Protocol Support Service

Design Specification

Control Plane-Platform Development Kit 2.11
March 2004

Information in this document is provided in connection with Intel® products and services. No license, express or
implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in
Intel's Terms and Conditions of Sale for such products and services, Intel assumes no liability whatsoever, and Intel
disclaims any express or implied warranty, relating to sale and/or use of Intel® products and services including liability
or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or
other intellectual property right. Intel products and services are not intended for use in medical, life saving, or life
sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.
Copyright© 2004 Intel Corporation.

* Other brands and names are the property of their respective owners.

1l Control Plane-PDK 2.1

Intel Confidential

intal

Contents
Protocol SUPPOIt SErVICeooiiiieeeciiiiiiirrrrrce s e r s s s s e s e s nnnnnnes i
CoNtENTS... .. iii
Part 1: IntroducCtion ... ————— 7
T INtrodUCHION... e —————— 9
PR T = 1 41T Lo o 9
Table 1. Terminology table...........o e 9
1.2 References.......ccciiiiiiiiiiii 10
Table 2. Reference table ... 10
Part 2: Control Plane PDK and Routing Protocols.........ccccccemmmmmmmmmmmmmmnmnnnnnnnnennnnnnnn 11
2 Control Plane PDK and Routing Protocols.............cccommmmemmncciiininssssssessssssssneenns 13
Figure 1: Control plane components of the CP-PDK..........cccoumceiiiiiiiiireeennnnne, 14
2.1 Virtual Interfaces and Choice of Tunneling Protocol.........ccccccccceevrrrrnnnnn 15
2.2 VIDD - Simulating Forwarding Plane Interfacescccccooiiimnnnnnnnnnneees 16
Figure 2: VIDD virtualization effect..............cccccc, 16
2.3 Forwarding Plane Support for Data Packet Transport................cceerenneee 17
2.4 VIDD and the Packet Handler API............r s 17
Part 3: Virtual Interface Controller (VIC).......cceucciiiiiiiiiiriecciss s e s s s e eennnnns 19
3 Virtual Interface Controller (VIC)ccccciiiiiriinnninninssssssnes 21
3.1 Interactions with other PDK Modules.............ccommmmmiiiiiiiiiiiniiininnnns 21
3.1.1 Execution ConteXt.........ooooiiiiiiiiii e 21
3.1.2 INItAlZAatioN ..o 21
3.1.3 ShULdOWN ... e 21
3.1.4 Managing Virtual Interfacesoevvveiviiiiiiiiiiiiiiiieeeeeeeeeeee 22
Part 4: Virtual Interface Device Driver (VIDD) for LINUXccovurueveeeeesessesesesessseens 23
4 Virtual Interface Device Driver (VIDD) fOr LiNUXccoeeeeeerereseresesessssssssssssssssnnns 25
4.1 DESIgN e 25
4.2 Implementation Changescccceeeecciiiiiiiicsceeecre e e eennnne 26
o I /11 0T a7 ¢ =T o 1= U 26
A Y =[] G @1 g =T Lo [SRR 26
Figure 3: Data packet transmisSion ... 27
4.3 Creating and Manipulating Tunnelsccccieeeccciiiirre s 28
4.3.1 Creatinga New TunNNelcooviiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 28
4.3.2 Settinga Tunnel's IP AdAress..........oouuiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeee 29
4.3.3 Shutting Down and Deleting a Tunnel..........ccccovvvviviiiiiiiiiiiiiiiiiieeeee, 29

iii
Control Plane PDK 2.11

Contents

4.3.4 Other COMMANGS........cooiiiieiiiieeeee e e e e eaas 29

Part 5: VIDD fOr VXWOTKScccoceueueerereceessssssssssssssesesssssssssssssssesssssssssnssssssssssssnens 31
5 VIDD fOr VXWOIKS cucueuererrrerreccesesssssessesssssssssssssssssssssssssessssssssnssssssssssssssnsnsas 33
5.2 VIDD System Data Structures........cccceeeciiiiiiiimnnccecssss s 33
5.2.1 DEV_OBJ - Device-Specific Control Objectccccevvvvviiiiiiiiiinnnnnn. 33

522 END ERR Data Structure...........cuueeiiiiiiiiiiiiieeeeeeeeeeeeeee e 34

5.2.3 END_OBJ Data Structurecoooooeiiiiiiiiee e 34

524 M2_INTERFACETBL Data Structureccoooeeeieeeiiiiiiiieee e, 35

5.3 VIDD Local Data Structures...........ceeeiiimieeiiiiireecs s ssess s s eesns s e eeees 36
5.3.1 pdk_vidd_physical_if infO........cccoeiiiiiiiiiiiii 36

5.3.2 pdk_vidd_physical_if NOdeccoviiiiiiiiiiiiee e 36

5.3.3 pdk vidd _Clrl...coooeeeeeeee s 37

54 MUX INterface APl et ress s s e s s s s s rnnaa e e rnnnn 37
Table 3. System calls for MUX interface tablecccceveemcciiiiiiiiiereee, 37

5.5 VIDD System Function Calls.............cceumrimmimimmmimmmmmminneinnssssssesssss e 38
551 pdk vidd_npt_10ad().....ccoomiimiiiiieee e 39

5.5.2 pdk_vidd_npt_unload().......ccoummiiiiiiiiii e 39

55.3 pdk _vidd _npt_start()cccoiiiiiiii e 40

554 pdk vidd NPt _StOP()..eeeeeeeeeieiiiieie e 40

555 pdk vidd _npt ioCH()....ccooiimiiiiii e 40

Table 4. IOCTL commands table........cccccoiiiieiiiiricccrrr e e 40
55.6 pdk vidd_Npt_SeNnd()....cceeiiiiiiiie e 41

5.5.7 pdk_vidd_npt_ mCastAddrAdd()ccoemmmmmmiiieeieeeee e 42

5.5.8 pdk _vidd_npt_mCastAddrDel()cccomemmmmmiiiieeeeeeie e 42

5.5.9 pdk_vidd_npt_mCastAddrGet().........ccccuvrmiiiiiiiiiiiice e, 43

5.5.10 pdk_vidd_npt pollSENd() ..ceeeeemeieeeeeeiieeee e 43

5.5.11 pdk_vidd_npt POIRCV() ..eeevrreriiiiiieeieeee e 44

Part 6: CE Packet Handler for VXWOrKSc..cooiiieiiiiieci s r e e e e 45
6 CE Packet Handler for VXWOIKSccccciiiiieiiiiiriense s rsesss s s s s s s mssss s e semnssnssennas 47
6.1 Execution ContexXt.......ccccciiiiiimiiiiiieeir s s s s s r e s s s mn s s s nmanaas 47

6.2 INItializationoooeeeeii e e nnan 47

3¢ TR = o 11 o o 11V o P 48

L S © T o T o = = 1 o OO 48

6.5 Packet Listen Thread........... i e e e e e 48

6.6 ONFEUNDINd..........o o e 49

6.7 On Packet Receive from VIDD..........cccccoiiiirmiiiiireenis s rrsess s reesss s e seeas 49

6.8 Data StrUCtUIeSccceueiiiiieci et rr e s e s e e e s s e e na e e e nnnn 49
Part 7: FE Packet Handler for VXWOIrKS........c..cooiieeiiimieeis s err s s e er e s 51
7 FE Packet Handler for VXWOIKScccuciiiiieiiiiiriecs s ers s s ssssss s e semmssns s ennns 53
71 D 123 T o O 53

iv

Intel Confidential

intal

Contents

741 INIAlZAtION .o 53

7.1.2 Incoming Packets........cooooiiiiii i 53

7.1.3 Outgoing Packets. ... 54

Revision History
Revision Description Date Author

2.11 Updated for Release 2.11 March 2004 Udaya Shankar
21 Updated for Release 2.1 December 2003 Udaya Shankar
2.0 Updated for Release 2.0 August 2003 Udaya Shankar

v

Control Plane PDK 2.11

Part 1: Introduction

intal

1 Introduction

1.1

Network elements such as switches and routers can be classified into three logical operational
components:

¢ Control plane
e Forwarding plan

e Management plane.

The control plane controls and configures the forwarding plane and the forwarding plane
manipulates the network traffic. The control plane executes different signaling or routing protocols
and provides all the routing information to the forwarding plane.

The forwarding plane makes decisions based on this information and performs operations on
packets such as forwarding, classification, and filtering.

An orthogonal management plane manages the control and forwarding planes. For example, the
control plane in a router executes routing protocols, the forwarding plane performs hardware-
based switching, and the management plane starts or stops routing process or performs logging.

The introduction of standardized Application Program Interface (API) within the above-mentioned
planes can help system vendors, Original Equipment Manufacturer (OEM), and end-users of these
network elements to mix and match components available from different vendors to achieve a
device of their choice. The Network Processing Forum (NPF) API is designed for this purpose, as
it presents a flexible and well-known programming interface to the control plane applications. It
makes the existence of multiple forwarding planes, as well as vendor-specific details, transparent
to control plane applications.

The hardware properties and nature of interconnect used between the control and the forwarding
planes are isolated. The protocol stacks and network processors available from different vendors
can be easily integrated with the NPF APIs. The APIs included in the Control Plane Platform
Development Kit (CP-PDK) are based on the NPF APIs. For more information about NPF, refer to
http://www.npforum.org/.

This document describes the design of Protocol Support Services for the CP PDK. This includes
the Virtual Interface Device Driver (VIDD), VIDD Controller (VIC) and control element (CE) and
forwarding element (FE) packet handler modules of the CP PDK. The document is intended for
developers of these modules and developers of other modules that make use of them.

Terminology

Table 1 lists terms used in this document and provides an expansion for each term.

Table 1. Terminology table
Version Date
ARP Address Resolution Protocol
Control Element (CE), Control In a separated control/data system, refers to the processor(s) responsible for control and
Plane (CP) configuration of forwarding elements. Used interchangeable with Control Plane (CP)
COPS Common Open Policy Service protocol

9
Control Plane-PDK 2.11

http://www.npforum.org/

Protocol Support Services
Design Specification

intal

CORBA Common Object Request Broker Architecture (www.omg.org)
CP-PDK Control Plane Platform Development Kit
ForCES Forwarding and Control Element Separation protocol, currently being standardized at

IETF

Forwarding Element (FE),
Forwarding Plane (FP)

In a separated control/data system, refers to the processor(s) responsible for fast path
forwarding of data. Used interchangeably with FP.

ICMP Internet Control Message Protocol

IXA Internet eXchange Architecture

IXP, IXP 2000 Internet eXchange Processor, and a current instance of this processor. There are two
versions of the IXP2X00 — IXP2400 with 8 microengines targeted at OC-48 POS line
rates and IXP2800 with 16 microengines targeted at OC-192 POS line rates.

MPLS Multiprotocol Label Switching

NPF Network Processing Forum

OSPF Open Shortest Path First (routing protocol)

RIP Routing Information Protocol

Intel® XScale™ core

Forms the core of the IXP 2400 and 2800

1.2

References

Table 2lists documents referenced in, or related to, this document.

Table 2. Reference table
Version Date
[1] Software Architecture Overview
[2] Forwarding Plane Plugin API Reference
[3] Route Cache Manager Design Reference
[4] Configuration and Management Design Reference
[5] Forwarding Plane Module Design Reference

10

Intel Confidential

Part 2: Control Plane PDK and
Routing Protocols

intal
2 Control Plane PDK and Routing Protocols

In order to support existing routing protocols and legacy control applications without
modifications, the CP-PDK must provide additional support. This document describes the design
of the approach of PDK to support legacy routing protocol stacks, such as, GateD, RIP, and OSPF,
and executing in the control plane without any modifications. In the PDK, a set of modules,
collectively termed Protocol Support Services, is responsible for providing this support.

This approach is based on the following:

Existing routing protocols and legacy applications use the socket interface to send and receive
protocol/data packets. Internally, the socket interface uses the different physical interfaces
available on the device, corresponding to physical ports, in a device-independent manner.

¢ Virtual Interfaces: If we can provide control plane applications with virtual interfaces
that represent actual physical forwarding plane interfaces, routing protocols and other
control plane applications will see the physical forwarding plane interfaces as virtual local
interfaces on the control plane, allowing them to function without any modifications. This is
accomplished in the CP-PDK by using a VIDD module that simulates all forwarding plane
physical interfaces to the networking stack on the control plane.

e Data packet transfer: In addition to the virtualization of interfaces, packets directed to
protocols/applications on the control plane need to be transported from the forwarding
plane. Packets from the control plane that are transmitted to the virtual interfaces, are meant
to be sent out to the corresponding physical interfaces on the forwarding plane. These
packets are known as data packets. The exact mechanism and protocol that is used to
transport or tunnel these packets is implementation dependent and is independent of virtual
interfaces since virtualization of forwarding plane interfaces is essential for supporting
unmodified control plane protocol stacks. In the CP PDK, such data packets are transported
using an extension of the IP-in-IP protocol. The issues, advantages and disadvantages of this
approach are detailed in section 2.1.

¢ Synchronizing CE routing table updates with FE: In addition to providing the
above, a mechanism has to be provided to synchronize the routing table maintained in the
control plane with the routing tables maintained on the individual forwarding elements.
Routing stacks like GateD use the ioctl interface to populate the kernel FIB. With VIDD in
place, routing protocols running on the control plane continue to add and delete routes in the
kernel FIB of the control plane. While these routes are needed in control plane for correct
functioning of the routing protocols, they are also required to be sent to the forwarding
plane blades for configuration of the FIBs, so that packets can be forwarded. In order to
distribute the route to forwarding plane FIBS, an application called route cache manager
runs on top of CP-PDK and acquires these routes and invokes the IPv4 APIs. The route
cache manager is described in more detail in [3]. The CP-PDK then handles the population
of the FIBs on various forwarding plane blades with appropriate routes.

This process of virtualization and tunneling provides complete support for running unmodified
legacy applications on the control plane. A high level architecture of the Linux version of the
PDK control plane components is shown in Figure 1.

13
Control Plane PDK 2.11

Protocol Support Services
Design Specification

Control Element NPF Application and Management APIs
IPv4 API | MPLS API Config & Namespace
G Impl. Impl. Mgmt Impl Impl
0 —
Binding Topology
et] CB; lT S and Discovery Label Manager Manager
e P P P Virtual Interface Controller CE Packet Handler
F
D Forwarding Plane Plug in API
User Transport Plug in
Kernel
VI-0 || VI-1 || VI-2 || VI-3
create/manage virtual Transport
sockets
interfaces Protocol
Tcp UDP (ForCES /
CORBA)

virtual
interfaces IP Layer (VIP)

Virtual Internet Protocol

CE-FE interconnect
A .
interface
Tunnelled
data packets
Forwarding
Element Transport Plug in
FP Module
IP packets
(RIP/
OSPF,etc.)
Local FE Packet Handler
v TCP/IP

Stack

Filter Packets

Packet forwarding elements (Micro ACEs, for e.g.)

Figure 1: Control plane components of the CP-PDK

It is to be noted that simulating the FP interfaces on the CP is required only if the CP and FP are

physically separated. If they are running in the same environment, virtual interfaces and are not
required.

This document details the design of the following components:

¢ Virtual Interface Controller (VIC) — This is a module of the PDK that interacts with
other components like namespace and configuration and management module to control the
creation and management of the virtual interfaces.

¢ Virtual Interface Device Driver (VIDD) — This is a module that attaches virtual

network interfaces to the network stack. In Linux*, this is part of a greater module that
needs to be inserted into the kernel. In VxWorks , it is built directly into the control plane.

14

Intel Confidential

intal

2.1

Control Plane PDK and Routing Protocols

o Data Packet Handler — There are two parts to the data packet handler, one for the
control plane and one for the forwarding plane. The data packet handler transports all data
packets between the two.

Virtual Interfaces and Choice of Tunneling Protocol

Virtual interfaces: Simulation of forwarding plane interfaces on the control plane is essential
for maintaining the socket interfaces used by protocol stacks. The VIDD approach chosen by the
PDK is generic and it provides a uniform abstraction to the higher layers of the networking stack
of the control plane.

Note: The Linux* version of the VIDD needs to be a module in the kernel since VIDD to
create, delete and manage the virtual interfaces. For example, if a control plane managernt
application changes the IP address of a forwarding plane interface, the VIDD module has to reflect
the change in the corresponding virtual interface. In the PDK, VIDD is a kernel module
controllable from user space.

Data packet transport: The mechanism and protocol used to transport control plane data
packets, such as, routing PDUs, is implementation dependent. The CP-PDK uses a ForCES-based
transport approach. Some of the options/issues are:

1. Metadata: Extra information needs to be maintained in most cases when transporting
the data packet. For example, when transporting incoming multicast PDUs from the
forwarding PLANE, the control plane has to know which forwarding plane interface the
packet arrived on, so that higher-level protocols, such as, the multicast route daemon, can
function correctly. This is the case for unicast IP packets also. Similar process takes place
for multicast packets.For example, when OSPF sends IGMP join messages, it sends
multicast packets out on specific interfaces. This information needs to be carried in the
metadata for outgoing multicast packets.

2. Transport mechanism: The PDK uses an extension to IP-in-IP tunneling for
tunneling. Data packets arriving on the forwarding plane are encapsulated in an external
header that contains information about the forwarding plane interface, on which the
packet has arrived. The packet is then sent across to the control plane using standard
Internet Protocol messaging. A similar approach is used for packets originating from
protocols on the control plane. The implementation is described later. Following is some
more information other possible methods:

e IP-in-IP tunneling: This is a standard mechanism used for tunneling IP packets. An IP-
in-IP tunnel simply adds an additional IP header that identifies the new destination of the
packet (control plane if it is an incoming packet being forwarded by the forwarding plane)
Corresponding ends of the tunnel compose/interpret the headers.

The channel for exchanging control packets between the control and forwarding planes could be
used for transporting data packets also. Any proprietary protocol could be used to transport the
packets to the control plane. For example, if an infiniband interconnect is being used, the data
packets could be exchanged over the CE and FE endpoints of a virtual circuit.

o Layer 2 tunneling: An efficient Layer-2 tunneling protocol could also be used.

o Note: There are significant advantages/limitations of each approach. For example, in the
current PDK implementation using [P-in-IP, data packets traverse the user-kernel boundary
the least times — from user-space protocol stacks like GateD into the kernel, across the wire,
into the kernel on the forwarding plane, back into user space into the FE Packet Handler,

15

Control Plane PDK 2.11

intel
What does it signify here? Kernel or VIDD?

Protocol Support Services
Design Specification

2.2

intel
and again into the kernel before heading out of the forwarding plane. This method however,
requires a module to be added to the Linux kernel.

3. Capturing protocol PDUs on the forwarding plane: This is another factor that
poses portability issues. Protocol PDUs like OSPF Hello/Join messages,. that arrive on
the forwarding plane have to be captured before they can reach the kernel on the FP. If
the packets reach the FP kernel, they will be dropped since the protocol they are intended
for are actually executing on the CE. There are multiple ways of doing this:

¢ Netfilter, IPChains: This is a tool available in Unix*/Linux* environments. It allows for
advanced packet capture facilities andit specifyies exactly what packets need to be captured,
such as, destination IP address, destination port, and other header options. A limitation is
that this has to be enabled and built into the kernel.

o Raw sockets: Raw socket allow the application to by pass the kernel TCP/IP stack
whilesending or receiving data.

o Packet Handler Core Component: This is the approach of the CP PDK. Here, a
special core component traps packets before they are sent to the kernel. The advantage of
this approach is that it is guaranteed to work on any platform that IXA SDK is ported to.

VIDD - Simulating Forwarding Plane Interfaces

The control plane component of the CP-PDK consists of the NPF API implementations along with
other components necessary for managing and abstracting multiple forwarding planes and
different interconnects/transport mechanisms. It also contains the modules required in the PDK as
well as the kernel for supporting unmodified protocol stacks as described earlier. A network
element typically consists of a control plane blade and one of more forwarding plane blades. In
Figure 2, each forwarding plane blade has five physical interface, such as, five 10/100 Ethernet
ports. The routing protocols execute on the control plane blade and assume a socket interface. In
order to preserve all the semantics of the socket interface, all the 10 physical interfaces have to be
simulated to the IP stack on the control plane. All this simulation is handled by VIDD. As a result,
the routing protocols in the control plane can be executed without any modifications to the PDU
send and receive socket interface. Figure 2 shows what VIDD does pictorially. Subsequent
sections describe in detail how this virtualization is achieved, the issues that have to be considered
for this approach, the advantages and disadvantages of the approach.

Control
Plane

VIDD Control Plane

Forwarding Forwarding

Figure 2: VIDD virtualization effect

16

Intel Confidential

24

Control Plane PDK and Routing Protocols

Forwarding Plane Support for Data Packet
Transport

On an IXA platform, all incoming packets are received by the ingress interface microblock and are
then forwarded to other microblocks. Exception packets, that the micro-engines cannot handle,
and control protocol PDUs need to be sent to the core processor for further processing. The rest of
the packets are sent to the egress microblock, which transmits the packets over correct interface. In
the core, control plane PDUs are received by a special core component called stack core
component.

On the forwarding plane, the following support needs to be provided by the forwarding plane in
order to handle data packets — this might be forwarding plane specific. The PDK uses the IXA
platform for the forwarding plane. Irrespective of the actual transport mechanism, some additional
support needs to be provided on both the control and forwarding planes to support data packets to
and from legacy protocol stacks. Section 6 describes in detail the FE packet handling mechanism.

VIDD and the Packet Handler API

The packet handler API allows applications on the control plane to replace traditional socket
send/receive calls with NPF packet handler API calls. When applications, such as, routing
protocols are modified to use the packet handler API calls, VIDD need not be used in its entirety.
When this happens, the virtual interfaces on the CE are not required any more since protocol
stacks do not use the traditional socket interface anymore. However, the forwarding place still has
to provide support to identify packets that need to be transported to the control plane. It also has to
provide support for the transport itself, depending on the transport protocol to be used where
applications receive them through the packet handler API.

17

Control Plane PDK 2.11

Part 3: Virtual Interface Controller
(VIC)

intal
3 Virtual Interface Controller (VIC)

This module is responsible for controlling the dynamic creation and deletion of virtual interfaces
on the CE. It interacts with other PDK components, such as, the C&M module and the namespace
module. Interaction with namespace is not direct, but only for accessing data of FE, port, and
interface objects. The following subsections describe the internal interaction with these modules
and illustrate the implementation of this module using suitable pseudo code.

3.1 Interactions with other PDK Modules

The virtual interface controller registers the following callbacks with the C&M module. This API
is internal to the PDK and is specified by the C&M module in [2]:

Callback for receiving notification interface events, such as, for creating, deleting, and managing
virtual interfaces.

3.1.1 Execution context

All the functionality of this module executes in the context of the PDK. It does not create any
threads or processes internally. The PDK manager performs initialization and shutdown.
Subsequent execution of this module, for creating, managing or deleting virtual interfaces, is in the
context of any events being generated by the PDK and will be executing in the corresponding
context. For example, virtual interfaces are created/ deleted when C&M receives an event from the
FE and invokes the corresponding callbacks registered.

3.1.2 Initialization

The PDK manager initializes the VIC module during the startup of the PDK. Since this module
registers callbacks with the C&M module, it has to be initialized after C&M has been initialized.

vic_init
{
regi ster callback for NPF_EVENT | F event

3.1.3 Shutdown

This module is shutdown by the PDK manager before C&M has been shutdown.
vi c_shut down {
deregi ster call back for NPF_EVENT_IF event
delete all virtual interfaces

21
Control Plane-PDK 2.11

Protocol Support Services
Design Specification

314

intal

Managing Virtual Interfaces

Virtual interfaces are created on the control plane for each port on an FE. When a FE binds to the
CE, the CP-PDK initializes the FE data in the namespace and C&M modules. Subsequently, the
C&M module downloads the IP addresses for the FE ports. When the FE reports a success for this
operation, the virtual interface controller module creates the virtual interfaces on the CE,
corresponding to each of the ports on the FE that the IP addresses were successfully assigned to.
VIC creates virtual interfaces by making calls to VIDD, which may be IOCTL calls to the VIP
kernel module in Linux*, or direct function calls to the VIDD module in VxWorks. This process is
described in section 4.3.

The VIC module registers a callback with the C&M module that is to be invoked when an FE
interface is configured with an IP address. This is the NPF_IF IPADDR CHANGE event.

Note: The same event callback can be used if the IP address of an interface changes at run-time, if
changed by a configuration application. The pseudo code for this functionality is written below:

vic_onlnterface Event (NPF_EVENT event, NPF_HANDLE intfhandle) {
switch (event)

case NPF_EVT_IF_UP:

if (there is no virtual interface yet for this interface) {
generate a unique nane — vi0O, vil, etc.

construct the virtual interfaces paraneters (vif_paramns)
tell VIDD to construct new interface

configure I P address

}

el se {

set the device to UP and RUNNI NG

}

br eak;

case NPF_EVT_I F_DOMN:

set the device state to DOMN

br eak;

case NPF_EVT | PADDR CHANGE:

updat e device | P address

br eak;

case NPF_EVT_| F_DELETE:

open the VIDD

make ioctl to delete the virtual interface

br eak;

}

22
Intel Confidential

Part 4: Virtual Interface Device
Driver (VIDD) for Linux

intal

4 Virtual Interface Device Driver (VIDD) for Linux

The main requirements for the VIDD module are:

o [t should simulate the physical interfaces on the different forwarding planes at the CE.

e Depending on the transport mechanism used, the VIDD module has to provide the ability to
transmit and receive data packets to/from the forwarding plane. For example, if using IP-in-
IP tunneling, when any application on the CE transmits packets to be sent out any of these
virtual interfaces, the VIDD module is responsible for tunneling those packets, using an
appropriate tunneling protocol to the correct forwarding plane where the physical interface
is. When the CE receives tunneled packets from an FE, VIDD module should intercept
them, de-tunnel the packet, that is, interpret the tunnel header appropriately, and present the
packet to the networking stack for normal delivery to the correct application.

e Meta data required by the forwarding plane must be included with every packet.

The rest of this chapter describes the VIDD design for both the CE and the FE. Since there is
no need to simulate the physical interfaces at the FE, the section on creating new tunnels is
valid only for the CE.

4.1 Design

The Linux* kernel already has the ability to create and use virtual network interfaces through its
own [P-in-IP tunneling support. This tunneling supports almost all of the requirements of the PDK
VIDD, except for the metadata that needs to be sent with every packet. Therefore, we have chosen
to take the Linux* implementation of IP-in-IP and extend it to include our metadata.

The IP-in-IP implementation in Linux* that we chose to extend can be found in the kernel source
in net/ipv4/ipip.c.

The basic idea behind the tunneling support in Linux is:

o To register a new network device

e When receiving packets from the network stack for transmission, add an new IP header with
source and destination set to the ends of the tunnel and return it to the network stack

e When receiving packets from the network stack for local delivery, remove the extra IP
header and give packet back to the network stack

Since the majority of all the functionality required by the PDK is already present in the IP-in-1P
module in the Linux* kernel, the rest of this section will discuss only the changes made, and how
to use the VIP module.

Since the IP-in-IP module already performs all the requirements of the packet handler, there is no
separate packet handler required on the Linux* control plane.

25
Control Plane-PDK 2.11

Protocol Support Services
Design Specification

4.2

421

4.2.2

intal

Implementation Changes

The following sections describe the required implementation changes to the IP-in-IP module
included in the Linux* kernel source distribution to satisfy the requirements of PDK.

Minor Changes

A copy of i pi p. ¢ must be placed into the PDK code base. Since it does the entire packet
handling, it should be put into the PacketHandler sub-directory. Since the PDK’s current build
system is geared towards building a single application, a new stand alone makefile will be required
to make it easy to build a kernel module.

In order to avoid name clashes, or confusion on the part of the programmer, all global functions
and variables must be renamed. The original i pi p. ¢ names are all globals with a prefix of
i pi p, therefore all globals in the PDK’s vi p. ¢ version will be prefixed with vi pi p.

IP-in-IP defaults to a network name of t unl 0, in order to avoid confusion and namespace clashes
and to maintain the same convention as earlier versions of the PDK, VIP needs to change this to
vi 0.

Major Changes

All TP-in-IP packets are transported using protocol 4, any IP packets of that protocol coming into a
system are automatically given to the IP-in-IP module. Linux* has an IP-in-IP protocol defined as
| PPROTO I PIP in /usr/include/netinet/in.h.Sincewe need all incoming VIP
packets to come to our module, instead, we need to register a new protocol with the system. This
protocol is | PROTOP- VI P. All packets are sent with this protocol. Once the VIP module is
loaded, any packets with a protocol of 105 will be directed to the VIP module. Since we have not
registered this protocol number and application of it with any governing body, there is a
possibility of getting packets from some other network stack that also uses 105. This has a fairly
low probability, as both endpoints in the system are controlled.

All packets given to the [P-in-IP module for transmission to the network are encapsulated in a new
IP header. This is enough to enable tunneling, but not enough for the PDK’s purposes, as detailed
above. Therefore, an additional header will need to be added. This header will contain the id of
the port that the packet must leave the FE, and, for redundancy, the length of the tunneled packet.
Here is a pseudo code declaration of the header:

vi p_header {

uint8 portid;

uint8 | ength;

}

Conversely, all VIP tunneled packets entering the system must have the IP header and VIP header
stripped off of them before reentering the network stack. The following diagram shows a data
packet before and after encapsulation and which parts would be contributed by the existing IP-in-
IP code and which part needs to be added by VIP.

26
Intel Confidential

Virtual Interface Device driver (VIDD) for Linux

Original Packet

P

Header DATA
IP-in-IP VIP Encap/Decap
IP VIP IP
Header | Header | Header DATA

Figure 3: Data packet transmission

Tunneled Packet

Currently, the IP-in-IP module creates new tunnels when it receives an IOCTL of type
SIOCADDTUNNEL. This IOCTL is accompanied by a data structure of type ip_tunnel parm.
This structure contains all the information IP-in-IP needs to create tunnel. Since VIP requires
porti d as well, a new structure will have to be created that extends i p_t unnel _par mto

include por ti d.

struct vip_tunnel parm

{
/* original
char
i nt
_ul6
__uleé

u32

u32

struct i phdr

/* vip addition */
portid;

i nt

}

i p_tunnel _parmfields */

nane[| FNAMSI Z] ;

['i nk;

i _flags;
o_flags;

i _key;
o_key;

i ph;

The IP-in-IP implementation saves the parameter with its internal tunnel lists. VIP will only have
to use the por t i d at the appropriate time later.

27

Control Plane PDK 2.11

Protocol Support Services
Design Specification

4.3

4.3.1

intal

Creating and Manipulating Tunnels

The PDK already has a module for creating and controlling virtual interfaces, the
vi dd_control | er. c, this file is updated to work with the new VIP module.

Since VIP is basically a network device from the Linux* kernel’s perspective, it needs to be
acessed through the same methods.

All commands to the VIP module must be sent via IOCTLs through a network socket. The
network socket handle is created this way:

sockfd = socket (AF_I NET, SOCK_DGRAM 0) ;

All IOCTLs are sent through the socket with the same parameter type, with different values and
data set to it. All IOCTL calls are of the form:

struct ifreq ifr;
ifr.ifr_ifru.ifru_ data = (void*)&soneDat aToSend,;
i octl (skfd, SI OCTLCOMVAND, &i fr);

The following subsections outline how to perform various operations on VIP.
Creating a New Tunnel

Creating a new VIP tunnel will be accomplished by sending the SI OCCADDTUNNEL command to
the VIP module. A name for the tunnel, its destination and source addresses, the portid, and other
information will need to be provided via the vi p_t unnel _par mstructure. Here is some sample
code describing this process:

i nt skfd;
struct ifreq ifr;
struct vip_tunnel _parmvtp

vtp.iph.version = 4;
vtp.iph.ihl =5;
vt p.iph.frag_off

ht ons(0x4000); /* don’t fragment */

vt p. i ph. protocol | PPROTO VI P; /* the new vip protocol, 105 */
vt p. i ph. saddr | NADDR_ANY;

vt p. i ph. daddr = i paddr O For war di ngPl ane;

vtp.portid = i dOf Port OnFP;

st rncpy(vt p. nane, naneO Vi rt ual Devi ce, | FNAMSI Z-1) ;

strepy(ifr.ifr_nane, "vi0"); /*vi0 is the name of the VIP module */

ifr.ifr_ifru.ifru data = (void*)&tp; /*all commands are sent via St r uct
ifreq ifr */

sockfd = socket (AF_I NET, SOCK_DGRAM 0) ;
ioctl (skfd, SI OCADDTUNNEL, & fr);
cl ose(skfd);

28
Intel Confidential

4.3.3

434

Virtual Interface Device driver (VIDD) for Linux

Setting a Tunnel’s IP Address

Once a tunnel is created, it has the remote and local IP addresses set that comprise the tunnel that
the packets flow through, but the address of the virtual device is not set. The controller will need
to give it the same address as the remote adapter on the forwarding plane that it is representing.

This is done through an IOCTL through a network socket. Following is the sample code for this:

i nt skfd;
struct ifreq ifr;
struct sockaddr in sin;

strncpy(ifr.ifr_name, naneG venToVi rt ual Devi ce, | FNAMBI Z- 1) ;
sin.sin_famly = AF_I NET;

sin.sin_addr.s_addr = ipaddr O Devi ceOnFE;
mencpy(&(ifr.ifr_addr), & sin), sizeof (struct sockaddr));

skfd = socket (AF_I NET, SOCK_DGRAM 0) ;
i octl (skfd, SI OCSI FADDR, & fr);
cl ose(skfd);

Shutting Down and Deleting a Tunnel

As ports go down on the Forwarding Plane, the Control Plane needs to remove the virtual devices
that represent them. This will be done along the lines of the following sample code:

int skfd;

struct ifreq ifr;

struct vip_tunnel parm vtp;

st rncpy(vt p. nane, nane Tunnel ToDel et e, | FNAMBI Z- 1) ;
strepy(ifr.ifr_nanme,"vi0");

ifr.ifr_ifru.ifru_data = (void*)&vtp;

skfd = socket (AF_I NET, SOCK_DGRAM 0) ;

i octl (skfd, SI OCDELTUNNEL, & fr);

cl ose(skfd);

Other Commands

All other commands that need to be sent to VIP or performed on the virtual devices, such as, setting net mask, will
be done in the same way.

29

Control Plane PDK 2.11

Part 5: VIDD for VxWorks:

intal

5 VIDD for VxWorks:

5.1.11

5.1.1.2

5.2

5.2.1

The VIDD for VxWorks has the same design requirements as its counterpart for Linux. The goal
is to expose the FE ports as regular network interfaces to the OS TCP/IP stack. The VIDD is a
network device driver. There are two types of network drivers under VxWorks:

e Enhanced network drivers

e Traditional network drivers

Enhanced Network Drivers

An Enhanced Network Driver (END) is a data-link-layer driver model that uses MUX functions to
communicate with network protocols. By registering with the MUX interface, END drivers have
greater flexibility to work with different network protocols. The MUX is an OS layer through
which network protocols communicate with the data-link layer. Traditional model drivers
communicate directly with protocol layer.

The MUX-based model for network drivers contains standardized entry points that are not present
in the traditional drivers. VIDD on VxWorks is an END, and conforms to MUX APIs. The IXA
SDK VIDD will be implemented as an Network Protocol Toolkit (NPT) driver, which has the
functionality of an END except that it deals with IP packets rather than Ethernet packets.

Traditional Network Drivers — drivers supporting 4.3 BSD driver
interface

This driver supports the 4.3 BSD driver interface and is tightly coupled with upper-level network
protocols. It does not use the MUX interface, thus, portability across network protocols could be
an issue.

Other types of device drivers are out of the scope of this design.
The VxWorks* OS has a flat memory model without division between kernel and user mode. This
leads to availability of threads and pre-emptive multitasking for VxWorks* device drivers. This is

different from the Linux* driver model, which is not preemptive, runs to completion, and does not
have threads, and does not lock the data from synchronous access.

VIDD System Data Structures

These data structures are required by the VxWorks* kernel to be implemented by any network
driver.

DEV_OBJ - Device-Specific Control Object

The DEV_COBJ structure is the glue linking the device generic END_OBJ structure, defined in
section 5.2.3, with the device specific data object referenced by pDevice. The VxWorks* kernel
defines this.

33
Control Plane-PDK 2.11

Protocol Support Services
Design Specification

5.2.2

5.2.3

typedef struct dev_obj

{
char nane[END_NAME_NMAX]; /* device name */

int unit; /* unit number of the interface */

char descripti on[] END DESC MAX]; /*driver description */
voi d* pDevi ce; /* Pointer back to the device data. */

} DEV_0BJ;

END_ERR Data Structure

This is the error data structure that holds system and user-defined errors and is used to pass errors
from VIDD to the CP protocol.

typedef struct end_err

{
I X_UI NT32 err Code; /* Error code */

char* pMesg; /* NULL —terminated error message */
voi d* pSpare /*user defined data */
} END_ERR;
The errCode member of the END ERR structure is 32 bits long. The lower 16 bits are reserved for

system error messages, while the upper 16 bits may be used for custom error messages. The
currently defined error codes are:

END_ERR | NFO This error is informational only.
END ERR WARN A non-fatal error has occurred.
END_ERR_RESET An error occurred that forced the device to reset itself but the device

has recovered.

END ERR_DOMWN A fatal error occurred that forced the device to go down. The device
can no longer send or receive packets.

END_ERR_UP The device was down but has now come up and may again send and
receive packets.

END_OBJ Data Structure

The core data structure for a device is the END object, or END_OBJ. The driver allocates this
structure and initializes some of its elements within the endLoad() function. END OBJ is the
basic END object from which everyone derives. This data structure defines a device-independent
amount of state that is maintained by all drivers/devices. Each specific device derives from this
object first and then incorporates its own data structures.

typedef struct end_object
{

NODE node; /* The root of the device hierarchy. The MUX sets the value of this
member */

34
Intel Confidential

5.2.4

VIDD for VxWorks
DEV_OBJ dev(vj ect;
STATUS (*receiveRin) (); /*Routine to call on reception. */

struct net_protocol *outputFilter;/* Optional output filter routine. */

voi d* pCQut put Fi |l ter Spare; /* Output filter's spare pointer */
BOOL att ached; /* Indicates unit is attached. */
SEM I D t xSem /* Transmitter semaphore. */
| ong fl ags; /* Various flags. */
struct net_funcs *pFuncTabl e; /* Function table. */
M2_| NTERFACETBL mi b2Tbl ; /* MIBII counters. */
LI ST mul ti Li st; /* Head of the multicast address list */
i nt nivul ti; /* Number of elements in the list. */
LI ST protocol s; /* Protocol node list. */
i nt snarf Count ; /* Number of snarf protocols at head of list */
NET_POCL_| D pNet Pool ; /* Memory cookie used by MUX buffering. */
M2_ID * pM b2Thbl ; /* RFC 2233 MIB objects */

} END_OBJ;

M2_INTERFACETBL Data Structure

An M2 INTERFACETBL structure tracks the MIB-II variables used in the driver. The driver
must initialize this structure, although the elements in the structure may be used and adjusted both
by the driver and by the MUX.

typedef struct M2_| NTERFACETBL_TAG
{

int iflndex;

char ifDescr[M2DlI SPLAYSTRSI ZE] ; /* atext description. */

long ifType; /*type ofdevice, from 1158. */

long i fMu; /*maximum packet size. */

unsi gned | ong if Speed; /* speed in bits/sec */

M2_PHYADDR i f PhysAddr ess; /* LLC address. */

long i fAdm nStatus; /* UP/DOWN/TEST */

| ong ifOperStatus; /* UP/DOWN/TEST */

unsi gned | ong ifLast Change; /* lastchange of the iface */
unsigned long iflnCctets; /*#ofreceived octets */

unsi gned long iflnUcastPkts; /*#ofunicast packets received */
unsi gned | ong iflnNUcastPkts; /*# ofbroad/multicast pkts recd */
unsi gned long iflnDi scards; /*#ofinput discards */

unsigned long iflnErrors; /*#ofinputerrors */

unsi gned | ong iflnUnknownPr ot os; /* # of unknown packets */
unsigned long ifQutCctets; /*#ofoctets sent */

unsi gned | ong ifQutUcast Pkts; /*# ofunicast packets sent */
unsi gned | ong ifQut NUcast Pkts; /*# of broad/multicast pkts sent */

35

Control Plane PDK 2.11

Protocol Support Services
Design Specification

unsi gned long ifQutD scards; /*#ofpackets discarded */
unsigned |l ong ifQutErrors; /*#of output errors */

unsi gned | ong ifQut Q.en; /*size of the output queue */
M2_OBJECTI D i f Speci fic; /* defs specific to media used */

} M2_I NTERFACETBL;

5.3 VIDD Local Data Structures

This section provides information on the data structures used by the VIDD module.

5.3.1 pdk_vidd_physical_if_info

t ypedef struct pdk_s_physical _if_info
{
uint32_t feld,
uint32_t portld;
uint8_ t nane[| FNAME _LEN] ;
uint32_t unit;
uint8 t macAddr[ETH ALEN];
uint32_t i pv4Addr;
uint32_t ipv4aMask;
uint8 t if_status;
medi a_type_t nedi aType;
uintl6 t My,
uint32 t |inkSpeed;
} pdk_physical _if _info;

5.3.2 pdk_vidd_physical_if_node

This list of data structures is created upon initialization by the VIDD and represents the hardware
network interfaces on the FEs.

typedef struct pdk_s vidd physical _if_node

{
END OBJ end; /* corresponding END_OBJ struct */

voi d* pMuxCooki e; /* pointer to the cookie used for MUX communication */
pdk_vidd ctrl* pViddCrl; /*circular reference to VIDD control structure */
pdk_physi cal _i f _i nf o* pPhysi cal | f1nfo; /*Pointer to port info */

/* next interface structure in the list of the structures. */
pdk_vi dd_physi cal _i f _node* pNext Physical I f;
} pdk_vidd_physical _if_node;

36
Intel Confidential

intal

VIDD for VxWorks

5.3.3 pdk_vidd_ctrl
This structure is defined by the driver and is created during initialization. It holds the control
information about memory pool and is used by the Packet Handler module.
typedef struct pdk_s vidd ctrl
{
/**
* Menory cookie used by MJX buffering - this identifies
* the buffer pool that is shared anmong all VIDD interfaces.
*/
NET_POCL_| D pNet Pool ;
/**
* Pointer to Molk menory area used to create the buffer pool.
* W nmust store this pointer at initialization and free its
* menory at shut down.
*/
voi d* pMl Bl kCf g;
/**
* Pointer to cluster nmenory area used to create the buffer
pool .
* W nmust store this pointer at initialization and free its
* menory at shut down.
*/
voi d* pd ust Mem
} pdk_vidd ctrl;
54 MUX Interface API
The VIDD driver must implement the following system calls to support the MUX interface:
Table 3. System calls for MUX interface table
System Call Description
npt Load() Load a device into the MUX and associate a driver with the device.
npt Unl oad() Release a device, or a port on a device, from the MUX.
npt Send() Accept data from the MUX and send it on towards the physical layer.

npt MCast Addr Add() Add a multicast address to the list of those registered for the device.

npt MCast Addr Del () Remove a registered multicast address from the list of those registered for the
device.

npt MCast Addr Get () | Retrieve a list of multicast addresses registered for a device.

Npt Pol | Send() Send frames in polled mode rather than interrupt-driven mode.

37

Control Plane PDK 2.11

Protocol Support Services
Design Specification

intal

System Call Description

npt Pol | Recei ve() Receive frames in polled mode rather than interrupt-driven mode.

nptStart () Connect device interrupts and activate the interface.
npt St op() Stop or deactivate a network device or interface.
nptloctl () Support various ioctl commands.

5.5

The functions are defined inside the endLoad() function by allocating the NET FUNCS data
structure. The MUX uses this structure to reference the functions implemented for a driver. The
NET FUNCS structure is defined as follows:

t ypedef struct net_funcs

{

STATUS (* start)(END OBJ*);

STATUS (* stop)(END_OBJ*);

STATUS (* unl oad) (END OBJ*);

int (* ioctl)(END OBJ*, int, caddr_t);

STATUS (* send)(END_OBJ*, MBLK ID);

STATUS (* nCast Addr Add) (END_OBJ*, char*);

STATUS (* nCast AddrDel) (END _OBJ*, char*);

STATUS (* nCast AddrGet) (END_OBJ*, MULTI _TABLE*);
STATUS (* poll Send)(END _OBJ*, MBLK ID);

STATUS (* poll Rcv) (END OBJ* pEND, M BLK | D pMl k,
| ong* pNet Svc, |ong* pNet O fset,

voi d* pSpar eDat a)

MBLK ID (* formAddress) (MBLK ID, MBLK ID, MBLK ID);
STATUS (* packet DataGet) (M BLK ID, LL_HDR INFO *);

STATUS (* addrGet) (M BLK ID, MBLK ID, MBLK ID, MBLK_ID,
M BLK_|I D) ;

} NET_FUNCS;

The fields in this structure correspond with entry points for system calls for the VIDD driver.

VIDD System Function Calls

These function calls are implemented by the VIDD in order to conform to the MUX/END
interface. These functions control all interactions between the VIDD and VxWorks*:

o configuration and initialization
e shutdown processing

e packet receiving

e packet sending

e memory allocation

e ioctl handling

38
Intel Confidential

5.5.1

5.5.2

VIDD for VxWorks

The addresses of functions are in the END OBJ structure so they can be called from the MUX
library.

pdk_vidd_npt_load()

This function creates a logical interface on the VIDD side and registers it with the VxWorks*
MUX layer. For initial release one logical interface for each physical interface is supported. Future
releases may support multiple logical interfaces per port. The user does not call this function
directly — the VxWorks* MUX layer uses it as an entry point when adding a new physical
interface. This function is implemented as a two-pass algorithm — the MUX layer calls this
function twice — once with an empty initialization string, and then with the real initialization
string.

Syntax
END OBJ* pdk_vidd _npt_load(char* initString, void* pBsp);

Input Parameters

void* pBsp Optional BSP-specific information. This is used as a context, in this case a
pointer to the VIDD control structure.

Input/Output Parameters

char* initString On the first pass of this function, initString is passed in as an empty
allocated string, and the base name of the interface (e.g. “eth”) is copied into it. On the second
pass, initString contains the interface parameters for the logical interface being loaded. The
function will parse initString to fill in the logical interface data structure.

Return Values
Pointer to the new END OBJ data structure.

NULL return value indicates an error.
pdk_vidd_npt_unload()

This function is called by the MUX to “release” the device. The function is called for each port
that has been activated by call to the pdk vidd npt load(). This function will only free the
memory allocated to the device data members — another function will handle the housekeeping
tasks of unlinking this device from the list of interfaces and decrementing the overall interface
count. That is, the scope of this function is limited to the device itself — the larger implications of
unloading a device will be handled elsewhere. In this release this function does not have to do
anything.

Syntax
STATUS pdk_vi dd_npt _unl oad(END_OBJ* pEnd);

Input Parameters

END OBJ* pEnd Pointer to END OBJ data structure allocated by
the Load() function.

39

Control Plane PDK 2.11

Protocol Support Services
Design Specification

intal

5.5.3 pdk _vidd_npt_start()
The Start() function brings up the network interface specified by the END OBJ structure and
makes the interface active and available to the OS.
Syntax
STATUS pdk_vidd_npt_start (END _OBJ* pEnd);
Input Parameter
END OBJ* pEnd Pointer to END_OBJ data structure allocated by Load() function.
Return Values
OK
ERROR
5.5.4 pdk_vidd_npt_stop()
This function brings down the interface specified by the END OBJ structure and deactivates the
interface.
Syntax
STATUS pdk_vi dd_npt_stop (END _OBJ* pEnd);
Inputs
Pointer to END OBJ data structure allocated by Load() function.
Return Values
OK
ERROR
5.5.5 pdk_vidd_npt_ioctl()
The VIDD needs to support IOCTL commands to keep the IOCTL interface with existing network
protocols. The following table gives the list of commonly used IOCTL commands.
Table 4. 10CTL commands table
Command Function Data Type Supported
SI 6Cd FMIU Get MTU char* Yes
El OCSFLAGS Set device flags int Yes
El OCGFLAGS Get device flags int Yes

40
Intel Confidential

VIDD for VxWorks
Command Function Data Type Supported
El OCSADDR Set device address char® No
El OCGADDR Get device address char* Yes
El CCMULTI ADD Add multicast address char® No
El OCCMULTI DEL Delete multicast address char* No
El OCMULTI GET | Get multicast list MULTI_TABLE* | No
El OCPOLLSTART | set device into polling mode NULL No
El CCPOLLSTCP Set device into interrupt mode NULL No
El CCGFBUF Get minimum first buffer for chaining | int Yes
El OCGHDRLEN Get the size of the data link header int Yes
El OCGNPT Query a driver to determine whether | int Yes
itis a NPT driver
El OCGM B2233 | Retrieves the RFC2233 MIB Il table | M2_ID * Yes
El OCGM B2 Sgt the MIB-Il counters from the char* Yes
river

5.5.6

In addition to the standard commands, which are in the range 0-128, the application or network

protocol can define its own IOCTL commands to communicate with the driver.

Syntax

i nt pdk_vidd_npt _ioctl (END OBJ* pEnd,

buffer);

Input Parameters

END OBJ* pEnd
interface

int command

i oct |

conmrand.

Input/Output Parameters

caddr t buffer

Return Values

OK

EINVAL — command is not supported.

pdk_vidd_npt_send()

i nt command,

character buffer holding response from the command.

caddr _t

pointer to the END OBJ structure of the

The MUX interface calls this function when the network protocol is sending a network packet.
Network buffers are represented by an mBlk chain in VxWorks. This function takes the packet

41

Control Plane PDK 2.11

Protocol Support Services
Design Specification

5.5.7

5.5.8

intel
stored in the mBlk and performs all necessary checks on the packet before calling the packet
handler API ph_write_packet() function.

Syntax

STATUS pdk_vi dd_npt _send(END_OBJ* pEnd, M BLK ID pMl k, char*
dst MacAddr, |ong net Type, voi d* pSpare);

Input Parameters
END OBJ* pEnd pointer to the END_OBJ structure. It identifies the transmit interface.

M BLK ID pMblk mBIlk chain containing the network buffer. The data represents the full
link layer frame.

char* dstMacAddr destination MAC address from the OS stack. Ignored by this function,
as the packet handler will take care of this.

| ong net Type network service type.
voi d* pSpare optional network service data.

Return Values
OK

ERROR
pdk_vidd_npt_mCastAddrAdd()

This function adds a new link-layer multicast address to the table of multicast addresses for the
interface — in the initial release this call does not affect the underlying hardware.

Syntax
STATUS pdk_vi dd_npt_ntCast Addr Add (END OBJ * pEnd, char* pAddress);

Input Parameters
END OBJ* pEnd pointer to the END_OBJ structure to help identify the port.
char* pAddress physical address to add to the Multicast table.

Return Values
OK

ERROR

pdk _vidd_npt_mCastAddrDel()
The function removes previously added link-layer multicast address — in the initial release this

does not affect the underlying hardware.

Syntax
STATUS pdk_vi dd_npt _ntCast Addr Del (END _OBJ* pEnd, char* pAddress);

Input Parameters

42
Intel Confidential

5.5.9

5.5.10

VIDD for VxWorks
END OBJ* pEnd pointer to the END_OBJ structure to help identify the port.
char* pAddress physical address to delete from the Multicast table.

Return Values
OK

ERROR

pdk_vidd_npt_mCastAddrGet()

This function gets the list of all multicast addresses that are active on the interface.

Syntax

STATUS pdk_vi dd_npt _mCast Addr Get (END_OBJ * pEnd, MJULTI _TABLE*
pTabl e);

Input Parameters
END OBJ* pEnd pointer to the END_OBJ structure to help identify the interface.
MULTI TABLE* pTable pointer to the structure where the list will be put.

Return Values
OK

ERROR
pdk_vidd_npt_pollSend()

Polling-mode equivalent to the send() routine — this is not supported in the current implementation
and always returns ERROR.

Syntax

STATUS pdk_vidd _npt_pol | Send (END OBJ* pEND, M BLK ID pPkt, char*
dst Addr, |ong netType, void * pSpareData);

Input Parameters

END OBJ* pEnd pointer to the END_OBJ structure. It identifies the transmit interface.

M BLK_I D pMol k mBIk chain containing the network buffer. The data represents the full
link layer frame.

char* dstMacAddr destination MAC address from the OS stack. Ignored by this function,
as the VIDD will do its own route table lookup to obtain the destination MAC address.

| ong net Type network service type.
voi d* pSpare optional network service data.

Return Values

ERROR

43

Control Plane PDK 2.11

Protocol Support Services
Design Specification

intal

5.5.11 pdk_vidd_npt_poliIRcv()

The current implementation of VIDD does not support PollReceive(). Therefore this function
always returns an error.

Syntax

STATUS pdk_vi dd_npt _pol | Rev (END_OBJ* pEND, M BLK_ | D pMl k, | ong*
pNet Svc, |ong* pNetOffset, void* pSpareData);

Input Parameters

END OBJ* pEnd pointer to the END_OBJ structure. It identifies the transmit interface.

M BLK ID pMblk mBlk chain containing the network buffer. The data represents the full
link-layer frame.

| ong* pNet Svc payload/network frame type.
l ong* pNet OF f set offset to network frame.
voi d* pSpare optional network service data.

Return Values

ERROR

44
Intel Confidential

Part 6: CE Packet Handler for
VxWorks

intal
6 CE Packet Handler for VxWorks

The CE packet handler is a module of the PDK and it interacts with VIDD module. It is
responsible for:

o Injecting protocol data packets tunneled from the FE into the corresponding virtual
interface.

e Receiving data packets being sent on any/all of the virtual interfaces and tunneling it to the
FE for subsequent transmission.

In the PDK, a simple IP-in-IP protocol is used to transport the data packets between the control
and forwarding planes. This module uses the existing IP network stack to transmit and receive
packets thereby avoiding any extraneous code requirements in the PDK.

The CE packet handler registers a callback with the transport plug-in module in order to receive
callbacks when:

e An FE binds, to start listening for packets from it, and to store information needed to send
packets to it.

¢ An FE unbinds, to remove it from consideration.

6.1 Execution Context

This module executes in two contexts:

o PDK context: This module is initialized and shutdown by the PDK manager. The
callbacks it registers with VIDD controller and FP plug-in execute in the corresponding
contexts.

e Packet Listen Thread: This thread is created on initialization of the module. The main
responsibility of this thread is to listen for packets being transmitted from the FE to the CE
destined for the virtual interfaces created on the CE. As described in the previous section,
each virtual interface exposes a character device API, thus allowing a user space application
to perform read operations on it. The exact manner in which this is done will be described
subsequently. This thread is shutdown during the shutdown of the PDK.

6.2 Initialization

The PDK manager initializes this module during PDK startup. Since this module registers
callbacks with the VIDD Controller module, it has to be initialized after the VIDD controller has
been initialized.

ph_init {
register callback with TP for FE_BI ND event

47
Control Plane-PDK 2.11

Protocol Support Services
Design Specification

6.3

6.4

6.5

register callback with TP for FE_UNBI ND event
create a new socket of protocol 105 (VIP)

start Pkt _Li st en thread

Shutdown

The PDK manager shuts down this module before the VIDD controller is shutdown.
ph_shut down {

deregister callback with TP for FE_BI ND event
deregister callback with VIC TP for FE_UNBI ND event
stop Pkt _Li st en thread

close socket

}

On FE Bind

The packet handler module registers this callback with the TP module. When TP accepts a bind
from a new FE, it informs the packet handler about this.

The callback updates a local data structure and adds the newly connect FE to the list of FE for
which the packet listen thread has to listen. The packet listen thread waits for packets transmitted
from any of the FE. To reduce time requirements for looking up FE information, this list is
maintained as a hash table.

Packet Listen Thread

The main responsibility of this thread is to listen for packets transmitted to the CE from all the FEs
on protocol 105, known as VIP. As each packet is read from the network, the source FE is
determined and the thread passes the encapsulated packet on to the VIDD passing in the FEID and
Portid.

ph_thread () {
while (1) { /* loop forever until stopped */
recei ve packet from socket
if (received packet) {

| ookup address in FE |ist

renove i p_header from packet

renove vi p_header from packet

retrieve portid fromvi p_header

48
Intel Confidential

6.6

6.7

6.8

CE Packet Handler for VxWorks
pass packet to VIDD with FEID and portid

}

On FE Unbind

The packet handler module registers this callback with the TP module. When TP unbinds from an
FE, it informs the packet handler about this.

The callback removes the FE from the list of interfaces FEs the packet listen thread has to listen
for. The packet listen thread will subsequently start ignoring packets from this FE. This interaction
is illustrated in the pseudo code that follows.

ph_on_newrFE() {

acquire lock to update list of FEs
update list of FEs — delete FE

rel ease | ock

On Packet Receive from VIDD

The packet handler registers this callback with the VIDD module for getting notified when a data
packet arrives from any of the virtual devices. The VIDD additionally provides metadata
information, such as, the FE the packet is intended for and the physical port it go out on the FE.

Packets received through the VIDD API will have to be converted from MBLKSs to character
buffers, encapsulated in a VIP header, and sent to the network in the normal manner. This
interaction is illustrated in the following pseudo code.

ph_wite packet(FEID fe, port_id port, MBLK ID pMal k) {
| ookup FE information in FE |i st
convert pMdl k to char buffer using net Ml kToBuf Copy

add a vi p_header to the char buffer
set portid and |l ength appropriately
send the packet to the address of the FE

}

Data Structures

This structure is maintained by the packet handler and is shared by the packet listen thread.
Suitable locks protect access to the structure.

typedef struct ph_feaddr t{
FPPI _FEI D feid;
struct sockaddr _in addr; /* |IP Address of this FE */

49

Control Plane PDK 2.11

Protocol Support Services
Design Specification

intal

This structure is the VIP header that is added to every packet sent to the FE, and stripped off of
every packet received from the FE.

typedef struct ph_header t

} ph_f eaddr;

{
FPPI _PortI D portid;
ui nt 32_t | engt h;
} ph_header;

50
Intel Confidential

Part 7: FE Packet Handler for
VxWorks

intal
7/ FE Packet Handler for VxWorks

The FE packet handler has no need of connecting to any form of VIDD. The design of the packet
handler for VxWorks* is described below.

7.1 Design

The forwarding plane support for packet handling might be specific to the forwarding plane. In the
PDK, the forwarding plane is IXA-based. Some of the main design goals for packet handling
support have been the following:

4. Operating system independence — If the support for packet handling is not specific
to the operating system on the forwarding plane, it becomes easier to port the same
functionality to a different platform. The support can be provided on any platform that
supports the IXA architecture.

5. Use of simple OS primitives — OS primitives like sockets and raw sockets are
available on most BSD, Unix, and VxWorks platforms.

6. No modifications to core components provided with the IXA platform — This
has been one of the main criterions for deciding how to perform packet handling. The
current solution does not modify any of the existing core components or microblocks on
the IXA platform.

711 Initialization

The Packet handler uses a VIP network socket (protocol 105) to send and receive packets to and
from the CP. In order to do this, the packet handler needs to know the CP’s IP address, and the
i ni t function will require it as a parameter.

Packets entering the FE from the network that are destined for the CP will enter the packet handler
via the Forwarding Plane Module core component (FPM). How packets get to the FP module from
the microblocks is of not in the scope of this document. The packet handler will register a callback
with the FPM in order to receive these packets by calling the function

ix_cc_fpmregister pkt _hdlr_ch.

Packets coming from the CP destined for the network are received by a receiver thread that is
reading packets from the above mentioned network socket. Therefore a new thread must be
created by the init function.

7.1.2 Incoming Packets

Incoming packets follow the following sequence of steps as they traverse through the FE

1. The FPM receives packets from somewhere and passes them to the registered callback
function. This callback is passed the bladeid, portid, length and buffer.

2. The packet handler adds a VIP header to the packet buffer, and sets the portid and length
fields appropriately.

53
Control Plane-PDK 2.11

Protocol Support Services

Design Specification

3.

intal

The packet is then sent out on the VIP socket (protocol 105).

713 Outgoing Packets

Outgoing packets are received from the CP, and passed on to the FPM. The following is the
sequence of events:

1.
2.

The receiver thread starts reading from the network socket.

When a packet is read from the network, the IP and VIP headers are stripped off of the
packet.

The portid is determined from the VIP header

The packet is given to the FPM through the function
i x_cc_fpmsync_send_packet along with the porti d.

54
Intel Confidential

	Introduction
	Terminology
	References

	Control Plane PDK and Routing Protocols
	Virtual Interfaces and Choice of Tunneling Protocol
	VIDD - Simulating Forwarding Plane Interfaces
	Forwarding Plane Support for Data Packet Transport
	VIDD and the Packet Handler API

	Virtual Interface Controller (VIC)
	Interactions with other PDK Modules
	Execution context
	Initialization
	Shutdown
	Managing Virtual Interfaces

	Virtual Interface Device Driver (VIDD) for Linux*
	Design
	Implementation Changes
	Minor Changes
	Major Changes

	Creating and Manipulating Tunnels
	Creating a New Tunnel
	Setting a Tunnel’s IP Address
	Shutting Down and Deleting a Tunnel
	Other Commands

	VIDD for VxWorks*
	
	
	Enhanced Network Drivers
	Traditional Network Drivers – drivers supporting

	VIDD System Data Structures
	DEV_OBJ – Device-Specific Control Object
	END_ERR Data Structure
	END_OBJ Data Structure
	M2_INTERFACETBL Data Structure

	VIDD Local Data Structures
	pdk_vidd_physical_if_info
	pdk_vidd_physical_if_node
	pdk_vidd_ctrl

	MUX Interface API
	VIDD System Function Calls
	pdk_vidd_npt_load()
	pdk_vidd_npt_unload()
	pdk _vidd_npt_start()
	pdk_vidd_npt_stop()
	pdk_vidd_npt_ioctl()
	pdk_vidd_npt_send()
	pdk_vidd_npt_mCastAddrAdd()
	pdk _vidd_npt_mCastAddrDel()
	pdk_vidd_npt_mCastAddrGet()
	pdk_vidd_npt_pollSend()
	pdk_vidd_npt_pollRcv()

	CE Packet Handler for VxWorks
	Execution Context
	Initialization
	Shutdown
	On FE Bind
	Packet Listen Thread
	On FE Unbind
	On Packet Receive from VIDD
	Data Structures

	FE Packet Handler for VxWorks
	Design
	Initialization
	Incoming Packets
	Outgoing Packets

