

DiffServ IPv4
Design Specification
Control Plane-Platform Development Kit 2.11

March 2004

R

ii Intel Confidential

Information in this document is provided in connection with Intel® products and services. No license, express or
implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in
Intel's Terms and Conditions of Sale for such products and services, Intel assumes no liability whatsoever, and Intel
disclaims any express or implied warranty, relating to sale and/or use of Intel® products and services including liability
or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or
other intellectual property right. Intel products and services are not intended for use in medical, life saving, or life
sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Copyright© 2004 Intel Corporation.

* Other brands and names are the property of their respective owners.

R

Contents
DiffServ IPv4 ... i

Contents.. iii

Part 1: Introduction ... 5

1 Introduction... 7
1.1 Purpose... 7
1.2 Scope .. 7
1.3 Terminology.. 8
1.4 References.. 8
1.5 Document Organization... 9

Part 2: Overview .. 11

2 Overview.. 13
2.1 DiffServ Component Overview.. 13
2.2 Assumptions and Dependencies.. 13

Part 3: DiffServ Component Design... 15

3 DiffServ Component Design .. 17
3.1 Managing Data Path Elements (DPE) ... 17

3.1.1 Data Structures ... 18
3.1.2 DS_ReqResp_t ... 18
3.1.3 DiffServRequest_t ... 19
3.1.4 DS_DpeInfo_t ... 19
3.1.5 FPPI_DS_Dpe_t ... 20

3.2 Initialization .. 21
3.3 Shutdown.. 21
3.4 API Calls and Callbacks .. 21

Part 4: Other Design Details... 23

4 Other Design Details... 25
4.1 Memory Allocation ... 25
4.2 Threading Model .. 25
4.3 Dependencies... 25

Part 5: Appendix A .. 27

iii
Control Plane PDK 2.11

R

Revision History
Revision Description Date Author

2.11 Updated for Release 2.11 March 2004 Ds Sreedhara

2.1 Updated for Release 2.1 December 2003 Ds Sreedhara

2.0 Updated for Release 2.0 August 2003 Ds Sreedhara

iv
Intel Confidential

Part 1: Introduction

R

1 Introduction
Network elements such as switches and routers can be classified into three logical operational
components:

• Control plane

• Forwarding plane

• Management plane

The control plane controls and configures the forwarding plane and the forwarding plane
manipulates the network traffic. The control plane executes different signaling or routing protocols
and provides all the routing information to the forwarding plane.

The forwarding plane makes decisions based on this information and performs operations on
packets such as forwarding, classification, filtering, and so on.

An orthogonal management plane manages the control and forwarding planes. For example, the
control plane in a router executes routing protocols, the forwarding plane performs hardware-
based switching, and the management plane starts or stops routing process, and performs logging.

The introduction of the standardized Application Program Interface (API) within the above-
mentioned planes can help the system vendors, Original Equipment Manufacturer (OEM), and end
users of these network elements, to mix and match the components available from the different
vendors, and to create a device of their choice.

The Network Processing Forum (NPF) API is designed for this purpose and thus, it presents a
flexible and well-known programming interface to the control plane applications. It makes
existence of the multiple forwarding planes, and vendor-specific details, transparent to control
plane applications. The hardware properties and nature of interconnect used between the control
and the forwarding planes are isolated.

This component implements the DiffServ APIs as prescribed by the NPF. This document outlines
the design of the DiffServ data structures, algorithms as well as dependencies on other CP-PDK
components, if any.

1.1 Purpose

This document specifies the internal design of the DiffServ- Internet Protocol Version 4 (IPv4)
component of the CP-PDK. This includes the description and design of the main internal data
structures used within the component.

1.2 Scope

This document describes only the design of the DiffServ component. It does not address the
individual DiffServ APIs implemented by this component. This document is intended for the
developers implementing or maintaining the DiffServ component and the test engineers who are
performing Quality Analysis (QA) on the DiffServ component.

7
Control Plane-PDK 2.11

DiffServ IPv4 Design
Design Specification

R
1.3 Terminology

Table 1 lists terms used in this document and an expansion of every term.

Table 1. Terminology table

Term Description

Control Element (CE) In a separated control/data system, CE refers to the processor(s) responsible for
control and configuration of the forwarding elements. It is used interchangeably
with the Control Plane (CP).

Control Plane (CP) Refer Control Element (CE)

DPE Data Path Element

Forwarding Element (FE) Refers to the processor(s) responsible for fast path forwarding of the data, in a
separated control/data system. It is used interchangeably with the FP.

Forwarding Plane (FP) Refer Forwarding Element (FE)

NPF Network Processing Forum

PDK Platform Development Kit

PIL Platform Independence Layer

1.4 References

Table 2 lists the documents that are referenced in this document. All the documents listed in this
table are included with the CP-PDK.

Table 2. Reference table

Reference Document Name

[1] Software Architecture Overview

[2] Interface Management API Reference

[3] Forwarding Plane plug-in API Reference

[4] Namespace Design Reference

[5] Platform Independence Layer API Reference

[6] DiffServ Service APIs

8

Intel Confidential

R
 Introduction

1.5 Document Organization

This document is divided into sections describing the design of all the subcomponents, run-time
interactions and pseudo code. The data structures are described in the design section instead of a
separate section.

 9

Control Plane-PDK 2.11

Part 2: Overview

intel
Are the terms API and component being used interchangeably?
If yes, pick one and stick with it throughout.
If no, define where each is used.

R

2 Overview
This section provides an overview of the DiffServ component and lists the assumptions and
dependencies for the component.

2.1 DiffServ Component Overview

The DiffServ module is split into two logical sub-components:

• DiffServ API implementation module: This implementation module is the code that
implements the DiffServ APIs. This sub-component is responsible for validating input, and
invoking the FP plug-in API to send requests to the forwarding planes.

• Callback module: The callback module is responsible for implementing the callback
functions that are invoked by the FP Pplug-in API. It invokes the user program’s callback
to return the response data, if needed.

These two modules run in different contexts and it is split into two different components.

2.2 Assumptions and Dependencies

Following assumptions apply to this design module:

• When any of the FE fails to respond, there is no recovery mechanism. The control plane
part waits till the end of all the FE transactions.

The DiffServ API implementation uses the FP plug-in to communicate with the FEs. The FP part
module, invokes the core component library for committing the operation in micro blocks.

13
PDK 2.11 Control Plane-

intel
Are the terms API and component being used interchangeably?
If yes, pick one and stick with it throughout.
If no, define where each is used.

intel
Please write some content before this heading.

intel
This paragraph doesn't explain clearly what the following data structures are. They do however, explain what they are not. Can we clarify? What is GET??

intel
Please write some content for this heading.

intel
Who is it?? FP Plug-in?

intel
Who is it??

intel
Should or must???

Part 3: DiffServ Component
Design

R

3 DiffServ Component Design
The primary task of the DiffServ API implementation module is to validate the application input
and invoke the FPPAPI [3] calls to the FE. In the multiple-FE topology, the DiffServ request that
needs to be broadcasted is committed to all active FEs in the system. To do this, the DiffServ
components must maintain the states to keep track of the FE that has reported the result.

After all the FEs, including FE unbind exception, report a success or failure response and the
DiffServ component determines the success or failure status of the single request. It is possible to
select the FE that responds to send as callback data. The DiffServ component invokes the user
callbacks with success/failure after consolidating all the responses from the selected FE.

For each API request, new request state is created, which remains active till the user callback is
made. This request state holds all the information required to complete the request with FE. Refer
to the data structure DiffServRequest_t for individual fields. This state is deleted after
invoking the user callback. The request state contains all active FE IDs and sufficient place to hold
all responses. On completion of the FE responses, single callback data is prepared from the
responses of the selected FE.

In this version, it is assumed that the DiffServ module always receives responses from FE. If any
one of the FE fails to respond, no callback is made and the request state is not deleted. If all the
FEs response success or failure, the response of the first FE is considered for the application
callback. If some of the FEs response success and some failure, response of the first success FE is
considered for the user callback. An internal event DS_FE_RESPONSE is generated for failed
FEs.

On any request of the DPE, state of the DPE is set to DPE_STATE_INUSE. DPE remains in this
state till the FE response is received. On receipt of the FE response, the DPE state is changed to
DPE_STATE_IDLE. In DPE_STATE_INUSE state, no other operations are allowed and it
generates NPF_DS_E_DPE_IN_USE error.

3.1 Managing Data Path Elements (DPE)

For DPE create request, the CP module is responsible to create the DPE handles. It does not
maintain any DPE details or DPE associations. All API requests with DPE handle is sent to FP
DiffServ module. When DPE is deleted, the handle is also deleted from the DiffServ CP space.
Further API requests with this DPE handle results in error. The FPPI_DS_Dpe_t data structure
is used between the DiffServ module in CP and the FP DiffServ manager in FP.

The DiffServ API invocation goes through the following steps:

• Create new request state. Refer to the DiffServRequest_t data structure. This state
contains all the active FE information, user information like correlator, callback, error
reporting, and callback type.

• In case of the DPE create, find the port associated with the interface handle, and create new
DPE info state. Refer to the DS_DpeInfo_t. Assign the new DPE handle and
send request for all the active FEs. Increment the request count for the FE. Save the DPE
info in the DpeList. After accepting all the requests, the request state contains total
requests sent to each FE. This request state is active, till request count of the FEs equals
response count of all the FEs. When the request count of the FEs equals response count of
the FEs, the user callback is invoked.

17
Control Plane-PDK 2.11

DiffServ IPv4 Design
Design Specification

R
• For all the other requests, check for a valid DPE handle. If the handle is valid, FPPI request

is generated, else an error is generated.

• When response is received from the FEs, assign response data and error to the request state,
mark the request state to indicate that the response is from the FE. In case of internal errors,
the request state is marked as an internally generated response. This information is used to
construct the callback data.

• Create new async response using the FE response data. If the number of FEs requests is
equal to the number of FEs responses, consolidate all the async responses of the selected
FE into the callback data and invoke the user callback function. Delete all the async
responses created and the request state. It is assumed that FEs always responds to all the
requests made. If it fails to respond, the user callback is not invoked and the request state
remains active.

3.1.1 Data Structures

The following section describes the important data structures used in Data Structure (DS) CP
module implementation.

3.1.2 DS_ReqResp_t

This block supports the following key features:

• Holds all the FE IDs in the system

• Holds the number of requests made by an application

• Holds the number of responses received from the FE

• Holds the field used, which informs whether request is sent to the FE or not

• Holds the field done, which informs the FE responses for all the requests made

• Holds the field error, which indicates the error reported by the FE

• Holds async responses, which are generated based on the FE response

When requests equal responses, the responses in the async field are used to construct the call back
data.
typedef struct DS_ReqResp

{

 FPPI_FEID id; /* FE ID*/

 uint32_t used; /* tells this request sent to this FE
or not */

 uint32_t reqs; /* No. Of APIs called for this FE */

 uint32_t resps; /* No. Of API responses received for
this FE */

 uint32_t done; /* FE responded for all*/

 uint32_t error; /* Error reported */

 NPF_DS_AsyncResponse_t *async [DS_MAX_REQS];/* Array of async
responses */

} DS_ReqResp_t;

18
Intel Confidential

R
 DiffServ Component Design

3.1.3 DiffServRequest_t

This block supports the following key features:

• Interface between the application requests and responses to the application

• Holds the application information such as context, correlator, error reporting, call back type
and the application callback

• Holds the number of active FE in the system and it has enough memory to hold the
responses of FE

• Holds the number of inputs supplied by the application field to the API and informs
whether the response is from the FE or generated internally

This data structure is used to correlate the requests and responses of the FEs. When the DiffServ
API request is made, the request object is created and it remains active till the call back is made.
On each and every receipt of the FE response, new async response is created using the FE
response data and stored in the async field of the reqResp.

The FE ID is used to distinguish the responses from different FEs. If the FE response is equal to
the requests made, the callback data is created using the responses of the first FE. All other stored
asynchronous responses are deleted. The field callback in the DiffServRequest_t is the user
callback function that was registered before. On invoking the callback, the request object is
removed from the DiffServ module.
typedef struct

{

 NPF_DS_CallbackType_t type; /* Callback type */

 NPF_callbackHandle_t cbh; /* Callback handle */

 NPF_userContext_t context; /* User context */

 NPF_correlator_t corr; /* User correlator */

 NPF_errorReporting_t report; /* user error report */

 uint32_t no; /* Number of requests
generated towards FE */

 uint32_t fec; /* Total no of active FEs */

 DS_ReqResp_t *reqResp;/* Array, with size equal to
fec */

 NPF_DS_CallbackFunc_t callback; /* User registered callback
function */

 NPF_error_t error; /* Error code */

 NPF_boolean_t feResp; /* TRUE means callback from
FE, otherwise internal */

} DiffServRequest_t;

3.1.4 DS_DpeInfo_t

This block supports the following key features:

• Field type: which indicates the DPE type

• Field dpeHandle: which indicates the DPE handle

 19

Control Plane-PDK 2.11

DiffServ IPv4 Design
Design Specification

R
• Field fec: which indicates the total number of FE that exists in the DPE

• Field feid: which is an array of the FEids that exists in the DPE

• Field port: which is the port ID created by the DPE

• Field direction: which indicates the DPE created in the ingress or the egress side

This block is used to hold the DPE information in the DiffServ CP module. This object is created
during the creation of a new DPE and remains active till the deletion of the DPE.

Note: The DiffServ CP module does not maintain any DPE attributes and associations. Whenever
an API request is made with the dpeHandle as a parameter, the dpeHandle is used to validate
the DPE.
typedef struct DS_DpeInfo

{

NPF_DS_DpeType_t type; /* DPE type */

NPF_DS_DpeHandle_t dpeHandle; /* DPE handle */

uint32_t fec; /* FE Count */

FPPI_FEID feid [MAXFENUM];

FPPI_PortID port;

NPF_DS_DpeDirection_t dir; /* DPE direction INGRESS/EGRESS */

} DS_DpeInfo_t;

3.1.5 FPPI_DS_Dpe_t

This block supports the following key features:

• Field op,: which indicates the operation requested by an application on DPE

• Field type,: which indicates the operation type requested on the DPE

• Field error:, which indicates the error reported by the FE, and is valid only in the
response

• Filed dpeHandle: which indicates the DPE handle

• Field prevDpeHandle: is the DPE handle, with which association is to be made for
delete. It is valid only in the DPE association add or delete

• Field port: which is the port IDof the DPE

• Field dir: indicates the DPE that exists in the INGRESS or the EGRESS side

This structure is used for messaging between the DiffServ CP module and the DiffServ manager.
The dpe field is valid for create and query operations and the stats field is valid for getting the
statistics operation.
typedef struct

{

 NPF_DS_CallbackType_t op; /* DPE Operation */

 NPF_DS_DpeType_t type; /* DPE Type */

 NPF_DS_ErrorType_t error; /* Error Code */

 NPF_DS_DpeHandle_t dpeHandle; /* DPE handle */

20
Intel Confidential

R
 DiffServ Component Design

 NPF_DS_DpeHandle_t prevDpeHandle; /* DPE handle */

 FPPI_PortID port; /* Port ID*/

 NPF_DS_DpeDirection_t dir; /* Direction,
INGRESS/EGRESS */

 union

 {

 NPF_DS_Dpe_t dpe; /* Data path element
*/

 NPF_DS_StatsResp_t stats;

 } u;

} FPPI_DS_Dpe_t;

3.2 Initialization

The PDK manager must invoke the DiffServ initialization for the DiffServ component. The
initialization routine has the following requirements:

• The FP plug-in API, namespace, and component should be initialized before the DiffServ
initialization.

• The DiffServ module-wide critical section lock gets initialized here.

• The control plane callback of the DiffServ module is registered with the forwarding plane.

• All the dynamic data structures DList gets initialized here.

3.3 Shutdown

The PDK manager calls the DiffServ shutdown routine. This routine is responsible for releasing
any resources currently in use and terminating the communication with other internal components.
The shutdown requirements are as follows:

• The namespace and FP plug-in modules should be shut down after the DiffServ shutdown.

• The DiffServ shutdown must deregister all the FP plug-in callback services by passing the
FP Pplug-in callback handle to the FP plug-in deregister call.

• Clean up all the resources and dynamic data structures such as DLists.

3.4 API Calls and Callbacks

The applications must register their callback functions with the DiffServ services to make the
DiffServ API calls. Except for the register and deregister APIs, all the other DiffServ routines are
asynchronous calls.

When any API is called, it returns one of following:

 21

Control Plane-PDK 2.11

DiffServ IPv4 Design
Design Specification

R
• NPF_NO_ERROR: The operation is successful. Except during the register & deregister of

the APIs, the application should wait for completion of thecallback operation.

• NPF_E_UNKNOWN: An unknown error has occurred.

• NPF_E_BAD_CALLBACK_HANDLE: The callback handle passed is invalid.

• NPF_E_BAD_CALLBACK_FUNCTION: This is returned only in case of the register APIs.
It indicates that the callback function passed in NPF_DS_Register () is NULL.

The DiffServ callback component keeps track of the outstanding requests and collects all the
necessary FE(s) responses for such requests.

22
idential Intel Conf

Part 4: Other Design Details

R

4 Other Design Details

4.1 Memory Allocation

The PDK DiffServ implementation always makes a copy of the user program request data, that
isi.e., entries passed in API. During the time of the callback, the DiffServ callback module also
copies the FP Pplug-in response data into a new memory location and pushes it to a callback
thread to execute the application’s callback.

The callback thread frees this data memory immediately on return of the application callback. The
user’s program should make a copy if they need the data.

4.2 Threading Model
The DiffServ component does not create any new threads by itself during the execution of the
PDK. The DiffServ implementation module runs in the same context with an external application,
and the callback module runs in the same context with the FP Pplug-in receiving thread.

The external application’s callback runs in another callback thread to avoid malicious usage.

4.3 Dependencies
In addition to the dependency on the Iinterface Mmanager and the FP Pplug-in component, the
DiffServ Ccomponent must also make use of following other components:

Table 9. Diffserv components dependencies table

Components Description

Namespace The external and other internal components use the Namespace component to locate
the active FE(s)

Central Callback A central PDK callback service is provided to all the internal components to register,
deregister, and retrieve the callback functions. The external user programs should not
use, but should go through the existing NPF APIs for registering/deregistering.

DList (Double Link List) The DList is the double link list designed in C. It provides multiple thread safety
operations to manipulate the list.

PIL (Platform Independence Layer) PIL helps in reusing software components for different applications. Writing the
modules in a high-level language is not sufficient for easy re-use. Differences in the
operating system on the platform and the compilers can make porting difficult.
The PDK uses PIL to minimize compiler exceptions and provide an operating system
independent API. In this way, the porting effort can be greatly reduced. Refer
Appendix A for a complete description of the PIL.

25
Control Plane-PDK 2.11

Part 5: Appendix A

R

Appendix A
The following figure shows the logical modules and the data structures used in the IPv4-DiffServ
design.

Figure 20: Logical modules and data structures in the IPv4 DiffServ design

DiffServ Manager in Forwarding Plane
DPE List Translator

DPE List
DS_DpeInfo_t

FPPI_DS_Dpe_t

fpm_qos_dpe_t

NPF DS API

IPv4-DiffServ USER Application

FORCES/DRS Message

IPv4-DiffServ in Control Plane

IX_CC_API

 Data Path Elements at Ingress Side

FPM

TC-Meter

DSCP

Marker
6t /DSCP
Classifier

INGRESS Port
 IX_CC_FPM_DPE_OP Messages

EGRESS Port

Data Path Elements at Egress Side

WRED

Dropper

TC-Meter

29
Control Plane-PDK 2.11

intel
Before each piece of code, provide one sentence describing what it does as you have done in Section 5.4.

	Introduction
	Purpose
	Scope
	Terminology
	References
	Document Organization

	Overview
	DiffServ Component Overview
	Assumptions and Dependencies

	DiffServ Component Design
	Managing Data Path Elements (DPE)
	Data Structures
	DS_ReqResp_t
	DiffServRequest_t
	DS_DpeInfo_t
	FPPI_DS_Dpe_t

	Initialization
	Shutdown
	API Calls and Callbacks

	Other Design Details
	Memory Allocation
	Threading Model
	Dependencies

