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1 Overview 
Network elements such as switches and routers can be classified into three logical operational 
components:  

• Control plane 

• Forwarding plane 

• Management plane  

The control plane controls and configures the forwarding plane and the forwarding plane 
manipulates the network traffic. The control plane executes different signaling or routing protocols 
and provides all the routing information to the forwarding plane. 

The forwarding plane makes decisions based on this information and performs operations on 
packets such as forwarding, classification, filtering, and so on.  

An orthogonal management plane manages the control and forwarding planes. For example, the 
control plane in a router executes routing protocols, the forwarding plane performs hardware-
based switching, and the management plane starts or stops routing process or performs logging. 

The introduction of standardized Application Program Interface (API) within the above-mentioned 
planes can help system vendors, Original Equipment Manufacturer (OEM), and end-users of these 
network elements to mix and match components available from different vendors to achieve a 
device of their choice. The Network Processing Forum (NPF) services API is designed for this 
purpose, as it presents a flexible and well-known programming interface to the control plane 
applications. 

It makes the existence of multiple forwarding planes, as well as vendor-specific details, 
transparent to control plane applications. The hardware properties and nature of interconnect used 
between the control and the forwarding planes are isolated. The protocol stacks and network 
processors available from different vendors can be easily integrated with the NPF APIs. The APIs 
included in the Control Plane Platform Development Kit (CP-PDK) are based on the NPF APIs. 
For more information about NPF, refer to http://www.npforum.org/. 

This document specifies the high-level design for the transport plug-in module of the CP-PDK. 

1.1  Terminology 
Table 1 lists terms used in this document and provides an expansion for each term. 

Table 1. Terminology table 

Term Description 

NPF Network Processing Forum 

CE  Control Element 

FE Forwarding Element 

ForCES Forwarding and Control Element Separation protocol  

PDK Platform Development Kit 
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Term Description 

COPS Common Open Policy Service protocol 

GSMP General Switch Management Protocol 

PCI Peripheral Connect Interface 

BER Basic Encoding Rules 

XML Extensible Markup Language 

TLV Type Length Value 

1.2    Reference 
Table 2 lists documents referenced in, or related to, this document. 

Table 2. Reference table 

Reference Document 

[1] NPF Application Level API Framework; NP Forum, September 2000. 

[2] CP-PDK : Software Architecture Overview 

[3] CP-PDK : Forwarding Plane Plug-in API Reference 

[4] Requirements for Separation of IP Control and Forwarding, IETF draft 

[5] ForCES FE Functional Model, IETF draft 

[6] ForCES Architectural Framework, IETF draft 

[7] COPS Portability Layer Specification  
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2 Transport Plug-in Architecture 
The control plane and forwarding plane can have different communication mechanism or 
protocols to exchange information with each other. These protocols could either be IETF standard 
protocols like ForCES/COPS/GSMP or mechanisms such as CORBA, and so on. The planes can 
be connected using a number of different types of interconnects. Some examples of such 
interconnects are InfiniBand, PCI, various back-plane switching fabrics and shared memory.  

The transport plug-in abstracts out the type and the details of the communication mechanisms 
from the rest of the PDK implementation, at the same time providing the functionality required for 
separation of the CP and FP. It enables plug-and-play functionality for different communication 
mechanisms with the rest of the PDK. Different types of transport plug-ins can be placed between 
the planes such that CPs and FPs communicate transparently. This section describes the 
architecture for a transport plug-in.  

The architecture of a transport plug-in is shown in the figure that follows. The plug-in is composed 
of four distinct parts: 

1. FP Plug-in API - The abstraction API that hides the transport plug-in details and 
presents a uniform API that gets invoked by the NPF API implementation modules on the 
control plane. 

2. Backend API - The API exposed by the transport plug-in on the FP, which is used by 
the FP module of the PDK. 

In addition to the two APIs above, the transport plug-in includes the following components: 

3. Transport Protocol - This is the standard or propriety protocol used to exchange 
information between the planes and consists of two agents. 

• Control plane agent - Part of the transport protocol that resides on the control 
plane and communicates with the FP agent 

• Forwarding plane agent - Part of the transport protocol that resides on the FP 
and communicates with the CP agent 

4. Interconnect abstraction layer - This abstraction layer hides the interconnect details 
and is used by the transport protocol to send and receive messages  

11 
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Figure 1: Transport plug-in architecture 

Transport plug-in sends NPF API invocations from the CP to the FP. It is used by the FP for 
sending control data to the control plane for processing as well as data packets.  

2.1   Forwarding Plane Plug-in API (FP Plug-in API) 
Transport plug-in introduces the concept of a FP plug-in API in order to provide an abstraction to 
the CP-PDK. This API has been described in detail in [3]. This API allows the CP to send 
configuration and other control requests to the FP, receive the responses from the FP as well as 
send and receive data packets to and from the FP. 

2.2   Plug-in Backend API 
The API exposed by the transport plug-in on the forwarding plane, which is used by the FP 
module of the PDK. This API has been described in detail in [3]. This API allows the FP module 
to receive configuration and other requests from the CP, respond to those requests, as well as send 
and receive data packets, such as, RIP and OSPF to and from the CP. 
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                   Transport Plug-in Architecture 
2.3   Transport Protocol 

This can be an IETF standard protocol like ForCES/COPS/GSMP or any other messaging system 
such as CORBA that can be used for transporting the messages between the control and the 
forwarding plane. The transport protocol implementation consists of the CP agent and the FP 
agent. 

2.3.1  Control Plane Agent 
The control plane agent implements the transport plug-in specific transport protocol and the 
messaging. It is invoked by the FP plug-in API and converts the API calls to wire format 
messages, sent to the forwarding plane agent. 

2.3.2  Forwarding Plane Agent 
This agent sits on the forwarding plane, parses the transport protocol messages and generates well-
known messages which are used by the forwarding plane module to invoke the vendor specific 
API for the forwarding plane. 

2.4   Interconnect Abstraction Layer 
This provides an abstraction layer that hides the interconnect technology details from the transport 
protocol. The transport protocol uses this layer to send and receive messages without knowing 
whether the interconnect is PCI, Infiniband, Ethernet, or some other interconnect. 
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3 Transport Protocol Design 
This section describes the transport protocol design. The protocol can be considered as a 
preliminary implementation of the ForCES protocol and is based on the requirements [4], 
framework [6] and FE model [5] being defined in the ForCES working group in the IETF. The 
protocol described in the sections below is named the FLEX protocol. 

3.1  Overview 
The ForCES protocol referred to as the FLEX protocol is designed to be a simple, stateless, 
request-response protocol between the control and forwarding elements in a system. The protocol 
is designed to be lightweight in terms of low message parsing overhead as well as small message 
sizes. The protocol has a fixed length header that is 8-bytes long; all messages are 32-bit aligned. 
The protocol is easily extensible in several ways. It allows for a separate data model [5], which 
will define the data that needs to be exchanged. 

It allows different encapsulation methods, such as, TLV, BER, XML, for both the control 
messages and the data packets being carried. A separate data channel, such as, GRE tunnel, can be 
established to exchange only data packets between control and forwarding elements. It encourages 
the use of TLV encapsulation for control messages since it has the lowest overhead. The protocol 
supports different interconnect technologies by allowing different encapsulations to be defined for 
different interconnects. 

It assumes a reliable transport mechanism for the control channel. It has been designed to provide 
message level acknowledgements. The FLEX protocol meets all the requirements for separation of 
control and forwarding elements defined in [4] including command bundling, message priority, 
dynamic association and failover support. 

3.2  Protocol Operation 
The information exchanged between the CE and FE using the FLEX protocol in the CP-PDK can 
be classified into three phases. First is the binding phase, second is the capability & topology 
discovery phase, and the third is the configuration/normal operation phase. The following figure 
shows the information exchange. 

 

17 
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Figure 2: CE-FE information exchange 

In the binding phase, the FE sends a bind request to the CE, which sends back a bind response to 
the FE. The bind response indicates whether the bind was successful or not. During this phase the 
encapsulation information is exchanged between the CE and FE, which might lead to the creation 
of a separate data channel, such as GRE tunnel, for the exchange of data packets only between the 
CE and FE. 

In the capability discovery phase, the CE sends a capability request to the FE, which sends back a 
response with its capability information to the CE. The CE sends a topology request and the FE 
responds with its topology information relative to other FEs. If the CE is fine with the FE 
capabilities and topology and is ready to control and configure the FE, it sends a start operation 
message to the FE. Only after this message is received can the FE report events or send packets to 
the CE. The heartbeat message exchange starts after this message is sent. If the CE is not capable 
of controlling or configuring the FE based on the FE’s capabilities or topology, it would send an 
unbind message to the FE at this point. 

In the configuration operation phase, configuration and query messages are sent from the CE to 
the FE. The FE sends back the appropriate responses to the CE. Asynchronous FE events, such as 
port down event, are reported to the CE. Packet redirection between the CE and the FE takes place 
that is, control packets such as RIP, OSPF messages are redirected to the CE from the FE and 
vice-versa. Heartbeat messages are exchanged between the CE and FE according to the interval set 
during the binding phase. 

Finally during the shutdown process, the FE or CE send an unbind message to the other which 
ends their association. 

18 
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               Transport Protocol Design 
3.3   Protocol Headers and Messages 

The ForCES or FLEX protocol headers, commands, and messages are described as follows. 

3.3.1  FLEX Protocol Header 
The ForCES protocol has a fixed length header, which appears as follows: 

 

 
s  

 

 

Version
typedef 
 Ui
 Ui
Uint16_t
      Ui
} header

The fields i
Version 

This field d
Flags : 

This field d

Flags could
mandatory.

The valid v
and no ackn
Msg_type
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response, ca
operation, c
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This field is
type. 

A value of 0
Command Correlator
struct header_ta
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nt8_t flags;
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: 8 bits 
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Message Type
Flag
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n; 
 

rrelator; 

 FLEX protocol. 

protocol message. 

 protocol reliability or responses to certain messages are not 
d to indicate the priority of the ForCES message.  

ormal priority, high priority, low priority, passive message, 

. The valid values for this field are: FE bind request, FE bind 
ility response, topology request, topology response, FE start 
est, configuration/query response, FE event/packet 
 

ween responses of multiple outstanding requests of the same 

nbind and capability messages. 
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3.3.2  FE Binding 

The FE binding phase consists of the FE sending a bind request to the CE, which responds with a 
bind response. The response indicates whether the CE accepts or rejects the bind request. Based on 
the CE response, any separate data channel for communication between CE and FE would be 
established after this phase. Communication using this channel would only start after the start 
operation command is issued by the CE to the FE. 

The ForCES bind request appears as follows: 

 

 Flags = 0 Message Type = Bind ReqVersion = 1 

 

 Command Correlator = 0

 

 

 

 
typedef struc

 Uint32_

Uint16_t c

Uint16_t d

Uint32_t b

Uint32_t h

} bindinfo; 

The fields in the bin
Feid : 32 bit

This field uniquely

Control Encapsulat

This field defines th
the FE. The valid v

Data Encapsulation

This field defines th

The valid values fo
Bind Status :

This is an optional 
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Active 
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FEID
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r this f
 32 b
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Data Encapsulation Type = GRE
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feid; 

l_encapsulation_type; 

ncapsulation_type; 

tatus; /* optional */ 

eat_interval; /* optional */ 

est are: 

ies an FE. 

e : 16 bits 

psulation method for ForCES control messages, which is supported by 
or this field are: TLV, BER, and XML. 

 16 bits 

psulation method for the data packets, which is supported by the FE. 

ield are: TLV, BER, XML, GRE protocol, and IP-in-IP protocol. 
its 

hich defines the status of the FE bind. 

iled are: 
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Heartbeat Interval : 32 bits 

This is an optional field, which defines the interval in milliseconds at which heartbeat messages 
should be exchanged between the CE and FE. 

The ForCES bind response appears as follows: 

 

 
Flags = 0 Message Type = Bind RespVersion = 1 

 

 
Command Correlator = 0

 

The fields in the bind response are: Bind Result = 1 (Accept)

Bind_result : 32 bits 

This field defines whether the FE bind request was successful or not. The valid values for this 
field are: 
Accept 

Reject 

3.3.3  FE Capability Discovery 
The FE capability discovery phase consists of the CE sending a capability request message to the 
FE, which responds with a capability response message. The capability request message consists 
of the common header with the message type set to capability request. The capability response 
message consists of the common header along with information about the FE Ports as well as the 
logical blocks [5]. The port information consists of the number of ports followed by an array of 
the port_info structs. The block information consists of the number of blocks followed by 
an array of the block_info structs. 

The ForCES capability response appears as follows: 

 

 
Flags = 0 Message Type = Caps RespVersion = 1 

 

 Command Correlator = 0

 

 Port Count

 

 
Port Info

 

 

 

Block Count
Port Info
21 
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The fields in the Capability response are: 

Block Info 

Port Count : 32 bits 

This field defines the number of ports on the FE. 
Port Info : 64 bits 

This field defines the port information for each port on the FE and consists of a 32-bit field that 
defines a unique port identifier followed by a 32-bit field that defines the port type. 
typedef struct portInfo_tag { 
 Uint32_t port_id; 
 Uint32_t port_type; 
} portInfo_t; 
 
typedef struct portlist_tag { 
 Uint32_t port_count; 
 portInfo_t  *portArray; 
} portlist_t; 
Block Count: 32 bits 

This field defines the number of logical blocks that exist on the FE. The blocks represent the 
logical functionality, or capabilities of the FE, see [5]. 
Block Info: variable 

This field defines the block information for each logical functional block on the FE and consists of 
a 32-bit field that defines the block type followed by a 32-bit field that defines a unique block 
identifier or handle. 
typedef struct blockInfo_tag { 

 Uint32_t block_type; 

 Uint32_t block_handle; 

 Uint32_t downstreamBlockCount; 

 Uint32_t  *downstreamBlockArray; 

} blockInfo_t; 

typedef struct blocklist_tag { 

 Uint32_t  block_count; 

 blockInfo_t  *BlockArray; 

} blocklist_t; 

22 
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3.3.4  FE Topology Discovery 

The FE topology discovery phase consists of the CE sending a topology request message to the 
FE, which responds with a topology response message. The topology request message consists of 
the common header with the message type set to topology request. The Topology response 
message consists of the common header along with information about the FEs directly connected 
to the communicating FE. This information consists of the number of directly connected FEs 
followed by an array of the FE identifiers. 

The ForCES topology response appears as follows: 
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his message indicates that the CE is fine with the FE capabilities and 
ontrol and configure the FE. This indicates that the CE is ready to 
 FE such as event notification and packet redirection. The exchange of 
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3.3.6  FE Configuration/Query Messages 

The FE configuration or query messages are exchanged during the operational phase. They are in 
the form of a request that is sent from the CE to the FE to configure certain blocks/ FE 
functionality [5] or to query information. The FE sends back a response, which indicates the result 
of the configuration request or the information requested by the query. They consist of the fixed 
length header followed by one or more variable length commands. The protocol supports the 
command bundling requirement. 

The ForCES configuration/query messages appear as follows: 

 

 

 
r

 

 

 

 

 

The ForCES protocol command appears as follows: 

Variable length Command 

Variable length Command 

 

 

 

 

 

 

 

 

 

typedef st
Uint32_t 
      Uint
 Uint
 Void
} command;

The fields in t
Cmd_type :

This field defi
delete all, send
Command Type
e

r

3
3
*
 

h
 

n
 

Block Handl
uc

Co

c
2_
2_
  

e co
32
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pac
Length
Common Heade
t command_tag { 

mmand Data 

md_type; 
t block_handle; 
t length; 

cmd_data; 

mmand are: 
 bits 

he command type. The valid values for this field are: null, add, update, delete, 
ket, query statistics, and query properties. 
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Block_handle : 32 bits 

This field defines the block handle or block identifier for which this command is being issued. 
Length : 32 bits 

This field defines the length of the command data in bytes that is encapsulated in the command. 
Cmd_data : variable length 

This is the configuration/query data, which is encapsulated using the method negotiated during FE 
bind phase of the protocol. For the FLEX protocol implementation, the command data is 
encapsulated as a TLV structure. During the configuration/query request, this structure is 
essentially the NPF data structure that is passed from the CP module to the FP Plug-in API. For 
example, in case of a Add_IPv4_NextHop() call, the NPF_IPv4_NextHop structure which is 
passed in the call will be copied in this field.  

In general, this field will contain the Block structures defined in the ForCES FE Model [5]. In the 
configuration/ query response, the command data will contain the result of the configuration or the 
query information again in the form of NPF data structures, which are passed by the FP module to 
the Backend API. 

The ForCES protocol command status (response) appears as follows: 

 

 

 

 

 

 

 

 

 

 

 

typedef struct command
Uint32_t cmd_

      Uint32_t bloc
 Uint32_t glob
 Uint32_t leng
 Void*  cmd_
} command_resp; 
Block_handle : 32 bits 

This field defi
Command Type
e

_
t
k
a
t
d

n

Block Handl
Global Result
ta

Co

yp
_h
l_
h;
at

es t
Length
g { 

mmand Data 

e; 
andle; 
result; 
 
a; 

he block handle or block identifier for which this command is being issued. 
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Length : 32 bits 

This field defines the length of the command data in bytes that is encapsulated in the command. 

Global_result : 32 bits 

This field defines the global result of the command. The individual results will be part of the 
command data. 

3.3.7  FE Events/Packet Redirection 
The FE events, such as, port down or change in certain capabilities, are reported to the CE using 
the FE event notification message. The packets being redirected to the CE from the FE are sent 
using this message. It is similar to the configuration/query messages as in it consists of the 
common header followed by one or more variable length commands or events. 

The ForCES FE event notification appears as follows: 

 

 
 t 

 

 
 

 

 

 

 e

 

 

 

 

 

The fields in the F
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Event_type : 32 bits 

This field defines t

11 = Port Event 

12 = Block Specific Event 

13 = Packet Redirection 
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ent Data 
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irection appears as follows: 
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3.3.8  CE, FE Unbinding 

Packet + metadata 

The CE or FE can send an unbind message to the other at any time to end their association. 

The unbind message appears as follows: 

 

 
 d 

 

 

 

  

  

The field

FE behavior : 32 bits 

This field def
are: 

1 = Continue Operatio

2 = Stop Operation 
Reason (optional)
Version = 1
Command Correlator = 0
ines the behavior

n 
Message Type = Unbin
Flags = 0
Length
Event Type = Packet Redirection
Block Handl
Version = 1
Command Correlator = 0
Message Type = FE Event Not.
Flags = 0
: 
s in the unbind message areFE Behavior (CE unbind)
 of the FE after the unbind occurs. The valid values for this field 
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3.3.9  Heartbeat 

The heartbeat is an optional message, which is exchanged between the CE and FE according to the 
interval set during FE binding. It is used to detect failure in communication between the CE and 
FE and helps the fast failover mechanism. 

The heartbeat message appears as follows: 

 

 
  

 

3.4   Failover Support 
The ForCES protocol provides support for redundant control elements in the CP-PDK architecture 
and fast failover between primary and secondary CEs in case of failure. In order to provide this 
support, the protocol provides a failure detection mechanism using heartbeat messages, which can 
be used to detect any failure in communication between the control and FE. 

3.5   Protocol Encapsulations 
There are several encapsulations defined for ForCES protocol messages to work over different 
interconnect technologies. The interconnect technologies can consist or IP-centric technologies 
such as TCP/IP over Ethernet or non-IP centric such as PCI or Infiniband. 

3.5.1   ForCES protocol Encapsulation for TCP 
The ForCES protocol encapsulation for TCP appears as follows: 

 

 

 

 

 

 

Length : 32 bits 

ForCES

This defines the le

 

Length
Version = 1
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Flags = 0
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 entire ForCES protocol message in bytes including the header. 
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4 Interconnect Abstraction Layer Design 
This section describes the design details of the interconnect abstraction layer. It is based on the 
COPS portability layer specification defined in [7]. It has certain features such as the packet buffer 
manager, which help in enhancing the performance of the transport plug-in implementation. 

4.1  Packet Buffer Management 
This module helps in reducing the cost or performance penalty of memory related operations, such 
as malloc, in the transport plug-in. A chunk of memory is pre-initialized and divided into equal 
sized buffers. One or more buffers depending on the size requested by the transport plug-in APIs 
are made available.  
typedef struct _plBufMem { 

    uint32_t total_Q_size; 

    uint32_t buffers_used; 

    unsigned char *pBufMem; 

    uint32_t pBufFreeMem; 

    uint32_t pBufFreeTail; 

    uint32_t pBufSend; 

    uint32_t pSendTail; 

    uint32_t pBufRecv; 

    uint32_t pRecvTail; 

} plBufMem; 

typedef struct _plBufHeader { 

    uint32_t            connect_id; 

    uint32_t            flags; 

} plBufHeader; 

typedef struct _plHeader { 

    uint32_t            cookie; 

    uint32_t            length; 

} plHeader; 

typedef struct _plBuf { 

    plBufHeader pbufheader; 

    plHeader plheader; 

    unsigned  char      pbuf[0]; 

} plBuf; 

The following shows the packet buffer encapsula nd ready to be delivered over interconnect: 

 

 
S
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ForCES protocol message  

 

 

 
FEID: 32 bits 

. 

. 

. 

. 

.
This defines the identifier the interconnect uses to send and receive to the correct FE. The field is 
used and filled by the interconnect; this part of the buffer is not delivered across the interconnect. 
FLAGS: 32 bits 

This defines the buffer management flags (FREE/UNCHAINED/CHAINED). CHAINED is used 
when more than one consecutive buffers have been chained when size requested is more than a 
single buffer. This part of the buffer is not delivered across the interconnect. 
MAGICCOOKIE: 32 bits 

Reserved or used to identify a valid transport plug-in interconnect message. Delivered across the 
interconnect 
Length: 32 bits 

This defines the length of the ForCES protocol message. Delivered across the interconnect. 

Table 3. Packet buffer encapsulation table 

Function Description 

uint32_t 
pb_getBuffer ( 

uint32_t FEID,  

uint32_t size,  

uint32_t flags) 

Returns a pointer to the Buffer of size 

uint32_t 
pb_freeBuffer( 

Void * buf) 

Free Buffer to be called by the layer that no longer passes the 
buffer to another layer 

Uint32 
pb_PlBufferInit( 

Uint32 Qsize) 

 

Initialize Buffer API 

 

Uint32 
pb_PlBufferDeInit( 

void) 

De-initialize Buffer API 

 

4.2  Datagram API 
This module provides a generic API to transport datagram based messages over a reliable 
connection. The transport plug-in will use the datagram API and the packet buffer management 
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API to send and receive messages. Datagram API implementation could use TCP/IP for reliable 
and fast delivery of messages over the networked CE/FE. 
typedef void (*CB_DatagramReceive)(void *pbuf, uint32_t 
connect_id, uint32_t length); 

typedef void (*CB_DatagramException)(uint32_t ex, uint32_t 
connect_id); 

 

typedef struct _CBServerDatagramParams { 

        CB_DatagramRecieve datagram_receive;  

        CB_DatagramException datagram_exception;  

} CBServerDatagramFuncs; 

 

typedef struct _datagram_connect { 

                uint32_t                flags; 

                union { 

                        struct sockaddr_in      ipv4_addr; 

                        struct sockaddr_in6     ipv6_addr; 

                // Place holder for the other connection 
protocols. 

                        }               saddr; 

                }datagram_connect; 

 

typedef struct _CBClientDatagramParams { 

                datagram_connect      connect_info; 

                CB_DatagramReceive      datagram_receive; 

                CB_DatagramException    datagram_exception; 

                } CBClientDatagramFuncs; 

Table 4. Datagram API function table 

Function Description 

Uint32 
InitializeDatagramServer 
(CBServerDatagramFuncs) 

Initialize Datagram API for server 

Uint32 
InitializeDatagramClient 
(CBClientDatagramFuncs, 
uint32_t) 

Initialize Datagram API for client 

Void SendDatagram(uint32_t, 
void* msg, uint32_t size, 
uint32_t flags) 

Send Client Datagram across the interconnect 

Void DeInitializeDatagram() De-initialize Datagram API 
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5 Transport Plug-in Design 
This section describes the design and implementation details of the transport plug-in. 

5.1   Overview 
This layer is responsible for the controlling, initialization and shutdown of the protocol 
implementation. On the control plane, it converts structures from the FP plug-in API format or 
NPF format to the ForCES message formats. On the forwarding plane, it converts structures from 
the ForCES message formats to the backend API format or FP plug-in API format, which is 
understood by the FP module in the forwarding plane. 

5.2   Memory Management 
The memory management for the transport plug-in is the same as that described in FP Plug-in API 
specification [3]. 

5.3   Threading Model 
The transport plug-in has many threads. Most of these threads reside in the interconnect layer, 
there are three which always exist: the listen, send, and receive threads. The listen thread accepts 
incoming connections and binds from FE’s. The send and receive threads which handle buffer 
flow.  There is one thread for every FE connected, which reads packets from the network and 
places them in the receive thread’s queue. 

The transport plug-in creates a heartbeat thread for each FE when it binds. The heartbeat thread 
sends heartbeat messages at a negotiated rate. 

These threads are initialized and provided by the portability layer. 

5.4   Timeout Mechanism 
This layer provides a timeout mechanism to help make the PDK design more robust. This allows 
the control plane PDK to set a timeout interval for each request sent to the forwarding plane. If the 
FP does not send a response within a certain time interval, the transport plug-in informs the CP-
PDK. 

5.5   Data Structures 
On the control plane, the transport plug-in maintains a list of connected FEs. It uses the FEList to 
maintain the mapping of FEID, which is the FE identifier generated by the transport plug-in, to 
connectionid, which is used by the interconnect layers to identify the connection to the FE or 
client. The FEInfo structure, which is stored in the list is shown below. 
typedef struct FEInfo_t{ 
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 FPPI_FEID   feid; 

 uint32_t    connectionid; 

 forces_bind_info_t bindinfo;  /* all the information */ 

 forces_portlist_t* portlist;  /* about the FE        */ 

 forces_blocklist_t* blocklist; 

 FPPI_FE_Caps*  fecaps; 

 DList       outstandingcommands;   /* commands sent to FE */ 

 PilThread heartbeatthread;         /* heartbeat info: thread 
handle */ 

 int       msgpipe[2];              /* pipe to shut it down          
*/ 

 int       missedbeats;             /* count of missed beats 
from FE */ 

} *FEInfo; 

It uses the outstandingcommands list to maintain the callback information required for all queries 
and commands. The CBInfo structure, which is stored in the list shown below. 
typedef struct FPPCommand_t { 

    FEInfo          feinfo;     /* FE this command belongs to */ 

    ForCESMessage   msg;        /* handle to message sent */ 

    uint32_t        cmd_type;   /* ForCES command */ 

    uint32_t        block_type; /* and block */ 

    char*           buffer; 

    size_t          size; 

    uint32_t        forces_correlator; /* correlator sent with 
this 

command to FE */ 

    FPPI_CORRELATOR fppi_correlator; /* correlator to return 
to PDK */ 

    FPPI_CBHANDLE   fppi_cbhandle;  /* callback to invoke */ 

    FPPCommandHandler   handler;  /* function to invoke to 
decap 

any results */ 

} * FPPCommand; 

5.6   Pseudo-Code for Control Plane 
The Pseudo-Code for calls such as Initialize, Shutdown, Start, Stop, RouteAdd, RouteDel, that are 
exposed by FP Plug-in API on the control plane, has been shown below.  

FPPAPI_Initialize 
{ 

    // Initialize all state info lists 

    npf_list_init(&ConnectList, PIL_FreeMemory); 

    npf_list_init(&CBInfoList, PIL_FreeMemory); 

    // Initialize portability layer 

    return success; 
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} 

FPPAPI_Shutdown 
{ 

    // destroy all lists that were initialized 

    npf_list_destroy(&ConnectList); 

    npf_list_destroy(&CBInfoList); 

    // De-initialize portability layer 

    return success; 

} 

FPPAPI_Start 
{ 

    // ready to receive any FE bind requests 

    return success; 

} 

FPPAPI_Stop 
{ 

    //send unbind message to all FEs 

    return success; 

} 

FPPAPI_ipv4_unicastRouteAdd 
{ 

    // Determine size of buffer needed to send command 

    // Create new FPPCommand with: 

    //   appropriate ForCES command and block for ipv4 route add, 

    //   size required for buffer 

    //   callback handle 

    //   correlator 

    //   and a handler 

    // encapsulate parameters into FPPCommand’s buffer 

    buffer = encapsulate_uint32_t(route_count, buffer); 

    buffer = encapsulate_array_ipv4Route(route_list, route_count, 
buffer); 

    // Send command 

    FPPCommandSend(); 

    return success; 

} 

5.7   Pseudo-Code for Forwarding Plane 
The Pseudo-Code for calls such as Initialize, Shutdown, bindRequest, SendEvent, SendPacket, 
ReportStatus, which are exposed by Backend API on the forwarding plane, has been shown below.  

BENDAPI_Initialize 
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{ 

    // Initialize all state info lists 

    npf_list_init(&ReportList, PIL_FreeMemory); 

    // Initialize portability layer 

    return success; 

} 

BENDAPI_Shutdown 
{ 

    // Destroy all lists that were initialized 

    npf_list_destroy(&ReportList); 

    // De-initialize portability layer 

    return success; 

} 

BENDAPI_bindRequest 
{ 

     // send FE bind message 

    return success; 

} 

BENDAPI_unbindRequest 
{ 

    // send FE unbind message 

    return success; 

} 

BENDAPI_sendPacket 
{ 

    // encapsulate packet list into ForCES message 

     

    // send message to the CP 

    return success; 

} 

BENDAPI_sendEvent 
{ 

    // encapsulate event type & event data into ForCES message 

    // send message to CP 

    return success; 

} 

BENDAPI_Report_Status 
{ 

    // search ReportList for cbtype, cbcorrelator 

     

    // initialize Report message 
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    // check response_data if cbtype is GetProperties or 
GetStatistics 

    // otherwise encapsulate a success or failure report 

    // send message to CP 

    return success; 

} 
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6 Code Generator Design 

6.1   Code Generator Introduction 
This section describes the design for the transport plug-in code generator, and the reasoning behind it. 

The transport plug-in consists of two major parts: the core where all the state is maintained and all the 
ForCES communication takes place, and the APIs. The APIs expose the functionality of the forwarding 
plane to the control plane. Each function in an API serializes the command and any data from the 
control plane, sends them to the correct client, which then de-serializes the data and makes the 
appropriate calls into the forwarding plane.  Then, any results are serialized and sent back to the server, 
which de-serializes the data and makes the appropriate callback into control plane. 

6.2   Code Generator Requirements 
The ultimate goal of the code generator is to take a transport plug-in API description, including 
functions and data types, and generate all the code required to build and send ForCES commands, and 
serialize and de-serialize all commands, data and results, for both the server and client sides of the 
transport plug-in. At this stage the focus is on generating the serialization. 

The code generator must: 

• Take as input a standard C header file, which contains all the data types that will need to be 
serialized. This C header file must be able to coexist and be used by the rest of the PDK. This will 
insure that there is no duplication of data type definitions, thereby reducing the chances of 
synchronization problems later, if the types were to change. 

• Be able to do all the same preprocessing on the input file that the compiler will do when building 
the PDK. This insures that any code that is #ifdef’d is not included, or any macro substitution is 
performed. 

• Generate all serialization, encapsulation/decapsulation routines for all types in the input file, and 
put them into appropriate .c files, and generate appropriate .h files for use by other .c 
files. 

• Any changes to the input file required by the code generator must easy to write, human readable, 
and not impact any other .c files that may be including the input .h file. 

• All output of the code generator must compile without any changes by the user 

6.3   Code Generator Design Considerations 
Given that the code generator cannot be omniscient, the input file must give it some hints about certain 
data types and fields. 

For example, given this data type: 
 typedef struct { 

  uint32_t num; 

  uint32_t * arr; 

 } my_array; 
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What is the meaning of the field arr? Is it a pointer to a single uint32_t, or is an array of length num 
uint32_t’s? In order to instruct the code generator on how to treat array, the code needs to be marked 
up. For other C compilers, we have elected to use comments to hide our markups. Here is the above 
example, reworked to tell the code generator that array is an array. 
 typedef struct { 

  uint32_t num; 

  uint32_t * arr; /* @!array-length:num! */ 

 } my_array; 

The code generator knows that the field arr is an array of length num, and will encapsulate and 
decapsulate accordingly. Notice that the markup is entirely enclosed in a C style comment, effectively 
hiding it from the compiler.  

Note: The special @!<command>:<value>! notation should prevent normal comments from interfering 
with the code generator. 

The only other markup needed is for unions. Given any union, encapsulation and decapsulation  of the 
appropriate field is the only motive. Here is an example of unions: 
 typedef struct { 

  uint32_t type; 

  union /* @!union-switch:type! */ 

  { 

   uint32_t a;   /* @!union-case:0! */ 

   my_array b;   /* @!union-case:1! */ 

   foo      bar; /* @!union-case:GLOBAL_DEFINE! */ 

  } u; 

 } my_array; 

The resulting encapsulation/decapsulation code produced by the code generator will then switch off of 
the field type, and if the result is 0 will encapsulate/decapsulate a uint32_t and store it in UA. 

To avoid multiple copies of data types in header files and to avoid feeding extraneous information to the 
code generator, a developer can break existing header files into two parts. The main header file and a 
sub-header file that holds all the information, should be given to the code generator.  For example: 

npf_header.h: 
 typedef void* npf_context; 

 …various other things never encapsulated… 

 #include npf_header_remote_types.h 

 …more local stuff… 

npf_header_remote_types.h: 
 #typedef uint32_t npf_correlator; 

 #typedef uint8_t npf_array_foo[SIZE_OF_FOO]; 

Only the npf_header_remote_types.h would be run through the code generator, or one could 
put #ifdef around only those types that need to have code generated and then make sure that the code 
generator has defined it. 
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6.4   Code Generator Design 

Much of the design of the code generator is decided by the requirement that it uses existing C header 
files. The code generator must be able to parse C syntax, so the majority of the logic behind the code 
generator is focused on that. 

6.4.1  Code Generator Parser Design 
The code generator parser actually has two parts: the lexical analyzer and the parser. The code generator 
relies on the Lex and Yacc tools for these parts. 

The basic design of the definition file given to Lex to build the lexical analyzer is: 
%{ 

%} 

 

ws      [ \t]+                /* white space */ 

id      [a-zA-Z][a-zA-Z0-9_]* /* identifiers, types etc */ 

size    [0-9]+                /* hard coded sizes of arrays */ 

command [a-z][a-z-]*          /* markup commands */ 

nl      [\n]                  /* newlines */ 

 

/* States */ 
%x COMMENT    /* c style comments */ 

%x CPPCOMMENT /* c++ style comments */ 

%x COMMAND    /* markup command */ 

 

%% 

 

//            { BEGIN CPPCOMMENT; } /* start c++ comment */ 

<CPPCOMMENT>.   { }                   /* ignore all */ 

<CPPCOMMENT>\n  { BEGIN 0; }          /* ends at end of line */ 

 

/*            { BEGIN COMMENT; }    /* begin c comment */ 

 

<COMMENT>*/   { BEGIN 0; }          /* end comment */ 

<COMMENT>@!   { BEGIN COMMAND; }    /* begin markup command */ 

<COMMENT>\n     { } 

<COMMENT>.      { }                   /* ignore everything else */ 

<COMMAND>{command} {                  /* return command */ 

        return ID; 

        } 

<COMMAND>{id} {                       /* return id for command */ 

        return ID; 

        } 

<COMMAND>{size} {                     /* return size for command */ 

        return SIZE; 
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        } 

<COMMAND>!    { BEGIN COMMENT; }    /* end command, resume comment */ 

<COMMAND>{ws}   ; 

<COMMAND>{nl}   { } 

<COMMAND>.      { } 

 

{ws}                                 /* ignore all whitespace */ 

{nl}    { }                           /* ignore newlines */ 

{id}    { }                           /* return an id */ 

{size}  { }                           /* return an size */ 

.       { } 

 

 

%% 

Other than some state maintenance for the comments and commands, the lexer is seems to be simpleer. 
The parser appears to be little complicated. Following is a basic design for the input to Yacc: 
%{ 

%} 

 

%start statements 

 

%% 

 

statements: /* statements are : */ 

        statements statement  /* many statements and a statement */ 

    |   statement             /* a statement */ 

    |                         /* nothing */ 

    ; 

 

statement: /* a statement is : */ 

        definition            /* a type's definition */ 

    |   functiondef           /* a functions's definition */ 

    ; 

 

definition: 

        TYPEDEF modifieddeclaration 

    ; 

 

functiondef: 

        type id '(' arglist ')' ';' 

    ; 

 

declaration: /* a declaration can be what is being typedef's or  

                might be a field in a struct or union */ 
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        /* basic type */ 

        type id ';'  

 

        /* pointer to a basic type */ 

    |   type '*' id ';'  

 

        /* hard core array.  already allocated within 

           the struct. size is a value or define or something */ 

    |   type id '[' size ']' ';'  

 

        /* a struct, contains multiple fields */ 

    |   STRUCT optid decllist id optarr ';' 

 

        /* a union, like a struct, but different */ 

    |   UNION optid '@' id ':' size decllist optid ';' 

 

        /* enums are basically ignored,  

           but we need to remember them for later fields 

           and encap/decap them as uint32_t's */ 

    |   ENUM optid '{' enumlist '}' id ';' 

 

        /* functions and function pointers, not used yet 

           but may be handy for auto generating api calls */ 

    |   type '(' '*' id ')' '(' arglist ')' ';' 

    |   type '*' '(' id ')' ';' 

 

optarr: /* incase of an array of structs */ 

        '[' size ']'  /* size of the array */ 

    |                 /* or nothing as it is optional */ 

    ; 

 

type:   /* types may be modified, unsigned, long etc */ 

        modifier id  

    |   modifier modifier   /* long long? */ 

    |   id  

 ; 

 

modifier:  /* possible modifiers */ 

        UNSIGNED 

    |   SIGNED 

    |   SHORT 

    |   LONG 

    ; 

 

command:  /* markup commands */ 
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        '@' id ':' size  

    ; 

 

decllist: 

        '{' declarationlist '}' 

    ; 

 

commandchain:  /* in future may allow multiple markup commands */ 

        commandchain command 

    |   command 

    | 

    ; 

 

modifieddeclaration:  /* markedup declaration */ 

        declaration commandchain 

    ; 

 

declarationlist:      /* a list of declaration is : */ 

    | declarationlist modifieddeclaration 

    | modifieddeclaration 

    | 

    ; 

 

optval: /* optional value in enum */ 

      '=' SIZE  /* = number, or id */ 

    |           /* or nothing */ 

    ; 

 

enum: /* enum entry */ 

      id optval 

    ; 

 

enumlist:  /* list of enum entries */ 

      enum ',' enumlist 

    | enum 

    | 

    ; 

 

arglist: /* list of arguments to a function */ 

      arg 

    | arglist ',' arg 

    | 

    ; 

 

arg: /* argument to a function */ 
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      type id 

    | type '*' id 

    ; 

 

size: /* sizes might be hardcoded numbers, or identifiers */ 

      SIZE 

    | id { $$ = $1; } 

    ; 

 

id: /* identifier, returned by lexer */ 

      ID { $$ = strdup($1); } 

    ; 

 

optid: /* optional id */ 

      id 

    | 

    ; 

 

%% 

Lex and Yacc can be run on the definitions files described by the above, generating the code that will 
parse the input files of the code generator. The required output of the parser is a list of type definitions. 
A type definition is defined as: 
typedef struct type_t { 

 char* name;     /* name of type */ 

 int typeid;     /* unique id for type */ 

 int kindoftype; /* regular, pointer, array, etc */ 

 char* size;     /* if array or pointer array,  

                         might be 100 or MAX_SIZE_OF_ARR, etc */ 

      char* kase;     /* case kase: if union member */ 

 

      /* pointer to type this type is based on 

         i.e. uint32_t or struct, or FOO */ 

      struct type_t* basetype; 

 

      /* if this is a struct or union, this is a list of the 

         fields comprising it */ 

      list fields; 

} * itype; 

6.5   Code Generator Code Generation 
Once the parser builds the list of type definitions, it is time to start generating code. The code generator 
emits encapsulation, sizeof, and decapsulation functions for all entries in the list, as well as header files 
for those functions. All code generation is simplistic, following strict templates, and assumes the 
existence of encapsulation, decapsulation, or sizeof functions elsewhere for any unknown types. All 
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functions for basetypes have been handwritten earlier and are part of the core of the transport plug-in. 
General strategy of all encapsulation, decapsulation and sizeof functions is to reduce all types to their 
base types, and call the encapsulation, decapsulation, and sizeof functions of those base types. 
Following is an example of this principle: 

Example type: 
typedef struct { 

 uint32_t x; 

 char y; 

 bar z; 

} foo; 

generated encapsulation function: 
char* encapsulate_foo( 

  foo* a, 

  char* buf 

  ) 

{ 

 buf = encapsulate_uint32_t(&(a->x), buf); 

 buf = encapsulate_char(&(a->y),buf); 

 buf = encapsulate_bar(&(a->z),buf); 

 return buf; 

} 

Notice how the encapsulate_foo function calls the encapsulation functions for all the members of 
a foo, irrespective of their types, It assumes the encapsulation function exists and takes care of the 
encapsulation detail. Notice that the pointer to the buffer that is being encapsulated into is never directly 
manipulated, except through assigning it to the result of an encapsulation. The only functions that must 
know how much to move forward, in the buffer to encapsulate the next item, are the very base functions 
that have been built by hand. 

Following is a little complicated example for a decapsulation function: 

Example type: 
typedef struct { 

 uint32_t len; 

 bar * arr; /* @!array-length:len! */ 

} foo; 

generated decapsulation function: 
char* decapsulate_foo( 

  foo* a, 

  char* buf 

  ) 

{ 

 buf = decapsulate_uint32_t(&(a->len),buf); 

 a->arr = (buf*)malloc(sizeof(bar)*a->len); 

 buf = decapsulate_array_bar(a->bar,a->len,buf); 
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 return buf; 

} 

Notice that the decapsulation function needs to allocate space for the bar array, also known as arr. From 
the markup command array-length, the code generator knows that arr is a pointer to an array of len 
bar’s. Notice that the function decapsulate_array_bar is called to decapsulate that array. The code 
generator produces not only encapsulation and decapsulation functions for all types, but  functions to 
encapsulate and decapsulate entire arrays for all types. 
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