

Platform Independence Layer API
Reference Guide

Control Plane-Platform Development Kit 2.11
March 2004

R

Information in this document is provided in connection with Intel® products and services. No license, express or
implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in
Intel's Terms and Conditions of Sale for such products and services, Intel assumes no liability whatsoever, and Intel
disclaims any express or implied warranty, relating to sale and/or use of Intel® products and services including liability
or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or
other intellectual property right. Intel products and services are not intended for use in medical, life saving, or life
sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Copyright© 2004 Intel Corporation.

* Other brands and names are the property of their respective owners.

ii Platform Independence Layer API Reference Guide
Intel Confidential

Contents
1 Overview..9

1.1 PIL ..9
1.2 PIL Naming Conventions..10
1.3 Standard C Run-time ..10
1.4 Berkeley Sockets ..10
1.5 Return Codes...10

2 Compiler Guidelines...15
2.1 Avoid Pragmas..15
2.2 Structure Packing ...15
2.3 Anonymous Structures and Unions ..16
2.4 Avoid Inline Assembly..16

3 PIL API ...19
3.1 Critical Sections (Required) ...19

3.1.1 PIL_DestroyCriticalSection ..19
3.1.2 PIL_EnterCriticalSection ..19
3.1.3 PIL_InitializeCriticalSection..20
3.1.4 PIL_LeaveCriticalSection ...21
3.1.5 PIL_TryEnterCriticalSection ...21

3.2 Events (Required) ...22
3.2.1 PIL_CreateEvent..22
3.2.2 PIL_DestroyEvent ..23
3.2.3 PIL_ResetEvent ...23
3.2.4 PIL_SetEvent ...23
3.2.5 PIL_WaitForEvent ..24

3.3 Heap Management (Required)..24
3.3.1 PIL_CreateHeap ..25
3.3.2 PIL_DestroyHeap...25
3.3.3 PIL_HeapAlloc ...26
3.3.4 PIL_HeapFree..26
3.3.5 PIL_HeapShrink...27

3.4 Initialization and De-initialization (Required)..27
3.4.1 PIL_Init...27
3.4.2 PIL_DeInit ..28

3.5 Mailbox Management (Required) ...28
3.5.1 PIL_CreateMailbox...29
3.5.2 PIL_DestroyMailbox ...29
3.5.3 PIL_ReadMailbox...30
3.5.4 PIL_WriteMailbox...30

iii
Control Plane-PDK 2.11

Contents R

3.6 Memory (Required) ...31
3.6.1 PIL_AllocateMemory..31
3.6.2 PIL_AllocatePages...32
3.6.3 PIL_FreeMemory ...33
3.6.4 PIL_FreePages ..33
3.6.5 PIL_GetPageSize...33

3.7 Semaphores (Required)..34
3.7.1 PIL_AcquireSemaphore ...34
3.7.2 PIL_CreateBinarySemaphore ..35
3.7.3 PIL_CreateSemaphore ..35
3.7.4 PIL_DestroySemaphore...36
3.7.5 PIL_GetSemaphoreCount..36
3.7.6 PIL_ReleaseSemaphore ..37

3.8 Threading (Required)..37
3.8.1 PIL_CreateThread ...38
3.8.2 PIL_DelayThread ...40
3.8.3 PIL_DestroyThread..40
3.8.4 PIL_ExitThread ..41
3.8.5 PIL_GetCurrentThread...41
3.8.6 PIL_GetNativeThreadPriority ...42
3.8.7 PIL_GetThreadPriority ...42
3.8.8 PIL_GetThreadValue ...43
3.8.9 PIL_ResumeThread...43
3.8.10 PIL_SetNativeThreadPriority ...44
3.8.11 PIL_SetThreadPriority..44
3.8.12 PIL_SetThreadValue..45
3.8.13 PIL_SuspendThread ..45
3.8.14 PIL_TerminateThread ..46
3.8.15 PIL_WaitForThread..46

3.9 Timers (Required) ...47
3.9.1 PIL_CreateTimer..47
3.9.2 PIL_DestroyTimer ..48
3.9.3 PIL_DisableTimers...49
3.9.4 PIL_EnableTimers..49
3.9.5 PIL_ResetTimer ...49
3.9.6 PIL_StartTimer...50
3.9.7 PIL_StopTimer ...50

3.10 Dynamic Libraries (Optional) ...51
3.10.1 PILOS_FreeLibrary ..51
3.10.2 PILOS_GetProcAddress ..51
3.10.3 PILOS_LoadLibrary ...52

3.11 Input/Output Register Access (Optional)..52
3.11.1 PILOS_FindPciDeviceSignature ..53
3.11.2 PILOS_FindPciDeviceClass ..53
3.11.3 PILOS_ReadPortByte ..54
3.11.4 PILOS_ReadPortWord...54

iv
Intel Confidential

R Contents

3.11.5 PILOS_ReadPortDword...54
3.11.6 PILOS_WritePortByte ..55
3.11.7 PILOS_WritePortWord...55
3.11.8 PILOS_WritePortDword ...55
3.11.9 PILOS_ReadPciConfigByte ...56
3.11.10 PILOS_ReadPciConfigWord..56
3.11.11 PILOS_ReadPciConfigDword ..56
3.11.12 PILOS_WritePciConfigByte ...57
3.11.13 PILOS_WritePciConfigWord ..57
3.11.14 PILOS_WritePciConfigDword ..58

3.12 Interlocked Services (Optional) ...58
3.12.1 PILOS_InterlockedCompareExchange ..58
3.12.2 PILOS_InterlockedDecrement ...59
3.12.3 PILOS_InterlockedExchange...59
3.12.4 PILOS_InterlockedIncrement...59

3.13 Miscellaneous Services..60
3.13.1 PIL_Abort ...60
3.13.2 PIL_GetCurrentTime..60

3.14 DEBUG Services ...60
3.14.1 ASSERT ..60
3.14.2 ASSERTMSG ..61
3.14.3 TRACE...62
3.14.4 TRACEx...62

3.15 Resource Tracking..62
3.15.1 PIL_DumpResources...63
3.15.2 PIL_GetResourceCount...63

Revision History
Revision Description Date Author

2.11 Updated for Release 2.11 March 2004 Amit Kaul

2.1 Updated for Release 2.1 December 2003 Dan Baumberger

2.0 Updated for Release 2.0 August 2003 Dan Baumberger

 v
Control Plane-PDK 2.11

Part 1: Overview

R

1 Overview
In reusing software components for different applications, writing modules in high-level language is not
sufficient for easy reuse. Differences in operating systems, platforms or compilers can make porting
difficult. The porting effort can be greatly reduced by following guidelines to minimize compiler
exceptions, and using an operating system-independent API. Section 2, Compiler Guidelines provides
compiler guidelines, and Section 3, PIL API describes the Platform Independence Layer (PIL) API.

1.1 PIL
PIL provides an operating system independent API for many common operations. It also provides
common debugging routines. PIL provides appropriately defined trace and assert macros (they are
automatically disabled when compiled in release mode). With a specially built version, PIL keeps track
of all the resources allocated through it and can report on the ones that were not freed.

PIL can provide other runtime support needs that an application may have. This may include
implementing parts of the C or C++ run-time for environments that do not have native support. Other
common utility code, such as heap management, can be included in the PIL, allowing all clients to
benefit from the shared code.

The PIL API abstracts the common operating system services that applications and drivers use. By
porting the PIL functionality to the new platform and rebuilding depending applications or drivers,
much, if not all, of the code does not need to be ported, since it is not dependent on any single operating
system but only on the PIL.

PIL services are divided into two categories: required and optional services. Required services are
available in all implementations. Optional services may not be available on every implementation due
to difficulty in emulation, or the services are not required for that implementation.

Required services include:

• Asynchronous Procedure Calls (APC)

• Critical sections

• Events

• Heap management

• Initialization and de-initialization

• Mailbox (messaging) management

• Memory management

• Semaphores

• Threading

• Timers

• PIL also provides utility services. These services include:

• Miscellaneous utility services

• ASSERT and DEBUG macros

• Allocated resource tracking

9
Control Plane-PDK 2.11

http://opensource.intel.com/pil/docs/pil1pre5.htm
http://opensource.intel.com/pil/docs/pil1pre5.htm

Platform Independence Layer API
Reference Guide

R

1.2 PIL Naming Conventions

All required PIL functions start with the prefix PIL_. This clearly distinguishes PIL calls from
platform or application specific functions. Any function that starts with PIL_ is guaranteed to be
available on any platform for which a PIL has an implementation. Optional PIL services have the prefix
PILOS_ to distinguish that they may not be available in all implementations. When porting code with
calls to PILOS_ functions, the PIL implementation notes for the target implementation need to be
consulted to see if optional services are available.

Platform-specific functions may be added to specific implementations of PIL if they follow a certain
naming scheme. They cannot start with PIL_ or PILOS_. They must start with the PIL implementation
specific name such as PIL32_ for Win32* or PILVX_ for VxWorks*. If the service is needed in more
than one implementation of PIL, it should be made a PILOS_ optional service.

All PIL data structures start with the PIL prefix and follow the Pascal naming convention (for example,
PilSemaphore or PilCriticalSection). PIL constants start with the prefix PIL_ (for
example, PIL_OK or PIL_ERROR).

1.3 Standard C Run-time
In an environment that provides a C compiler, it can be assumed that at least part of the standard C run-
time library is available. PIL does not explicitly export those run-time functions, and it can be assumed
that they are available elsewhere. Under certain environments, not all C run-time functions are
available. In such cases, PIL may implement parts, although certainly not all, of the C run-time
functions with their standard prototypes.

It is not specified that any implementation of PIL implements C run-time functions. However, as noted
above, any specific implementation may be supporting the functions. Consult the implementation-
specific notes for details on the run-time library that is supported.

1.4 Berkeley Sockets
For platforms where networking support is available, the preferred API for network programming is the
standard Berkeley Sockets API as defined in the POSIX.1g specification and discussed in "Unix
Network Programming" written by Richard Stevens. PIL does not attempt to place an abstraction to this
API or provide any extensions to it.

1.5 Return Codes
The API descriptions in Section 3, PIL API documents many of the return codes returned as result
codes from PIL functions. However, implementations may return codes that are not explicitly
documented. This arises from the way certain implementations need to implement those services.

Certain return codes, if not otherwise, documented, can be returned from almost any function.

10
Intel Confidential

R Overview

 11
Control Plane-PDK 2.11

These codes include:

PIL_ERROR Unless otherwise documented for a particular API call, this denotes an
implementation-specific general error. The debug implementation of PIL
should provide more information on why this error occurred.

PIL_INVALID_PARAM Although documented in most cases, any function can return this error code
if it determines that any of the given parameters is not valid.

PIL_NOMEM Many implementations of functions may require memory to be allocated that
other implementations may not need. In this case, PIL_NOMEM is the proper
return code.

Part 2: Compiler Guidelines

R

2 Compiler Guidelines
Compilers can compile the same source code differently. To facilitate ease of porting, certain language
constructs should be avoided so that they do not need to be #ifdef 'd or changed for each compiler.

The used compilers are Microsoft Visual C++ for Windows applications and drivers, and the GNU C
Compiler Collection (gcc) for other platforms. Visual C++, even in "C" mode, accepts a wide number
of language extensions. .gcc, when compiling C code, complies to the standards. When compiling
C++ code or C code in C++ mode, .gcc closely follows the ANSI C++ standard, allowing many of the
constructs that Visual C++ does.

2.1 Avoid Pragmas
Pragmas are commands embedded in the source files to control the compiler. Microsoft Visual C++
accepts many pragmas. Some pragmas, such as #pragma warning and #pragma pack are useful and
are used quite extensively. The GNU C compiler, for the most part, does not support pragmas.

2.2 Structure Packing
The standard API for C on many processors has alignment requirements for multi-byte fields that are
tighter than the ones that many protocols assume. One method that has been used to address this is to
throw a command-line switch to the compiler that causes all structures to be tightly packed. If this
solution is not followed, access to misaligned structure fields ranges from slow to incorrect to fatal on
many of these processors.

It is not necessary that all the non-packet data structures have to be hand-aligned by insertion of
padding fields. What is needed is a method to declare only those structures that represent packet data on
the wire, to be tightly packed. There is no standard syntax for doing this in C. With the right
incantations of macros and includes, it is possible to write C code such that per-structure packing can be
done with any typical modern compiler.
#include <packon.h>

PACKED_PREFIX struct a {

char a;

long b;

} PACKED_SUFFIX;

#include <packoff.h>

The macros PACKED_PREFIX and PACKED_SUFFIX are the compiler-dependent prefix and postfix
notation for packing a structure, if the structure supports that method. They are defined by include
files included by packon.h. For those compilers that control structure packing by a #pragma, the
appropriate include files with the correct #pragma statements are included by packon.h and
packoff.h . It is important not to forget packoff.h. This must be done by conditional include
files, and not macro invocation, because the C standard says that #pragma may not be controlled by an
#ifdef.

15
Control Plane-PDK 2.11

Platform Independence Layer API
Reference Guide

R

2.3 Anonymous Structures and Unions

Anonymous structures and unions are embedded structures or unions inside another structure or union
that does not have a name.
struct A {

union {

int x;

int y;

};

};

The union of x and y inside structure A is anonymous. That is, the x and y elements of an instance of
this structure can be addressed directly as if they were members of A.

Anonymous structures and unions are a Microsoft C/C++ extension. The GNU C compiler does not
support them in any form. The GNU C++ compiler does. There is no option that can be fed to the GNU
C compiler to support this.

There are two options to support anonymous structures and unions:

• Compile everything in C++ mode.

Note: C files compiled in C++ will have all function names in disorder. Care must be taken to preserve the
names of exported externals.

• Give the anonymous structure or union a name. This means that you can no longer address
x and y in the above example as A.x and A.y , but rather have something like A.B.x or
A.B.y if the union is named B .

This feature is actively debated on the mailing lists for the GNU C compiler. It may be supported in a
future release of the compiler. gcc versions up through 2.9.x (EGCS 1.x releases) do not support this
feature.

2.4 Avoid Inline Assembly
Although both the Microsoft and GNU compilers both support assembly, Microsoft uses the Intel
syntax for the instructions whereas the GNU compilers use the AT&T syntax. The difference lies in the
order of the parameters. With the Intel syntax, the destination operand is specified first, followed by the
source operands. In the AT&T syntax, the destination operand is specified last, prefixed by the source
operands. Since they look similar, it can cause confusion. In addition, the way inline assembly is
specified is different. Microsoft uses the _asm or __asm keyword, followed by the instruction or
instructions inside curly braces. The GNU compilers use the ASM() pseudo macro.

Inline assembly also complicates ports to other architectures. The GNU C/C++ compiler is used on
many different architectures, and if the code compiles successfully, code can be generated for dozens of
architectures. Moving to other architectures is greatly simplified by sticking to standard, portable
C/C++ code.

If inline assembly must be used, it should be appropriately #ifdef 'd with both the target platform and
compiler. A non-assembly version of the code should also be available via #ifdefs for platforms that
do not have appropriate assembly already created.

16
Intel Confidential

Part 3: PIL API

R

3 PIL API

3.1 Critical Sections (Required)
Critical sections are a method of synchronizing access to shared resources. They differ from
semaphores in that they are essentially binary: either a thread has it or it does not and will block trying
to get it. There is no timeout value associated with waiting for the critical section.

Another major difference is that the user of the critical section owns the memory for the critical section.
The owning process must allocate the memory by declaring a variable of type
PilCriticalSection for each critical section and initialize them by using
PIL_InitializeCriticalSection. Once the critical section is no longer needed, it must be
discarded using PIL_DestroyCriticalSection.

A thread attempts to obtain a critical section using PIL_EnterCriticalSection. When a thread
is done with the critical section, it releases the critical section by calling
PIL_LeaveCriticalSection. PIL_TryEnterCriticalSection can be used to test if a
critical section can be acquired, but not to block it.

Once a thread owns a critical section, subsequent calls to PIL_EnterCriticalSection will not
block. This prevents deadlocks with a thread waiting for itself. A thread must call
PIL_LeaveCriticalSection an equal number of times as PIL_EnterCriticalSection to
release the critical section.

3.1.1 PIL_DestroyCriticalSection
void PIL_DestroyCriticalSection(PilCriticalSection* pCriticalSection)

PIL_DestroyCriticalSection destroys any memory associated with a critical section that has
been initialized via PIL_InitializeCriticalSection. The behavior is undefined to destroy a
critical section that has not been initialized via PIL_InitializeCriticalSection or has
threads waiting on it.

Defined in: PILCS.H

Return Value

This function does not return a value.

Parameters

pCriticalSection The critical section object to be destroyed

3.1.2 PIL_EnterCriticalSection
void PIL_EnterCriticalSection(PilCriticalSection* pCriticalSection)

PIL_EnterCriticalSection enters a critical section gaining access to the shared resource/s. If
another thread has the critical section, this call will block until the critical section may be acquired.
There is no timeout. The thread will wait forever until it can gain access.

19
Control Plane-PDK 2.11

http://opensource.intel.com/pil/docs/pil1pre5.htm
http://opensource.intel.com/pil/docs/pil1pre5.htm
http://opensource.intel.com/pil/docs/pil1pre5.htm
http://opensource.intel.com/pil/docs/pil1pre5.htm
http://opensource.intel.com/pil/docs/pil1pre5.htm
http://opensource.intel.com/pil/docs/pil1pre5.htm
http://opensource.intel.com/pil/docs/pil1pre5.htm
http://opensource.intel.com/pil/docs/pil1pre5.htm
http://opensource.intel.com/pil/docs/pil1pre5.htm
http://opensource.intel.com/pil/docs/pil1pre5.htm

Platform Independence Layer API
Reference Guide

R

The owning thread may make calls to PIL_EnterCriticalSection without blocking, once a
critical section has successfully been obtained.

Note: If a thread makes multiple calls to PIL_EnterCriticalSection, it must call
PIL_LeaveCriticalSection equal number of times, or the critical section will not be released.

The behavior is undefined to enter a critical section that has not been initialized using
PIL_InitializeCriticalSection.

Defined in: PILCS.H

Return Value

This function does not return a value.

Parameters

pCriticalSection Pointer to the critical section to be entered

3.1.3 PIL_InitializeCriticalSection
void PIL_InitializeCriticalSection(PilCriticalSection*
pCriticalSection)

PIL_InitializeCriticalSection initializes the memory associated with a critical section
object preparing it for use. All critical sections must first be initialized with this call.

Defined in: PILCS.H

Return Value

This function does not return a value.

20
Intel Confidential

http://opensource.intel.com/pil/docs/pil1pre5.htm
http://opensource.intel.com/pil/docs/pil1pre5.htm

R PIL API

21

Control Plane-PDK 2.11

Parameters

pCriticalSection Pointer to a chunk of memory to be initialized as a critical
section

3.1.4 PIL_LeaveCriticalSection
void PIL_LeaveCriticalSection(PilCriticalSection* pCriticalSection)

PIL_LeaveCriticalSection leaves a critical section, releasing the next thread to enter the
critical section if one is waiting.

The behavior is undefined if a critical section is left without first being initialized using
PIL_InitializeCriticalSection.

Defined in: PILCS.H

Return Value

This function does not return a value.

Parameters

pCriticalSection Pointer to the critical section to be left

3.1.5 PIL_TryEnterCriticalSection
BOOL PIL_TryEnterCriticalSection(PilCriticalSection*
pCriticalSection)

PIL_TryEnterCriticalSection attempts to enter a critical section. The difference between this
function and PIL_EnterCriticalSection is that this function will return FALSE if it cannot
enter the critical section because another thread has the critical section. It will not block. It will return
TRUE if the critical section was successfully entered. If the function returns TRUE, the critical section
was acquired successfully and must be released using PIL_LeaveCriticalSection when the
thread is done with it.

It is undefined to enter a critical section that has not been initialized using
PIL_EnterCriticalSection.

Defined in: PILCS.H

Return Value

Returns one of the following:

TRUE The critical section was successfully entered

FALSE Another thread currently owns the critical section

Parameters

pCriticalSection Pointer to the critical section to try to enter

http://opensource.intel.com/pil/docs/pil1pre5.htm
http://opensource.intel.com/pil/docs/pil1pre5.htm
http://opensource.intel.com/pil/docs/pil1pre5.htm
http://opensource.intel.com/pil/docs/pil1pre5.htm

Platform Independence Layer API
Reference Guide

R

3.2 Events (Required)

Events are a synchronization method for determining if something has happened. They maintain only a
signaled or non-signaled state. Threads can wait on an event to be woken up when something happens.
They are similar to binary semaphores with the additional semantic that the state, signaled or non-
signaled, can be changed without blocking. The only blocking call is PIL_WaitForEvent, which
waits until an event becomes signaled.

Events come in two types: manual or automatic reset.

• Manual reset events require an explicit call to set the event to non-signaled once it has become
signaled.

• Automatic reset events automatically reset back to non-signaled once a thread has been woken
up.

In other words, manual reset events let all threads waiting on the event through, while the automatic
reset events allow only a single thread.

Events are created via PIL_CreateEvent. At creation time, the signal state can be set to what type
of event it is (manual or automatic reset). Events are destroyed using PIL_DestroyEvent when they
are no longer necessary. PIL_ResetEvent sets a manual reset event back to the non-signaled state.
PIL_SetEvent sets either type of event to the signaled state. Finally, PIL_WaitForEvent waits
until an event is signaled, with an optional timeout.

3.2.1 PIL_CreateEvent
PilEvent PIL_CreateEvent(BOOL bManualReset, BOOL bSignaled)

PIL_CreateEvent creates a new manual or automatic reset event. bManualReset determines if
the event is manual or automatic reset. TRUE (non-zero) creates a manual reset event, FALSE (zero)
creates an automatic reset event.

bSignaled determines the initial state of the event. TRUE sets the initial state to signaled. FALSE
makes the event non-signaled. For most purposes, this parameter will be FALSE .

Defined in: PILEVNT.H

Return Value

Returns one of the following:

PilEvent The handle of the newly created event

NULL The event could not be created

Parameters

bManualReset The type of event to be created. TRUE if the event is a
manual reset or FALSE if it is automatic.

bSignaled TRUE if the initial state of the event is signaled or FALSE
if it is non-signaled

22
Intel Confidential

http://opensource.intel.com/pil/docs/pil1pre5.htm
http://opensource.intel.com/pil/docs/pil1pre5.htm
http://opensource.intel.com/pil/docs/pil1pre5.htm
http://opensource.intel.com/pil/docs/pil1pre5.htm
http://opensource.intel.com/pil/docs/pil1pre5.htm
http://opensource.intel.com/pil/docs/pil1pre5.htm

R PIL API

23

Control Plane-PDK 2.11

3.2.2 PIL_DestroyEvent
PilResult PIL_DestroyEvent(PilEvent Event)

PIL_DestroyEvent destroys an event created with PIL_CreateEvent. The behavior is
undefined if an event is destroyed with threads waiting on it.

Defined in: PILEVNT.H

Return Value

Returns one of the following:

PIL_OK The event was successfully destroyed

PIL_INVALID_HANDLE The handle of the event is not a valid event handle

Parameters

Event The handle of the event to be destroyed

3.2.3 PIL_ResetEvent
PilResult PIL_ResetEvent(PilEvent Event)

PIL_ResetEvent resets the state of a manual reset event back to non-signaled. It does nothing for an
automatic reset event.

Defined in: PILEVNT.H

Return Value

Return one of the following:

PIL_OK The event has been successfully reset to non-signaled

PIL_INVALID_HANDLE The handle of the event is not a valid event handle

Parameters

Event The handle of the manual reset event to be reset to non-
signaled

3.2.4 PIL_SetEvent
PilResult PIL_SetEvent(PilEvent Event)

PIL_SetEvent sets the state of an event to the signaled state. For manual reset events, the event
stays in the signaled state and all threads waiting or come to wait when in the signaled state will be let
through until the event is explicitly reset. For automatic reset events, when the event is signaled, the
first thread to wait on this event is woken, and the state of the event is automatically set back to non-
signaled.

Defined in: PILEVNT.H

Return Value

http://opensource.intel.com/pil/docs/pil1pre5.htm

Platform Independence Layer API
Reference Guide

R

Returns one of the following:

PIL_OK The event was successfully signaled

PIL_INVALID_HANDLE The handle of the event is not a valid event handle

Parameters

Event The handle of the event to be set to the signaled state

3.2.5 PIL_WaitForEvent
PilResult PIL_WaitForEvent(PilEvent Event, uint32_t dwTimeout)

PIL_WaitForEvent waits for an event to become signaled. The function returns when the event is
set to the signaled state or when the timeout period expires. The state of the event after a successful wait
depends on the type of event. For manual reset events, the PIL_WaitForEvent does not affect its
state. For automatic reset events, the state is automatically reset to non-signaled after the first successful
wait.

The timeout specifies how long the thread should be suspended waiting for the event to be signaled in
milliseconds. The value of PIL_INFINITE_TIMEOUT will wait forever. A value of 0 allows the state
of the event to be checked without blocking.

Note: On all platforms, the granularity of the wait may be between 10 to 20 milliseconds. In such a case, the
wait will be rounded up to the nearest integral unit.

Defined in: PILEVNT.H

Return Value

Returns one of the following:

PIL_OK The wait was successful and the event was signaled

PIL_INVALID_HANDLE The handle of the event is not a valid event handle

PIL_TIMEOUT The timeout period expired before the event became
signaled

Parameters

Event The handle of the event for which to wait

dwTimeout The time, in milliseconds, to wait for the event or
PIL_INFINITE_TIMEOUT to wait forever

3.3 Heap Management (Required)
PIL's heap management allows the client to create heaps and manage them separately from the
underlying operating system. An application can also create multiple heaps to better manage buffering.

24
Intel Confidential

R PIL API

25

Control Plane-PDK 2.11

For example, if an application manipulates buffers of different sizes, a heap could be created so that
each heap manages buffers of only one size. PIL does not have a pre-set limit on the number of heaps.

A new heap is created using PIL_CreateHeap. At this time the total size of the heap is given.
Blocks of memory can be allocated from a specific heap using PIL_HeapAlloc. Blocks are returned
to the heap using PIL_HeapFree. When a heap is no longer needed, it can be freed using
PIL_DestroyHeap. Finally, blocks from a heap can be shrunk using PIL_HeapShrink. The heap
manager does not allow blocks to be increased in size.

The heap manager uses 8 bytes of overhead per allocation. The initial size of the heap is guaranteed to
be the size given during PIL_CreateHeap. Each sub-allocation requires 8 bytes out of the heap. So
if a heap is created with a size of 10,240 bytes, you cannot get 10 allocations of 1,024 bytes out of the
heap, but rather 9 allocations of 1.024 bytes with 952 bytes left in the heap. Memory is allocated in a
first-fit algorithm. Free blocks of memory are automatically combined during PIL_HeapFree.

3.3.1 PIL_CreateHeap
PilHeap PIL_CreateHeap(uint32_t MaxHeapSize)

PIL_CreateHeap creates a new heap with the given number of bytes. When the heap is first created,
it is guaranteed to contain MaxHeapSize bytes, if allocated in one chunk. Each sub-allocation requires 8
bytes of overhead, which is also allocated from the heap.

The maximum size of any one heap is 2^31 or 2,147,483,648 bytes.

Defined in: PILHEAP.H

Return Value

Returns one of the following:

PilHeap The handle of the newly created heap

NULL The heap could not be allocated from the underlying
operating system

Parameters

MaxHeapSize The maximum size of the heap in bytes

3.3.2 PIL_DestroyHeap
PilResult PIL_DestroyHeap(PilHeap hHeap)

PIL_DestroyHeap de-allocates a heap created using PIL_CreateHeap. All blocks allocated from
that heap become invalid after this call.

Defined in: PILHEAP.H

http://opensource.intel.com/pil/docs/pil1pre5.htm
http://opensource.intel.com/pil/docs/pil1pre5.htm
http://opensource.intel.com/pil/docs/pil1pre5.htm
http://opensource.intel.com/pil/docs/pil1pre5.htm
http://opensource.intel.com/pil/docs/pil1pre5.htm
http://opensource.intel.com/pil/docs/pil1pre5.htm
http://opensource.intel.com/pil/docs/pil1pre5.htm
http://opensource.intel.com/pil/docs/pil1pre5.htm

Platform Independence Layer API
Reference Guide

R

Return Value

Returns one of the following:

PIL_OK The heap was successfully destroyed

PIL_INVALID_HANDLE The handle of the heap is not a valid heap handle

Parameters

hHeap The handle of the heap to be destroyed

3.3.3 PIL_HeapAlloc
void* PIL_HeapAlloc(PilHeap hHeap, uint32_t Size)

PIL_HeapAlloc allocates Size bytes from the given heap. The maximum size of any single
allocation is the size of the heap when created.

Defined in: PILHEAP.H

Return Value

One of the following:

void* Pointer to the newly allocated memory block

NULL The heap does not contain enough free memory to allocate
the block

Parameters

hHeap The handle of the heap from which to allocate memory

Size The size, in bytes, of the block to be allocated

3.3.4 PIL_HeapFree
PilResult PIL_HeapFree(PilHeap hHeap, void* pBuf)

PIL_HeapFree returns a block allocated using PIL_HeapAlloc back into the heap. When a block
is freed, the heap manager performs a quick heap compaction to maximize the free space in the heap.
The behavior is undefined to free a block to a heap that was not allocated from the heap.

Defined in: PILHEAP.H

Parameters

hHeap The handle of the heap into which to the block has to be
returned

pBuf The pointer of the buffer to be freed back into the heap

26
Intel Confidential

http://opensource.intel.com/pil/docs/pil1pre5.htm

R PIL API

27

Control Plane-PDK 2.11

3.3.5 PIL_HeapShrink
PilResult PIL_HeapShrink(PilHeap hHeap, void* pBuf, uint32_t NewSize)

PIL_HeapShrink allows a block allocated from a heap to be made smaller, freeing the reset of the
block back into the heap. Not all blocks can be shrunk due to overhead in the heap. A block cannot be
made larger using this function. The behavior is undefined if a block is shrunk in a heap from which it
was not allocated.

Defined in: PILHEAP.H

Return Value

Returns one of the following:

PIL_OK The operation was successfully completed

PIL_INVALID_HANDLE The handle of the heap is not a valid heap handle

PIL_INVALID_PARAM The new size is not less than the old size

PIL_ERROR The block cannot be resized due to lack of space in the
heap

Parameters

hHeap The handle of the heap to which the block belongs

pBuf The pointer to the buffer to be shrunk

NewSize The new, smaller size of the block

3.4 Initialization and De-initialization (Required)
PIL has an explicit initialization and de-initialization function. These are required to be called by any
application before using PIL functions and after they are finished with the PIL layer. This allows PIL to
perform implementation-specific initialization and de-initialization in a portable fashion. The behavior
that results from calling a PIL function without first calling PIL_Init is undefined.

3.4.1 PIL_Init
PilResult PIL_Init(void)

PIL_Init must be called before any other PIL function may be used, including any utility or run-time
functions that are exported by PIL. This allows PIL to do implementation-specific initialization in a
portable manner.

PIL_Init is a synchronous call. It will not return until the initialization is complete. If another call is
made into PIL_Init before the first call completes, it will also block until initialization is complete.
Once the initialization is complete, subsequent calls to PIL_Init will return an error code of
PIL_INITIALIZED .

Defined in: PILINIT.H

Return Value

http://opensource.intel.com/pil/docs/pil1pre5.htm

Platform Independence Layer API
Reference Guide

R

Returns one of the following:

PIL_OK PIL initialization is successful

PIL_NOMEM There is insufficient memory for PIL to initialize

PIL_INITIALIZED PIL_Init has already been completed

3.4.2 PIL_DeInit
void PIL_DeInit(void)

PIL_DeInit must be called when PIL is no longer required. No PIL function may be called after this
function is called. This allows PIL to release any implementation-specific resources in a portable
manner.

PIL_DeInit is a synchronous call.

Defined in: PILINIT.H

Return Value

This function does not return a value.

3.5 Mailbox Management (Required)
The mailbox manager in PIL provides basic platform-independent messaging services. Mailboxes allow
multiple threads to pass information back and forth between them. It also provides a way to synchronize
messages. In other words, a thread can block waiting for messages in its mailbox. When a message
arrives, it wakes up, reads the message, and does whatever action is required.

The format of messages is not defined. When the mailbox is created, the application tells PIL how big
each message is and how many to store. PIL will allocate the necessary memory to maintain the queue
of messages. PIL retains a copy of the data and not a pointer. Therefore, once a message has been
written into the mailbox, the original does not have to be preserved. Pointers can easily be passed in this
paradigm by specifying the size of the pointer for the message size.

A new mailbox is created using PIL_CreateMailbox. Here the size of each message and the
number of messages to store is communicated. There is no inherent limit on the number of mailboxes,
the size of messages, or the number of messages other than the memory required to store these
structures. When a mailbox is no longer needed, it can be destroyed using PIL_DestroyMailbox.

PIL_ReadMailbox reads a message from the mailbox. If there are no messages in the mailbox, it
can optionally block waiting for messages. PIL_WriteMailbox copies a message into the mailbox,
waking any threads that may be waiting on the mailbox. PIL_WriteMailbox can also optionally
block if the mailbox is full.

Note: If multiple threads are waiting to read a mailbox, messages will be given to threads in a first in first out
order. That is, the first thread waiting will get the first message, the next thread the second, and so on. The
same holds true for writing to a mailbox.

28
Intel Confidential

http://opensource.intel.com/pil/docs/pil1pre5.htm
http://opensource.intel.com/pil/docs/pil1pre5.htm
http://opensource.intel.com/pil/docs/pil1pre5.htm
http://opensource.intel.com/pil/docs/pil1pre5.htm
http://opensource.intel.com/pil/docs/pil1pre5.htm

R PIL API

29

Control Plane-PDK 2.11

3.5.1 PIL_CreateMailbox
PilMailbox PIL_CreateMailbox(uint32_t MessageLength, uint32_t
QueueLen)

PIL_CreateMailbox creates a new message queue. QueueLength messages can be stored in the
mailbox, each occupying MessageLength bytes. PIL_CreateMailbox pre-allocates all the
memory necessary to store all QueueLength messages so that at run-time the mailbox either has
available slots or it does not. It does not go out to the OS and try to get more.

Defined in: PILMBOX.H

Return Value

Returns one of the following:

PilMailbox The handle of the newly created mailbox

NULL The mailbox could not be created. The most common
reason is that there is not enough memory to allocate the
mailbox data structures.

Parameters

MessageLength The maximum number of messages that can be stored in
the mailbox

QueueLen The size of each message, in bytes, stored in each mailbox
slot

3.5.2 PIL_DestroyMailbox
PilResult PIL_DestroyMailbox(PilMailbox hMailbox)

PIL_DestroyMailbox destroys a mailbox created with PIL_CreateMailbox, releasing all
memory associated with the mailbox. The behavior is undefined if a mailbox is destroyed that has
readers or writers blocked on it. All messages in the queue are lost when the mailbox is destroyed, and
if the destroyed message has pointers to any allocated resources, those resources will not be freed.

Defined in: PILMBOX.H

Return Value

Returns one of the following:

PIL_OK The operation was successfully completed

PIL_INVALID_HANDLE The handle of the mailbox is not a valid mailbox handle

Parameters

hMailbox The handle of the mailbox to be destroyed

http://opensource.intel.com/pil/docs/pil1pre5.htm

Platform Independence Layer API
Reference Guide

R

3.5.3 PIL_ReadMailbox

PilResult PIL_ReadMailbox(PilMailbox hMailbox, void* pmbmMsg,
uint32_t Timeout)

PIL_ReadMailbox reads the next message from the mailbox, copying the message into the buffer
provided by the caller in pMessage. If a message is not available, the call will be blocked for a period
specified by Timeout.

This function may be used in non-blocking contexts, such as timer and APC callbacks, if the timeout is
zero.

Defined in: PILMBOX.H

Return Value

Returns one of the following:

PIL_OK A message was successfully read and copied into the given
buffer

PIL_INVALID_HANDLE The handle of the mailbox is not a valid mailbox handle

PIL_INVALID_PARAM pMessage is not a valid pointer

PIL_TIMEOUT The timeout period expired before a message was available

Parameters

hMailbox The handle of the mailbox from which a message has to be
read

pmbmMsg A pointer to a buffer where the message contents will be
copied

Timeout The time, in milliseconds, to wait for the message or
PIL_INFINITE_TIMEOUT to wait forever

3.5.4 PIL_WriteMailbox
PilResult PIL_WriteMailbox(PilMailbox hMailbox, void* pmbmMsg,
uint32_t Timeout)

PIL_WriteMailbox copies the message pointed to by pMessage into the next available slot in the
mailbox queue. If no slot is available to write the message, PIL_WriteMailbox will block for
Timeout milliseconds.

The function may be used in non-blocking contexts, such as timer and APC callbacks, if the timeout is
zero.

Defined in: PILMBOX.H

Return Value

30
Intel Confidential

R PIL API

31

Control Plane-PDK 2.11

Returns one of the following:

PIL_OK The message was successfully written into the mailbox

PIL_INVALID_HANDLE The handle of the mailbox is not a valid mailbox handle

PIL_INVALID_PARAM pMessage is not a valid pointer

PIL_TIMEOUT The timeout period expired before a slot was available

Parameters

hMailbox The handle of the mailbox in which a message has to be
written

pmbmMsg A pointer to a buffer from which the message contents are
copied

Timeout The time, in milliseconds, to wait for a free slot, or
PIL_INFINITE_TIMEOUT to wait forever

3.6 Memory (Required)
Memory routines allow a client to acquire or return memory to the underlying operating system.
Memory can be allocated by specifying the number of bytes using PIL_AllocateMemory or a
specified number of pages using PIL_AllocatePages. Both routines allow a flag to specify if the
memory should be initialized to zero, and optionally with pages, to lock the pages in memory. The
inverse operation is PIL_FreeMemory and PIL_FreePages. These two functions cannot be
intermixed, that is, if the memory is allocated using PIL_AllocateMemory, it needs to be freed
with PIL_FreeMemory.

PIL also provides a mechanism to get the page size from the underlying environment in a portable
manner via the PIL_GetPageSize function.

3.6.1 PIL_AllocateMemory
void* PIL_AllocateMemory(uint32_t Size, uint32_t Flags)

PIL_AllocateMemory allocates a new block of memory from the underlying operating system. The
memory block can be optionally initialized to zero by specifying the PIL_MEM_ZERO_INIT flag.
There is no special alignment on the block of memory.

Defined in: PILMEM.H

http://opensource.intel.com/pil/docs/pil1pre5.htm
http://opensource.intel.com/pil/docs/pil1pre5.htm
http://opensource.intel.com/pil/docs/pil1pre5.htm
http://opensource.intel.com/pil/docs/pil1pre5.htm
http://opensource.intel.com/pil/docs/pil1pre5.htm
http://opensource.intel.com/pil/docs/pil1pre5.htm
http://opensource.intel.com/pil/docs/pil1pre5.htm

Platform Independence Layer API
Reference Guide

R

Return Value

Returns one of the following:

void* Pointer to the newly allocated block of memory

NULL The memory could not be allocated

Parameters

Size The size of the block in bytes

Flags Special options for the allocation. Currently only
PIL_MEM_ZERO_INIT is supported.

3.6.2 PIL_AllocatePages
void* PIL_AllocatePages(uint32_t NumPages, uint32_t Flags, uint32_t*
pPhysAddr)

PIL_AllocatePages allocates one or more contiguous pages. pPhysAddr, when specified, will
contain the physical address of the pages on platforms where it is supported. Otherwise, it contains the
same value as the linear address.

All platforms may not support the PIL_MEM_PAGE_LOCK flag. The allocation will fail if this flag is
specified and page locked memory is not supported.

Defined in: PILMEM.H

Return Value

Returns one of the following:

void* The linear address of the newly allocated block

NULL The pages could not be allocated or could not be locked

Parameters

NumPages The number of pages to allocate. This must be at least 1.

Flags Optional flags for allocation. PIL_MEM_ZERO_INIT
initializes all the pages to 0. PIL_MEM_PAGE_LOCK
locks the pages in memory so they are not swapped out to
disk.

pPhysAddr Optional pointer to store the physical address of the newly
allocated pages

32
Intel Confidential

R PIL API

33

Control Plane-PDK 2.11

3.6.3 PIL_FreeMemory
void PIL_FreeMemory(void* pMem)

PIL_FreeMemory frees allocated memory using PIL_AllocateMemory. Freeing memory via
PIL_FreeMemory that was not allocated using PIL_AllocateMemory is undefined, and may
cause the system to crash.

Defined in: PILMEM.H

Return Value

This function does not return a value.

Parameters

pMem Pointer to the linear address of the memory to be freed

3.6.4 PIL_FreePages
void PIL_FreePages(void* pMem, uint32_t NumPages)

PIL_FreePages frees allocated pages via PIL_AllocatePages. The number of pages specified
to PIL_FreePages must match those specified to PIL_AllocatePages or problems may result.
Freeing memory via PIL_FreePages that was not allocated using PIL_AllocatePages is
undefined and may cause the system to crash.

Defined in: PILMEM.H

Return Value

This function does not return a value.

Parameters

pMem The linear address of the pages

NumPages The number of pages to be freed

3.6.5 PIL_GetPageSize
uint32_t PIL_GetPageSize(void)

PIL_GetPageSize returns the size of a page in bytes on the native operating environment. This
page size value can then be used to calculate the number of pages necessary with
PIL_AllocatePages.

Defined in: PILMEM.H

Return Value

The size of the page in bytes.

http://opensource.intel.com/pil/docs/pil1pre5.htm
http://opensource.intel.com/pil/docs/pil1pre5.htm
http://opensource.intel.com/pil/docs/pil1pre5.htm
http://opensource.intel.com/pil/docs/pil1pre5.htm
http://opensource.intel.com/pil/docs/pil1pre5.htm
http://opensource.intel.com/pil/docs/pil1pre5.htm

Platform Independence Layer API
Reference Guide

R

3.7 Semaphores (Required)

Semaphores are the basic synchronization mechanism in PIL. All PIL semaphores are counting
semaphores, but a macro is provided to make a binary semaphore. Semaphores are first-come-first-
serve, that is, the priority of the thread waiting on the semaphore does not matter.

A semaphore is given both an initial count and a maximum count when created. The maximum count is
the total number of resources the semaphore protects. For simple synchronization, the count is 1. The
initial count is the number of free resources upon creation. Most of the time, this is 0, so that all threads
initially block on the semaphore, or the initial count is the same as the maximum count.

Note: Specifying a value between the initial and maximum count may not work on all platforms.

Semaphores are created with PIL_CreateSemaphore. This call will return a handle to the newly
created semaphore when successful. PIL_AcquireSemaphore will wait on the semaphore. In other
words, PIL_AcquireSemaphore reduces the count of the semaphore by 1. The thread will block if
the count is 0. The timeout parameter to PIL_AcquireSemaphore determines how long to wait.

PIL_ReleaseSemaphore increments the count of the semaphore by 1, signaling a thread waiting
on the semaphore. PIL_ReleaseSemaphore cannot block, but a context switch may occur if the
signaled thread is of higher priority.

All semaphores need to be destroyed using PIL_DestroySemaphore when they are no longer
needed.

Note: Destroying a semaphore used by another thread is undefined, and will probably cause the machine to
crash.

3.7.1 PIL_AcquireSemaphore
PilResult PIL_AcquireSemaphore(PilSemaphore Sem, uint32_t Timeout)

PIL_AcquireSemaphore attempts to grab the semaphore, possibly blocking for a period of time. It
effectively decrements the semaphore's count by one.

A timeout value of zero specifies that the acquire should not block. If the semaphore is free, PIL_OK is
returned and the semaphore is acquired. If the semaphore is not free, PIL_AcquireSemaphore will
return PIL_TIMEOUT to signal that the semaphore is not free and that the zero-length timeout expired.

Note: On all platforms, the timeout granularity may not be one millisecond but may be something larger such
as 10 or 20 milliseconds. Values will be rounded up to the nearest integral value.

Defined in: PILSEM.H

Return Value

Returns one of the following:

PIL_OK The semaphore was acquired successfully

PIL_TIMEOUT The timeout period expired before the semaphore could be
acquired

34
Intel Confidential

http://opensource.intel.com/pil/docs/pil1pre5.htm
http://opensource.intel.com/pil/docs/pil1pre5.htm
http://opensource.intel.com/pil/docs/pil1pre5.htm
http://opensource.intel.com/pil/docs/pil1pre5.htm
http://opensource.intel.com/pil/docs/pil1pre5.htm
http://opensource.intel.com/pil/docs/pil1pre5.htm
http://opensource.intel.com/pil/docs/pil1pre5.htm

R PIL API

35

Control Plane-PDK 2.11

Parameters

Sem The handle of the semaphore to be acquired

Timeout The amount of time, in milliseconds, to wait for the
semaphore; or PIL_INFINITE_TIMEOUT to wait
forever

3.7.2 PIL_CreateBinarySemaphore
define PIL_CreateBinarySemaphore(BOOL bInitialCount)

PIL_CreateBinarySemaphore is equivalent to PIL_CreateSemaphore(bInitalCount,
1). Please refer to PIL_CreateSemaphore for more details.

Defined in: PILSEM.H

Return Value

Returns one of the following:

PilSemaphore The handle of the newly created semaphore object

NULL The semaphore could not be created

Parameters

bInitialCount TRUE (non-zero) if the semaphore is initially free, FALSE
(zero) if it is not

3.7.3 PIL_CreateSemaphore
PilSemaphore PIL_CreateSemaphore(uint32_t InitialCount, uint32_t
MaximumCount)

PIL_CreateSemaphore creates a new semaphore object and returns the handle of the new object.
The function returns NULL if the object cannot be created, most likely because of memory constraints.

The InitialCount parameter determines the starting value of the counting semaphore. For most
purposes, this will either be 0 i.e., there are no free resources, or the same as the MaximumCount
parameter i.e., all resources free. The InitialCount must be less than or equal to the
MaximumCount.

The MaximumCount parameter determines the maximum count of the semaphore. It must be at least 1
and greater than or equal to InitialCount.

Defined in: PILSEM.H

http://opensource.intel.com/pil/docs/pil1pre5.htm
http://opensource.intel.com/pil/docs/pil1pre5.htm

Platform Independence Layer API
Reference Guide

R

Return Value

Returns one of the following:

PilSemaphore The handle of the newly created semaphore object

NULL The semaphore could not be created

Parameters

InitialCount The count the semaphore should have when it is created

MaximumCount The maximum count the semaphore can have

3.7.4 PIL_DestroySemaphore
PilResult PIL_DestroySemaphore(PilSemaphore Sem)

PIL_DestroySemaphore destroys a semaphore created with PIL_CreateSemaphore. All
semaphores must be destroyed using this function for the memory to be reclaimed. Semaphores should
not be destroyed while they are still being used.

Defined in: PILSEM.H

Return Value

Returns one of the following:

PIL_OK The semaphore has been successfully destroyed

PIL_INVALID_HANDLE The handle of the semaphore is not a valid semaphore
handle

Parameters

Sem The handle of the semaphore to be destroyed

3.7.5 PIL_GetSemaphoreCount
PilResult PIL_GetSemaphoreCount(PilSemaphore Sem, uint32_t* pValue)

PIL_GetSemaphoreCount returns the current count of the semaphore between the initial and
maximum values that it was created with.

Defined in: PILSEM.H

Return Value

Returns one of the following:

PIL_OK The operation was successfully completed

36
Intel Confidential

http://opensource.intel.com/pil/docs/pil1pre5.htm

R PIL API

37

Control Plane-PDK 2.11

PIL_INVALID_HANDLE The semaphore handle is not a valid handle for a
semaphore

PIL_INVALID_PARAM The pointer to the value is not a valid pointer

Parameters

Sem The handle of the semaphore for which the count has to be
received

pValue Pointer to a variable in which the semaphore value has to
be placed

3.7.6 PIL_ReleaseSemaphore
PilResult PIL_ReleaseSemaphore(PilSemaphore Sem)

PIL_ReleaseSemaphore releases a semaphore, essentially incrementing the count of the
semaphore. A semaphore does not have to be first acquired before it can be released. It is not an error to
release a semaphore that is already at the maximum count; it will be ignored.

Defined in: PILSEM.H

Return Value

Returns one of the following:

PIL_OK The semaphore was successfully released or incremented

PIL_INVALID_HANDLE The handle of the semaphore is not a valid semaphore
handle

Parameters

Sem The handle of the semaphore to be released

3.8 Threading (Required)
A thread, also known as a task, is the basic unit of execution. It contains a copy of the CPU execution
state for itself. It shares an address with other threads created under a process, or with all other threads
if it runs in the kernel.

All threads are created using the PIL_CreateThread API. Certain attributes of the thread can be
specified when it is created such as its priority, stack size, a name, and the function that represents the
thread's starting address. Once created, the thread starts executing independently unless the
PIL_THREAD_SUSPENDED flag is used when the thread is created, which delays the thread from
executing until a PIL_ResumeThread call is made on the thread.

Certain thread functions operate on a thread by another thread, and some are for use by the thread itself.
Examples of the former are PIL_DestroyThread, PIL_GetThreadPriority,
PIL_ResumeThread, PIL_SuspendThread, and PIL_TerminateThread. All these
functions require the handle of the thread. A thread may obtain its own handle by calling
PIL_GetCurrentThread. Functions used by the thread include PIL_DelayThread and
PIL_ExitThread.

http://opensource.intel.com/pil/docs/pil1pre5.htm
http://opensource.intel.com/pil/docs/pil1pre5.htm
http://opensource.intel.com/pil/docs/pil1pre5.htm
http://opensource.intel.com/pil/docs/pil1pre5.htm
http://opensource.intel.com/pil/docs/pil1pre5.htm
http://opensource.intel.com/pil/docs/pil1pre5.htm
http://opensource.intel.com/pil/docs/pil1pre5.htm
http://opensource.intel.com/pil/docs/pil1pre5.htm
http://opensource.intel.com/pil/docs/pil1pre5.htm
http://opensource.intel.com/pil/docs/pil1pre5.htm

Platform Independence Layer API
Reference Guide

R

All threads must call PIL_ExitThread before their thread function returns. Failure to do so may
cause unpredicted results. The creator of the thread needs to call PIL_DestroyThread to free up the
data structures associated with the thread, after a thread has successfully exited.
PIL_DestroyThread returns the exit code for the thread.

A thread can forcibly terminate another thread by calling PIL_TerminateThread.

Note: On all platforms, the thread data structures may not be completely cleaned up when calling this
function. PIL_DestroyThread is still required to release the memory associated with the thread.

PIL allows a single, 32-bit value to be associated with each thread handle. The value may be set using
the PIL_SetThreadValue function and retrieved via the PIL_GetThreadValue function.

In some cases, the priority level mapping that the PIL does may not be sufficient. PIL provides a
mechanism to retrieve and set the native priority level of a thread without any interpretation. These
native priority values are operating system-specific. PIL_GetNativeThreadPriority retrieves
the native priority from the underlying operating system. Inversely,
PIL_SetNativeThreadPriority allows the thread priority to be set without any priority
mapping by PIL.

PIL_WaitForThread allows the thread to wait until another thread has exited. The waiting thread
has the option to check if the other thread has exited, wait for a short while for it to exit, or wait forever
until the thread exits.

3.8.1 PIL_CreateThread
PilThread PIL_CreateThread(PilThreadRoutine StartAddress, uint32_t
StackSize, char* Name, uint32_t Priority, void* Param, uint32_t
Options)

PIL_CreateThread creates a thread and optionally starts executing it. The StartingAddress
parameter is the address (i.e., a function) where the thread will begin executing. The specified function
must have the following prototype:
uint32_t PilThreadRoutine (void* Param);

Note: Thread functions are assumed that they use standard C calling convention (cdecl).

The Param specified in the PIL_CreateThread call will be passed to the thread function. The
contents of the parameter are not specified and they are completely up to the caller.

dwStackSize is the size of the stack the thread should have, in bytes.

Note: Not all platforms allow threads to have a specified stack size. For portability, a stack size should be
specified. To conserve memory, the stack should not be very large.

Name is a string that describes the thread. It is optional, and can help in resource tracking if one is
specified.

The priority of the thread can range from 1 (lowest) to 8 (highest).

PIL_CreateThread currently has only one option for dwOptions: PIL_THREAD_SUSPENDED .
When this option is specified, the thread will not begin executing immediately upon creation. It has to
be started using the PIL_ResumeThread API.

38
Intel Confidential

http://opensource.intel.com/pil/docs/pil1pre5.htm
http://opensource.intel.com/pil/docs/pil1pre5.htm
http://opensource.intel.com/pil/docs/pil1pre5.htm
http://opensource.intel.com/pil/docs/pil1pre5.htm
http://opensource.intel.com/pil/docs/pil1pre5.htm
http://opensource.intel.com/pil/docs/pil1pre5.htm
http://opensource.intel.com/pil/docs/pil1pre5.htm
http://opensource.intel.com/pil/docs/pil1pre5.htm
http://opensource.intel.com/pil/docs/pil1pre5.htm
http://opensource.intel.com/pil/docs/pil1pre5.htm
http://opensource.intel.com/pil/docs/pil1pre5.htm

R PIL API

39

Control Plane-PDK 2.11

Defined in: PILTHD.H

Platform Independence Layer API
Reference Guide

R

Return Value

Returns one of the following:

PilThread The handle of the newly created thread

NULL The thread could not be created

Parameters

StartAddress The starting address where the thread will begin execution

StackSize The size of the thread's stack in bytes

Name The optional name of the thread

Priority The priority at which the thread will be executed

Param An optional parameter to pass to the thread function

Options Thread creation options

3.8.2 PIL_DelayThread
PilResult PIL_DelayThread(uint32_t Delay)

PIL_DelayThread delays the execution of the currently executing thread for a specified number of
milliseconds. The thread cannot be alerted during this wait, so it cannot be signaled.

Note: On all platforms, the resolution of the wait may not be 1 millisecond but could be 10 or 20 milliseconds.
In such cases, the delay will be rounded up to the nearest supported interval.

Defined in: PILTHD.H

Return Value

Returns one of the following:

PIL_OK The delay was completed successfully

Parameters

Delay The number of milliseconds to delay the currently
executing thread

3.8.3 PIL_DestroyThread
PilResult PIL_DestroyThread(PilThread Thread, uint32_t* pStatus)

PIL_DestroyThread de-allocates all memory associated with a thread.

40
Intel Confidential

R PIL API

41

Control Plane-PDK 2.11

Note: This assumes that the thread is already terminated. After this call, the thread handle is invalid and
cannot be used, even by the thread itself. All threads must be destroyed using the function after they
terminate, to free associated memory.

pStatus is an optional parameter that allows the caller to retrieve the exit status of the thread when it
is terminated. The exit status is the value passed to PIL_ExitThread when the thread voluntarily
exits. This parameter may be NULL if the status is not required.

Defined in: PILTHD.H

Return Value

Returns one of the following:

PIL_OK The thread was destroyed successfully

PIL_INVALID_HANDLE The handle of the thread is not a valid thread handle

Parameters

Thread The handle of the thread to be destroyed

pStatus An optional pointer to a variable to retrieve the exit status
of the thread

3.8.4 PIL_ExitThread
void PIL_ExitThread(uint8_t Status)

PIL_ExitThread stops execution of the current thread.

Note: PIL_ExitThread does not destroy the thread, but simply stops execution. PIL_DestroyThread
must be called to clean up after the thread stops execution. This function never returns.

The thread may specify a reason code as to why it exits. If there is no reason, it should be set to 0.

Defined in: PILTHD.H

Return Value

This function does not return.

Parameters

Status The reason code the thread has for exiting

3.8.5 PIL_GetCurrentThread
PilThread PIL_GetCurrentThread(void)

PIL_GetCurrentThread returns the handle of the currently executing thread for use in other
thread functions. This function cannot fail and will always return a valid handle.

Note: PIL_GetCurrentThread may not be lightweight and may take longer as the number of threads increase.

Defined in: PILTHD.H

http://opensource.intel.com/pil/docs/pil1pre5.htm
http://opensource.intel.com/pil/docs/pil1pre5.htm

Platform Independence Layer API
Reference Guide

R

Return Value

The handle of the currently executing thread

3.8.6 PIL_GetNativeThreadPriority
PilResult PIL_GetNativeThreadPriority(PilThread Thread, uint32_t*
pPri)

PIL_GetNativeThreadPriority retrieves the current priority of the given thread as maintained
by the underlying operating system. The values returned by this function are operating system specific
and are useful only when priorities outside what PIL offers are required.

Defined in: PILTHD.H

Return Value

Returns one of the following:

PIL_OK The priority was retrieved successfully

PIL_INVALID_HANDLE The handle of the thread is not a valid thread handle

PIL_INVALID_PARAM The pointer to the priority value is not a valid pointer

Parameters

Thread The handle of the thread for which the priority has to be
obtained

pPri A pointer to a variable in which the priority value has to be
placed

3.8.7 PIL_GetThreadPriority
PilResult PIL_GetThreadPriority(PilThread Thread, uint32_t* pPri)

PIL_GetThreadPriority retrieves the current priority of the given thread.

Defined in: PILTHD.H

Return Value

Returns one of the following:

PIL_OK The priority was retrieved successfully

PIL_INVALID_HANDLE The handle of the thread is not a valid thread handle

PIL_INVALID_PARAM The pointer to the priority value is not a valid pointer

42
Intel Confidential

R PIL API

43

Control Plane-PDK 2.11

Parameters

Thread The handle of the thread for which the priority has to be
obtained

pPri A pointer to a variable in which the priority value has to be
placed

3.8.8 PIL_GetThreadValue
PilResult PIL_GetThreadValue(PilThread Thread, uint32_t* pValue)

PIL_GetThreadValue retrieves the 32-bit value associated with the given thread. The function will
return 0 if no value has been previously set.

Defined in: PILTHD.H

Return Value

Returns one of the following:

PIL_OK The value was retrieved successfully

PIL_INVALID_HANDLE The handle of the thread is not a valid thread handle

PIL_INVALID_PARAM The pointer to the value is not a valid pointer

Parameters

Thread The handle of the thread for which the value has to be
obtained

pValue Pointer to a location where the value has to be stored

3.8.9 PIL_ResumeThread
PilResult PIL_ResumeThread(PilThread Thread)

PIL_ResumeThread resumes the execution of a thread suspended at creation time via the
PIL_THREAD_SUSPENDED flag or via PIL_SuspendThread. Execution continues at the same
priority level the thread was at when it was suspended.

Resuming a thread that is not suspended has no effect.

Defined in: PILTHD.H

http://opensource.intel.com/pil/docs/pil1pre5.htm

Platform Independence Layer API
Reference Guide

R

Return Value

Returns one of the following:

PIL_OK The thread was resumed successfully

PIL_INVALID_HANDLE The handle of the thread is not a valid thread handle

PIL_ERROR The thread could not be resumed. This is probably a result
of the thread being in a state where it cannot be resumed
due to an operating system dependent situation.

Parameters

Thread The handle of the thread to be resumed

3.8.10 PIL_SetNativeThreadPriority
PilResult PIL_SetNativeThreadPriority(PilThread Thread, uint32_t
Priority)

PIL_SetNativeThreadPriority sets the priority of a thread by using values native to the
underlying operating system.

Note: Values used by this function are operating system specific, and are useful for setting priorities outside
of what PIL offers.

Defined in: PILTHD.H

Return Value

Returns one of the following:

PIL_OK The thread's priority was adjusted successfully

PIL_INVALID_HANDLE The handle of the thread is not a valid thread handle

PIL_INVALID_PARAM The new priority value is not a valid priority

Parameters

Thread The handle of the thread for which the priority has to be
adjusted

Priority The new priority of the thread

3.8.11 PIL_SetThreadPriority
PilResult PIL_SetThreadPriority(PilThread Thread, uint32_t Priority)

PIL_SetThreadPriority sets the priority of a thread. Threads may adjust their own priority by
specifying PIL_GetCurrentThread as the first parameter. Though this call will not block, a task

44
Intel Confidential

http://opensource.intel.com/pil/docs/pil1pre5.htm

R PIL API

45

Control Plane-PDK 2.11

switch may occur if the priority of the thread is adjusted above the priority of the currently executing
thread.

Defined in: PILTHD.H

Return Value

Returns one of the following:

PIL_OK The thread's priority was adjusted successfully

PIL_INVALID_HANDLE The handle of the thread is not a valid thread handle

PIL_INVALID_PARAM The new priority value is not a valid priority

Parameters

Thread The handle of the thread for which the priority has to be
adjusted

Priority The new priority of the thread

3.8.12 PIL_SetThreadValue
PilResult PIL_SetThreadValue(PilThread Thread, uint32_t Value)

PIL_SetThreadValue allows a single 32-bit value to be associated with a particular thread handle.
Only one 32-bit value is provided for each thread handle and this is shared by all. No interpretation of
this value is done by PIL.

Defined in: PILTHD.H

Return Value

Returns one of the following:

PIL_OK The thread's priority was adjusted successfully

PIL_INVALID_HANDLE The handle of the thread is not a valid thread handle

Parameters

Thread The handle of the thread for which the value has to be set

Value The 32-bit value to be stored with this thread

3.8.13 PIL_SuspendThread
PilResult PIL_SuspendThread(PilThread Thread)

PIL_SuspendThread causes the given thread to stop executing. This is different from adjusting the
thread priority to minimum. Once this call returns, the thread stops executing and will not continue until
a PIL_ResumeThread call is made.

Suspending a thread that is currently blocked with a timeout is undefined.

Suspending a thread that is already suspended has no effect.

http://opensource.intel.com/pil/docs/pil1pre5.htm

Platform Independence Layer API
Reference Guide

R

Defined in: PILTHD.H

Return Value

Returns one of the following:

PIL_OK The thread was suspended successfully

PIL_INVALID_HANDLE The handle of the thread is not a valid thread handle

PIL_ERROR The thread could not be suspended. This is probably a
result of the thread being in a state where it cannot be
suspended due to an operating system dependent situation.

Parameters

Thread The handle of the thread to be suspended

3.8.14 PIL_TerminateThread
PilResult PIL_TerminateThread(PilThread Thread)

PIL_TerminateThread forcibly terminates a thread, not giving it a chance to do any cleanup. This
should be used only in abnormal circumstances.

Note: The thread must still be destroyed using PIL_DestroyThread.

Defined in: PILTHD.H

Return Value

Returns one of the following:

PIL_OK The thread was terminated successfully

PIL_INVALID_HANDLE The handle of the thread is not a valid thread handle

Parameters

Thread The handle of the thread to be terminated

3.8.15 PIL_WaitForThread
PilResult PIL_WaitForThread(PilThread Thread, uint32_t dwTimeout)

PIL_WaitForThread will block until the given thread exits. The timeout value specifies the time
period for the thread to exit. A value of PIL_INFINITE_TIMEOUT will wait forever. A timeout
value of 0 will check if the thread has exited.

Note: On all platforms, the granularity of the wait may not be one millisecond but may be more like 10 or 20
milliseconds. In such a case, the wait will be rounded up to the nearest integral unit.

Defined in: PILTHD.H

46
Intel Confidential

http://opensource.intel.com/pil/docs/pil1pre5.htm

R PIL API

47

Control Plane-PDK 2.11

Return Value

Returns one of the following:

PIL_OK The wait was successful and the thread has exited

PIL_INVALID_HANDLE The handle of the event is not a valid event handle

PIL_TIMEOUT The timeout period expired before the event became
signaled

Parameters

Thread The handle of the thread for which to wait

dwTimeout The time, in milliseconds, to wait for the thread or
PIL_INFINITE_TIMEOUT to wait forever

3.9 Timers (Required)
Timers provide a mechanism to generate a callback after a certain time. They can also be set to provide
a callback on a periodic basis.

Timers are created using PIL_CreateTimer, which specifies the type: single or repeating.
PIL_CreateTimer also specifies the initial interval of the timer. A timer is scheduled to fire using
PIL_StartTimer. A timer can be removed from the list of active timers using PIL_StopTimer.
PIL_ResetTimer allows the timer to be reconfigured with a different callback function or interval.
All timers need to be freed using PIL_DestroyTimer.

Due to platform differences in the execution of the timer callbacks, it cannot be assumed that the timer
runs in any specific context. Therefore, many operations are disallowed during the execution of the
timer routine. They include:

• Any PIL function that creates or destroys an object

• Memory allocation functions

• Blocking synchronization functions

• Read/Write mailbox functions with a non-zero timeout

3.9.1 PIL_CreateTimer
PilTimer PIL_CreateTimer(PilTimerRoutine TimerRoutine, uint32_t
Interval, void* Context, PilTimerType Type)

PIL_CreateTimer creates a new timer object. It does not automatically schedule the timer to fire.
PIL_StartTimer starts a newly created timer.

The timer routine must have the following prototype:
void TimerRoutine(PilTimer Timer, void* Context);

The handle of the timer that just expired is passed to the timer routine along with the user defined
context pass from PIL_CreateTimer or PIL_ResetTimer.

http://opensource.intel.com/pil/docs/pil1pre5.htm
http://opensource.intel.com/pil/docs/pil1pre5.htm
http://opensource.intel.com/pil/docs/pil1pre5.htm
http://opensource.intel.com/pil/docs/pil1pre5.htm
http://opensource.intel.com/pil/docs/pil1pre5.htm
http://opensource.intel.com/pil/docs/pil1pre5.htm
http://opensource.intel.com/pil/docs/pil1pre5.htm
http://opensource.intel.com/pil/docs/pil1pre5.htm

Platform Independence Layer API
Reference Guide

R

Interval specifies the amount of time before the timer expires. For repeating timers, it is the period
during which it fires.

Note: Not all platforms have a resolution of one millisecond. The resolution is more like 10 or 20
milliseconds. On those platforms, the interval will be rounded up to the next integral unit.

Defined in: PILTMR.H

Return Value

Returns of the following:

PilTimer The handle of the newly created timer

NULL The timer could not be created

Parameters

TimerRoutine The function to call when the timer expires

Interval The amount of time to wait, in milliseconds, until the timer
fires

Context The context information to pass to the timer routine

Type PIL_TIMER_SINGLE or PIL_TIMER_REPEATING

3.9.2 PIL_DestroyTimer
PilResult PIL_DestroyTimer(PilTimer Timer)

PIL_DestroyTimer destroys a timer object created via PIL_CreateTimer. The timer must first
be stopped by waiting for it to expire or by calling PIL_StopTimer. The behavior of destroying a
timer that is still scheduled is undefined.

Defined in: PILTMR.H

Return Value

Returns one of the following:

PIL_OK The timer was destroyed successfully

PIL_INVALID_HANDLE The handle of the timer is not a valid timer handle

Parameters

Timer The handle of the timer to destroy

48
Intel Confidential

http://opensource.intel.com/pil/docs/pil1pre5.htm
http://opensource.intel.com/pil/docs/pil1pre5.htm

R PIL API

49

Control Plane-PDK 2.11

3.9.3 PIL_DisableTimers
PilResult PIL_DisableTimers(void)

PIL_DisableTimers globally disables timer callbacks until PIL_EnableTimers is called.
After this call, no timer callback is called. Care should be taken to avoid long periods of time when
timers are disabled so that the timeout values are not skewed.

Defined in: PILTMR.H

Return Value

Returns one of the following:

PIL_OK The timers have been disabled successfully

PIL_ERROR The timers are already disabled

3.9.4 PIL_EnableTimers
PilResult PIL_EnableTimers(void)

PIL_EnableTimers re-enables timer callbacks that have been disabled via
PIL_DisableTimers.

Note: Timers that expired during the period when timers were disabled will most likely fire immediately.

Defined in: PILTMR.H

Return Value

Returns one of the following:

PIL_OK The timers have been enabled successfully

PIL_ERROR The timers are already enabled

3.9.5 PIL_ResetTimer
PilResult PIL_ResetTimer(PilTimer Timer, PilTimerRoutine
TimerRoutine, uint32_t Interval, void* Context, PilTimerType Type)

PIL_ResetTimer allows an already created timer to be re-configured. The prototype is very similar
to PIL_CreateTimer. Refer to PIL_CreateTimer for descriptions of the parameters.

Defined in: PILTMR.H

http://opensource.intel.com/pil/docs/pil1pre5.htm
http://opensource.intel.com/pil/docs/pil1pre5.htm
http://opensource.intel.com/pil/docs/pil1pre5.htm
http://opensource.intel.com/pil/docs/pil1pre5.htm

Platform Independence Layer API
Reference Guide

R

Return Value

Returns one of the following:

PIL_OK The timer was successfully reset

PIL_INVALID_HANDLE The handle of the timer is not a valid timer handle

PIL_INVALID_PARAM A parameter is not valid

Parameters

Timer The handle of the timer to reset

TimerRoutine The new routine to call when the timer fires

Interval The new interval to wait before calling the timer routine

Context The new context to pass to the timer routine

Type PIL_TIMER_SINGLE or PIL_TIMER_REPEATING

3.9.6 PIL_StartTimer
PilResult PIL_StartTimer(PilTimer Timer)

PIL_StartTimer schedules a timer according to the parameters specified when it was created or
when reset with PIL_ResetTimer. A repeating timer cannot be scheduled more than once unless
first stopped. A single shot timer cannot be scheduled more than once unless it is stopped or has fired.

Defined in: PILTMR.H

Return Value

Returns one of the following:

PIL_OK The timer was successfully scheduled

PIL_INVALID_HANDLE The handle of the timer is not a valid timer handle

PIL_ERROR The timer is already scheduled

Parameters

Timer The handle of the timer to be scheduled

3.9.7 PIL_StopTimer
PilResult PIL_StopTimer(PilTimer Timer)

PIL_StopTimer stops a timer that has been scheduled. Repeating timers must be stopped with this
function before they can be destroyed.

50
Intel Confidential

http://opensource.intel.com/pil/docs/pil1pre5.htm

R PIL API

51

Control Plane-PDK 2.11

Defined in: PILTMR.H

Return Value

Returns one of the following:

PIL_OK The timer was successfully stopped

PIL_INVALID_HANDLE The handle of the timer is not a valid timer handle

PIL_ERROR The timer is not scheduled

Parameters

Timer The handle of the timer to be stopped

3.10 Dynamic Libraries (Optional)
Dynamic libraries allow modules to be loaded and symbols to be resolved at run-time. For
environments where the underlying OS supports dynamic libraries, PIL utilizes those services. In other
environments, PIL has to emulate the dynamic loading mechanism. The actual implementation of this
emulation is platform specific. Refer the platform specific notes for each implementation to see if
dynamic libraries are native or emulated.

3.10.1 PILOS_FreeLibrary
PilResult PILOS_FreeLibrary(PilLib Lib)

PILOS_FreeLibrary frees a library loaded via PILOS_LoadLibrary.

Defined in: PILLIB.H

Return Value

Returns one of the following:

PIL_OK The library was successfully freed

PIL_INVALID_HANDLE The handle of the library is not a valid library handle

Parameters

Lib The handle of the library to be freed

3.10.2 PILOS_GetProcAddress
PilProc PILOS_GetProcAddress(PilLib Lib, char* ProcName)

PILOS_GetProcAddress looks up a function in a dynamic library loaded via
PILOS_LoadLibrary. The address of the function is returned and it should be cast to the
appropriate function prototype. The PilProc type is defined as:
typedef int32_t (*PilProc)();

Defined in: PILLIB.H

http://opensource.intel.com/pil/docs/pil1pre5.htm
http://opensource.intel.com/pil/docs/pil1pre5.htm

Platform Independence Layer API
Reference Guide

R

Return Value

Returns one of the following:

PilProc The address of the symbol

NULL The symbol could not be found in this dynamic library

Parameters

Lib The library in which a function has to be looked up

ProcName The name of the function to be retrieved

3.10.3 PILOS_LoadLibrary
PilLib PILOS_LoadLibrary(char* LibraryName)

PILOS_LoadLibrary loads a dynamic library module into memory, returning the handle of the
library. Function points can be retrieved from this module by using PILOS_GetProcAddress.

Defined in: PILLIB.H

Return Value

Returns one of the following:

PilLib The handle of the newly loaded library

NULL The library could not be loaded

Parameters

LibraryName The name of the library to be loaded

3.11 Input/Output Register Access (Optional)
The Input/output register access service is mainly for drivers. It allows a driver to access the hardware
ports in a portable manner. It is not entirely portable since not all architectures use port IO. However,
large sections of driver code can be ported between environments easily when using these functions
rather than the native OS.

Support is broken into two pieces:

The first lets a driver find its associated hardware on the PCI bus by searching by either class or by
vendor/device ID. PIL provides functions to access the PCI configuration space for a device, once the
device is found.

The other type of access is raw port IO. This requires the port number to be known. It does not require
searching for a device on the PCI bus.

52
Intel Confidential

http://opensource.intel.com/pil/docs/pil1pre5.htm

R PIL API

53

Control Plane-PDK 2.11

3.11.1 PILOS_FindPciDeviceSignature
PilPciDevice PILOS_FindPciDeviceSignature(uint16_t Vendor, uint16_t
Id, PilPciDevice Last)

PILOS_FindPciDeviceSignature locates a specific PCI device by its signature (vendor
id/product id).

Defined in: PILIO.H

Return Value

Returns one of the following:

PilPciDevice The handle of the PCI device

NULL The specific PCI device could not be found

Parameters

Vendor The vendor number to match from the device
configuration space

Id The device ID number to be matched from the device
configuration space

Last The value returned from a previous call to this function
from which search has to be to continued

3.11.2 PILOS_FindPciDeviceClass
PilPciDevice PILOS_FindPciDeviceClass(uint16_t Class, PilPciDevice
Last)

PILOS_FindPciDeviceClass locates a PCI device based on its class.

Defined in: PILIO.H

Return Value

Returns one of the following:

PilPciDevice The handle of the PCI device

NULL The specific PCI device could not be found

Parameters

Class The class code to be matched from the device
configuration space

Last The value returned from a previous call to this function
from which search has to be continued

Platform Independence Layer API
Reference Guide

R

3.11.3 PILOS_ReadPortByte

uint8_t PILOS_ReadPortByte(uint16_t wPort)

PILOS_ReadPortByte reads a single byte from wPort.

Defined in: PILIO.H

Return Value

The byte value read from the port.

Parameters

wPort The port number from which a byte has to be read

3.11.4 PILOS_ReadPortWord
uint16_t PILOS_ReadPortWord(uint16_t wPort)

PILOS_ReadPortWord reads a single word from wPort.

Defined in: PILIO.H

Return Value

The word value read from the port.

Parameters

wPort The port number from which a word has to be read

3.11.5 PILOS_ReadPortDword
uint32_t PILOS_ReadPortDword(uint16_t wPort)

PILOS_ReadPortDword reads a single dword from wPort.

Defined in: PILIO.H

Return Value

The dword value read from the port.

Parameters

wPort The port number from which a dword has to be read

54
Intel Confidential

R PIL API

55

Control Plane-PDK 2.11

3.11.6 PILOS_WritePortByte
void PILOS_WritePortByte(uint16_t wPort, uint8_t Value)

PILOS_WritePortByte writes a single byte to wPort.

Defined in: PILIO.H

Return Value

This function does not return a value.

Parameters

wPort The port to which the value has to be written

Value The value to write to wPort

3.11.7 PILOS_WritePortWord
void PILOS_WritePortWord(uint16_t wPort, uint16_t Value)

PILOS_WritePortWord writes a single word to wPort.

Defined in: PILIO.H

Return Value

This function does not return a value.

Parameters

wPort The port to which the value has to be written

Value The value to write to wPort

3.11.8 PILOS_WritePortDword
void PILOS_WritePortDword(uint16_t wPort, uint32_t Value)

PILOS_WritePortDword writes a single dword to wPort.

Defined in: PILIO.H

Return Value

This function does not return a value.

Parameters

wPort The port to which the value has to be written

Value The value to write to wPort

Platform Independence Layer API
Reference Guide

R

3.11.9 PILOS_ReadPciConfigByte

uint8_t PILOS_ReadPciConfigByte(PilPciDevice Device, uint8_t Offset)

PILOS_ReadPciConfigByte reads a single byte value from the device at the given offset in the
PCI configuration space.

Defined in: PILIO.H

Return Value

The value from the offset in the PCI configuration space.

Parameters

Device The specific device to read from

Offset The byte offset into the device's PCI configuration space
from which to read

3.11.10 PILOS_ReadPciConfigWord
uint16_t PILOS_ReadPciConfigWord(PilPciDevice Device, uint8_t Offset)

PILOS_ReadPciConfigWord reads a single word value from the device at the given offset in the
PCI configuration space.

Defined in: PILIO.H

Return Value

The value from the offset in the PCI configuration space.

Parameters

Device The specific device to read from

Offset The byte offset into the device's PCI configuration space
from which to read

3.11.11 PILOS_ReadPciConfigDword
uint32_t PILOS_ReadPciConfigDword(PilPciDevice Device, uint8_t
Offset)

PILOS_ReadPciConfigDword reads a single dword value from the device at the given offset in
the PCI configuration space.

Defined in: PILIO.H

Return Value

The value from the offset in the PCI configuration space.

56
Intel Confidential

R PIL API

57

Control Plane-PDK 2.11

Parameters

Device The specific device to read from

Offset The byte offset into the device's PCI configuration space
from which to read

3.11.12 PILOS_WritePciConfigByte
void PILOS_WritePciConfigByte(PilPciDevice Device, uint8_t Offset,
uint8_t Value)

PILOS_WritePciConfigByte writes a single byte value into the device's PCI configuration space
at the given byte offset.

Defined in: PILIO.H

Return Value

This function does not return a value.

Parameters

Device The device from which PCI configuration data has to be
written

Offset The byte offset into the PCI configuration space from
which to read

Value The value to write into the PCI configuration space

3.11.13 PILOS_WritePciConfigWord
void PILOS_WritePciConfigWord(PilPciDevice Device, uint8_t Offset,
uint16_t Value)

PILOS_WritePciConfigWord writes a single word value into the device's PCI configuration space
at the given byte offset.

Defined in: PILIO.H

Return Value

This function does not return a value.

Parameters

Device The device from which PCI configuration data has to be
written

Offset The byte offset into the PCI configuration space from
which to read

Value The value to write into the PCI configuration space

Platform Independence Layer API
Reference Guide

R

3.11.14 PILOS_WritePciConfigDword

void PILOS_WritePciConfigDword(PilPciDevice Device, uint8_t Offset,
uint32_t Value)

PILOS_WritePciConfigDword writes a single dword value into the device's PCI configuration
space at the given byte offset.

Defined in: PILIO.H

Return Value

This function does not return a value.

Parameters

Device The device from which PCI configuration data has to be
written

Offset The byte offset into the PCI configuration space from
which to read

Value The value to write into the PCI configuration space

3.12 Interlocked Services (Optional)
Interlocked services allow operations to be performed on memory in an atomic way, protecting the
operation from other threads and other processors. In a multiprocessor environment, these functions
assure the processor exclusive use of any shared memory.

3.12.1 PILOS_InterlockedCompareExchange
int32_t PILOS_InterlockedCompareExchange(int32_t* Destination,
int32_t Exchange, int32_t Comperand)

PILOS_InterlockedCompareExchange atomically compares the Comperand value with the
Destination value, exchanging the Destination value and Exchange value if they are equal. The
values are treated as 32-bit unsigned values.

Defined in: PILINTRL.H

Return Value

The original value of Destination.

Parameters

Destination The address of the destination variable

Exchange The exchange value if the comparison succeeds

Comperand The value to be compared with the destination

58
Intel Confidential

R PIL API

59

Control Plane-PDK 2.11

3.12.2 PILOS_InterlockedDecrement
int32_t PILOS_InterlockedDecrement(int32_t* Value)

PILOS_InterlockedDecrement atomically decrements the given 32-bit value by one and
returns the result.

Defined in: PILINTRL.H

Return Value

The resulting decremented value.

Parameters

Value Pointer to the value to be decremented

3.12.3 PILOS_InterlockedExchange
int32_t PILOS_InterlockedExchange(int32_t* Target, int32_t Value)

PILOS_InterlockedExchange atomically assigns the value of Value to Target, returning the
old value of Target as a result.

Defined in: PILINTRL.H

Return Value

The prior value of target before the exchange.

Parameters

Target Pointer to the long value to be exchanged

Value The new value for the target

3.12.4 PILOS_InterlockedIncrement
int32_t PILOS_InterlockedIncrement(int32_t* Value)

PILOS_InterlockedIncrement atomically increments Value and returns the result.

Defined in: PILINTRL.H

Return Value

The 32-bit resulting incremented value.

Parameters

Value Pointer to the value to be incremented

Platform Independence Layer API
Reference Guide

R

3.13 Miscellaneous Services

The PIL miscellaneous services are functions that do not fit into any other category.

3.13.1 PIL_Abort
void PIL_Abort(char* fmt)

PIL_Abort will display the printf-style message on the appropriate device and immediately abort
execution. The actual effect of aborting execution is implementation dependent. This function never
returns a value.

Defined in: PILMISC.H

Return Value

This function does not return.

Parameters

fmt A print-style format string followed by optional additional
parameters

3.13.2 PIL_GetCurrentTime
uint64_t PIL_GetCurrentTime(void)

PIL_GetCurrentTime returns a 64-bit time value in milliseconds. Depending on the
implementation, this function may not return the actual clock time. The time returned might be a few
milliseconds since an event that occurred in the past (usually system start). However, it is guaranteed
that the difference between any two calls of this function is the actual elapsed time in milliseconds.

Defined in: PILMISC.H

Return Value

The current time value in milliseconds.

3.14 DEBUG Services
The DEBUG services debug applications written to the PIL API. Most of these services automatically
turn off and do not generate code when compiled in release mode.

3.14.1 ASSERT
void ASSERT(BOOL bCondition)

The ASSERT macro checks the given condition and prints a message on the appropriate output device
if that condition is not true. The format of the message is as follows:

60
Intel Confidential

R PIL API

61

Control Plane-PDK 2.11

*** ASSERTION FAILED filename line number ***

Where filename and number will be filled in with the appropriate information.

Note: When the DEBUG symbol is not defined, this macro does not generate any code.

Defined in: PILDEBUG.H

Parameters

bCondition The condition expression that must be TRUE or the
assertion fails

3.14.2 ASSERTMSG
void ASSERTMSG(BOOL bCondition, char* Msg)

The ASSERTMSG macro works just like the ASSERT macro except that it allows a custom message to
be printed when the assertion fails:
*** ASSERTION FAILED filename line number *** *** custom message

Where filename , number , and custom message will be filled in with the appropriate
information.

Note: When the DEBUG symbol is not defined, this macro will not generate any code.

Defined in: PILDEBUG.H

Parameters

bCondition The condition expression that must be TRUE or the
assertion fails

Msg The custom message to display if the assertion fails

http://opensource.intel.com/pil/docs/pil1pre5.htm

Platform Independence Layer API
Reference Guide

R

3.14.3 TRACE
int32_t TRACE(char* fmt)

The TRACE macro works just like the printf() C run-time library function except that when the
DEBUG symbol is not defined, it does not generate any code. TRACE accepts all formatting commands
that printf() does. Consult an appropriate C run-time library reference for acceptable parameters.

Defined in: PILDEBUG.H

Return Value

The total number of characters output to the debug terminal.

Parameters

fmt The printf-style format string followed by additional
parameters required by that format string

3.14.4 TRACEx
int32_t TRACEx(char* fmt)

The TRACEx macros operate in the same manner as the TRACE macro except that the number of
parameters is fixed. TRACE1 through TRACE6 are defined.

These macros will not generate any code unless the DEBUG symbol is defined.

Defined in: PILDEBUG.H

Return Value

The total number of characters output to the debug terminal.

Parameters

fmt The printf-type format string followed by one to six
additional parameters

3.15 Resource Tracking
In special builds, PIL includes functionality to track all allocated resources. This can be very useful in
debugging to find memory leaks. It can also be used to determine the amount each resource is really
being allocated at run-time.

The functions described in this section enable applications to access the resource information that PIL is
tracking. This enables an application to be built which will dynamically monitor resource allocation.
Also included is a simple function to dump all resources into an appropriate debugging device.

62
Intel Confidential

http://opensource.intel.com/pil/docs/pil1pre5.htm

R PIL API

63

Control Plane-PDK 2.11

Resource tracking is always enabled in the DEBUG builds of PIL. This aids in detecting bad handles. A
retail build of PIL can also have resource tracking by enabling the RESTRACK flag when compiling.

3.15.1 PIL_DumpResources
void PIL_DumpResources(void)

Dumps the currently allocated resources on a suitable debugging terminal.

Defined in: PILDEBUG.H

Return Value

This function does not return a value.

3.15.2 PIL_GetResourceCount
PilResult PIL_GetResourceCount(void)

Retrieves the current number of each tracked resource.

Defined in: PILDEBUG.H

Return Value

PIL_OK The operation was successfully completed

	Overview
	PIL
	PIL Naming Conventions
	Standard C Run-time
	Berkeley Sockets
	Return Codes

	Compiler Guidelines
	Avoid Pragmas
	Structure Packing
	Anonymous Structures and Unions
	Avoid Inline Assembly

	PIL API
	Critical Sections (Required)
	PIL_DestroyCriticalSection
	PIL_EnterCriticalSection
	PIL_InitializeCriticalSection
	PIL_LeaveCriticalSection
	PIL_TryEnterCriticalSection

	Events (Required)
	PIL_CreateEvent
	PIL_DestroyEvent
	PIL_ResetEvent
	PIL_SetEvent
	PIL_WaitForEvent

	Heap Management (Required)
	PIL_CreateHeap
	PIL_DestroyHeap
	PIL_HeapAlloc
	PIL_HeapFree
	PIL_HeapShrink

	Initialization and De-initialization (Required)
	PIL_Init
	PIL_DeInit

	Mailbox Management (Required)
	PIL_CreateMailbox
	PIL_DestroyMailbox
	PIL_ReadMailbox
	PIL_WriteMailbox

	Memory (Required)
	PIL_AllocateMemory
	PIL_AllocatePages
	PIL_FreeMemory
	PIL_FreePages
	PIL_GetPageSize

	Semaphores (Required)
	PIL_AcquireSemaphore
	PIL_CreateBinarySemaphore
	PIL_CreateSemaphore
	PIL_DestroySemaphore
	PIL_GetSemaphoreCount
	PIL_ReleaseSemaphore

	Threading (Required)
	PIL_CreateThread
	PIL_DelayThread
	PIL_DestroyThread
	PIL_ExitThread
	PIL_GetCurrentThread
	PIL_GetNativeThreadPriority
	PIL_GetThreadPriority
	PIL_GetThreadValue
	PIL_ResumeThread
	PIL_SetNativeThreadPriority
	PIL_SetThreadPriority
	PIL_SetThreadValue
	PIL_SuspendThread
	PIL_TerminateThread
	PIL_WaitForThread

	Timers (Required)
	PIL_CreateTimer
	PIL_DestroyTimer
	PIL_DisableTimers
	PIL_EnableTimers
	PIL_ResetTimer
	PIL_StartTimer
	PIL_StopTimer

	Dynamic Libraries (Optional)
	PILOS_FreeLibrary
	PILOS_GetProcAddress
	PILOS_LoadLibrary

	Input/Output Register Access (Optional)
	PILOS_FindPciDeviceSignature
	PILOS_FindPciDeviceClass
	PILOS_ReadPortByte
	PILOS_ReadPortWord
	PILOS_ReadPortDword
	PILOS_WritePortByte
	PILOS_WritePortWord
	PILOS_WritePortDword
	PILOS_ReadPciConfigByte
	PILOS_ReadPciConfigWord
	PILOS_ReadPciConfigDword
	PILOS_WritePciConfigByte
	PILOS_WritePciConfigWord
	PILOS_WritePciConfigDword

	Interlocked Services (Optional)
	PILOS_InterlockedCompareExchange
	PILOS_InterlockedDecrement
	PILOS_InterlockedExchange
	PILOS_InterlockedIncrement

	Miscellaneous Services
	PIL_Abort
	PIL_GetCurrentTime

	DEBUG Services
	ASSERT
	ASSERTMSG
	TRACE
	TRACEx

	Resource Tracking
	PIL_DumpResources
	PIL_GetResourceCount

