

Configuration and Management
Design Specification
Control Plane-Platform Development Kit 2.11

March 2004

R

ii Intel Confidential

Information in this document is provided in connection with Intel® products and services. No license, express or
implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in
Intel's Terms and Conditions of Sale for such products and services, Intel assumes no liability whatsoever, and Intel
disclaims any express or implied warranty, relating to sale and/or use of Intel® products and services including liability
or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or
other intellectual property right. Intel products and services are not intended for use in medical, life saving, or life
sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Copyright© 2004 Intel Corporation.

* Other brands and names are the property of their respective owners.

R

Contents
Configuration and Management.. i

Contents.. iii

Part 1: Overview .. 5

1 Overview.. 7
1.1 Purpose... 7
1.2 Scope .. 7
1.3 Configuration and&Management Component Overview 8
1.4 Assumptions .. 8
1.5 Dependencies... 9
1.6 Terminology.. 9
1.7 References.. 9

Part 2: Configuration and Management API Design... 11

2 Configuration and Management API Design .. 13
2.1 Object Lists .. 13
2.2 Initialization .. 16
2.3 Shutdown.. 16
2.4 API Calls ... 16

2.4.1 Synchronous APIs... 17
2.4.2 Asynchronous APIs... 17
2.4.3 Snapshot Get and Individual Set... 20

2.5 Asynchronous API Completion Callback... 20
2.5.1 General GET/SET Algorithm... 20
2.5.2 Shutdown Algorithm.. 21

2.6 Event Notification Callback... 22
2.7 Helper Functions.. 23

Part 3: Runtime Interactions .. 25

3 Runtime Interactions .. 27

Part 4: Memory Allocation and Locking .. 31

4 Memory Allocation and Locking.. 33
4.1 Memory Allocation ... 33
4.2 Locks... 33

Part 5: Pseudo Code ... 35

5 Pseudo Code... 37

iii
Control Plane PDK 2.11

R

5.1 Initialization .. 37
5.2 Shutdown.. 37
5.3 Registration & Deregistration ... 37
5.4 Asynchronous API Calls ... 38
5.5 API Callbacks ... 39

Revision History
Revision Description Date Author

2.11 Updated for release 2.11 March 2004 Shailesh Suman

2.1 Updated for release 2.1 December 2003 Shailesh Suman

2.0 Updated for Release 2.0 August 2003 Shailesh Suman

iv
Intel Confidential

Part 1: Overview

R

1 Overview
Network elements such as switches and routers can be classified into three logical operational
components:

• Control plane

• Forwarding plane

• Management plane

The control plane controls and configures the forwarding plane and the forwarding plane
manipulates the network traffic. The control plane executes different signaling or routing protocols
and provides all the routing information to the forwarding plane.

The forwarding plane makes decisions based on this information and performs operations on
packets such as forwarding, classification, filtering, and so on.

An orthogonal management plane manages the control and forwarding planes. For example, the
control plane in a router executes routing protocols, the forwarding plane performs hardware-
based switching, and the management plane starts or stops routing process, and performs logging.

The introduction of standardized APIs within the above-mentioned planes can help system
vendors, Original Equipment Manufacturer (OEM), and end users of these network elements to
mix and match components available from different vendors to achieve a device of their choice.
The Network Processing Forum (NPF) API is designed for this purpose, as it presents a flexible
and well-known programming interface to the control plane applications. It makes the existence of
multiple forwarding planes, as well as vendor-specific details, transparent to control plane
applications.

The hardware properties and nature of interconnect used between the control and the forwarding
planes are isolated. Thus, the protocol stacks and network processors available from different
vendors can be easily integrated with the NPF APIs. The APIs included in the Control Plane
Platform Development Kit (CP-PDK) are based on the NPF APIs. For more information about
NPF, refer to http://www.npforum.org/.

1.1 Purpose

This document specifies the internal design of the configuration and management (C&M)
component of the CP-PDK. This includes the description and design of the main internal data
structures as well as algorithms used within the component.

1.2 Scope

This document describes the design of the C&M component. It does not address the individual
C&M APIs implemented by this component. For API definitions refer to C&M API Reference [2].
The intended audience for this document is developers implementing and/or maintaining the C&M
component, or test engineers who are performing Quality Analysis (QA) on the C&M component.

7
Control Plane-PDK 2.11

http://www.npforum.org/

Configuration and Management Design
Design Specification

R
1.3 Configuration and&Management Component

Overview

The C&M module is split into two logical sub-components, the C&M API implementation module
and the callback and event module. The implementation module is the code that implements the
C&M APIs. This sub-component is responsible for validating input, constructing the necessary
object, and invoking the FP plug-in API to send requests to the forwarding planes. The callback &
event module is responsible for implementing the callback functions invoked by the forwarding
plane (FP) plug-in. It modifies the system data and invokes the user program’s callback to return
the response data. These two modules are usually running in the different contexts, so they are
split into two different sub-components. Both modules are discussed in more detail in the
following sections.

Figure 1 shows the configuration and management sub-components.

C&M API Implementation
Module

C&M Callback & Event
Module

FP Plugin

C&M
Global
Data

USER PROGRAM

NPF A
PIs Callbacks

Figure 1: Configuration and management sub-components

1.4 Assumptions

The following assumptions have been made to simplify the design. Some assumptions are made to
simplify the design:

• The APIs assumes the existence of a compliant namespace present on the system. This
namespace provides handles for applications and components to access objects.

• The PDK must handle the packet flows to traverse over multiple blades inside a single ON
router. The application running on top of the APIs is hidden from the fact of multiple
forwarding planes.

Refer to the API Framework Reference [6] for details of the callback mechanisms and parameters.

8

Intel Confidential

R
 Overview

1.5 Dependencies

The C&M component depends on the FP plug-in component for contacting the forwarding
element (FE). In addition, the C&M component must also make use of several other components.
Table 1 lists various components used by C&M component

Table 1. Component dependency table

Terms Expansion

Callback Library A central PDK callback library is provided to all the internal components for register, deregister and
retrieve callback functions. The external user programs should not use this, but should go through the
existing PDK APIs for registering/deregistering.

Double-Link List (DList) DList is the double-link list designed in C. It provides multiple thread safety operations to manipulate the
list.

Platform Independence
Layer (PIL)

In reusing software components for different applications, writing the modules in a high level language
is not sufficient for easy re-use. Differences in the operating system on the platform and the compilers
can make porting difficult. The PDK uses PIL to minimize compiler exceptions and provide an operating
system independent API, greatly reducing the porting effort.

1.6 Terminology

Table 2 lists terms used in this document and provides an expansion for each term.

Table 2. Terminology table

Terms Expansion

CE Control Element

FE Forwarding Element

IXA Internet eXchange Architecture

NPF Network Processing Forum

PDK Platform Development Kit

ATM Asynchronous Transfer Mode

MTU Maximum Transmission Unit

1.7 References

Table 3 lists documents referenced in, or related to, this document.

Table 3. Reference table

 9

Control Plane-PDK 2.11

Configuration and Management Design
Design Specification

 R
Terms Expansion

[1] Software Architecture Overview

[2] Configuration and Management API Reference

[3] Forwarding Plane plug-in API Reference

[4] Platform Namespace Design Reference

[5] Platform Independence Layer API Reference

[6] API Framework Reference

10

Intel Confidential

Part 2: Configuration and
Management API Design

intel
Are the terms API and component being used interchangeably?
If yes, pick one and stick with it throughout.
If no, define where each is used.

R

2 Configuration and Management API Design

2.1 Object Lists

The configuration and management (C&M) module maintains several objects lists inside the
C&M scope, such as, system, virtual router, FE, port and interface. These object lists can only be
accessed by C&M. The other internal components or external user programs cannot directly access
the data, as they always operate the data through the NPF object handle. The object handle is
stored in the namespace component, and other components should request the object handle first
before operating on the object via C&M. Each object data structure contains an NPF_HANDLE
field to identify itself. C&M searches the object list to match the object handle and retrieve the
object data to do perform the operation.

The object data structures that follow are not the ones returned to the user program when it makes
a GET properties call. Instead of the original object data structure, C&M returns the subset of the
original data structure that does not contain the internal information, for example, the reference
count and related handles.

NPF_DATATYPE
typedef enum { NPF_SYSTEM,
 NPF_IP_ROUTER,

 NPF_ATM_VIRTUAL_DEVICE,
 NPF_FE,
 NPF_PORT,

 NPF_ATM_LINK,
 NPF_INTERFACE } NPF_DATATYPE;

PDK_SYSTEM
Definition: typedef struct pdk_system_tag {
 NPF_DATATYPE type;
 NPF_HANDLE handle;
 char name[128];
 char desc[256];
 int num_FEs;
 int refcount;
} PDK_SYSTEM_t

PDK_IP_ROUTER
Definition: typedef struct pdk_ip_router_tag {
 NPF_DATATYPE type;
 NPF_HANDLE handle;
 char name[128];
 char desc[256];
 int refcount;
} PDK_IP_ROUTER_t

PDK_ATM_VIRTUAL_DEVICE
Definition: typedef struct pdk_atm_virtual_device_tag {
 NPF_DATATYPE type;
 NPF_HANDLE handle;
 char name[128];
 char desc[256];

13
Control Plane-PDK 2.11

intel
Are the terms API and component being used interchangeably?
If yes, pick one and stick with it throughout.
If no, define where each is used.

intel
Please write some content before this heading.

intel
This paragraph doesn't explain clearly what the following data structures are. They do however, explain what they are not. Can we clarify? What is GET??

Configuration and Management Design
Design Specification

R
 int refcount;
} PDK_ATM_VIRTUAL_DEVICE_t

PDK_FE
Definition: typedef struct pdk_fe_tag {
 NPF_DATATYPE type;
 NPF_HANDLE handle;
 char desc[256];
 char name[128];
 time_t stamp;
 uint32_t id;
 int num_ports;
 int status;
 HWADDR hwaddr;
 IPADDR ipaddr;
 int refcount;
} PDK_FE_t

PDK_INTERFACE
Definition: typedef struct pdk_interface_tag {
 NPF_DATATYPE type;
 NPF_HANDLE handle;
 char desc[256];
 char name[128];
 int status;
 IPADDR ipaddr;
 int refcount;
} PDK_INTERFACE_t

PDK_PORT
Definition: typedef struct pdk_port_tag {
 NPF_DATATYPE type;
 NPF_HANDLE handle;
 NPF_HANDLE fehandle;
 NPF_HANDLE ifhandle;
 uint32_t id;
 time_t stamp;
 int edge;
 DList peerList;
 int status;
 HWADDR hwaddr;
 int refcount;
} PDK_PORT_t

PDK_ATM_LINK
Definition: typedef struct pdk_atm_link_tag {
 NPF_DATATYPE type;
 NPF_HANDLE handle;
 char desc[256];
 char name[128];
 int status;
 int refcount;
} PDK_ATM_LINK_t

As described previously, C&M also defines an additional external object data structure that
contains only a subset of the original data structure. For simplification, just rename the PDK to
NPF, and remove the fields in the structure that are not in bold font. For example, the external
object data structure for PDK_FE would be as follows:

14

Intel Confidential

R
 Configuration and Management API Design

NPF_FE
Definition: typedef struct npf_fe_tag {
 char desc[256];
 char name[128];
 time_t stamp;
 uint32_t id;
 int num_ports;
 int status;
 HWADDR hwaddr;
 IPADDR ipaddr;
} NPF_FE_t

The external data structures are listed in the configuration and management API Reference.

The C&M also provides internal APIs to the namespace component to create and destroy the
object in the object list.

cm_newDataByType

Signature: int cm_newDataByType (NPF_DATATYPE, NPF_HANDLE *)

Description: Create a memory space for such data type and assign the default value

Parameters In: NPF_DATATYPE

Parameters Out: The pointer to the C&M-generated NPF data handle.

Return Values: NPF_SUCCESS, NPF_OUT_OF_MEMORY or
NPF_INVALID_PARAMETERS

cm_delDataByHandle

Signature: int cm_delDataByHandle (NPF_HANDLE)

Description: Free the memory space pointed to by the object handle.

Parameters In: NPF object handle

Parameters Out: None

Return Values: NPF_SUCCESS or NPF_INVALID_PARAMETERS

cm_getFEHandleById

Signature: int cm_getFEHandleById (uint32_t, NPF_HANDLE *)

Description: Get FE data handle from the FE Id.

Parameters In: FE Id

Parameters Out: NPF object handle

Return Values: NPF_SUCCESS or NPF_INVALID_PARAMETERS

 15

Control Plane-PDK 2.11

Configuration and Management Design
Design Specification

R

2.2 Initialization

C&M initialization should be called before all the other internal components, except B&D and
forwarding plane plug-in, that are interested in event notification or API callbacks in order to
provide registration service.

In the initialization, C&M must initialize all object lists, register the FP plug-in callback service,
and initialize the list of registered FP plug-in callback handles.

Before all lists are initialized, C&M must register the callback service from the FP plug-in for all
the NPF APIs. For simplification, we use the enumerator of the FP plug-in supported callback type
(such as FPPI_L3SetProperties) as the C&M context to register the FP plug-in callback service.
The FP plug-in then returns the callback handle for each registration. C&M must store it in a list
so that when the corresponding API is called from the user program, C&M can locate the correct
FP plug-in callback handle by matching the type of the API call. The structure is as follows:
typedef struct cmRegFppCBId_tag {

 FPPI_CBTYPE fppapi; /* Enum for all the FPPI supported
CBTYPE */

 NPF_CBHANDLE fppcbid; /* Callback handle assigned by FP
plug-in */

} CMREGFPPCBID_t;

2.3 Shutdown

With initialization, the C&M shutdown must be called after all the internal components have
deregistered the C&M callback service. The C&M shutdown must walk through the
CMREGFPPCBID_t list to deregister all FP plug-in callback services by passing the FP plug-in
callback handle to the FP plug-in deregister call. C&M must then destroy the CMREGFPPCBID_t
list, as well as every object list.

In the PDK shutdown process, the PDK manager should invoke the C&M All FE Shutdown API
first, and then within the success callback, the PDK Manager must shut down each component in
the proper order. So, when C&M shutdown occurs there should be no FE/Port/Interface objects in
the object list.

2.4 API Calls

The C&M APIs are split into two different sections, one synchronous and the other asynchronous.
In the former case synchronous section, the API gets the result immediately without blocking. In
the asynchronous section, though the API still returns immediately without blocking, it does not
get the result right away. The result is called back some time later by the C&M implementation.
The reason for asynchronous calls is that some APIs must communicate with forwarding planes
(which may be connected through the wire), and they need time for the control plane to
communicate with the forwarding plane and return the result.

We can define the PDK internal data can be defined into four different categories:

16

Intel Confidential

R
 Configuration and Management API Design

1. The data collected from FEs/ports/interfaces that cannot be changed, such as, number of
interfaces.

2. The data collected from FEs/ports/interfaces that can be changed, such as, Maximum
Transmission Unit (MTU) and IP address.

3. The data that is changed dynamically, such, as port statistics.

4. The data that is created by the application, such, as routing entry).

Since types 1 and 2 do not change as frequently as types 3 and 4, and they are under the control of
the PDK in general as well as the user application, the PDK can cache the data of type 1 and 2 in
the C&M. Whenever a user application makes a GET request, the C&M then returns the cached
data immediately without any callback, so those APIs are synchronous calls.

For the SET request of types 2, 3, and 4, it is necessary for C&M to make the change or query the
current snapshot in the forwarding plane, so those APIs are asynchronous calls.

2.4.1 Synchronous APIs

The GET request of types 1 and 2, as well as the callback register, deregister and C&M
initialization/shutdown calls are all synchronous calls. The examples are Get FE properties, get
interface properties, and Get port properties. When C&M gets these API calls, except
register/deregister service and C&M initialization/shutdown, it first validates the input parameters
and then searches for the correct information in the cached data. C&M always makes a copy of the
cached data for the user program. The user program must pass in the pointer to its data structure
when making these API calls. It does not return the pointer of the cached data to the user program
directly. By doing this we avoid the user program destroying the internal PDK cached data.

2.4.2 Asynchronous APIs

As describe previously, the SET request of types 2, 3, and 4 are asynchronous calls. Most C&M
APIs fall into this category.

2.4.2.1 Callback Registration

A user program must register the callback service for each category in which it is interested, such
as, event notification or FE, IP, ICMP or interface management. It is necessary for C&M to keep
track of the registered callback subject. In the implementation there is a central callback service
table for looking up the correct callback functions. The table is constructed as an array of link lists.
The size of the array is fixed to a pre-defined maximum length and the length of each link list can
vary. Whenever a new user application registers a callback service, a new list element is added to
the correct row in the table, and a list element is removed at de-register time. The callback table is
organized by category.

Figure 2: Callback table illustrates the callback table, and descriptions of the structures follow the
figure.

 17

Control Plane-PDK 2.11

Configuration and Management Design
Design Specification

R

CB_t

CB_t

CB_t CB_t . . .

. . .

. . .

. .
 .

. .
 .

FE Mgmt Category

IP Mgmt Category

IF Mgmt Category

. . .

ICMP Mgmt
Category

CB_t

CB_t

CB_t CB_t . . .

. . .

. . .

. .
 .

. .
 .

FE Event
Category

IP Event Category

IF Event Category

. . .

ARP Event
Category

CB_t

CB_t

CB_t CB_t . . .

. . .

. .
 .

. .
 .

ATM Link Mgmt
Category

ATM OAM Mgmt
Category

ATM Connection
Mgmt Category

. . .

CB_t

CB_t

CB_t CB_t . . .

. . .

. .
 .

. .
 .

ATM Link Event
Category

ATM OAM Event
Category

ATM Connection
Event Category

. . .

Figure 2: Callback table
typedef struct CB_tag {
 NPF_CBHANDLE cbid;
 NPF_USERCONTEXT context;
 NPF_CM_CBCAT category;
 NPF_GENERAL_CBFUNC func;
} CB_t;

typedef enum { NPF_CAT_FE = 0,
 NPF_CAT_IF,
 NPF_CAT_IP,
 NPF_CAT_ICMP,
 NPF_CAT_IPv4,

 NPF_CAT_ATM_LINK,

 NPF_CAT_ATM_CONN,

 NPF_CAT_OAM,
 NPF_EVT_FE } NPF_CM_CBCAT;

Whenever the user program registers a category or event notification callback, a new CB_t is
appended at to the corresponding row in the category callback table. The CB_t structure contains
the user-provided context, user-provided callback function, and the unique C&M-assigned
callback handle. C&M keeps a global handle index number, which always increases by one
whenever a new registration occurs.

18

Intel Confidential

R
 Configuration and Management API Design
2.4.2.2 Internal Callback Registration

External user programs need to register the asynchronous API or event service. Some of the
internal components may be also interested in some services. For example, all internal components
should register the FE unbind event, and binding and & discovery components should must be
interested in setting some properties in FE category.

Whenever the callback happens, internal components should be notified first, in a well-defined
order, and then the user program should be notified. Most of the internal components do perform
the service registration at PDK initialization time, and deregistration at PDK shutdown time.
Because Since the callback is in first-in-first-served order and starts from the internal components,
the internal component callback is invoked prior to the user program callback.

For this reason, the central callback service provides two tables: one for the external user program
and another for internal components. There is an internal category register/deregister API only for
internal components. If the internal components want to register the service in runtime after PDK
initialization has been called, the internal registration calls insert the CB_t into the internal
callback table.

2.4.2.3 Asynchronous API Calls

There is no top-down NPF API for events except the register and deregister. For the normal NPF
asynchronous API calls, the user program must use the unique PDK callback handle. This handle
along with the NPF object handle, user correlator, verbosity, and request user data to make the
subsequent API calls in the same category. After C&M receives the NPF API calls, it first
validates the input arguments, such as callback handle and NPF object handle, and then searches
the corresponding FP plug-in callback handle in the FP plug-in registration list.
CMREGFPPCBID_t, which stands for C&M registered FP plug-in callback ID list and is
constructed at C&M initialization time, based on the type of the API call. C&M then dynamically
allocates a C&M correlator, which contains the following information:
typedef struct cmCorrelator_tag {
 NPF_HANDLE handle; /* Handle to NPF Object */
 NPF_CBHANDLE cbid; /* Handle to callback category
*/
 NPF_CORRELATOR correlator; /* User provided correlator */
 NPF_VERBOSITY verbosity; /* User provided verbosity */
 NPF_DATA data; /* User provided request data
*/
} *CMCORRELATOR_t;

As with synchronous calls, the PDK always makes a copy of the data whenever it needs to
communicate with the user program. In this case, the PDK must dynamically construct data and
copy the user program requested data to this internal memory space, putting its pointer into the
CMCORRELATOR_t data structure shown previously.

C&M can call the corresponding FP plug-in API along with the FP plug-in callback handle,
random C&M context, and newly constructed CMCORRELATOR_t. All the FP plug-in APIs are
asynchronous calls, so they return immediately based on the result of the FP plug-in APIs.

Note: The internal data, user program pass-in arguments, and CMCORRELATOR_t, do not
explicitly store globally in the C&M. They simply dynamically allocate and pass the pointer into
the FP plug-in APIs as a correlator without keeping a variable in C&M. C&M can retrieve those
hidden memory spaces after the FP plug-in calls back and needs to delete the dynamically
allocated memory before it returns to the user program. By doing this, C&M does not need to keep

 19

Control Plane-PDK 2.11

Configuration and Management Design
Design Specification

R

track of the current pending API calls, simplifying the complexity. The following section provides
further detail.

2.4.3 Snapshot Get and Individual Set

For reducing the size of the APIs, C&M uses only one call for GET and multiple calls for SET.
For example, in the interface part there is only one Get interface properties instead of multiple
calls such as Get MTU and Get SPEED. All the interface information is constructed in an interface
structure and passed back to the user program. There are multiple APIs for Set MTU, Set SPEED,
and Set Promiscuous.

Another reason to do this is that the user program may want to get the snapshot of the current
statistics or properties information instead of getting properties one by one, but want to assign
only one value at a time.

2.5 Asynchronous API Completion Callback

After the user program makes asynchronous API calls, the commands are sent to the forwarding
plane and a response later returns to the FP plug-in in the control plane. The FP plug-in then calls
back. The callback is executed in the separate FE receiving thread, which might be different from
the original thread that made the request. There is a need to put the callback tables and object lists
into C&M global data and them with a lock.

2.5.1 General GET/SET Algorithm

The general callback algorithm for a GET or SET API is listed as follows, starting with the FP
plug-in:

1. The FP plug-in invokes the callback function provided by C&M, registered at C&M
initialization time. The function parameter contains FE ID, CMCONTEXT,
CMCORRELATOR, and response data.

2. In the callback functions, C&M first validates the CMCONTEXT and
CMCORRELATOR. Since we use the FP plug-in supported callback type enumerator
as the C&M context is used, it is easy to validate by simply comparing the value.

3. If the validation passes, then C&M may need to copy the data in the C&M correlator
into the correct data object. For example, if the request was SET Port IP Address,
C&M needs to wait for the success message from the FP plug-in to assign the IP
address value into the system data before making the FP plug-in API calls. C&M
already dynamically allocated a data space in the C&M correlator and copied in the
user-requested IP address. When it calls back, C&M must copy the value of the data
in the correlator into the real memory location of the Port’s IP address, since it was
already allocated at the time the port object was created.

4. C&M can now search the category callback table by matching the callback ID stored
in the C&M correlator, locating the correct user program callback function, and
passing in the user context, user correlator, user verbosity, NPF object handle, and

20

Intel Confidential

R
 Configuration and Management API Design

the response data. The order of the callback functions is more complicated if related
events must be triggered.

5. Before exiting the C&M callback function, it is important to free the C&M correlator
and data inside the C&M correlator that was dynamically allocated before C&M
makes the FP plug-in calls.

Note There is no verbosity level between C&M and the FP plug-in. The FP plug-in always calls
back the response whether successful or not. That means the verbosity level is always ACK. By
doing this, C&M does not miss any dynamically allocated C&M correlator and data and, avoiding
avoids potential memory leaks.

Note The response data is dynamically created by the FP plug-in and passed into the callback
functions to the user program. After all the callbacks return, the FP plug-in then deletes the
response data immediately. It is the responsibility of user program to make a copy of the response
data if it is needed after exiting the callback context.

2.5.1.1 Events after Completing Callbacks

In the control plane and forwarding plane separation design of CP-PDK, the control plane controls
the forwarding plane. Most forwarding plane events should be triggered after a control plane
command. Only a few events originally come from forwarding plane even without any trigger
from control plane. For example, port MTU change events occur after the control plane makes a
SET port MTU command, while forwarding plane-driven events include port up, port down, FE
bind, FE unbind, and ARP change.

In the implementation of a C&M completion callback, it must first call back the internal
components who have already registered the related events, then call back the user program that
made the API call, then the event callback in the user program that registered the related events.

2.5.2 Shutdown Algorithm

This section provides information on the shutdown flow of an FE or port.

2.5.2.1 Single FE/Port Shutdown

Shutting down a single FE or Port is an asynchronous operation. Every component that deals with
the FE or Port object should register for an FE un-bind or Port down event. The completion
callback triggers the FE un-bind or Port down when the FE or Port has been successfully shut
down.

Note There is no FE shutdown event, only FE un-bind event is there. The FE shutdown means the
NPF API call to administratively shut down an FE, not the event.

Some notes for shutdown command has following features:

1. An FE/Port can only be administratively shut down after it is up.

2. Once an FE/Port data instance is created, it is never deleted until the entire PDK is
shut down. FE/Port shutdown only means that the offline flag is set.

3. If all ports in an FE are shut down, it does not automatically shut down the FE.
Shutting down an FE automatically shuts down all the ports that belong to that FE.

 21

Control Plane-PDK 2.11

Configuration and Management Design
Design Specification

R

4. Components wait for an FE un-bind or Port shutdown event to take proper actions,
such as closing all open nodes.

5. The ConfigApp is resposible for FE/Port data persistence, not C&M. Keeping the
FE/Port data persistence is not C&M’s responsibility, but rather ConfigApp. C&M
only does the pure shutdown operation.

The callback procedure for NPF API FE shutdown is as follows:

1. The FP plug-in first calls back all pending operations on the FE with the appropriate
return type and, notifies all components and user programs that the previous pending
operations have failed.

2. In the C&M FE shutdown callback, it first sets the status of the FE and all the Ports
on that FE to offline.

3. After setting the status of FE, it then triggers the Port down event on each port and
triggers the FE Unbind event on internal components.

4. In a Port down or FE un-bind callback, internal components must close all open
nodes on that Port or FE.

5. After completing all the Port down and FE Unbind event callbacks for internal
components one by one to avoid interleaf issues, After finishing all the Port down
and FE Unbind event callbacks for internal components (since they are done one by
one to avoid interleave problems), C&M triggers the Port down callbacks for each
port one by one and then the FE Unbind event to the user program.

6. Finally, C&M calls back to the FE shutdown APIs to finish the shutdown call.

7. The callback procedure for NPF API Port shutdown is similar but easier, since it
does not need to do a two-layer shutdown.

2.5.2.2 Shut Down All FEs

All FE shutdown command shuts down all the FEs at the same time. This is only called at PDK
shutdown time. ConfigApp must maintain persistency before calling this API. This simply makes
a single FE shutdown API call for each FE. Since single FE shutdown is an asynchronous API, the
call returns immediately and at the callback of the single FE shutdown, it must check the current
pending shutdown status. If it indicates that it is the last FE, the callback thread must call back the
All FE shutdown callback to the PDK manager.

Note All FE shutdown is only one step in the PDK shutdown. The PDK manager should shutdown
all the internal components to clean up all the internal data structures after successfully completing
All FE shutdown.

2.6 Event Notification Callback

The situation is much simpler in the event notification case. Whenever an event notification comes
from the FP plug-in along with FE ID, C&M user context, and event data, C&M checks the event
type to locate the correct row in the category callback table, starting from the internal callback
tables. Then C&M goes through each CB_t in the link list of that event category row, invoking all
callback functions inside each CB_t along with the FE handle, user context, event type, and event
data.

22

Intel Confidential

intel
Who is it?? FP Plug-in?

intel
Who is it??

R
 Configuration and Management API Design

Since event callbacks are registered by category, user programs must de-multiplex inside their
callback functions. For example, a port MTU change event triggers the Port event callback, even
though the user program may only be interested in port line speed changes.

2.7 Helper Functions

In addition to the standard NPF API calls, C&M also provides some helper functions only for
C&M itself. External user programs or internal components must not access these helper functions
to keep the integrity of the PDK structures. The helper functions are as follows:

cm_isCBIdPresent
Signature: int cm_isCBIdPresent (NPF_CBHANDLE)

Description: Search the callback table to see if a callback handle exists.

Parameters In: Callback handle.

Parameters Out: None.

Return Values: 0 if it exists, -1 otherwise.

cm_getDataByHandle

Signature: int cm_getDataByHandle (NPF_HANDLE, NPF_DATA *)

Description: Search the object lists to get the internal data pointer by NPF object handle.

Parameters In: NPF object handle.

Parameters Out: Pointer to the internal data mapped to that handle.

Return Values: 0 if successful, otherwise –1.

cm_getFEByFEId

Signature: int cm_getFEByFEId (uint32_t, FE **)

Description: Search the FE list to get the internal FE data pointed to by FE Id.

Parameters In: FE Id, which is assigned by the FP plug-in.

Parameters Out: Pointer to the internal FE data mapped to that FE Id.

Return Values: 0 if successful, otherwise –1.

 23

Control Plane-PDK 2.11

Part 3: Runtime Interactions

R

3 Runtime Interactions
Figure 3: Sequence diagram for synchronous APIs

FP
Plug-in C&M Namespace User

Program

Get NPF
object Handle

Return NPF handle

NPF Sync
Call

Return

Figure 3: Sequence diagram for synchronous APIs

27
Control Plane-PDK 2.11

Configuration and Management Design
Design Specification

28
Intel Confidential

FP
Plug-in C&M Namespace

Return callback id

Register callback
for all the APIs

Register callback for
interested Categories

Return callback id

User
Program

Get NPF
object Handle

Return NPF handle

NPF Async
Call

Return

FP Plug-in
Async Call

Callback to C&M

Callback to
user program

Return

Return

Internal
Components

Sub. Event Callback
to internal Comp.

Return

Sub. Evenv Callback
to user program

Return

Figure 4: Sequence diagram for asynchronous APIs

R

R
 Runtime Interactions

FP
Plug-in C&M Namespace

Return callback id

Register callback
for all the Events

Register callback for
interested Events

Return callback id

User
Program

Event Callback to C&M

Event Callback
to user program

Return

Return

Internal
Components

Event Callback to
Internal Components

Return

Figure 5: Sequence diagram for event notification

 29

Control Plane-PDK 2.11

Part 4: Memory Allocation and
Locking

R

4 Memory Allocation and Locking

4.1 Memory Allocation

The PDK C&M implementation always makes a temporary copy of the user program request data,
and in some APIs, such as, SET APIs, the same data must be passed down to the FP plug-in. After
the callback, C&M copies this data into the system data and if the result is successful, it then
deletes the temporary data.

In another sets of APIs, such as, GET APIs, the response data is created by the FP plug-in and
called back to the user program. After the callback returns, the FP plug-in deletes the response
data immediately. The user program should make a copy of the data if needed.

4.2 Locks

It is important for C&M to protect the global data, such as event and category callback tables and
object lists. C&M has a global component lock and also a default DList lock for each object list.
When C&M traverses the object list or callback tables, or accesses one of the elements in the list,
the default list lock provides mutual exclusive protections implicitly, which is the functionality of
the DList. While a dependency exists between multiple lists, C&M uses the component lock to
ensure multiple thread safety between multiple lists. The locks used in C&M and lists are binary
semaphore.

33
Control Plane-PDK 2.11

Part 5: Pseudo Code

R

5 Pseudo Code
This section describes pseudo code for some key functions in the C&M API. For simplicity, the
pseudo code does not use a lock to protect the global data and does not do some function error
checking, such as, malloc.

5.1 Initialization

NPF_RET cm_init(void) {
 // init all the object list
 npf_list_init(&SYSTEMList, PIL_FreeMemory);
 npf_list_init(&FEList, PIL_FreeMemory);
 npf_list_init(&PortList, PIL_FreeMemory);
 npf_list_init(&InterfaceList, PIL_FreeMemory);
 // init the registered fp plugin callback list
 npf_list_init(&CMRegFppCBIdList, PIL_FreeMemory);
 // register binding & discovery
 bd_register_cb();
 // register all the apis with fp plugin
 for each apis fppapi_register_cb();
 for each registered npf_list_pushBack(&CMRegFppCBIdList,
regfppcbid);
 return NPF_SUCCESS;
}

5.2 Shutdown

NPF_RET cm_destroy(void){
 for each registered cb fppapi_deregister_cb();
 for each deregistered cb
npf_list_popFrontFree(&CMRegFppCBIdList);
 // destroy the registered fp plugin callback list
 npf_list_destroy(&CMRegFppCBIdList);
 // destroy the object list
 npf_list_destroy(&FEList);
 npf_list_destroy(&SYSTEMList);
 npf_list_destroy(&PortList);
 npf_list_destroy(&InterfaceList);
 return NPF_SUCCESS;
}

5.3 Registration & Deregistration

NPF_RET npf_category_register(NPF_CBCAT cat,
 NPF_USERCONTEXT context,
 NPF_GENERAL_CBFUNC func,
 NPF_CBHANDLE *cbid) {
 newCB = (CatCB *)malloc(sizeof(CatCB));
 /* assign the unique callback handle */
 *cbid = CallBackCounter++;
 newCB->cbid = *cbid;

37
Control Plane-PDK 2.11

intel
Before each piece of code, provide one sentence describing what it does as you have done in Section 5.4.

Configuration and Management Design
Design Specification

 R
 newCB->context = context;
 newCB->category = cat;
 newCB->func = func;
 /* push to external callback or internal callback table */
 npf_list_pushBack(&CBList[cat], (void *)newCB);
 return NPF_SUCCESS;
}

NPF_RET npf_category_deregister(NPF_CBHANDLE cbid) {
 /* search the category callback table */
 cm_searchCatCBbyCBId(cbid, matchItr);
 npf_list_itrRemoveFree(matchItr);
 return NPF_SUCCESS;
}

5.4 Asynchronous API Calls

The following is the pseudo code for assigning the port IP address:
NPF_RET npf_ip_set_ipaddr(NPF_HANDLE handle,
 NPF_CBHANDLE cbid,
 NPF_CORRELATOR correlator,
 NPF_VERBOSITY verbosity,
 IPADDR ipaddr) {
 // check if the CB exists, i.e. if registered before
 if (cm_isCBIdExist(cbid) == -1)
 return NPF_INVALID_PARAMETERS;
 // Search Port id from PortList by comparing handle
 // Search fppcbid from CMRegFppCBIdList by comparing client
cookie
 if ((itr = npf_list_itrCreate(&CMRegFppCBIdList)) == NULL)
 return NPF_INVALID_PARAMETERS;
 found = 0;
 npf_list_itrFirst(itr);
 do {
 regfppcbid = (CMREGFPPCBID *)npf_list_itrGetData(itr);
 if ((CMCLIENTCONTEXT)regfppcbid->fppapi ==
CM_CC_IP_SETIPADDR) {
 found = 1;
 break;
 }
 } while (npf_list_itrNext(itr) != -1);
 npf_list_itrDelete(itr);
 if (!found)
 return NPF_INVALID_PARAMETERS;
 // Construct a CM correlator. Note: Should be delete at
onCallBack
 cmcorrelator = (CMCORRELATOR *)malloc(sizeof(CMCORRELATOR));
 cmcorrelator->handle = handle;
 cmcorrelator->cbid = cbid;
 cmcorrelator->correlator = correlator;
 cmcorrelator->verbosity = verbosity;
 newipaddr = (IPADDR *)malloc(sizeof(IPADDR));
 memcpy(newipaddr, &ipaddr, sizeof(IPADDR));
 cmcorrelator->data = newipaddr;
 // call fp plugin
 return fpp_ip_setipaddr(feid, regfppcbid->fppcbid,
cmcorrelator, newipaddr)
}

38
Intel Confidential

R
 Pseudo Code

5.5 API Callbacks

The following is the pseudo code for the callback on setting the port IP address.
void onCB_fe_set_ipaddr(uint32_t feid,
 CMCONTEXT cmcontext,
 CMCORRELATOR cmcorrelator,
 NPF_DATA data) {
 // check if the return context matches
 if ((CMCLIENTCONTEXT)cmcontext != CM_CC_FE_SETIPADDR)
 return;
 /* assign system data */
 if (cm_getDataByHandle(cmcorrelator->handle, &tmpdata) == -1)
 return;
 fe = (FE *)tmpdata;
 /* make a copy here and will delete data later */
 memcpy(&fe->ipaddr, cmcorrelator->data, sizeof(IPADDR));
 /* trigger the sub. internal event callbacks */
 for each related sub. event
 onCB_xxx_internal_event();
 /* search callback func */
 clientCBFunc =
 (NPF_FE_CBFUNC)pdk_callback_func(cmcontext->cbid,
&context);
 // callback to user program
 clientCBFunc(context,
 cmcorrelator->correlator,
 cmcorrelator->verbosity,
 cmcorrelator->handle,
 NPF_FE_SET_IPADDR,
 data);
 /* trigger the sub. external event callback */
 for each related sub. Event
 onCB_xxx_external_event();
 // free the temporary data and c&m correlator
 PIL_FreeMemory(cmcorrelator->data);
 PIL_FreeMemory(cmcorrelator);
 return;
}

 39

Control Plane-PDK 2.11

	Overview
	Purpose
	Scope
	Configuration and&Management Component Overview
	Assumptions
	Dependencies
	Terminology
	References

	Configuration and Management API Design
	Object Lists
	Initialization
	Shutdown
	API Calls
	Synchronous APIs
	Asynchronous APIs
	Callback Registration
	Internal Callback Registration
	Asynchronous API Calls

	Snapshot Get and Individual Set

	Asynchronous API Completion Callback
	General GET/SET Algorithm
	Events after Completing Callbacks

	Shutdown Algorithm
	Single FE/Port Shutdown
	Shut Down All FEs

	Event Notification Callback
	Helper Functions

	Runtime Interactions
	Memory Allocation and Locking
	Memory Allocation
	Locks

	Pseudo Code
	Initialization
	Shutdown
	Registration & Deregistration
	Asynchronous API Calls
	API Callbacks

