

Namespace
Design Specification
Control Plane-Platform Development Kit 2.11

March 2004

R

ii Intel Confidential

Information in this document is provided in connection with Intel® products and services. No license, express or
implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in
Intel's Terms and Conditions of Sale for such products and services, Intel assumes no liability whatsoever, and Intel
disclaims any express or implied warranty, relating to sale and/or use of Intel® products and services including liability
or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or
other intellectual property right. Intel products and services are not intended for use in medical, life saving, or life
sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Copyright© 2004 Intel Corporation.

* Other brands and names are the property of their respective owners.

R

Contents
Namespace ... i

Contents.. iii

Part 1: Introduction ... 5

1 Introduction... 7
1.1 Terminology.. 7
1.2 References.. 8

Part 2: Overview .. 9

2 Overview.. 11
2.1 Requirements ... 11
2.2 High-Level Functionality Overview... 11
2.3 Design Considerations .. 12

Part 3: Namespace Design ... 15

3 Namespace Design... 17
3.1 High-Level Overview.. 17
3.2 External API .. 18
3.3 Implementation Details.. 19

3.3.1 Major Data Structures ... 19
3.3.2 Threading and Synchronization .. 21
3.3.3 Algorithm Explanation ... 21

3.4 Modularity... 24

Part 4: Read/Write Lock Mechanism.. 25

4 Read/Write Lock Mechanism ... 27

Tables
Table 1. Terminology table.. 7
Table 2. Reference table... 8
Table 3. External API table ... 18
Table 4. Lock mechanism ... 27

iii
Control Plane PDK 2.11

R

Revision History
Revision Description Date Author

2.11 Updated for Release 2.11 March 2004 Anantha Rathnam

2.1 Updated for Release 2.1 December 2003 Anantha Rathnam

2.0 Updated for Release 2.0 August 2003 Anantha Rathnam

iv
Intel Confidential

Part 1: Introduction

R

1 Introduction
Network elements such as switches and routers can be classified into three logical operational
components:

• Control plane

• Forwarding plane

• Management plane

The control plane controls and configures the forwarding plane and the forwarding plane
manipulates the network traffic. The control plane executes different signaling or routing protocols
and provides all the routing information to the forwarding plane.

The forwarding plane makes decisions based on this information and performs operations on
packets such as forwarding, classification, filtering, and so on.

An orthogonal management plane manages the control and forwarding planes. For example, the
control plane in a router executes routing protocols, the forwarding plane performs hardware-
based switching, and the management plane starts or stops routing process, and performs logging.

The introduction of standardized Application Program Interface (API) within the above-mentioned
planes can help system vendors, Original Equipment Manufacturer (OEM), and end-users of these
network elements to mix-and-match components available from different vendors to achieve a
device of their choice. The Network Processing Forum (NPF) API is designed for this purpose, as
it presents a flexible and well-known programming interface to the control plane applications. It
makes the existence of multiple forwarding planes, as well as vendor-specific details, transparent
to control plane applications.

The hardware properties and nature of interconnect used between the control and the forwarding
planes are isolated. Thus, the protocol stacks and network processors available from different
vendors can be easily integrated with the NPF APIs. The APIs included in the Control Plane
Platform Development Kit (CP-PDK) are based on the NPF APIs. For more information about
NPF, refer to http://www.npforum.org/.

This document specifies the internal design of the namespace component of the CP-PDK. This
includes the description and design of the main internal data structures as well as algorithms used
within the component.

1.1 Terminology

Table 1 lists terms used in this document and provides an expansion for each term.

Table 1. Terminology table

Term Description

CLI Command-Line Interface

C&M Configuration and Management Module of CP-PDK

7
Control Plane-PDK 2.11

http://www.npforum.org/

Namespace Design
Design Specification

 R
Term Description

Control Element (CE) In a separated control/data system, refers to the processor(s) responsible for
control and configuration of forwarding elements. Used interchangeably with CP.

Control Plane (CP) See Control Element (CE).

ForCES Forwarding and Control Element Separation protocol

Forwarding Element (FE) In a separated control/data system, refers to the processor(s) responsible for fast
path forwarding of data. Used interchangeably with FP.

Forwarding Plane (FP) See Forwarding Element (FE).

IDB Information Database

NPF Network Processing Forum

PDK Platform Development Kit

SNMP Simple Network Management Protocol

1.2 References

Table 2 lists documents referenced in, or related to, this document.

Table 2. Reference table

Reference Document Name

[1] NPF Application Level API Framework

[2] CP-PDKIPV4 API Reference

[3] NPF Namespace Specification

[4] CP-PDK Software Architecture Overview

[5] NPF Classification API document

[6] NPF Configuration Application and Information Database document

[7] CP-PDK API Framework Reference

[8] CP-PDK Configuration and Management API Reference

[9] Platform Namespace API Reference

8

Intel Confidential

Part 2: Overview

R

2 Overview
The namespace is an in-memory directory service used by components in an NPF-compliant
system to locate system data. An NPF-compliant system is a network element that supports the
separation of the control plane from the data-forwarding plane as defined in [1]. A well-defined
application API called the NPF API is placed in the framework, which provides the access to the
basic system resources to upper level services. The CP-PDK exposes the NPF API. The
namespace is a module residing in the CP-PDK.

2.1 Requirements

Many components inside an NPF-compliant system need basic system data such as software
representation of forwarding blades and network interfaces installed on the forwarding blades. The
namespace provides the directory service to these components to locate the basic system data. This
directory service is provided through the namespace API that is neutral to the basic system data. A
component first locates the system data through the namespace, and then it deals with the system
data specific semantics with the individual data.

2.2 High-Level Functionality Overview

The referencing data stored in the namespace is structured based on a certain data model called the
namespace schema. The definition of each schema is the task of other groups. This design
document focuses on the basic services provided by the namespace that are used by various
versions of the namespace schema.

Figure 1 shows the architecture of an NPF-compliant system that includes the CP-PDK and shows
where the namespace fits in.

11
Control Plane-PDK 2.11

Namespace Design
Design Specification

R

Routing
Table

Manager

QoS
Manager

Command
Line

Interface

SNMP
Agent

NPF Programing APIs NPF Management APIs

O
S

Ab
st

ra
ct

io
n

Se
rv

ic
e

O
S
P
F

R
I
P

B
G
P

Config
Manager

Namespace

C
ontrol channel

(ForC
es, O

M
S,

C
orba)

D
ata channel

(VID
D

/G
R

E)

Forwarding plane

NPF API
Implementation

Control plane

Transport plugin

Transport plugin

FP Module

Topology
manager

Forwarding engine (ACEs)

R
S
V
P

Virtual Interfaces

IPv4
Manager

Label
Manager

PDK
Manager

Other

Figure 1: CP-PDK architecture

2.3 Design Considerations

A directory service is provided through the namespace API that is neutral to the basic system data.
It should maintain the lifespan of the system data:

• It creates reference counts

12

Intel Confidential

R
 Overview

• maintains reference counts

• deletes system data

As various PDK components call into the namespace, the operation should be synchronized and
optimized.

 13

Control Plane-PDK 2.11

Part 3: Namespace Design

R

3 Namespace Design

3.1 High-Level Overview

The namespace is a hierarchical in-memory directory. According to the NPF namespace
specification, a node or entry of this hierarchy is assigned with a name string of the regular
expression pattern:
(/typeName/instanceNumber)*(/typeName[/instanceNumber])

An example of such a name string is /NpfSys/0/FE/0/port/2, which refers to the second
port installed on the first forwarding blade of the first system (/NPFSys/0). Each node of the
namespace has a canonical name string and zero or more alias name strings.

The following diagram shows an instance of the namespace. The solid directional lines show the
logical parent-child relationship, and the dotted directional lines show the alias relationship. For
example, the node /NPFSys/0/Interface/5 is an alias to /NPFSys/0/FE/0/Port/4.
If only the solid lines are counted, the graph is a generic tree. If both solid and dotted lines are
counted, the graph is a directional acyclic graph.

/NPFSys

0 1

FE Router

0 1
1

Port Port

0 1 3 4 0 1 3 4

Inter-
face

0 1 3 4

0

5

Figure 4: An example of namespace

17
Control Plane-PDK 2.11

Namespace Design
Design Specification

R

There are three kinds of nodes in a namespace:

1. Bears the type name, such as NPFSys and FE. This kind of nodes is called a type node.

2. Node is for the instances of certain types. They are called instance nodes. The detailed
instance specific information is not stored within the instance node. Such information is
stored outside the namespace and referenced by the instance node. For example, the
instance node of /NPFSys/0/FE/0/Port/0 of the namespace provides a reference to
the data structure as a software representation of the physical port. Here the data structure
for the port is not located inside the namespace, and is maintained by other components,
such as the configuration manager of the PDK.

3. Is called an alias node, which represents an alias of an instance node. An alias node does
not contain the reference to the system data; one has to go to the instance node to get the
reference to the system data.

3.2 External API

The following table provides a summary of the namespace interface. For a complete description of
each function, refer to the Control Plane PDK Platform Namespace API Reference.

Table 3. External API table

Function Description

ns_init Initialize the namespace

npf_ns_create Create an namespace entry or an alias name

npf_ns_alias Create an alias for an instance node

npf_ns_delete Delete an alias or an namespace entry

npf_ns_rename Change the name string to a new one

npf_ns_open Open a node to get an handle to it

npf_ns_getPath Get the path string to an instance node

npf_ns_getDataType Get the type of the system data

npf_ns_getDataHandle Get a handle to the system data

npf_ns_getParentNode Get a handle to the parent node

npf_ns_getInstParent Get a handle to the instance parent node

npf_ns_readDir Retrieve a node’s directory portion

npf_ns_addAssociate Add an associate to a node

npf_ns_delAssociate Delete an associate from a node

npf_ns_enumAssociate Enumerate the associates of the node

18
Intel Confidential

R
 Namespace Design

npf_ns_first Get a handle to the first child in the directory

npf_ns_next Get a handle to the next child in the directory

npf_ns_prev Get a handle to the previous child in the directory

npf_ns_count Get the number of children in the directory

npf_ns_done Done with directory iterator

npf_ns_close Relinquish handle

npf_ns_canon Get the canonical name of a node

3.3 Implementation Details

This section provides information on implementation details. This section also explains major data
structures, threading and synchronization, and algorithm explanation.

3.3.1 Major Data Structures

The following are some manifest constants and basic data structures used by the namespace both
in its API and internal implementation.

NPF_HANDLE Handle to system data managed by the owning components of the data

NPF_NSHDL Handle to namespace node managed by the namespace

NPF_NS_PATH_MAX System constant – max length of name string (bytes) for namespace
path

NPF_NS_MAXNAME System constant – max length of name string (bytes) for a node

NPF_NS_MAXCHILD Max number of children nodes from a node

NPF_RET Enumerated (int) return type

1. First, the type of a node in the namespace could be type node, instance node, or alias
node:

enum NPF_NSNODETYPE {

TYPE, // type node

INSTANCE, // regular instance node containing object
reference

ALIAS // indirect node containing alias

}

2. Next is the entry part of a node. The handle to the instance node field is ignored if the
node if not an alias node. The data handle field is ignored when the node is not an
instance node.

struct NPF_NS_ENTRY{

 19

Control Plane-PDK 2.11

Namespace Design
Design Specification

R
char * name; // null terminated name string for the node

enum NPF_NSNODETYPE nodeType; // type, instance, alias

enum NPF_NSDATATYPE dataType; // blade, port, interface, etc

union {

NPF_NSHDL hInstance; // the instance node handle for
alias

NPF_HANDLE hData; // handle to system data for
instance

} entryAttrib;

int refCount; // reference count to this node

}

3. Next is the directory part of a node. This can potentially be large.
struct npf_ns_directory {

int nchildren;

DList children

}

4. Next is the basic building block of the namespace hierarchy; a node that contains parent,
directory part, and entry part. A handle to a namespace node is just a pointer to that node.

struct NPF_NS_NODE {

NPF_NSHDL parent; // pointer to the parent node, null for root

struct npf_ns_directory directory;

struct npf_ns_entry entry;

rwlock lock; // read-write lock for this node

}

Linked list of nodes

Node

parent

entry

directory

Node Node Node Node

Node

Figure 5: Namespace node

20
Intel Confidential

R
 Namespace Design

3.3.2 Threading and Synchronization

The namespace is a merge point of many operations in an NPF system, as various components call
into it to get the handles they need for their operations. It is important to make it thread safe in an
efficient way.

In a simple design, we have one lock (a mutex) for both read and write operations on the entire
namespace. When one thread reads or writes to a node of the namespace, it locks all other threads
out of the namespace. This lock is initialized during an npf_ns_init call and cleaned up
during shutdown.

The granularity of this global mutex is not optimized for performance. A version of an optimized
thread safety mechanism is described in the Section [4]. This design has the following features.

• Single-lock semantics are exposed to the clients of the locking mechanism, which are
mostly implementations of namespace interfaces. That minimizes the effort of the client
thread to protect the namespace.

• When a thread reads or writes to a node of the namespace, the portion of the namespace
locked by this thread is minimized, so the chance for other threads to use the rest of the
namespace is maximized.

• This lock treats read and write operations differently, so the chance for concurrent
operations is maximized while protection is enforced.

This mechanism is called read/write lock for hierarchy. In its implementation, multiple mutexes
are used in a carefully coordinated manner so that the performance optimization and the single
lock semantics are provided.

3.3.3 Algorithm Explanation

Populate the Namespace

The namespace is populated during the start-up of the system by the PDK configuration
application.

1. The configuration application reads the initial system configuration information from a
persistent media called Information Database (IDB).

2. Then it creates the namespace node by providing the type info of the system data.

3. Based on the type info, the namespace node finds the PDK component responsible for
management of this system data, typically the Configuration Manager (CM).

4. Then the namespace calls the CM to create the system data and get a handle to the data.

5. The namespace returns the handle to the namespace node in the open mode.

 21

Control Plane-PDK 2.11

Namespace Design
Design Specification

NPF API
Implementation

Namespace

Configuration
Application

Configuration
Manager

System
Data

System
Data

1. Read Config
data from IDB

3. Create system data
and get handle to it

2. Create namespace
handle

IDB

5. Configure
system data4. Get system data

handle

 R

22
Intel Confidential

Figure 6: Populate the namespace

Next, the configuration application gets the handle to the system data from the handle to the
namespace node. Finally, it configures the system data through the handle based on the
configuration information read from the IDB. Finally, it closes the namespace handle. The
configuration application repeats these steps node-by-node from top down in depth first order.

Configure System State

In a typical scenario where a system state is changed administratively, the administrative
configuration application, e.g., a CLI, a policy agent, or an SNMP agent:,

1. It first calls the namespace API to open a handle to the namespace node and get the
handle to the system data that is managed by the configuration management module.

2. Then it calls the CM API to change the state of the system data. The CM module talks to
the FE through the FP Plugin API.

3. When the change is made, successfully or unsuccessfully, in the FE, the FP Plugin API
calls the callback function registered by the CM earlier.

During the callback, the CM updates the state of the system data to reflect the change in the FE
and informs the CLI about the completion. Finally, the CLI closes the handle to namespace node.

This description only uses the CLI as an example of the modules that change the state of system
data. The above description does not use any specific properties of the CLI, so any other module,
either inside or outside the PDK, can follow the same method to change the state of system data
during runtime.

R
 Namespace Design

NPF API
Implementation

Namespace

Command Line
Interface (CLI)

Configuration
Manager

System
Data

System
Data

2. Change the
system state

1. Open an handle to the
namespace node and get
the handle to system data

FP Plug-in

FE

3. Change FE
state

4. Change FE
state

5. FE state
changed

6. FE state
changed

7. System state
changed

8. Close the
namespace handle

Figure 7: Change system state administratively

Clean Up Namespace

The system is shut down by a PDK application, such as the configuration application.

1. The configuration application first opens a namespace node and gets the handle to the
system data from the node.

2. It closes and deletes the namespace node.

The other components of the PDK should be shut down first so that all handles to the namespace
nodes are closed. The configuration application repeats these steps from bottom up. The process is
the reverse of the population of the namespace.

 23

Control Plane-PDK 2.11

Namespace Design
Design Specification

NPF API
Implementation

Namespace

Configuration
Application

Configuration
Manager

System
Data

System
Data

2. Query current
config info1. Get handle to

system data

IDB

3. Delete the
namespace node

 R

Figure 8: Clean up the namespace

3.4 Modularity

Based on the above interaction analysis, the namespace requires the PDK components that are
responsible for management of various system data in the following aspects:

1. When namespace initializes the system data, the components should allocate the memory
space for the system data and return a handle to the namespace. At this moment, the
system data is initialized to its default values. Later, the configuration application sets
them to the configured values.

2. All access to the system data must start with an open handle to the corresponding
namespace node and end with closing that handle. In between, the client, either a PDK
application or an internal component, should map this namespace handle to the handle to
the system data (see npf_ns_getdatahandle). In this way, the namespace can
maintain the outstanding reference count on the system data.

3. The component should protect its own system data by a per-component lock. The lock
used by the namespace only protects the namespace hierarchy and its nodes. See Section
4 for more details on this. The set of per-component locks is organized globally to avoid
deadlock. The way they are organized is by introducing a global order to them. See the
API Framework Reference [7] for details.

4. Callback registrations are made with the management components of the system data.
These components will call the callback when the corresponding FP configuration calls
are completed or interesting events occur at the FP.

A client of the namespace gets a handle to the system data from the namespace. If the client must
access the data directly through pointers instead of a handle, it is the managing component’s
responsibility to expose the pointer and protect the data pointed to by the pointer.

24
idential Intel Conf

Part 4: Read/Write Lock
Mechanism

R

4 Read/Write Lock Mechanism
This chapter describes the read-write lock for thread safety of a hierarchy.

The read/write lock mechanism designed in this section exposes the following interface, which has
the single-lock semantics.

Table 4. Lock mechanism

Functions Description

Bool Lock (int operation, Node N) Acquire the lock for an operation on node N. The
operation could be READ or WRITE.

Bool Unlock (Node N) Release the lock from the node.

The read/write lock has the following behaviors.

1. When reading a namespace node N, the root path of N (all the nodes along the path from
the root node to N, including N) is locked for read.

2. When writing to a node N, the root path of N minus N is locked for read and N itself is
locked for write.

3. You can read a node N if and only if there is no active write on N.

4. You can write to a node N if and only if there is no active read or write on N.

These behaviors make it possible to lock only the minimal set of nodes for read/write operations at
a node and discriminate write operations from read operations to maximize the concurrency while
providing thread safety.

Our design is based on the GNSS Navigation Unit (GNU) rwlock implemented for p-thread,
which has the behaviors similar to 3 and 4. We describe rwlock in the following pseudo-code.
This code fixes a bug in the GNU rwlock implementation, where a continuous stream of readers
can lock all writers out forever.
struct rwlock{

 int state; // if the lock is initialized

 int mode; // ongoing operation is READ or WRITE

int nr; // number of active readers

int nw; // number of outstanding writers

 mutex r; // read mutex

 mutex w; // write mutex

}

The error checking for initialization of the mutex is skipped in the following function.
bool Init(rwlock lock)

{

 lock.state = INITIALIZED;

 lock.nr = 0;

 Init(r);

 Init(w);

27
Control Plane-PDK 2.11

Namespace Design
Design Specification

R
 return true;

}

The error checking for the failure of wait and signal in the following two functions is skipped,
as is state checking.
bool Acquire(rwlock lock, int op)

{

 if(op == WRITE)

{

 nw++;

wait(w);

 mode = WRITE;

 }

 else

 {

 wait(r);

 nr++;

 if(nr == 1 | nw > 0) wait(w);

 mode = READ;

 signal(r);

 }

 return true;

}

The blue code segment says that:

 “I start to read (nr++) and if I am the first reader (nr == 1) or there is an outstanding writer
(nw > 0), wait for the writer to finish or lock the incoming writers out (wait(w))”.
bool Release(rwlock lock)

{

 if(mode == WRITE)

{

signal(w);

nw--;

 }

 else

 {

 wait(r);

 nr--;

 if(nr == 0 | nw > 0) signal(w);

 signal(r);

 }

 return true;

}

The red code segment says that:

28
Intel Confidential

R
 Read/Write Lock Mechanism

“ I finish reading (nr--) and if I am the last reader (nr == 0) or there is an outstanding writer
(nw > 0), let the writer in (signal(w))”.

The design is extended from a single node of data to a generic hierarchy that has m nodes. When a
node is added into the hierarchy, we initialize an rwlock to associate with the node. Every node N
in the tree has a unique root path, which is the ordered set of nodes starting from the root node to
the node N, including N. We denote the root path of N by Path (N). The inverse path, which is the
root path in the reverse order is denoted by Path-1 (N). The notion Path (N)\N stands for the root
path minus the node N.

bool Lock(int op, Node N)

{

 if(op == WRITE)

 {

 for each node X in Path(N)\N

 {

 if(Acquire(rwlock of X, READ) == false)

 {

 for each node Y in Path-1(X)

 release(rwlock of Y);

 return false;

 }

 }

 if(Acquire(rwlock of N, WRITE) == false)

 {

 for each node Y in Path-1(N)\N

 release(rwlock of Y);

 return false;

 }

 }

 else

 {

 for each node X in Path(N)

 {

 if(Acquire(rwlock of X, READ) == false)

 {

 for each node Y in Path-1(X)

 release(rwlock of Y);

 return false;

 }

 }

 }

 return true;

}

bool Unlock(Node N)

{

 29

Control Plane-PDK 2.11

Namespace Design
Design Specification

R
 for each node X in Path-1(N)

 Release(rwlock of X);

 return true;

}
When the hierarchy has only a single node, the pseudo code shown degenerates to the GNU
rwlock. It should be noted that the acquire and release functions are not made atomic. They can
fail in the middle of walking through the path. Like the rwlock implementation, the wait and
signal functions on a mutex can fail. The right way to use this lock mechanism is as follows:
If(Lock(operation, N)) {

 do the read/write operation;

Unlock(N);

}

It is the do the read/write operation processing made atomic by the locking protection that matches
the design goal.

30
Intel Confidential

	Introduction
	Terminology
	References

	Overview
	Requirements
	High-Level Functionality Overview
	Design Considerations

	Namespace Design
	High-Level Overview
	External API
	Implementation Details
	Major Data Structures
	Threading and Synchronization
	Algorithm Explanation

	Modularity

	Read/Write Lock Mechanism

