lead to the creation
of a separate data channel, such as GRE tunnel, for the exchange of data packets only between the
CE and FE.

In the capability discovery phase, the CE sends a capability request to the FE, which sends back a
response with its capability information to the CE. The CE sends a topology request and the FE
responds with its topology information relative to other FEs. If the CE is fine with the FE
capabilities and topology and is ready to control and configure the FE, it sends a start operation
message to the FE. Only after this message is received can the FE report events or send packets to
the CE. The heartbeat message exchange starts after this message is sent. If the CE is not capable
of controlling or configuring the FE based on the FE’s capabilities or topology, it would send an
unbind message to the FE at this point.

In the configuration operation phase, configuration and query messages are sent from the CE to
the FE. The FE sends back the appropriate responses to the CE. Asynchronous FE events, such as
port down event, are reported to the CE. Packet redirection between the CE and the FE takes place
that is, control packets such as RIP, OSPF messages are redirected to the CE from the FE and
vice-versa. Heartbeat messages are exchanged between the CE and FE according to the interval set
during the binding phase.

Finally during the shutdown process, the FE or CE send an unbind message to the other which
ends their association.

18
Intel Confidential

R

 Transport Protocol Design
3.3 Protocol Headers and Messages

The ForCES or FLEX protocol headers, commands, and messages are described as follows.

3.3.1 FLEX Protocol Header
The ForCES protocol has a fixed length header, which appears as follows:

s

Version
typedef
 Ui
 Ui
Uint16_t
 Ui
} header

The fields i
Version

This field d
Flags :

This field d

Flags could
mandatory.

The valid v
and no ackn
Msg_type

This field d
response, ca
operation, c
notification
Cmd_corr

This field is
type.

A value of 0
Command Correlator
struct header_ta
nt8_t versio
nt8_t flags;
 msg_type;
nt32_t cmd_co
;

n the header are:
: 8 bits

efines the version of the
8 bits

efines any flags for the

 be used to indicate that
 This field could be use

alues for this field are: n
owledgment
: 16 bits

efines the message type
pability request, capab
onfiguration/query requ
, unbind, and heartbeat.
elator: 32 bits

 used to distinguish bet

 is reserved for bind, u
Message Type
Flag
g {
n;

rrelator;

 FLEX protocol.

protocol message.

 protocol reliability or responses to certain messages are not
d to indicate the priority of the ForCES message.

ormal priority, high priority, low priority, passive message,

. The valid values for this field are: FE bind request, FE bind
ility response, topology request, topology response, FE start
est, configuration/query response, FE event/packet

ween responses of multiple outstanding requests of the same

nbind and capability messages.

19
Control Plane-PDK 2.11

Transport Plugin Design
Design Specification

R
3.3.2 FE Binding

The FE binding phase consists of the FE sending a bind request to the CE, which responds with a
bind response. The response indicates whether the CE accepts or rejects the bind request. Based on
the CE response, any separate data channel for communication between CE and FE would be
established after this phase. Communication using this channel would only start after the start
operation command is issued by the CE to the FE.

The ForCES bind request appears as follows:

 Flags = 0 Message Type = Bind ReqVersion = 1

 Command Correlator = 0

typedef struc

 Uint32_

Uint16_t c

Uint16_t d

Uint32_t b

Uint32_t h

} bindinfo;

The fields in the bin
Feid : 32 bit

This field uniquely

Control Encapsulat

This field defines th
the FE. The valid v

Data Encapsulation

This field defines th

The valid values fo
Bind Status :

This is an optional

The valid values fo
Active

Passive

FEID

Control Encapsulation Type = TLV
t bin

t

ontro

ata_e

ind_s

eartb

d requ
s

 identif

ion_typ

e enca
alues f

_type :

e enca

r this f
 32 b

field, w

r this f
Data Encapsulation Type = GRE
dinfo_tag {

feid;

l_encapsulation_type;

ncapsulation_type;

tatus; /* optional */

eat_interval; /* optional */

est are:

ies an FE.

e : 16 bits

psulation method for ForCES control messages, which is supported by
or this field are: TLV, BER, and XML.

 16 bits

psulation method for the data packets, which is supported by the FE.

ield are: TLV, BER, XML, GRE protocol, and IP-in-IP protocol.
its

hich defines the status of the FE bind.

iled are:

20
Intel Confidential

R

 Transport Protocol Design
Heartbeat Interval : 32 bits

This is an optional field, which defines the interval in milliseconds at which heartbeat messages
should be exchanged between the CE and FE.

The ForCES bind response appears as follows:

Flags = 0 Message Type = Bind RespVersion = 1

Command Correlator = 0

The fields in the bind response are: Bind Result = 1 (Accept)

Bind_result : 32 bits

This field defines whether the FE bind request was successful or not. The valid values for this
field are:
Accept

Reject

3.3.3 FE Capability Discovery
The FE capability discovery phase consists of the CE sending a capability request message to the
FE, which responds with a capability response message. The capability request message consists
of the common header with the message type set to capability request. The capability response
message consists of the common header along with information about the FE Ports as well as the
logical blocks [5]. The port information consists of the number of ports followed by an array of
the port_info structs. The block information consists of the number of blocks followed by
an array of the block_info structs.

The ForCES capability response appears as follows:

Flags = 0 Message Type = Caps RespVersion = 1

 Command Correlator = 0

 Port Count

Port Info

Block Count
Port Info
21
Control Plane-PDK 2.11

Transport Plugin Design
Design Specification

 R

Block Info

The fields in the Capability response are:

Block Info

Port Count : 32 bits

This field defines the number of ports on the FE.
Port Info : 64 bits

This field defines the port information for each port on the FE and consists of a 32-bit field that
defines a unique port identifier followed by a 32-bit field that defines the port type.
typedef struct portInfo_tag {
 Uint32_t port_id;
 Uint32_t port_type;
} portInfo_t;

typedef struct portlist_tag {
 Uint32_t port_count;
 portInfo_t *portArray;
} portlist_t;
Block Count: 32 bits

This field defines the number of logical blocks that exist on the FE. The blocks represent the
logical functionality, or capabilities of the FE, see [5].
Block Info: variable

This field defines the block information for each logical functional block on the FE and consists of
a 32-bit field that defines the block type followed by a 32-bit field that defines a unique block
identifier or handle.
typedef struct blockInfo_tag {

 Uint32_t block_type;

 Uint32_t block_handle;

 Uint32_t downstreamBlockCount;

 Uint32_t *downstreamBlockArray;

} blockInfo_t;

typedef struct blocklist_tag {

 Uint32_t block_count;

 blockInfo_t *BlockArray;

} blocklist_t;

22
Intel Confidential

R

 Transport Protocol Design
3.3.4 FE Topology Discovery

The FE topology discovery phase consists of the CE sending a topology request message to the
FE, which responds with a topology response message. The topology request message consists of
the common header with the message type set to topology request. The Topology response
message consists of the common header along with information about the FEs directly connected
to the communicating FE. This information consists of the number of directly connected FEs
followed by an array of the FE identifiers.

The ForCES topology response appears as follows:

typedef

 Ui

 Ui

} connec

The fields in
FE Count

This field d
FE ID :

This field d
FE.

3.3.5 FE Star
Once the ca
start operati
topology an
receive mes
the heartbea
FE based on
Connected FE Count
struc

nt32_

nt32_

ted_F

 the top
 : 32

efines th
32 bi

efines th

t Op
pability
on mes
d is rea
sages fr
t messa
 its cap
FE ID
FE ID
Version = 1
Command Correlator = 0
t con

t

t

Elist

ology
 bits

e num
ts

e uniq

erati
 discov
sage. T
dy to c
om the
ges be
abilitie
Message Type = Topology Resp
Flags = 0
nected_FElist_tag {

fe_count;

*feidArray;

_t;

 response are:

ber of FEs directly connected to the FE communicating with the CE.

ue FE identifier for each FE directly connected to the communicating

on
ery and topology phase of the protocol is complete, the CE sends the FE
his message indicates that the CE is fine with the FE capabilities and
ontrol and configure the FE. This indicates that the CE is ready to
 FE such as event notification and packet redirection. The exchange of
gins after this. If the CE is not capable of controlling or configuring the
s or topology, it would send an unbind message to the FE at this point.

23
Control Plane-PDK 2.11

Transport Plugin Design
Design Specification

R
3.3.6 FE Configuration/Query Messages

The FE configuration or query messages are exchanged during the operational phase. They are in
the form of a request that is sent from the CE to the FE to configure certain blocks/ FE
functionality [5] or to query information. The FE sends back a response, which indicates the result
of the configuration request or the information requested by the query. They consist of the fixed
length header followed by one or more variable length commands. The protocol supports the
command bundling requirement.

The ForCES configuration/query messages appear as follows:

r

The ForCES protocol command appears as follows:

Variable length Command

Variable length Command

typedef st
Uint32_t
 Uint
 Uint
 Void
} command;

The fields in t
Cmd_type :

This field defi
delete all, send
Command Type
e

r

3
3
*

h

n

Block Handl
uc

Co

c
2_
2_

e co
32

es t
pac
Length
Common Heade
t command_tag {

mmand Data

md_type;
t block_handle;
t length;

cmd_data;

mmand are:
 bits

he command type. The valid values for this field are: null, add, update, delete,
ket, query statistics, and query properties.

24
Intel Confidential

R

 Transport Protocol Design
Block_handle : 32 bits

This field defines the block handle or block identifier for which this command is being issued.
Length : 32 bits

This field defines the length of the command data in bytes that is encapsulated in the command.
Cmd_data : variable length

This is the configuration/query data, which is encapsulated using the method negotiated during FE
bind phase of the protocol. For the FLEX protocol implementation, the command data is
encapsulated as a TLV structure. During the configuration/query request, this structure is
essentially the NPF data structure that is passed from the CP module to the FP Plug-in API. For
example, in case of a Add_IPv4_NextHop() call, the NPF_IPv4_NextHop structure which is
passed in the call will be copied in this field.

In general, this field will contain the Block structures defined in the ForCES FE Model [5]. In the
configuration/ query response, the command data will contain the result of the configuration or the
query information again in the form of NPF data structures, which are passed by the FP module to
the Backend API.

The ForCES protocol command status (response) appears as follows:

typedef struct command
Uint32_t cmd_

 Uint32_t bloc
 Uint32_t glob
 Uint32_t leng
 Void* cmd_
} command_resp;
Block_handle : 32 bits

This field defi
Command Type
e

_
t
k
a
t
d

n

Block Handl
Global Result
ta

Co

yp
_h
l_
h;
at

es t
Length
g {

mmand Data

e;
andle;
result;

a;

he block handle or block identifier for which this command is being issued.

25
Control Plane-PDK 2.11

Transport Plugin Design
Design Specification

R
Length : 32 bits

This field defines the length of the command data in bytes that is encapsulated in the command.

Global_result : 32 bits

This field defines the global result of the command. The individual results will be part of the
command data.

3.3.7 FE Events/Packet Redirection
The FE events, such as, port down or change in certain capabilities, are reported to the CE using
the FE event notification message. The packets being redirected to the CE from the FE are sent
using this message. It is similar to the configuration/query messages as in it consists of the
common header followed by one or more variable length commands or events.

The ForCES FE event notification appears as follows:

 t

 e

The fields in the F

Comma

Event_type : 32 bits

This field defines t

11 = Port Event

12 = Block Specific Event

13 = Packet Redirection

14 = Capability Event

The ForCES FE pa
Length
Command or Event Type = Port Event
Block Handl
Version = 1
Command Correlator = 0
E event

nd or Ev

he even

cket red
Message Type = FE Event No
Flags = 0
notification are:

ent Data

t type. The valid values for this field are

irection appears as follows:

26
Intel Confidential

R

 Transport Protocol Design

 e

3.3.8 CE, FE Unbinding

Packet + metadata

The CE or FE can send an unbind message to the other at any time to end their association.

The unbind message appears as follows:

 d

The field

FE behavior : 32 bits

This field def
are:

1 = Continue Operatio

2 = Stop Operation
Reason (optional)
Version = 1
Command Correlator = 0
ines the behavior

n
Message Type = Unbin
Flags = 0
Length
Event Type = Packet Redirection
Block Handl
Version = 1
Command Correlator = 0
Message Type = FE Event Not.
Flags = 0
:
s in the unbind message areFE Behavior (CE unbind)
 of the FE after the unbind occurs. The valid values for this field

27
Control Plane-PDK 2.11

Transport Plugin Design
Design Specification

 R
3.3.9 Heartbeat

The heartbeat is an optional message, which is exchanged between the CE and FE according to the
interval set during FE binding. It is used to detect failure in communication between the CE and
FE and helps the fast failover mechanism.

The heartbeat message appears as follows:

3.4 Failover Support
The ForCES protocol provides support for redundant control elements in the CP-PDK architecture
and fast failover between primary and secondary CEs in case of failure. In order to provide this
support, the protocol provides a failure detection mechanism using heartbeat messages, which can
be used to detect any failure in communication between the control and FE.

3.5 Protocol Encapsulations
There are several encapsulations defined for ForCES protocol messages to work over different
interconnect technologies. The interconnect technologies can consist or IP-centric technologies
such as TCP/IP over Ethernet or non-IP centric such as PCI or Infiniband.

3.5.1 ForCES protocol Encapsulation for TCP
The ForCES protocol encapsulation for TCP appears as follows:

Length : 32 bits

ForCES

This defines the le

Length
Version = 1
Command Correlator = 0
 protocol m

ngth of the
Message Type = Heartbeat
Flags = 0
essage

 entire ForCES protocol message in bytes including the header.

28
Intel Confidential

Part 4: Interconnect Abstraction
Layer Design

R

4 Interconnect Abstraction Layer Design
This section describes the design details of the interconnect abstraction layer. It is based on the
COPS portability layer specification defined in [7]. It has certain features such as the packet buffer
manager, which help in enhancing the performance of the transport plug-in implementation.

4.1 Packet Buffer Management
This module helps in reducing the cost or performance penalty of memory related operations, such
as malloc, in the transport plug-in. A chunk of memory is pre-initialized and divided into equal
sized buffers. One or more buffers depending on the size requested by the transport plug-in APIs
are made available.
typedef struct _plBufMem {

 uint32_t total_Q_size;

 uint32_t buffers_used;

 unsigned char *pBufMem;

 uint32_t pBufFreeMem;

 uint32_t pBufFreeTail;

 uint32_t pBufSend;

 uint32_t pSendTail;

 uint32_t pBufRecv;

 uint32_t pRecvTail;

} plBufMem;

typedef struct _plBufHeader {

 uint32_t connect_id;

 uint32_t flags;

} plBufHeader;

typedef struct _plHeader {

 uint32_t cookie;

 uint32_t length;

} plHeader;

typedef struct _plBuf {

 plBufHeader pbufheader;

 plHeader plheader;

 unsigned char pbuf[0];

} plBuf;

The following shows the packet buffer encapsula nd ready to be delivered over interconnect:

S

MAGIC COOKIE
ted a

FEID
FLAG
Length
31
Control Plane-PDK 2.11

Transport Plugin Design
Design Specification

 R

ForCES protocol message

FEID: 32 bits

.

.

.

.

.
This defines the identifier the interconnect uses to send and receive to the correct FE. The field is
used and filled by the interconnect; this part of the buffer is not delivered across the interconnect.
FLAGS: 32 bits

This defines the buffer management flags (FREE/UNCHAINED/CHAINED). CHAINED is used
when more than one consecutive buffers have been chained when size requested is more than a
single buffer. This part of the buffer is not delivered across the interconnect.
MAGICCOOKIE: 32 bits

Reserved or used to identify a valid transport plug-in interconnect message. Delivered across the
interconnect
Length: 32 bits

This defines the length of the ForCES protocol message. Delivered across the interconnect.

Table 3. Packet buffer encapsulation table

Function Description

uint32_t
pb_getBuffer (

uint32_t FEID,

uint32_t size,

uint32_t flags)

Returns a pointer to the Buffer of size

uint32_t
pb_freeBuffer(

Void * buf)

Free Buffer to be called by the layer that no longer passes the
buffer to another layer

Uint32
pb_PlBufferInit(

Uint32 Qsize)

Initialize Buffer API

Uint32
pb_PlBufferDeInit(

void)

De-initialize Buffer API

4.2 Datagram API
This module provides a generic API to transport datagram based messages over a reliable
connection. The transport plug-in will use the datagram API and the packet buffer management

32
Intel Confidential

R

 Interconnect Abstraction Layer Design
API to send and receive messages. Datagram API implementation could use TCP/IP for reliable
and fast delivery of messages over the networked CE/FE.
typedef void (*CB_DatagramReceive)(void *pbuf, uint32_t
connect_id, uint32_t length);

typedef void (*CB_DatagramException)(uint32_t ex, uint32_t
connect_id);

typedef struct _CBServerDatagramParams {

 CB_DatagramRecieve datagram_receive;

 CB_DatagramException datagram_exception;

} CBServerDatagramFuncs;

typedef struct _datagram_connect {

 uint32_t flags;

 union {

 struct sockaddr_in ipv4_addr;

 struct sockaddr_in6 ipv6_addr;

 // Place holder for the other connection
protocols.

 } saddr;

 }datagram_connect;

typedef struct _CBClientDatagramParams {

 datagram_connect connect_info;

 CB_DatagramReceive datagram_receive;

 CB_DatagramException datagram_exception;

 } CBClientDatagramFuncs;

Table 4. Datagram API function table

Function Description

Uint32
InitializeDatagramServer
(CBServerDatagramFuncs)

Initialize Datagram API for server

Uint32
InitializeDatagramClient
(CBClientDatagramFuncs,
uint32_t)

Initialize Datagram API for client

Void SendDatagram(uint32_t,
void* msg, uint32_t size,
uint32_t flags)

Send Client Datagram across the interconnect

Void DeInitializeDatagram() De-initialize Datagram API

33
Control Plane-PDK 2.11

Part 5: Transport Plug-in Design

R

5 Transport Plug-in Design
This section describes the design and implementation details of the transport plug-in.

5.1 Overview
This layer is responsible for the controlling, initialization and shutdown of the protocol
implementation. On the control plane, it converts structures from the FP plug-in API format or
NPF format to the ForCES message formats. On the forwarding plane, it converts structures from
the ForCES message formats to the backend API format or FP plug-in API format, which is
understood by the FP module in the forwarding plane.

5.2 Memory Management
The memory management for the transport plug-in is the same as that described in FP Plug-in API
specification [3].

5.3 Threading Model
The transport plug-in has many threads. Most of these threads reside in the interconnect layer,
there are three which always exist: the listen, send, and receive threads. The listen thread accepts
incoming connections and binds from FE’s. The send and receive threads which handle buffer
flow. There is one thread for every FE connected, which reads packets from the network and
places them in the receive thread’s queue.

The transport plug-in creates a heartbeat thread for each FE when it binds. The heartbeat thread
sends heartbeat messages at a negotiated rate.

These threads are initialized and provided by the portability layer.

5.4 Timeout Mechanism
This layer provides a timeout mechanism to help make the PDK design more robust. This allows
the control plane PDK to set a timeout interval for each request sent to the forwarding plane. If the
FP does not send a response within a certain time interval, the transport plug-in informs the CP-
PDK.

5.5 Data Structures
On the control plane, the transport plug-in maintains a list of connected FEs. It uses the FEList to
maintain the mapping of FEID, which is the FE identifier generated by the transport plug-in, to
connectionid, which is used by the interconnect layers to identify the connection to the FE or
client. The FEInfo structure, which is stored in the list is shown below.
typedef struct FEInfo_t{

37
Control Plane-PDK 2.11

Transport Plugin Design
Design Specification

 R

 FPPI_FEID feid;

 uint32_t connectionid;

 forces_bind_info_t bindinfo; /* all the information */

 forces_portlist_t* portlist; /* about the FE */

 forces_blocklist_t* blocklist;

 FPPI_FE_Caps* fecaps;

 DList outstandingcommands; /* commands sent to FE */

 PilThread heartbeatthread; /* heartbeat info: thread
handle */

 int msgpipe[2]; /* pipe to shut it down
*/

 int missedbeats; /* count of missed beats
from FE */

} *FEInfo;

It uses the outstandingcommands list to maintain the callback information required for all queries
and commands. The CBInfo structure, which is stored in the list shown below.
typedef struct FPPCommand_t {

 FEInfo feinfo; /* FE this command belongs to */

 ForCESMessage msg; /* handle to message sent */

 uint32_t cmd_type; /* ForCES command */

 uint32_t block_type; /* and block */

 char* buffer;

 size_t size;

 uint32_t forces_correlator; /* correlator sent with
this

command to FE */

 FPPI_CORRELATOR fppi_correlator; /* correlator to return
to PDK */

 FPPI_CBHANDLE fppi_cbhandle; /* callback to invoke */

 FPPCommandHandler handler; /* function to invoke to
decap

any results */

} * FPPCommand;

5.6 Pseudo-Code for Control Plane
The Pseudo-Code for calls such as Initialize, Shutdown, Start, Stop, RouteAdd, RouteDel, that are
exposed by FP Plug-in API on the control plane, has been shown below.

FPPAPI_Initialize
{

 // Initialize all state info lists

 npf_list_init(&ConnectList, PIL_FreeMemory);

 npf_list_init(&CBInfoList, PIL_FreeMemory);

 // Initialize portability layer

 return success;

38
Intel Confidential

R

 Transport Plug-in Design
}

FPPAPI_Shutdown
{

 // destroy all lists that were initialized

 npf_list_destroy(&ConnectList);

 npf_list_destroy(&CBInfoList);

 // De-initialize portability layer

 return success;

}

FPPAPI_Start
{

 // ready to receive any FE bind requests

 return success;

}

FPPAPI_Stop
{

 //send unbind message to all FEs

 return success;

}

FPPAPI_ipv4_unicastRouteAdd
{

 // Determine size of buffer needed to send command

 // Create new FPPCommand with:

 // appropriate ForCES command and block for ipv4 route add,

 // size required for buffer

 // callback handle

 // correlator

 // and a handler

 // encapsulate parameters into FPPCommand’s buffer

 buffer = encapsulate_uint32_t(route_count, buffer);

 buffer = encapsulate_array_ipv4Route(route_list, route_count,
buffer);

 // Send command

 FPPCommandSend();

 return success;

}

5.7 Pseudo-Code for Forwarding Plane
The Pseudo-Code for calls such as Initialize, Shutdown, bindRequest, SendEvent, SendPacket,
ReportStatus, which are exposed by Backend API on the forwarding plane, has been shown below.

BENDAPI_Initialize

39
Control Plane-PDK 2.11

Transport Plugin Design
Design Specification

 R

{

 // Initialize all state info lists

 npf_list_init(&ReportList, PIL_FreeMemory);

 // Initialize portability layer

 return success;

}

BENDAPI_Shutdown
{

 // Destroy all lists that were initialized

 npf_list_destroy(&ReportList);

 // De-initialize portability layer

 return success;

}

BENDAPI_bindRequest
{

 // send FE bind message

 return success;

}

BENDAPI_unbindRequest
{

 // send FE unbind message

 return success;

}

BENDAPI_sendPacket
{

 // encapsulate packet list into ForCES message

 // send message to the CP

 return success;

}

BENDAPI_sendEvent
{

 // encapsulate event type & event data into ForCES message

 // send message to CP

 return success;

}

BENDAPI_Report_Status
{

 // search ReportList for cbtype, cbcorrelator

 // initialize Report message

40
Intel Confidential

R

 Transport Plug-in Design
 // check response_data if cbtype is GetProperties or
GetStatistics

 // otherwise encapsulate a success or failure report

 // send message to CP

 return success;

}

41
Control Plane-PDK 2.11

Part 6: Transport Plug-in Design

R

6 Code Generator Design

6.1 Code Generator Introduction
This section describes the design for the transport plug-in code generator, and the reasoning behind it.

The transport plug-in consists of two major parts: the core where all the state is maintained and all the
ForCES communication takes place, and the APIs. The APIs expose the functionality of the forwarding
plane to the control plane. Each function in an API serializes the command and any data from the
control plane, sends them to the correct client, which then de-serializes the data and makes the
appropriate calls into the forwarding plane. Then, any results are serialized and sent back to the server,
which de-serializes the data and makes the appropriate callback into control plane.

6.2 Code Generator Requirements
The ultimate goal of the code generator is to take a transport plug-in API description, including
functions and data types, and generate all the code required to build and send ForCES commands, and
serialize and de-serialize all commands, data and results, for both the server and client sides of the
transport plug-in. At this stage the focus is on generating the serialization.

The code generator must:

• Take as input a standard C header file, which contains all the data types that will need to be
serialized. This C header file must be able to coexist and be used by the rest of the PDK. This will
insure that there is no duplication of data type definitions, thereby reducing the chances of
synchronization problems later, if the types were to change.

• Be able to do all the same preprocessing on the input file that the compiler will do when building
the PDK. This insures that any code that is #ifdef’d is not included, or any macro substitution is
performed.

• Generate all serialization, encapsulation/decapsulation routines for all types in the input file, and
put them into appropriate .c files, and generate appropriate .h files for use by other .c
files.

• Any changes to the input file required by the code generator must easy to write, human readable,
and not impact any other .c files that may be including the input .h file.

• All output of the code generator must compile without any changes by the user

6.3 Code Generator Design Considerations
Given that the code generator cannot be omniscient, the input file must give it some hints about certain
data types and fields.

For example, given this data type:
 typedef struct {

 uint32_t num;

 uint32_t * arr;

 } my_array;

45
Control Plane-PDK 2.11

Transport Plugin Design
Design Specification

 R

What is the meaning of the field arr? Is it a pointer to a single uint32_t, or is an array of length num
uint32_t’s? In order to instruct the code generator on how to treat array, the code needs to be marked
up. For other C compilers, we have elected to use comments to hide our markups. Here is the above
example, reworked to tell the code generator that array is an array.
 typedef struct {

 uint32_t num;

 uint32_t * arr; /* @!array-length:num! */

 } my_array;

The code generator knows that the field arr is an array of length num, and will encapsulate and
decapsulate accordingly. Notice that the markup is entirely enclosed in a C style comment, effectively
hiding it from the compiler.

Note: The special @!<command>:<value>! notation should prevent normal comments from interfering
with the code generator.

The only other markup needed is for unions. Given any union, encapsulation and decapsulation of the
appropriate field is the only motive. Here is an example of unions:
 typedef struct {

 uint32_t type;

 union /* @!union-switch:type! */

 {

 uint32_t a; /* @!union-case:0! */

 my_array b; /* @!union-case:1! */

 foo bar; /* @!union-case:GLOBAL_DEFINE! */

 } u;

 } my_array;

The resulting encapsulation/decapsulation code produced by the code generator will then switch off of
the field type, and if the result is 0 will encapsulate/decapsulate a uint32_t and store it in UA.

To avoid multiple copies of data types in header files and to avoid feeding extraneous information to the
code generator, a developer can break existing header files into two parts. The main header file and a
sub-header file that holds all the information, should be given to the code generator. For example:

npf_header.h:
 typedef void* npf_context;

 …various other things never encapsulated…

 #include npf_header_remote_types.h

 …more local stuff…

npf_header_remote_types.h:
 #typedef uint32_t npf_correlator;

 #typedef uint8_t npf_array_foo[SIZE_OF_FOO];

Only the npf_header_remote_types.h would be run through the code generator, or one could
put #ifdef around only those types that need to have code generated and then make sure that the code
generator has defined it.

46
Intel Confidential

R
Code Generator Design

6.4 Code Generator Design

Much of the design of the code generator is decided by the requirement that it uses existing C header
files. The code generator must be able to parse C syntax, so the majority of the logic behind the code
generator is focused on that.

6.4.1 Code Generator Parser Design
The code generator parser actually has two parts: the lexical analyzer and the parser. The code generator
relies on the Lex and Yacc tools for these parts.

The basic design of the definition file given to Lex to build the lexical analyzer is:
%{

%}

ws [\t]+ /* white space */

id [a-zA-Z][a-zA-Z0-9_]* /* identifiers, types etc */

size [0-9]+ /* hard coded sizes of arrays */

command [a-z][a-z-]* /* markup commands */

nl [\n] /* newlines */

/* States */
%x COMMENT /* c style comments */

%x CPPCOMMENT /* c++ style comments */

%x COMMAND /* markup command */

%%

// { BEGIN CPPCOMMENT; } /* start c++ comment */

<CPPCOMMENT>. { } /* ignore all */

<CPPCOMMENT>\n { BEGIN 0; } /* ends at end of line */

/* { BEGIN COMMENT; } /* begin c comment */

<COMMENT>*/ { BEGIN 0; } /* end comment */

<COMMENT>@! { BEGIN COMMAND; } /* begin markup command */

<COMMENT>\n { }

<COMMENT>. { } /* ignore everything else */

<COMMAND>{command} { /* return command */

 return ID;

 }

<COMMAND>{id} { /* return id for command */

 return ID;

 }

<COMMAND>{size} { /* return size for command */

 return SIZE;

47
Control Plane-PDK 2.11

Transport Plugin Design
Design Specification

 R

 }

<COMMAND>! { BEGIN COMMENT; } /* end command, resume comment */

<COMMAND>{ws} ;

<COMMAND>{nl} { }

<COMMAND>. { }

{ws} /* ignore all whitespace */

{nl} { } /* ignore newlines */

{id} { } /* return an id */

{size} { } /* return an size */

. { }

%%

Other than some state maintenance for the comments and commands, the lexer is seems to be simpleer.
The parser appears to be little complicated. Following is a basic design for the input to Yacc:
%{

%}

%start statements

%%

statements: /* statements are : */

 statements statement /* many statements and a statement */

 | statement /* a statement */

 | /* nothing */

 ;

statement: /* a statement is : */

 definition /* a type's definition */

 | functiondef /* a functions's definition */

 ;

definition:

 TYPEDEF modifieddeclaration

 ;

functiondef:

 type id '(' arglist ')' ';'

 ;

declaration: /* a declaration can be what is being typedef's or

 might be a field in a struct or union */

48
Intel Confidential

R
Code Generator Design

 /* basic type */

 type id ';'

 /* pointer to a basic type */

 | type '*' id ';'

 /* hard core array. already allocated within

 the struct. size is a value or define or something */

 | type id '[' size ']' ';'

 /* a struct, contains multiple fields */

 | STRUCT optid decllist id optarr ';'

 /* a union, like a struct, but different */

 | UNION optid '@' id ':' size decllist optid ';'

 /* enums are basically ignored,

 but we need to remember them for later fields

 and encap/decap them as uint32_t's */

 | ENUM optid '{' enumlist '}' id ';'

 /* functions and function pointers, not used yet

 but may be handy for auto generating api calls */

 | type '(' '*' id ')' '(' arglist ')' ';'

 | type '*' '(' id ')' ';'

optarr: /* incase of an array of structs */

 '[' size ']' /* size of the array */

 | /* or nothing as it is optional */

 ;

type: /* types may be modified, unsigned, long etc */

 modifier id

 | modifier modifier /* long long? */

 | id

 ;

modifier: /* possible modifiers */

 UNSIGNED

 | SIGNED

 | SHORT

 | LONG

 ;

command: /* markup commands */

49
Control Plane-PDK 2.11

Transport Plugin Design
Design Specification

 R

 '@' id ':' size

 ;

decllist:

 '{' declarationlist '}'

 ;

commandchain: /* in future may allow multiple markup commands */

 commandchain command

 | command

 |

 ;

modifieddeclaration: /* markedup declaration */

 declaration commandchain

 ;

declarationlist: /* a list of declaration is : */

 | declarationlist modifieddeclaration

 | modifieddeclaration

 |

 ;

optval: /* optional value in enum */

 '=' SIZE /* = number, or id */

 | /* or nothing */

 ;

enum: /* enum entry */

 id optval

 ;

enumlist: /* list of enum entries */

 enum ',' enumlist

 | enum

 |

 ;

arglist: /* list of arguments to a function */

 arg

 | arglist ',' arg

 |

 ;

arg: /* argument to a function */

50
Intel Confidential

R
Code Generator Design

 type id

 | type '*' id

 ;

size: /* sizes might be hardcoded numbers, or identifiers */

 SIZE

 | id { $$ = $1; }

 ;

id: /* identifier, returned by lexer */

 ID { $$ = strdup($1); }

 ;

optid: /* optional id */

 id

 |

 ;

%%

Lex and Yacc can be run on the definitions files described by the above, generating the code that will
parse the input files of the code generator. The required output of the parser is a list of type definitions.
A type definition is defined as:
typedef struct type_t {

 char* name; /* name of type */

 int typeid; /* unique id for type */

 int kindoftype; /* regular, pointer, array, etc */

 char* size; /* if array or pointer array,

 might be 100 or MAX_SIZE_OF_ARR, etc */

 char* kase; /* case kase: if union member */

 /* pointer to type this type is based on

 i.e. uint32_t or struct, or FOO */

 struct type_t* basetype;

 /* if this is a struct or union, this is a list of the

 fields comprising it */

 list fields;

} * itype;

6.5 Code Generator Code Generation
Once the parser builds the list of type definitions, it is time to start generating code. The code generator
emits encapsulation, sizeof, and decapsulation functions for all entries in the list, as well as header files
for those functions. All code generation is simplistic, following strict templates, and assumes the
existence of encapsulation, decapsulation, or sizeof functions elsewhere for any unknown types. All

51
Control Plane-PDK 2.11

Transport Plugin Design
Design Specification

 R

functions for basetypes have been handwritten earlier and are part of the core of the transport plug-in.
General strategy of all encapsulation, decapsulation and sizeof functions is to reduce all types to their
base types, and call the encapsulation, decapsulation, and sizeof functions of those base types.
Following is an example of this principle:

Example type:
typedef struct {

 uint32_t x;

 char y;

 bar z;

} foo;

generated encapsulation function:
char* encapsulate_foo(

 foo* a,

 char* buf

)

{

 buf = encapsulate_uint32_t(&(a->x), buf);

 buf = encapsulate_char(&(a->y),buf);

 buf = encapsulate_bar(&(a->z),buf);

 return buf;

}

Notice how the encapsulate_foo function calls the encapsulation functions for all the members of
a foo, irrespective of their types, It assumes the encapsulation function exists and takes care of the
encapsulation detail. Notice that the pointer to the buffer that is being encapsulated into is never directly
manipulated, except through assigning it to the result of an encapsulation. The only functions that must
know how much to move forward, in the buffer to encapsulate the next item, are the very base functions
that have been built by hand.

Following is a little complicated example for a decapsulation function:

Example type:
typedef struct {

 uint32_t len;

 bar * arr; /* @!array-length:len! */

} foo;

generated decapsulation function:
char* decapsulate_foo(

 foo* a,

 char* buf

)

{

 buf = decapsulate_uint32_t(&(a->len),buf);

 a->arr = (buf*)malloc(sizeof(bar)*a->len);

 buf = decapsulate_array_bar(a->bar,a->len,buf);

52
Intel Confidential

R
Code Generator Design

 return buf;

}

Notice that the decapsulation function needs to allocate space for the bar array, also known as arr. From
the markup command array-length, the code generator knows that arr is a pointer to an array of len
bar’s. Notice that the function decapsulate_array_bar is called to decapsulate that array. The code
generator produces not only encapsulation and decapsulation functions for all types, but functions to
encapsulate and decapsulate entire arrays for all types.

53
Control Plane-PDK 2.11

	Overview
	Terminology
	Reference

	Transport Plug-in Architecture
	Forwarding Plane Plug-in API (FP Plug-in API)
	Plug-in Backend API
	Transport Protocol
	Control Plane Agent
	Forwarding Plane Agent

	Interconnect Abstraction Layer

	Transport Protocol Design
	Overview
	Protocol Operation
	Protocol Headers and Messages
	FLEX Protocol Header
	FE Binding
	FE Capability Discovery
	FE Topology Discovery
	FE Start Operation
	FE Configuration/Query Messages
	FE Events/Packet Redirection
	CE, FE Unbinding
	Heartbeat

	Failover Support
	3.5 Protocol Encapsulations
	3.5.1 ForCES protocol Encapsulation for TCP

	Interconnect Abstraction Layer Design
	Packet Buffer Management
	Datagram API

	Transport Plug-in Design
	Overview
	Memory Management
	Threading Model
	Timeout Mechanism
	Data Structures
	Pseudo-Code for Control Plane
	Pseudo-Code for Forwarding Plane

	Code Generator Design
	Code Generator Introduction
	Code Generator Requirements
	Code Generator Design Considerations
	Code Generator Design
	Code Generator Parser Design

	Code Generator Code Generation

