

Software Architecture Overview

Control Plane-Platform Development Kit 2.11
March 2004

R

Information in this document is provided in connection with Intel® products and services. No license, express or
implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in
Intel's Terms and Conditions of Sale for such products and services, Intel assumes no liability whatsoever, and Intel
disclaims any express or implied warranty, relating to sale and/or use of Intel® products and services including liability
or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or
other intellectual property right. Intel products and services are not intended for use in medical, life saving, or life
sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Copyright© 2004 Intel Corporation.
* Other brands and names are the property of their respective owners.

ii Software Architecture Overview
Intel Confidential

R

Contents
1 Overview.. 7

1.1 Terminology.. 7
1.2 References.. 8

2 Control Plane PDK Architecture.. 11
2.1 Control Plane Module .. 11

2.1.1 Application API Implementation Module.. 13
2.1.2 Configuration and Management Module ... 13
2.1.3 Namespace Module .. 14
2.1.4 Binding and Capability Discovery Module ... 15
2.1.5 Forwarding Plane Topology Manager ... 15
2.1.6 Inter-FE Forwarding Module ... 15
2.1.7 Callback and Event Handler Module ... 15
2.1.8 CP Module Manager ... 16
2.1.9 CP Multi-client Module .. 16
2.1.10 Protocol Support Services .. 16
2.1.11 Operating System Abstraction Module.. 18

2.2 Transport Plug-in ... 18
2.2.1 FP Plug-in API .. 19
2.2.2 Plug-in Back End API.. 20
2.2.3 Transport Protocol... 20
2.2.4 Interconnect Abstraction Layer ... 20

2.3 Forwarding Plane Module ... 21
2.3.1 FP Boot Manager .. 22
2.3.2 FP Plug-in Manager .. 22

2.3.2.1 Translator..22
2.3.2.2 Platform Specific Component ...22

Figures
Figure 1: Control Plane PDK Architecture Components ... 11
Figure 2: Control Plane Sub-modules of the Control Plane PDK 12
Figure 3: Sample Namespace Maintained by the Control Plane PDK 14
Figure 4: VIDD Virtualization Effect .. 17
Figure 5: Transport Plug-ins for Different Interconnects ... 18
Figure 6: Transport Plug-in Architecture ... 19
Figure 7: Forwarding Plane Module.. 21

Tables
Table 1. Terms and Acronyms.. 7
Table 2. References.. 8

iii
Control Plane-PDK 2.11

Contents
R

Revision History
Revision Description Date Author

2.11 Updated for Release 2.11 March 2004 Anantha Rathnam

2.1 Updated for Release 2.1 December 2003 Anantha Rathnam

2.0 Updated for Release 2.0 August 2003 Anantha Rathnam

iv
Intel Confidential

Part 1: Overview

R

1 Overview
Network elements such as switches and routers can be classified into three logical operational
components:

• Control plane

• Forwarding plane

• Management plane

The control plane controls and configures the forwarding plane. The control plane executes different
signaling or routing protocols and provides all the routing information to the forwarding plane.

The forwarding plane manipulates the network traffic. The forwarding plane makes decisions based on
the network traffic and performs operations on packets such as forwarding, classification, filtering, and
so on. An orthogonal management plane manages the control and forwarding planes. For example, the
control plane in a router executes routing protocols, the forwarding plane performs hardware-based
switching, and the management plane starts or stops routing process or performs logging.

The introduction of standardized APIs within the above-mentioned planes can help system vendors,
OEMs, and end users of these network elements to mix and match components available from different
vendors and achieve a device of their choice. The Network Processing Forum (NPF) API is designed
for this purpose, and it presents a flexible and well-known programming interface to the control plane
applications. The NPF API makes the existence of multiple forwarding planes, and vendor-specific
details, transparent to control plane applications.

The hardware properties and nature of interconnect used between the control and the forwarding planes
are isolated. Thus, the protocol stacks and network processors available from different vendors can be
easily integrated with the NPF APIs. The APIs included in the Control Plane Platform Development Kit
are based on the NPF APIs. For more information about NPF, refer to http://www.npforum.org/.

The software architecture overview document explains the high-level architecture of the Control Plane
(CP) Platform Development Kit (PDK), which implements the NPF APIs.

1.1 Terminology
Table 1 lists the terms used in this document and provides definition for each term.

Table 1. Terms and Acronyms

Term Description

ARP Address Resolution Protocol

Co-located PDK A version of the CP-PDK where the control and forwarding planes execute in the same process.
Differences between the co-located and standard PDK are limited to the Transport Plug-in

Control Element (CE) In a separated control/data system, refers to the processor(s) responsible for control and
configuration of forwarding elements. Used interchangeably with Control Plane (CP)

Control Plane (CP) See Control Element (CE)

COPS Common Open Policy Service protocol

7
Control Plane-PDK 2.11

http://www.npforum.org/

Software Architecture Overview
R

Term Description

CORBA Common Object Request Broker Architecture (http://www.omg.org)

Core Component An object representing a single instance of packet processing, conceptually containing a
classification and action execution phase. Some Core Components have well-defined APIs

CP-PDK Control Plane Platform Development Kit

DiffServ Differentiated Services. A layer-3 packet-forwarding scheme where all packets receiving the
same per-hop forwarding behavior are marked identically using the IP header DSCP field.
Standardized by the IETF

ForCES Forwarding and Control Element Separation protocol, currently being standardized by the IETF

Forwarding Element (FE) In a separated control/data system, FE refers to the processor(s) responsible for fast path
forwarding of data. It is used interchangeably with the FP

Forwarding Plane (FP) See Forwarding Element (FE)

GSMP General Switch Management Protocol

ICMP Internet Control Message Protocol

IntServ Integrated Services. An Internet service model that includes best-effort service, real-time
service, and controlled link sharing

IXA Internet eXchange Architecture

MPLS Multiprotocol Label Switching

NPF Network Processing Forum

OSPF Open Shortest Path First (routing protocol)

RIP Routing Information Protocol

1.2 References
Table 2 lists the documents that are referenced in this document.

Table 2. References

Reference Document

[1] NPF API Framework, Version 1

[2] Platform Independence Layer API Reference

[3] Namespace API Reference

[4] IPv4 API Reference

8
Intel Confidential

Part 2: Control Plane PDK
Architecture

R

2 Control Plane PDK Architecture
The architecture of the control plane PDK defines three main components as shown in Figure 1:

• Control plane module

• Transport plug-ins

• Forwarding plane module

Control Plane
Module

Transport Plugins

Forwarding
Plane

Forwarding
Plane

Figure 1: Control Plane PDK Architecture Components

2.1 Control Plane Module
The NP Forum defines the following two sets of APIs that are explained below:

• NPF Application API

• NPF Management API

The NPF application API is a collection of sub-APIs, each of which is focused on providing some
specific functionality. Examples of sub-APIs are the IPv4 Unicast Forwarding API, MPLS API,
DiffServ API, and so on.

The APIs are based on the standardization efforts within the NP Forum. Due to the evolution of the
standardization process, API implementation requires modification. The control plane module provides
the implementation of these APIs, and other infrastructure required to plug in legacy applications, and
routing protocols to the platform.

Some features of the control plane module are as follows:

1. The control plane is aware of the presence of multiple forwarding planes and has the
intelligence to perform one-to-many mapping. For example, if the control plane is present, for
each new route specified by the routing table manager, n routes are downloaded to n
forwarding planes.

2. The control plane module is aware of the underlying forwarding plane topology (in the case of
multiple forwarding planes) and if required, it enables inter-forwarding plane forwarding.

3. Binding and capability discovery of the forwarding planes detects new forwarding elements,
thus providing support for hot-swap of forwarding planes.

11
Control Plane-PDK 2.11

Software Architecture Overview
R

4. An FP plug-in API abstracts the transport mechanism and protocol used for communicating

with the forwarding planes. This is very similar to the corresponding NPF APIs except that the
users of this API must be aware of multiple forwarding planes.

5. The control plane module exposes and implements several NPF APIs, such as the IPv4
Unicast Forwarding API, Namespace API, Configuration and Management API, Classification
API, and some forward-looking APIs such as MPLS and DiffServ.

6. The control plane module uses an OS abstraction layer to achieve independence from the
control plane hardware and OS.

Virtual Interface Device
Driver (VIDD)

NPF Application and Management APIs

O
S
P
F

R
I
P

B
G
P

User

Kernel

Config &
Mgmt Impl

Namespace
Impl

sockets

IP Layer

Transport
ProtocolTunnelled

data packets

G
a
t
e
D

IPv[4,6], MPLS, GTP and
QoS API Implementation

Forwarding Plane Plug in API

Binding
and Discovery

Virtual Interface
Controller

Transport Plug in

TCP UDP

VI-0 VI-1 VI-2 VI-3
virtual

interfaces

Topology
Manager

Inter-FE Forwarding
Module

create/manage
virtual

interfaces

CE Packet
Handler

To Forwarding Plane

Route Cache Manager
Configuration and

Management Applications
(SNMP, CLI, etc.)

OS
Abstraction

Layer Callback and
Event Handler

Figure 2: Control Plane Sub-modules of the Control Plane PDK

As shown in Figure 2, the control plane module is composed of the following modules:

1. Application API implementation module that implements the NPF Application APIs such as
IPv4 Unicast Forwarding

2. Configuration and Management module that implements Configuration and Management APIs

3. Namespace module that implements the Namespace API

4. Binding and capability discovery module

5. Forwarding plane topology manager

6. Inter-FE forwarding module

7. Callback and event handler

8. Operating system abstraction layer, which abstracts out the underlying control plane hardware
and OS

9. CP module manager

12
Intel Confidential

R
Control Plane PDK Architecture

13
Control Plane-PDK 2.11

10. CP multi-client module

11. Protocol support services module that provides support for legacy applications and routing
protocols. This consists of:

a. Virtual interface device driver for providing an abstraction of the multiple forwarding
plane interfaces as virtual interfaces in the control plane

b. CE packet handler

c. Route Cache Manager: The RCM acts as a proxy for the routing table manager
(RTM) and allows the RTM to function without CP-PDK-specific modifications. If
the RCM module is not present, the RTM should be modified to make IPv4 API calls
instead of the ioctls, which is used for downloading the routing table entries to the
Linux kernel.
The routing cache manager module operates by opening a routing socket to the
Linux* kernel and receiving notification of any changes made to the kernel route
table by the RTM or any other module (ICMP). This RTM module makes the
corresponding API call to the PDK on receipt of notification from the RTM. Thus the
routing cache manager invokes the APIs on behalf of the RTM.

2.1.1 Application API Implementation Module
The API implementation module implements the NPF-defined Application API, which is a collection of
APIs that provide support for developing well-known Layer 2, Layer 3 (IP) or higher control
applications. The application APIs hide the existence of multiple forwarding plane s to applications and
expose the details only when a control application needs them. This is accomplished with the use of the
NPF-defined namespace and objects that are described later in this document. The IPv4 and IPv6
Unicast Forwarding APIs provide the following:

• Configuration and management of objects such as the IP route tables and ARP tables

• Receiving notifications such as ARP events and so on.

The MPLS API allows configuration and management of the control and forwarding planes for MPLS
support. For the IXP platform, this includes API support for configuring the MPLS Core Component,
setting up the labels required for label swapping, and so on. The ATM API provides for configuring and
managing Virtual Path (VP), Virtual Circuit (VC), and traffic parameters. The GTP API provides for
establishment, modification, and deletion of the GTP tunnels.

The QoS API consists of IntServ and DiffServ components and configures the control and forwarding
planes for QoS support. The IntServ implementation is internally mapped to the DiffServ API within
the Control Plane. The QoS API allows for configuration of the DiffServ Core Component, including
QoS elements such as classifiers and markers for the IXP.

2.1.2 Configuration and Management Module
The configuration and management module implements the methods defined by the NPF Configuration
and Management (CM) API. This module is used by management applications for configuring and
managing different networking devices. These APIs facilitate the configuration and management of the
following:

• Layer 2 objects such as bridges and forwarding databases

• Ports such as Ethernet

Software Architecture Overview
R

• Layer 3 IPobjects such as interfaces, the IP Route table, configuration for supporting MPLS,

DiffServ, IPv6, and so on.

The configuration information of the forwarding planes is maintained in a persistent manner and made
available during subsequent boots. There can be cases where transient data of the running system is
stored by the relevant modules. For example, the CM API implementation module might store/cache
information about individual forwarding elements such as the number of ports reported by the FE, their
attributes and capabilities, IP addresses assigned to the ports, and so on.

2.1.3 Namespace Module
The namespace module implements the NPF-defined namespace that is used by multiple management
applications to identify, locate, and group managed objects in an NPF-compliant system. The CP-PDK
implements the namespace API, contains the named objects in the system, and possibly some state
associated with them.

The CP-PDK provides mechanisms through the namespace API to access and invoke methods on them
and manipulate the namespace. This includes methods to create, populate, and delete the nodes in the
namespace tree, methods for enumeration and traversing the namespace tree, and so on. Other sub-
modules of the control plane module interact with the namespace module to populate, modify, and
query the namespace.

For example, the binding and discovery module populates the namespace with the objects, properties
and attributes that were discovered on the forwarding planes. Figure 3 shows an example of how the
namespace could be structured and maintained by the PDK.

SYSTEM

ROUTER
FE

1

PORT

0 0 0 1

ARP
Table

Routing
Table PORT

0 0 0 1 0 1

00

ARP
Table

Routing
Table

Interface
Routing
Table

ARP
Table

Figure 3: Sample Namespace Maintained by the Control Plane PDK

14
Intel Confidential

R
Control Plane PDK Architecture

15
Control Plane-PDK 2.11

The namespace API is hierarchical and contains all configurable objects in the system. This includes
objects that represent individual entities on the various forwarding plane s such as physical interfaces,
forwarding and ARP tables, and so on. There are also objects that represent a set or a collection of
related objects.

For example, if there are multiple forwarding planes, there will be a logical object that represents all the
forwarding tables of all the forwarding planes. In Figure 3, there are two forwarding elements in the
system that are configured as a single virtual router, with the interfaces on the router being mapped to
ports on different FEs.

Similarly, the physical ARP and routing tables of each FE are mapped into a single logical ARP table
and routing table. Thus the application level API can make use of the objects as needed. The API
implementation takes care of generating appropriate messages for all the objects that it contains, for
every invocation on a grouping object.

2.1.4 Binding and Capability Discovery Module
There is a forwarding plane dependent sub-module that is responsible for binding and capability
discovery of the underlying forwarding planes. This module can also perform any forwarding plane
specific initialization such as binding of Core Components. This module exposes a flat interface to the
rest of the PDK implementation. It also exposes uniform semantics for discovery of the forwarding
planes and their resources and capabilities to the PDK.

The binding and capability discovery module provides consistent semantics for heterogeneous
forwarding planes. For example, in the case of IXP 1200, the presence of an MPLS Core Component on
the forwarding plane would be seen as an MPLS-capable Port on the IXP 1200 by this module. This
sub-module invokes the configuration and management sub-module and populates the namespace with
appropriate objects based on either the learned capabilities of the forwarding planes and/or some static
configuration.

2.1.5 Forwarding Plane Topology Manager
The way a particular control operation such as a route update is done depends largely on the topology in
which forwarding planes are connected. For example, the forwarding planes could be connected in a
bus, mesh, star, or other topology, like nested, that affects the control operations and the control data
they carry. The control data being downloaded must also be slightly modified in some cases to simulate
the one virtual router behavior. The forwarding plane topology manager sub-module handles these
issues.

2.1.6 Inter-FE Forwarding Module
The inter-FE forwarding module is responsible for assigning labels to be used for inter-FE forwarding
on per-router label information base. The labels are based on the next hop of the route or MPLS entries
and are reference counted for packets coming in on different entry, destined for the same next hop.
These labels are then installed using the MPLS module.

2.1.7 Callback and Event Handler Module
The APIs are designed to be asynchronous in nature. Thus, the applications using the APIs register
callbacks that are invoked on completion of the call. In addition to this, the events are reported to
applications through similar callbacks. The callback and event handler module is responsible for

Software Architecture Overview
R

maintaining all API callbacks registered by the applications and also the callbacks registered for event
notifications.

2.1.8 CP Module Manager
The CP module manager is responsible for the initialization and shutdown of the CP module. The CP
module manager starts all the sub-modules in the CP in a well-defined order, including the CP Agent,
which is a part of the transport plug-in. The CP module manager also provides a robust infrastructure
for servicing application callbacks so as to prevent the PDK from getting into a blocked state by the
application function.

The callback infrastructure consists of a pool of callback threads and a FIFO queue of the callback
messages. The PDK components push the callback messages into the queue and the first available
thread picks up the topmost messages to callback to the application. The number of the callback threads
and the message in the queue is adjustable to fit the demands of the application at the compilation time.

2.1.9 CP Multi-client Module
The CP multi-client module allows the PDK to run with multiple clients on Linux. The clients can be
either on the same machine or access the PDK remotely across a network using TCP. To achieve this,
the multi-client module uses ONC RPC and it consists of a client and server. The PDK runs inside the
server, while the client runs along the user application clients of the PDK.

2.1.10 Protocol Support Services
The CP-PDK must provide additional support in order to support existing routing protocols and legacy
control applications without modifications. . This is based on the fact that existing routing protocols and
legacy applications use the traditional socket interface to send and receive protocol/data packets.
Internally, the socket interface uses the different physical interfaces available on the device,
corresponding to physical ports in a device-independent manner. The following modules provide
complete support for legacy applications on the CP and are explained in the following sections:

• Virtual Interface Device Driver (VIDD)

• CE packet handler

• Routing cache manager

Virtual Interface Device Driver (VIDD)

By providing the control plane applications with virtual interfaces that represent actual physical
forwarding plane interfaces, routing protocols and other control plane applications see the physical
forwarding plane interfaces as virtual local interfaces on the control plane. Thus, the VIDD allows the
forwarding plane to function without any modifications. Thus the Virtual Interface Driver (VIDD)
module in the CP-PDK simulates all forwarding plane physical interfaces to the networking stack on the
control plane.

The VIDD module is responsible for providing a uniform abstraction of the underlying multiple
forwarding plane interfaces as virtual interfaces. A network element typically consists of a control
plane blade and one or more forwarding plane blades. In Figure 4, each forwarding plane blade has five
physical interfaces for example, five 10/100 Ethernet ports.

The routing protocols execute on the control plane blade and assume a socket interface. In order to
preserve all the semantics of the socket interface, all the ten physical interfaces must be simulated to the

16
Intel Confidential

R
Control Plane PDK Architecture

17
Control Plane-PDK 2.11

IP stack on the control plane. This simulation is handled by the VIDD. As a result, the routing protocols
in the control plane can be executed without any modifications to the packet data unit (PDU) send and
receive socket interface. Figure 4 illustrates the function of the VIDD.

Control
Plane

Backplane

Forwarding
Plane

Forwarding
Plane

VIDD Control Plane

Figure 4: VIDD Virtualization Effect

The VIDD module also performs packet classification on the control plane. When the classification API
is available, it will be implemented to allow control applications to register for any kind of
packets/events, and so on. For example, a control application interested in ICMP packets arriving at a
particular forwarding plane interface will receive them through the VIDD module. For the IXA
platform on the forwarding plane, the pseudo device driver functionality will be a part of the stack
driver.

CE Packet Handler

In addition to the virtualization of interfaces, the packets destined for protocols/applications on the
control plane must be transported from the forwarding plane. The packets from the control plane
transmitted to the virtual interfaces (which are actually meant to be sent to the corresponding physical
interfaces on the forwarding plane) must also be transported to the forwarding plane. Such packets are
termed as data packets.

Since virtualization of forwarding plane interfaces is essential for supporting unmodified control plane
protocol stacks, the exact mechanism and protocol used to transport or tunnel these packets is
implementation dependent and is independent of virtual interfaces. In the non co-located CP-PDK,
such data packets are transported using an implementation of the ForCES protocol.

Route Cache Manager

A mechanism must also be provided to synchronize the routing table maintained in the control plane
(usually in the kernel) with the routing tables maintained on the individual forwarding elements.
Routing stacks such as GateD use the ioctl interface to populate the kernel FIB. With the VIDD in
place, routing protocols running on the control plane continue to add and delete routes in the kernel FIB
of the control plane. While these routes are needed in the control plane for correct functioning of the
routing protocols, they must also be sent to the forwarding plane blades for configuration of the FIBs so
that the packets can be forwarded.

An application called Route Cache Manager runs on top of the CP-PDK in order to distribute the route
to forwarding plane FIBS. The route cache manager acquires these routes and invokes the IPv4 APIs.
Then the CP-PDK handles the population of the FIBs on various forwarding plane blades with
appropriate routes.

Software Architecture Overview
R

2.1.11 Operating System Abstraction Module

This module is responsible for abstracting out all the control plane hardware and OS dependencies from
the API Implementation. It abstracts OS services such as threads, semaphores, critical sections, timers,
memory, persistent storage, and so on. Control applications using NPF APIs may also use these
services. It is the only component of the CP-PDK that directly interfaces with the OS and hardware. It
could also be responsible for tracking resource usage, such as memory usage.

2.2 Transport Plug-in
The control plane and forwarding plane(s) can have different communication mechanisms or protocols
to exchange information with each other. These protocols can be either IETF standard protocols such as
ForCES/COPS/GSMP, or mechanisms such as CORBA, shared memory, and so on. The planes can
also be connected using a number of different types of interconnects. Examples of such interconnects
are InfiniBand, PCI, various back plane switching fabrics, shared memory, and so on.

The transport plug-in provides in-process communication between the control plane and the forwarding
plane in the case of co-location where no interconnect is necessary. The transport plug-in abstracts out
the type and the details of the communication mechanisms from the rest of the PDK, providing a plug-
and-play functionality for different communication mechanisms.

Thus, you can place different types of transport plug-ins between the planes in such a manner that the
control and forwarding planes communicate transparently. It is also possible (but not implemented) that
in a single instantiation, different forwarding planes can be connected to the control plane over different
interconnects. Figure 5 displays the communication of two forwarding planes with the control plane.
Each forwarding plane is connected to the control plane over a different interconnect type.

In order to support the concept of transport Plug-ins, the CP-PDK introduces the concept of
forwarding plane plug-in API (FP Plug-in API). The FP-plug-in API is very similar to standard NPF
application level APIs with minor differences, which are explained below.

The FP-Plug-in API provides the layer of abstraction for the different transport plug-ins. Thus, the
transport plug-in sends API invocations from the control plane to the forwarding planes. The
forwarding plane also uses the transport plug-in to send control data and events to the control plane for
processing.

Control Plane

Forwarding Plane Forwarding Plane

Transport Plugin
for

Shared Memory

Transport Plugin
for

Infiniband

Figure 5: Transport Plug-ins for Different Interconnects

18
Intel Confidential

R
Control Plane PDK Architecture

19
Control Plane-PDK 2.11

Tr
a

FP Plugin API

ForCES Transport
PluginC

on
tro

l
Pl

an
e

Fo
rw

ar
di

ng
Pl

an
e

Interconnect Abs.

Interconnect Abs.

ForCES Transport
Plugin

Back End API

ns

po
rt

 P
lu

gi
n

Transport
Protocol

Figure 6: Transport Plug-in Architecture

The transport plug-in is composed of four distinct parts, as shown in Figure 6:

1. FP plug-in API

2. Transport protocol

3. Interconnect abstraction layer (not present in the co-located PDK)

4. Back end API

2.2.1 FP Plug-in API
The FP plug-in API hides the transport plug-in details and presents a uniform API that is invoked by the
NPF API implementation modules. The FP plug-in API is similar to standard NPF application level
APIs except for one critical difference; the FP plug-in API calls have knowledge of individual FPs,
whereas the NPF APIs operate on higher-level objects.

The following is the application level API for adding a new ARP entry to the forwarding plane.
NPF_error_t NPF_IPv4UnicastToL2EntryAdd(

NPF_IN NPF_callbackHandle_t callbackHandle,

NPF_IN NPF_correlator_t correlator,

NPF_IN NPF_errorReporting_t errorReporting,

NPF_IN NPF_IPv4UnicastAddressResolutionTableHandle_t tableHandle,

NPF_IN NPF_IPv4UnicastNextHopResolutionEntry_t *entry);

The parameter t tableHandle represents an ARP table to which the entry must be added. This t
tableHandle could represent a single ARP table on a single forwarding plane or multiple ARP tables on
multiple forwarding planes, as discussed earlier. This one-to-n mapping between the control and
forwarding planes is hidden from the control plane application that adds the new ARP entry.

In contrast, the corresponding API on the forwarding plane is as follows:
FPPI_RET FPPAPI_ipv4_unicastToL2Add(

FPPI_FEID feid,

FPPI_CORRELATOR correlator,

Software Architecture Overview
R

FPPI_CBHANDLE cbhandle,

uint32_t entry_count,

FPPI_IPv4UniNHResolEntry_t* entry_array)

FPPI_RET FPPAPI_ARP_AddEntry(

FPPI_FEID feid,

FPPI_CORRELATOR correlator,

FPPI_CBHANDLE cbhandle,

npf_ipv4_ARPEntry_t* entry_array,

uint32_t e ntry_count);

The parameter feid represents the id of the forwarding plane to which the new ARP entry must be
added. The parameter entry_array contains information, which the forwarding plane uses to update the
appropriate entries in its ARP table(s).

2.2.2 Plug-in Back End API
The plug-in back end API is the API exposed by the transport plug-in on the forwarding plane, and the
FP Module of the PDK uses it. The plug-in back end API allows the FP module to do the following:

• Receive configuration and other requests from the CP

• Respond to the CP requests

• Send and receive data packets such as RIP, OSPF, and so on to and from the CP

2.2.3 Transport Protocol
The transport protocol can either be an IETF standard protocol such as ForCES/COPS/GSMP, or any
other messaging system such as CORBA that can be used for transporting messages between the control
and forwarding plane(s). The messages are sent between the control and forwarding planes via local
queues and inter-thread events in the co-located PDK.

• Control Plane Transport Plug-in: The control plane transport plug-in resides on the control
plane and implements the transport plug-in specific transport protocol and messaging. It is
invoked by the FP plug-in API and converts the API calls to appropriately formatted messages
that are sent to the forwarding plane agent.

• Forwarding Plane Transport Plug-in: The forwarding plane transport plug-in resides on the
forwarding plane. It passes the transport protocol messages and generates well-known messages
that are used by the forwarding plane module to invoke the vendor-specific API for the
forwarding plane. This process is described in detail in section 2.3.

2.2.4 Interconnect Abstraction Layer
The interconnect abstract layer hides the interconnect details and is used by the transport protocol to
send and receive messages. This provides an abstraction layer that hides the interconnect technology
details from the transport plug-in. The transport plug-in uses this layer to send and receive messages
without knowing if the interconnect is PCI, InfiniBand, or Ethernet.
Note: No interconnect abstraction layer is necessary for the co-located PDK as the control and
forwarding planes execute in the same process.

20
Intel Confidential

R
Control Plane PDK Architecture

21
Control Plane-PDK 2.11

2.3 Forwarding Plane Module
The forwarding plane (FP) module resides on the forwarding plane. It is specific to the forwarding
plane API (FPAPI), which is used as the programming interface for the forwarding plane. The FP
module receives the NPF API invocations from the FP agent and maps them to corresponding FP API
invocations.
For example, the IXP-based FP maps the NPF API invocation to Core Component invocations. The FP
module is also responsible for the binding and discovery of the FP. Figure 7 shows the internals of the
FP module.

FP Boot
Manager

Transport Plug in

Back-End API

FID
Manager

ARP ACE L3 Forwarder
ACE MPLS ACEs QoS ACEs Stack ACE

IPv4 APIsOther APIs MPLS APIs QoS APIs Packet Handler
API

Event
Notification

ACE

IXA SDK

Translator

Platform
Specific
comp.

Binding &
Discovery

Translator

Platform
Specific
comp.

C&M
Manager

Translator

Platform
Specific
comp.

Event
Handler

Translator

Platform
Specific
comp.

Packet
Handler

Translator

Platform
Specific
comp.

QoS
Manager

Translator

Platform
Specific
comp.

MPLS
Manager

Forwarding Planne Plug-In Managers

Translator

Platform
Specific
comp.

IPv4
Manager

Figure 7: Forwarding Plane Module

The FP module has the following components:

1. FP boot manager

2. A number of FP plug-in managers each of which consists of the following:

• Translator – This is a platform/OS independent component that translates NPF APIs,
performs any required processing, and invokes the platform-specific implementation
module.

• Platform-specific Component – This module is usually very specific to the platform
being used such as IXA SDK 2.0, IXA, and so on.

Software Architecture Overview
R

2.3.1 FP Boot Manager

The main responsibility of the FP boot manager is the initialization and shutdown of the forwarding
plane module of the CP-PDK. It performs any platform specific initializations and starts up all the FP
plug-in managers.

Each FP plug-in manager has to expose its initialization and shutdown routines to the FP boot manager.
After initializing all the FP plug-in managers, the FP boot manager runs the forwarding plane. This
results in initializing the binding process to a control Plane.

2.3.2 FP Plug-in Manager
Each FP plug-in manager handles a specific functionality; for example the IPv4 manager handles all the
IPv4 support by working with the IPv4 component of the underlying NPU (IXA SDK, for example).
Each FP plug-in manager is composed of a translator component and a platform specific component.

2.3.2.1 Translator

The translator provides a generic interface for each of the FP plug-in managers. It serves as an
abstraction for the forwarding plane API specific component. This makes it easier to port all the FP
plug-in managers to a different forwarding plane. For example, a Linux based FE will have Linux-
specific components talking to the translators. The transport plug-in and the each FP plug-in manager’s
translator communicate through the backend API. Each translator contains algorithms to translate NPF
API method invocations and dispatches them to the respective platform-specific component.

2.3.2.2 Platform Specific Component

Each platform-specific component is responsible for invoking the appropriate underlying NPU
functionality for example IXA SDK 3.51 API. The platform specific components expose the internal
APIs that are invoked by the translator. For example, the Add Label NPF MPLS API invocation
requires classification and marking actions. This functionality is embedded in two Core Components
within the forwarding plane. The MPLS manager’s platform specific component receives the NPF API
invocation and makes the two underlying IXA SDK 3.51 function calls corresponding to the single NPF
MPLS API invocation.

Some examples of plug-in managers are shown in Figure 7:

• Binding and Discovery: The binding and discovery functionality of the FP module is partly FP
specific. In the case of the IXA SDK, the binding and discovery functionality consists of
querying the underlying IXA SDK for the FE capabilities such as number of ports, individual
port attributes, QoS/MPLS capabilities, and so on.

• Configuration and Management Manager: The configuration and management manager is
responsible for mapping the NPF interface APIs for configuring and managing interfaces on the
forwarding plane.

• IPv4 Manager: The IPv4 manager maps NPF IPv4 Unicast APIs to the underlying FE.

• Packet Handler Manager: The packet hndler manager is responsible for interfacing with the
IXA SDK to deliver and receive packets destined to/from the control plane protocols and
applications. Data packets destined for the control plane such as packets destined for routing
protocols, applications, etc., running on the CP must be transported to the control plane. The
exact manner in which this is done can vary.
In the CP-PDK, an FE packet handler module determines whether the data packet must be sent
to a remote control plane. The FE packet handler module uses the transport plug-in to transport

22
Intel Confidential

R
Control Plane PDK Architecture

23
Control Plane-PDK 2.11

the packet to the remote control plane. You can also use other mechanisms such as IP-in-IP
tunneling. This additional module on the control plane completes the support required for
running legacy routing protocol stacks, and applications on the control plane.

• QoS Manager: If the FE is QoS-enabled, the QoS manager maps the NPF differentiated
services API to the underlying FE..

• MPLS Manager: If the FE is MPLS-enabled, the MPLS manager maps the NPF MPLS API to
the underlying FE.

• Event Manager: The event manager is responsible for delivering events from the FE such as
link status events, exceptions and so on.

The actual presence of each managers and their respective functionality are dependent on the system
being deployed. For example, you can run the FE without QoS and MPLS capabilities. In such cases,
the respective managers are not used.

	Overview
	Terminology
	References

	Control Plane PDK Architecture
	Control Plane Module
	Application API Implementation Module
	Configuration and Management Module
	Namespace Module
	Binding and Capability Discovery Module
	Forwarding Plane Topology Manager
	Inter-FE Forwarding Module
	Callback and Event Handler Module
	CP Module Manager
	CP Multi-client Module
	Protocol Support Services
	Operating System Abstraction Module

	Transport Plug-in
	FP Plug-in API
	Plug-in Back End API
	Transport Protocol
	Interconnect Abstraction Layer

	Forwarding Plane Module
	FP Boot Manager
	FP Plug-in Manager
	Translator
	Platform Specific Component

