

Operating System
Porting Guide

Control Plane-Platform Development Kit 2.11
March 2004

R

Information in this document is provided in connection with Intel® products and services. No license, express or
implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in
Intel's Terms and Conditions of Sale for such products and services, Intel assumes no liability whatsoever, and Intel
disclaims any express or implied warranty, relating to sale and/or use of Intel® products and services including liability
or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or
other intellectual property right. Intel products and services are not intended for use in medical, life saving, or life
sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Copyright© 2004 Intel Corporation.
* Other brands and names are the property of their respective owners.

ii OS Porting Guide
Intel Confidential

R

Contents
1 Overview.. 7

1.1 Terminology.. 7
1.2 References.. 8

2 Platform Independence Layer.. 11
2.1 Porting Considerations ... 11

2.1.1 Support for Threads and Locks... 11
2.1.2 Support for Simple IO calls ... 11

3 Operating System-Dependent Modules .. 15
3.1 RCM... 15
3.2 Virtual Interface Device Driver (VIDD) .. 15
3.3 CE Packet Handler ... 15
3.4 FE Packet Handler.. 16
3.5 Forwarding Plane Module ... 16
3.6 IXA SDK .. 16

Figures
Table 1. Terminology .. 7
Table 2. References.. 8

iii
Control Plane-PDK 2.11

Contents R

iv
Intel Confidential

Part 1: Overview

R

1 Overview
The control plane PDK implementation was written initially for Linux*, which is a Posix-compliant
operating system. Most modules are designed to be portable to any OS. The PDK uses the Platform
Independence Layer (PIL) to ensure portability. The CP-PDK is ported and tested on VxWorks* and
Linux platforms.

There are some components that contain platform-specific implementations or use platform specific
libraries. This document explains what must be done to port these components to different platforms.

1.1 Terminology
Table 1 lists the terms used in this document and provides a definition for each term.

Table 1. Terminology

Term Description

CP-PDK Control Plane Platform Development Kit

Control Element (CE) In a separated control/data system, refers to the processor(s) responsible for
control and configuration of forwarding elements. Used interchangeable with
Control Plane (CP)

Control Plane (CP) See Control Element

FIB Forward Information Base

Forwarding Element (FE) In a separated control/data system, refers to the processor(s) responsible for fast
path forwarding of data. Used interchangeably with FP.

Forwarding Plane (FP) See Forwarding Element

IXA Internet eXchange Architecture

NPU Network Processing Unit

MPLS Multiprotocol Label Switching

OS Operating System

PIL Platform Independence Layer

RCM Route Cache Manager

VIDD Virtual Interface Device Driver

OSAL Operating System Abstraction Layer

7
Control Plane-PDK 2.11

OS Porting Guide
R

1.2 References
Table 2 lists the documents that are referred in the OS porting guide document.

Table 2. References

Reference Document Name

[1] Route Cache Manager Design Reference

[2] VIDD Design Reference

[3] Forwarding Plane Plug-in Design Reference

[4] Software Architecture Overview

[5] Platform Independence Layer API Reference

8
Intel Confidential

Part 2: Platform Independence
Layer

R

2 Platform Independence Layer
The Control Plane PDK uses the Platform Independence Layer (PIL) to enable portability. The PIL
provides a platform-independent API for many common operations. It abstracts the common operating
system services that the PDK uses. The PIL has been implemented and tested only for Linux, Win32*
and VxWorks platforms. The PIL functionality should be ported to the new platform in order to port the
PDK to other platforms. You can minimize the porting effort, as you do not have to port all the PDK
code.

2.1 Porting Considerations

2.1.1 Support for Threads and Locks
The PDK is multi-threaded. The PDK uses the PIL functions to implement the thread and locking
functions for ensuring uniform running of the PDK on all platforms. This ensures that the PDK code
does not have to change on different operating systems. The implementation of the PIL functions for
each operating system depends on the support provided by the OS for threads and locking.

For example VxWorks supports multiple tasks, but it does not support the concept of multiple threads.
Therefore, the PIL thread functions for VxWorks use tasks to implement the thread functions, such as
PIL_CreateThread, PIL_GetCurrentThread, PIL_SuspendThread,
PIL_WaitForThread, and so on.

When porting the PIL to an unsupported OS, you must ensure that the PIL thread functions and the PIL
critical section functions are fully supported.

2.1.2 Support for Simple IO calls
The PDK assumes support for the following:

• Simple IO function calls such as read(), write(), select(),and so on.

• Standard C libraries. If the standard C libraries do not support these simple IO calls, you should
add such support in the PIL implementation.

11
Control Plane-PDK 2.11

OS Porting Guide
R

12
Intel Confidential

Part 3: Operating System-
Dependent Modules

R

3 Operating System-Dependent Modules
Some components of the PDK are OS-specific and are implemented using platform-specific libraries.
The following sections describe these dependencies.

3.1 RCM
The Route Cache Manager (RCM) runs on top of the PDK and uses the IPv4 APIs to update the
Forwarding Information Base (FIB) on the forwarding plane. The RCM acquires information on added
or deleted routes from the kernel and invokes the IPv4 API for route table management.

The RCM module opens a routing socket using the RTNETLINK library to obtain the updated route
table information from the kernel. The RCM module registers a callback function that is invoked when
there is a change in the routing table.

RTNetLink is a user-level library that contains additional messages for kernel interaction, in addition to
the standard NetLink messages. Refer to Section 1 for more information on NetLink and the specific
functions used. . The RTNet library need not be supported on other platforms. If the RTNet library is
not supported on other platforms, you must add additional functionality to complete the interaction with
the kernel and to retrieve the route table information.

3.2 Virtual Interface Device Driver (VIDD)
The VIDD module simulates the forwarding plane interfaces on the control plane, and creates virtual
interfaces for the user to manage. If a control plane management application changes the IP address of a
forwarding plane interface, the VIDD module must reflect the change in the corresponding virtual
interface. The VIDD module must reside in the kernel for this purpose. The VIDD is a kernel module in
the PDK that is controllable from the user space.

The VIDD module is an OS-dependent layer, as it must reside in the kernel layer. It exposes IOCTLs to
create and delete virtual interfaces. If you want to port the PDK to a new platform, you should rewrite
the VIDD module to suit the new platform.

Note: Newer versions of Linux (2.4.x) have built-in VIDD support and packet handler support.
Therefore, there is no need to rewrite the entire driver and you can control it from the user space.

3.3 CE Packet Handler
The packet handler component performs the following:

• Deliversthe tunneled data packets from the FE to the corresponding virtual interface

• Looks for packets transmitted on any virtual interface and tunnels them to the correct FE for
transmission on the correct egress interface.

The virtual interfaces that are created are treated as simple file descriptors in the current Linux
implementations, and the CE packet handler module uses simple open, read, and select calls to look for
packets and read the data.

Since the implementation of the VIDD is OS-dependent, the packet handler module should be changed
depending on how the VIDD implementations treat the virtual interface. If the VIDD module is

15
Control Plane-PDK 2.11

OS Porting Guide
R

implemented for virtual interfaces using a similar mechanism as Linux, there is no need to change the
packet handler component.

For example, the implementation of the packet handler component will not change while upgrading to
newer versions of Linux.

3.4 FE Packet Handler
The FP module uses raw and packet sockets to send the packets. The raw sockets are used for unicast
packets and packet sockets are used for multicast packets. The raw sockets are more generic and are
usually supported while the packet sockets are not universally supported in all operating systems. Since
the packet-handling support is built into IXA SDK, none of the above two packets were used for
version 1.1 of the PDK.

All locally destined packets are sent to the core for exception processing on an IXA platform.
Additional support must be provided to distinguish between the packets that are to be sent to the local
stack and the remote control plane. The exact nature of this support depends on the system being used
and the stacks that are being run on the local and remote machines.

3.5 Forwarding Plane Module
The forwarding plane (FP) module of the PDK translates the NPF invocations to the specific Network
Processor (NPU) invocations. The FP module consists of several FP plug-in managers that are
responsible for specific functionalities. For example, the IPv4 FP plug-in manager is responsible for
adding or deleting routes. The MPLS and QoS FP plug-in managers are responsible for implementing
the MPLS and QoS functionalities of the router.

Each FP plug-in manager comprises a translator component and a platform-specific component. The
translator components are fully portable across the operating systems and written using PIL.

The platform-specific component is specific to the NPU. The platform-specific component invokes
some OS-specific network calls, such as setting the Layer 2 (L2) attributes of the interfaces, adding
routes to the local IP stack on the data plane to synchronize with the NPU route tables, and so on. While
porting across operating systems, you should consider the above factors of the platform-specific
component, as the number of OS-specific calls is limited.

3.6 IXA SDK
The IXA SDK also uses an OS abstraction layer called the OSAL. The OSAL abstraction layer is
different from the PIL. The PIL and OSSL layers may be merged in the future to create a generic OS
abstraction layer that can be used across all components of the PDK.

16
Intel Confidential

	Overview
	Terminology
	References

	Platform Independence Layer
	Porting Considerations
	Support for Threads and Locks
	Support for Simple IO calls

	Operating System-Dependent Modules
	RCM
	Virtual Interface Device Driver (VIDD)
	CE Packet Handler
	FE Packet Handler
	Forwarding Plane Module
	IXA SDK

