

Co-Located Transport Plug-in
Design Specification
Control Plane-Platform Development Kit 2.11

March 2004

R

ii Intel Confidential

Information in this document is provided in connection with Intel® products and services. No license, express or
implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in
Intel's Terms and Conditions of Sale for such products and services, Intel assumes no liability whatsoever, and Intel
disclaims any express or implied warranty, relating to sale and/or use of Intel® products and services including liability
or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or
other intellectual property right. Intel products and services are not intended for use in medical, life saving, or life
sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Copyright© 2004 Intel Corporation.

* Other brands and names are the property of their respective owners.

R

Contents
Co-Located Transport Plug-in... i

Contents.. iii

Part 1: Introduction ... 5

1 Introduction... 7
1.1 Co-Located Transport Plug-in... 7
1.2 Terminology.. 8
1.3 References.. 8

Part 2: Overview .. 9

2 Overview.. 11
2.1 Requirements ... 11
2.2 High-Level Functionality Overview... 11
2.3 Design Considerations, Assumptions, and Dependencies.................... 13

Part 3: Co-located PDK Design .. 15

3 Co-located PDK Design.. 17
3.1 High-level Overview ... 17
3.2 External API .. 18
3.3 Implementation Details.. 18

3.3.1 Build Procedure .. 18
3.3.2 Startup .. 18
3.3.3 Shutdown .. 19
3.3.4 Major Data Structures ... 20
3.3.5 Threading.. 21
3.3.6 Synchronization (reentrancy) .. 23
3.3.7 Memory Policy .. 23
3.3.8 Common PDK Objects .. 23

Part 4: Use Case.. 25

4 Use Case.. 27

Tables
Table 1. The terminology table... 8
Table 2. The reference table .. 8

iii
Control Plane PDK 2.11

R

Revision History
Revision Description Date Author

2.11 Updated for Release 2.11 March 2004 Udaya Shankar

2.1 Updated for Release 2.1 December 2003 Udaya Shankar

2.0 Updated for Release 2.0 August 2003 Udaya Shankar

iv
Intel Confidential

Part 1: Introduction

R

1 Introduction
Network elements such as switches and routers can be classified into three logical operational
components:

• Control plane

• Forwarding plane

• Management plane

The control plane controls and configures the forwarding plane and the forwarding plane
manipulates the network traffic. The control plane executes different signaling or routing protocols
and provides all the routing information to the forwarding plane.

The forwarding plane makes decisions based on this information and performs operations on
packets such as forwarding, classification, filtering, and so on.

An orthogonal management plane manages the control and forwarding planes. For example, the
control plane in a router executes routing protocols, the forwarding plane performs hardware-
based switching, and the management plane starts or stops routing process, and performs logging.

The introduction of standardized APIs within the above-mentioned planes can help system
vendors, Original Equipment Manufacturers (OEMs), and end-users of these network elements to
mix and match components available from different vendors to achieve a device of their choice.
The Network Processing Forum (NPF) API is designed for this purpose, as it presents a flexible
and well-known programming interface to the control plane applications. It makes the existence of
multiple forwarding planes, as well as vendor-specific details, transparent to control plane
applications.

The hardware properties and nature of interconnect used between the control and the forwarding
planes are isolated. The protocol stacks and network processors available from different vendors
can be easily integrated with the NPF Application Program Interface (API). The APIs included in
the Control Plane Platform Development Kit (CP-PDK) are based on the NPF APIs. For more
information about NPF, refer to http://www.npforum.org/.

1.1 Co-Located Transport Plug-in

The standard CP PDK includes an implementation of the control plane, the forwarding plane, and
a transport plug-in that implements remote communication between the control and forwarding
planes. Details concerning the standard PDK are in [1]. This document describes the design of a
transport plug-in without remote communication capabilities appropriate for PDK co-location.

The co-located PDK differs from the standard PDK as the control and forwarding planes are not
remotely separated but are executed in the same process. This eliminates the need for a specialized
communication component within the transport plug-in component of the PDK. PDK changes for
co-location are isolated to the transport plug-in component. This document focuses on the design
of the co-located PDK transport plug-in.

7
Control Plane-PDK 2.11

http://www.npforum.org/

Co-Located Transport Plugin Design
Design Specification

R
1.2 Terminology

Table 1 lists terms used in this document and provides an expansion for each term.

Table 1. The terminology table

Term Description

CP Control Plane

FP Forwarding Plane

ForCES Forwarding and Control Element Separation protocol

NPF Network Processing Forum

PDK Platform Development Kit

TPI Transport Plug-in

1.3 References

Table 2 lists documents referenced in, or related to, this document.

Table 2. The reference table

Reference Document Name

[1] Software Architecture Overview

[2] Forwarding Plane Plug-in API Reference

[3] Transport Plug-in Design Reference

[4] Conformance Test Framework User’s Guide

8

Intel Confidential

Part 2: Overview

R

2 Overview
The co-located PDK executes all PDK modules, including the control and forwarding planes, in a
single process. Such an arrangement is beneficial to users who do not require control and
forwarding plane separation. Co-location removes a level of complexity associated with remote
communication between the control and forwarding planes.

2.1 Requirements

The co-located TPI must provide the PDK with:

• All the functionality of the standard PDK.

• The same callback behavior as the standard PDK. This implies that external CP API
methods must return immediately before the method callback is invoked.

• Performance in terms of API execution speed and method invocation callbacks, when
compared with remote module. Refer toTransport Plugin Design Reference[3].

2.2 High-Level Functionality Overview

The standard PDK consists of a control plane and one or more forwarding planes. Forwarding
planes reside on and interact with network forwarding devices. The control plane configures and
controls forwarding planes. The standard PDK allows for physical separation of the control and
forwarding planes as shown in Figure 1. In this case, the control plane controls one or more
remote forwarding planes. In the figure, only a single forwarding plane is shown for simplicity.
The transport plug-in abstracts and provides communication functionality between the control and
forwarding planes [3]. To achieve this, components of the Transport plug-in reside on the control
plane and on the forwarding plane.

11
Control Plane-PDK 2.11

intel
What are the parameters

Co-Located Transport Plugin Design
Design Specification

R

Network Forwarding Device

Network PacketsNetwork Packets

Control System

Forwarding Plane

Transport Plugin Component

Transport Plugin Component

Control Plane

Inter-device communication

Figure 1: High-level overview of CP-PDK with remote control and forwarding planes

The co-located PDK executes the control and forwarding planes on the same network device as
shown in Figure 2. The design differs from that of the standard PDK where in the transport plug-in
is reduced to a lightweight version that does not offer any remote communication abstraction or
functionality.

Network Forwarding Device

Co-located PDK

Control Plane

Forwarding Plane
Transport Plugin Network PacketsNetwork Packets

Figure 2: High-level overview of co-located PDK

12

Intel Confidential

R
 Overview

2.3 Design Considerations, Assumptions, and
Dependencies

The design of the co-located TPI was based on a number of considerations. The considerations are
as follows:

1. The current PDK user experience includes an immediate return when a CP API method is
invoked. PDK makes a callback into the calling application, returning any data requested
by the API method. The co-located design preserves this behavior using message queues
and threads.

2. The co-located design provides a level of thread separation between the CP and FP. This
is implemented using two inter-thread message queues in the TPI and two servicing
threads that service the queues. Using this model, any call made from the CP into the FP
returns immediately. A TPI thread relays the message to the FP in a TPI local thread. In
the same way, calls made from the FP to the CP are mediated by another TPI local
thread.

3. The memory management model of the standard PDK is retained in the co-located TPI.
In this model, the calling method frees its own memory. The called method is responsible
for copying any memory it may require into its own memory space. To preserve this
memory management model, the co-located TPI acts as a memory boundary. CP memory
does not penetrate the FP and vice versa. The TPI copies data passing through it to ensure
this behavior.

The TPI must be designed to absorb all necessary PDK changes to prevent, or at least minimize,
changes to other PDK modules.

13

PDK 2.11 Control Plane-

Part 3: Co-located PDK Design

R

3 Co-located PDK Design
A requirement of the co-located TPI design is to impart minimal impact on other PDK modules.
To achieve this, all of the new co-location functionality is implemented through the new
lightweight transport plug-in. The new TPI replaces the TPI of the standard PDK. In addition, the
PDK build process is changed for co-location and a minimal amount of non-TPI source code files
are slightly altered as described in the following sections.

3.1 High-level Overview

Since the designs of the control and forwarding planes remain unaltered between the standard
PDK and the co-located PDK, we will not discuss their component architecture in this document.
Their description can be found in [1]. A high-level view of the co-located TPI components is
shown in Figure 3.

Forwarding Plane

Control Plane

Transport
Plugin

Data
Packager

CP Memory
Copier

FP Relay
Engine

CP Relay
Engine

FP Memory
Copier

Figure 3: TPI component level diagram

The existing memory management model of the standard PDK is kept in the co-located design.
The CP memory copier component copies data passed from the CP to the FP into TPI local
memory. The FP memory copier component copies data passed from the FP to the CP into TPI
local memory. The data packager component bundles data and API parameters from the CP into
the types expected by the FP for each API. The FP relay engine invokes the appropriate method
within the FP, passing all parameters stored in TPI memory. The CP relay engine invokes the
appropriate method within the CP, passing all parameters stored in TPI memory. In each direction,
calls include original methods and callback methods.

17
Control Plane-PDK 2.11

Co-Located Transport Plugin Design
Design Specification

R
3.2 External API

The external API of the TPI in the co-located design is identical to the forwarding plane plug-in
API and backend API of the transport plug-in in the standard PDK [2].

3.3 Implementation Details

This section describes the build procedure, startup and shutdown process of co-located transport
plug-in.

3.3.1 Build Procedure

The build procedure of the PDK is augmented to accommodate the special needs of the co-located
PDK. A new build variable is added which identifies that the build is either for a co-located PDK
or for the standard PDK. When the build variable is specified to indicate a co-located PDK build,
the following events transpire:

• Specialized code is included to provide independent global lists and other utility instances
for the control plane and forwarding plane.

• Code responsible for remote communication between the control and forwarding planes is
excluded.

• All relevant PDK components are built into a single executable.

3.3.2 Startup

Initialization of the various modules that comprise the PDK takes place upon PDK startup. The
initialization routine of the standard PDK is altered somewhat for the co-located PDK. All of the
changes are isolated to the TPI to eliminate impact on other modules.

The co-located PDK initialization process is shown in Figure 4 with emphasis given to TPI
initialization. The CP registers callback methods with the callback manager component. The TPI
is then initialized before initialization of most other CP-PDK components. During the TPI
initialization process TPI specific objects are created such as lists, inter-thread events, and
synchronization objects.

After TPI initialization, all remaining components of the CP-PDK are initialized. Upon
completion of PDK initialization, the PDK start method is invoked. This method starts the TPI
threads and waits for an inter-thread event from each of the new threads indicating that the new
threads have completed startup and are ready to handle messages. The TPI then invokes the
startup method of the forwarding plane.

The forwarding plane launches its own initialization routines, including spawning any threads
needed for operation and registration of callback methods with the callback manager component.
As part of the startup process, the FP invokes a bind request message to the CP. This message
must be relayed by the TPI to the CP, necessitating complete readiness of the TPI at this point in
the PDK startup process. The CP responds to the bind request with a ind response message to the
FP. If the CP has accepted the FP bind request, the FP reports its capabilities to the CP by sending

18
Intel Confidential

R
 Co-located PDK Design

it a capabilities request message. The CP responds with a capabilities response message, indicating
its readiness to accept asynchronous events from the FP.

[1] Register
callbacks

[2] TPI Init

[3] Init other CP
components

[4] TPI startup

[5] FP startup

[6] Register
callbacks

[7] Init FP
components

[8] Bind Request

[9] Bind Reply

[10] Capability
Request

[11] Capability
Reply

[12] PDK fully
started

Forwarding
Plane

Control
Plane

Transport
Plugin

Figure 4: Co-located PDK initialization and startup sequence

3.3.3 Shutdown

The co-located PDK shutdown procedure is shown in Figure 5.

4. The CP deregisters callbacks with the TPI.

5. The CP then sends an unbind request event to the FP.

6. The FP then deregisters callbacks with the TPI and shuts down its internal components.

7. The CP shuts down its internal components before invoking the TPI shutdown method.

8. The CP frees all remaining resources and exits.

 19

Control Plane-PDK 2.11

Co-Located Transport Plugin Design
Design Specification

20
Intel Confidential

[1] Deregister
callbacks

[2] FP
Unbind Event

[5] Deinit CP
components

[6] TPI shutdown

Forwarding
Plane

Control
Plane

Transport
Plugin

[3] Deregister
callbacks

[4] Shutdown FP
components

[7] CP shutdown

R

Figure 5: Co-located PDK shutdown sequence

3.3.4 Major Data Structures

A new data structure is introduced in the co-located PDK to equip the message queue service
threads with the ability to service the message queues in a thread-safe manner. The data structure
contains the following elements:

• A synchronization object to protect all structure elements

• A message queue

• A thread handle variable so that the master thread can terminate the servicing threads in
emergency situations

• An inter-thread signaling object/event to alert the servicing thread when a message has
been placed in the message queue

• An inter-thread signaling object/event to alert the control plane when the service thread is
up and running during startup

• A return value to relay the last return code from the service thread before it exits
typedef struct tag_QUEUE_SERVICE_PARAMS

{

 DList msgQueue;

 PilCriticalSection queSyncObj;

 PilThread thrdHandle;

 PilEvent newMsgNotifier;

 PilEvent thrdUpNotifier;

 FPPI_RET retVal;

R
 Co-located PDK Design

} QUEUE_SERVICE_PARAMS, * LPQUEUE_SERVICE_PARAMS;

A pair of these data structures is started by the main application thread. Each of the two TPI
message-servicing threads is passed a pointer to one of the data structures.

Another new data structure for the co-located PDK TPI is a message structure. This structure is
used as the format of all messages passed between the CP and FP through the TPI. The structure
contains the following elements:

• A coarse grain event type used by the TPI to identify the message as one of the following:

• Message to FP

• Event to CP

• Response to CP

• Shutdown event

• A callback type ID used by CP and FP on which to base further action.

• A forwarding element ID to identify the specific FE in case there is more than one.

• A unique ID used to correlate callbacks with the original corresponding methods.

• A pointer to the PDK data being passed between the CP and FP.
typedef struct tag_DRS_GENERAL_EVENT_MSG

{

 uint32_t evType;

 NPF_CBCAT cbtype;

 FPPI_FEID feid;

 void* correlator;

 void* outObj;

} DRS_GENERAL_EVENT_MSG, * LPDRS_GENERAL_EVENT_MSG;

3.3.5 Threading

The TPI provides a level of isolation between the CP and the FP to provide inter-plane thread
separation. The isolation is implemented using two inter-thread message queues and two message
service threads. The message queues are the means through which threads communicate with each
other. For each queue, there is a message service thread that waits for messages to be inserted into
the corresponding mailbox. This interaction is illustrated in Figure 6 and Figure 7.

For method invocations originating in the CP, the CP inserts FP-bound messages into the FP
queue in a CP controlled thread as shown in Figure 7. The FP queue service thread blocks while
waiting for incoming messages. When a message arrives, it wakes up and responds by calling into
the FP. When the FP makes the TPI registered callback, a CP-bound message is placed into the CP
queue. The CP queue service thread blocks while waiting for incoming messages. When a
message arrives, it wakes up and responds by invoking the CP registered callback.

 21

Control Plane-PDK 2.11

Co-Located Transport Plugin Design
Design Specification

[1] FPPAPI
method call

22
Intel Confidential

Forwarding
Plane

Control
Plane

Transport
Plugin

[2] Push msg
into FP queue
and return

CP thread

[3] TPI
service thread

for FP

[4] FP callback
method

TPI thread A
[5] callback

to CP

[6] Push msg
into CP queue
and return

[7] TPI
service thread

for CP

[8] CP callback
method

TPI thread B

R

Figure 6: Sequence diagram and threading activity for calls originating in the CP

For method invocations originating in the FP, the FP inserts CP-bound messages into the CP
queue in a FP controlled thread. The CP queue service thread wakes up and responds by calling
into the CP. When the CP makes the TPI registered callback, an FP-bound message is placed into
the FP queue. The FP queue service thread wakes up and responds by invoking the FP registered
callback.

[1] BENDAPI
method call

Forwarding
Plane

Control
Plane

Transport
Plugin

[2] Push msg
into CP queue
and return

CP thread

[3] TPI
service thread

for CP
[4] CP callback

method

TPI thread A

[5] callback
to FP

[6] Push msg
into FP queue
and return

[7] TPI
service thread

for FP

[8] FP callback
method

TPI thread B

Figure 7: Sequence diagram and threading activity for calls originating in the FP

The queues are implemented as linked lists of pointers to dynamically allocated data structures.
The data structures contain all the necessary message data.

R
 Co-located PDK Design

3.3.6 Synchronization (reentrancy)

The new structures defined in the Overview section [2] of this document contain a thread
synchronization object to protect all the elements of the structure, including the message queue.
The structure also contains an inter-thread signaling object that other threads use to signal when a
message has been inserted into the message queue.

The message servicing threads each wait on the corresponding inter-thread signaling object. When
the object is signaled the thread wakes up and enters the following cycle:

1. Lock the synchronization object

2. Pop one message from the queue

3. Unlock the synchronization object

4. Execute a code path based on the message type, which includes a callback into the CP or
FP.

The above cycle is repeated until all messages have been popped from the queue. When the queue
is empty the thread again enters the wait state for the synchronization object to become signaled.

It is important that the synchronization object is unlocked before the message is acted upon in case
the specified action involves locking the same synchronization object.

The inter-thread signaling object is created with an automatic reset feature. This allows other
threads to signal the object when the servicing thread is not waiting on it. The signal will not be
lost before the servicing thread enters the wait cycle again. At that time, it will immediately wake
up again and repeat the cycle listed above.

3.3.7 Memory Policy

The memory management model of the standard PDK [1] has been retained in the co-located
design. In this memory management model, the caller frees memory. If data is to be accessed by
the called method at any time after the method returns, the called method must copy the data into
local memory before the method returns.

When the CP invokes TPI methods, the TPI copies all data from CP memory into local TPI
memory before returning. The FP queue service thread invokes the appropriate FP callback
method, passing in TPI resident data. Before the FP callback method returns, it copies all
necessary data into FP memory. When the method returns, the TPI frees its own memory. This
same procedure is mirrored when the FP invokes TPI methods.

3.3.8 Common PDK Objects

Due to the single execution environment of the co-located PDK, implementation details of the
global callback lists and common component initialization are altered from their implementation
in the standard PDK. The callback list is re-implemented as a list of lists. The forwarding plane
instantiates a callback list and the control plane instantiates its own callback list. Each is contained
as elements in the global list of callback lists. A compiler symbol, defined in component make
files, is used to differentiate between the CP and FP lists during compilation and subsequent
runtime callback list method invocation.

 23

Control Plane-PDK 2.11

Co-Located Transport Plugin Design
Design Specification

R
Initialization of the platform independence layer and the logging utility are each made in the FP
and the CP in the standard PDK. In the co-located PDK, initialization of these two components is
suppressed in the FP.

24
Intel Confidential

Part 4: Use Case

R

4 Use Case
A use case of the co-located PDK is described in this section with focus given to the TPI. The use
case consists of the user adding a classifier, a queue, and a scheduler to the forwarding element. A
sequence diagram illustrating the use case is shown in Figure 20. The dotted return arrows imply
boundaries between threads by indicating where threads return. For example, after the CP thread
calls into the TPI, eventually placing the AddClassifier message into the TPI CP queue, a TPI
event is fired and the CP thread returns.

Control
Plane

TPI - CP
Interface

TPI - Insert
into FP
Queue

TPI - FP
Queue

svc thread

Forwarding
Plane

TPI - Data
Copy

TPI - FP
Interface

TPI - Data
Copy

TPI - Insert
into CP
Queue

TPI - CP
Queue

svc thread

TPI internal components

AddQ

AddQ callback

AddSched
AddSched

AddSched

return
event

AddQ
AddQ

AddQ

return
event

return

AddSched

return

AddQ CB

event
return

AddSched
CB

event
return

AddClfr

AddClfr callback

return

AddClfr
AddClfr

AddClfr

return
event

AddClfr
CB

event return

Figure 20: Sequence diagram showing addition of a classifier, a queue and a scheduler

Note the asynchronous behavior of method invocations into the FP. The forwarding plane copies
method parameter data then returns. The FP then internally executes the requested operation in its

27
Control Plane-PDK 2.11

Co-Located Transport Plugin Design
Design Specification

 R
own thread and makes the appropriate callback into the TPI when completed. For example, after
the TPI FP queue service thread calls the FP AddScheduler method, the FP method returns after
the data copy. The FP adds the scheduler to the appropriate data plane components then calls the
TPI callback method.

28
Intel Confidential

	Introduction
	Co-Located Transport Plug-in
	Terminology
	References

	Overview
	Requirements
	High-Level Functionality Overview
	Design Considerations, Assumptions, and Dependencies

	Co-located PDK Design
	High-level Overview
	External API
	Implementation Details
	Build Procedure
	Startup
	Shutdown
	Major Data Structures
	Threading
	Synchronization (reentrancy)
	Memory Policy
	Common PDK Objects

	Use Case

