
Intel® Internet Exchange
Architecture
Portability Framework
Developer’s Manual

November 2003

Document Number: 278662-005

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN
INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, life sustaining applications. Intel may make
changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The Intel® Internet Exchange Architecture Software Development Kit (Intel® IXA SDK) may contain design defects or errors known as errata which
may cause the product to deviate from published specifications. Current characterized errata are available on request.

This document and the software described in it are furnished under license and may only be used or copied in accordance with the terms of the
license. The information in this document is furnished for informational use only, is subject to change without notice, and should not be construed as a
commitment by Intel Corporation. Intel Corporation assumes no responsibility or liability for any errors or inaccuracies that may appear in this
document or any software that may be provided in association with this document. Except as permitted by such license, no part of this document may
be reproduced, stored in a retrieval system, or transmitted in any form or by any means without the express written consent of Intel Corporation.

This document contains information on products in the design phase of development. The information here is subject to change without notice. Do not
finalize a design with this information.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-
4725, or by visiting Intel’s web site at http://www.intel.com.

Copyright © Intel Corporation, 2003.

Intel is a registered trademark of Intel Corporation or its subsidiaries in the United States and other countries.

AlertVIEW, i960, AnyPoint, AppChoice, BoardWatch, BunnyPeople, CablePort, Celeron, Chips, Commerce Cart, CT Connect, CT Media, Dialogic,
DM3, EtherExpress, ETOX, FlashFile, GatherRound, i386, i486, iCat, iCOMP, Insight960, InstantIP, Intel, Intel logo, Intel386, Intel486, Intel740,
IntelDX2, IntelDX4, IntelSX2, Intel ChatPad, Intel Create&Share, Intel Dot.Station, Intel GigaBlade, Intel InBusiness, Intel Inside, Intel Inside logo, Intel
NetBurst, Intel NetStructure, Intel Play, Intel Play logo, Intel Pocket Concert, Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel TeamStation,
Intel WebOutfitter, Intel Xeon, Intel XScale, Itanium, JobAnalyst, LANDesk, LanRover, MCS, MMX, MMX logo, NetPort, NetportExpress, Optimizer
logo, OverDrive, Paragon, PC Dads, PC Parents, Pentium, Pentium II Xeon, Pentium III Xeon, Performance at Your Command, ProShare,
RemoteExpress, Screamline, Shiva, SmartDie, Solutions960, Sound Mark, StorageExpress, The Computer Inside, The Journey Inside, This Way In,
TokenExpress, Trillium, Vivonic, and VTune are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and
other countries.

*Other brands and names may be claimed as the property of others.

Contents
1 Introduction ...9

1.1 About this Document ..9
1.2 Audience...9
1.3 In This Manual ..9
1.4 Other Sources of Information..10

2 IXA Portability Framework Overview ..13

2.1 Network Application Structure ..13
2.2 Data Plane Software Structure ...14
2.3 Logical Elements of an IXA Application ..16

2.3.1 Optimized Data Plane Libraries and Tools ..17
2.3.2 Microblocks..17
2.3.3 Dispatch Loop and Microblock Infrastructure Library ..18
2.3.4 Resource Manager Library ..18
2.3.5 Intel XScale® Core Components...19
2.3.6 Additional Intel XScale® Core Supporting Libraries ..19
2.3.7 Core Component Infrastructure ...20
2.3.8 Control Plane PDK...20
2.3.9 Operating System Service Layer (OSSL) ..20
2.3.10 System Application ..21

3 Microengine Programming Models ...23

3.1 Ordered Thread Model ...23
3.1.1 Unordered Thread Model...24
3.1.2 Selecting the Appropriate Model..24
3.1.3 Maintaining Packet Order ..25

3.1.3.1 Packet Ordering for the Unordered Thread Model25
3.1.3.2 Maintaining Partial Order per Block..28

3.2 Packet Descriptor or Metadata ...28
3.2.1 Packet Header Caching...28
3.2.2 Packet Source and Packet Sink Libraries..29

4 Microblocks...31

4.1 Microblock Types..31
4.2 Structure of a Microblock ..31
4.3 Microblock Name and ID ..32
4.4 Outputs for a Microblock...32
4.5 Configuring a Microblock ..33
4.6 Critical Sections and Folding in a Microblock ...33
4.7 Exception Packets ..36
4.8 Receiving Packets from the Intel XScale® Core...36
4.9 Dropping Packets ...36
4.10 Handling Null Packets...37
4.11 Ordered vs. Unordered Model ..37

5 Dispatch Loop...39

5.1 Dispatch Loop for the Ordered Thread Model ..39
Portability Framework Developer’s Manual 3

5.2 Dispatch Loop Structure ... 40
5.3 Dispatch Loops for the Unordered Thread Model (POTs).. 41

5.3.1 Dispatch Loop Control Flow .. 41
5.3.2 Packets from the Intel XScale® Core... 43

5.4 Dispatch Loop Variables... 45
5.4.1 Microengine Assembler Dispatch Variables .. 45
5.4.2 Microengine C Loop Data Structure .. 46

5.5 Dispatch Loop Macros.. 47

6 Optimized Data Plane Libraries Support .. 51

7 Resource Manager ... 53

7.1 Overview... 53
7.2 Changes for IXA SDK 3.x ... 53

7.2.1 Stand Alone API .. 53
7.2.2 Compile Time Allocation of Microengines.. 54
7.2.3 Patching Symbols at Debug Time ... 54
7.2.4 VxWorks Support... 54
7.2.5 Hardware Resource Management... 54
7.2.6 Dispatch Loop Support .. 54
7.2.7 MicroC Support.. 55
7.2.8 Buffer Management ... 55
7.2.9 Communication with Microblocks Using Hardware Features .. 55

7.3 Internal Design ... 56
7.4 API.. 57

7.4.1 Basic Types ... 58
7.4.2 System API.. 59
7.4.3 Microengine API .. 59
7.4.4 Hardware Resource Management API .. 60

7.4.4.1 SRAM Queues ... 61
7.4.4.2 SRAM and Scratch Rings... 61

7.4.5 Buffer Management API .. 62
7.4.5.1 Generic Buffer API ... 63
7.4.5.2 IXA Portability Framework Buffer API .. 64

7.4.6 Communication API ... 65
7.4.7 Remote Communication Extension API... 68
7.4.8 Memory Management API ... 69
7.4.9 System Repository API.. 71
7.4.10 64-Bit Counters.. 72
7.4.11 Services... 73
7.4.12 Hash .. 74
7.4.13 Microengine Services .. 74
7.4.14 Debug Support .. 75

8 Core Components .. 77

8.1 Overview... 77

9 TCAM Lookup Libraries.. 79

9.1 Lookup Management Library.. 80
9.2 Microengine Lookup Library ... 81
4 Portability Framework Developer’s Manual

10 Core Component Infrastructure ..83

10.1 Terminology and Key Components of the Core Component Infrastructure................................83
10.1.1 Inputs ...83
10.1.2 Outputs ..84
10.1.3 Binding core components ..84
10.1.4 Execution Engine...84
10.1.5 Scheduling Policy ..84
10.1.6 Core Component Configuration Example ..84

10.2 Core Component Infrastructure Design Decomposition ...86
10.2.1 Design Purpose ...87
10.2.2 Design Constraints ..87
10.2.3 Core Component Infrastructure Constructs ...88

10.2.3.1 Core Component ..88
10.2.3.2 Execution Engine..91
10.2.3.3 Scheduling Policy ...91

10.2.4 Packet/Message Flow..92
10.2.5 Mapping to the IXA SDK 2.0 ACE Framework ..93

10.3 External Data Structures...94
10.4 External APIs ..95

11 Operating System Service Layer (OSSL) Support ...97

12 Intel XScale® Core Support..99

12.1 Microengine Loader for the Intel XScale® Core..99
12.2 Hardware Abstraction Layer for the Intel XScale® Core...99
12.3 Tools ...100

13 Control Plane PDK..101

13.1 Overview...101

A Framework Memory and CPU Usage Summary ..103

A.1 Code and Image Sizes ...103
A.2 Memory Consumption...103
A.3 CPU Usage...104

B Glossary..107

Figures

2-1 Functional Planes of a Networking Application...13
2-2 Example of Data Plane Software Components ..14
2-3 Detailed Example of Data Plane Software Components ..15
2-4 Elements of an IXA Application ..16
3-1 Thread to Thread Synchronization Using Signals ..23
3-2 AISR Array Implementation ..26
4-1 Example Packet Flow ...33
5-1 A Flowchart of the Logical Call Order for the Example Microblocks...39
5-2 Flattened Microblock Call Graph. ...40
7-1 Internal Design of the IXA SDK Resource Manager...56
Portability Framework Developer’s Manual 5

9-1 Library Components ... 80
10-1 Core Component Datapath Example.. 85
10-2 Assigning Core Components to Execution Engines ... 86
10-3 Example of Packet and Message Data Paths between Core Components 89
10-4 Core Component Infrastructure Constructs.. 90
10-5 Policy Tree Example... 91
10-6 Scheduling Hierarchy Example .. 93

Tables

5-1 Microengine Assembler Dispatch Loop Variables .. 45
5-2 Dispatch Loop API Functions for Meta Data .. 47
5-3 Dispatch Loop API Functions for Extended Meta Data .. 49
7-1 Resource Manager API Functional Groups.. 57
7-2 Basic Types Supported by the Resource Manager .. 58
7-3 Resource Manager System API ... 59
7-4 Resource Manager Microengine API.. 59
7-5 Resource Manager Hardware API.. 60
7-6 Resource Manager Buffer Management API.. 63
7-7 Resource Manager Packet Meta Data Definitions.. 65
7-8 Resource Manager Communication API .. 66
7-9 Resource Manager Remote Communication Extension API .. 68
7-10 Resource Manager Memory Management API .. 70
7-11 Resource Manager Memory Management Macros .. 70
7-12 Resource Manager System Repository API ... 71
7-13 Resource Manager 64-Bit Counter API .. 72
7-14 Resource Manager Services API ... 73
7-15 Resource Manager Hash API... 74
7-16 Resource Manager Microengine Services API... 75
7-17 Resource Manager Debug Support API ... 75
9-1 Handles, Data Structures, and Lookup Management APIs .. 80
9-2 Microengine Lookup APIs... 81
10-1 Core component ID allocation .. 83
10-2 Core Component Infrastructure Example ... 84
10-3 Core Component Infrastructure APIs ... 88
10-4 Core Component Infrastructure API ... 95
A-1 Code Size for Framework Infrastructure... 103
A-2 Compiled Code Size for VxWorks* Image.. 103
A-3 Compiled Code Size for Linux* Kernel Image .. 103
A-4 Summary of Framework Memory Usage.. 104
6 Portability Framework Developer’s Manual

Revision History

Date Revision Description

May 2002 001 SDK 3.0 Pre-Release 3

August 2002 002 SDK 3.0 Pre-Release 4

October 2002 003 SDK 3.0 Pre-Release 5

February 2003 004 SDK 3.0 Pre-Release 6

April 2003 005

SDK 3.0 Release 6 FCS

Removed chapters describing the Optimized Data Plane Libraries and
added a pointer to the the Software Reference Manual (part of the IXA
SDK Tools Release).

Removed chapter describing the OSSL Libraries and added a pointer to
the Software Reference Manual (part of the IXA SDK Tools Release).

July 2003 006
SDK 3.1 Release

Added new chapter for TCAM Lookup Libraries.

November 2003 007

SDK 3.5 Release

In Dispatch Loop chapter:

• Added new APIs for handling extended meta data.
In Resource Manager chapter:

• Added new APIs for Microengine Services and Debug Support.
• Significantly modified Services API to include 12 new APIs.

Added Appendix A describing Memory and CPU Usage.

Changed multiple mentions of “Intel XScale™ core” to “Intel XScale® core”
due to trademark registration.
Portability Framework Developer’s Manual 7

8 Portability Framework Developer’s Manual

Introduction 1

1.1 About this Document

This Developer’s Manual introduces you to the Intel Exchange Architecture (IXA) Portability
Framework, which is a part of the IXA Software Development Kit (IXA SDK). This manual
provides guidelines for using the Portability Framework to develop applications. This is a
companion guide to the Intel® Internet Exchange Architecture Portability Framework Reference
Manual, which provides details on functions and parameters contained in the Portability
Framework libraries.

The IXA Portability Framework is a network application framework and infrastructure for writing
modular and portable code, which:

• Save time by providing robust infrastructure software and APIs

• Save time by providing re-configurable building blocks

• Permit portability across IXA network processors

• Provide an ideal structure for third-party plug-in application modules

1.2 Audience

This guide is intended for software developers who will design, develop, and deliver network
applications that must process packets at high speed. It assumes that you are familiar with the
following:

• C Programming

• Realtime network applications

1.3 In This Manual

This manual includes the following chapters:

• Chapter 1, “Introduction,” (this chapter) presents the organization of this manual and a brief
overview of the IXA Portability Framework.

• Chapter 2, “IXA Portability Framework Overview,” provides a brief overview of the IXA
Portability Framework components.

• Chapter 3, “Microengine Programming Models,” discusses two types of programming models
and their advantages and disadvantages.

• Chapter 4, “Microblocks,” describes the architecture and function of microblocks.

• Chapter 5, “Dispatch Loop,” explains the function of a dispatch loop.

• Chapter 6, “Optimized Data Plane Libraries Support,” introduces the optimized data plane
libraries and provides a cross-reference to further documentation.
Portability Framework Developer’s Manual 9

Introduction
• Chapter 7, “Resource Manager,”RM introduces the different components of the Resource
Manager.

• Chapter 8, “Core Components,” provides an overview of the core components.

• Chapter 9, “TCAM Lookup Libraries,” describes libraries used for managing and searching
tables on the Intel XScale® core and on the microengines for Intel® IXP2400 and IXP2800
Network Processors.

• Chapter 10, “Core Component Infrastructure,” introduces the infrastructure APIs used by core
components.

• Chapter 11, “Operating System Service Layer (OSSL) Support,” introduces APIs that provide
portability across the operating systems and provides a cross-reference to further
documentation.

• Chapter 12, “Intel XScale® Core Support,” describes two Intel XScale® core support libraries,
one supporting microengine microcode loading and the other providing a hardware-
independent services layer.

• Chapter 13, “Control Plane PDK,” explains the high-level architecture of the Control Plane
Platform Development Kit (CP PDK).

• Appendix A, “Framework Memory and CPU Usage Summary,” lists code size and memory
consumption data for key components of the portability framework.

• Appendix B, “Glossary,” defines key terms used in the IXA SDK documentation set.

1.4 Other Sources of Information

This manual is part of the Intel® Internet Exchange Architecture Software Development Kit (Intel®
IXA SDK) documentation set. The following documents are located on the IXA SDK Software
Framework CD:

• Intel® Internet Exchange Architecture Software Development Kit Software Framework Getting
Started Guide

• Intel® Internet Exchange Architecture Portability Framework Reference Manual

• Intel® Internet Exchange Architecture Software Building Blocks Developer’s Manual

• Intel® Internet Exchange Architecture Software Building Blocks Reference Manual

• Intel® Internet Exchange Architecture Software Building Blocks Applications Design Guide

The following documents are also relevant when using the IXA SDK. They are located on the IXA
SDK Tools CD:

• Intel® Internet Exchange Architecture (IXA) Software Reference Manual

• Intel® Internet Exchange Architecture Optimized Data Plane Libraries Reference Manual

• IXP2400/IXP2800 Development Tools User’s Guide

• Help Topics: Developer Workbench

• Intel® IXP2400/IXP2800 Network Processor Microengine C Compiler Language Support
Reference

• Intel® IXP2400/IXP2800 Network Processor Microengine C Compiler LIBC Reference

• Intel® IXP2400/IXP2800 Network Processor Programmer’s Reference Manual
10 Portability Framework Developer’s Manual

Introduction
• Intel® IXP2800 Network Processor Hardware Reference Manual

• Intel® IXP2400 Network Processor Hardware Reference Manual
Portability Framework Developer’s Manual 11

Introduction
12 Portability Framework Developer’s Manual

IXA Portability Framework Overview 2

2.1 Network Application Structure

As shown in Figure 2-1, a networking application typically operates on three logical planes. This
document focuses primarily on writing data plane components utilizing MEv2 microengines on the
IXP2400 Network Processor and IXP2800 Network Processor.

• The data plane processes and forwards packets at high speed. It is typically the most
performance-sensitive since all packets processed by the device must pass through the data
plane. For the IXP2400 Network Processor and IXP2800 Network Processor, the data plane
consists of:

— The fast path, which refers to the MEv2 microengines, which handle most of the packets.
For example, the fast path handles the simple forwarding of IPv4 packets.

— The slow path, which refers to the Intel XScale® core. This handles a few packets that
cannot be handled on the fast path because of the complexity of the processing involved.
These packets are called exception packets. Examples include forwarding IP packets with
options in the header, handling fragmented packets, etc.

• The control plane handles protocol messages and is responsible for the setup, configuration,
and update of tables and data sets used by the data plane for lookups. For example, the control
plane processes RIP, OSPF packets containing routing information, and updates the IPv4
forwarding table used by the data plane.

• The management plane is responsible for system configuration, gathering and reporting
statistics, and stopping or starting applications in response to user input or messages from
other applications. The management plane typically implements a GUI for getting and
displaying information from the user.

Figure 2-1. Functional Planes of a Networking Application

A9906-01

Control Plane
Protocol Stack

(e.g. RIP, OSPF, ATM Signaling, etc.)

Data Plane
Protocol Receive, Lookup, Modify,

Forward or Drop

Management Plane

Setup and Configuration
User Interface, Policy

Management User
Interface
Portability Framework Developer’s Manual 13

IXA Portability Framework Overview
2.2 Data Plane Software Structure

Figure 2-2 shows software components on the data plane for a sample application. The bottom half
of the figure shows code blocks running on the microengines that handle data plane processing.
These code blocks are referred to as microblocks. To get the highest level of performance, the
microengines should process as many of the packets as possible.

Once a microblock has processed a packet, it passes it to another microblock for processing. The
solid arrows in Figure 2-2 represent the passing of packets. In some instances, there is only one
microblock that is run after the current microblock, but in other cases it is useful for a microblock
to select which block processes the packet next. In the example shown in Figure 2-2, the bridging
microblock has two choices for further processing. If the packet is not bridged (it is routed) then the
packet is sent to the output that is connected to the QoS metering block. If the packet is bridged,
then we don't want to perform IPv4 forwarding, therefore the packet is passed directly to the PPP
transmit stage. (Note: other possible ordering of the blocks can be specified if the user wants to
perform QoS for bridged and routed packets.)

An Intel XScale® core component is code that runs on the Intel XScale® core. Each of the blocks
on the microengines has a Core Component associated with it. The dotted lines in Figure 2-2 show
the relationship between the microblocks and the core components. A core component works in
conjunction with its associated microblock to perform tasks. A core component may perform such
tasks as:

• Provide a mechanism for configuring and managing the microblocks. This allows the control
plane software to control the behavior of the blocks as well as get statistics and other state

Figure 2-2. Example of Data Plane Software Components

Media
RX

Media
TX

QoS
Metering

Bridging IPv4
Forwarding

QoS
Scheduling

PPP
RX

PPP
TXM

ic
ro

en
gi

ne
s

(F
as

t p
at

h
pr

oc
es

si
ng

 a
nd

fo
rw

ar
di

ng
)

Media
RX

Media
TX

QoS
Metering

Bridging IPv4
Forwarding

QoS
Scheduling

PPP
RX

PPP
TX

X
S

ca
le

 B
lo

ck
s

(E
xc

ep
tio

ns
 a

nd
C

on
fig

ur
st

io
n)
14 Portability Framework Developer’s Manual

IXA Portability Framework Overview
information. As an example, the IPv4 forwarding Core Component provides interfaces to add
and delete route entries, etc.

• Perform exception packet handling. Some of the microblocks may not be able to handle a
packet for a variety of reasons, for example, the programmer doesn't want to dedicate the code
space to rare events, the processing may be complicated and it isn't worth the effort of
supporting it on the microengines, insufficient time budget, etc.
In this case, the exception packet can be passed to the Intel XScale® core block to perform the
work. For example, the IPv4 block may send packets that require fragmentation to the Intel
XScale® core block instead of performing fragmentation on the microengine.

• Manage data structures that are shared between the microengine and the Intel XScale® core.
These data structures may be modified in reaction to arriving network data, or modified in
response to configuration requests that are made on the Intel XScale® core. For example, the
IPv4 Core Component updates a shared route table in response to route update requests.

Figure 2-3 shows a more detailed representation of the data plane portion of the application. At the
bottom, we see the fast path building blocks, which are either packet processing microblocks or
hardware-specific driver microblocks. A dispatch loop combines packet processing microblocks
running on the same microengine thread. It can be instantiated on one or more threads on multiple
microengines and implements the data flow between the microblocks. Driver blocks are typically
not combined with other blocks on the same thread of execution. They usually run on a separate
microengine thread (or threads), which implies that a dispatch loop is not needed.

At the top of Figure 2-3, we see the Intel XScale® core components, which interface with control
plane software via the Control Plane PDK. The Intel XScale® core components are written using
the Resource Manager APIs and the Core Component Infrastructure Library (CCI). The Resource
Manager and the CCI provides a library and support infrastructure that allows the microblock and
the Intel XScale® core component to work together.

Figure 2-3. Detailed Example of Data Plane Software Components

Resource Manager

Driver

Media
Mgmt

Core Components

Media
RX

IPv4
Mgmt

QoS
Mgmt

Scheduler
Mgmt

Media
Mgmt

Media
TX

QoS
Scheduling

Bridging WRED

IPv4
Fwd

QoS
Scheduling

Bridge
Mgmt

WRED
Mgmt

Driver DriverDriver

Microblocks
Portability Framework Developer’s Manual 15

IXA Portability Framework Overview
2.3 Logical Elements of an IXA Application

Network processing in Intel IXA is essentially a series of tasks that are applied to a constant stream
of packet or cell data. With the multi-processor/multi-threaded architecture of the IXP 2400 and
IXP 2800 network processors, these tasks are distributed over several microengines, each of which
is programmed to perform specific tasks. When a microengine completes its tasks, it passes the
context to the next microengine so that it can continue processing the data.

The IXA Portability Framework is implemented using a layered architecture on both the
microengines and the Intel XScale® core, as shown in Figure 2-4. Using this layered architecture,
you have the flexibility to use the entire IXA Portability Framework or to use it only up to a
specific level. For example, you can choose to write microblocks on the microengines but use only
the Resource Manager API on the Intel XScale® core.

Figure 2-4. Elements of an IXA Application

A9907-01

Control Plane Protocol StacksExternal
Processors

Protocol Library Utility Library

Hardware Abstraction Library

Core Components

Operating
System
Service
Layer

(OSSL)
Core Components Infrastructure Library

Resource Manager Library

Intel®

XScale™
Core

Microblock Infrastructure LibraryMicroengines

Micro-
block

Micro-
block

Micro-
block

Optimized
Data Plane
Libraries

Control Plane PDK
16 Portability Framework Developer’s Manual

IXA Portability Framework Overview
The remainder of this chapter contains a brief overview of the following components of the IXA
portability framework:

• Section 2.3.1, “Optimized Data Plane Libraries and Tools”

• Section 2.3.2, “Microblocks”

• Section 2.3.3, “Dispatch Loop and Microblock Infrastructure Library”

• Section 2.3.4, “Resource Manager Library”

• Section 2.3.6, “Additional Intel XScale® Core Supporting Libraries”

• Section 2.3.7, “Core Component Infrastructure”

• Section 2.3.5, “Intel XScale® Core Components”

• Section 2.3.8, “Control Plane PDK”

• Section 2.3.9, “Operating System Service Layer (OSSL)”

• Section 2.3.10, “System Application”

2.3.1 Optimized Data Plane Libraries and Tools

The optimized data plane libraries consist of low-level macros or microengine C functions used to
write microblocks or any other microengine code. These libraries are optimized for high
performance and minimal code space utilization. Programs written with optimized data plane
libraries are structured assembly directives or microengine C functions that facilitate the creation
of software programs that are easy to read, understand, and maintain without sacrificing real-time
performance. For details, see the Intel® Internet Exchange Architecture Optimized Data Plane
Libraries Reference Manual on the IXA SDK Tools CD.

Some examples of what these libraries provide include:

• Hardware-specific functions for CAM, local memory, critical sections, etc.

• Protocol header parsing functions for IPv4, IPv6, etc.

• Utility functions for hash table lookup, CRC, etc.

2.3.2 Microblocks

The fast path processing on the microengines is divided into logical networking functions called
microblocks. Each microblock is a macro or microengine C function written using underlying low-
level libraries provided by the dispatch loop infrastructure and the optimized data plane libraries.

The intent is to allow microblocks to be written so that each microblock is independent of the
others. This improves reusability and allows developers to combine microblocks in different ways
to create a meaningful application. The net benefit is that the task of writing fast path code is
simplified and time to market is accelerated.

A microblock has an associated management component on the Intel XScale® core. The
application is typically written so that the microblock will process the most common cases and the
exception cases are passed to the Intel XScale® core component for further processing.

There are two types of microblocks:
Portability Framework Developer’s Manual 17

IXA Portability Framework Overview
• Packet processing microblocks, which perform high-level protocol-specific functions on a
packet, for example IPv4 forwarding, IPv6 forwarding, Bridging, Network Address
Translation (NAT), etc. Note that as opposed to a low level macro/function (such as IP
checksum), a microblock is coarse-grained, has state and associated data structures typically
shared with the Intel XScale® core (for example, IPv4 forwarding).

• Driver microblocks, which are hardware- or media-specific code blocks which may be
implemented in hardware in future revisions of the IXP processor. Examples include Receive/
Transmit blocks that interact closely with the MSF interface on the IXP2xxx, the Queue
Manager microblock, which manages the queuing hardware (Q-Array) etc. A developer will
write software as driver microblocks when there is specific hardware that needs to be
managed, (such as receive or transmit hardware) or when the software processing model
doesn't match the packet-processing model (for example, schedulers that don't operate on
packets, but on queues).

Chapter 4, “Microblocks,” provides detailed information about writing microblocks.

2.3.3 Dispatch Loop and Microblock Infrastructure Library

A dispatch loop combines microblocks running in a single microengine thread into a microblock
group. It is instantiated on one or more threads on multiple microengines and implements the data
flow between the microblocks. The dispatch loop provides an infrastructure for microblocks to
efficiently access commonly used fields in the packet descriptor and header. It also provides a
mechanism to send and receive packets to and from other dispatch loops and the Intel XScale®
core.

The dispatch loop is implemented using support libraries called the Microblock Infrastructure
Library, which provides APIs to access the cached packet descriptor.

Chapter 5, “Dispatch Loop,” in this manual provides detailed information about writing a dispatch
loop. The dispatch loop API is detailed in the Intel® Internet Exchange Architecture Portability
Framework Reference Manual.

2.3.4 Resource Manager Library

The resource manager library is a software component on the Intel XScale® core, which provides
an API for:

• Hardware initialization, configuration, and resource management

• Communication between the microblocks and their associated core components

The resource manager API simplifies the task of hardware initialization, configuration, and
resource sharing. It also isolates the developer from the communication details between the
microengine and Intel XScale® core.

Chapter 7, “Resource Manager,” provides detailed information on the Resource Manager. The
Resource Manager API is detailed in the IXA Portability Framework Reference Manual Volume I.
18 Portability Framework Developer’s Manual

IXA Portability Framework Overview
2.3.5 Intel XScale® Core Components

An Intel XScale® core component implements the configuration, management and exception
processing code for an associated microblock. A core component may manage more than one
microblock. In the extreme case, there may be a single core component for all the microblocks. A
core component performs the following functions:

• Configures its microblock (static configuration by means of imported variables and dynamic
configuration through control blocks)

• Initializes and maintains common data structures that may be updated by other applications

• Provides exception as well as control message handler to process packets/messages sent by the
microblock

There are two ways to implement a core component. One way is to use the IXA Core Component
Infrastructure Library (see Chapter 8, “Core Components”). The core component infrastructure
specifies the design of the component and the mechanisms used for configuration, and for packet
and message processing.

The other way is to implement it as a software entity that directly uses the Resource Manager API
(see Chapter 7, “Resource Manager”). The design of this entity (whether it is a shared library,
driver, thread, process, etc.) and how it processes packets and messages is left entirely to the
developer.

This provides developers with considerable flexibility in integrating applications written using the
IXA Software Framework with existing legacy applications and protocol stacks running on the
Intel XScale® core. If you are writing mostly new code on the Intel XScale® core, you may prefer
the accelerated development time provided by the IXA Portability Framework. Customers with a
substantial legacy code base may prefer to write the Intel XScale® core component using the core
component infrastructure to ease integration with existing code. You can still use the microblock
infrastructure on the microengines and use the Resource Manager API to interface with them.

For more information on core components, refer to Chapter 8, “Core Components”. To view details
on core components supplied and supported by Intel, see the Intel® Internet Exchange Architecture
Software Building Blocks Developer’s Manual.

2.3.6 Additional Intel XScale® Core Supporting Libraries

Two additional Intel XScale® core libraries are described in Chapter 12, “Intel XScale® Core
Support.” This chapter includes the following sections:

• Section 12.1, “Microengine Loader for the Intel XScale® Core” on page 99 describes support
for loading microengine microcode from the Intel XScale® core.

• Section 12.2, “Hardware Abstraction Layer for the Intel XScale® Core” on page 99 describes
support for a hardware abstraction layer (HAL) for the Intel XScale® core. The HAL generates
code to interface either to the Intel XScale® core-based hardware or the Transactor. An Intel
XScale® core application that uses HAL can run in hardware mode or simulation mode
without changes to the code that accesses the functional units. This increases portability of the
application code when moving between the simulation environment of the Transactor and the
Intel XScale® core-based hardware.
Portability Framework Developer’s Manual 19

IXA Portability Framework Overview
2.3.7 Core Component Infrastructure

The core component infrastructure specifies the design and structure of Intel XScale® core
components and provides underlying APIs and infrastructure to pass messages and packets
between them. A core component written to the core component infrastructure is typically a library
of code with the following entry points:

• An initialization function

• A termination function

• One or more packet handlers

• One or more message handlers

For more information, refer to Chapter 10, “Core Component Infrastructure.”

2.3.8 Control Plane PDK

The Control Plane PDK provides support for interfacing Intel XScale® core components with
software running on the control plane. The Control Plane PDK APIs, based on the Network
Processor Forum (NPF) APIs, present a flexible and well-known programming interface.

The Control Plane PDK also makes the existence of multiple forwarding planes, as well as vendor-
specific details, transparent to control-plane applications. Furthermore, the hardware properties and
nature of the interconnect used between the control and the forwarding planes are isolated. Thus,
the protocol stacks and network processors available from different vendors can be easily
integrated with the NPF APIs.

For more information, see Chapter 13, “Control Plane PDK,” or the Control Plane PDK
documentation set.

2.3.9 Operating System Service Layer (OSSL)

The Operating System Services Layer (OSSL) provides an abstraction layer for all code running on
the Intel XScale® core. It is used by the Resource Manager, core components infrastructure, and
other code on the Intel XScale® core to enhance their portability across multiple operating systems.
Application developers writing Intel XScale® core code should also use this library instead of
directly using operating system-specific APIs. The OSSL provides the following type of services:

• Thread management

• Synchronization primitives

• Mutual exclusion

• Timers

• Memory management

• Message logging
20 Portability Framework Developer’s Manual

IXA Portability Framework Overview
2.3.10 System Application

This management application is responsible for initializing the Intel XScale® core components,
loading the microengines, and performing any configuration required for startup. It may perform
additional tasks as needed. The application needs to know how the microblocks are combined in
the dispatch loop on the microengines. Some of the tasks performed by a system application
include:

• Initializing the Resource Manager (which in turn initializes the hardware)

• Setting the microcode image using the Resource Manager APIs

• Launching the Intel XScale® core components associated with the microblocks and any other
Intel XScale® core applications that are required. The application needs to wait for each of the
core components to initialize, configure the microblock data structures, etc.

• Configuring the core components appropriately with an initial set of parameters

• Setting up the packet flow between the Intel XScale® core components to match the data flow
in the microengines

• Writing the microcode image into the microengine microstore

• Enabling the microengines

The Intel® Internet Exchange Architecture Software Building Blocks Developer’s Manual provides
more detail on writing a System Application using the core component infrastructure and the
Resource Manager.
Portability Framework Developer’s Manual 21

IXA Portability Framework Overview
22 Portability Framework Developer’s Manual

Microengine Programming Models 3

In many cases, software running on the microengines will run on more than one thread, and in
some cases, many threads will run on many microengines. When writing this software, the
programmer needs to be aware of the parallelism and associated challenges of writing parallel
processing programs.

This chapter identifies two basic models for writing parallel processing blocks: the ordered thread
model and the unordered thread model. In the ordered thread model, the programmer assumes that
the threads execute in some application-defined order in critical sections. In the unordered thread
model, the programmer assumes that threads can run in any arbitrary order. The differences
between these two models affect how the programmer handles different problems that arise when
writing applications. The following sections discuss these programming models in more detail.

3.1 Ordered Thread Model

The first programming model is where thread order is carefully controlled by the programmer. This
model is also referred to as the Hypertask Chaining Model (HTC). In this model, a critical task is
broken into different phases and each thread takes a turn executing a phase and then passes control
to the next thread, as shown in Figure 3-1. The horizontal solid lines show the execution of
instructions and the vertical, dashed lines show a signal sent from one thread to another.

In this model, each thread waits for a signal from the previous thread before it begins execution.
When a thread receives a signal from the previous thread, it will run its task and signal the next
thread. The last thread in a group will signal the first thread when it is done executing. This ensures
that all threads continue to execute code in the same order.

Within each phase the programmer controls execution order. The advantage of this programming
model is that it maintains packet order throughout the processing. For some packet processing
tasks, packet ordering is required and this programming model simplifies the task.

Figure 3-1. Thread to Thread Synchronization Using Signals

...
Thread 1

Thread 0

Thread N

...

Phase 0 Phase 1 Phase 2
Portability Framework Developer’s Manual 23

Microengine Programming Models
Another characteristic of the ordered programming model is mutual exclusion can be handled
implicitly. Because the programmer controls the order in which threads execute, then the
programmer can ensure that only one thread is in the critical section at a time. This removes the
need for explicit locking.

While the ordered thread model offers the above benefits, it also has some drawbacks. One
potential disadvantage is when the processing varies per packet. Because of the ordering, all
threads end up running at the rate of the slowest thread. Ordered processing is more appropriate
when the amount of effort is roughly constant per thread.

Another challenge associated with ordered thread model comes from the ordering operations. In
the Intel® IXP2400 Network Processor and Intel® IXP2800 Network Processor family, thread
ordering is maintained by a form of token passing (through a signal). Consequently, each of the
threads must execute each of the ordered phases even if they have no work to perform. This is
because they need to consume the signal and pass it to the next thread. If a thread were to skip a
phase, the token would be lost.

3.1.1 Unordered Thread Model

Using the unordered thread model, the thread ordering is not controlled as it is in the ordered thread
model. Instead, threads work until their current task is done, get more work and continue. This is
the programming model referred to as Pool of Threads (POTs).

This model is efficient when there is a large variation in the time necessary for each thread to
complete its processing or when the latency of operations is highly variable (for example, memory,
TCAM, etc.). Because each thread is working independently, processing happens at the average
processing rate instead of the slowest processing rate as in the ordered thread model. The
unordered model also works well when the packet arrival time varies, such as a mix of small and
large packets, because the application can use the slow periods to catch up on work that piled up
during the fast arrival periods.

A disadvantage of the unordered thread model is that mutual exclusion must be performed
explicitly. When all threads working on the same tasks are on the same microengine, then the
locking can be implemented with local resources and is not very expensive. When the threads
executing the same tasks span microengines, then the locking must be through a shared resource
such as memory. (It is expected that most unordered thread programs will span microengines.) This
increases the cost of doing the synchronization and can make it difficult to get high performance
when there are multiple cases of lock contention.

Another challenge with the unordered thread model is that any ordering constraints must be
explicitly satisfied. This can lead to more overhead and lose some of the potential performance
gains obtained by removing the strict ordering requirements.

3.1.2 Selecting the Appropriate Model

Typically, driver code such as Receive and Transmit blocks and Queue Manager will use the
ordered threading model.

Packet processing microengines may use the ordered or the unordered model. If the ordered
threaded model is chosen, then the thread ordering is typically enforced at any point in the
processing where critical sections (sections of code which only one thread must execute at any
given time) are present. Critical sections are always used at the beginning and end of the packet
processing to get packets from the previous stage and send packets to the next stage in order. A
24 Portability Framework Developer’s Manual

Microengine Programming Models
disadvantage of using the ordered thread model is that each block must be processed which is
wasteful. The ordered thread model is also not appropriate for applications that contain loops in the
packet processing.

Packet processing microengines may use the unordered model, in which case packets may get
reordered during processing and the ordering will need to be restored at a later stage. The next
section describes mechanisms to restore packet ordering.

3.1.3 Maintaining Packet Order

A key with a parallel processing architecture is that packet order must be maintained for packets as
they are processed. For example, a simple router must not reorder packets that belong to the same
flow because of its effect on end-station performance.

For applications that use the ordered thread model, packet order is maintained at the start and end
of every packet processing stage using critical sections.

For the unordered thread model, the IXA Portability Framework provides an application support
library that allows the developer to maintain packet order. On the Intel® IXP2400 Network
Processor, this library is used in the Queue Manager microblock. The mechanics of this library are
described in the following subsection.

3.1.3.1 Packet Ordering for the Unordered Thread Model

The packet-ordering problem can be subdivided into end-to-end packet order and partial order at
modules. We will first describe end-to-end packet ordering support in unordered thread model and
later describe support for maintaining partial order at blocks requiring packet sequencing.

3.1.3.1.1 Maintaining End-to-End Packet Order

The end-to-end packet ordering criteria is the packets of a flow should leave the system in the same
order as they arrived in the system. The problem of end-to-end packet ordering is solved using an
Asynchronous Insert, Synchronous Remove (AISR) array.

Every packet is assigned a sequence number before it exits the receive block. The sequence number
can be globally maintained for all packets arriving in the system or it can be maintained separately
for each port or flow. From now onwards, we will call the unit of classification as the sequence ID,
for example, input port or flowid.

The Sequence ID must be defined at a granularity such that all packets that need to be ordered
relative to each other belong to the same sequence ID. The sequence ID can be as coarse-grained as
all packets belonging to one global sequence ID or it can be as fine-grained as each micro-flow
(identified by tuple of src and dst IP addresses, layer 4 port numbers and layer 4 protocol) has a
separate sequence ID. If you use fine-grained sequence IDs, then you end up having a lot of state to
maintain and it may be expensive. On the other hand, if you have coarse-grained sequence IDs you
get false blocking by trying to order the packets that need not be ordered.

The sequence number of a packet arrived in the system should be one greater than the sequence
number of the previous packet of the same sequence ID arrived in the system. The sequence
number wraps back to zero after Max_seq_num (size of AISR array) is reached.

The AISR array is maintained in shared memory (such as SRAM) and is indexed by the packet
sequence number. For each sequence ID, there is a separate AISR array. When the packet
processing pipeline has completed the processing on a particular packet, it passes the packet to the
Portability Framework Developer’s Manual 25

Microengine Programming Models
next stage, which we will call a reordering block. The reordering block uses the AISR array to store
out-of-order packets and to pick packet in the order of the sequence number assigned. Ideally, the
AISR array would be maintained in the local memory of the reordering block, however, that limits
the size of the AISR array. Therefore, a small AISR array is maintained in local memory and a
much larger AISR array is maintained in SRAM. Both of these AISR arrays are implemented using
circular buffers as shown in Figure 3-2. When a packet has completed processing, it is sent to the
reordering block (normally, by a scratch ring or next neighbor ring).

The reordering block maintains an expected_seq_num for each sequence_ID. The reordering block
extracts out the sequence number and sequence_ID of the packet. If the packet's sequence number
matches the expected_seq_num for the sequence_ID, it is processed as an "in-order" packet and the
expected_seq_num is incremented. In the case when a sequence number is not expected_seq_num
(for example, the packet is out of order), the reordering block finds out whether the packet will fit
in the "local memory AISR Array" of size N entries. If the (packet's sequence num -
expected_seq_num < N), then the packet's detail is stored in the "local memory AISR Array" to be
processed later.

Otherwise, the packet is stored in the appropriate position in the "SRAM AISR Array". The
reordering block also maintains the max_seq_num_in_SRAM, which is the maximum sequence
number that has been stored in the "SRAM AISR Array". A value of -1 for
max_seq_num_in_SRAM indicates no packet, that will be required to be processed later, is stored
in the "SRAM AISR Array". The reordering block processes the first element in the "Local
Memory AISR Array" when it becomes available. When packets from the "Local Memory AISR
Array" are processed, the reordering block looks for the packet it has previously stored in the
"SRAM AISR Array" to copy it to the "Local Memory AISR Array". The value for
max_seq_num_in_SRAM indicates whether such a read from SRAM is necessary or not. If
necessary, the entries of "SRAM AISR Array" are read using block read of B entries. Typical
values for B is 4 and for N is 32.

Figure 3-2. AISR Array Implementation

N
M

Local Memory AISR Array

Max_seq_num

SRAM AISR Array
26 Portability Framework Developer’s Manual

Microengine Programming Models
The modified scheme has a two-fold benefit compared to simply maintaining the AISR table in
SRAM. The reordering block does not poll while waiting for the head of the AISR array. In
addition, the local memory cache can be used, for example, when there is a backing up of some
packets due to their out of order arrival, the reordering block can schedule them quickly and catch
up with rest of the pipeline.

The following pseudo-code shows an example for the reordering block when it receives a packet
from a packet processing pipeline. The code assumes that there is only one sequence_ID.
Function: receive_packet()

seq_num = Extract sequence number from the packet;
if (seq_num == expected_seq_num)

{
process packet;
expected_seq_num++;
clear entry corresponding to seq_num from local memory and SRAM AISR Array;
}

else
{
if (seq_num < (expected_seq_num + N))

{
store seq_num in corresponding local memory AISR Array;
look_for_head();
}

else
{
store seq_num in corresponding SRAM AISR Array;
if (seq_num > max_seq_num_in_SRAM)

max_seq_num_in_SRAM = seq_num;
look_for_head();
}

}

Function: look_for_head()
if (entry at expected_seq_num is not NULL)

{
process expected_seq_num;
expected_seq_num++;
clear entry corresponding to seq_num from local memory and SRAM AISR Array;
if (expected_seq_num % B == 0)

{
// perform block_read_if necessary
if ((max_seq_num_in_SRAM != -1) & (max_seq_num_in_SRAM >

(expected_seq_num + N)))_
block read from SRAM AISR Array from (expected_seq_num + N)
to (expected_seq_num + N + B);

else
max_seq_num_in_SRAM = -1;

}
}

Portability Framework Developer’s Manual 27

Microengine Programming Models
3.1.3.2 Maintaining Partial Order per Block

In some applications, certain packet processing microblocks need to process packets in order. This
is a difficult problem since such a microblock may not receive all the packets and need to order
with respect to only the packets that flow through it.

Note: Partial Packet Ordering will be discussed in subequent revisions of this document.

3.2 Packet Descriptor or Metadata

The packet state is passed from one data plane block to the next via the packet metadata. Shared
memory, next_neighbor registers, or a reflector operation may be used to pass metadata between
blocks that execute on separate microengines. When multiple blocks run on the same microengine,
the metadata is cached locally (for example, in local memory, GPRs, transfer registers, or next
neighbor registers in loopback mode) in the beginning of the dispatch loop and flushed out at the
end. The caching scheme has several benefits - it reduces the memory bandwidth utilization when
multiple blocks need to access the same information and it allows for efficient packing of data
useful for individual blocks without the burden of wasted bandwidth.

To facilitate the interoperability of microblocks, all fields in the metadata must be accessed via
accessor functions. If the layout of the metadata is changed, these accessor functions need to be
updated. In microcode assembler, the accessor functions are implemented as macros that are called
by the driver or microblock. When microC is used (or on the Intel XScale® core), the packet
metadata is defined as structures and accessed via structure references. Thus, a recompile of
software with the new structure will ensure correctness. It is recommended that packet processing
microblocks should not have any dependencies on the relative layout of the metadata or the exact
size of metadata fields - these should be hidden by the accessor functions.

Details on packet metadata accessor functions are provided in Chapter 5, “Dispatch Loop.”

3.2.1 Packet Header Caching

When processing a packet using microblocks, it is likely that more than one of the blocks may
access the same regions of the packet header. For example, a microblock that is performing
DiffServ classification may need to both read and write some of the packet's IP header. The IPv4
forwarding block will also need to read and write portions of the IP header. We do not want both of
these blocks to read and write the same regions of memory because this will incur extra memory
operations (consuming bandwidth) as well as adding additional latency that must be hidden for
efficient operation.

To get around this problem, the IXA Portability Framework provides a library that caches a portion
of the packet header within the microengine. If the microblock authors use this library, then
redundant accesses to the same memory regions will hit the cache.

Note: Partial Packet Ordering will be discussed in subequent revisions of this document.
28 Portability Framework Developer’s Manual

Microengine Programming Models
3.2.2 Packet Source and Packet Sink Libraries

The Microblock Infrastructure provides a set of libraries that allow the dispatch loop to read and
write packets from the various queuing devices. These are provided as a convenience to the
developer and a developer can write their own mechanisms if these do not meet their requirements.

These library calls provide functions that:

• Source/sink packets from/to a different microengine using SRAM or scratch rings.

• Source/sink packets from/to the Intel XScale® core for further processing.

• Source/sink packets from/to a different microengine using the next neighbor registers.

• Source/sink packets using the SRAM rings.

• Put packets into an AISR ring for re-ordering

The source library calls get the next packet to work on. The sink calls dispose of the current
packet. Examples of these are the dl_xxx_source[] and dl_xxx_sink[] macros provided in the
Intel® IXA SDK software.
Portability Framework Developer’s Manual 29

Microengine Programming Models
30 Portability Framework Developer’s Manual

Microblocks 4

The data plane processing on the microengines is divided into logical networking functions called
microblocks. Several microblocks can be combined into a microblock group. A microblock group
has a dispatch loop that defines the dataflow for packets between different microACEs within the
group. A microblock group can be instantiated on one or more microengines, but two microblock
groups cannot share the same microengine.

Microblocks can send packets to an associated Intel XScale® core component. The dispatch loop
handles packets that come from the Intel XScale® core component and steers them to the
appropriate microblock.

Microblocks are coarse grain, stateful entities that perform major functions, such as Ipv4
forwarding, Ethernet layer 2 filtering, 5-Tuple lookup, MPLS label insertion, PPP header
termination, and so on.

It is the intent that each microblock should be written independently of the other microblocks. By
providing clean boundaries between these blocks, it makes it possible to modify, add, or remove
more microblocks without affecting the behavior of the other blocks. If microblocks are written
assuming another block is run before or after this block, then the modularity that they provide is
lost.

4.1 Microblock Types

There are two types of microblocks:

• Packet Processing Microblocks perform high-level protocol-specific functions on a packet, for
example, IPv4 forwarding, IPv6 forwarding, Bridging, and Network Address Translation
(NAT). Note that as opposed to a low level macro/function (IP checksum), a microblock is
coarse-grained, and has state and associated data structures typically shared with the Intel
XScale® core (for example, IPv4 forwarding).

• Driver Microblocks are hardware or media specific code blocks which may be implemented in
hardware in future revisions of the IXP processor. Examples include Receive/Transmit blocks
that interact closely with the MSF interface on the IXP2xxx, and the Queue Manager
microblock, which manages the queuing hardware (Q-Array). A developer will write software
as driver microblocks when there is specific hardware that needs to be managed, (such as
receive or transmit hardware) or the software processing model does not match the "get a
packet, process it, and pass the packet on" model (for example, schedulers that do not operate
on packets, but queues).

4.2 Structure of a Microblock

A microblock written in microcode consists of two macros:

• An initialization macro which is called only once by the dispatch loop during the startup
sequence.

• A packet processing macro, which is called for every packet received.
Portability Framework Developer’s Manual 31

Microblocks
For example, an IPv4 microblock would have two associated macros: Ipv4_Init[] and Ipv4[].

A microblock written in microC consists of two functions:

• An initialization function

• A packet processing function

4.3 Microblock Name and ID

Each microblock in the system has a globally unique name and an 8-bit ID associated with it. The
microblock IDs are allocated at compile time and are maintained in a system header file
dl_system.h,which is used to set up the data flow bindings as described below.

Note: The globally unique ID does not imply that the ID does not change from application to application.
The microblock ID only needs to be unique among all the microblocks running in the system. Its
value may change from design to design even for the same microblock.

4.4 Outputs for a Microblock

One of the primary goals of structuring applications into microblocks is to allow developers to
write the functionality without knowledge of which microblocks are upstream and downstream.
Thus, the microblocks need to be written in such a way that the values of the block ID as well as
setting the dl_next_block can be defined at compile time instead of when the microblock is
written.

Each microblock can have one or more logical outputs that indicate which path the buffer should
follow next. The logical output is passed along by setting the dispatch loop variable
dl_next_block to a specific value. To make the microblock generic, symbolic names will be
used for these outputs.

For example, a microblock called IPFilter may have three logical outputs PASS_1, PASS_2, and
DENY. These would be defined in the dl_system.h file as IPFILTER_PASS_1,
IPFILTER_PASS_2, and IPFILTER_DENY and set to the appropriate block IDs. It is assumed that
the documentation for each microblock will include the number of logical outputs it has and also
the semantic meaning associated with those outputs.

The following values are reserved:

• IX_EXCEPTION: Indicates that the packet should be sent to the core.

• IX_EXCEPTION_PRIORITY: Indicates that the packet should be sent to the core on the high
priority queue.

• IX_DROP: Indicates that the packet should be dropped.

• IX_NULL: Indicates that a NULL packet is being handled.
32 Portability Framework Developer’s Manual

Microblocks
Figure 4-1. Example Packet Flow

A sample system.h file is shown below:

#define IPFILTER_BLOCKID 1
#define IPV4_BLOCKID 2
#define METER_BLOCKID 3
#define IPV4_NEXT1 METER_BLOCKID
#define IPFILTER_PASS_1 IPV4_BLOCKID
#define IPFILTER_PASS_2 METER_BLOCKID
#define IPFILTER_DENY IX_DROP

In this case, the IPFilter block would send packets on the PASS_1 logical output to the IPV4
forwarding block, PASS_2 output to the meter block, and the packets on the DENY output would be
dropped.

4.5 Configuring a Microblock

There are three ways to initialize and configure a microblock.

• Control block: Each microblock may have an area of SRAM that it uses for communication
with its associated Intel XScale® core component. This stores parameters that may change at
run-time e.g., MAC filters.

• Imported variables: These are used for values that can be determined during load-time of the
microcode and do not change subsequently. For example, the location of the control block
allocated in SRAM from the Resource Manager.

• Tables and other data structures in SRAM, DRAM, or Scratch: These are shared between the
microengine code and the code running on the Intel XScale® core. An example of such a
shared data structure is the IPv4 forwarding table.

4.6 Critical Sections and Folding in a Microblock

A critical section is a section of code in which only one microengine thread has exclusive
modification privileges for a global resource (such a memory location) at any one time. On the
IXP2400, in the ordered threading model, a critical section of code is implemented in the following
situations:

A9916-01

IPfilter
1

IPv4
2

IX_DROP

Meter
3

Portability Framework Developer’s Manual 33

Microblocks
• Between microengines, by making only one microengine at a time execute the critical section.
This is done by making the microengines run in order and using microengine to microengine
signaling.

• Within microengines, the critical section is typically implemented by making sure the thread
does not swap out while performing the modification and write operations on the shared data.

Typically the critical section contains a read-modify write, which can be optimized by using the
folding technique. In this case the threads must execute in strict order and use local inter-thread
signaling to ensure the order.

Note: Under this implementation of a critical section, it is quite likely that other microengines/threads
will stall waiting for a signal from the current microengine/thread. This implementation has been
chosen over memory locks used in the IXP1200, due to the high latency of memory accesses.

An example of the pseudo-code for a microblock that implements a critical section via thread
ordering and using folding is shown below:

// Wait for previous microengine or previous thread
If (Context 0 of the microengine)
Wait for Signal from previous microengine
Else

Wait for Signal from previous thread
// Enter first phase of critical section
Look up the CAM to see if data is in local memory
If (CAM Miss) {

Issue Read to read data into local memory
 Signal next thread
Increment reference count for this entry in LM
 // Exit first phase of the critical section
 Swap out waiting for the read to finish and a
signal from the previous thread (thread 0 waits on thread 7)
}
else {
// exit first phase of critical section
Increment reference count for this entry in LM
Send Signal to next thread
Swap out waiting for a signal
From the previous thread (thread 0 waits on thread 7)
}

34 Portability Framework Developer’s Manual

Microblocks
// Enter second phase of critical section
If (CAM miss)

Move data read in into local memory
Modify the data read in.
Decrement reference count for this entry
If (reference count == 0)
Write back the data
If (last thread for the microengine)

Send signal to next microengine
Else
Signal the next thread
// Exit the critical section
Swap out and wait for the write to finish if one was issued.

In the example above, the processing in the microblock is broken into two phases. In the first
phase, each thread waits for its turn (thread 0 waits for the previous microengine) and then checks
the CAM to see if its data is in local memory. If not, it issues a read to get the data into local
memory and sets up the CAM entry accordingly. It then signals the next thread (thread 7 signals
thread 0). In the next phase, each thread waits for its turn and modifies the data read in. The last
thread using an entry writes it out to memory. Thread 7 signals the next microengine. In this way,
multiple read-modify-writes on the same entry are "folded" into a single read, multiple modifies
and a single write.

One issue is that the microblock needs to know which microengines are participating in the
microengine to microengine signaling. The microblock will need to use imported variables to make
this happen. For example, a microblock can use an imported variable NEXT_ME to determine which
microengine to signal next. This variable needs to be patched in by the building block core
component on the Intel XScale® core (using the microengine mask that is passed in to the core
component indicating which microengines it runs on).

A significant consequence of having microblocks where the threads run in strict order (and the
order is imposed by thread signaling) is that all threads must go through all microblocks on the
microengine. Even if a packet is dropped at any stage of the pipeline, the thread must continue
through the rest of the pipeline on the microengine so it may signal the next thread in an ordered
critical section. The same applies if the packet goes to the core or if it skips stages of a pipeline.
The implication of this is that the data flow in the dispatch loop is no longer a graph but a
sequential pipeline.

The data plane library components ixp_sig and ixp_critsect interfaces may be used to
implement the critical section in microcode. For more information, see the Intel® Internet
Exchange Architecture Portability Framework Reference Manual.

In the unordered thread model, critical sections may be implemented via locks in memory using the
SRAM or Scratch atomic operations. The folding technique is not applicable. Atomic operations in
scratch are recommended over atomic operations in SRAM which have a performance penalty on
IXP2400 and IXP2800 A1 silicon.
Portability Framework Developer’s Manual 35

Microblocks
4.7 Exception Packets

If a microblock throws an exception and sends the packet to the core, it calls the dispatch loop
macro dl_set_exception[] (or microC function dl_set_exception()). This takes as
arguments:

• The microblock ID for this block. This allows the Resource Manager on the core to send this
packet to the appropriate Intel XScale® core component that has registered an exception
packet handler for this block.

• The exception code. This is an 8-bit value that the microblock uses to indicate to the Intel
XScale® core component why this packet was marked as an exception packet. The values for
the exception code and how they are interpreted are decided between the microblock and the
associated Intel XScale® core component.

• The value for dl_next_block. Currently two priorities are supported for exception packets
and dl_next_block may be either IX_EXCEPTION or IX_EXCEPTION_PRIORITY.

All of the above are stored and passed along in the cached dispatch loop state.

In the ordered threading mode, the packet still goes through all the other blocks in the pipeline
(because some of these blocks may be strictly ordered critical sections). The other blocks check the
value of dl_next_block and simply pass the packet along. Finally the packet gets to the system
sink block (dl_sink[]). This block queues the packet in a scratch (or SRAM) ring going to the
core. The framework supports two scratch (or SRAM) rings going to the core–one for high-priority
packets and the other for low priority packets. These rings will be shared by all microengines.

4.8 Receiving Packets from the Intel XScale® Core

On both the Intel® IXP2400 Network Processor and the Intel® IXP2800 Network Processor,
scratch rings are used to pass packet descriptors from one microengine to the next. To receive
packets from the Intel XScale® core, a separate scratch ring is used. The dl_source[] macro needs
to poll this scratch ring in addition to the ring from the previous microengine. This can be done in
two ways - one is to dedicate a single microengine thread to handle only packets from the Intel
XScale® core, the other is to poll the ring from the Intel XScale® core periodically (e.g. once in 64
packets). The method chosen depends on the application and may be modified by the developer in
the dl_source[] implementation.

Note that the Intel XScale® core can atomically write to a scratch ring shared by the microengines.
However, it can only write a single word atomically into the scratch ring. Since most messages on
the ring are multiword, this feature is not used to write directly to the microengine to microengine
scratch ring.

4.9 Dropping Packets

If a microblock decides to drop a packet, it sets dl_next_block to IX_DROP. The packet still has
to go through the rest of the pipeline. The other microblocks in the pipeline will check for the value
of dl_next_block to see if they need to handle the packet.
36 Portability Framework Developer’s Manual

Microblocks
4.10 Handling Null Packets

A microblock may receive NULL packets in the ordered thread model. For example, if a thread
polls a scratch ring and no packet is available it receives NULL from the ring. This thread still
needs to execute the entire pipeline with this NULL packet. This implies that a microblock must
support bypass of NULL m-packets (the inter-thread signaling must be done if it contains a critical
section).

If a NULL packet is received, then dl_next_block will be set to IX_NULL. Microblocks can
check for the value of dl_next_block to determine if they need to handle the packet or not.

4.11 Ordered vs. Unordered Model

For packet processing microblocks without critical sections (for example, IPv4/v6 forwarding,
MPLS marking, and switching) there is little difference in the code for the ordered and unordered
models. One change is that in the unordered model, it is not required to check if the packet has the
dl_next_block set to the block id for the current microblock. This check should be compiled out of
the code with a build switch #ifdef POTS.

For blocks with critical sections, the algorithm for locking and accessing the shared data structure
is different. Future revisions of the document will explore how to hide this via a library API.

Driver blocks specially the receive and transmit code will typically be written to the ordered thread
model. Note that in typical applications, even if the packet processing code runs in the unordered
thread model, the driver code for Receive and Transmit may run in the ordered thread model.
Portability Framework Developer’s Manual 37

Microblocks
38 Portability Framework Developer’s Manual

Dispatch Loop 5

The dispatch loop combines microblocks on a microengine and implements the data flow between
them. The dispatch loop also caches commonly used variables in registers or local memory. These
variables can be accessed by microblocks using a set of helper macros or microC functions. The
dispatch loop also provides source and sink blocks to send and receive packets to the Intel XScale®
core and to send packets to a different microblock group. Each of these processes is described in
this chapter.

Note: A dispatch loop is specific to the application being targeted. The intent is for the microblocks to be
as reusable as possible. The dispatch loop and the internal implementation of its associated helper
macros or functions may be optimized for a specific application.

5.1 Dispatch Loop for the Ordered Thread Model

The dispatch loop implements the execution of the flow among the microblocks. Conceptually this
can be a graph, but because of the restrictions discussed in Section 4.6, “Critical Sections and
Folding in a Microblock,” this graph must be mapped into a linear execution of the microblocks.
This linear execution mapping is derived by performing a topological sort of the microblocks.

To implement the behavior of the graphs, an integer value is assigned to each of the microblocks.
At the exit to the microblock, the integer value will set the dl_next_block value associated with
the current packet. When a microblock receives control of the packet, the receiving microblock
must compare the packet’s dl_next_block number to the receiving microblock’s number. If the
dl_next_block number on the packet is not equal to the current microblock’s number, the
microblock must perform the bypass operation; otherwise it processes the packet as normal.

Figure 5-1 shows a simple case with three microblocks. Block 1 is a Bridge microblock
performing layer 2 bridging. It has two logical outputs; one for bridged traffic and one for non-
bridged traffic. Packets that are bridged go directly to block 3, a Meter microblock, while non-
bridged data is sent to block 2, an IPv4 forwarding microblock. Traffic from block 2, the IPv4
forwarding microblock, is then sent to block 3, the metering microblock.

Figure 5-1. A Flowchart of the Logical Call Order for the Example Microblocks

A9918-01

Bridge
1

IPv4
2

Meter
3

Portability Framework Developer’s Manual 39

Dispatch Loop
Figure 5-2. Flattened Microblock Call Graph.

Figure 5-2 transforms the graph in Figure 5-1 into a linear sequence of microblocks. Each
microblock will be called in turn. For example, at the Bridge microblock, the dl_next_block
value of the dispatch loop will be set to 2 or 3 based on whether the packet is non-bridged or
bridged, respectively. At the IPv4 microblock, the dl_next_block value will be examined. If it
is 2, then forwarding operations are performed. If the value is 3, bypass operations are performed.

The details of setting the dl_next_block are covered in later sections.

5.2 Dispatch Loop Structure

As described in the previous section, the dispatch loop is a sequential pipeline of microblocks.
Below is an example of a dispatch loop for the ingress functional pipeline for the OC-48 POS IPv4
forwarding application described in the Intel® Internet Exchange Architecture Software Building
Blocks Developer’s Manual.

// include header files
#include dispatch_loop.h // generic dispatch loop structures
#include dl_pos.h // pos specific dispatch loop variables
#include IPFwd.h // IP Longest Prefix Match forwarding block
#include Meter.h // Metering block
#include WRED.h // WRED block

extern DL_PosRx dl; // instantiate dispatch loop control structure

void main()
{

DL_Source_Init(); // initialize DL_Source block
IPFwd_Init(); // initialize the Ipv4 Forwarding block
Meter_Init(); // initialize the meter block
WRED_Init(); // initialize the WRED block
DL_Sink_Init(); // initialize DL_MESink block

while(TRUE) { // Run the dispatch loop

// Get a packet from the scratch ring
DL_Source();
// call the IP forwarding block
IPFwd();
// call the metering block
Meter();
// call the WRED block

A9919-01

Bridge
1

Meter
3

IPv4
2

40 Portability Framework Developer’s Manual

Dispatch Loop
WRED();
// pass packet to another microengine
DL_Sink(); //

} // end dispatch loop while
} // end main

The dispatch loop initializes each of the microblocks within its scope by calling the
<BlockName>_Init() function, as shown above.

The dispatch loop then executes a loop in which it sequentially calls all the microblocks in the
pipeline. The first microblock of the dispatch loop is a system source block that dequeues packets
from a scratch ring. These packets may come either from the Intel XScale® core or a previous
microengine. Each microblock will set the dl_next_block variable indicating which microblock
needs to handle the packet next.

5.3 Dispatch Loops for the Unordered Thread Model
(POTs)

Most of the concepts introduced in the previous section apply to writing dispatch loops for the
unordered thread model. The buffer metadata is still maintained in global structures, and a dl_sink
library function still handles exception and dropped packets. The differences between the dispatch
loop styles are the result of actual programming models. In the unordered thread model, the
dispatch loop does not need to execute every microblock in order. It may instead skip completely
over the microblocks that do not need to process a particular packet, and it may also loop back and
re-execute some microblocks. This change affects two aspects of dispatch loop writing: dispatch
loop control flow and handling packets from the Intel XScale® core.

5.3.1 Dispatch Loop Control Flow

In the dispatch loop for the unordered thread model, the dl_next_block value is checked after each
microblock is called. Based on the value of dl_next_block, the code determines which packet the
block goes to next.

There are two reserved values for exception packets and packets to be dropped. These reserved
values are IX_EXCEPTION and IX_DROP, just as in the ordered thread execution dispatch loops.
When the dl_sink[] block receives a packet with a next_block value matching one of these
return values, it performs the correct action. If the value is neither of these, it passes the packet to
the next microengine. It is very important that even dropped packets are sent to the sink block,
since it manages packet reordering and skipped sequence numbers can cause the system to lock up.

When a dispatch loop writer is writing code to test the dl_next_block value to decide which
microblock to execute next, they have a few options. Developers can use if statements to construct
the entire control flow. For example:
// run the bridge microblock and test the return variable
bridge()
.if (dl_next_block == BRIDGE_OUTPUT0)

ipv4()
.if (dl_next_block == IX_EXCEPTION)

// if this is an exception packet, send to the system
// driver
dl_sink()
Portability Framework Developer’s Manual 41

Dispatch Loop
.else
meter()
dl_sink()

.endif
.else

meter()
dl_sink()

.endif

Although this example is in microengine assembly, the microengine C variant of this code would
look almost the same. The only difference would be that the microengine C microblock would
actually return the next- block code.

The advantage of using an if statement to implement the microblock flow is that the flow of
packets through the microblocks is readily apparent from just the dispatch loop. There are,
however, some disadvantages. For example, in the assembly code above, the code for the meter
microblock is duplicated in the control store since it is a microengine assembly macro. This
reduces the amount of control store available and may actually make the code too large to fit on a
microengine. Non-inlined function calls in microengine C eliminate this drawback but reduce
performance and reduce the ability of the microengine C compiler to perform optimizations on
otherwise inlined code. Although the example may work well for implementing simple flows,
more complicated flows with loops may require a branch or a goto statement. Therefore, this
dispatch loop style is recommended only for simple graphs without loops.

Another way to implement the microblock flow in a dispatch loop is to use if statements coupled
with branches in microengine assembly or goto statements in microengine C. Using this style, the
above code could be rewritten in microengine C as follows:
// run the bridge microblock and test the return variable

bridge:
Bridge();
if (dl_next_block == BRIDGE_OUTPUT0)
{

goto ipv4;
}
else {

goto meter;
}

ipv4:
Ipv4();

if((dl_next_block == IX_EXCEPTION)
{

goto dl_sink;
}

meter:
Meter();

dl_sink:
dl_sink();
42 Portability Framework Developer’s Manual

Dispatch Loop
Another option available for implementing the microblock flow is the br=byte instruction. This
option results in only one branch per microblock. For example:

// run the bridge microblock and test the return variable
bridge#:
bridge();
br=byte[dl_next_block, 0, BRIDGE_OUTPUT0, ipv4#]
br[meter#]

(etc)

5.3.2 Packets from the Intel XScale® Core

As in the dispatch loops for ordered thread model, the framework macro dl_source may produce
packets that are from the Intel XScale® core and could be destined for any of the microblocks in
the microblock group. In order for this to work, the Intel XScale® core blocks need a way to
reference the correct microblocks. The Intel XScale® core blocks use bindings.h file to do this. The
dl_source function then sets the dl_next_block to one of these unique microblock IDs.

In the dispatch loop, the dl_next_block value set by dl_source could be the microblock ID for any
of the microblocks in the microblock group. To test this return value, the dispatch loop code could
use a series of if statements with associated branches/gotos, or it could use a case statement/jump
instruction. Here is a simple example illustrating this style:

while(1)
{

if (dl_buffer_handle)
{

dl_source();
switch (dl_next_block)
{
case BRIDGE_BLOCKID:

goto bridge;
break;

case IPV4_BLOCKID:
goto ipv4;
break;

case METER_BLOCKID:
goto meter;
break;

default:
// This is a catastrophic error
goto drop;
break;

}
}
else
{

continue;
}
...
Portability Framework Developer’s Manual 43

Dispatch Loop
This style could be inefficient in some cases. For example, if the number of packets coming from
the Intel XScale® core is small, and if the remainder of the packets all go to the same microblock,
executing the case statement each time a packet enters the microblock group could be very
inefficient. To address this problem, the framework has additional dl_source functions/macros that
allow the developer to specify the scratch ring from which to dequeue packets. This could then be
used to balance the rate at which packets are dequeued from the core with the rate at which packets
are dequeued from other sources, and reduces the number of times the case statement/jump
instruction must be executed. The code below shows this:
int count = 0;
while(1)
{

if (count++ & 0xf)
{

dl_source(RING_FROM_PREV_MICROENGINE);
if (dl_buffer_handle)

{
// All packets from the previous microengine go to the
// bridging microblock
goto bridge;

}
else
{

continue;
}

}
else
{

dl_source(RING_FROM_CORE);
if (dl_buffer_handle)
{

// Packets from the core could go to any microblock
// in the microblock group
switch (dl_next_block)
{
case BRIDGE_BLOCKID:

goto bridge;
break;

case IPV4_BLOCKID:
goto ipv4;
break;

case METER_BLOCKID:
goto meter;
break;

default:
// This is a catastrophic error
goto drop;
break;

}
}
else
{

continue;
44 Portability Framework Developer’s Manual

Dispatch Loop
}
}

...

5.4 Dispatch Loop Variables

The dispatch loop maintains some global state, which may be cached in registers or local memory.
In the case of microC, this state will be maintained in a global C structure. The compiler decides
whether this structure can be cached in registers or if some the data structure elements will be
cached in local memory.

5.4.1 Microengine Assembler Dispatch Variables

Table 5-1 lists variables that may be cached by a dispatch loop (the actual variables cached depend
on the nature of the application and can customized by the developer).

Table 5-1. Microengine Assembler Dispatch Loop Variables1

Field Name Size Use

exception_id 8 bits This is used by microblocks when sending packets to the
Intel XScale® core. The microblock must set the
exception_id to the microblock ID when indicating an
exception.

exception_code 8 bits The microblock sets an 8-bit exception code when a
buffer is sent to the Intel XScale® core component. This
exception code is treated as opaque data by the dispatch
loop and Resource Manager.

dl_next_block 8 bits Identifies the next logical block to process after the
current block. The current block sets this value after it is
done processing.

dl_buf_handle 32 bits The buffer handle containing the start of the packet.
dl_eop_buf_handle 32 bits The buffer handle containing the end of the packet.
buffer_size 16 bits This is the length of the buffer containing the start of the

current packet. This is the total length of the buffer
including all of the headers. If the buffer is not complete,
this is the amount of data currently in the buffer.

packet_size 16 bits This is the total length of the packet across multiple
buffers.

buffer_offset 16 bits This is the offset from the start of the buffer to the buffer
data. Transform blocks that pack or unpack the buffer
must change this offset.

input_port 16 bits This contains the logical port number on which the
packet was received. Port numbers should be in the
range of 0 to 255.
Portability Framework Developer’s Manual 45

Dispatch Loop
Apart from the above, other variables specific to POS, Ethernet, or ATM may be cached in an
extension to this structure.

5.4.2 Microengine C Loop Data Structure

For microblocks written in Microengine C, the variables described in Section 5.4.1 and the packet
headers are stored in global data structures. This section describes the data structure used to store
this data. Microblocks written in Microengine C access data in this structure by directly referencing
its member fields. Consequently there are no get or set functions for this data structure.

rx_stat 4 bits These are receive status flags for a buffer. Supported
flags are IX_RXSTAT_UCAST, IX_RXSTAT_BCAST,
IX_RXSTAT_MCAST, and IX_RXSTAT_PROMISC.

output_port_egress 24 bits This is the number of the port interface on which the
packet is to be transmitted in a given blade.

output_port_fabric 8 bits When multiple blades are connected to the fabric this is
the blade ID.

output_port_type 4 bits The type of interface on which the packet is to be
transmitted—for example, POS, ATM, Ethernet, and so
on.

cache_flags 4 bits This is used for caching packet headers. Each bit
represents 32 bytes of the packet header—the cache line.
Two bits are used to detect if a cache line is in local
memory. Two bits are used to check if a cache line is
dirty and needs to be written out.

next_hop_id 32 bits Next hop IP ID
flow_id (QoS only) 32 bits The flow identifier that is used for metering and other

QoS functions.
queue_id (QoS only) 16 bits The output queue identifier. This is set when classifying

packets for quality of service processing.

1. These variables may be cached.

Table 5-1. Microengine Assembler Dispatch Loop Variables1 (Continued)

Field Name Size Use

Microengine C Data Structure Members

buffer_next The next buffer in the chain.

buffer_size The amount of data currently in the buffer.

offset The offset in DRAM where the data begins.

packet_size The amount of data in the buffer chain.

free_list_id The free list to which this buffer belongs.

rx_stat The receive status.

header_type The header type—IPv4, IPv6, and so on.
46 Portability Framework Developer’s Manual

Dispatch Loop
5.5 Dispatch Loop Macros

Of the variables described in Section 5.4, “Dispatch Loop Variables,” the buffer handles and the
next block will be stored in global variables (dl_buf_handle, dl_eop_buf_handle, and
dl_next_block). The remaining variables are packed into registers.

The IXA SDK provides macros for buffer allocation, buffer freeing, the return or modification of
various IP header fields, and so on. There are two categories of helper macros that support
Dispatch Loops. Full details on these macros are contained in Section 2.2, “Dispatch Loop
Interface” of the Intel® Internet Exchange Architecture Portability Framework Reference Manual.

Table 5-2 summarizes the Dispatch Loop macros supporting meta data and Table 5-3 summarizes
the Dispatch Loop macros supporting extended meta data.

input_port The input port on which this packet was received.

output_port The output port on which this packet is to be transmitted.

next_hop_id The next hop ID.

fabric_port The blade port.

reserved Reserved for future use.

nhid_type The next hop ID type.

flow_id The flow ID.

class_id The class ID.

reserved_2 Reserved for future use.

packet_next The next packet in the chain—used only in Hierarchical Queuing.

Microengine C Data Structure Members (Continued)

Table 5-2. Dispatch Loop API Functions for Meta Data

Name Description

dl_buf_init[] Initializes the Buffer API.

dl_buf_alloc[] Allocates a buffer.

dl_buf_free[] Frees a buffer.

dl_buf_get_desc[] Returns the SRAM pointer to the meta data given a buffer
handle.

dl_buf_get_data[] Returns the DRAM pointer to the buffer data given a buffer
handle.

dl_buf_get_data_from_meta[] Returns the DRAM pointer using the SRAM base as input.

dl_meta_init_cache[] Populates a meta data cache.

dl_meta_flush_cache[] Flushes meta data to SRAM.

dl_meta_load_cache[] Loads meta data from SRAM into registers.

dl_meta_get_buffer_next[] Returns the handle of next buffer in the buffer chain—for large
packets.
Portability Framework Developer’s Manual 47

Dispatch Loop
dl_meta_set_buffer_next[] Sets the handle of next buffer in the buffer chain—for large
packets.

dl_meta_get_hw_next[] Gets the hardware next field in the handle

dl_meta_set_hw_next[] Sets the hardware next field in the handle

dl_meta_get_offset[] Returns the offset at which data begins within a buffer.

dl_meta_set_offset[] Sets the offset at which data begins within a buffer.

dl_meta_get_free_list[]

Returns the free list from which the current buffer—that is, the
buffer pointed to by dl_buf_handle—was allocated. There
may be multiple free lists—that is, buffer pools—but only one is
in use at any point in time.

dl_meta_set_free_list[]
Sets the free list to which the current buffer belongs. There may
be multiple free lists—that is, buffer pools—but only one is
currently used.

dl_meta_get_rx_stat[] Returns the receive status.

dl_meta_set_rx_stat[] Sets the receive status.

dl_meta_get_buffer_size[] Returns the buffer size of the current buffer in the packet.

dl_meta_set_buffer_size[] Sets the buffer size of the current buffer in the packet.

dl_meta_get_input_port[] Returns the input port over which the packet came in.

dl_meta_set_input_port[] Sets the input port.

dl_meta_get_packet_size[] Returns the total packet size.

dl_meta_set_packet_size[] Sets the total packet size.

dl_meta_get_nexthop_id[] Returns the ID for the next hop.

dl_meta_set_nexthop_id[] Sets the ID for the next hop.

dl_meta_get_output_port[] Returns the output port. This is the port on the egress IXP2400
out of which the packet is transmitted.

dl_meta_set_output_port[] Sets the output port. This is the port on the egress IXP2400 out
of which the packet is transmitted.

dl_meta_get_fabric_port[] Returns the output blade (when multiple blades are connected
to the fabric) from which the packet is transmitted.

dl_meta_set_fabric_port[] Sets the output blade (when multiple blades are connected to
the fabric) from which the packet is transmitted out.

dl_meta_get_flow_id[] Returns the flow ID.

dl_meta_set_flow_id[] Sets the flow ID.

dl_meta_get_class_id[] Returns the class ID.

dl_meta_set_class_id[] Sets the class ID.

dl_buf_set_SOP[] Sets the SOP bit in the buffer handle. This indicates that the
buffer contains the start-of-packet.

dl_buf_set_EOP[] Sets the EOP bit in the buffer handle. This indicates that the
buffer contains the end-of-packet.

dl_buf_get_cell_count[] Gets cell count from the buffer handle.

Table 5-2. Dispatch Loop API Functions for Meta Data (Continued)

Name Description
48 Portability Framework Developer’s Manual

Dispatch Loop
.

dl_buf_set_cell_count[] Sets the cell count in the buffer handle.

dl_set_exception[] Sets the exception code.

dl_meta_get_nexthop_id_type[] Returns the next hop ID type—IPv4, IPv6, and so on.

Table 5-3. Dispatch Loop API Functions for Extended Meta Data

Name Description

dl_meta_parent_get_ref_cnt[] Obtains the reference count value.

dl_meta_child_get_child_offset[] Obtains the child buffer data offset in bytes.

dl_meta_child_set_child_offset[] Sets the child buffer data offset in bytes.

dl_meta_child_get_child_buffer_size[] Obtains the child buffer data size in bytes.

dl_meta_child_set_child_buffer_size[] Sets the child buffer data size in bytes.

dl_meta_child_get_child_freelist_id[] Obtains the freelist ID of the child buffer.

dl_meta_child_set_child_freelist_id[] Sets the freelist ID of the child buffer.

dl_meta_child_get_parent_offset[] Obtains the data offset of the parent buffer.

dl_meta_child_set_parent_offset[] Sets the data offset of the parent buffer.

dl_meta_child_get_parent_buffer_size[] Obtains the data size of the parent buffer.

dl_meta_child_set_parent_buffer_size[] Sets the data size of the parent buffer.

dl_meta_child_get_header_type[] Obtains the header type of the packet.

dl_meta_child_set_header_type[] Sets the header type of the packet.

dl_meta_child_get_parent_free_list[] Obtains the free list ID of the parent buffer.

dl_meta_child_set_parent_free_list[] Sets the free list ID of the parent buffer.

dl_meta_child_get_rx_stat[] Obtains the receive status of the packet.

dl_meta_child_set_rx_stat[] Sets the receive status of the packet.

dl_meta_child_get_packet_size[] Obtains the size of the packet across all buffers.

dl_meta_child_set_packet_size[] Sets the size of the packet across all buffers.

dl_meta_child_get_output_port[] Obtains the output port number for this packet.

dl_meta_child_set_output_port[] Sets the output port number for this packet.

dl_meta_child_get_input_port[] Obtains the input port number for this packet.

dl_meta_child_set_input_port[] Sets the input port number for this packet.

dl_meta_child_get_nexthop_id[] Obtains the next hop ID for this packet.

dl_meta_child_set_nexthop_id[] Sets the next hop ID for this packet.

dl_meta_child_get_fabric_port[] Obtains the fabric port number for this packet.

dl_meta_child_set_fabric_port[] Sets the fabric port number for this packet.

dl_meta_child_get_nexthop_id_type[] Obtains the nexthop ID type for this packet.

dl_meta_child_set_nexthop_id_type[] Sets the nexthop ID type for this packet.

dl_meta_child_get_flow_id[] Obtains the flow ID for this packet.

Table 5-2. Dispatch Loop API Functions for Meta Data (Continued)

Name Description
Portability Framework Developer’s Manual 49

Dispatch Loop
dl_meta_child_set_flow_id[] Sets the flow ID for this packet.

dl_meta_child_get_color[] Obtains the color of this packet.

dl_meta_child_set_color[] Sets the color of this packet.

dl_meta_child_get_class_id[] Obtains the class ID of this packet.

dl_meta_child_set_class_id[] Sets the class ID of this packet.

dl_meta_child_get_parent_buffer_id[] Obtains the parent buffer ID to which this child
buffer is linked.

dl_meta_child_set_parent_buffer_id[] Sets the parent buffer ID to which this child buffer is
linked.

dl_meta_child_get_buffer_next[] Obtains the next buffer handle for this child buffer.

dl_meta_child_set_buffer_next[] Sets the next buffer handle for this child buffer.

dl_meta_child_get_packet_next[] Obtains the next packet handle for this child buffer.

dl_meta_child_set_packet_next[] Sets the next packet handle for this child buffer.

Table 5-3. Dispatch Loop API Functions for Extended Meta Data (Continued)

Name Description
50 Portability Framework Developer’s Manual

Optimized Data Plane Libraries Support6

The IXA SDK Tools CD provides additional library support for the optimized data plane libraries.
These libraries consist of generic microengine software building blocks used to construct an
application’s microengine modules, called microblocks. For more information on microblocks, see
Chapter 4, “Microblocks”.

The optimized data plane macro libraries are reusable software functions optimized for high
performance and minimal executable code size.

For details concerning the use of these libraries and the specific APIs they support, see the Intel®
Internet Exchange Architecture Optimized Data Plane Libraries Reference Manual on the IXA
SDK Tools CD.
Portability Framework Developer’s Manual 51

Optimized Data Plane Libraries Support
52 Portability Framework Developer’s Manual

Resource Manager 7

7.1 Overview

The Resource Manager is used as a programming interface between Intel XScale® core
applications and microcode running on the microengines of the Intel® IXP2400 and IXP2800
Network Processors.

The Resource Manager functionality includes:

• Hardware resource allocation, initialization, and configuration

— Memory–SRAM, DRAM, Scratch, and local memory

— Hardware queues and rings

• Microengine management

— Loading

— Patching symbols

— Enable

— Disable

• Buffer management

• Communication with microblocks

7.2 Changes for IXA SDK 3.x

This section describes the major changes between the Resource Manager functionality available in
the previous Intel® IXA SDK 2.0 release and the enhanced functionality in the Intel® IXA SDK
3.x releases. Each sub-section briefly describes the changes. The subsequent internal design section
presents the design of Resource Manager incorporating all these changes.

7.2.1 Stand Alone API

In Intel® IXA SDK 2.0, the ACE framework was used to deliver packets to microACEs from
microblocks. Also, the Resource Manager supported APIs for creating microACEs, binding static
microACE targets, and so on.

For Intel® IXA SDK 3.x, the Resource Manager API supports a single stand-alone API, which may
be used by the IXA building blocks or may be directly used by applications outside of that
framework.

All APIs and functionality specific to the core component infrastructure have been moved into the
Core Component Infrastructure library (see Chapter 10, “Core Component Infrastructure”). Also
some APIs that are generic have been moved into the Resource Manager.
Portability Framework Developer’s Manual 53

Resource Manager
7.2.2 Compile Time Allocation of Microengines

The Intel® IXA SDK 2.0 Resource Manager allocated microengines based on the media interfaces
(ports) in use. When version 2.0 microcode was compiled one UOF file was generated per
microblock group. If a microblock group was instantiated on multiple microengines, then the UOF
file for that microblock group was downloaded to each of these microengines.

While this approach improved usability for application developers, it was not possible for the
Resource Manager to support every type of media interface. Also loading the same UOF file on
multiple microengines produced problems in MicroC, where microengines could export and share
variables—the SRAM memory spill area, for example—that are relocated by the linker.

The Intel® IXA SDK 3.x Resource Manager places responsibility for microengine allocation on the
application developer at compile time. A single UOF file containing one UOF file per microengine
is created using the workbench or command line tools.

7.2.3 Patching Symbols at Debug Time

In Intel® IXA SDK 2.0 microcode was loaded either by an application running on the target using
the Resource Manager or by the workbench during debugging. The Intel® IXA SDK 2.0 Resource
Manager did not support patching symbols in workbench mode.

The Intel® IXA SDK 3.x Resource Manager supports patching symbols in either workbench or
execution mode. In workbench mode, all symbols patched by the application are stored locally
until the workbench GUI initiates the microcode download and the UOF file is received.

7.2.4 VxWorks Support

The IXA Portability Framework supports VERITAS Works (VxWorks) and Linux. Even though
Operating System Support Layer (OSSL) is used wherever possible, the Resource Manager is a
combination of a kernel driver and a user library, which may require some changes to make it
portable across these operating systems.

7.2.5 Hardware Resource Management

The Resource Manager manages the hardware resources supported in the IXP2400 and IXP2800
processors. These resources include:

• Scratch rings

• SRAM rings and link-lists

• SRAM, DRAM, scratch, and local memory

• RBUFs and TBUFs

7.2.6 Dispatch Loop Support

The Intel® IXA SDK 2.0 Resource Manager patched symbols that were required to configure the
dispatch loop. Since the dispatch loop is very application-specific, these symbols vary depending
on the type of application.
54 Portability Framework Developer’s Manual

Resource Manager
The Intel® IXA SDK 3.x Resource Manager defers patching the dispatch loop symbols that are
application-specific (not generically applicable to every dispatch loop) to the system application.

7.2.7 MicroC Support

The Intel® IXA SDK 3.x Resource Manager supports microblocks written in MicroC.

7.2.8 Buffer Management

The Intel® IXA SDK 2.0 Resource Manager did not offer buffer-management support as this was
handled in the ACE Framework and in microcode. The only Resource Manager processing of the
buffer was to translate the packet metadata between the ACE Framework and microcode.

The Intel® IXA SDK 3.0 Resource Manager provides a buffer management API. This interface is
used by the IXA Software Framework and by applications using the framework. Both hardware
and software buffer pools are supported. The hardware pools are accessible by the core
applications and the microcode at the same time, and therefore, they are suitable for core-
microblock communication. The buffer management API supports buffer pools of different sizes as
well as chaining of packet buffers.

7.2.9 Communication with Microblocks Using Hardware Features

The Intel® IXA SDK 2.0 Resource Manager provided packet transfer between microblocks and
core applications using software only by means of polling in the dispatch loop for microblocks and
a polling thread in Resource Manager for Intel XScale® core applications. The packet buffer
handles were stored in software DRAM rings created by the Resource Manager.

The Intel® IXA SDK 3.x Resource Manager supports both control messages and packet data
transfer. Hardware rings and interrupts are used as appropriate (see Section 4.7, “Exception
Packets” and Section 4.8, “Receiving Packets from the Intel XScale® Core”).

There are two ways of doing this:

• To limit the number of interrupts going to the core, the dispatch loop sink block can send an
interrupt to the Intel XScale® core only when the ring is full or above a particular threshold.
The Resource Manager also polls the ring (the polling interval can now be increased). This
ensures that packets are being dequeued even if the ring never gets full or reaches the required
threshold.

• A specific interrupt (IRQ_THREAD_A) is reserved for communicating with the Resource
Manager. When the Intel XScale® core receives this interrupt, it signals a task (outside of
interrupt context) to dequeue the packets. The IRQ_THREAD_A interrupt from the microengine
is masked at this point. The task dequeues packets from the ring until it is empty. At that point,
it unmasks the IRQ_THREAD_A interrupt. The problem with this approach is that the interrupt
cannot be used for anything other than communication with the Resource Manager.

The choice of which mechanism to use is dependent on the target implementation requirements.
Portability Framework Developer’s Manual 55

Resource Manager
7.3 Internal Design

Figure 7-1 shows the overall design of the IXA SDK Resource Manager. The Resource Manager
implementation is layered on top of the OSSL and the workbench microengine loader (UcLo,
Ueng) libraries. The Resource Manager is implemented as a library, kernel thread, and driver
module under Linux. The driver component is needed in the Linux version to support kernel mode
building blocks and to handle interrupts. Under VxWorks, the Resource Manager is implemented
as a library and a task to support communication with the microengines.

Figure 7-1. Internal Design of the IXA SDK Resource Manager

As shown in Figure 7-1, the building block infrastructure uses the APIs exported by the Resource
Manager. Applications written outside of the building block infrastructure can directly access and
use the Resource Manager API.

Intel® XScale™ Core

Microengines

Microengines

A9922-01

OSSL UcLo, Udgb, UEng

Microengines

Intel® XScale™ Core

Communication
Dispatch Threads

Resource Manager Library

Services
API

ME
API

Ring
API

Queue
API

Buffer
API

Memory
API

Comm
API

Core
Component

Core
Component

Infrastructure

Application not
using Core
Component

Infrastructure

Microengines

Low High
56 Portability Framework Developer’s Manual

Resource Manager
The IXA SDK Resource Manager API may be functionally grouped as shown in Table 7-1.

7.4 API

This section provides details on the IXA SDK Resource Manager API. The function prototypes are
provided for completeness of the document only. For more details on the Resource Manager API,
see Section 3, “Resource Manager,” in the Intel® Internet Exchange Architecture Portability
Framework Reference Manual.

Note: The current version of the Resource Manager API is not backward compatible with the Intel® IXA
SDK 2.0 Resource Manager API. In part, this is due to a number of feature changes between the
IXP1200, the IXP2400, and IXP2800 Network Processors. Also, with the modularization of the
SDK Infrastructure, the scope and requirements for the Resource Manager API have changed.

Table 7-1. Resource Manager API Functional Groups

Resource Manager API
Group Description

System API Functions to initialize and terminate the API, get and set the system hardware
configuration, and so on.

Microengine API Functions for microengine management.

Hardware Resource
Management API Functions to manage hardware rings and queues.

Buffer Management API Functions for managing buffer freelists and for accessing packet descriptors and
data.

Communication API Functions to communicate with the microengines, other core components in the
system, and the peer subsystem in a dual ingress/egress system.

Remote Communication
Extension API Functions to communicate with remote systems.

Memory Management API Functions to manage non operating system memory.

System Repository API Functions to centrally manage configuration properties.

64-bit Counters API Functions to manage 64-bit provisioning counters.

Services API Functions for software services including atomic operations, fast memory copy
operations, and so on.

Hash API Functions to support 48-, 64-, and 128-bit hash operations.

Microengine Services API Functions that coordinate operations between the Intel XScale® core and
microengines.

Debug Support API Functions that provide debugging capabilities.
Portability Framework Developer’s Manual 57

Resource Manager
7.4.1 Basic Types

The Resource Manager defines a set of basic types that are used across the entire SDK. These types
are defined to ease portability of the API across different operating systems, compilers, etc. These
types are listed in Table 7-2.

Table 7-2. Basic Types Supported by the Resource Manager

Basic Types Description

ix_int8 An 8-bit signed integer.

ix_uint8 An 8-bit unsigned integer.

ix_int16 A 16-bit signed integer.

ix_uint16 A 16-bit unsigned integer.

ix_int32 A 32-bit signed integer.

ix_uint32 A 32-bit unsigned integer.

ix_int64 A 64-bit signed integer.

ix_uint64 A 64-bit unsigned integer.

ix_uint128 A 128-bit unsigned integer. This type does not support full arithmetic operations.
However a set of macros has been provided to support this type.

ix_bit_mask8 An 8-bit bit mask.

ix_bit_mask16 A 16-bit bit mask.

ix_bit_mask32 A 32-bit bit mask.

ix_bit_mask64 A 64-bit bit mask.

ix_handle Generic handle type used throughout the framework API. All handle types are
aliases of this handle type.

ix_error Error token used through out the Intel® IXA SDK 3.x. All Intel® IXA SDK 3.x
functions return this type. This is a 32-bit unsigned integer that has packed a 16-
bit error code, an 8-bit error group and an 8-bit error level. Macros are provided
for creating an error token and for accessing the different fields.

_IX_OS_TYPE_ Preprocessor symbol that indicates for which operating system the SDK is
currently compiled. At the moment just four values are defined, but others may
be added later:

• _IX_OS_VXWORKS_

• _IX_OS_LINUX_KERNEL_

• _IX_OS_LINUX_USER_

• _IX_OS_WIN32_

NOTE: _IX_OS_WIN32_ is used for debug with foreign model or for Win32
simulation.
58 Portability Framework Developer’s Manual

Resource Manager
7.4.2 System API

The Resource Manager System API provides functions to initialize and terminate the Resource
Manager, to get and set the hardware configuration, and so on. For more details on this API, see
Section 3.2, “System API,” in the Intel® Internet Exchange Architecture Portability Framework
Reference Manual. Table 7-3 lists the functions and data structures in this API.

7.4.3 Microengine API

For more details on this API, see Section 3.3, “Microengine API,” in the Intel® Internet Exchange
Architecture Portability Framework Reference Manual. Table 7-4 lists the functions and data
structures in the MicroEngine API.

Table 7-3. Resource Manager System API

Function or Data Structure Description

ix_rm_error_code The enumerated type listing error numbers specific to the Resource
Manager.

The macro IX_ERROR_GET_CODE()is used to obtain error numbers
from ix_error. Each error number corresponds to one of the values
of this enumerated type.

ix_phy_type The enumerated type specifying the values for physical layer
interfaces that could be present on the board.

ix_port_type The enumerated type specifying the different types of physical
interface.

ix_port The structure specifying a type and number for a physical interface.

ix_subsystem_type For a system composed of an ingress and egress subsystem, this
enumerated type defines the subsystem type.

ix_sys_config The structure specifying system configuration.

ix_memory_reserved_area Describes a microengine memory area to reserve at initialization time.

ix_rm_init() Initializes the Resource Manager API.

ix_rm_term() Terminates the Resource Manager API.

ix_rm_error_get_string() Returns the error string corresponding to an ix_rm_error_code.

ix_rm_sys_config_get() Returns the board-specific configuration.

ix_rm_version_get_string() Returns the Resource Manager library version information string.

ix_rm_sys_config_set() Sets the system configuration.

Table 7-4. Resource Manager Microengine API

Function or Data Structure Description

ix_imported_symbol The structure represents a microcode symbol.

ix_rm_ueng_set_ucode() Sets the microcode image for microengines from a file.

ix_rm_ueng_map_ucode() Sets the microcode image for microengines from a
buffer.

ix_rm_ueng_reset_all() Stops and resets all active microengines.

ix_rm_ueng_patch_symbols() Patches symbols.
Portability Framework Developer’s Manual 59

Resource Manager
7.4.4 Hardware Resource Management API

This section discusses API calls to manage MEv2 hardware features including SRAM queues,
rings, scratch rings, and so on. This API may be extended in the future to support reservation of
RBUFs, TBUFs, and other hardware features. For more details on this API, see Section 3.4,
“Hardware Resource Management API,” in the Intel® Internet Exchange Architecture Portability
Framework Reference Manual.

Table 7-5 lists the functions and data structures in the Hardware Resource Management API.

ix_rm_ueng_load() Loads the microcode into the microstore of the
microengines.

ix_rm_ueng_start() Starts the specified microengines.

ix_rm_ueng_stop() Stops the specified microengines.

ix_rm_ueng_reset() Resets the specified microengines.

ix_rm_ueng_enable() Enables the specified microengines.

ix_rm_ueng_disable() Disables the specified microengines.

Table 7-4. Resource Manager Microengine API (Continued)

Function or Data Structure Description

Table 7-5. Resource Manager Hardware API

Function or Data Structure Description

ix_hw_queue_handle A generic queue handle for hardware queues.

ix_hw_ring_handle A generic handle for hardware rings.

ix_sram_ring_size Enumerated type specifying the supported hardware
SRAM ring sizes.

ix_scratch_ring_size Enumerated type specifying the supported hardware
scratch ring sizes.

ix_rm_hw_queue_create() Creates a hardware queue.

ix_rm_hw_queue_delete() Deletes a hardware queue.

ix_rm_hw_queue_array_get_base_address
()

Returns the virtual base address for an SRAM Q-
array allocated for a specific channel.

ix_rm_hw_enqueue() Enqueues an element to a hardware queue.

ix_rm_hw_dequeue() Dequeues an element from a hardware queue.

ix_rm_hw_sram_ring_create() Creates a hardware ring in SRAM memory.

ix_rm_hw_scratch_ring_create() Creates a hardware ring in SCRATCH memory.

ix_rm_hw_ring_delete() Deletes a hardware ring.

ix_rm_hw_ring_put() Puts element into a hardware ring.

ix_rm_hw_ring_get() Returns an element from a hardware ring.
60 Portability Framework Developer’s Manual

Resource Manager
7.4.4.1 SRAM Queues

The SRAM controllers for the IXP2400 and IXP2800 processor series support a data structure
called Q-array, which provides hardware-supported basic queue management. These hardware-
supported queues enable faster turn-around time for packets in the fast path. See Intel® IXP2400
Network Processor Hardware Reference Manual or Intel® IXP2800 Network Processor Hardware
Reference Manual.

Each element in the Q-array is a queue descriptor used to point to a queue—a singly linked list,
ring, or a journal. The Q-array supports up to 64 on-chip queue descriptors on each SRAM
controller.

There are two ways of using entries in the queue array. For designs requiring a large number of
packet queues, 16 entries of the Q-array are used as a cache. In this case, the entire queue structure
resides in SRAM—including the queue descriptor and queue elements—and the hardware Q-array
is used as a cache for the queue descriptors. Looking up a particular queue requires CAM support,
which can handle up to 16 entries. This implies that the maximum number of queue descriptors
which can be cached is 16. The number of queues in SRAM is only limited by the size of the
SRAM available.

The other way of using entries in the Q-array—more appropriate for buffer-free lists, and so on—is
to allocate an entry to be solely owned by a single queue or ring. In this case, the total number of
queues or rings supported cannot exceed 64.

The Resource Manager reserves entries in the Q-array for queues and rings. For rings, the Resource
Manager allocates memory for the entries in the ring. Apart from applications, the Queue Manager
building block described in Intel® Internet Exchange Architecture Software Building Blocks
Developer’s Manual uses the Resource Manager API to reserve up to 16 entries in the Q-array. The
Resource Manager Buffer API uses this API to allocate buffer free lists and reserve up to 48 entries
in the Q-array.

The allocation of queue descriptors for the packet queues in SRAM is done by the Queue Manager.

When a queue or ring is created, the Resource Manager returns a handle. Subsequently, this handle
should be used to access the entity from the Intel XScale® core. Encoded in the handle is an index
into the Q-array. This index may be passed onto the microblock—either through an imported
variable or through the control block. If the application requests more than one queue the returned
handle indicates the base of a newly created array. For example, if the base handle returned is 0x5
for a ten queue array, then the queues are accessed with handles 0x5 for the first queue in the array,
0x6 for the second queue, 0x7 for the third queue, and so on.

The handle is an alias of the generic ix_handle type, and is encoded as an
ix_hw_queue_handle.

7.4.4.2 SRAM and Scratch Rings

The scratchpad memory in the Intel® IXP2400 and Intel® IXP2800 Network Processors supports
rings of various sizes. During scratch ring creation, the Resource Manager initializes the ring
registers with appropriate base address and size fields. The scratch memory needed for this ring is
also allocated. Once the ring is created, the applications can call Resource Manager functions to
put and get data stored in these rings. These rings are accessible from the microengines also. A
total of 16 rings are supported by the hardware with ring numbers of zero through fifteen.
Portability Framework Developer’s Manual 61

Resource Manager
The scratchpad memory is 16KB and the scratchpad can be accessed in longwords only. This
implies that many combinations of rings are not possible. For example, the total scratchpad
memory allocated to support the required rings cannot exceed 4KB longwords. If applications need
to access scratchpad memory by means other than rings, the space available for rings is further
reduced. Access to the ring data are purely under the control of software, and the hardware doesn’t
prevent accesses to other regions of scratchpad memory. Hence the applications on the Intel
XScale® core are required to use Resource Manager functions to at least reserve their requirements
for scratch memory.

SRAM rings are supported by the Q-array. The number of rings supported is restricted only by the
entries free in the Q-array.

When a ring is created, the Resource Manager returns a handle. Subsequently, this handle should
be used to access the ring from the Intel XScale® core. Encoded in the ring handle is an index into
the SRAM Q-array which can be passed to microblocks.

Handles

The handle is a 32-bit longword and is encoded as described for ix_hw_ring_handle. Both
SRAM and scratch rings are represented by the same handle type, ix_hw_ring_handle.

Bit-Field Macros

The following macros are used for accessing the corresponding bit fields into the handle:
#define IX_RM_HW_RING_GET_CHANNEL(arg_hHwRing)
#define IX_RM_HW_RING_SET_CHANNEL(arg_hHwRing, arg_HwRingChannel)
#define IX_RM_HW_RING_GET_SIZE(arg_hHwRing)
#define IX_RM_HW_RING_SET_SIZE(arg_hHwRing, arg_HwRingSize)

The ring size returned is one of the enumerated values for ix_sram_ring_size or
ix_scratch_ring_size types, based on the type of the ring. The same applies to the
arg_HwRingSize parameter for the IX_RM_HW_RING_SET_SIZE macro.

Memory Type Macros
#define IX_RM_HW_RING_GET_MEMORY_TYPE(arg_hHwRing)
#define IX_RM_HW_RING_SET_MEMORY_TYPE(arg_hHwRing, arg_HwRingMemoryType)

The memory type for the above macros could be one of the enumerated values
IX_MEMORY_TYPE_SRAM or IX_MEMORY_TYPE_SCRATCH.

Ring Index Macros
#define IX_RM_HW_RING_GET_INDEX(arg_hHwRing)
#define IX_RM_HW_RING_SET_INDEX(arg_hHwRing, arg_HwRingIndex)

7.4.5 Buffer Management API

The Buffer API has two parts:

• An API that is used to create buffer free lists of varying sizes. This API is generic and
independent of the packet descriptor layout defined by the microblock infrastructure.
62 Portability Framework Developer’s Manual

Resource Manager
• An API that is used to access fields in the packet descriptor—the packet metadata. This API is
specific to the layout and fields of the packet descriptor.

For more details on this API, see Section 3.5, “Buffer Management API,” in the Intel® Internet
Exchange Architecture Portability Framework Reference Manual.

7.4.5.1 Generic Buffer API

The Buffer API supports both hardware and software buffers. Hardware and software buffers have
similar structures but they are different in the way they are managed. Hardware buffers are handled
with direct hardware support, whereas software buffers are handled entirely by software. The other
major difference is that at this time only hardware buffers can be accessed by both the Microengine
and Intel XScale® core side. As a result, these are the only ones that should be used in core to
Microengine communication. Software and hardware buffers are both composed of meta and
payload data but they differ in the way the information in the buffer handles is packed and in how
the required metadata are laid out. This API is generic and independent of packet descriptor layout
defined by the microblock infrastructure or by the software.

The type of a buffer is decided by the free list type that allocates the buffer. The free lists can be
hardware or software and different creation functions exist for both types. All other API functions
encapsulate the hardware and software details—so only one set of functions is required. However
for Intel XScale® core to Microengine communication, only hardware buffers can be used. The
maximum number of hardware freelists that can be created is defined by the
IX_BUF_MAX_HW_FL_NUMBER symbol. The total number of free lists that can be created—
hardware and software—is defined by the IX_BUF_MAX_FL_NUMBER symbol.

This section describes the generic buffer API independent of the microblock packet descriptor
layout.

Table 7-6 lists the functions and data structures in the Buffer Management API.

Table 7-6. Resource Manager Buffer Management API

Function or Data Structure Description

ix_buffer_handle A buffer handle.

ix_buffer_free_list_handle A buffer free list handle.

ix_buffer_free_list_info Buffer free list data structure.

ix_buffer_type Enumerated type specifying the type of the buffer—
hardware or software.

ix_rm_hw_buffer_free_list_create() Creates a hardware buffer free list.

ix_rm_sw_buffer_free_list_create() Creates a software buffer free list.

ix_rm_buffer_free_list_delete() Deletes a buffer free list.

ix_rm_buffer_free_list_get_info() Retrieves information about a free list.

ix_rm_buffer_alloc() Allocates a buffer.

ix_rm_buffer_free() Frees a buffer.

ix_rm_buffer_free_chain() Frees and returns a buffer in a chain to the correct buffer
free list.

ix_rm_buffer_get_meta() Returns the metadata for a buffer.

ix_rm_buffer_get_data() Returns the data associated with a buffer.
Portability Framework Developer’s Manual 63

Resource Manager
Note: These functions are for use in the Intel XScale® core. In the microengines, the IXP Microengine
Assembler and Microengine C library xbuf API is used to allocate and access buffers.
Compatibility should be maintained in implementation so that a buffer-free list can be created
using the Resource Manager, and still allocate and free buffers using the IXP library in the
microengines.

7.4.5.2 IXA Portability Framework Buffer API

The Resource Manager allocates a buffer-free list using the above API. For hardware-free lists, a
typical DRAM buffer size is 2048 bytes and the default SRAM buffer descriptor (meta) size is 32
bytes, which is the size of ix_hw_buffer_meta structure. For software buffers, there is a
minimum size of the buffer descriptor of 16 bytes imposed by the size of ix_sw_buffer_meta
structure. The developer may change these values at compile time or run time. The SRAM and
DRAM base address and size values for the hardware-free list are patched into the microcode for
use in the dispatch loop macros. The dispatch loop macros use these imported variables in calling
the IXP buffer macros. For POS and ATM where packets may be greater than 2048 bytes, packets
are stored in multiple buffers chained together.

The IXA Portability Framework also specifies the layout of the packet meta data. If these need to
be changed by an application, then the application developer needs to change the associated
dispatch loop macros and the Resource Manager library.

In order to improve the performance of the system, the way the hardware buffers are created have
been extended to allow split meta data. The split meta data configuration for hardware buffers can
be selected by compiling the Resource Manager library with the _IX_RM_SPLIT_META_DATA_
preprocessor symbol defined.

Table 7-7 lists these packet meta data fields. In this data structure, some of the fields are common
to all applications. Some of the fields are specific to a particular category of applications. Users
may trim (or add) fields to customize the meta-data to their application category. For further
information, see the Intel® Internet Exchange Architecture Portability Framework Reference
Manual.

ix_rm_buffer_is_eop() Determines if the buffer is the last one in a chain.

ix_rm_buffer_is_sop() Determines if the buffer is the first one in a chain.

ix_rm_buffer_get_type() Determines the type of a buffer—either hardware or
software.

ix_rm_buffer_get_next() Returns the next buffer in a chain.

ix_rm_buffer_link() Links two buffers into a chain.

ix_rm_buffer_unlink() Breaks a linked list chain.

Table 7-6. Resource Manager Buffer Management API (Continued)

Function or Data Structure Description
64 Portability Framework Developer’s Manual

Resource Manager
7.4.6 Communication API

The Resource Manager Communication API implements the mechanism to transport packets and
control messages between the core components or between core components and microblocks
through an abstraction called a communication ID. A communication ID represents a destination
where messages and packets can be sent. On a local system there is a limited number of
communication IDs expressed by the IX_COMM_LOCAL_ID_NUMBER symbol. This number limit is
compile-time configurable. Out of this number of communication IDs,
IX_COMM_UBLOCK_ID_NUMBER IDs are reserved for communication with the microblocks, and the
remaining ones are dedicated to inter core component communication. For the core communication
ID, core components can choose to listen for incoming messages and packets through several
mechanisms:

• The calling application polls a communication ID for messages or packets.

• The calling application retrieves messages and packets from a communication ID using a
synchronous function that blocks until a message or a packet arrives or the call times out.

Table 7-7. Resource Manager Packet Meta Data Definitions

LW Bits Size Data Member Field Description

0 31:00 32 m_HwNext The buffer handle of the next buffer in the
chain.

1 31:16 16 m_BufferSize The buffer size—in bytes.

15:00 16 m_Offset The offset of the start of data in the buffer—in
bytes.

2 31:28 16 m_PacketSize The size of the entire packet across buffers—
in bytes.

15:12 4 m_BufferInfo1 free_list_id1 The free list ID for the buffer.

11:08 4 rx_stat1 The receive status flag.

07:00 8 header_type1 The type of header at m_Offset bytes into
the packet.

3 31:16 16 m_InputPort The input port on the ingress processor.

15:00 16 m_OutputPort The output port on the egress processor.

4 31:16 16 m_NextHopID The next hop ID.

15:08 8 m_FabricPort The output port for the switch fabric indicating
the destination blade.

07:00 8 m_Reserved1 Reserved.

5 31:00 32 m_FlowID The flow ID—a QoS flow ID or an MPLS label
or flow ID.

6 31:16 16 m_ClassID The class ID.

15:00 16 m_Reserved2 Reserved.

7 31:00 32 m_PacketNext A pointer to next the packet—unused in cell
mode.

1. The data member, m_BufferInfo, is a packed buffer containing the bit fields free_list_id, rx_stat, and header_type. The appropriate
buffer API macros should be used to extract these bit fields from the packed buffer.
Portability Framework Developer’s Manual 65

Resource Manager
• The calling application specifies interest in several communication IDs and the call returns
only when one of the specified IDs receives data.

• The calling application registers a callback function that is called whenever new data arrives
on a communication ID.

All of these options apply only to the core communication IDs. These communication IDs can be
regarded as gateways. For the corresponding microblock IDs, one side of this gateway is in the
microcode, but this microcode has no visibility into the core application.

These communication IDs are represented by a generic type ix_communication_id which is an
unsigned 32-bit handle defining a destination. The communication ID mechanism allows for local
communication as well as remote communication with other systems. If the destination is not
intended for the local system, then the messages and packets are forwarded to a proxy that routes
the data through PCI or another communication path to the remote system. A portion of the
communication ID specifies if the destination is on the current subsystem or—in the case of a dual
ingress/egress network processor system—on the peer subsystem.

A zero value for this bit field at the time of creation of the communication ID specifies a
destination on the local subsystem. A non-zero value at the time of creation specifies a destination
on the peer subsystem. Each system that works in a group should have an unique identifier.

The communication between microblocks and core is handled in the following way. The microcode
queues data onto a common hardware ring and signals the Intel XScale® core that data has been
sent. For packet communication the scratch ring with the ID of zero is used to queue data, and the
core is signaled through Thread_Interrupt_A_# (see Intel® IXP2400 Network Processor
Hardware Reference Manual, Intel XScale® core Gasket Chapter). For message communication,
the scratch ring with ID of one is used to queue data and the Intel XScale® core is signaled through
Thread_Interrupt_B_#. On the core side, the registered ISRs awaken the corresponding
dispatch threads that dequeue the data and send it to the requested destination. The message-
dispatch thread has higher priority than the packet-dispatch thread.

For more details on this API, see Section 3.6, “Communication API,” in the Intel® Internet
Exchange Architecture Portability Framework Reference Manual. Table 7-8 lists the functions and
data structures in the Communication API.

Table 7-8. Resource Manager Communication API

Communication API and Data Structures Description

ix_comm_data_handler Generic function type for data communication handler.

ix_communication_id Generic type used for the identification of a communication point.

ix_comm_select_action_set Array of core local communication ID masks that is passed to the select
function.

ix_comm_id_mode Enumerated type expressing a communication ID receive mode.

IX_RM_COMM_ID_GET_LOCAL_ID() Returns the local ID for a communication ID.

IX_RM_COMM_ID_GET_SYSTEM_TYPE() Returns the subsystem type for a communication ID.

IX_RM_COMM_ID_GET_BLADE_ID() Returns the blade ID for a communication ID.

IX_RM_COMM_MAKE_ID() Creates a communication ID.

IX_RM_COMM_MAKE_LOCAL_ID() Creates a local subsystem communication ID.

ix_rm_packet_set_receive_mode() Sets the packet receive mode for the communication ID.

ix_rm_message_set_receive_mode() Sets the message receive mode for the communication ID.
66 Portability Framework Developer’s Manual

Resource Manager
For communication between core components, there are two mutually exclusive ways to receive
packets and messages:

• Through callbacks

• By waiting for data then retrieving data from the communication IDs

The second case is always buffered—that is, the data is temporarily stored in an internal queue. On
the other hand, callbacks may be buffered or unbuffered based on the implementation.

At the creation time, the core communication IDs are in the callback receive mode—
IX_COMM_ID_MODE_CALLBACK—and drop the packets and messages received. From this default
state, they can be put in either callback mode (IX_COMM_ID_MODE_CALLBACK) or get/select mode
(IX_COMM_ID_MODE_GET_SELECT) by calls to ix_rm_packet_set_receive_mode() and
ix_rm_message_set_receive_mode() functions. Usually there is no need to go from one
mode to another, but if that is required, it can be done.

ix_rm_packet_set_consumer_mode() Sets the packet consumer mode for the communication ID.

ix_rm_message_set_consumer_mode() Sets the message consumer mode for the communication ID.

ix_rm_packet_set_producer_mode() Sets the packet producer mode for the communication ID.

ix_rm_message_set_producer_mode() Sets the message producer mode for the communication ID.

ix_rm_packet_handler_register() Registers a packet handler with a core communication ID.

ix_rm_message_handler_register() Registers a message handler with a core communication ID.

ix_rm_packet_handler_unregister() Puts the packet processing for the communication ID in default mode—it
drops packets.

ix_rm_message_handler_unregister() Puts the message processing for the communication ID in default mode—it
drops packets.

ix_rm_packet_send() Sends a packet to a destination.

ix_rm_packet_send_wait() Sends a packet to a destination in a blocking mode.

ix_rm_message_send() Sends a message to a destination.

ix_rm_message_send_wait() Sends a message to a destination in a blocking mode.

ix_rm_packet_peek() Retrieves the number of packets stored in the internal queue for the
specified communication ID.

ix_rm_packet_get() Retrieves a packet from a communication ID in a non-blocking mode.

ix_rm_packet_get_wait() Retrieves a packet from a communication ID in a blocking mode.

ix_rm_message_peek() Retrieves the number of messages stored in the internal queue for the
specified communication ID.

ix_rm_message_get() Retrieves a message from a communication ID in a non-blocking mode.

ix_rm_message_get_wait() Retrieves a message from a communication ID in a blocking mode.

ix_rm_comm_select() Waits on a set of communication IDs for data to be available.

ix_rm_ublock_packet_comm_init() Initializes the packet communication to a microblock.

ix_rm_ublock_message_comm_init() Initializes the message communication to a microblock.

Table 7-8. Resource Manager Communication API (Continued)
Portability Framework Developer’s Manual 67

Resource Manager
If a communication ID is in get/select mode and it is switched to callback mode, all buffers in the
internal queue are dropped, all waiting tasks are awakened, and the communication ID is set to the
callback mode. A separate call to ix_rm_packet_handler_register() or
ix_rm_message_handler_register() should be made in order to install the desired callback
function.

When the communication ID is switched from the callback mode to the get/select mode, all data
from that point on is queued in the internal queue associated with the communication ID. Once in
the get/select mode, calls to ix_rm_packet_get(), ix_rm_packet_get_wait(),
ix_rm_message_get(), ix_rm_message_get_wait(), ix_rm_packet_peek(),
ix_rm_message_peek(), and ix_rm_comm_select()functions are allowed.

In get/select receiving mode, a communication ID can be in different consumer/producer modes.
At the time a communication ID is put in get/select receiving mode the producer/consumer mode is
automatically set to multiproducer/multiconsumer.

Note: When in the get/select mode, the Resource Manager assures data consistency where multiple
threads send to or consume from one communication ID at the same time. The get/select mode has
speed penalties due to the need to lock access to the internal queue for all put and get operations.

Through calls to ix_rm_packet_set_consumer_mode(),
ix_rm_packet_set_producer_mode(), ix_rm_message_set_consumer_mode(), and
ix_rm_message_set_producer_mode() functions, the default producer/consumer mode can
be changed.

Note: A communication ID can be in one mode for packet communication and another for message
communication.

The communication modes are strictly related to the receive side of a communication ID but they
affect the send-side behavior.

7.4.7 Remote Communication Extension API

The communication ID mechanism allows for local communication, as well as remote
communication with other systems. If the destination is not intended for the local system, then the
messages and packets will be forwarded to the active remote communication service that routes the
data through PCI or another communication pathway to the remote system. For more details on this
API, see Section 3.7, “Remote Communication Extension API,” in the Intel® Internet Exchange
Architecture Portability Framework Reference Manual.

Table 7-9 summarizes the remote communications API.

Table 7-9. Resource Manager Remote Communication Extension API

Name Description

ix_remote_comm_service This structure defines a remote communication
service.

ix_remote_comm_data_handler This callback function prototype represents a generic
remote data handler.

ix_remote_comm_service_initializer Defines the generic remote communication service
initializer.

ix_remote_comm_service_finalizer Defines the generic remote communication service
finalizer.
68 Portability Framework Developer’s Manual

Resource Manager
7.4.8 Memory Management API

The Resource Manager manages SRAM, DRAM, scratch, and local memory for the IXP2400 and
Intel® IXP2800 Network Processors. It exports an interface to allocate, access, and free memory
chunks. The Resource Manager owns SRAM and scratch memory completely and DRAM
partially. The DRAM is partly owned by the operating system.

The memory managed by the Resource Manager is used to support system-wide data structures
such as the buffer-free pools, control blocks for building blocks, route table, trie table, and so on.
The difference between this memory and memory allocated from the operating system is that this
memory has no MMU protection and is always addressed at the same memory location by all
processes. This has meaning only in Linux. In VxWorks, the memory model is a flat memory space
shared by every task. Since this memory is shared with the microengines, it is typically uncached.

All applications, including the building block infrastructure, must use this API to allocate memory
in order to work in conjunction with the microengines. The operating system memory is not
accessible from microcode.

Note: The Resource Manager memory management is designed to handle one-time memory allocation
primarily to partition memory among the applications. In other words, do not attempt to re-
implement malloc(). Applications that require handling a large number of allocation and free
operations dynamically need to obtain enough memory from the Resource Manager and manage it
themselves.

The Resource Manager allocates memory so that DRAM is always returned aligned at an 8-byte
boundary and any request is rounded off to an 8-byte boundary. For SRAM and scratch, the
alignment is always at a 4-byte boundary and all requests are rounded off to a 4-byte boundary.

Functions are provided to calculate the physical offset into the specific channel and physical
address of the chunk allocated from the virtual address and vice versa. The microengines can only
access memory using these offset values into a specific channel. The physical memory is
contiguous—on a specific channel—for the IXP2400 and Intel® IXP2800 Network Processors.

Handling SRAM allocation requires supporting multiple channels. The memory management API
takes the channel number as one of the inputs. For the Intel® IXP2400 Network Processor, the
valid channel numbers are zero and one. For the Intel® IXP2800 Network Processor, the valid
channel numbers are zero through three, inclusive.

ix_rm_remote_comm_service_register() Registers a remote communication service.

ix_rm_remote_comm_service_unregister() Unregisters the active remote communication service.

ix_rm_init_pci_remote_communication()
Installs the PCI remote communication service
between the ingress and egress network processors
for a single ingress/egress system.

ix_rm_register_pci_communication_hw_free_list()
Registers a hardware free list of choice to be used by
the predefined dual single system PCI remote
communication service.

ix_rm_unregister_pci_communication_hw_free_list()
Reverts to the default hardware free list to be used by
the predefined dual single system PCI remote
communication service.

Table 7-9. Resource Manager Remote Communication Extension API (Continued)

Name Description
Portability Framework Developer’s Manual 69

Resource Manager
The Intel® IXP2800 Network Processor, supports three DRAM channels, while Intel® IXP2400
Network Processor only supports one.

At the time of initialization, the Resource Manager can reserve space in SRAM, scratch, SDRAM,
and local memory to support Microengine C. The linker (UCLD) requires a base address for these
blocks of memory, but no provision exists to limit the size of these memory chunks. The Resource
Manager gets information from the loader (UCLO) library about the memory required by the
loaded microcode image and checks if that memory has been reserved at Resource Manager
initialization. If any of the required areas have not been reserved, then an error is returned along
with the memory areas that must be reserved for microcode usage.

For more details on this API, see Section 3.8, “Memory Management API,” in the Intel® Internet
Exchange Architecture Portability Framework Reference Manual. Table 7-10 lists the structures
and functions in the Memory Management API. Table 7-11 lists the macros in the Memory
Management API.

Table 7-10. Resource Manager Memory Management API

Memory API and Data Structures Description

ix_memory_type An enumerated type listing the types of memory
supported by the Resource Manager.

ix_memory_info Memory information data structure.

ix_memory_alignment_type Alignment types for the aligned memory allocation
and reservation calls.

ix_rm_mem_alloc() Allocates memory—SRAM, DRAM, and scratch.

ix_rm_mem_alloc_aligned() Allocates memory with alignment—SRAM, DRAM,
and scratch.

ix_rm_mem_reserve() Reserves memory.

ix_rm_mem_reserve_aligned() Reserves memory with alignment.

ix_rm_mem_free() Frees memory.

ix_rm_mem_info() Retrieves memory information for the specified
memory type and specified channel.

ix_rm_mem_local_alloc() Allocates local memory.

ix_rm_mem_local_reserve() Reserves local memory

ix_rm_mem_local_free() Frees local memory.

ix_rm_mem_local_info() Retrieves local memory information.

Read/Write Macros Macros to read and write memory locations.

ix_rm_get_phys_offset() Returns the physical offset of a memory block.

ix_rm_get_virtual_address() Returns the virtual address of a memory block.

Table 7-11. Resource Manager Memory Management Macros

Macro Name Description

IX_RM_MEM_UINT8_READ Returns an ix_uint8 representing the value at the specified location.

IX_RM_MEM_UINT16_READ Returns an ix_uint16 representing the value at the specified location.

IX_RM_MEM_UINT32_READ Returns an ix_uint32 representing the value at the specified location.
70 Portability Framework Developer’s Manual

Resource Manager
7.4.9 System Repository API

The system repository is designed as a collection of tree constructs that store system properties.
The structure and navigation of these tree constructs is similar to a file system structure.

Properties represent name-value entities that can be set and accessed throughout the system in a
consistent manner. Configuration properties are defined by property handles that link the name and
value pair together. There is a limit on the number of properties that can be created in the system.
Each property has a set of attributes associated with it. There could be properties that can act just as
nodes in the hierarchy and that have no value associated with them. Once a property has been
created, the calling application can register with the property to receive notifications if the property
changes. Every application in the system can create properties at a certain node level, and retrieve
and modify them.

The core software property tree stores all the properties of the applications residing on the core
side. The configuration property handle corresponding to the root of this tree is
IX_CP_CORE_PROPERTY_ROOT.

For more details on this API, see Section 3.9, “System Repository API,” in the Intel® Internet
Exchange Architecture Portability Framework Reference Manual. Table 7-12 lists the data
structures and functions that make up the System Repository API. I

IX_RM_MEM_UINT64_READ Returns an ix_uint64 representing the value at the specified location.

IX_RM_MEM_UINT8_WRITE Writes an ix_uint8 value to the specified location.

IX_RM_MEM_UINT16_WRITE Writes an ix_uint16 value to the specified location.

IX_RM_MEM_UINT32_WRITE Writes an ix_uint32 value to the specified location.

IX_RM_MEM_UINT64_WRITE Writes an ix_uint64 value to the specified location.

Table 7-11. Resource Manager Memory Management Macros (Continued)

Macro Name Description

Table 7-12. Resource Manager System Repository API

System Repository API and Data Structures Description

ix_configuration_property_handle Generic handle type for configuration properties.

ix_cp_property_info Configuration property information structure.

ix_rm_cp_property_create() Creates a new configuration property at a certain
node level.

ix_rm_cp_property_delete() Deletes a configuration property.

ix_rm_cp_property_open() Retrieves a configuration property based on a base
node and a name.

ix_rm_cp_property_close() Invalidates a configuration property handle.

ix_rm_cp_property_attach() A communication ID is registered with the property to
receive change notifications.

ix_rm_cp_property_detach() A communication ID is unregistered from the property
notification list.

ix_rm_cp_property_set_value() A value is associated with a configuration property or
the previous value is replaced with the new one.

ix_rm_cp_property_get_value() Retrieves a property value.
Portability Framework Developer’s Manual 71

Resource Manager
7.4.10 64-Bit Counters

The 64-bit counter API is provided as statistics support for the Intel XScale® core applications.
RFC2863 states that 64-bit counters must be supported for interfaces that operate at data rates
greater than 650Mbps.

The design of these counters is such that for each 64-bit counter there is a corresponding 32-bit
counter residing in SRAM or SCRATCH that can be updated atomically by the microengines. Each
counter has an associated overflow time for the internal 32-bit counter. The API has a background
thread that monitors all the overflow times for the internal 32-bit counters and do an atomic read/
set to 0 operation (atomic swap) for the internal 32-bit counters, and then update the 64-bit
counterparts accordingly. The memory necessary for the internal counters is allocated by the callers
as they need to know what values need to be patched into the microcode.

For more details on this API, see Section 3.10, “64-Bit Counters API,” in the Intel® Internet
Exchange Architecture Portability Framework Reference Manual. Table 7-13 lists the functions
that make up the 64-bit counter API

ix_rm_cp_property_set_value_uint32() A 32-bit unsigned value is associated with a
configuration property or the previous value is
replaced with the new one.

ix_rm_cp_property_get_value_uint32() Retrieves a 32-bit unsigned property value.

ix_rm_cp_property_delete_value() Deletes the value associated with a property.

ix_rm_cp_property_get_info() Gets information pertaining to a configuration
property.

ix_rm_cp_property_get_subproperty() Navigates a subtree of a configuration property.

Table 7-12. Resource Manager System Repository API (Continued)

System Repository API and Data Structures Description

Table 7-13. Resource Manager 64-Bit Counter API

Name Description

ix_counter_64bit_handle() Generic type for a 64-bit counter handle.

ix_rm_counter_64bit_new() Allocates an array of 64-bit counters.

ix_rm_counter_64bit_delete() Deletes a 64-bit counter.

ix_rm_counter_64bit_get_internal_overflow_time() Retrieves the overflow time for the internal 32-bit
counter of the specified 64-bit counter.

ix_rm_counter_64bit_set_internal_overflow_time() Sets the overflow time for the internal 32-bit counter
of the specified 64-bit counter.

ix_rm_counter_64bit_get_value() Returns the 64-bit core value of the counter.

ix_rm_counter_64bit_set_value() Sets the 64-bit core value of the counter.
72 Portability Framework Developer’s Manual

Resource Manager
7.4.11 Services

The Services API provides a set of functions that allows core applications to take advantage of
certain hardware features. The API provides a set of atomic operations and fast memory
operations. For more details on this API, see Section 3.11, “Services API,” in the Intel® Internet
Exchange Architecture Portability Framework Reference Manual. Table 7-14 lists data structures
and functions included in this API.

Table 7-14. Resource Manager Services API

Functions Description

ix_rm_atomic_sram_swap() Performs an atomic swap between an SRAM memory
location and one arbitrary memory location.

ix_rm_atomic_sram_add() Performs an atomic add to an SRAM memory location.

ix_rm_atomic_sram_test_and_add()
Performs an atomic add to an SRAM memory location and
returns the value stored at the memory location before add
operation.

ix_rm_atomic_sram_subtract() Performs an atomic subtract to an SRAM memory location.

ix_rm_atomic_sram_test_and_subtract()
Performs an atomic subtract to an SRAM memory location
and returns the value stored at the memory location before
the subtract operation.

ix_rm_atomic_sram_bit_set() Performs an atomic bit set operation to an SRAM memory
location.

ix_rm_atomic_sram_bit_test_and_set()
Performs an atomic bit set operation to an SRAM memory
location and returns the value stored at the memory location
before the bit set operation.

ix_rm_atomic_sram_bit_clear() Performs an atomic bit clear operation to an SRAM memory
location.

ix_rm_atomic_sram_bit_test_and_clear()
Performs an atomic bit clear operation to an SRAM memory
location and returns the value stored at the memory location
before the bit clear operation.

ix_rm_atomic_scratch_swap() Performs an atomic swap between a SCRATCH memory
location and one arbitrary memory location.

ix_rm_atomic_scratch_add() Performs an atomic add to a SCRATCH memory location.

ix_rm_atomic_scratch_test_and_add()
Performs an atomic add to a SCRATCH memory location
and returns the value stored at the memory location before
the add operation.

ix_rm_atomic_scratch_subtract() Performs an atomic subtract to a SCRATCH memory
location.

ix_rm_atomic_scratch_test_and_subtract()
Performs an atomic subtract to a SCRATCH memory
location and returns the value stored at the memory location
before the subtract operation.

ix_rm_atomic_scratch_bit_set() Performs an atomic bit set operation to a SCRATCH memory
location.

ix_rm_atomic_scratch_bit_test_and_set()
Performs an atomic bit set operation to a SCRATCH memory
location and returns the value stored at the memory location
before the bit set operation.

ix_rm_atomic_scratch_bit_clear() Performs an atomic bit clear operation to a SCRATCH
memory location.

ix_rm_atomic_scratch_bit_test_and_clear()
Performs an atomic bit clear operation to a SCRATCH
memory location and returns the value stored at the memory
location before the bit clear operation.
Portability Framework Developer’s Manual 73

Resource Manager
7.4.12 Hash

The Hash API provides hash operations for Intel XScale® core applications. Programmers can
choose to perform the hash operations with hardware support from the chip’s hash unit or in
software. By default, the resource manager uses hardware support from the hash unit. In order to
change this behavior, the _IX_RM_IMPL_SOFTWARE_HASH_ symbol must be defined on the
command line at the time the Resource Manager is compiled.

The hash algorithm is explained in great detail in the Intel® IXP2400/IXP2800 Network Processor
Programmer’s Reference Manual on the IXA SDK Tools CD.

For more details on this API, see Section 3.12, “Hash API,” in the Intel® Internet Exchange
Architecture Portability Framework Reference Manual. Table 7-15 summarizes the Hash API.

7.4.13 Microengine Services

The Microengine Services API provides several sets of APIs, which are used to coordinate
operations between the Intel XScale® core and the microengines. The following operations are
supported:

ix_rm_managed_to_os_memory_copy() Performs a fast memory copy from a managed memory
location to an OS memory location.

ix_rm_os_to_managed_memory_copy() Performs a fast memory copy from an OS memory location
to a managed memory location.

ix_rm_managed_to_managed_memory_copy() Performs a fast memory copy from a managed memory
location to another managed memory location.

Table 7-14. Resource Manager Services API (Continued)

Table 7-15. Resource Manager Hash API

Name Description

ix_hash_48 This type represents a 48-bit hash data type.

ix_hash_64 This type represents a 64-bit hash data type.

ix_hash_128 This type defines the 128-bit hash data type.

ix_hash_multiplier_48 This type defines the 48-bit multiplier data type.

ix_hash_multiplier_64 This type defines the 64-bit multiplier data type.

ix_hash_multiplier_128 This type defines the 128-bit multiplier data type.

ix_rm_hash_48_hash() This function performs a 48-bit hash operation.

ix_rm_hash_48_multiplier_set() This function sets a new multiplier value for the 48-bit hash operations.

ix_rm_hash_48_multiplier_get() The function retrieves the current multiplier value for 48-bit hash operations.

ix_rm_hash_64_hash() This function performs a 64-bit hash operation.

ix_rm_hash_64_multiplier_set() This function sets a new multiplier value for the 64-bit hash operations.

ix_rm_hash_64_multiplier_get() The function retrieves the current multiplier value for 64-bit hash operations.

ix_rm_hash_128_hash() This function performs a 128-bit hash operation.

ix_rm_hash_128_multiplier_set() This function sets a new multiplier value for the 128-bit hash operations.

ix_rm_hash_128_multiplier_get() The function retrieves the current multiplier value for 128-bit hash operations.
74 Portability Framework Developer’s Manual

Resource Manager
• Locking and unlocking mechanisms

• Reading and writing of microengine transfer registers

• Sending a notification signal to a microengine

Note: In some places in this document, microengine is abbreviated as ME.

For more details on this API, see Section 3.13, “Microengine Services API,” in the Intel® Internet
Exchange Architecture Portability Framework Reference Manual. Table 7-16 lists data structures
and functions included in this API.

7.4.14 Debug Support

The Debug Support API provides a series of functions that provide debugging features to the
programmers. In order for debug features to be turned on, the resource manager library must be
compiled with the _IX_RM_DEBUG_ preprocessor symbol defined. For the debug builds, this
particular symbol is automatically defined. This symbol can be turned off if debug functions are
not needed.

For more details on this API, see Section 3.14, “Debug Support API,” in the Intel® Internet
Exchange Architecture Portability Framework Reference Manual. Table 7-17 lists functions
included in this API.

Table 7-16. Resource Manager Microengine Services API

Functions and Data Structures Description

ix_me_xscale_lock_handle A microengine-to-Intel XScale® core lock handle

ix_me_xscale_lock_status Type describing all possible states of a microengine-to-Intel XScale® core lock.

ix_me_xscale_lock_owner Type describing all possible owners of a microengine-to-Intel XScale® core lock.

ix_me_xscale_lock_info Structure providing information about a microengine-to-Intel XScale® core lock.

ix_me_transfer_register_type Enumerated type describing all types of ME transfer registers.

ix_rm_me_xscale_lock_new() Creates a new microengine-to-Intel XScale® core lock object.

ix_rm_me_xscale_lock_delete() Deletes the specified microengine-to-Intel XScale® core lock object.

ix_rm_me_xscale_lock_acquire() Acquires the specified microengine-to-Intel XScale® core lock.

ix_rm_me_xscale_lock_release() Releases the specified microengine-to-Intel XScale® core lock.

ix_rm_me_xscale_lock_get_info() Returns useful information about a microengine-to-Intel XScale® core lock.

ix_rm_me_transfer_register_read() Reads the value of a ME transfer register.

ix_rm_me_transfer_register_write() Writes the value of a ME transfer register.

ix_rm_me_signal() Sends a specified signal to a ME.

Table 7-17. Resource Manager Debug Support API

Functions Description

ix_rm_mem_status_print() Prints information about a memory manager associated with a
certain memory type and channel.

ix_rm_scratch_ring_print_info() Prints information about a SCRATCH ring.

ix_rm_scratch_ring_print_data() Prints the data belonging to a SCRATCH ring.

ix_rm_sram_ring_print_info() Prints information about an SRAM ring.
Portability Framework Developer’s Manual 75

Resource Manager
ix_rm_sram_ring_print_data() Prints the data belonging to an SRAM ring.

ix_rm_free_list_print_available_buffers() Prints the number of available buffers in a certain free list.

ix_rm_free_list_print_buffers_info() Prints the allocation information for the buffers belonging to a certain
hardware free list.

ix_rm_free_list_print_info() Prints information related to certain free list.

ix_rm_buffer_print_meta() Prints the buffer meta information for the passed handle.

ix_rm_buffer_print_data() Prints the buffer data for the passed handle.

ix_rm_buffer_print_debug_info() Prints the buffer debug information for the passed handle.

Table 7-17. Resource Manager Debug Support API (Continued)

Functions Description
76 Portability Framework Developer’s Manual

Core Components 8

8.1 Overview

A core component is the slow-path counterpart of the microblock running on the Intel XScale®
core. A core component performs the following functions:

• Configures its microblock (static configuration by means of imported variables and dynamic
configuration through control blocks).

• Initializes and maintains common data structures that may be updated by other applications.

• Provides exception as well as control message handler to process packets/messages sent by the
microblock.

Each core component can have multiple inputs, each of which is associated with a different packet/
message handler.

In general, there is a single core component associated with each microblock. The IPv4 Forwarder
Core Component services exception packets sent to it by the IPv4 microblock. However, a core
component may also manage more than one microblock. In the extreme case there may be a single
core component for all the microblocks.

There are two ways to implement a core component. One way is to implement the core component
using the IXA Core Component Infrastructure Library (see Chapter 10, “Core Component
Infrastructure”). The core component infrastructure provides support for handling messages and
packets.

The other way is to implement the core component as a software entity that directly uses the
Resource Manager API (see Chapter 7, “Resource Manager”). The design of this entity (whether it
is a shared library, driver, thread, process etc.) and how it processes packets and messages is left
entirely to the developer.

This provides developers with considerable flexibility in integrating applications written using the
IXA Portability Framework with existing legacy applications and protocol stacks running on the
Intel XScale® core.

Developers writing mostly new code on the Intel XScale® core would prefer the accelerated
development time provided by the IXA Portability Framework software infrastructure. Customers
with a substantial legacy code base would probably prefer to ease integration with existing code by
not writing the core component as an IXA Building Block. They can still use the infrastructure on
the microengines and the use Resource Manager API to interface with it.
Portability Framework Developer’s Manual 77

Core Components
78 Portability Framework Developer’s Manual

TCAM Lookup Libraries 9

This chapter describes a common API used for managing and searching tables on the Intel XScale®
core and on the microengines for Intel® IXP2400 and IXP2800 Network Processors.

The lookup library provides a way of managing different search and lookup tables that can be used
for many different networking applications. The goal of the search table is to hide the details of
both the data structures and the underlying hardware implementation from the application designer.
This abstraction allows the addition of different data structures as well as hardware assisted search
devices, for example TCAM (Ternary Content Addressable Memory), to be used without rewriting
the application itself.

Figure 9-1 shows the different components of the lookup library. The lookup management library
runs on the Intel XScale® core. This library is used for creating and deleting tables as well as
adding, deleting, and modifying entries to each of the tables. The second component is the
microengine lookup library that runs on the microengine. This library is used by the data plane
code to perform rapid searches on the data to classify packets and determine how to forward them.
Because of the differences in accessing the tables for software and hardware classification, there
are separate lookup APIs on the microengines. This is discussed in more detail in Section 9.2,
“Microengine Lookup Library” .

Entries in tables are specified using a key and a mask value. When searching through the table
with search_key, an entry matches if you take the search key and logically AND it with the mask
value and the resulting data matches the entry key. For this to work, the key, mask, and search_key
must all be the same size.

Because different entries may have different masks and search_key may match multiple entries,
each entry has an additional weight value that is used to break ties when multiple entries match a
search key. The entry with the lowest weight wins. Matching multiple entries with the same
weight returns undefined results.

It is assumed that any shared NPU control and status registers are correctly configured by an
external entity prior to the calling of this API. (For example, the NPU SRAM controllers are
expected to be correctly configured by the calling application, etc.)
Portability Framework Developer’s Manual 79

TCAM Lookup Libraries
The following sub-sections discuss more details about each of the libraries.

9.1 Lookup Management Library

The management library runs on the core processor. This is used to initialize and create tables as
well as adding and removing entries from the tables. These libraries are typically called from
higher-level applications such as a route table manager, a NAT table manager, or program that is
managing diffserv policies. Table 9-1 lists lookup handles, data structures, and the APIs included in
the Lookup Management library. For complete descriptions and definitions of the API functions,
see the Intel® Internet Exchange Architecture Portability Framework Reference Manual.

Figure 9-1. Library Components

IPv4 Route
Table

Manager

NAT Table
Manager

Diffserv
Policy

Manager

Lookup Management Library (C Library)

IPv4
Forwarding
Microcode

NAT
Microcode

Diffserv
Classifier

MicroCode

MicroEngine Lookup Library (microC Library and
microcode Macros)

TCAM Lookup
Tables

SRAM based
Lookup Tables

Table 9-1. Handles, Data Structures, and Lookup Management APIs

Name Description

ix_lkup Handle that is returned when the application first initializes and gets a handle to
the lookup library.

ix_lkup_table Handle that is returned when a new table is created by calling
IX_LKUP_CREATE_TABLE () on a valid ix_lkup.

ix_lkup_table_type Defines the different table types and the associated search methods for that
table.

ix_lkup_tcam_params Data structure that is passed when initializing the TCAM version of the library
by calling ix_lkup_tcam_init().

ix_lkup_table_conf Data structure used to pass the configuration parameters when a new table is
created.

ix_lkup_cookie Opaque cookie that is passed between some of the API calls, primarily calls
that are used for enumerating the contents of a table.
80 Portability Framework Developer’s Manual

TCAM Lookup Libraries
9.2 Microengine Lookup Library

The microengine lookup libraries are used by an application running on the microengines to search
tables that are created and managed by the core applications. These libraries are provided as
microengine C and microengine Assembler macros.

There are two distinct libraries for searching the tables; one for software based searches and one for
hardware based searches. While it would have been possible to provide the same interfaces for both
hardware and software, the interfaces may have been awkward to use and for applications to get the
best possible performance, the decision was made to make the APIs as natural and as optimal as
possible. Table 9-2 lists all the APIs included in the Microengine Lookup library. For complete
descriptions and definitions of the API functions, see the Intel® Internet Exchange Architecture
Portability Framework Reference Manual.

ix_lkup_sw_init() Initializes the software lookup management library and gets a handle to the
library for subsequent operations.

ix_lkup_tcam_init() Initializes the TCAM lookup management library and returns a handle to the
library for subsequent operations.

IX_LKUP_CREATE_TABLE() Creates a new instance of a search table.

IX_LKUP_DESTROY_TABLE() Destroys a table that was created earlier with IX_LKUP_CREATE_TABLE.

IX_LKUP_FINI() Destroys a previously obtained ix_lkup handle.

IX_LKUP_ADD_ENTRY() Adds an entry to a table.

IX_LKUP_REMOVE_ENTRY() Removes an entry from a table.

IX_LKUP_UPDATE_ENTRY() Updates the data associated with an element already in the table.

IX_LKUP_SEARCH_TABLE() Searches a specific table and returns the associated data if a match is found.

IX_LKUP_FIND_ENTRY() Searches a table for an entry that matches the exact key and mask, weight
combination.

IX_LKUP_READ_FIRST_ENTRY() Retrieves the first item stored in the table.

IX_LKUP_READ_NEXT_ENTRY() Retrieves successive items stored in the table.

IX_LKUP_RESET_TABLE() Clears all the items in the table and resets it to its initial state.

IX_LKUP_SET_PROPERTY() Allows the caller to set special attributes of the table.

IX_LKUP_GET_PROPERTY() Allows the caller to get special attributes of the table.

IX_LKUP_GET_TABLE_INFO() Returns table identifier and data information.

Table 9-1. Handles, Data Structures, and Lookup Management APIs (Continued)

Name Description

Table 9-2. Microengine Lookup APIs

Name Description

ix_tcam_lkup_build_handle() Builds the handle that must be passed to the search functions.

ix_tcam_lkup_start() Starts a search using the in_key to launch the search request.

ix_tcam_lkup_complete() Completes a search that was started and returns the results.

ix_tcam_lkup_get_data() Returns the data associated with a successful search.
Portability Framework Developer’s Manual 81

TCAM Lookup Libraries
ix_sw_lkup_lpm_build_handle() Builds the handle that must be passed to the search functions for longest prefix
match searching.

ix_sw_lkup_lpm_search() Searches a longest prefix match table and returns the results.

ix_sw_lkup_exact_build_handle() Builds the handle that must be passed to the search functions for exact match
searching.

ix_sw_lkup_exact_search() Searches an exact match table and returns the results.

ix_sw_lkup_range_build_handle() Builds the handle that must be passed to the search functions for range match
searching.

ix_sw_lkup_range_search() Searches a range match table and returns the results.

ix_s_lkup Data structure that all implementations need to fill out and return when the
library is initialized.

ix_s_lkup_table Data structure that all implementations need to fill out and return when a table
is created.

Table 9-2. Microengine Lookup APIs (Continued)

Name Description
82 Portability Framework Developer’s Manual

Core Component Infrastructure 10

10.1 Terminology and Key Components of the Core
Component Infrastructure

The following chapter describes the Core Component Infrastructure interface. This interface
provides framework support for the following functionality:

• Each core component runs on its own execution engine, each of which encapsulates a calling
application thread of control

• Message and packet data paths are prioritized

10.1.1 Inputs

Each core component can have multiple inputs, each of which is associated with a different packet/
message handler. Each input is associated with a hardware or software queue, and has a globally
unique ID. The execution engine registers a packet/message handler for each input ID on behalf of
a core component.

The set of IDs for packet handlers and message handlers have the same range. For example, a
packet handler can have an ID of 64 and so can a message handler. The ID's are allocated at
compile time and are assigned using the following convention:

Bits 9-16 of the input ID are reserved for blade numbers, which are not currently supported.

Table 10-1. Core component ID allocation

ID Description

0-63
Reserved for microblocks on Ingress IXP2400 or IXP2800 (including
IX_NULL, IX_DROP and IX_EXCEPTION). Each microblock is
assumed to have one unique input ID.

64-255 ID's for core components on the Ingress IXP2400 or IXP2800.

256-319
Reserved for microblocks on Egress IXP2400 or IXP2800 (including
IX_NULL, IX_DROP and IX_EXCEPTION when bit 8 is stripped
out). Each microblock is assumed to have one unique input ID.

320-511 ID's for core components on the Egress IXP2400 or IXP2800
Portability Framework Developer’s Manual 83

Core Component Infrastructure
10.1.2 Outputs

Outputs are logical outputs that determine the flow of data through the system. The outputs
typically represent the result of some packet classification in the core component. For example, an
IP Filter Core Component may have two outputs: IP_FILTER_PASS_OUTPUT and
IP_FILTER_DENY_OUTPUT.

Note: Unlike the IXA-SDK 2.0 implementation, there are no active elements in the IXA Portability
Framework corresponding to targets. Core components could conceivably be configured without
defining outputs; a packet handler could use the input ID of another core component directly in
order to send it a packet. However, the use of output labels is a recommended design methodology
to decouple system data-flow design from the design of the individual core components.

10.1.3 Binding core components

The notion of outputs and inputs allows the developer to decouple the data flow from the actual
development of the components. Binding simply consists of mapping outputs to inputs. This is
done at compile time; there are no binding functions.

10.1.4 Execution Engine

An execution engine is the thread of execution that runs one or more core components. This is a
kernel thread for Linux and a task for VxWorks. In the future, we may support user processes for
Linux. The developer of the system application controls how many execution engines there are and
which core components run in each execution engine. The system requires the developer to write
an initialization and termination function for each execution engine. The system provides an API
function that spawns a thread/task/process to run the execution engine, invoking the user-defined
initialization function.

10.1.5 Scheduling Policy

This allows the developer of the system application to control how the different queues in an
execution engine are scheduled. Each execution engine runs one or more core components and
each core component has one or more inputs (which map 1:1 with a queue). The scheduling policy
is specific to an execution engine. If no policy is specified, then Round Robin is the default.

10.1.6 Core Component Configuration Example

Figure 10-1 shows the three core components listed in Table 10-2.

Table 10-2. Core Component Infrastructure Example

Core Component Description

IPv4 Forwarder
This has two outputs IPV4_DEFAULT_OUTPUT connected to the TX component
and IPV4_LOCAL_OUTPUT connected to the stack driver. It has one input which
receives packets from the microblock.

Stack driver This has one output STACK_DEFAULT_OUTPUT and one input which receives
packets from the IPv4 forwarder block

TX This has one output TX_DEFAULT_OUTPUT and 2 inputs.
84 Portability Framework Developer’s Manual

Core Component Infrastructure
The bindings may be described as follows in a file bindings.h included at compile time by all the
components.

/* Core Component Inputs: */
#define IPV4_INPUT 100
#define STACK_INPUT 101
#define TX_INPUT_1 102
#define TX_INPUT_2 103

/* Microblock Inputs: */
#define TX_MICROBLOCK_INPUT 10

/* Core Component Outputs and Bindings: */
#define IPV4_DEFAULT_OUTPUT TX_INPUT_1
#define IPV4_LOCAL_OUTPUT STACK_INPUT
#define STACK_DEFAULT_OUTPUT TX_INPUT_2
#define TX_DEFAULT_OUTPUT TX_MICROBLOCK_INPUT

Figure 10-1. Core Component Datapath Example

A9923-01

Stack
Driver

IPV4_INPUT

TX_INPUT_2

TX_INPUT_1

TX_DEFAULT_OUTPUT

IPV4_DEFAULT_OUTPUT

STACK_DEFAULT_OUTPUT

IPV4_LOCAL_OUTPUT

STACK_INPUT

TxIPv4
Portability Framework Developer’s Manual 85

Core Component Infrastructure
Figure 10-2. Assigning Core Components to Execution Engines

Figure 10-2 shows how the application developer has chosen to run the core components in two
execution engines each corresponding to one thread of execution.

In addition, the developer can associate a scheduling policy with each execution engine. For
example, the Execution Engine 2 manages three queues associated with the inputs TX_INPUT_1,
TX_INPUT_2 and IPV4_INPUT. The developer can associate a scheduling policy with these queues
such that different inputs receive different priorities; for example, the IPv4 input could receive the
highest priority.

10.2 Core Component Infrastructure Design
Decomposition

The Core Component Infrastructure provides support for:

• Handling messages and packets in separate threads from the thread in which the message or
packet was sent

• Selecting between message/packet paths in the case that user wants to process more than one
message/packet path in the same thread

• A mechanism to allow users to drive the message/packet-processing functions using their own
thread of control

The core-component infrastructure includes the following constructs:

• A Core Component used for processing messages and packets in core space and for
configuring and patching code for microblocks

• An Execution Engine which encapsulates a thread of control to execute any number of
message/packet processing functions attached to one or more core components

• A Scheduling Policy which is used to schedule the processing of messages and packets if more
than one message/packet-processing function is controlled by an Execution Engine

A9924-01

Stack
Driver

Execution Engine 1

TxIPv4
Execution Engine 2
86 Portability Framework Developer’s Manual

Core Component Infrastructure
10.2.1 Design Purpose

The Core Components Infrastructure provides the following advantages:

• Separation of system development (controlling how core components work together) from the
development of individual core components.

• Ability for the system designer to initiate execution externally from the core component (a
core component does not include an internal thread-of-control loop for message processing).

• Ability for the system designer to design and modify the execution-control behavior of a core
component or group of core components working within a single thread or task.

• Ability for the core component designer to invoke separate message/packet handlers in
response to data arriving from different message/packet sources or to use separate input IDs
with the same message/packet handler so that scheduling can be fine-tuned.

• There does not have to be a one-to-one correspondence between microblocks and core
components. An individual microblock may not communicate with any entity in core code,
and a number of microblocks may be so closely related that they could be configured from just
one core component.

• Minimal infrastructure overhead.

• Users that have ready-defined and tested data structures to support message and packet
processing can still use those structures with core components without having to modify those
structures to include core components.

10.2.2 Design Constraints

The Core Component Infrastructure was designed for running in a kernel with a monolithic address
space; it was conceived with the understanding that it is not required to work in an environment
where each thread of control operates in its own address space. Whereas the design does not
preclude the possibility of porting the framework to an operating system environment with
partitioned address spaces, this would require some framework constructs be created in shared
memory space and for some redesign of the message/packet notification mechanism. The design,
however, does allow for the possibility of communication between the kernel-based infrastructure
and a control application running in a separate (user) address space.
Portability Framework Developer’s Manual 87

Core Component Infrastructure
10.2.3 Core Component Infrastructure Constructs

10.2.3.1 Core Component

A Core Component manages data structures used in packet/message processing. A core component
can:

• Configure associated microblocks

• Receive exception packets from microblocks

• Send packets to other core components and microblocks

However, there is no requirement for a core component to be associated with any microblocks.

Internally, a core component is implemented as a structure supported by a library of Infrastructure
API functions. Externally, a core component is a user-defined library exporting a set of user-
defined functions. The internal structure is hidden from the user; it may only be accessed via a
core-component handle using the infrastructure API functions.

Each core component will contain or reference the following:

• A pointer to an initialization function, which will allow the user to perform initialization on
his/her own private structures and to configure and download microcode

• A pointer to a termination function

• A table of packet-input IDs (which is initially empty)

• A table of message-input IDs (which is also initially empty)

The infrastructure will include a number of APIs to support the creation and setup of core
components:

Figure 10-3 shows how core components are interconnected to form message and packet data
paths.

Table 10-3. Core Component Infrastructure APIs

API Description

ix_cci_cc_create() Allows the user to set the core component's initialization
and termination functions

ix_cci_cc_add_packet_handler() Links a packet-input ID with a packet-handling function and
data context

ix_cci_cc_add_message_handler() Links a message-input ID with a message-handling
function and data context

ix_cci_cc_remove_packet_handler() Unlinks a packet-input ID with a packet-handling function
and data context

ix_cci_cc_remove_message_handler(
)

unlinks a message-input ID with a message-handling
function and data context

ix_cci_cc_add_event_handler() Links a timed event with an event-handling function and
data context

ix_cci_cc_destroy() Unlinks the packet handlers and message handlers from
the core component inputs and frees any memory
resources dedicated to the core component
88 Portability Framework Developer’s Manual

Core Component Infrastructure
Figure 10-3. Example of Packet and Message Data Paths between Core Components

A core component is run by an execution engine. An execution engine includes a function pointer
so that the thread of control for a core component may be provided by the user's application code.
If the core component contains more than one message-handling or packet-handling function, to be
run within one execution engine, a scheduling policy (SP) selects which processing function will
be run in the case when data is present on more than one input. Figure 10-4 shows an end-user's
view of a core component connected to an execution engine via a Scheduling Policy. Data input

A9925-01

Message
Input
ID B

Message
Handler

Packet
Handler 1

Packet
Handler 2

Packet
Handler 3

CC3

Packet
Input
ID b

Packet
Input
ID c

Packet
Input
ID d

Message
Handler

Packet
Handler

Message
Input
ID A

Packet
Input
ID a

CC2

Packet
Handler

CC1

Microblock

CC2_PK
T_O

U
T

CC1_PKT_OUT1

CC1_MSG_OUT1

C
C

1_
M

SG

_O
UT2

CC1_PKT_O
U

T
2

Portability Framework Developer’s Manual 89

Core Component Infrastructure
paths are shown as solid lines; execution control paths are shown as dotted lines. For further details
about execution engines, refer to Section 10.2.3.2, “Execution Engine.” Scheduling policies are
described in Section 10.2.3.3, “Scheduling Policy.”

Note: An execution engine includes a default policy tree that schedules message and packet processing
using a round-robin mechanism. The policy tree will give messages strict priority over packets.

Figure 10-4. Core Component Infrastructure Constructs

When the API ix_cci_send_message() or ix_cci_send_packet() function sends data to an
input ID, the message/packet data is stored in the queue associated with that ID. Later, the handler
registered in the associated queue structure is executed in the context of the execution engine
thread. This may or may not be in a different thread of execution from that of the sender, depending
on the execution engine in which the sender is running.

A9926-01

Packet
Processing
Function

a

Packet
Processing
Function

b

Packet
Processing
Function

n

Packet
Input
ID b

Packet
Input
ID n

Message
Input
ID a

Message
Input
ID n

Packet
Input
ID a

…

… …

Message
Processing
Function

a

Message
Processing
Function

n

…

Scheduling Policy

Framework Core Component

Execution Engine
90 Portability Framework Developer’s Manual

Core Component Infrastructure
10.2.3.2 Execution Engine

A core component does not have any threads of control. Packet and message processing is done in
the context of an active element called an execution engine.

The execution engine will have a shutdown function that will set an internal flag to break the
infinite loop in the execution function.

For operating systems that use co-operative multitasking, such as VxWorks, the infrastructure also
allows execution engines to control how many tokens they will process before switching out to the
next task run by another execution engine.

10.2.3.3 Scheduling Policy

If a core component running in a single engine has multiple data-input paths, then if messages/
packets (tokens) are pending on more than one input, the core component or some other separate
entity must decide which input must be processed next. The idea of a scheduling policy is to make
this decision based on a criterion, such as:

• Strict priority

• Round-robin

• Weighted Round-robin

The infrastructure will provide policies that select based on strict priority, round-robin, and
weighted round-robin. By default, the execution engine automatically adds input IDs to the default
policy or policy tree whenever message/packet handlers are added to a core component associated
with that execution engine. A core component is associated with an execution engine when the core
component is created. The default policy will treat all packets with the same round-robin priority
and all messages with the same priority but messages will have strict priority over packets.

10.2.3.3.1 Hierarchical Scheduling

Scheduling Policies and core component inputs can be configured into a tree hierarchy to provide a
mix of policies; policies are branches in the tree and core component Inputs are leaves, as shown in
Figure 10-5.

Figure 10-5. Policy Tree Example

Engine

SP 2 (Strict Priority)

SP 1 (WRR)Input C

Input BInput A
Portability Framework Developer’s Manual 91

Core Component Infrastructure
For example, SP 1 could select between Input A and Input B using a weighted round-robin
algorithm. SP 2 could select between Input ID C and SP 1 in strict priority, so that Input C takes
higher priority. Thus, the weighted round-robin paths would only be selected if there are no
packets/messages pending in Input C. The default policy is actually a policy tree consisting of three
policies: a round-robin message-selection policy, a round-robin packet-selection policy, and a root
policy that selects between the message-selection policy and the packet-selection policy using
strict priority.

The user creates a policy tree using ix_cci_policy_add_branch() and
ix_cci_policy_add_leaf(). The policy tree is added to an execution engine using
ix_cci_exe_add_policy().

10.2.4 Packet/Message Flow

A Scheduling Policy (SP) can be seen as a core component input with several selection paths.

Because a scheduling policy may control a number of core component inputs, the core component
input must pass an ID flag to identify itself when it receives data into an empty queue. The
scheduling policy assigns the ID value when the core component input is added to the scheduling
policy; it is not the globally unique input ID. The reason for this is because the ID indexes into the
list of branches and leaves—children—added to the policy, and into an internal 32-bit pending flag
in the scheduling policy that indicates the children with data pending. After updating its internal
data, the scheduling policy sends its own ID to its parent—which may be another scheduling policy
or the execution engine. If the parent is an scheduling policy, this process repeats until the
execution engine at the root of the scheduling tree is reached. At this point, the semaphore in
execution engine is unlocked to wake up the execution engine's thread if it is asleep. All the
foregoing actions take place in the thread context of the message or packet sender.

The execution engine calls the message-handling functions associated with the inputs that have
messages/packets pending. If scheduling policy scheduling flags indicate that more than one core
component input has packets/messages queued for processing, the scheduling policy or scheduling
policy tree is responsible for scheduling the order in which the packets/messages are processed.

For example, consider the scheduling hierarchy shown in Figure 10-6, and assume a starting
condition where all packet and message queues are empty. If a packet is sent to Input ID 65—
which corresponds to packet handler 2 of core component 1, then the packet policy updates bit 1 of
its pending flag, the root policy updates bit 1 of its pending flag, and the execution engine is woken
up. The processing function in the execution engine runs the processing function in the root policy,
which selects the packet policy because the message policy bit is clear. The packet policy examines
its pending flag. Since only bit 1 is set, the policy runs packet handler 2 of core component 1.

While packet handler 2 is executing, a message arrives on message input ID 64, another packet
arrives on packet input ID 65, and a packet arrives on input ID 80. The message causes bit 0 of the
pending flag in the message policy and root policy to be set, the packet on ID 65 causes bit 1 of the
pending flag in the packet policy and root policy to be set again, and the packet on ID 80 causes the
bit 2 in the packet policy to be set—and bit 1 in the root policy.

When the handler for the first packet has terminated, the root policy examines its pending flag
again. This time, both bits 0 and 1 are set, and since messages get fixed priority over packets, the
message policy is selected. The message policy sees bit 0 of its pending flag is set, and runs the
message handler for core component 1 accordingly. If no more messages and packets are received,
bit 0 of the message policy and root policy are cleared. The root policy selects the packet policy.
The packet policy uses its round-robin mechanism to select the packet handler for core component
2—input ID 80. If no more messages and packets are received while the core component 2 packet
92 Portability Framework Developer’s Manual

Core Component Infrastructure
handler is running, bit 2 of the pending flag in the packet policy clears, and the root and packet
policy selects packet handler 2 for core component 1 to handle the remaining packet associated
with input ID 65.

Figure 10-6. Scheduling Hierarchy Example

10.2.5 Mapping to the IXA SDK 2.0 ACE Framework

This section is provided to allow users familiar with the ACE Framework of IXA SDK 2.0 to map
concepts from the ACE environment to the new Core Component Infrastructure.

Packet buffers will be implemented based on the buffer abstraction provided by the Resource
Manager APIs. For more information, see Chapter 7, “Resource Manager.”

The Target is no longer a construct, but just an output ID, typically defined in a header file.

The memory will be handled entirely by the Resource Manager's Memory API. For more
information, see Chapter 7, “Resource Manager.”

Error handling will be implemented in the OSSL. For more information, see Chapter 11,
“Operating System Service Layer (OSSL) Support.”

Semaphores, mutexes, conditions, etc. from the ASL (Action Services Library) in the ACE
Framework will be moved into the OSSL. These constructs are OS-dependent and so it is natural to
implement them in the only OS-dependant library. This design will allow for easy infrastructure
porting. If the OSSL is ported to a new OS, then the rest of the applications should be just
recompiled.

A9928-01

Message
Handler for

CC1
(ID to

Message
Policy = 0)

Input ID 64

Message
Handler for

CC2
(ID to

Message
Policy = 1)

Input ID 65

Packet
Handler 1
for CC1
(ID to
Packet

Policy = 0)

Root Policy
(Strict Priority)

Execution Engine

Input ID 64

Packet
Handler 2
for CC1
(ID to
Packet

Policy = 1)

Input ID 65

Packet
Handler
for CC2
(ID to
Packet

Policy = 2)

Input ID 80

Message Policy
(ID to Root Policy = 0)

Packet Policy
(ID to Root Policy = 1)
Portability Framework Developer’s Manual 93

Core Component Infrastructure
Other ASL constructs will be treated as follows:

• Some support constructs like DICTIONARY, HASH and CHECKSUM will be included in the
new API only if needed.

• NCL (Network Classification Language) support constructs like ELEMENTs and SETs will be
dropped entirely.

• There will be no C++ support in the original API, C++ wrappers could be easily created when
needed.

• The TRACE facility that existed in the ASL, but was not implemented, will be dropped
entirely.

• The TASK construct will be dropped. IDL support has been replaced with a static message-
passing system. The semantic of a former TASK can be achieved by any entity that makes
calls to the provided API send functions.

• Most of the functionality of INDEX and ARENA is provided by the Resource Manager's
memory-cell abstraction. Sequential read/write from/to memory cells will be provided. For
SDS (Serialized Data Stream) support, type-dependent read/write functions will be provided.

• The TIME facility will be moved into the OSSL, due to the OS dependency.

• NETIF support will be dropped.

• The accessor/modifier functions for the former ASL packet buffer will not be implemented
because, as a library, we have no knowledge about the structure of packet metadata (because
this will now be application-dependent). It will be the responsibility of application developers
to provide equivalent functionality based on their own needs.

• Classification/Action support will be implemented in the form of a handler function that will
be invoked for each core-component input receiving a packet. It is the programmer's decision
to decide whether classification and action implementation will be merged or not. The same
mechanism will apply to message processing. Internally, there is no difference between
packets and messages but we separate them to increase performance. The relative performance
can be tuned by setting the priority of packet processing versus message processing using SPs.
By default, round-robin scheduling will be used between messages and between packets, but
messages will get strict priority over packets.

• The EVENT construct in the ASL will be implemented by the new API as a function
associated with an execution engine.

10.3 External Data Structures

The constructs in the core-component infrastructure are exposed as handles only. Handles have
been chosen over pointers for the following reasons:

• Reduces the number of arguments required by API functions by encoding the locations of
important parents in the handle—for example, the handle for a core component includes
information about the location of its controlling policy and its execution engine.

• Allows the framework to include stronger validity checking—a pointer can only be checked
for NULL.

• Hides private infrastructure data from the user, reducing the chances of misuse leading to
unexpected program behavior.
94 Portability Framework Developer’s Manual

Core Component Infrastructure
10.4 External APIs

Table 10-4 gives a summary of the APIs exposed by the core-component infrastructure. For
complete descriptions and definitions of the API functions, see the Intel® Internet Exchange
Architecture Portability Framework Reference Manual.

Table 10-4. Core Component Infrastructure API

Name Description

ix_cci_cc_add_event_handler() Adds an event handler using the handle of the
component.

ix_cci_cc_add_message_handler() Adds a message handler to a core component and
associates it with an input ID.

ix_cci_cc_add_packet_handler() Adds a packet handler to a core component and
associates it with an input ID.

ix_cci_cc_create() Creates a core component and returns a component
handle.

ix_cci_cc_destroy() Destroys a core component specified by a handle to
the component.

ix_cci_cc_remove_event_handler() Removes an event created using
ix_cci_cc_add_event_handler().

ix_cci_cc_remove_message_handler() Deletes a message handler.

ix_cci_cc_remove_packet_handler() Deletes a packet handler.

ix_cci_exe_add_policy() Adds a policy or policy tree to an execution engine. A
credit quantum may be specified for a weighted round
robin policy or a priority for a strict priority policy.

ix_cci_exe_get_info() Returns the execution-engine handle, engine number,
and a context pointer associated with the execution
engine in which the caller is running.

ix_cci_exe_run() Runs the execution engine in a spawned task, thread,
or process.

ix_cci_exe_set_default() Sets an engine as the default engine whose
information is returned by
ix_cci_exe_get_info() when that function is
called from a non-engine thread.

ix_cci_exe_shutdown() Shuts down the execution engine identified by a
handle, terminating its task, thread, or process.

ix_cci_init() Initializes the framework for use by the core-
component infrastructure.

ix_cci_fini() Terminates the framework.

ix_cci_policy_add_branch() Adds a branch—another policy or policy tree—to a
scheduling policy, supporting construction of a
hierarchical scheduling policy. A credit quantum may
be specified for a weighted round robin policy or a
priority for a strict priority policy.

ix_cci_policy_add_leaf() Adds a leaf node or input ID to a scheduling policy or
execution engine. A credit quantum may be specified
for a weighted round robin policy or a priority for a
strict priority policy.

ix_cci_policy_create() Allocates a scheduling policy specifying the type—
type is one of round robin, weighted round robin, or
priority. Returns a handle to the policy.
Portability Framework Developer’s Manual 95

Core Component Infrastructure
ix_cci_policy_destroy() Frees the scheduling policy. Deallocates all resources
associated with a tree.

ix_cci_register_fatal_error_handle
r()

Allows a control application to register a fatal-error
handler.

ix_cci_send_message() Sends a message to a specific input of a core
component.

ix_cci_send_packet() Sends a packet to a specific input of a core
component or to a microblock identified by microblock
ID.

Table 10-4. Core Component Infrastructure API (Continued)

Name Description
96 Portability Framework Developer’s Manual

Operating System Service Layer (OSSL)
Support 11

The IXA SDK Tools CD provides additional library support for the Operating System Services
Layer (OSSL). Applications based on the IXA SDK use the OSSL library’s operating system
independent APIs and data types for system services such as threads, semaphores, and memory
management, etc.

For details concerning the use of these libraries and the specific APIs they support, see the Intel®
Internet Exchange Architecture (IXA) Software Reference Manual on the IXA SDK Tools CD.
Portability Framework Developer’s Manual 97

Operating System Service Layer (OSSL) Support
98 Portability Framework Developer’s Manual

Intel XScale® Core Support 12

The IXA SDK Tools CD provides additional library support for Intel XScale® core applications.
This includes Intel XScale® core support for:

• Microengine Loader

• Hardware Abstraction Layer (HAL)

• Tools

12.1 Microengine Loader for the Intel XScale® Core

The Microcode Loader is used to load microcode images, created by the microcode linker ucld, to
the appropriate microengines. Intel® IXP2400 and IXP2800 Network Processor applications
consist of two distinct parts: one consisting of microengine images and another of ARM-compiled
code linked against the Microcode Loader Library, uclo.a. This section describes the Microcode
Loader.

For details concerning the use of these libraries and the specific APIs they support, see the Intel®
Internet Exchange Architecture (IXA) Software Reference Manual located on the IXA SDK Tools
CD.

12.2 Hardware Abstraction Layer for the Intel XScale®
Core

The Intel XScale® core and the Microengines share access to the same Intel® IXP2400 and
IXP2800 Network Processor functional units—SRAM, SDRAM and the FBI (IX Bus). An Intel
XScale® core application interfaces to these units in one of three ways:

• Through memory-mapped locations in the Intel XScale® core address space when running on
the hardware

• Using the AMBAIO and XACT API calls to the Transactor when running as a simulation

• Using the APIs provided by the Hardware Abstraction Layer (HAL)

The HAL generates code to interface either to the Intel XScale® core-based hardware or the
Transactor. A Intel XScale® core application that uses HAL can run in hardware mode or
simulation mode without changes to the code that accesses the functional units. This increases
portability of the application code when moving between the simulation environment of the
Transactor and the Intel XScale® core-based hardware.

For details concerning the use of these libraries and the specific APIs they support, see the Intel®
Internet Exchange Architecture (IXA) Software Reference Manual on the IXA SDK Tools CD.
Portability Framework Developer’s Manual 99

Intel XScale® Core Support
12.3 Tools

Additional APIs provide support for debugging and remote debugging of microengine code from
the Intel XScale® core.

For details concerning the use of these libraries and the specific APIs they support, see the Intel®
Internet Exchange Architecture (IXA) Software Reference Manual on the IXA SDK Tools CD.
100 Portability Framework Developer’s Manual

Control Plane PDK 13

13.1 Overview

Control Plane Platform Development Kit (CP PDK), implements the Network Processor Forum
(NPF) APIs. The architecture has been defined to accommodate and take advantage of the Intel®
Internet Exchange Architecture Software Development Kit (Intel® IXA SDK) software.

The Network Processing Forum (NPF) APIs are well designed for this purpose as they present a
flexible and well-known programming interface for the implementation of control plane
applications. The hardware properties and nature of the interface between the control and the
forwarding planes are encapsulated in the API implementation. This includes transparency with
respect to the existence of multiple forwarding planes as well as vendor-specific implementation
details. Protocol stacks and network processors available from different vendors can be integrated
easily with the NPF APIs. The APIs included in the CP PDK are based on the NPF APIs. For more
information about NPF, refer to http://www.npforum.org/.

For complete information about these APIs, refer to the CP PDK documentation supplied with the
Intel® IXA SDK.
Portability Framework Developer’s Manual 101

http://www.npforum.org/

Control Plane PDK
102 Portability Framework Developer’s Manual

Framework Memory and CPU Usage
Summary A

The following metrics are relevant to the Intel® Internet Exchange Architecture Software
Development Kit (Intel® IXA SDK) 3.5 release of the Framework.

A.1 Code and Image Sizes

The tables listed below provide details on the code and image sizes of various components of the
Framework software.

A.2 Memory Consumption

A.2.1 Resource Manager

The Resource Manager (RM) uses both operating system (OS) memory and non-OS memory.

Table A-1. Code Size for Framework Infrastructure

Lines of Code Lines of
Comments

Total Raw
Lines Comment %

Resource Manager 24158 21233 55104 46.8

Core Component Infrastructure 4209 4175 9420 49.8

OS Services Library 4324 4236 9611 49.5

Table A-2. Compiled Code Size for VxWorks* Image

IXP2400 IXP2800

Resource Manager 194 Kb 196 Kb

Core Component Infrastructure 40 Kb 40 Kb

OS Services Library 9 Kb 9 Kb

Table A-3. Compiled Code Size for Linux* Kernel Image

IXP2400 IXP2800

Resource Manager 138.1 Kb 139.5 Kb

Core Component Infrastructure 26.9 Kb 27.4 Kb

OS Services Library 8.2 Kb 8.2 Kb
Portability Framework Developer’s Manual 103

Framework Memory and CPU Usage Summary
For non-OS memory (the common Intel XScale® core/Microengine memory), the RM uses 1.3 Kb
on each SRAM channel for QArray descriptors. Further, it uses SCRATCH memory for two
internal scratch rings, the size of which is configurable by the programmer. By default, the scratch
usage is about 1 Kb.

If the PCI communication facilities are to be used, then the RM allocates a hardware free list and a
software free list of 1024 elements each for this purpose. The data part for the buffers is 2048
bytes, and the metadata part would be 32 bytes for hardware buffers and 16 bytes for software
buffers. In total, this amounts to 2Mb + 16 Kb of DRAM and 32Kb of SRAM. In addition, the RM
uses another software free list of 2048 element for configuration properties. This free list has a
data area of 64 bytes and metadata area of 64 bytes, amounting to another 256 Kb of DRAM.

For OS memory, the RM will occupy the code size itself (see Section A.1) plus its static data
segments (about 100 Kb) and OS dynamic memory (about 700 Kb). Altogether RM will use about
800Kb OS memory. Of course, extra OS memory will be used based on the requests of the
particular application.

A.2.2 Core Component Infrastructure

The Core Component Infrastructure uses about 2Kb of OS memory and a very small amount (less
than 1 Kb) of non-OS DRAM.

A.2.3 OS Services Library

The OS Services Library does not use any memory for itself.

A.2.4 Memory Usage Summary

A.3 CPU Usage

The load on the CPU is based solely on the Intel XScale® core application performance and the
amount of data sent by the microengines to the core. However, below are some general guidelines
for the framework software.

Table A-4. Summary of Framework Memory Usage

DRAM SRAM SCRATCH OS

Resource Manager ~2.3 Mb ~40 Kb ~1 Kb ~800 Kb

Core Component Infrastructure ~1 Kb 0 0 ~2 Kb

OS Services Library 0 0 0 0
104 Portability Framework Developer’s Manual

Framework Memory and CPU Usage Summary
A.3.1 Resource Manager

The Resource Manager (RM) has five active internal threads, each waiting on semaphores to start
processing. Thus, in an idle state, the RM will not consume any CPU cycles. This is due to the fact
that all these threads (except the 64-bit counter thread) start processing only when they are
awakened by interrupts.

The internal threads of the RM are as follows:

• RM packet dispatch thread

• RM message dispatch thread

• RM 64-bit counter thread

• RM PCI communication receive thread

• RM PCI communication transmit thread

If the microengines do not send and packets to the core, then the packet dispatch thread will not
consume any cycles. Alternately, if they do send packets to the core, then the CPU usage depends
on the number of packets and the amount of processing per packet. The same applies for the
message dispatch thread.

If there are no 64-bit counters created, then the 64-bit counter thread will not consume any CPU
cycles. If these counters are instantiated, then the CPU usage depends on the number of counters
and their minimum update timeout value.

The PCI communication threads will not consume any CPU cycles when there is no
communication between Ingress and Egress. Of course, if they do send messages to each other via
PCI, then the CPU usage depends on the number of messages and the amount of processing per
packet.

In summary, the Resource Manager does not use any CPU cycles without external input.

A.3.2 Core Component Infrastructure

The Core Component Infrastructure will use a small amount of CPU time, even in the case when
there nothing to process.

In the CCI, the amount of processing depends on how many execution engines are instantiated.
Even when there are no packets, messages, or events to process, the execution engines use some
CPU cycles as it gets awakened from time to time.

A.3.3 OS Services Library

The OS Services Library (OSSL) does not use any CPU cycles if the application does not make
calls to the exported functions.

Like the Resource Manager, the OSSL does not use any CPU cycles without external input.
Portability Framework Developer’s Manual 105

Framework Memory and CPU Usage Summary
106 Portability Framework Developer’s Manual

Glossary B

A
AAL ATM Adaptation Layer. The ATM standards layer that allows multiple

applications to have data converted to and from an ATM cell. A protocol
used that translates higher layer services into the size and format of an
ATM cell.

AAL5 ATM Adaptation Layer 5. AAL functionality to support variable bit rate,
delay-tolerant connection-oriented data traffic.

active computing
element (ACE) A logical entity that represents a specific packet-processing activity in

the IXA SDK 2.0. IXP1200 applications use ACEs to process packets.
The ACE Programming Framework in the IXA SDK 2.0 is now replaced
by microblocks and core components in the IXA SDK 3.0

application programming
interface (API) A set of routines, classes, methods, structures, and/or functions used to

write applications.

Asynchronous Transfer
Mode (ATM) A transfer mode in which information is organized into cells. It is

asynchronous in the sense that the recurrence of cells containing
information from an individual user is not necessarily periodic.

B
big endian A compiler term specifying that, for multibyte values, the most

significant byte is first. See also little endian, network byte order.

byte order The way a system stores numeric data, with the most or least significant
byte first. Most significant byte first, or big endian byte order, is also
known as network byte order. See also endianness.

C
constant bit rate (CBR) An ATM service class.

committed burst
size (CBS) An IP QoS traffic contract parameter/metric.

committed information
rate (CIR) An IP QoS traffic contract parameter/metric.

cell loss priority (CLP) An ATM QoS traffic contract parameter/metric.

content addressable
memory (CAM) A hardware feature where a content match is performed to get an index

to associated information.
Portability Framework Developer’s Manual 107

Glossary
context pipeline A software pipeline in which different functions are performed on
different microengines as time progresses and the packet context is
passed between the functions or microengines. Each microengine
constitutes a context pipe-stage and cascading two or more context pipe-
stages constitutes a context pipeline. The context pipeline get its name
from the fact that it is the context that moves through the pipeline.

control plane The abstraction for a functional area of an application that controls and
configures the data plane and handles exception packets, distinguished
from the data processing plane. Control plane activities are typically
performed by code modules within the IXA application. Compare to
management plane, whose activities are usually outside the IXA
application, in a host application.

core component A packet-processing entity that configures its microblock, initializes and
maintains common data structures that may be updated by other
applications, and provides exception handlers and control message
handlers to process packets/messages sent by the microblock.

Core Component
Infrastructure Infrastructure of a number of APIs to support the creation and setup of

core components.

cyclic redundancy

check (CRC) A mathematically computed numerical value transmitted with packet
data to ensure the integrity of packet data transmitted between endpoints.

critical section A section of code in which only one microengine thread has exclusive
modification privileges for a global resource (such as a memory location)
at any one time. The IXP2400 uses inter-thread signaling to implement
critical sections across microengines.

CSR Acronym for control status register.

D
decap Decapsulation - Removing one or more protocol header from a packet.

DiffServ Differentiated Service. A means of classifying IP packets into “classes,”
based on the DiffServ Code Point (DSCP) in the packet’s IP header.

dispatch loop A dispatch loop combines microblocks running on a microengine thread
and implements the data flow between them.

deficit round
robin (DRR) A QoS queue-scheduling algorithm.

DiffServ Code

Point.(DSCP) A 6-bit field in the IPv4 header.

E
EE Acronym for execution engine.

encap Encapsulation - Adding one ore more protocol headers to a packet.
108 Portability Framework Developer’s Manual

Glossary
endian, endianness A compiler term for the byte order of multibyte values. See big endian
and little endian.

Ethernet A local area network (LAN) technology designed for interconnecting
networking nodes over a shared medium, as specified in standard IEEE
802.3. Also typically used to refer to the Layer 2 networking protocol as
specified in standard IEEE 802.2.

F
fast path Data path in which the packet is completely processed on the MEv2

microengines without any intervention from the Intel XScale® core.

folding A software technique used by threads running on the same ME, to
optimize read/modify/writes in a critical section. The technique uses the
CAM and strict thread ordering enforced via inter-thread signaling to
fold the read/modify/write into a single read, multiple modifies, and one
or more writes depending on the cache-eviction policy.

Functional Pipeline A software pipeline in which the context remains with an microengine
while different functions are performed on the packet as time progresses.
The microengine execution time is divided into “n” pipe-stages and each
pipe-stage performs a different functions. The Functional Pipeline get it's
name from the fact that it is the function that moves through the pipeline.

G
Guaranteed Frame
Rate (GFR) An ATM service class.

H
head of line blocking A situation where the transmit operation on a group of ports is blocked

by a single port at the head of the transmit queue. This scenario typically
occurs when the port at the head of the transmit queue is blocked because
of flow control issues and the remaining ports on the queue have data
pending but need to wait for this port to finish the transmit operation.

Header Error Check
(HEC) An 8-bit field within an ATM header that is generated by a sender, and

checked by a receiver, to determine the validity of an ATM header.

I
Intel® Internet Exchange
Architecture (IXA) A new approach to designing networking and telecommunications

equipment based on reprogrammable silicon and open interfaces.
Manufacturers of networking and communications equipment can use
components from the IX-based product portfolio for designing new,
more intelligent network systems.
Portability Framework Developer’s Manual 109

Glossary
intrinsic A C function-like interface that implements a chip-specific hardware
feature, not otherwise supported by the C language. Direct use of
intrinsics results in non-portable code.

IP An acronym for internet protocol, a standard network protocol. See also
TCP/IP.

IPv4 Internet Protocol Version 4.

IPv6 Internet Protocol Version 6.

IXP Acronym for Intel® Internet Exchange Processor, and a current instance
of this processor.

IXP2400, IXP 2800 Internet eXchange network processors. The IXP2400 has 8
microengines targeted at OC-48 POS line rates and the IXP2800 has 16
microengine targeted at OC-192 POS line rates.

L
L2 Layer 2.

L3 Layer 3.

LLCSNAP Logical Link Control/Sub Network Access Protocol - Data link layer
packet encapsulation headers that identify a protocol, as well as client
and control information. Refers to IEEE standards 802.3 with 802.2.

longest prefix

match (LPM) Algorithm IP routers apply to an IP packet destination address to
determine the packet’s egress port, and hence forward the packet out the
egress port.

little endian A compiler term specifying that, for multibyte values, the least
significant byte is first. See also big endian, endian.

longword A 32-bit word; 4 bytes long.

M
medium access

control (MAC) A protocol layer responsible for providing access to a shared
communications medium. Also stands for medium access controller -
The device used to interface with the physical layer medium.

ME See microengine.

MEv2 A microengine specific to the IXP2xxx network processor family.

microblock A discrete unit of IXP2xxx code written in microcode or MicroC that is
written to the guidelines specified in the IXA Software Framework.
Microblocks conform to one of three different types: source, transform
or sink. Typically, a microblock has an IIntel XScale® core component
that is used to configure and manage the microblock.
110 Portability Framework Developer’s Manual

Glossary
microblock group One or more microblocks that have been combined into a thread
executable on a microengine. Typically all threads on the microengine
will execute the same microblock group, but it is not required. A typical
use instantiates the same microblock group on several microengines.

Microengine (ME) One of many programmable, specialized processors (8 for IXP2400, 16
for IXP2800).

Mixed Pipeline A software pipeline where some microengines run a single function
(context pipe-stage) and others run multiple functions (Functional
Pipeline).

MPKT M Packet - An IXP2xxx media bus interface data-transfer unit that can
be configured to be 64, 128, or 256 bytes in length.

MEv2 Microengine version 2, which is the microengine used for the IXP2400
and IXP2800 network processors.

microcode Hardware-specific machine code. A code module written in microcode
can run only on the processor it is written for.

mutual exclusion, mutex Mutual exclusion is used to guard the critical sections accessed by
threads.

N
nrtVBR Non-Real Time Variable Bit Rate - An ATM service class.

network byte order The system of storing numeric data with the most significant byte first.
See also big endian, endianness.

network services
application General descriptive term for the kind of application built with the IXA

SDK.

O
Operations Administration
and Maintenance (OAM) A group of network management functions that provide network fault

indication, performance information, and data and diagnosis functions
within an ATM network. Also the type of ATM cell payload used to carry
such information.

OC-12, OC-48c Optical Carrier (SONET) - Level (e.g., Level = 3, 12, 48, 192). Often
used to specify data rates; the base level rate is 51.84 Mbps (OC-1); each
level thereafter operates at a multiple of the base level rate (thus, OC-3
runs at 155.52 Mbps, OC-12 runs at 622.08 Mbps, etc.).

OS Acronym for operating system.

Operating System
Services Library (OSSL) An OS abstraction API used within the IXA SDK to achieve portability.
Portability Framework Developer’s Manual 111

Glossary
optimized data plane
libraries A library of low-level macros and functions for microengine program

development. The purpose of this library is to provide a layer of
portability, so programmers can write code that will run on IXP1200,
IXP2400, IXP2800, and future IXP chips. For details, see the Intel®
Internet Exchange Architecture Optimized Data Plane Libraries
Reference Manual on the IXA SDK Tools CD.

P
payload The part of a packet that carries data, as opposed to those parts that carry

information about the packet.

Q
quadword A 64-bit word; 8 bytes long.
quality of service (QoS) A networking term that specifies a guaranteed throughput level.

R
Resource Manager A programming interface between Intel XScale® core applications and

the microcode running on the microengines for the IXP2400 and
IXP2800 network processors.

Round Robin (RR) A scheduling algorithm in which entities/queues are services/scheduled
in a consistent serial manner.

rtVBR Real Time Variable Bit Rate. An ATM service class.

Rx Receive.

S
SAR Segmentation And Reassembly - The process of transforming frames-to-

cells and cells-to-frames.

SDE Acronym for software development environment.

SDK Acronym for software development kit.

semaphore Semaphores are the primary means for providing thread
synchronization.

sink microblock A function or macro that disposes of a packet, either by enqueuing it
within the IXP or sending it to an external interface.

slow path The execution path of the packets that require exceptional handling. This
may be error packets or packets that need to be handled differently than
the normal case. In this case, it will take longer to process because they
will be handled by a general-purpose processor (Intel XScale® core in
our case). See also fast path.

software pipeline The MEv2 employs a software pipeline model in the fast path processing
of packets. There are three different types of pipelines—Context
Pipeline, Functional Pipeline, and Mixed Pipeline.
112 Portability Framework Developer’s Manual

Glossary
source microblock A function or macro that obtains a packet, either by dequeuing it within
the IXP or getting it from an external interface.

SP Acronym for scheduling policy.

stdmac Acronym for standard macros. Assembly macros that are microengine-
specific, for instruction simplification.

T
TCP An acronym for transmission control protocol, a standard network

protocol in which transmission status can be confirmed. Establishes a
point-to-point connection, in contrast to UDP which is connectionless.
See also TCP/IP.

TCP/IP A standard network protocol, using TCP over IP. See TCP and IP.

TM4.1 Traffic Management version 4.1 - An ATM specification for managing/
controlling traffic congestion within an ATM network by the actions of
buffering, adjusting transmission rates, and policing VCs.

Type of Service (TOS Refers to an 8-bit field in the IPv4 header.

Tx Transmit.

thread An independent task, which can be processed in parallel with other tasks.

transform microblock A function or macro that parses, analyzes, classifies, or modifies a
packet.

U
unspecified bit
rate(UBR) An ATM service class.

usage parameter

control (UPC) VC traffic contract characteristics, that permit ATM network nodes to
monitor, control, and police the traffic within the ATM network.

V
variable bit rate (VBR) An ATM service class.

virtual connection
or virtual channel (VC) A communications channel between ATM systems nodes that provides

for the sequential transport of ATM cells.

virtual connection

identifier (VCI) A 16-bit numerical tag within an ATM cell header that identifies a virtual
channel over which the cell is to travel.

virtual path identifier
(VPI) An 8-bit numerical tag within an ATM cell header that indicates the

virtual path over which the cell should be routed.
Portability Framework Developer’s Manual 113

Glossary
VPN Virtual Private Network.

virtual port (VPORT) A field accompanying a MPKT that identifies the port (and possibly line
card) to/from which the MPKT payload is sent/received.

W
Wide Area Network)
(WAN) A network that spans a large geographical area relative to a local area

network (LAN). A WAN typically experiences greater traffic delays (due
to distance between nodes and greater network congestion) and packet
loss (due to switches dropping packets).

WRR Acronym for weighted round robin.

X
XScale® core The ARM architecture core processor in the IXP2400 and IXP2800

network processors.
114 Portability Framework Developer’s Manual

	Intel® Internet Exchange Architecture Portability Framework
	Introduction 1
	1.1 About this Document
	1.2 Audience
	1.3 In This Manual
	1.4 Other Sources of Information

	IXA Portability Framework Overview 2
	2.1 Network Application Structure
	2.2 Data Plane Software Structure
	2.3 Logical Elements of an IXA Application
	2.3.1 Optimized Data Plane Libraries and Tools
	2.3.2 Microblocks
	2.3.3 Dispatch Loop and Microblock Infrastructure Library
	2.3.4 Resource Manager Library
	2.3.5 Intel XScale® Core Components
	2.3.6 Additional Intel XScale® Core Supporting Libraries
	2.3.7 Core Component Infrastructure
	2.3.8 Control Plane PDK
	2.3.9 Operating System Service Layer (OSSL)
	2.3.10 System Application

	Microengine Programming Models 3
	3.1 Ordered Thread Model
	3.1.1 Unordered Thread Model
	3.1.2 Selecting the Appropriate Model
	3.1.3 Maintaining Packet Order
	3.1.3.1 Packet Ordering for the Unordered Thread Model
	3.1.3.2 Maintaining Partial Order per Block

	3.2 Packet Descriptor or Metadata
	3.2.1 Packet Header Caching
	3.2.2 Packet Source and Packet Sink Libraries

	Microblocks 4
	4.1 Microblock Types
	4.2 Structure of a Microblock
	4.3 Microblock Name and ID
	4.4 Outputs for a Microblock
	4.5 Configuring a Microblock
	4.6 Critical Sections and Folding in a Microblock
	4.7 Exception Packets
	4.8 Receiving Packets from the Intel XScale® Core
	4.9 Dropping Packets
	4.10 Handling Null Packets
	4.11 Ordered vs. Unordered Model

	Dispatch Loop 5
	5.1 Dispatch Loop for the Ordered Thread Model
	5.2 Dispatch Loop Structure
	5.3 Dispatch Loops for the Unordered Thread Model (POTs)
	5.3.1 Dispatch Loop Control Flow
	5.3.2 Packets from the Intel XScale® Core

	5.4 Dispatch Loop Variables
	5.4.1 Microengine Assembler Dispatch Variables
	5.4.2 Microengine C Loop Data Structure

	5.5 Dispatch Loop Macros

	Optimized Data Plane Libraries Support 6
	Resource Manager 7
	7.1 Overview
	7.2 Changes for IXA SDK 3.x
	7.2.1 Stand Alone API
	7.2.2 Compile Time Allocation of Microengines
	7.2.3 Patching Symbols at Debug Time
	7.2.4 VxWorks Support
	7.2.5 Hardware Resource Management
	7.2.6 Dispatch Loop Support
	7.2.7 MicroC Support
	7.2.8 Buffer Management
	7.2.9 Communication with Microblocks Using Hardware Features

	7.3 Internal Design
	7.4 API
	7.4.1 Basic Types
	7.4.2 System API
	7.4.3 Microengine API
	7.4.4 Hardware Resource Management API
	7.4.4.1 SRAM Queues
	7.4.4.2 SRAM and Scratch Rings

	7.4.5 Buffer Management API
	7.4.5.1 Generic Buffer API
	7.4.5.2 IXA Portability Framework Buffer API

	7.4.6 Communication API
	7.4.7 Remote Communication Extension API
	7.4.8 Memory Management API
	7.4.9 System Repository API
	7.4.10 64-Bit Counters
	7.4.11 Services
	7.4.12 Hash
	7.4.13 Microengine Services
	7.4.14 Debug Support

	Core Components 8
	8.1 Overview

	TCAM Lookup Libraries 9
	9.1 Lookup Management Library
	9.2 Microengine Lookup Library

	Core Component Infrastructure 10
	10.1 Terminology and Key Components of the Core Component Infrastructure
	10.1.1 Inputs
	10.1.2 Outputs
	10.1.3 Binding core components
	10.1.4 Execution Engine
	10.1.5 Scheduling Policy
	10.1.6 Core Component Configuration Example

	10.2 Core Component Infrastructure Design Decomposition
	10.2.1 Design Purpose
	10.2.2 Design Constraints
	10.2.3 Core Component Infrastructure Constructs
	10.2.3.1 Core Component
	10.2.3.2 Execution Engine
	10.2.3.3 Scheduling Policy

	10.2.4 Packet/Message Flow
	10.2.5 Mapping to the IXA SDK 2.0 ACE Framework

	10.3 External Data Structures
	10.4 External APIs

	Operating System Service Layer (OSSL) Support 11
	Intel XScale® Core Support 12
	12.1 Microengine Loader for the Intel XScale® Core
	12.2 Hardware Abstraction Layer for the Intel XScale® Core
	12.3 Tools

	Control Plane PDK 13
	13.1 Overview

	Framework Memory and CPU Usage Summary A
	A.1 Code and Image Sizes
	A.2 Memory Consumption
	A.2.1 Resource Manager
	A.2.2 Core Component Infrastructure
	A.2.3 OS Services Library
	A.2.4 Memory Usage Summary

	A.3 CPU Usage
	A.3.1 Resource Manager
	A.3.2 Core Component Infrastructure
	A.3.3 OS Services Library

	Glossary B

