
Intel® Internet Exchange
Architecture Software Building
Blocks Applications
Design Guide

November 2003

Document Number: CI-00052.001

This document contains information on products in the design phase of development. The information here is subject to change without notice. Do not
finalize a design with this information.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-
4725, or by visiting Intel's web site at http://www.intel.com.

Copyright © Intel Corporation, 2003.

Intel is a registered trademark of Intel Corporation or its subsidiaries in the United States and other countries.

AlertVIEW, i960, AnyPoint, AppChoice, BoardWatch, BunnyPeople, CablePort, Celeron, Chips, Commerce Cart, CT Connect, CT Media, Dialogic,
DM3, EtherExpress, ETOX, FlashFile, GatherRound, i386, i486, iCat, iCOMP, Insight960, InstantIP, Intel, Intel logo, Intel386, Intel486, Intel740,
IntelDX2, IntelDX4, IntelSX2, Intel ChatPad, Intel Create&Share, Intel Dot.Station, Intel GigaBlade, Intel InBusiness, Intel Inside, Intel Inside logo, Intel
NetBurst, Intel NetStructure, Intel Play, Intel Play logo, Intel Pocket Concert, Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel TeamStation,
Intel WebOutfitter, Intel Xeon, Intel XScale, Itanium, JobAnalyst, LANDesk, LanRover, MCS, MMX, MMX logo, NetPort, NetportExpress, Optimizer
logo, OverDrive, Paragon, PC Dads, PC Parents, Pentium, Pentium II Xeon, Pentium III Xeon, Performance at Your Command, ProShare,
RemoteExpress, Screamline, Shiva, SmartDie, Solutions960, Sound Mark, StorageExpress, The Computer Inside, The Journey Inside, This Way In,
TokenExpress, Trillium, Vivonic, and VTune are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and
other countries.

*Other brands and names may be claimed as the property of others.

Software Building Blocks Applications Design Guide 3

Contents
1 Introduction ...19

1.1 About this Manual ...19
1.2 Organization of this Manual ..19
1.3 Supported Applications...20
1.4 Other Sources of Information..21

2 OC-48 POS IPv4 Forwarding Application...23

2.1 Hardware Overview ..23
2.2 Software Overview..24

2.2.1 Data Flow for the Ingress IXP2400..25
2.2.1.1 Packet RX...25
2.2.1.2 PPP Decapsulation and Classify ..25
2.2.1.3 IPv4 Forwarder ...26
2.2.1.4 Cell Based Queue Manager (Cell QM)...26
2.2.1.5 CSIX Scheduler ..27
2.2.1.6 CSIX TX..27

2.2.2 Data Flow for the Egress IXP2400 ..28
2.2.2.1 CSIX RX ...28
2.2.2.2 PPP Encapsulation...28
2.2.2.3 Packet Based Queue Manager ..28
2.2.2.4 Egress Packet WRR/DRR Scheduler...28
2.2.2.5 Packet TX...29

2.2.3 Dispatch Loops / Microblock Groups ...30
2.3 Performance Characterization ..31
2.4 Ingress System Resource Allocation ..32
2.5 Egress System Resource Allocation...33
2.6 Interfaces Between the Various Microblocks..34

2.6.1 Packet RX and Packet Processing Microengines..35
2.6.2 Packet Processing Microengines and Cell Queue Manager ...35
2.6.3 Cell Queue Manager and CSIX Scheduler ..36
2.6.4 Cell Queue Manager and CSIX TX..36
2.6.5 CSIX RX and PPP Encap ..37
2.6.6 PPP Encap and Packet Queue Manager ..37
2.6.7 Packet Queue Manager and Scheduler...37
2.6.8 Packet Queue Manager and Packet TX ..38

2.7 Core Components...38
2.7.1 Ingress Core Components...38
2.7.2 Egress Core Components ...39
2.7.3 Exception Path Processing..39

3 4Gb Ethernet IPv4 Forwarding Application...41

3.1 Hardware Overview ..41
3.2 Software Overview..42

3.2.1 Data Flow for the Ingress IXP2400..43
3.2.1.1 Packet RX...43
3.2.1.2 Ethernet Decapsulation/Classify/Filter..43
3.2.1.3 IPv4 Forwarder ...43

4 Software Building Blocks Applications Design Guide

3.2.1.4 Cell Based Queue Manager (Cell QM)... 43
3.2.1.5 CSIX Scheduler.. 43
3.2.1.6 CSIX TX ... 43

3.2.2 Data Flow for the Egress IXP2400 .. 43
3.2.2.1 CSIX RX ... 43
3.2.2.2 Ethernet Encapsulation .. 44
3.2.2.3 Packet Based Queue Manager (Packet QM) ... 44
3.2.2.4 Egress Scheduler ... 44
3.2.2.5 Packet TX... 44

3.2.3 Dispatch Loops / Microblock Groups... 44
3.2.4 Performance Characterization... 46

3.3 Ingress System Resource Allocation.. 46
3.4 Egress System Resource Allocation .. 48
3.5 Interfaces Between the Various Microblocks.. 49

3.5.1 Packet Queue Manager and Packet TX .. 49
3.6 Core Components .. 49

3.6.1 Ingress Core Components for VxWorks .. 49
3.6.2 Ingress Core Components for Linux.. 49
3.6.3 Egress Core Components for VxWorks and Linux .. 49

4 OC-48 ATM IPv4 Forwarding Application... 51

4.1 Hardware Overview for ATM .. 51
4.2 Software Overview for ATM.. 52

4.2.1 Data Flow for the Ingress IXP2400.. 52
4.2.1.1 ATM AAL5 RX .. 53
4.2.1.2 LLCSNAP Decapsulation and Classify... 53
4.2.1.3 IPv4 Forwarder... 53
4.2.1.4 Cell Based Queue Manager (Cell QM)... 54
4.2.1.5 CSIX Scheduler.. 54
4.2.1.6 CSIX TX ... 54

4.2.2 Data Flow for the Egress IXP2400 .. 54
4.2.2.1 CSIX RX ... 54
4.2.2.2 LLCSNAP Encapsulation ... 54
4.2.2.3 Cell Based Queue Manager (Cell QM)... 54
4.2.2.4 Round Robin Scheduler ... 54
4.2.2.5 ATM AAL5 TX .. 56

4.2.3 Dispatch Loop.. 56
4.2.4 Performance Characterization... 58

4.3 Ingress System Resource Allocation.. 58
4.4 Egress System Resource Allocation .. 60
4.5 Interfaces Between the Various Microblocks.. 61

4.5.1 AAL5 RX and Packet Processing Microengines.. 61
4.5.2 Packet Processing Microengines and Cell Queue Manager ... 61
4.5.3 Cell Queue Manager and CSIX Scheduler .. 61
4.5.4 Cell Queue Manager and CSIX TX ... 61
4.5.5 CSIX RX and LLCSNAP Encapsulation .. 62
4.5.6 LLCSNAP Encap and Cell Queue Manager .. 62
4.5.7 Cell Queue Manager and RR scheduler for ATM.. 63
4.5.8 RR Scheduler to Cell Queue Manager .. 63
4.5.9 Cell Queue Manager and AAL-5 TX.. 64

Software Building Blocks Applications Design Guide 5

5 OC-192 POS IPv4/IPv6 Forwarding/Tunneling Application..65

5.1 Hardware Overview ..65
5.2 Software Overview..66

5.2.1 Data Flow for the Ingress IXP2800..67
5.2.1.1 Packet RX...67
5.2.1.2 Packet Processing Microengines (PPP Decap/Classify + IPv4/IPv6 Forward-

er/Tunneling)68
5.2.1.3 Statistics Microblock ...69
5.2.1.4 CSIX Scheduler ..69
5.2.1.5 Cell Based Queue Manager (Cell QM)...70
5.2.1.6 CSIX TX..70
5.2.1.7 Freelist Manager...70

5.2.2 Data Flow for the Egress IXP2800 ..71
5.2.2.1 CSIX RX ...71
5.2.2.2 Egress Packet Scheduler ...71
5.2.2.3 Packet Based Queue Manager (Packet QM) ...72
5.2.2.4 TX Helper ...72
5.2.2.5 Packet TX...72

5.3 Performance Characterization ..72
5.4 Ingress System Resource Allocation ..73
5.5 Egress System Resource Allocation...74
5.6 Interfaces Between the Various Microblocks..75

5.6.1 Packet RX—First ME to Second ME ...75
5.6.2 Packet RX and Packet Processing Microengines..77
5.6.3 Packet Processing Microengines and Statistics ..78
5.6.4 Statistics and CSIX Scheduler...78
5.6.5 CSIX Scheduler and Cell Queue Manager ..78
5.6.6 Cell Queue Manager and CSIX TX..79
5.6.7 CSIX TX—First ME to Second ME ..79
5.6.8 CSIX TX (Second ME) and Freelist Manager..79
5.6.9 Freelist Manager and Packet Rx (First ME)...80
5.6.10 CSIX RX and Statistics ..80
5.6.11 Statistics and Packet Scheduler ..80
5.6.12 Packet Scheduler and Queue Manager...81
5.6.13 Queue Manager and TX helper ...81
5.6.14 TX helper and Packet TX...81
5.6.15 Packet TX—First ME to Second ME..82

5.7 Porting from IXP2400 to IXP2800...82
5.7.1 IXP2400 and IXP2800 Processing Requirement Comparison82
5.7.2 Optimizations for the IXP2800 ...83

5.7.2.1 Optimizing SRAM Memory Bandwidth Usage ..83
5.7.2.2 Splitting the Packet Descriptor Across Channels ...84
5.7.2.3 Splitting the RX/TX Driver Blocks to Run on Multiple Microengines.............84
5.7.2.4 Moving Data Structures to Local Memory ..84
5.7.2.5 Optimizing the Packet Buffer Freelist ...84
5.7.2.6 Using NN Ring Instead of Scratch Ring for Communication85
5.7.2.7 New Design for the Scheduler and Queue Manager....................................85

6 OC-192 POS IPv4 MPLS Application ...87

6.1 Hardware Overview ..87
6.2 Software Overview..88

6 Software Building Blocks Applications Design Guide

6.2.1 Data Flow for the Ingress .. 89
6.2.1.1 Packet RX .. 89
6.2.1.2 Packet Processing Microengines (PPP Decap/Classify + MPLS ILM + IPv4

Forwarder + MPLS FTN)90
6.2.1.3 Statistics Microblock... 91
6.2.1.4 CSIX Scheduler.. 91
6.2.1.5 Cell Based Queue Manager (Cell QM)... 92
6.2.1.6 CSIX TX ... 92
6.2.1.7 Free List Manager .. 93

6.2.2 Data Flow for the Egress ... 93
6.3 Performance Characterization.. 93
6.4 Ingress System Resource Allocation.. 94
6.5 Egress System Resource Allocation .. 95
6.6 Interfaces Between the Various Microblocks.. 95
6.7 Application Optimizations ... 95

6.7.0.1 Optimizing SRAM Memory Bandwidth Usage.. 96
6.7.0.2 Moving Data Structures to Local Memory .. 96
6.7.0.3 Caching Packet Header in Local Memory .. 96

7 4Gb Ethernet IPv6/IPv4 Application ... 97

7.1 Software Overview ... 97
7.2 Data Flow for the Ingress IXP2400... 98

7.2.1 Packet RX.. 98
7.2.2 Ethernet Decapsulation/Classify/Filter... 98
7.2.3 V6/V4 Translation Microblock.. 98
7.2.4 IPv4 Forwarder .. 98
7.2.5 IPv6 Forwarder .. 99
7.2.6 IPv6/IPv4 Tunneling Microblock .. 99
7.2.7 Cell Based Queue Manager (Cell QM).. 100
7.2.8 CSIX Scheduler ... 100
7.2.9 CSIX TX... 100

7.3 Data Flow for the Egress IXP2400 ... 100
7.3.1 CSIX RX .. 100
7.3.2 Ethernet Encapsulation ... 100
7.3.3 Packet Based Queue Manager (Packet QM) .. 100
7.3.4 Egress Scheduler .. 100
7.3.5 Packet TX .. 101

7.4 Dispatch Loops / Microblock Groups.. 101
7.5 Performance Analysis... 102

8 DiffServ for POS Application .. 103

8.1 Hardware Overview .. 103
8.2 Software Overview ... 104

8.2.1 Ingress IXP2400 Network Processor - DiffServ/IPv4... 104
8.2.1.1 Packet RX Microblock .. 105
8.2.1.2 DiffServ/IPv4 Functional Pipeline ... 106
8.2.1.3 Ingress Queue Manager for DiffServ.. 107
8.2.1.4 CSIX Scheduler.. 107
8.2.1.5 CSIX TX Microblock ... 107

8.2.2 Egress IXP2400 Network Processor—DiffServ/ IPv4.. 108
8.2.2.1 CSIX RX Microblock... 108
8.2.2.2 DiffServ Functional Pipeline ... 108

Software Building Blocks Applications Design Guide 7

8.2.2.3 Egress Queue Manager ...109
8.2.2.4 Egress Scheduler ...109
8.2.2.5 Packet TX Microblock...109

8.2.3 Performance Analysis..109
8.3 System Data Structures and Resource Allocation..109

8.3.1 Ingress System Resource Allocation ...110
8.3.2 Egress System Resource Allocation..110
8.3.3 Buffer Handle...111
8.3.4 Packet Metadata..111

8.4 Interfaces Between the Various Microblocks..112
8.4.1 Inter-Microengine Messages ...112

8.4.1.1 POS RX and Ingress DiffServ/IPv4 Functional Pipeline.............................112
8.4.1.2 Ingress DiffServ/IPv4 Functional Pipeline and Ingress Queue Manager....112
8.4.1.3 Ingress Queue Manager and Ingress Scheduler..112
8.4.1.4 Ingress Queue Manager and CSIX TX...113
8.4.1.5 CSIX RX and Egress DiffServ Pipeline ..113
8.4.1.6 Egress DiffServ Pipeline and Egress Queue Manager...............................113
8.4.1.7 Egress Queue Manager and Scheduler ...113
8.4.1.8 Egress Queue Manager and POS TX ..114

8.4.2 Ingress Dispatch Loop Variables ...114
8.4.3 Egress Dispatch Loop Variables..115

8.5 Dynamic Behavior...116
8.5.1 Ingress Data Flow..116

8.5.1.1 Ingress Core Components..118
8.5.2 Egress Data Flow ..120

8.5.2.1 Microblock Egress Pipeline ..120
8.5.2.2 Egress Core Components ..121

8.6 Sending Packets from Core Components to Microblocks ..122
8.7 Statistics Handling ..124

9 DiffServ for ATM Application...127

9.1 Hardware Architecture ..127
9.2 Software Architecture ...127

9.2.1 Ingress IXP2400 ..127
9.2.1.1 Ingress Microblock Pipeline..128
9.2.1.2 Ingress Core Components..130

9.2.2 Egress IXP2400...130
9.2.3 Performance Analysis..131

9.3 System Data Structures, Interfaces, and Resource Allocation ...131
9.3.1 Ingress System Resource Allocation ...132
9.3.2 Egress System Resource Allocation..132
9.3.3 Buffer Handle...133
9.3.4 Packet Metadata..133

9.4 Interfaces Between the Various Microblocks..133
9.4.1 Inter-Microengine Messages ...133

9.4.1.1 AAL5 RX and Ingress DiffServ/IPv4 Functional Pipeline............................133
9.4.1.2 Ingress DiffServ/IPv4 Functional Pipeline and Ingress Queue Manager....133
9.4.1.3 Ingress Queue Manager and Ingress Scheduler..134
9.4.1.4 Ingress Queue Manager and CSIX TX...134
9.4.1.5 CSIX RX and Egress DiffServ Pipeline ..134
9.4.1.6 Egress DiffServ pipeline and Egress Cell Queue Manager........................134
9.4.1.7 Egress Cell Queue Manager and TM4.1 Shaper134

8 Software Building Blocks Applications Design Guide

9.4.1.8 TM4.1 Shaper and TM 4.1 Writeout/Scheduler.. 134
9.4.1.9 RR Scheduler and Egress Cell Queue Manager.. 134
9.4.1.10 Egress Queue Manager and AAL5 TX... 134

9.4.2 Ingress Dispatch Loop Variables... 134
9.4.3 Egress Dispatch Loop Variables ... 134

10 MPLS Application ... 135

10.1 Input/Output Media Independence ... 135
10.2 MPLS Forwarder Decomposition.. 136

10.2.1 Ingress LER Generic MPLS Forwarder ... 136
10.2.2 LSR Generic MPLS Forwarder .. 137
10.2.3 Egress LER Generic MPLS Forwarder.. 138
10.2.4 MPLS Forwarder Building Blocks .. 138

10.3 Cooperation with IP and QoS Microblocks ... 139
10.3.1 IP and MPLS Functional Pipeline .. 140
10.3.2 TTL Processing ... 141

10.3.2.1 TTL Processing in Different Tunneling Models .. 142
10.4 Data Plane Architecture Dependencies.. 144

10.4.1 Target HW Architecture ... 144
10.4.2 Ingress and Egress Microblocks.. 145
10.4.3 MPLS Forwarder Core Component Overview ... 147

10.4.3.1 Inter-Component Dependencies .. 148

11 10 Gb Ethernet IPv4/IPv6 Forwarding/Tunneling Application .. 151

11.1 Hardware Overview .. 151
11.2 Software Overview ... 153

11.2.1 Data Flow for the Ingress IXP2800.. 153
11.2.1.1 Packet RX .. 153
11.2.1.2 Packet Processing Microengines (PPP Decap/Classify + IPv4/IPv6 Forward-

ing + Tunneling)154
11.2.1.3 Statistics Microblock... 154
11.2.1.4 CSIX Scheduler.. 154
11.2.1.5 Cell Based Queue Manager (Cell QM)... 154
11.2.1.6 CSIX TX ... 154

11.2.2 Data Flow for the Egress IXP2800 .. 154
11.2.2.1 CSIX RX ... 154
11.2.2.2 Ethernet ARP Microblock ... 155
11.2.2.3 Statistics Microblock... 155
11.2.2.4 Egress Packet Scheduler ... 155
11.2.2.5 Packet Based Queue Manager (Packet QM) ... 155
11.2.2.6 TX Helper ... 155
11.2.2.7 Packet TX... 155

11.3 Performance Characterization.. 156
11.4 Ingress System Resource Allocation.. 157
11.5 Egress System Resource Allocation .. 158
11.6 Interfaces Between the Various Microblocks.. 159

11.6.1 Packet RX and Packet Processing Microengines.. 160
11.6.2 Packet Processing Microengines and Statistics .. 160
11.6.3 Statistics and CSIX Scheduler... 161
11.6.4 CSIX Scheduler and Cell Queue Manager .. 161
11.6.5 Cell Queue Manager and CSIX TX ... 161
11.6.6 CSIX TX—First ME to Second ME .. 162

Software Building Blocks Applications Design Guide 9

11.6.7 CSIX RX and Ethernet ARP ..162
11.6.8 Ethernet ARP and Statistics ..163
11.6.9 Statistics and Packet Scheduler ..163
11.6.10 Packet Scheduler and Queue Manager...163
11.6.11 Queue Manager and TX helper ...164
11.6.12 TX Helper and Packet TX (10x1 GigE)..164
11.6.13 TX Helper and Packet TX (1x10 GigE)..164
11.6.14 Packet TX —First ME to Second ME (1x10 GigE) ..165

12 Core Router Application..167

12.1 Hardware Overview ..167
12.2 Software Overview..168

12.2.1 Data Flow for the Ingress A IXP2800 ..169
12.2.1.1 Packet RX...169
12.2.1.2 Packet Processing Microengines ...169
12.2.1.3 Dispatch Loop / Microblock Groups..173
12.2.1.4 Statistics ...173
12.2.1.5 SPI4 TX ..173

12.2.2 Data Flow for the Ingress B IXP2800 ..174
12.2.2.1 SPI4 RX..174
12.2.2.2 Meter & WRED...174
12.2.2.3 Statistics Microblock ...174
12.2.2.4 CSIX Scheduler ..174
12.2.2.5 Cell Based Queue Manager (Cell QM)...174
12.2.2.6 CSIX TX..174

12.2.3 Data Flow for the Egress IXP2800 ..174
12.2.3.1 CSIX RX ..175
12.2.3.2 Statistics Microblock ...175
12.2.3.3 Egress Packet Scheduler ...175
12.2.3.4 Packet Based Queue Manager (Packet QM) ...175
12.2.3.5 TX Helper ...175
12.2.3.6 Packet TX...176

12.3 Performance Characterization ..176
12.4 Ingress A System Resource Allocation...176
12.5 Ingress B System Resource Allocation...177
12.6 Egress System Resource Allocation...178
12.7 Interfaces Between the Various Microblocks..179

12.7.1 Packet RX and Packet Processing Microengines..179
12.7.2 Packet Processing Microengines and Statistics ..180
12.7.3 Statistics and SPI4 TX ...180
12.7.4 SPI4 RX and Meter/WRED..181
12.7.5 METER/WRED and Statistics..181
12.7.6 Statistics and CSIX Scheduler...182
12.7.7 CSIX Scheduler and Cell Queue Manager ..182
12.7.8 Cell Queue Manager and CSIX TX..182
12.7.9 CSIX TX—First ME to Second ME ..183
12.7.10 CSIX RX and Statistics ..183
12.7.11 Statistics and Packet Scheduler ..183
12.7.12 Packet Scheduler and Queue Manager...184
12.7.13 Queue Manager and TX Helper...184
12.7.14 TX Helper and Packet TX ..184

10 Software Building Blocks Applications Design Guide

13 Dual OC-12 POS/Dual Gb Ethernet Forwarding Application for IXDP24X1............................. 187

13.1 Hardware Overview .. 187
13.2 Software Overview ... 189

13.2.1 Data Flow .. 189
13.2.1.1 Ethernet Packet RX.. 189
13.2.1.2 POS RX.. 190
13.2.1.3 Ethernet Decapsulation and Classify ... 190
13.2.1.4 PPP Decapsulation and Classify.. 191
13.2.1.5 IPv4 Forwarder... 191
13.2.1.6 Packet-Based Queue Manager .. 191
13.2.1.7 Packet Scheduler ... 192
13.2.1.8 Ethernet Encapsulation .. 192
13.2.1.9 Ethernet Packet TX .. 192
13.2.1.10 PPP Encapsulation... 193
13.2.1.11 POS Packet TX .. 193

13.2.2 Dispatch Loops.. 193
13.3 Performance Characterization.. 195

13.3.1 POS/Ethernet Pipeline... 195
13.4 System Resource Allocation... 196
13.5 Microblock Interface ... 197

13.5.1 Packet RX and Packet Processing Microengines.. 197
13.5.2 Packet Processing Microengines and Packet QM... 198
13.5.3 Packet Queue Manager and Scheduler .. 198
13.5.4 Packet Queue Manager and POS Packet TX ... 199
13.5.5 Packet Queue Manager and Ethernet Packet TX ... 199

13.6 Core Components Usage ... 199

14 Quad Gigabit Ethernet Forwarding Application for IXDP24X1 ... 201

14.1 Hardware Overview .. 201
14.2 Software Overview ... 203

14.2.1 Data Flow .. 203
14.2.1.1 Packet RX .. 203
14.2.1.2 Ethernet Classify/Decapsulate ... 204
14.2.1.3 IPv4 Forwarder... 204
14.2.1.4 L2 Validate ... 204
14.2.1.5 Packet-Based Queue Manager .. 204
14.2.1.6 Packet Scheduler ... 204
14.2.1.7 Ethernet Encapsulation .. 205
14.2.1.8 Packet TX... 205

14.2.2 Dispatch Loops.. 205
14.2.3 HW Architecture-Specific Code ... 206

14.2.3.1 Quad Gigabit Ethernet MAC Driver .. 206
14.2.3.2 Ethernet PHY Driver... 207

14.3 Performance Characterization.. 208
14.4 System Resource Allocation... 208
14.5 Microblock Interfaces.. 209

14.5.1 Packet RX and Packet Processing Microengines.. 210
14.5.2 Packet Processing Microengines and Packet QM... 210
14.5.3 Packet Scheduler and Packet QM... 210
14.5.4 Packet Queue Manager and Packet TX .. 210

14.6 Core Component Usage... 210

Software Building Blocks Applications Design Guide 11

15 ATM/Ethernet IPv4 Forwarding Application for IXDP24X1...213

15.1 Hardware Overview ..213
15.2 Software Overview..214
15.3 Data Flow..215

15.3.1 AAL5 RX/Ethernet RX ...215
15.3.2 Packet Processing ...216
15.3.3 Packet-Based Queue Manager ...216
15.3.4 Packet Scheduler...216
15.3.5 Cell-Based Queue Manager ..216
15.3.6 TM 4.1 Shaper ...217
15.3.7 TM 4.1 Cell Scheduler ...217
15.3.8 Ethernet Tx ..217
15.3.9 ATM AAL5 Tx ..217

15.4 Dispatch Loops ...218
15.5 Performance Characterization ..220
15.6 System Resource Allocation...221
15.7 Microblock Interfaces..222

15.7.1 Common RX to Packet Processing ...222
15.7.2 Packet Processing to Packet Queue Manager ..223
15.7.3 Scheduler to Queue Manager..223
15.7.4 Queue Manager to Scheduler..223
15.7.5 Queue Manager to Packet TX ...223
15.7.6 Queue Manager to TM 4.1 Shaper ..224
15.7.7 TM4.1 Scheduler to Queue Manager ..224
15.7.8 Queue Manager to TM4.1 Scheduler ..225
15.7.9 Queue Manager to AAL5 TX ...225

16 POS/Ethernet IPv4 Forwarding Application for IXDP28x1 ...227

16.1 Hardware Overview ..227
16.2 Software Overview..229

16.2.1 Data Flow...230
16.2.1.1 Packet RX...230
16.2.1.2 Packet Processing..230
16.2.1.3 Packet-Based Queue Manager ..231
16.2.1.4 Packet Scheduler ...231
16.2.1.5 Packet TX...231

16.2.2 Dispatch Loops...232
16.3 Performance Characterization ..233
16.4 System Resource Allocation...233
16.5 Microblock Interfaces..235

16.5.1 Packet RX to Packet Processing Microengine ..235
16.5.2 Packet Processing to Queue Manager Microengine ...236
16.5.3 Scheduler to Queue Manager Microengine ...236
16.5.4 Queue Manager to Scheduler Microengine ...236
16.5.5 Queue Manager to Packet TX Microengine...237

16.6 Core Components Integration...237

Figures

2-1 Example Hardware Configuration for OC48-POS with CSIX Fabric...23

12 Software Building Blocks Applications Design Guide

2-2 Microblocks for an OC-48 POS IPv4 Forwarding Application .. 24
2-3 Dispatch Loop for the Packet Frame Reassembly Stage... 30
2-4 Dispatch Loop for the IPv4 Functional Pipeline.. 30
2-5 Dispatch Loop for CSIX Reassembly Stage... 31
2-6 Dispatch Loop for POS Transmit Stage ... 31
3-1 Example Hardware Configuration for 4x1 Gigabit Ethernet with CSIX Fabric 41
3-2 Software Components for IPv4 Forwarding Application for Ethernet ... 42
3-3 Dispatch Loop for the Packet Frame Reassembly Stage... 44
3-4 Dispatch Loop for the IPv4 Functional Pipeline.. 45
3-5 Dispatch Loop for CSIX Reassembly Stage... 45
3-6 Dispatch Loop for Ethernet Encapsulation Stage... 45
4-1 Example Hardware Configuration for OC-48 ATM with CSIX Fabric ... 51
4-2 Software Components for IPv4 Forwarding Application for OC-48 ATM.................................... 52
4-3 Dispatch Loop for the AAL5 Reassembly Stage .. 56
4-4 Dispatch Loop for the IPv4 Functional Pipeline.. 57
4-5 Dispatch Loop for CSIX Reassembly Stage... 57
4-6 Dispatch Loop for LLCSNAP Encapsulation Stage .. 57
5-1 Example Hardware Configuration for OC-192 POS Line Card with CSIX Fabric 66
5-2 Microblocks for an OC-192 POS IPv4/IPv6 Forwarding/Tunneling Application 67
6-1 Example Hardware Configuration for OC-192 POS Line Card with CSIX Fabric 88
6-2 Microblocks for an OC-192 POS IPv4 MPLS Forwarding Application.. 89
7-1 Software Components for IPv4/IPv6 Forwarding and IPv6/IPv4 Tunneling 97
7-2 Dispatch Loop for the Packet Frame Reassembly Stage... 101
7-3 Dispatch Loop for the IPv4, IPv6 and V6/V4 Tunneling Functional Pipeline 101
7-4 Dispatch Loop for CSIX Reassembly Stage... 102
7-5 Dispatch Loop for Ethernet Encapsulation Stage... 102
8-1 IXDP2400 Advanced Development Platform Overview.. 104
8-2 IPv4 and DiffServ—Ingress Blocks... 105
8-3 IPv4 and DiffServ: Egress Architecture .. 108
8-4 Slow path for POS DiffServ Application.. 119
8-5 Handling Xscale Scratch Ring by the Source Macro.. 123
8-6 Statistics Update—Atomic Operations and Within a Critical Section 124
9-1 Software Architecture of ATM/DiffServ/IPv4 blocks on the Ingress Processor 128
9-2 ATM, IPv4 and DiffServ—Egress Architecture ... 130
10-1 MPLS Flow Processing .. 135
10-2 MPLS Forwarding: Data Path for Ingress LER... 136
10-3 MPLS Forwarding: Data Path for LSR.. 137
10-4 MPLS Forwarding: Data Path for Egress LER ... 138
10-5 MPLS Forwarder Building Block... 139
10-6 Universal IP and MPLS Microblocks Layout... 140
10-7 TTL Processing for Uniform Model LSPs ... 142
10-8 TTL Processing for Short Pipe Model LSPs without PHP .. 142
10-9 TTL Processing for Short Pipe Model LSPs with PHP ... 143
10-10 TTL Processing for Pipe Model LSPs without PHP.. 143
10-11 Dual NP Blade Architecture.. 144
10-12 Single NP Blade Architecture ... 145
10-13 MPLS Ingress and Egress Microblocks.. 146
10-14 MPLS Forwarder Core Component .. 147
10-15 MPLS Core Component Initialization Order ... 149
10-16 MPLS Core Component De-Initialization Order.. 149

Software Building Blocks Applications Design Guide 13

11-1 Example Hardware Configuration for 10x1/1x10 Gb Ethernet with CSIX Fabric......................152
11-2 Microblocks for an Ethernet 10x1/1x10 Gb IPv4 Forwarding Application.................................153
12-1 Example Hardware Configuration for Core Metro Application Using 3 IXP2800168
12-2 Microblocks for Core Router Application ..169
12-3 Packet Flow in Ingress A ..172
13-1 Example Hardware Configuration for OC48-Ethernet/POS..188
13-2 Microblocks for Dual OC-12 POS/ Dual Gigabit Ethernet IPv4 Forwarding Application...........189
13-3 Dispatch Loop for the Packet Frame Reassembly Stage ...194
13-4 Dispatch Loop for the IPv4 Functional Pipeline ..194
13-5 Dispatch Loop for POS Transmit Stage..194
13-6 Dispatch Loop (Microblock group) for Ethernet Transmit Stage...195
13-7 Core Components in the OC-12 POS/Ethernet IPv4 Forwarding Application200
14-1 Example Hardware Configuration for Quad Ethernet IPv4 Forwarding Application202
14-2 Microblocks for a Quad Ethernet IPv4 Forwarding Application ..203
14-3 Dispatch Loop for the Packet Frame Reassembly Stage ...206
14-4 Dispatch Loop for the IPv4 Functional Pipeline ..206
14-5 Dispatch Loop for the Ethernet Transmit Stage..206
14-6 Ethernet Interface Connections to Quad Gigabit Ethernet MAC Device207
14-7 Core Components in the Quad Ethernet IPv4 Forwarding Application.....................................211
15-1 ATM-IPv4-Ethernet Application Microblocks ..214
15-2 Dispatch Loop for Ethernet Receive Stage...218
15-3 Dispatch Loop for ATM Receive Stage...218
15-4 Dispatch Loop for IPv4 Forwarder Packet Processing (Ethernet to ATM)................................219
15-5 Dispatch Loop for IPv4 Forwarder Packet Processing (ATM to Ethernet)................................219
15-6 Dispatch Loop for ATM Transmit Stage..220
15-7 Dispatch Loop for Ethernet Transmit Stage..220
16-1 POS/Ethernet Hardware Configuration on IXDP28X1..229
16-2 POS-Ethernet IPv4 Application Microblocks...230
16-3 Dispatch Loop for the Packet Frame Reassembly Stage ...232
16-4 Dispatch Loop for IPv4 Forwarder Packet Processing ...232
16-5 POS-Ethernet IPv4 Application Core Components ..237

Tables

1-1 Supported Applications...20
2-1 Performance Characterization for the POS Pipeline ..31
2-2 System Resources Mapped for the Ingress IXP2400...32
2-3 SRAM, DRAM and Scratch Utilization for Ingress System Resources.......................................32
2-4 System Resources Allocated for the Egress IXP2400..33
2-5 SRAM, DRAM and Scratch Utilization for Egress System Resources34
2-6 Five-Word Entry in Scratch Ring (IPv4 Forwarder + PPP Decap)..35
2-7 Three-Word Entry in Scratch Ring (IPv4 Forwarder + PPP Decap) ...35
2-8 Dequeue Requests via the Scratch Ring..36
2-9 Queue Transition Messages Sent by the Queue Manager...36
2-10 Two-Word Entry in Scratch Ring ..36
2-11 Three-Word Entry in Scratch Ring (CSIX and PPP Encap)..37
2-12 Scratch Ring Interface between PPP Encap and Packet Queue Manager37
2-13 Queue Transition Messages Sent by the Packet Queue Manager...37
2-14 One-word Scratch Ring Entry ...38
3-1 Performance Characterization for the Ethernet Pipeline ..46

14 Software Building Blocks Applications Design Guide

3-2 Ingress System Resources Mapped for the Ingress IXP2400.. 46
3-3 SRAM, DRAM, and Scratch Utilization for Ingress System Resource Allocation....................... 47
3-4 System Resources Allocated for the Egress IXP2400 ... 48
3-5 SRAM, DRAM, and Scratch Utilized for Egress System .. 48
3-6 One-Word Scratch Ring (Packet Queue Manager and Packet TX) ... 49
4-1 Performance Characterization for the ATM Pipeline .. 58
4-2 System Resources Mapped for the Ingress IXP2400... 58
4-3 SRAM and DRAM Utilization for Ingress System Resource Allocation 59
4-4 System Resources Allocated for the Egress IXP2400 ... 60
4-5 SRAM and DRAM Utilization for Egress System Resource Allocation....................................... 60
4-6 Six-Word Scratch Ring Entry (IPv4+L2 Decap).. 61
4-7 Three-Word Scratch Ring (CSIX RX and LLCSNAP Encap) ... 62
4-8 Three-Word Scratch Ring (LLCSNAP Encap and Cell QM)... 62
4-9 Cell Queue Manager and RR scheduler for ATM... 63
4-10 One-Word Scratch Ring Entry (TM 4.1 Scheduler to Cell Queue Manager) 63
4-11 Two-Word Scratch Ring Entry (Cell Queue Manager and AAL-5 TX).. 64
5-1 Performance Analysis for the POS Pipeline ... 72
5-2 System Resources Mapped for the Ingress IXP2800... 73
5-3 SRAM, DRAM, and Scratch Utilization for Ingress IXP2800 .. 73
5-4 System Resources Allocated for Egress IXP2800 ... 74
5-5 SRAM, DRAM, and Scratch Utilization for Egress IXP2800... 75
5-6 Five-Word NN Ring Entry (Packet RX—First ME to Second ME) .. 76
5-7 Three-Word Scratch Ring Entry —Packets fit on one Buffer.. 77
5-8 Three-Word Scratch Ring Entry —Packets Require more than one Buffer................................ 77
5-9 Three-Word Scratch Ring Entry—Packet Processing Microengines and Statistics 78
5-10 Three-Word NN Ring Entry (Statistics and CSIX Scheduler) ... 78
5-11 Three-Word NN Ring Entry (CSIX Scheduler and Cell Queue Manager) 78
5-12 Two-Word NN Ring Entry (Cell Queue Manager and CSIX TX) .. 79
5-13 Eight-Word NN Ring Entry (CSIX TX—First ME to Second ME).. 79
5-14 One-Word NN Ring Entry ... 79
5-15 One-word NN Ring Entry.. 80
5-16 Three-Word Scratch Ring Entry (CSIX RX and Statistics) ... 80
5-17 Three-Word NN Ring Entry (Statistics and Packet Scheduler) .. 80
5-18 Three-word NN Ring Entry (Queue Manager and Packet Scheduler).. 81
5-19 Two-Word NN Ring Entry (Queue Manager and Packet TX) ... 81
5-20 One-Word NN Ring Entry (Queue Manager and Packet TX) ... 81
5-21 Three-Word NN Ring Entry (Packet TX—First ME to Second ME).. 82
5-22 Three-Word NN Ring Entry (for Non-stop m-packet) ... 82
5-23 Comparison of IXP2400 and the IPX2800 Processing Requirements 82
5-24 Data Structure Location Comparison of the IXP2400 and IXP2800 Applications 83
6-1 Performance Analysis for the POS Pipeline ... 93
6-2 System Resources Mapped for the Ingress IXP2800... 94
6-3 SRAM, DRAM, and Scratch Utilization for Ingress IXP2800 .. 94
6-4 Data Structure Allocations .. 96
7-1 Performance Analysis for the IPv6 Ethernet Pipeline... 102
8-1 Ingress IXP2400 Memory Usage.. 110
8-2 Egress IXP2400 Microengine Allocation .. 110
8-3 Egress IXP2400 Memory Usage .. 111
8-4 Packet Metadata Structure ... 111
8-5 Message Format Between CSIX RX and Egress DiffServ Pipeline ... 113

Software Building Blocks Applications Design Guide 15

8-6 Message Format Between Egress Queue Manager and Scheduler ..113
8-7 Ingress Dispatch Loop Variables for DiffServ Application ..114
8-8 Egress Dispatch Loop Variables for DiffServ Application ...115
8-9 IPv4 and Diffserv Ingress Dispatch Loop Variables..116
8-10 MPLS, IPv4 and Diffserv Egress Dispatch Loop Variables ..121
8-11 DiffServ Core Components to Diffserv Pipeline Message Fields..122
8-12 Statistics Overhead at SRAM Controller...125
9-1 Ingress IXP2400 Memory Usage..132
9-2 Egress IXP2400 Microengine Allocation...132
9-3 Egress IXP2400 Memory Usage ..133
11-1 Summary of Performance Analysis for the Ethernet Pipeline...156
11-2 System Resources Mapped for the Ingress IXP2800...157
11-3 SRAM, DRAM and Scratch Utilized for Ingress IXP2800 ...157
11-4 System Resources Allocation for the Egress IXP2800...158
11-5 SRAM, DRAM and Scratch Utilization for Egress IXP2800..159
11-6 Three-Word Scratch Ring Entry —Packets fit on one Buffer..160
11-7 Three-Word Scratch Ring Entry —Packets Require more than one Buffer..............................160
11-8 Three-Word Scratch Ring Entry—Packet Processing Microengines and Statistics160
11-9 Three-Word NN Ring Entry (Statistics and CSIX Scheduler) ...161
11-10 Three-Word NN Ring Entry (CSIX Scheduler and Cell Queue Manager)161
11-11 Two-Word NN Ring Entry (Cell Queue Manager and CSIX TX)...161
11-12 Eight-Word NN Ring Entry (CSIX TX—First ME to Second ME)..162
11-13 Three-Word Scratch Ring Entry (CSIX RX and Statistics) ...162
11-14 Three-Word Scratch Ring Entry (Statistics and Ethernet ARP)..163
11-15 Three-Word NN Ring Entry (Statistics and Packet Scheduler)...163
11-16 Three-word NN Ring Entry (Queue Manager and Packet Scheduler)......................................163
11-17 Two-Word NN Ring Entry (Queue Manager and Packet TX) ...164
11-18 Two Scratch Ring Interface (TX Helper and Packet TX)—One Word164
11-19 One-Word NN Ring Entry (Queue Manager and Packet TX) ...164
11-20 Three-Word NN Ring Entry (Packet TX—First ME to Second ME) ..165
11-21 Three-Word NN Ring Entry (for Non-stop m-packet)..165
12-1 Performance Analysis for the POS Pipeline ...176
12-2 System Resources Mapped for the Ingress IXP2800...176
12-3 SRAM, DRAM, and Scratch Utilization for Ingress A IXP2800...177
12-4 System Resources Allocated for Ingress B IXP2800..177
12-5 SRAM, DRAM, and Scratch Utilization for Ingress B IXP2800...178
12-6 System Resources Allocated for Egress IXP2800..178
12-7 SRAM, DRAM, and Scratch Utilization for Egress IXP2800...179
12-8 Three-Word Scratch Ring Entry—Packets fit on one Buffer...179
12-9 Three-Word Scratch Ring Entry—Packets fit on more than one Buffer....................................180
12-10 Three-Word Scratch Ring Entry—Packet Processing Microengines and Statistics180
12-11 Three-Word NN Ring Entry (Statistics and SPI4 TX) ...180
12-12 Three-Word Scratch Ring Entry (One Buffer only) ...181
12-13 Three-Word Scratch Ring Entry for SPI4 RX and Meter/WRED ..181
12-14 Three-Word Scratch Ring Entry for Meter/WRED and Statistics..181
12-15 Three-Word NN Ring Entry for Statistics and CSIX Scheduler ..182
12-16 Three-Word NN Ring Entry for CSIX Scheduler and Cell Queue Manager..............................182
12-17 Two-Word NN Ring Entry for Cell Queue Manager and CSIX TX..182
12-18 Eight-Word NN Ring Entry (CSIX TX—First ME to Second ME)..183
12-19 Three-Word Scratch Ring Entry for CSIX RX and Statistics...183

16 Software Building Blocks Applications Design Guide

12-20 Three-Word NN Ring Entry for Statistics and Packet Scheduler.. 183
12-21 Two-Word NN Ring Entry for Packet Scheduler and Queue Manager..................................... 184
12-22 Two-Word NN Ring Entry for Queue Manager and TX Helper... 184
12-23 One-Word Scratch Ring Entry for TX Helper and Packet TX ... 184
13-1 Supported Hardware Configurations .. 188
13-2 Performance Characterization for the POS Pipeline .. 195
13-3 System Resources Mapped for the IXP2400 ... 196
13-4 SRAM, DRAM, and Scratch Utilization for Ingress Resource Allocation.................................. 196
13-5 Packet RX and Packet Processing Microengines Scratch Ring Interface................................ 197
13-6 Packet Processing Microengines and Packet QM Scratch Ring Interface 198
13-7 Queue Transition Messages Sent by the Packet Queue Manager .. 198
13-8 Packet Queue Manager and Packet TxScratch Ring Interface ... 199
13-9 One-word Scratch Ring (Packet Queue Manager and Packet TX) .. 199
14-1 Supported Hardware Configurations .. 202
14-2 Performance Characterization for the Ethernet Pipeline .. 208
14-3 System Resources Mapped for the IXP2400 ... 208
14-4 SRAM, DRAM and Scratch Utilization for System Resource Allocation................................... 209
14-5 One-word Scratch Ring (Packet Queue Manager and Packet TX) .. 210
15-1 Supported Hardware Configurations .. 213
15-2 System Resources Mapped for the Intel® IXP2400 Network Processor 221
15-3 SRAM Memory Map ... 221
15-4 Common RX to Packet Processing Microengines Scratch Ring Interface 222
15-5 Packet Processing to Packet Queue Manager Scratch Ring Interface 223
15-6 Scheduler to Queue Manager Scratch Ring Interface.. 223
15-7 Queue Manager to Scheduler Next Neighbor Ring Interface ... 223
15-8 Queue Manager to Packet TX Scratch Ring Interface ... 223
15-9 Queue Manager to TM 4.1 Shaper Next Neighbor Ring Interface ... 224
15-10 TM4.1 Scheduler to Queue Manager Scratch Ring Interface... 224
15-11 Queue Manager to TM4.1 Scheduler Scratch Ring Interface... 225
15-12 Queue Manager to AAL5 TX Scratch Ring Interface.. 225
16-1 Supported Hardware Configurations .. 228
16-2 Performance Characterization for the POS-Ethernet IPv4 Application 233
16-3 System Resources Mapped for the Intel® IXP2800 Network Processor 233
16-4 SRAM Memory Map ... 234
16-5 SRAM Channels Budget For Packets Processing with Minimal Length†................................. 234
16-6 Packet RX to Packet Processing Microengine Scratch Ring Interface..................................... 235
16-7 Packet Processing to Queue Manager Microengine Scratch Ring Interface............................ 236
16-8 Scheduler to Queue Manager Microengine Scratch Ring Interface ... 236
16-9 Queue Manager to Scheduler Microengine Next Neighbor Ring Interface 236
16-10 Queue Manager to Packet TX Microengine Scratch Ring Interface... 237

Software Building Blocks Applications Design Guide 17

Revision History

Date Revision Description

July 2003 Initial release

Included with IXA SDK 3.1 Field Trial Release.
Application chapters were removed from the Intel® Internet Exchange
Architecture Software Building Blocks Developer’s Manual to create this new
book.

New applications in this release include: DiffServ for ATM, 10Gb Ethernet IPv4
Forwarding, Core Router, Dual OC-12 POS/ Dual Gigabit Ethernet
Forwarding, and Quad Gigabit Forwarding.

November 2003 IXA SDK 3.5

New applications in this release:

• OC-192 POS IPv4 MPLS Application

• ATM/Ethernet IPv4 Forwarding Application for Intel® IXDP24x1

• POS/Ethernet IPv4 Forwarding Application for Intel® IXDP28x1

Changes in this release:

• OC-192 POS IPv4 Forwarding Application has new IPv4/IPv6 Forwarding
and Tunneling functionality.

• 10 Gb Ethernet IPv4 Forwarding application has new IPv4/IPv6
Forwarding and Tunneling functionality.

18 Software Building Blocks Applications Design Guide

Software Building Blocks Applications Design Guide 19

Introduction 1

1.1 About this Manual

The Intel® Internet Exchange Architecture Software Development Kit (Intel® IXA SDK) includes
example code that demonstrates network processor features and data flow. These applications can
be used to jump-start customer application development.

This manual provides a high-level design overview of the hardware and software components for
applications developed specifically for the Intel® IXP2400 Network Processor and the Intel®
IXP2800 Network Processor. This manual focuses on the microengine components of each design,
listing the building blocks used, describing the data flow of the application, and providing
performance characterization data.

1.2 Organization of this Manual

Chapter 1, “Introduction,” (this chapter) describes how this manual is organized and lists other
manuals which may be referred to for more information.

The remaining chapters in this manual describe the design details, data flow descriptions, and
performance characterization of the following software applications:

• Chapter 2, “OC-48 POS IPv4 Forwarding Application”

• Chapter 3, “4Gb Ethernet IPv4 Forwarding Application”

• Chapter 4, “OC-48 ATM IPv4 Forwarding Application”

• Chapter 5, “OC-192 POS IPv4/IPv6 Forwarding/Tunneling Application”

• Chapter 6, “OC-192 POS IPv4 MPLS Application”

• Chapter 7, “4Gb Ethernet IPv6/IPv4 Application”

• Chapter 8, “DiffServ for POS Application”

• Chapter 9, “DiffServ for ATM Application”

• Chapter 10, “MPLS Application”

• Chapter 11, “10 Gb Ethernet IPv4/IPv6 Forwarding/Tunneling Application”

• Chapter 12, “Core Router Application”

• Chapter 13, “Dual OC-12 POS/Dual Gb Ethernet Forwarding Application for IXDP24X1”

• Chapter 14, “Quad Gigabit Ethernet Forwarding Application for IXDP24X1”

• Chapter 15, “ATM/Ethernet IPv4 Forwarding Application for IXDP24X1”

• Chapter 16, “POS/Ethernet IPv4 Forwarding Application for IXDP28x1”

20 Software Building Blocks Applications Design Guide

Introduction

1.3 Supported Applications

Table 1-1 describes the processor, platform, and operating system supported for the applications
contained in the Intel® Internet Exchange Architecture (Intel® IXA) SDK.

Table 1-1. Supported Applications

Processor Platform Operating
System Application Name Release 3.5 Revisions

2400
IXDP 2400
and
simulation

VxWorks*
and Linux* OC-48 POS-IPV4 Forwarding Application No change

2400
IXDP 2400
and
simulation

VxWorks*
and Linux* 4Gb Ethernet IPv4 Forwarding Application No change

2400
IXDP 2400
and
simulation

VxWorks* OC-48 ATM AAL5 IPv4 Forwarding Application Add core components

2400
IXDP 2400
and
simulation

VxWorks*
and Linux* 4Gb Ethernet IPv4/IPv6 Forwarding application Add local stack support on

Linux

2400
IXDP 2400
and
simulation

VxWorks* OC-48 DiffServ for POS IPv4 Forwarder Application No change

2400
IXDP 2400
and
simulation

VxWorks* DiffServ for ATM No change

2400
IXDP 2400
and
simulation

VxWorks* OC-48 POS MPLS IPv4 Forwarder Application
Add MPLS core
components and exception
handling

2400
IXDP 2400
and
simulation

VxWorks* 10 Gb Ethernet IPv4 Forwarding Application No change

2400
IXDP 2400
and
simulation

VxWorks* 4xOC-12 POS ATM/DiffServ IPv4 Forwarder No change

2400
IXDP 2400
and
simulation

VxWorks* 4xOC-12 ATM AAL5 Forwarder No change

2800
IXDP 2800
and
simulation

VxWorks*
and Linux*

OC-192 POS IPv6/IPv4 Forwarding and Tunneling
Application

Add hardware support and
support for Linux OS

2800
IXDP 2800
and
simulation

VxWorks* Core Router (OC-192 POS MPLS IPv4 Forwarder) No change

2800
IXDP 2800
and
simulation

VxWorks*
and Linux* 10x1GbE IPv4/IPv6 Forwarding and Tunneling New, includes Linux core

components

2800
IXDP 2800
and
simulation

VxWorks* 10GbE IPv4/IPv6 Tunneling New

Software Building Blocks Applications Design Guide 21

Introduction

1.4 Other Sources of Information

This manual is part of the Intel® Internet Exchange Architecture (Intel® IXA) Software
Development Kit (SDK) documentation set, which also includes the following manuals:

• Intel® Internet Exchange Architecture Portability Framework Reference Manual

• Intel® Internet Exchange Architecture Portability Framework Developer’s Manual

• Intel® Internet Exchange Architecture Software Building Blocks Reference Manual

• Intel® Internet Exchange Architecture Software Building Blocks Developer’s Manual

• Intel® Internet Exchange Architecture Software Development Kit Software Framework Getting
Started Guide

2800
IXDP 2800
and
simulation

VxWorks* OC-192 POS IPv4 MPLS New

2400
IXDP 2401
and
simulation

VxWorks*
and Linux*

Dual OC-12 POS/ Dual Gigabit Ethernet Forwarding
Application Add support for Linux OS

2400
IXDP 2401
and
simulation

VxWorks*
and Linux* Quad Gigabit Ethernet IPv4 Forwarding Application Add support for Linux OS

2400
IXDP 2401
and
simulation

Linux* ATM (AAL5) IPv4 Forwarding Application New

2800
IXDP 28x1
and
simulation

Linux* POS/Ethernet IPv4 Forwarder Application New

Table 1-1. Supported Applications (Continued)

Processor Platform Operating
System Application Name Release 3.5 Revisions

22 Software Building Blocks Applications Design Guide

Introduction

Software Building Blocks Applications Design Guide 23

OC-48 POS IPv4 Forwarding
Application 2

This chapter describes an IPv4 Forwarding application for Packet over SONET (POS)
implemented on two half duplex Intel® IXP2400 Network Processors connected to a CSIX switch
fabric. The chapter also provides a high-level design overview and lists the different software
components used to build this application.

The application described in this chapter is supported on the Intel® IXDP2400 Advanced
Development Platform.

This chapter focuses only on the fast path or microengine components of the design. The XScale
Core Components for this application are described in Intel® Internet Exchange Architecture
Portability Framework Developer’s Manual.

This chapter describes the application in the context of a POS media interface. Chapter 3, “4Gb
Ethernet IPv4 Forwarding Application” and Chapter 4, “OC-48 ATM IPv4 Forwarding
Application” discuss the changes needed to support Ethernet and ATM.

2.1 Hardware Overview

Figure 2-1 shows two IXP2400 processors in a typical CSIX full duplex configuration. In this
configuration, the two IXP2400 processors are identified as the ingress processor (receives from
the Media interface and transmits to the CSIX Fabric) and the egress processor (receives from the
CSIX Fabric and transmits to the Media interface).

Figure 2-1. Example Hardware Configuration for OC48-POS with CSIX Fabric

A9930-01

POS
Framer

CSIX
Switch
Fabric

Ingress
Intel® IXP2400

Network Processor

Egress
Intel IXP2400

Network Processor

PHY

Sonet

POS

IP

Cbus -
CSIX Flow Control

POS PHY L3

POS Frames

CSIX

C Frames

POS

IP

C-Frame
Header

IP

24 Software Building Blocks Applications Design Guide

OC-48 POS IPv4 Forwarding Application

The Ingress IXP2400 receives POS frames that carry IPv4 datagrams. The frames are assembled
into IPv4 packets and the Layer-2 (PPP) headers are removed. Based on the IPv4 header, a Longest
Prefix Match (LPM) lookup is performed and the packets are segmented into CSIX C-Frames and
transmitted to the CSIX fabric. The result of the LPM lookup determines which IXP2400
connected to the Fabric receives the packet, and which port on that IXP2400 the packet is
transmitted on.

The Egress IXP2400 receives CSIX C-Frames from the fabric and reassembles these into IPv4
datagrams. The Layer-2 (PPP) headers are added and the packets are transmitted over the
appropriate port.

2.2 Software Overview

Figure 2-2. Microblocks for an OC-48 POS IPv4 Forwarding Application

CSIX
Fabric

Packet
RX

CSIX Cell
Scheduler

QM CSIX TX

Ingress
IXP2400

Packet
TX QM CSIX RX

Egress
IXP2400

IPv4
Forwarder

PPP
decap/
classify

Packet
Scheduler

PPP
Encap

Software Building Blocks Applications Design Guide 25

OC-48 POS IPv4 Forwarding Application

Figure 2-2 shows the microblocks needed to implement an OC-48 POS IPv4 Forwarding
application. The design for this application is based on the guidelines specified in the Intel®
Internet Exchange Architecture Portability Framework Developer’s Manual. The driver
microblocks (Receive, Transmit, Scheduler and Queue Manager) run on different microengines
from the packet processing code. In this design, each driver block occupies an entire microengine.
The packet processing blocks on the ingress IXP2400 include the IPv4 Forwarder and the PPP
decapsulation/classify microblock. There are four microengines that run in parallel and execute the
packet processing code. On the egress side, the only packet processing code is the PPP
encapsulation block which runs on a single microengine.

2.2.1 Data Flow for the Ingress IXP2400

This section describes the data flow on the Ingress IXP2400:

2.2.1.1 Packet RX

The Packet Receive is a driver microblock that performs frame-reassembly on the mpackets
coming in on the POS media interface. It reassembles and writes the packet data to a buffer in
DRAM and queues the packet buffer handle on a microengine-microengine scratch ring for
processing by the packet processing microengine. The Packet RX microblock also sets up per
packet meta information (offset, size, etc.) which are passed on either in a descriptor in SRAM or
in the microengine-microengine scratch ring itself. In this application, the packets reassembled are
PPP frames containing IP datagrams. RFC 2615 defines the Packet Over SONET specification and
refers to RFC 1661 (PPP) and RFC 1662 (PPP in HDLC-like framing). PPP framing including
header validation, FCS generation and computation and byte stuffing are handled by the POS
framer (IXF 6048).

The Packet RX microblock uses 8 threads on a single microengine, each of which handle one
mpacket at a time. Up to 16 virtual ports are supported and the re-assembly context for all these
ports is kept in local memory. To maintain packet sequencing, the threads execute in strict order.

Note: This microblock is written such that it supports up to 16 virtual ports, one or more of which may be
unused. This allows the microblock to support different configurations such as Quad-OC12, 16
OC-3 or a single OC-48 port.

Since POS packets may be up to 9k bytes, some large packets may be stored in multiple buffers
chained together as a link-list. The buffer handles for the first and last packet in the chain are
queued in the scratch ring.

From the Packet RX block, the packet is passed on to an application specific system microblock
(DL_Sink[]). This microblock checks if the packet has been marked to be dropped (IX_DROP) or
sent to the XScale Core (IX_EXCEPTION). If not, it queues the packet buffer handle and associated
packet meta data into the scratch ring for the next stage in the application.

2.2.1.2 PPP Decapsulation and Classify

The PPP decapsulation/classify microblock runs along with the IPv4 microblock on 4
microengines or 32 threads.

An application specific system source microblock on each thread dequeues packet buffer handles
from the scratch ring. This source block (DL_Source[]) is a system microblock implicit in the
dispatch loop. It reads in the packet meta information—that is, the packet descriptor, and populates
the dispatch loop state. It also reads in 32 bytes of the packet header from DRAM into a header

26 Software Building Blocks Applications Design Guide

OC-48 POS IPv4 Forwarding Application

cache maintained in transfer registers. Since it is important to maintain packet sequencing, the
threads in the microblock execute in strict order to dequeue from the scratch ring. This implies that
the first thread on microengine 1 dequeues the first packet, signals the next thread to perform the
dequeue… etc. From this block, the packet goes to the PPP decapsulation/classify microblock.

The PPP decapsulation/classify microblock removes the layer-2 PPP header from the packet by
updating the offset and size fields in the packet meta descriptor. Based on the PPP header, it also
classifies the packet into IPv4, IPv6, PPP control packet (LCP, IPCP etc). If the packet is a PPP
control packet, it is marked as an exception packet to be sent to the XScale Core (IX_EXCEPTION).
Otherwise the packet is sent down the microengine stages for further processing. In this
application, the dispatch loop silently drops packets classified as IPv6.

2.2.1.3 IPv4 Forwarder

The IPv4 forwarder microblock validates the IP header per RFC 1812. If the validity checks fail,
then the packet is set up to be dropped as specified in Chapter 5, “Microblocks” of the Intel®
Internet Exchange Architecture Portability Framework Developer’s Manual. Otherwise, a Longest
Prefix Match (LPM) is performed on the IPv4 header. The result is an IPv4 Next Hop ID, a fabric
blade ID (identifying a unique IXP2400 on the fabric) and an output port identifying the output
port on the Egress IXP2400. The Next Hop ID is passed over the CSIX fabric to an Egress
IXP2400 where it is used to look up information about the Layer-2 header to be prepended to the
packet buffer. The output port is also passed over the CSIX fabric to the Egress IXP2400 and is
used to transmit over the appropriate port. All three fields are stored in the packet meta data—that
is, the packet descriptor.

If no match is found, then the packet is set up to be sent up to the XScale core for further
processing. Packets are also sent to the core in a number of other cases, for example, when the
packet is destined for a local interface or is to be fragmented.

From the IPv4 forwarder block, the packet is passed on to an application specific system
microblock (DL_QM_Sink[]). This microblock checks if the packet is to be dropped or sent to the
XScale Core. If not, it sends an enqueue request to the Queue Manager over a scratch ring.
DL_QM_Sink[] also writes the cached packet header to DRAM and the packet meta information to
SRAM.

2.2.1.4 Cell Based Queue Manager (Cell QM)

The Queue Manager is a driver microblock that is implemented as a single microblock that runs on
a single microengine. Since this is the only code running on the microengine and it does not really
process packets, there is no need for a dispatch loop.

The QM is responsible for performing enqueue and dequeue operations on the transmit queues
which are implemented using the hardware SRAM link lists. It accepts enqueue requests from the
functional pipeline via a scratch ring. The enqueue requests are on a per-packet basis. The dequeue
requests come from the transmit scheduler microengine on a per-cell basis where a cell is a CSIX
cframe. Whenever an enqueue results in the queue state going from empty to non-empty or a
dequeue operation results in the queue state going from non-empty to empty, the Queue Manager
sends a message to the transmit scheduler via a Next Neighbor Ring. Also after every dequeue, the
QM passes a transmit request via a scratch ring to the CSIX TX microblock.

The threads on the QM microengine execute in strict order using local inter-thread signaling.
SRAM Queue Array entries are cached in the SRAM Controller and the CAM is used for
managing the tags for these. To maintain coherence among threads, folding is used.

Software Building Blocks Applications Design Guide 27

OC-48 POS IPv4 Forwarding Application

2.2.1.5 CSIX Scheduler

The CSIX scheduler is a driver microblock that runs on a single microengine. Since this is the only
code running on the microengine and it does not process packets, there is no need for a dispatch
loop.

The CSIX scheduler schedules packets to be transmitted to the CSIX fabric. The scheduling
algorithm implemented is Round Robin among the ports on the fabric and optionally Weighted
Round Robin among the queues on a port. Since this is not a QoS application and there is only one
queue per port, the Weighted Round Robin scheduling may either be compiled out or made to
degenerate to round robin scheduling. Other applications—for example, IP DiffServ, may use the
WRR functionality. The scheduling and transmit is done a cframe at a time.

The CSIX scheduler handles

• Flow control messages from the fabric
These messages are sent by the fabric to the Egress IXP2400, which sends them on the c-bus
to the Ingress IXP2400. If the fabric asserts Xoff on a particular VoQ (Virtual Output Queue),
the scheduler stops scheduling for the queue.

• Queue transition messages from the queue manager
A queue is scheduled only if there is data in the queue.

• MSF Transmit State Machine
The scheduler monitors how many packet cframes are in the pipeline and if it exceeds a certain
threshold, it stops scheduling.

For both the VoQ status and the transmit queue status, the scheduler keeps hierarchical bit vectors
and uses the MEv2 FFS (Find First Bit) instruction to scan them efficiently. During each loop, the
scheduler

• Checks if the TX pipeline is within a pre configure threshold

• Picking up from where it left off in the last iteration it finds the next bit set and determines
which queue to schedule.

• It then sends a dequeue message to the Queue Manager to dequeue the head of that queue. The
Queue Manager dequeues a cell (cframe) from the head of the queue and sends a transmit
request on a scratch ring to the CSIX TX microblock.

2.2.1.6 CSIX TX

CSIX Transmit is a driver microblock that runs on a single microengine. It receives transmit
messages from the queue manager. With each transmit request, the microblock moves a cframe into
a TBUF, which is then transmitted into the fabric by the MSF Transmit State Machine.

Every request has an associated packet, which is being segmented into cframes. The associated
segmentation state for the packet and the packet metadata is cached in local memory and is looked
up using the CAM. The TX microblock adds the CSIX header onto the cframe along with the
packet data. Along with the CSIX header, a Traffic Manager (TM) header is also added per cframe
carrying extra information (destination Layer-2 port ID, input blade ID, sequence number, next-
hop ID, etc.) about the packet to be passed to the Egress IXP2400. In addition, the flow ID, class
ID, input port, and some other fields from the metadata are passed along to the Egress IXP2400
using a per-packet header pre-pended to the start of the first c-frame of each packet.

28 Software Building Blocks Applications Design Guide

OC-48 POS IPv4 Forwarding Application

As in other drive microblocks, the threads use folding and execute in strict order. If an entire buffer
for a packet has been transmitted, then the buffer is freed.

2.2.2 Data Flow for the Egress IXP2400

2.2.2.1 CSIX RX

The CSIX RX is a driver microblock that runs on a single microengine. It receives c-frames from a
CSIX fabric and reassembles them into IP packets. A key difference between the CSIX receive and
the POS receive microblock is that while the Packet RX block supports only 16 virtual ports, the
CSIX RX block supports up to 64k VOQ's. This implies that the reassembly contexts (RXC) are
stored in SRAM. The folding technique is used to optimize the read modify write of the context.
Sixteen contexts are cached in local memory at any time and the CAM is used to lookup the
context. The ingress blade id and the QoS class are used to uniquely identify a context and are used
as a key for the CAM lookup.

Since the packets being reassembled may be up to 9k bytes, some large packets may be stored in
multiple buffers chained together as a link-list. The buffer handles for the first and last packet in the
chain are queued in the scratch ring. The CSIX RX microblock also sets up packet meta
information (offset, size etc.) which are passed on to the packet processing microengines either in
SRAM or in the scratch ring itself.

2.2.2.2 PPP Encapsulation

This block adds the layer-2 PPP header to the packet and enqueues it to the next stage of the
pipeline. If the next hop id in the packet meta data is set to an invalid value (-1) then the block
assumes that the PPP header has already been added to the packet and simply enqueues it to the
next stage of the pipeline.

2.2.2.3 Packet Based Queue Manager

This block is virtually identical to the Cell Based Queue Manager except that it dequeues packets.
The SRAM Q-Array hardware is programmed in packet mode and ignores the cell count field in
the buffer handle. The cell count field may be used to store an approximation of the length of the
packet for DRR scheduling. Another key difference between the cell based and packet based queue
manager is that the packet based queue manager returns a dequeue response message to the
scheduler for every dequeue request. This dequeue response contains the packet length which is
needed by the scheduler for implementing the DRR algorithm. The dequeue response message is
combined with the enqueue/dequeue transition messages and is returned on the same next neighbor
ring.

On the ingress side (Cell QM), the scheduler does not need the packet length. Therefore a message
is only sent from the QM to the scheduler in case of a queue transition or if the dequeue was
invalid.

2.2.2.4 Egress Packet WRR/DRR Scheduler

The Egress scheduler schedules POS packets to be transmitted over the POS interface. The key
difference between the ingress and Egress IXP2400’s is that the egress scheduler is a packet-based
scheduler as opposed to the cell (i.e., c-frame) based scheduler on the ingress side. Also there are
no flow control messages to be processed from the fabric.

Software Building Blocks Applications Design Guide 29

OC-48 POS IPv4 Forwarding Application

The Egress scheduler implements Weighted Round Robin (WRR) scheduling among the ports and
optionally DRR (Deficit Round Robin) scheduling among the queues on a port. Since this is not a
QoS application and there is only one queue per port, the DRR is compiled out or made to
degenerate to round robin.

Using the Weighted Robin algorithm on the 16 virtual ports allows us the flexibility to support a
number of different configurations such 16-OC3, 3 OC-12, and 4 OC-3, etc. The weights on the
ports are adjusted according to the data rate sustained on that port.

To prevent head-of-line blocking, the scheduler with the help of feedback from the Packet TX
block keeps track of the number of packets in flight (scheduled, but not transmitted) for each port.
If this number exceeds a specified limit, then it stops scheduling on that port.

2.2.2.5 Packet TX

The Packet TX microblock transmits packets over the media interface. It segments a packet into
mpackets and moves them into TBUFS for the MSF state machine to transmit. This is similar to the
CSIX TX microblock except that instead of adding the CSIX header, the Packet TX microblock
assumes that the layer-2 header is already prepended to the start of the packet by a previous stage of
the packet processing pipeline. Also while the CSIX TX block receives a transmit request for every
cframe, the Packet TX microblock receives a transmit request for the entire packet.

The MPHY-16 Packet TX microblock supports up to 16 virtual ports. The transmit context for all
of these are kept in local memory. Therefore the CAM is not required. The Packet TX microblock
monitors the MSF to see if the TBUF threshold for a specific port has been exceeded. If so it stops
transmitting on that port and any requests to transmit packets on that port are queued up in local
memory.

The Packet TX microblock periodically updates the scheduler with information about how many
packets have been transmitted. If the packets in flight for a particular port (packets scheduled but
not transmitted) exceed a certain limit (which depends on the bandwidth supported by that port),
then the scheduler stops scheduling any more packets for the port. This combination of queuing
packets in local memory and keeping track of the packets in flight helps prevent 'head of line
blocking'.

One thing to note is that the design is much simpler for the case where only a single OC-48 port
(SPHY mode) needs to be supported. This is because there are no head of line blocking issues and
packets needed not be queued in local memory. The same applies for a quad OC12 design (MPHY-
4 mode) where we can avoid head of line blocking issues by using four different scratch rings (1
per port) and allocate two microengine threads for each port.

Another assumption made in this design is that the output port for egress is found via the IPv4
lookup performed on the ingress side. A different approach is to use the next hop id and do a
lookup on the egress side to find out the output port number.

The Packet TX microblock can be used to support the following configurations:

• SPHY 1x32 (single port OC-48)

• MPHY-4 (or SPHY 4x8—four port OC-12)

• MPHY-16 (up to 16 virtual ports)

In the single port or four port configuration, the Packet TX microblock runs on a single
microengine, while in the MPHY-16 mode it runs on two microengines.

30 Software Building Blocks Applications Design Guide

OC-48 POS IPv4 Forwarding Application

2.2.3 Dispatch Loops / Microblock Groups

There are two dispatch loops (microblock groups) on the ingress pipeline. For more information on
dispatch loops, see Chapter 6, “Dispatch Loop” in the Intel® Internet Exchange Architecture
Portability Framework Developer’s Manual.

• Dispatch Loop for the Packet Frame Reassembly Stage (Figure 2-3)

• Dispatch Loop for the IPv4 Forwarder functional pipeline (Figure 2-4)

The QM, Scheduler, and CSIX TX blocks don’t use a dispatch loop, though they still use the
dispatch loop macros where required.

Note that the system microblocks dl_source, dl_sink, dl_qm_sink, etc are application
specific. They may be change for different packet processing pipelines.

There are two dispatch loops on the egress pipeline

• Dispatch Loop for the CSIX RX Reassembly stage (Figure 2-5)

• Dispatch Loop for the PPP encapsulation stage (Figure 2-6)

Figure 2-3. Dispatch Loop for the Packet Frame Reassembly Stage

A9938-01

Dl_SinkPOS RX

Figure 2-4. Dispatch Loop for the IPv4 Functional Pipeline

Dl_Source IPv4
Forwarder Dl_QM_SinkPPP decap/

classify

Software Building Blocks Applications Design Guide 31

OC-48 POS IPv4 Forwarding Application

2.3 Performance Characterization

The IXP2400 operates at 600 MHz. For a min POS packet of 49B, the packet inter-arrival time at
OC-48 line rate is 97 microengine cycles. In order to maintain line rate for min packets, each stage
of the pipeline cannot exceed this budget. In other words, each stage of the pipeline needs to retire
a packet every 97 cycles.

Table 2-1 summarizes the performance analysis for the POS pipeline.

Figure 2-5. Dispatch Loop for CSIX Reassembly Stage

A9940-01

DL_SinkCSIX RX

Figure 2-6. Dispatch Loop for POS Transmit Stage

Dl_Source IPv4
Forwarder Dl_QM_SinkPPP decap/

classify

Table 2-1. Performance Characterization for the POS Pipeline

Parameter Value

OC-48 line rate assuming 3% SONET overhead 2.408 Gigabits/sec

Min POS packet size
49 bytes (40 byte TCP/IP, 2 bytes Address and
Control, 2 byte PPP header, 4 byte FCS and 1
byte flag)

Packet Throughput for min packets 6.14 million packets/sec = (2.408 / (49*8)) *
(10**9)

IXP2400 clock frequency 600 MHZ

Inter-packet arrival time for min packets 600/6.14 = 97.7 cycles

Compute cycles per packet for a single microengine 97

32 Software Building Blocks Applications Design Guide

OC-48 POS IPv4 Forwarding Application

2.4 Ingress System Resource Allocation

Table 2-2 shows the system resources mapped for the Ingress IXP2400. This mapping reflects the
system defaults and may be changed. The allocation of microengines is done such that it optimizes
the performance of this specific application and may be changed for other applications.

The physical assignment of function to microengine is important since it not only affects when the
next neighbor registers and signaling can be utilized, but it also affects the utilization of the internal
Command bus and S-Push/Pull buses. Since ME0-ME3 belong to Microengine Cluster 0 and ME4-
ME7 belong to Microengine Cluster 1, this assignment attempts to balance the usage of the
Command bus and S-Push/Pull buses across the two clusters.

IXP2400 supports two SRAM channels and one DRAM channel. Table 2-3 shows the SRAM,
DRAM and scratch utilized for this application. These values are defined in a system header file
dl_system.h and may be changed as required.

Latency per packet for a single microengine 97 * 8

Compute cycles per packet for n microengines running in
parallel 97*n

Latency per packet for a n microengines running in parallel 97*8*n

Table 2-1. Performance Characterization for the POS Pipeline (Continued)

Parameter Value

Table 2-2. System Resources Mapped for the Ingress IXP2400

Microblock ME # Communication Mechanism with previous stage

Packet RX ME0 Auto-push status from MSF

IPv4 Forwarder + Layer2
decapsulation/Classify ME1, ME2, M5, M6 Scratch ring

Queue Manager ME3 Scratch ring

CSIX Scheduler ME4 Next neighbor + Scratch ring

CSIX TX ME7 Scratch ring

Table 2-3. SRAM, DRAM and Scratch Utilization for Ingress System Resources

Item Size per entry in bytes Number of entries
Total

SRAM
used

Total
DRAM
used

Total
Scratch

used

Buffer Descriptors 32
32k (In simulation,
we use only 320
buffers)

1 MB

Buffers 2048 32k 64 MB

Queue Descriptors 16 1024 (1 per VOQ) 16K

CSIX TX contexts 32 1024 (1 per VOQ) 32k

Software Building Blocks Applications Design Guide 33

OC-48 POS IPv4 Forwarding Application

2.5 Egress System Resource Allocation

Table 2-4 shows the system resources allocated for the Egress IXP2400.

Trie Table

64 (The root Trie table
requires at least 257k to
support hi64k and hi256
tables. In addition each
node requires 64 bytes.
These nodes are added
as needed)

See note in previous
column. Assuming
256k routes,
approximately 128k
nodes are needed

8MB

Route Table (Next Hop
Information) 16 Assuming 4k next

hops 64k

IPv4 statistics 4 16 64

Packet RX statistics 4 16*16 1024

IPv4 Directed
Broadcast Table 32 256 8k

Ring from Packet RX
to packet processing
pipeline (IPv4+Layer2
Decap/Classify)

20 4k/20 4k

IPv4 to QM ring 12 2k/12 2k

Scheduler to QM 4 512 2k

QM to CSIX TX 8 256 2k

QM Q-Array entries N/A 16

Buffer Free list Q-Array
entry N/A 4

Table 2-3. SRAM, DRAM and Scratch Utilization for Ingress System Resources (Continued)

Item Size per entry in bytes Number of entries
Total

SRAM
used

Total
DRAM
used

Total
Scratch

used

Table 2-4. System Resources Allocated for the Egress IXP2400

Microblock ME # Communication Mechanism
with previous stage

CSIX RX ME0 Auto-push status from MSF

Packet TX
ME4, ME5 (For SPHY 1x32, one
microengine is sufficient. For MPHY-16
designs two microengines are needed)

Scratch ring

Layer-2
Encapsulation ME3 Scratch ring

Egress QM ME1 Scratch Ring

Egress Scheduler ME2 Next neighbor + Scratch ring

Unused (available
headroom) M6, ME7 N/A

34 Software Building Blocks Applications Design Guide

OC-48 POS IPv4 Forwarding Application

The mapping of networking functions on to the microengines shows that six microengines are used
to perform the fast path processing for this application. Additional functionality required by
customers can be mapped on to the remaining microengines.

Table 2-5 shows how the SRAM, DRAM and scratch are utilized for this application. These values
are defined in a system header file dl_system.h and may be changed as required.

2.6 Interfaces Between the Various Microblocks

This section describes the interfaces between the different microblocks in the ingress and egress
processors for this application.

In most of the messages, there is a valid bit is used to prevent a value of zero from being enqueued
on the scratch ring. Zero is used to detect a case where the scratch ring is empty. So the valid bit
helps us distinguish between a zero value that was actually enqueued versus a case where the ring
is empty.

Table 2-5. SRAM, DRAM and Scratch Utilization for Egress System Resources

Item
Size per
entry in
bytes

Number of entries Total SRAM
used

Total
DRAM
Used

Total Scratch
used

Buffer
Descriptors 32 32k (In simulation we use

only 320 buffers) 1 MB

Queue
Descriptors 16 256 (16 ports x 16 classes

per port) 4k

CSIX RX
Reassembly
contexts

32 1024 32k

Buffers 2048 32k 64 MB

CSIX RX to
Layer-2 Encap
ring

12

512/3 (the size of the ring is
512 long words, but each
entry enqueued uses 3 long
words. Therefore the total
number of entries is 512/3 =
170)

2k

Layer-2 Encap to
QM ring 12 512/3 2k

Scheduler to QM
ring 4 512 2k

QM to POS TX 4 512512 2k2k

QM Q-Array
entries N/A 16

Buffer Free list
Q-Array entry N/A 4

Software Building Blocks Applications Design Guide 35

OC-48 POS IPv4 Forwarding Application

2.6.1 Packet RX and Packet Processing Microengines

The interface between the Packet Receive microblock and the Packet Processing Microengines
(IPv4 Forwarder + PPP decap) is a scratch ring. Table 2-6 describes each entry in the scratch
ring— which is five words.

2.6.2 Packet Processing Microengines and Cell Queue Manager

The interface between Packet Processing Microengines (IPv4 Forwarder + PPP decap) and Cell
Queue manager is a scratch ring. Table 2-7 describes each entry in the scratch ring—which is three
words.:

Table 2-6. Five-Word Entry in Scratch Ring (IPv4 Forwarder + PPP Decap)

LW Bits Size Field Description

0 31:0 32 dl_buffer_handle Buffer Handle for the SOP Descriptor

1 32:0 32 dl_eop_buffer_handle Buffer Handle for the EOP Descriptor

2 31:16 16 buffer_size Buffer size in bytes

15:0 16 offset Offset of the start of data in the buffer in
bytes

3 31:28 16 packet_size Total packet size across buffers

15:12 4 free_list_id Free list ID for buffer

11:8 4 rx_stat Receive Status Flag

7:0 8 header_type Type of header at offset bytes into the
packet

4 31:16 16 input_port Input port on ingress processor

4 15:0 16 reserved Reserved

Table 2-7. Three-Word Entry in Scratch Ring (IPv4 Forwarder + PPP Decap)

LW Bits Size Field Description

0 31:0 32 SOP Buffer Handle Buffer Handle for the SOP Descriptor

1 31:0 32 EOP Buffer Handle Buffer Handle for EOP Descriptor (may
be NULL)

2 31 1 Valid Bit Must be 1

2 30:16 15 Reserved Reserved

2 0:15 16 Queue Number Queue Number

36 Software Building Blocks Applications Design Guide

OC-48 POS IPv4 Forwarding Application

2.6.3 Cell Queue Manager and CSIX Scheduler

Table 2-8 describes the CSIX scheduler issued dequeue requests to the Cell based Queue Manager
via a scratch ring.

Table 2-9 shows the Queue Transition Messages sent by the Queue Manager to the scheduler via a
Next Neighbor Ring.

2.6.4 Cell Queue Manager and CSIX TX

The interface between the Cell based Queue Manager and the CSIX TX block is a scratch ring.
Table 2-10 describes each entry in the scratch ring—which is two words.

Table 2-8. Dequeue Requests via the Scratch Ring

LW Bits Size Field Description

0 31 1 Valid Bit Must be 1

0 30:16 15 Reserved Reserved

0 0:15 16 Queue Number Queue Number

Table 2-9. Queue Transition Messages Sent by the Queue Manager

LW Bits Size Field Description

0 31 1 Valid Bit Must be 1

30 1 Enqueue Transition Notification that queue has gone from empty to
non-empty

29:16 1 Reserved Reserved

28:18 11 Packet cell count Unused for CSIX

17:16 2 Reserved Reserved

15:0 16 Queue Number Queue Number that was enqueued (Only 10
bits are used for CSIX)

1 31 1 Valid Bit Must be 1

30 1 Dequeue Transition Notification that queue has gone from non-
empty to empty

29 1 Invalid Dequeue If set, then dequeue request to an invalid queue
was made

28:16 13 Packet size Unused for CSIX

15:0 16 Queue Number Queue Number that was dequeued (Only 10
bits are used for CSIX

Table 2-10. Two-Word Entry in Scratch Ring

LW Bits Size Field Description

0 31 1 Valid Bit Must be 1

0 30:16 15 Reserved Reserved

0 15:0 16 Queue Number Queue Number

1 31:0 32 Buffer Handle Buffer Handle currently being
transmitted for queue

Software Building Blocks Applications Design Guide 37

OC-48 POS IPv4 Forwarding Application

2.6.5 CSIX RX and PPP Encap

The interface between CSIX RX and PPP Encap is a scratch ring. Table 2-11 describes each entry
in the scratch ring—which is two words.

2.6.6 PPP Encap and Packet Queue Manager

Table 2-12 shows the scratch ring interface between the PPP Encap and Packet Queue Manager.

2.6.7 Packet Queue Manager and Scheduler

The interface between the Packet based Queue Manager and the POS/Ethernet Scheduler is a Next
Neighbor Ring.

The message format is identical to the interface between the Cell Queue Manager and the CSIX
Scheduler except that an additional word containing the packet length is sent. The one difference is
that while the Cell Queue Manager sends a message to the scheduler only on an enqueue/dequeue
transition or in the case of an invalid dequeue, the Packet Queue Manager sends a dequeue
response (combined with the transition messages) on every dequeue request. In the case where
there is only an enqueue transition (no dequeue request was sent by the scheduler), the packet size
is set to 0 by the queue manager.

Table 2-11. Three-Word Entry in Scratch Ring (CSIX and PPP Encap)

LW Bits Size Field Description

0 31:0 32 SOP Buffer Handle Buffer Handle for the SOP Descriptor

1 31:0 32 EOP Buffer Handle Buffer Handle for EOP Descriptor
(may be NULL)

2 31 1 Valid Bit Must be 1

2 30:16 15 Reserved Reserved

2 0:15 16 Queue Number Queue Number

Table 2-12. Scratch Ring Interface between PPP Encap and Packet Queue Manager

LW Bits Size Field Description

0 31:0 32 SOP Buffer Handle Buffer Handle for the SOP Descriptor

1 31:0 32 EOP Buffer Handle Buffer Handle for EOP Descriptor
(may be NULL)

2 31 1 Valid Bit Must be 1

2 30:16 15 Reserved Reserved

2 0:15 16 Queue Number Queue Number

Table 2-13. Queue Transition Messages Sent by the Packet Queue Manager

LW Bits Size Field Description

0 31 1 Valid Bit Must be 1

30 1 Enqueue Transition Notification that queue has gone from empty to
non-empty

29:16 1 Reserved Reserved

38 Software Building Blocks Applications Design Guide

OC-48 POS IPv4 Forwarding Application

2.6.8 Packet Queue Manager and Packet TX

The interface between the Egress Queue Manager and the Packet Transmit for the POS and
Ethernet applications is a scratch ring. Table 2-11 describes each entry in the scratch ring—which
is one word.

2.7 Core Components

The following sections list the core components used by this application and describe how
exception packets are handled.

2.7.1 Ingress Core Components

The core components that run on the Ingress side are POS Rx, IPv4 Forwarder, Stack Driver,
Queue Manager, CSIX Tx, and Scheduler. In addition, there are several libraries that are required
for the functioning of these core components: the Route Table Manager, Fragmentation, and
Message Support libraries. There is another component called System Application that plays the
role of a system designer. For details on these core components, refer to the Intel® Internet
Exchange Architecture Software Building Blocks Developer’s Manual.

28:18 11 Packet cell count Unused for POS/Ethernet

17:16 2 Reserved Reserved

15:0 16 Queue Number Queue Number that was enqueued (Only 8 bits
are used for POS/Ethernet)

1 31 1 Valid Bit Must be 1

30 1 Dequeue Transition Notification that queue has gone from non-
empty to empty

29 1 Invalid Dequeue If set, then dequeue request to an invalid queue
was made

28:16 13 Packet size Size of the packet in units of 128 bytes (Only 7
bits are used)

15:0 16 Queue Number Queue Number that was dequeued (Only 8 bits
are used for POS/Ethernet)

Table 2-13. Queue Transition Messages Sent by the Packet Queue Manager (Continued)

LW Bits Size Field Description

Table 2-14. One-word Scratch Ring Entry

LW Bits Size Description

0 31:31 1 Valid bit

30:28 3 Reserved

27:24 4 Port number

23:0 24 Pointer to SOP buffer descriptor in SRAM in long
words (Same as bits 0:23 of buffer handle)

Software Building Blocks Applications Design Guide 39

OC-48 POS IPv4 Forwarding Application

2.7.2 Egress Core Components

The core components that run on the Egress side are POS Tx, Scheduler, CSIX Rx, and Queue
Manager. The library that is required on the Egress side is the Message Support library. There is
another component called System Application that plays the role of a system designer. For details
on these core components, refer to the Intel® Internet Exchange Architecture Software Building
Blocks Developer’s Manual.

2.7.3 Exception Path Processing

Non-IP exception packets are delivered to the POS Receive core component. All such packets will
be sent to a component output defined in the file bindings.h. By default, this output is bound to
IX_DROP. Any other component or application that needs these packets can redefine
communication ID for the output. Exception IP packets are delivered to IPv4 Forwarder core
component. If the packet is for local delivery, it gets sent to the Stack Driver and then to the local or
remote control plane.

The IPv4 Forwarder core component processes all other IPv4 packets and either forwards them to
the Queue Manager core component, or discards them. In addition, the IPv4 Forwarder core
component generates ICMP messages.

Outbound packets are delivered to the microblocks through the Queue Manager core component.

40 Software Building Blocks Applications Design Guide

OC-48 POS IPv4 Forwarding Application

Software Building Blocks Applications Design Guide 41

4Gb Ethernet IPv4 Forwarding
Application 3

This section describes the design of an IPv4 Forwarding application using the Intel® IXP2400
Network Processor. Two half-duplex IXP2400 processors are used to implement a 4GB Ethernet
line card that interfaces to a CSIX switch fabric. This section provides a high-level design
overview and lists the different software components used to build this application. It focuses only
on the fast path or microengine components of the design. The Intel XScale® core components for
this application are described in Intel® Internet Exchange Architecture Portability Framework
Developer’s Manual.

The application described in this chapter is supported on the Intel® IXDP2400 Advanced
Development Platform.

3.1 Hardware Overview

Figure 3-1 shows two IXP2400 processors in a typical CSIX full duplex configuration. In this
configuration, the two processors are identified as the ingress processor (receives from the Media
interface and transmits to the CSIX Fabric) and the egress processor (receives from the CSIX
Fabric and transmits to the Media interface). The hardware is configured in SPHY 4x8 mode. Up to
4 Gigabit Ethernet ports are supported—one port per 8-bit wide SPHY channel.

Figure 3-1. Example Hardware Configuration for 4x1 Gigabit Ethernet with CSIX Fabric

B0847-01

Ethernet
MAC

Ingress
Intel® IXP2400 Processor

Ethernet

IP

Egress
Intel® IXP2400 Processor

CSIX
Switch
Fabric

Cbus-CSIX
Flow Control

Ethernet
Frames C Frames

CSIX
SPI-3

SPHY 4x8

C-Frame
Header

IP

42 Software Building Blocks Applications Design Guide

4Gb Ethernet IPv4 Forwarding Application

The Ingress IXP2400 receives Ethernet frames that carry IPv4 datagrams. The frames are
assembled into IPv4 packets and the Layer-2 (Ethernet) headers are removed. Based on the IPv4
header, a Longest Prefix Match (LPM) lookup is performed and the packets are segmented into
CSIX C-Frames and transmitted to the CSIX fabric. The result of the LPM lookup determines
which IXP2400 connected to the Fabric receives the packet, and which port on that IXP2400 the
packet is transmitted on.

The Egress IXP2400 receives CSIX C-Frames from the fabric and reassembles these into IPv4
datagrams. The Layer-2 (Ethernet) headers are added and the packets are transmitted over the
appropriate port.

3.2 Software Overview

Figure 3-2 shows the microblocks needed to implement an Ethernet IPv4 Forwarding application.
The design for this application is based on the guidelines specified by the IXA Portability
Framework—Intel® Internet Exchange Architecture Portability Framework Developer’s Manual.
The driver microblocks (Receive, Transmit, Scheduler and QM) run on different microengines
from the packet processing code. In this design, each driver block occupies an entire microengine.
The packet processing blocks on the ingress IXP2400 include the IPv4 Forwarder and the Ethernet
decapsulation/classify microblock. There are four microengines that run in parallel and execute the
packet processing code. On the egress side, the only packet processing code is the Ethernet
Encapsulation/ARP block which runs on a single microengine.

Figure 3-2. Software Components for IPv4 Forwarding Application for Ethernet

B0848-01

CSIX
Fabric

Packet
RX

QM

Scheduler

CSIX
Tx

Ingress
Intel® IXP2400 Processor

QM

Packet
Scheduler

CSIX
Rx

Ethernet
Encap

Egress
Intel® IXP2400 Processor

Packet
TX

Ethernet
decap/
classify/

filter

IPv4
Forwarder

Software Building Blocks Applications Design Guide 43

4Gb Ethernet IPv4 Forwarding Application

3.2.1 Data Flow for the Ingress IXP2400

This section describes the data flow on the Ingress IXP2400:

3.2.1.1 Packet RX

This block is identical to the Section 2.2.1.1, “Packet RX” on page 25 except that it sets the header
type field in the packet meta data to Ethernet.

3.2.1.2 Ethernet Decapsulation/Classify/Filter

The Ethernet decapsulation/classify/filter microblock runs in a functional pipeline with the IPv4
microblock on 4 microengines or 32 threads.

This microblock removes the layer-2 Ethernet header from the packet by updating the offset and
size fields in the packet meta data. It also implements MAC filtering based on the destination MAC
address in the Ethernet header. Based on this filtering, the packet may be dropped.

This microblock also classifies the packet into IPv4, IPv6, MPLS, ARP etc. If the packet is an ARP
packet, it is marked as an exception packet to be sent to the Intel XScale® core (IX_EXCEPTION).
Otherwise the packet is sent down the microengine pipeline for further processing. In this
application, the dispatch loop silently drops packets classified as IPv6 or MPLS.

3.2.1.3 IPv4 Forwarder

This block is identical to the block described in Section 2.2.1.3, “IPv4 Forwarder” on page 26.

3.2.1.4 Cell Based Queue Manager (Cell QM)

This block is identical to the block described in Section 2.2.1.4, “Cell Based Queue Manager (Cell
QM)” on page 26.

3.2.1.5 CSIX Scheduler

This block is identical to the block described in Section 2.2.1.5, “CSIX Scheduler” on page 27.

3.2.1.6 CSIX TX

This block is identical to the block described in Section 2.2.1.6, “CSIX TX” on page 27.

3.2.2 Data Flow for the Egress IXP2400

This section describes the data flow for the Egress IXP2400.

3.2.2.1 CSIX RX

This block is identical to the block described in Section 2.2.2.1, “CSIX RX” on page 28.

44 Software Building Blocks Applications Design Guide

4Gb Ethernet IPv4 Forwarding Application

3.2.2.2 Ethernet Encapsulation

This block adds the layer-2 Ethernet header to the packet and enqueues it to the next stage of the
pipeline. It uses the next hop id as an index into a table with layer-2 header information. If the
layer-2 header is not found, the packet is enqueued to be processed by the Intel XScale® core. ARP
Processing is handled by the Intel XScale® core application code. If the next hop id is set to an
invalid value (-1), the block assumes that the layer-2 header has already been added to the packet
and sends it to the next stage of the pipeline.

3.2.2.3 Packet Based Queue Manager (Packet QM)

This block is identical to the block described in Section 2.2.2.3, “Packet Based Queue Manager” on
page 28.

3.2.2.4 Egress Scheduler

This block is identical to the block described in Section 2.2.2.4, “Egress Packet WRR/DRR
Scheduler” on page 28.

3.2.2.5 Packet TX

This block is identical to the block described in Section 2.2.2.5, “Packet TX” on page 29.

3.2.3 Dispatch Loops / Microblock Groups

There are two dispatch loops (microblock groups) on the ingress pipeline

• Dispatch Loop for the Packet Frame Reassembly Stage (Figure 3-3)

• Dispatch Loop for the IPv4 Forwarder functional pipeline (Figure 3-4)

The QM, Scheduler and CSIX TX blocks don't use a dispatch loop (they still use the dispatch loop
macros where required).

Figure 3-3. Dispatch Loop for the Packet Frame Reassembly Stage

B0849-01

Dl_Sink
Packet

Rx

Software Building Blocks Applications Design Guide 45

4Gb Ethernet IPv4 Forwarding Application

Note that the system microblocks dl_source, dl_sink, dl_qm_sink etc are application specific. They
may be changed for different packet processing pipelines.

There are two dispatch loops (microblock groups) on the egress pipeline

• Dispatch Loop for the CSIX RX Reassembly stage (Figure 3-5)

• Dispatch Loop for the Ethernet encapsulation stage (Figure 3-6)

Figure 3-4. Dispatch Loop for the IPv4 Functional Pipeline

B0850--01

IPv4
Forwarder

Ethernet
Decap/

Classify/
Filter

Dl_QM_SinkDl_Source

Figure 3-5. Dispatch Loop for CSIX Reassembly Stage

B0851-01

Dl_Sink
CSIX

Rx

Figure 3-6. Dispatch Loop for Ethernet Encapsulation Stage

B0852--01

Ethernet
Encap Dl_QM_SinkDl_Source

46 Software Building Blocks Applications Design Guide

4Gb Ethernet IPv4 Forwarding Application

3.2.4 Performance Characterization

The IXP2400 operates at 600 MHz. For a min Ethernet packet of 64B, the packet inter-arrival time
at 4 Gbps line rate is 100 microengine cycles. In order to maintain line rate for min packets, each
stage of the pipeline cannot exceed this budget. In other words, each stage of the pipeline needs to
retire a packet every 100 cycles. Table 3-1 summarizes the performance analysis for the Ethernet
pipeline.

3.3 Ingress System Resource Allocation

Table 3-2 shows the system resources mapped for the Ingress IXP2400. This mapping reflects the
system defaults and may be changed to match the needs of a specific application. The allocation of
microengines is done to optimize the performance of this specific application and may be changed
for other applications.

The physical assignment of function to ME is important since it not only affects when the next
neighbor registers and signaling can be utilized, but it also affects the utilization of the internal
Command bus and S-Push/Pull buses. Since ME0-ME3 belong to Microengine Cluster 0 and ME4-
ME7 belong to Microengine Cluster 1, this assignment attempts to balance the usage of the
Command bus and S-Push/Pull buses across the two clusters.

Table 3-1. Performance Characterization for the Ethernet Pipeline

Line rate for 4 Gig ports 4 Gigabits/sec

Min Ethernet packet size 64 bytes (+ 20 byte inter packet gap)

Packet Throughput for min packets 5.95 million packets/sec = (4 / (84*8)) * (10**9)

IXP2400 clock frequency 600 MHZ

Inter-packet arrival time for min packets 600/5.95 = 100.84 cycles

Compute cycles per packet for a single microengine 100

Latency per packet for a context pipe single
microengine 100 * 8

Compute cycles per packet for n microengines in
parallel 100*n

Latency per packet for n microengines in parallel 100*8*n

Table 3-2. Ingress System Resources Mapped for the Ingress IXP2400

Microblock ME # Communication Mechanism with previous stage

Packet RX ME0 Auto-push status from MSF

IPv4 Forwarder + Ethernet
decapsulation/Classify/Filter ME1, ME2, M5, M6 Scratch ring

Queue Manager ME3 Scratch ring

CSIX Scheduler ME4 Next neighbor + Scratch ring

CSIX TX ME7 Scratch ring

Software Building Blocks Applications Design Guide 47

4Gb Ethernet IPv4 Forwarding Application

IXP2400 supports two SRAM channels and one DRAM channel. Table 3-3 shows the SRAM,
DRAM and scratch are utilized for this application. These values are defined in a system header
file dl_system.h and may be changed as needed.

Table 3-3. SRAM, DRAM, and Scratch Utilization for Ingress System Resource Allocation

Item Size per entry in
bytes

Number of
entries

Total
SRAM
used

Total
DRAM
used

Total
Scratch

used

Buffer Descriptors 32

32k (In
simulation, we
use only 320
buffers)

1 MB

Buffers 2048 32k 64 MB

Queue Descriptors 16 1024 (1 per VOQ) 16K

CSIX TX contexts 32 1024 (1 per VOQ) 32k

Trie Table

64 (The root Trie table
requires at least 257k
to support hi64k and
hi256 tables. In
addition each node
requires 64 bytes.
These nodes are
added as needed)

See note in
previous column.
Assuming 256k
routes,
approximately
128k nodes are
needed

8MB

Hash table for MAC
Filtering (Ethernet design
only)

8 4k 32k

Route Table (Next Hop
Information) 16 Assuming 4k next

hops 64k

IPv4 statistics 4 16 64

Packet RX statistics 4 4*4 (4 per port) 64

IPv4 Directed Broadcast
Table 32 256 8k

Ring from Packet RX to
packet processing pipeline
(IPv4+Layer2 Decap/
Classify)

20 4k/20 4k

IPv4 to QM ring 12 2k/12 2k

Scheduler to QM 4 512 2k

QM to CSIX TX 8 256 2k

QM Q-Array entries N/A 16

Buffer Free list Q-Array
entry N/A 4

48 Software Building Blocks Applications Design Guide

4Gb Ethernet IPv4 Forwarding Application

3.4 Egress System Resource Allocation

Table 3-4 shows the system resources allocated for the Egress IXP2400.

The mapping of networking functions onto the microengines shows that six microengines are used
to perform the fast path processing for this application. Additional functionality required by
customers can be mapped on to the remaining microengines.

Table 3-5 shows how the SRAM, DRAM and scratch are utilized for this application. These values
are defined in a system header file dl_system.h and may be changed as needed.

Table 3-4. System Resources Allocated for the Egress IXP2400

Microblock ME # Communication Mechanism with previous stage

CSIX RX ME0 Auto-push status from MSF

Packet TX ME4, ME-5 Scratch ring

Layer-2 Encapsulation ME3 Scratch ring

Egress QM ME1 Scratch Ring

Egress Scheduler ME2 Next neighbor + Scratch ring

Unused (available headroom) M6, ME7 N/A

Table 3-5. SRAM, DRAM, and Scratch Utilized for Egress System

Item
Size per
entry in
bytes

Number of entries
Total

SRAM
used

Total DRAM
Used

Total Scratch
used

Buffer Descriptors 32 32k (In simulation we
use only 320 buffers) 1 MB

Queue Descriptors 16 64 (4 ports x 16
classes per port) 1k

CSIX RX Reassembly
contexts 32 1024 (1 per VOQ) 32k

Buffers 2048 32k 64 MB

Layer-2 table with mapping
from next hop id to Ethernet
header (Ethernet only)

32 Assuming 256 next
hops per blade 8k

CSIX RX to Layer-2 Encap
ring 12

512/3 (the size of the
ring is 512 long
words, but each entry
enqueued uses 3 long
words. Therefore the
total number of
entries is 512/3 =
170)

2k

Layer-2 Encap to QM ring 12 512/3 2k

Scheduler to QM ring 4 512 2k

QM to POS TX 4 512512 2k2k

QM Q-Array entries N/A 15

Buffer Free list Q-Array
entry N/A 4

Software Building Blocks Applications Design Guide 49

4Gb Ethernet IPv4 Forwarding Application

3.5 Interfaces Between the Various Microblocks

The interface between the various microblocks is virtually identical to the POS application as
described in Section 2.6, “Interfaces Between the Various Microblocks” on page 34. One
difference is the interface between the Queue Manager and the Packet Transmit microblocks on the
egress IXP2400.

3.5.1 Packet Queue Manager and Packet TX

The interface between the Packet Queue Manager and the Packet Transmit microengines is four
scratch rings—one per Gigabit Ethernet port. Table 3-6 describes each entry in the scratch ring—
which is one word.

3.6 Core Components

The following sections list the core components used by this application.

3.6.1 Ingress Core Components for VxWorks

The core components that run on the Ingress side are Ethernet Rx, IPv4 Forwarder, Stack Driver,
Queue Manager, CSIX Tx, and Scheduler. In addition, there are several libraries that are required
for the functioning of these core components. These are Route Table Manager, Fragmentation, and
Message Support libraries. There is another component called System Application that plays the
role of a system designer.

3.6.2 Ingress Core Components for Linux

The core components that run on the Ingress side are Ethernet Rx, IPv4 Forwarder, Queue
Manager, CSIX Tx, and Scheduler. In addition, there are several libraries that are required for the
functioning of these core components. They are Route Table Manager, Fragmentation, and
Message Support libraries. There is another component called System Application that plays the
role of a system designer.

3.6.3 Egress Core Components for VxWorks and Linux

The core components that run on the Egress side are Ethernet Tx, Scheduler, CSIX Rx, Queue
Manager, and Stack Driver. The libraries that are required on the Egress side are Message Support
and L2 Table Manager libraries. There is another component called System Application that plays
the role of a system designer.

Table 3-6. One-Word Scratch Ring (Packet Queue Manager and Packet TX)

LW Bits Size Description

0 31:31 1 Valid bit

30:24 7 Reserved

23:0 24 Pointer to SOP buffer descriptor in SRAM in long
words (Same as bits 0:23 of buffer handle)

50 Software Building Blocks Applications Design Guide

4Gb Ethernet IPv4 Forwarding Application

Software Building Blocks Applications Design Guide 51

OC-48 ATM IPv4 Forwarding
Application 4

This section describes the design of an IPv4 Forwarding application using the IXP2400. Two half-
duplex IXP2400's are used to implement an ATM line card at OC-48 data rates that interfaces to a
CSIX switch fabric. This section provides a high-level design overview and lists the different
software components used to build this application. It focuses only on the fast path or microengine
components of the design. The XScale Core Components for this application are described in
Intel® Internet Exchange Architecture Portability Framework Developer’s Manual.

4.1 Hardware Overview for ATM

Figure 4-1 shows two IXP2400's in a typical CSIX full duplex configuration. In this configuration,
the two IXP2400's are identified as the ingress processor (receives from the Media interface and
transmits to the CSIX Fabric) and the Egress Processor (receives from the CSIX Fabric and
transmits to the Media interface).

The Ingress IXP2400 receives ATM cells. These cells are reassembled into AAL5 frames carrying
IP datagrams. The AAL5 header and trailer (along with any LLCSNAP encapsulation) are
removed and a Longest Prefix Match (LPM) lookup is performed based on the IPv4 header. The IP

Figure 4-1. Example Hardware Configuration for OC-48 ATM with CSIX Fabric

B0853-01

ATM
Framer

Ingress
Intel® IXP2400 Processor

Sonet

AAL-5

Egress
Intel® IXP2400 Processor

CSIX
Switch
Fabric

Cbus-CSIX
Flow Control

ATM Cells C Frames

CSIXUTOPIA

PHY

IP

C-Frame
Header

IP

AAL-5

IP

52 Software Building Blocks Applications Design Guide

OC-48 ATM IPv4 Forwarding Application

datagrams are then segmented into CSIX C-Frames and transmitted to the CSIX fabric. The result
of the LPM lookup determines which IXP2400 connected to the Fabric receives the packet, and
which port on that IXP2400 the packet is transmitted on.

The Egress IXP2400 receives CSIX C-Frames from the fabric and reassembles these into IPv4
datagrams. The LLCSNAP headers along with the AAL5 header and trailer information are added
to create an AAL5 frame. This AAL5 frame is segmented into ATM cells and transmitted over the
appropriate ATM physical port.

4.2 Software Overview for ATM

Figure 4-2 shows the software components needed to implement an IPv4 forwarding application
for OC-48 (or 4xOC-12) ATM.

4.2.1 Data Flow for the Ingress IXP2400

This section describes the data flow on the Ingress IXP2400:

Figure 4-2. Software Components for IPv4 Forwarding Application for OC-48 ATM

B0854-01

CSIX
Fabric

ATM
AAL-5

RX
QM CSIX

Tx

Ingress
Intel® IXP2400
Processor

QM

RR
Scheduler

CSIX
Rx

CSIX Rx
Scheduler

LLCSNAP
Encap

Egress
Intel® IXP2400
Processor

LLCSNAP
decap/
classify

IPv4
Forwarder

ATM
AAL-5 RX

Software Building Blocks Applications Design Guide 53

OC-48 ATM IPv4 Forwarding Application

4.2.1.1 ATM AAL5 RX

The AAL5 Receive microblock on the Ingress IXP2400 receives ATM cells in mpackets coming in
on the media interface. It reassembles these cells into AAL5 PDU's, writes the data to a buffer in
DRAM and queues the packet buffer handle on a ME-ME scratch ring for processing by the next
stage of the pipeline. It also sets up per-packet meta information (offset, size etc) which are passed
down the pipeline either in a descriptor in SRAM or in the ME-ME scratch ring itself.

The RX block uses 2 microengines (16 threads) running in parallel to support AAL5 Reassembly at
OC-48 data rates. The block supports a compile time option that allows the code to be run such that
4 threads of a microengine work on a single OC-12 port. Up to 64k Virtual Circuits (VCs) are
supported and the re-assembly contexts for these are kept in local memory. To maintain packet
sequencing and to compute CRC on the incoming cells of a frame, the threads execute in strict
order. When the last cell of a frame is received, the block checks if the CRC for the frame is valid.
If the CRC is invalid or the length of the packet in the trailer does not match the bytes received for
this packet (or the length is 0), the packet is marked to be dropped. Otherwise the packet length in
the metadata is adjusted (as per the length field in the AAL5 PDU trailer) to strip the padding and
trailer.

Since AAL5 frames may be up to 64k bytes, some large packets may be stored in multiple buffers
chained together as a link-list. The buffer handles for the first and last packet in the chain are
queued in the scratch ring. Before enqueing the packet buffer handle, the RX block sets up the
header field in the packet meta data to be either LLCNSAP or any other protocol indicated by the
VC Reassembly Context.

From the AAL5 RX block, the packet is passed on to an application specific system microblock
(DL_Sink[]). This microblock checks if the packet has been marked to be dropped (IX_DROP) or
sent to the XScale Core (IX_EXCEPTION). If not, it queues the packet buffer handle and
associated meta data into the scratch ring for the next stage in the pipeline. OAM cells are queued
to the core as exception packets. In addition, AAL5 frames received on any VC may be sent to the
XScale Core, if the exception flag is set in the VC Reassembly Context.

4.2.1.2 LLCSNAP Decapsulation and Classify

The LLCSNAP decapsulation/classify microblock runs with the IPv4 microblock on 3
microengines or 24 threads.

This microblock first checks if the header type in the metadata has been set to LLCSNAP. This
indicates that the packet is using LLCSNAP encapsulation. If the header is indicated to be
LLCSNAP, the microblock removes the header from the packet by updating the offset and size
fields in the packet meta data. It also classifies the packet into IPv4, IPv6 etc. If the packet is not
using the LLCSNAP encapsulation, the packet classification (dl_next_block) is done based on
the value of the header type field in the packet metadata. The packet is then sent down the
microengine pipeline for further processing. In this application, the dispatch loop silently drops
packets classified as IPv6.

4.2.1.3 IPv4 Forwarder

This block is identical to the block described in Section 2.2.1.3, “IPv4 Forwarder” on page 18..

54 Software Building Blocks Applications Design Guide

OC-48 ATM IPv4 Forwarding Application

4.2.1.4 Cell Based Queue Manager (Cell QM)

This block is identical to the block described in Section 2.2.1.4, “Cell Based Queue Manager (Cell
QM)” on page 18.

4.2.1.5 CSIX Scheduler

This block is identical to the block described in Section 2.2.1.5, “CSIX Scheduler” on page 19.

4.2.1.6 CSIX TX

This block is identical to the block described in Section 2.2.1.6, “CSIX TX” on page 19.

4.2.2 Data Flow for the Egress IXP2400

This section describes the data flow for the Egress IXP2400.

4.2.2.1 CSIX RX

This block is identical to the block described in Section 2.2.2.1, “CSIX RX” on page 20.

4.2.2.2 LLCSNAP Encapsulation

This block adds the LLCSNAP header to the packet and enqueues it to the next stage of the
pipeline. It uses the next hop id as an index into a table with layer-2 header information. This table
contains both the LLCSNAP header as well as the Virtual Circuit (VC) Queue information for the
packet. If the next hop id is set to an invalid value (-1), the block assumes that the layer-2 header
has already been added to the packet and sends it to the next stage of the pipeline.

Adding the LLCSNAP header implies that the cell count for the packet needs to be updated. The
microblock computes the cell count for the packet

4.2.2.3 Cell Based Queue Manager (Cell QM)

This block is identical to the block described in Section 2.2.1.4, “Cell Based Queue Manager (Cell
QM)” on page 18..

4.2.2.4 Round Robin Scheduler

The AAL5 design does not support TM 4.1 Traffic Management. Instead a round robin scheduler is
used. For an application that uses ATM TM4.1 refer to the ATM diffserv application.

The round robin scheduler handles two types of queues.

High bit rate queues that transmit traffic up to OC48 rates.

Low bit rate queues that transmit traffic up to OC48/128 rates.

Note that queue 0 is an invalid VCQ.

In OC-48 mode, queue allocation is as shown.

Software Building Blocks Applications Design Guide 55

OC-48 ATM IPv4 Forwarding Application

Queues 1-127 are high bit rate (HBR) queues.

Queues 128-65534 are low bit rate (LBR) queues.

In quad OC-12 mode, queue allocation is as shown.

• Queues 1-127 are high bit rate (HBR) queues.

• Queues 128-65534 are low bit rate (LBR) queues.

Port 0:
Queues 1-31 are high bit rate (HBR) queues.
Queues 128, 132, 136 etc are low bit rate (LBR queues).

Port 1:
Queues 32-63 are high bit rate (HBR) queues.
Queue 129, 133, 137 etc are low bit rate (LBR queues).

Port 2:
Queues 64-95 are high bit rate (HBR) queues.
Queue 130, 134, 138 etc are low bit rate (LBR queues).

Port 3:
Queues 96-127 are high bit rate (HBR) queues.
Queue 131, 135, 139 etc are low bit rate (LBR queues).

The algorithm is summarized below
1. Read incoming request from NN ring

2. If (enqueue queue number = low bit rate queue)

If (enqueue transition)

Schedule a dequeue request for this queue on outgoing scratch ring

else // (enqueue queue number = high bit rate queue)

Add cell count to total queue cell count

Set queue to non-empty

3. If (dequeue queue number = low bit rate queue)

If (no dequeue transition)

Schedule a dequeue request for this queue on outgoing scratch ring

else // (dequeue queue number = high bit rate queue)

If (dequeue transition)

Set queue to empty

4. Schedule a dequeue request on a high bit rate queue

56 Software Building Blocks Applications Design Guide

OC-48 ATM IPv4 Forwarding Application

a. Using round robin select the eligible queue from the set of non-empty
queues

b. Schedule a dequeue request for this queue on outgoing scratch ring

c. Decrement queue cell count for this queue

d. If queue cell count reaches 0, set the queue to empty

5. Wait for all scratch ring signals and next thread signals

6. Goto step 1

4.2.2.5 ATM AAL5 TX

The AAL-5 TX microblock transmits ATM cells over a UTOPIA interface at OC-48 data rates. It
receives transmit messages from the queue manager. With each transmit request, the microblock
moves an ATM cell into a TBUF, which is then transmitted into the media by the MSF Transmit
State Machine.

Every request has an associated AAL-5 frame, which is being segmented into ATM cells. The
associated segmentation state for the packet and the packet metadata is maintained in a Transmit
Context (TXC) in SRAM. Sixteen TXC's are cached in local memory and the TXC is looked up
using the CAM. Like in previous stages, the threads use folding and execute in strict order. If an
entire buffer for a packet has been transmitted, then the buffer is freed.

The TX microblock computes the CRC for the AAL-5 frame. For every ATM cell in the frame, the
CRC residue (maintained in the TXC) is updated. When the end of the packet is reached, the packet
length and CRC are used to prepare an 8-byte AAL-5 trailer, which is also sent out with the
remaining payload.

For each request from the QM, the ATM TX microblock processes 48 bytes of the CPCS-SDU.
Along with the 48-byte data, it copies a four-byte header with each cell into a TBUF element.
When the last cell for a frame is reached, the block processes between 0-48 bytes.

4.2.3 Dispatch Loop

There are two dispatch loops (microblock groups) on the ingress pipeline

• Dispatch Loop for the AAL5 Reassembly Stage (Figure 4-3)

• Dispatch Loop for the IPv4 Forwarder functional pipeline (Figure 4-4)

The QM, Scheduler and CSIX TX blocks don't use a dispatch loop (they still use the dispatch loop
macros where required).

Figure 4-3. Dispatch Loop for the AAL5 Reassembly Stage

B0855-01

Dl_Sink
AAL-5

RX

Software Building Blocks Applications Design Guide 57

OC-48 ATM IPv4 Forwarding Application

Note that the system microblocks dl_source, dl_sink, dl_qm_sink etc are application specific. They
may be changed for different packet processing pipelines.

There are two dispatch loops (microblock groups) on the egress pipeline:

• Dispatch Loop for the CSIX RX Reassembly stage (Figure 4-5)

• Dispatch Loop for the LLCSNAP encapsulation stage (Figure 4-6)

Figure 4-4. Dispatch Loop for the IPv4 Functional Pipeline

B0856-01

IPv4
Forwarder

LLCSNAP
Decap/
Classify

Dl_QM_SinkDl_Source

Figure 4-5. Dispatch Loop for CSIX Reassembly Stage

B0851-01

Dl_Sink
CSIX

Rx

Figure 4-6. Dispatch Loop for LLCSNAP Encapsulation Stage

B0857--01

LLCSNAP
Encap Dl_QM_SinkDl_Source

58 Software Building Blocks Applications Design Guide

OC-48 ATM IPv4 Forwarding Application

4.2.4 Performance Characterization

The IXP2400 operates at 600 MHz. For an ATM cell of 53B, the cell inter-arrival time at OC-48
line rate is 105 microengine cycles. The RX/TX blocks need to able to sustain this cell rate. For this
design, we assume that the packet has LLCSNAP encapsulation and carries a minimum IP packet
in two ATM cells. Therefore the packet inter-arrival time is half of the cell inter-arrival time. This
implies that the rest of the pipeline (other than the RX/TX blocks), which process packets and not
cells have twice the number of compute cycles per pipe-stage.

Table 4-1 summarizes the performance analysis for the ATM pipeline.

4.3 Ingress System Resource Allocation

Table 4-2 shows the system resources mapped for the Ingress IXP2400. This mapping reflects the
system defaults and may be changed to match the needs of a specific application. The allocation of
microengines is done to optimize the performance of this specific application and may be changed
for other applications.

Table 4-1. Performance Characterization for the ATM Pipeline

OC-48 line rate assuming 3% SONET overhead 2.408 Gigabits/sec

ATM cell size 53

Cell Throughput per second 5.67 million cells/sec = (2.408/(53*8)) * (10**9)

Packet Throughput for min packets assuming LLCSNAP
encapsulation—2 cells per packet 2.85 million packets/sec = 5.67/2

IXP2400 clock frequency 600 MHZ

Inter-cell arrival time 600/5.67 = 105 cycles

Compute cycles per cell for RX/TX blocks 105 cycles

Latency per cell for RX/TX blocks per microengine 105*8

Inter-packet arrival time for min packets 600/2.85 = 210 cycles

Compute cycles per packet for a context pipe stage 210 cycles

Latency per packet for a context pipe stage 210 * 8

Compute cycles per packet for a functional pipeline of n
microengines 210*n

Latency per packet for a functional pipeline of n
microengines 210*8*n

Table 4-2. System Resources Mapped for the Ingress IXP2400

Microblock ME # Communication Mechanism with
previous stage

AAL-5 RX ME0, ME1 Auto-push status from MSF

IPv4 Forwarder + LLCSNAP
Decapsulation/Classify ME2, M5, M6 Scratch ring

Queue Manager ME3 Scratch ring

CSIX Scheduler ME4 Next neighbor + Scratch ring

CSIX TX ME7 Scratch ring

Software Building Blocks Applications Design Guide 59

OC-48 ATM IPv4 Forwarding Application

Table 4-3 shows the SRAM and DRAM utilized for this application. These values are defined in a
system header file dl_system.h and may be changed as needed.

Table 4-3. SRAM and DRAM Utilization for Ingress System Resource Allocation

Item Size per entry in bytes Number of entries
Total

SRAM
used

Total
DRAM
used

Total
Scratch

used

Buffer Descriptors 32 32k (In simulation, we use
only 320 buffers) 1 MB

Buffers 2048 32k 64 MB

Queue Descriptors 16 1024 (1 per VOQ) 16k

VC Info (RXC context + statistics) 64 64k (1 per VC) 4 MB

Hash table to find RX context
from VPI/VCI/port # 1632 64k 1k 1 MB32

K

Trie Table

64 (The root Trie table
requires at least 257k to
support hi64k and hi256
tables. In addition each
node requires 64 bytes.
These nodes are added as
needed)

See note in previous
column. Assuming 256k
routes, approximately
128k nodes are needed

8MB

Route Table (Next Hop
Information) 16 Assuming 4k next hops 64k

IPv4 statistics 4 16 64

IPv4 Directed Broadcast Table 32 256 8k

Ring from RX to packet
processing (IPv4+Layer2 Decap/
Classify)

16 256 4k

IPv4 to QM ring 12

512/3 (the size of the ring
is 512 long words, but
each entry enqueued uses
3 long words. Therefore
the total number of entries
is 512/3 = 170)

2k

Scheduler to QM 4 128 512

QM to CSIX TX 8 256 512

QM Q-Array entries N/A 16

Buffer Free list Q-Array entries N/A 4

60 Software Building Blocks Applications Design Guide

OC-48 ATM IPv4 Forwarding Application

4.4 Egress System Resource Allocation

Table 4-4 shows the system resources allocated for the Egress IXP2400.

Table 4-5 shows the SRAM and DRAM utilized for this application. These values are defined in a
system header file dl_system.h and may be changed as needed.

Table 4-4. System Resources Allocated for the Egress IXP2400

Microblock ME # Communication Mechanism with
previous stage

CSIX RX ME0 Auto-push status from MSF

ATM TX1* ME5, ME6, ME7 Scratch ring

Layer-2 Encapsulation ME1 Scratch ring

Cell QM ME2 Scratch Ring

Round robin scheduler ME3 Next Neighbor

1. OC-48 configuration uses 3 ME's. For quad OC-12, only 2 ME's (ME5, ME6) are used.

Table 4-5. SRAM and DRAM Utilization for Egress System Resource Allocation

Item
Size per
entry in
bytes

Number of entries Total SRAM
used

Total DRAM
used

Total
Scratch

used

Buffer Descriptors 32
32k (In simulation
we use only 320
buffers)

1 MB

Queue Descriptors 16 64k (1 per VC) 1 MB

CSIX RX contexts 64 1024 64K

Buffers 2048 32k 64 MB

Layer-2 table with
mapping from next hop id
to VPI/VCI and VCQ

16 4k (1 per next hop) 64k

CSIX RX to Layer-2
Encap ring 12

512/3 (the size of
the ring is 512 long
words, but each
entry enqueued
uses 3 long words.
Therefore the total
number of entries is
512/3 = 170)

2k

Layer-2 Encap to QM ring 12 512/3 2k

Scheduler to QM ring 4 512 2k

QM to ATM TX 8 256 256

QM Q-Array entries N/A 15 15 15

Buffer Free list Q-Array
entries N/A 4 4 4

Software Building Blocks Applications Design Guide 61

OC-48 ATM IPv4 Forwarding Application

4.5 Interfaces Between the Various Microblocks

This section describes the interfaces between the different microblocks on the ingress and egress
processors for this application.

In most of the messages, there is a valid bit is used to prevent a value of zero from being enqueued
on the scratch ring. Zero is used to detect a case where the scratch ring is empty. So the valid bit
helps distinguish between a zero value that was actually enqueued versus a case where the ring is
empty.

4.5.1 AAL5 RX and Packet Processing Microengines

The interface between the AAL5 RX Microblock and the Packet Processing Microengines
(IPv4+L2 decap) running the layer-2 decapsulation/classify and IPv4 forwarding code is a scratch
ring. Table 4-6 describes each entry in the scratch ring—which is six words.

4.5.2 Packet Processing Microengines and Cell Queue Manager

This interface is identical to the POS application described in Section 2.6.2, “Packet Processing
Microengines and Cell Queue Manager” on page 27.

4.5.3 Cell Queue Manager and CSIX Scheduler

This interface is identical to the POS application described in Section 2.6.3, “Cell Queue Manager
and CSIX Scheduler” on page 28.

4.5.4 Cell Queue Manager and CSIX TX

This interface is identical to the POS application described in Section 2.6.4, “Cell Queue Manager
and CSIX TX” on page 28.

Table 4-6. Six-Word Scratch Ring Entry (IPv4+L2 Decap)

LW Bits Size Field Description

0 31:0 32 dl_buffer_handle Buffer Handle for the SOP Descriptor

1 32:0 32 dl_eop_buffer_handle Buffer Handle for the EOP Descriptor

2 31:16 16 buffer_size Buffer size in bytes

15:0 16 offset Offset of the start of data in the buffer in bytes

3 31:28 16 packet_size Total packet size across buffers

15:12 4 free_list_id Free list ID for buffer

11:8 4 rx_stat Receive Status Flag

7:0 8 header_type Type of header at offset bytes into the packet

4 31:16 16 input_port Input port on ingress processor

4 15:0 16 reserved Reserved

5 32:0 32 flow_id VC key (8-bit VPI, 16-bit VCI and 4-bit input
port)

62 Software Building Blocks Applications Design Guide

OC-48 ATM IPv4 Forwarding Application

4.5.5 CSIX RX and LLCSNAP Encapsulation

The CSIX RX and LLCSNAP Encapsulation interface is a scratch ring. Table 4-7 describes each
entry in the scratch ring—which is three words.

4.5.6 LLCSNAP Encap and Cell Queue Manager

The interface between the LLCSNAP Encap microblock and the Cell Queue Manager is a scratch
ring. Table 4-8 describes each entry in the scratch ring—which is three long words.

4.5.7 Cell Queue Manager and RR Scheduler for ATM

This is similar to the interface for POS and Ethernet except that the cell count for the packet is sent
to the shaper block on each enqueue, while the packet length is not required for the dequeue.
Therefore for each enqueue request to the Queue Manager, a message is sent to the scheduler
block. For dequeue requests, only transitions are sent to the scheduler. In any iteration, if there is no
enqueue request and a dequeue transition occurs, the valid bit is set to zero in the first word of the
message.Table 4-9 shows the Cell Queue Manager and scheduler for ATM.

Table 4-7. Three-Word Scratch Ring (CSIX RX and LLCSNAP Encap)

LW Bits Size Field Description

0 31:0 32 SOP Buffer Handle Buffer Handle for the SOP Descriptor

1 31:0 32 EOP Buffer Handle Buffer Handle for EOP Descriptor (may be
NULL)

2 31 1 Valid Bit Must be 1

2 30:18 13 Reserved Reserved

2 17:16 2 Port number Port Number

2 0:15 16 Queue Number Queue Number

Table 4-8. Three-Word Scratch Ring (LLCSNAP Encap and Cell QM)

LW Bits Size Field Description

0 31:0 32 SOP Buffer Handle Buffer Handle for the SOP Descriptor

1 31:0 32 EOP Buffer Handle Buffer Handle for EOP Descriptor (may
be NULL)

2 31 1 Valid Bit Must be 1

2 30:29 2 Reserved Reserved

2 28:18 11 Packet cell count Number of 48-byte cells in the entire
packet

2 17:16 2 Output port number Output port number

2 15:0 16 Queue Number Queue Number

Software Building Blocks Applications Design Guide 63

OC-48 ATM IPv4 Forwarding Application

.

4.5.8 RR Scheduler to Cell Queue Manager

The interface between the RR Scheduler and the Cell Queue Manager is a scratch ring. Table 4-10
describes each entry in the scratch ring—which is one long word.:

4.5.9 Cell Queue Manager and AAL-5 TX

The interface between the Cell Queue Manager and AAL-5 TX microblock is a scratch ring.
Table 4-11 describes each entry in the scratch ring—which is two long words.:

Table 4-9. Cell Queue Manager and RR Scheduler for ATM

LW Bits Size Field Description

0 31 1 Valid Bit The enqueue word is valid only if this bit
is set

30 1 Enqueue Transition Notification that queue has gone from
empty to non-empty

29:16 1 Reserved Reserved

28:18 11 Packet cell count Unused for POS/Ethernet

17:16 2 Output port number Output port number

15:0 16 Queue Number Queue Number that was enqueued

1 31 1 Valid Bit Must be 1

30 1 Dequeue Transition Notification that queue has gone from
non-empty to empty

29 1 Invalid Dequeue Unused for ATM

28:16 13 Packet size Unused for ATM

15:0 16 Queue Number Queue Number that was dequeued

Table 4-10. One-Word Scratch Ring Entry (TM 4.1 Scheduler to Cell Queue Manager)

LW Bits Size Field Description

0 31 1 Valid Bit Must be 1

0 30:18 13 Reserved Reserved

0 16:17 2 Output port number Output port number

0 0:15 16 Queue Number Queue Number

Table 4-11. Two-Word Scratch Ring Entry (Cell Queue Manager and AAL-5 TX)

LW Bits Size Field Description

0 31 1 Valid Bit Must be 1

0 30:30 1 Reserved Reserved

0 29:19 11 Output port number Output port number

64 Software Building Blocks Applications Design Guide

OC-48 ATM IPv4 Forwarding Application

0 18:16 3 Reserved Reserved

0 15:0 16 Queue Number Queue Number

1 31:0 32 Buffer Handle Buffer Handle currently being transmitted for
queue

Table 4-11. Two-Word Scratch Ring Entry (Cell Queue Manager and AAL-5 TX)

LW Bits Size Field Description

Software Building Blocks Applications Design Guide 65

OC-192 POS IPv4/IPv6 Forwarding/
Tunneling Application 5

This section describes the design of an IPv4/IPv6 forwarding and tunneling application using the
Intel® IXP2800 Network Processor. Two half-duplex IXP2800 processors are used to implement a
POS line card at OC-192 data rates that interfaces to a CSIX switch fabric. This section provides a
high-level design overview and lists the different software components used to build this
application. It focuses only on the fast path or microengine components of the design. The Intel
XScale® core components for this application are described in the Intel® Internet Exchange
Architecture Portability Framework Developer’s Manual.

The application described in this chapter is supported on the Intel® IXDP2800 Advanced
Development Platform.

Note: This application has been ported from the OC-48 POS IPv4 Forwarding application for the Intel®
IXP2400 Network Processor. This section describes in detail the differences between the IXP2400
application and the IXP2800 application and the methodology used to port from one processor to
the other.

5.1 Hardware Overview

Figure 5-1 illustrates an example hardware configuration for OC-192 POS line card with CSIX
fabric. The figure shows two IXP2800 processors in a typical CSIX full duplex configuration. In
this configuration, the two IXP2800 processors are identified as the ingress processor (receives
from the Media interface and transmits to the CSIX Fabric) and the egress processor (receives from
the CSIX Fabric and transmits to the Media interface).

The Ingress IXP2800 receives POS frames that carry IPv4 datagrams. The frames are assembled
into IPv4 or IPv6 packets and the Layer-2 (PPP) headers are removed. Based on the IPv4 or IPv6
header, a Longest Prefix Match (LPM) lookup is performed and the packets are segmented into
CSIX C-Frames and transmitted to the CSIX fabric. The result of the LPM lookup determines
which IXP2800 connected to the Fabric receives the packet, and which port on that IXP2800 the
packet is transmitted on.

The Egress IXP2800 receives CSIX C-Frames from the fabric and reassembles these into IPv4 or
IPv6 datagrams. The Layer-2 (PPP) headers are added and the packets are transmitted over the
appropriate port.

66 Software Building Blocks Applications Design Guide

OC-192 POS IPv4/IPv6 Forwarding/Tunneling Application

5.2 Software Overview

Figure 5-2 illustrates the microblocks needed to implement an OC-192 POS IPv4/IPv6 forwarding
and tunneling application. The design for this application is based on the guidelines specified by
the IXA Portability Framework—Intel® Internet Exchange Architecture Portability Framework
Developer’s Manual. The driver microblocks (Receive, Transmit, Scheduler and QM) run on
different microengines from the packet processing code.

Figure 5-1. Example Hardware Configuration for OC-192 POS Line Card with CSIX Fabric

POS Framer

Ingress IXP2800

Egress IXP2800

CSIX
Switch
Fabric

SPI-4 CSIX

POS Frames C Frames
PHY

Sonet

POS

IP

POS

IP

C - frame
header

IP

Cbus – CSIX
Flow control

POS Framer CSIX
Switch
Fabric

CSIX

POS Frames C Frames
PHY

Sonet

POS

IP

POS

IP

C - frame
header

IP

Cbus – CSIX
Flow control

Software Building Blocks Applications Design Guide 67

OC-192 POS IPv4/IPv6 Forwarding/Tunneling Application

5.2.1 Data Flow for the Ingress IXP2800

The data flow is essentially the same as the OC-48 POS IPv4/v6/tunneling Forwarding application
described in Chapter 2, “OC-48 POS IPv4 Forwarding Application”. This section highlights the
differences between the two applications.

5.2.1.1 Packet RX

The Packet RX microblock runs on two microengines in a context pipeline connected by a Next
Neighbor ring. The Packet RX microblock for the IXP2400 (Section 2.2.1.1, “Packet RX” on
page 25) has been extended such that as a compile time option it now runs on two microengines.

This microblock performs frame-reassembly on the mpackets coming in on the POS media
interface. It reassembles and writes the packet data to a buffer in DRAM and queues the packet
buffer handle on a ME-ME scratch ring for processing by the packet processing microengines. It
also sets up per- packet meta information (offset, size etc) which are passed on either in a
descriptor in SRAM or in the ME-ME scratch ring itself. Up to 16 virtual ports are supported and
the re-assembly context for all these ports is kept in local memory. To maintain packet sequencing,
the threads execute in strict order. The microblock is written such that it supports up to 16 virtual
ports, but one or more of these may be unused. This allows the same microblock to support
different configurations such as Quad-OC48, 16 OC-12, or a single OC-192 port.

Figure 5-2. Microblocks for an OC-192 POS IPv4/IPv6 Forwarding/Tunneling Application

CSIX
Fabric

Ingress
IXP2800

Egress
IXP2800

Packet
RX 1

CSIX
TX 1

IPv4/v6
forwarding

and
tunneling

PPP
decap/
classify

Packet
RX 2

CSIX
TX 2

Statistics

Packet
TX 2

QM
CSIX
RX 2

Packet
Scheduler

Statistics CSIX
RX 1

Packet
TX 1

CSIX Cell
Scheduler

QM

Freelist
Manager

TX
Helper

68 Software Building Blocks Applications Design Guide

OC-192 POS IPv4/IPv6 Forwarding/Tunneling Application

In this application, the packets reassembled are PPP frames containing IP datagrams. RFC 2615
defines the Packet Over SONET specification and refers to RFC 1661 (PPP) and RFC 1662 (PPP
in HDLC-like framing). PPP framing including header validation, FCS generation and
computation and byte stuffing are handled by the POS framer (IXF 18101).

Since POS packets may be up to 9k bytes, some large packets may be stored in multiple buffers
chained together as a link-list. The buffer handles for the first and last packet in the chain are
queued in the scratch ring.

From the Packet RX block, the packet is passed on to an application specific system microblock
(DL_Sink[]). This microblock checks if the packet has been marked to be dropped (IX_DROP) or
sent to the XScale Core (IX_EXCEPTION). If not, it queues the packet buffer handle and associated
packet meta data into the scratch ring for the next stage in the pipeline.

5.2.1.2 Packet Processing Microengines (PPP Decap/Classify + IPv4/IPv6
Forwarder/Tunneling)

The PPP decapsulation/classify microblock runs along with the IPv4/IPv6 forwarding/tunneling
microblocks. These microblocks are identical to the ones used for the IXP2400 POS application
described in Section 2.2.1.2, “PPP Decapsulation and Classify” on page 25, Section 2.2.1.3, “IPv4
Forwarder” on page 26, and Section 7.2.6, “IPv6/IPv4 Tunneling Microblock” on page 97.

An application specific system source microblock on each thread dequeues packet buffer handles
from the scratch ring. This source block (DL_Source[]) is a system microblock implicit in the
dispatch loop. It reads in the packet meta information—that is, the packet descriptor, and populates
the dispatch loop state. It also reads in up to 40 bytes of the packet header from DRAM into a
header cache maintained in transfer registers. Since it is important to maintain packet sequencing,
the threads in the microblock execute in strict order to dequeue from the scratch ring. This implies
that the first thread on microengine 1 dequeues the first packet, signals the next thread to perform
the dequeue and so on. From this block, the packet goes to the PPP decapsulation/classify
microblock.

The PPP decapsulation/classify microblock removes the layer-2 PPP header from the packet by
updating the offset and size fields in the packet descriptor. Based on the PPP header, it also
classifies the packet into IPv4, IPv6, PPP control packet (LCP, IPCP). If the packet is a PPP control
packet, it is marked as an exception packet to be sent to the Intel XScale® core (IX_EXCEPTION).
Otherwise the packet is sent down the microengine pipeline for further processing.

The IPv4 forwarder microblock validates the IP header per RFC 1812. If the validity checks fail,
then the packet is set up to be dropped as specified in Intel® Internet Exchange Architecture
Portability Framework Developer’s Manual. Otherwise a Longest Prefix Match (LPM) is
performed on the IPv4 header. The result is an IPv4 Next Hop ID, a fabric blade id (identifying a
unique IXP2800 on the fabric) and an output port identifying the output port on the egress
IXP2800. The Next Hop ID is passed over the CSIX fabric to an Egress IXP2800 where it is used
to look up information about the Layer-2 header to be prepended to the packet buffer. The output
port is also passed over the CSIX fabric to the egress IXP2800 and is used to transmit over the
appropriate port. All three fields are stored in the packet meta data—that is, the packet descriptor.

If the packet is an IPv6 packet encapsulated into an IPv4 packet, the IPv4 forwarder sends the
packet to the tunneling decap microblock. After removing the IPv4 header, the tunneling decap
microblock sends the packet to the IPv6 forwarder for IPv6 forwarding.

The IPv6 forwarder microblock processes an IPv6 packet in a manner similar to the IPv4
forwarder.

Software Building Blocks Applications Design Guide 69

OC-192 POS IPv4/IPv6 Forwarding/Tunneling Application

If the packet needs to be encapsulated into an IPv4 packet, the IPv6 forwarder sends the packet to
the tunneling encap microblock. After inserting an IPv4 header, the tunneling encap microblock
sends the packet to the IPv4 forwarder for IPv4 forwarding.

If no match is found, then the packet is set up to be sent up to the Intel XScale® core for further
processing as specified in the Intel® Internet Exchange Architecture Portability Framework
Developer’s Manual. Packets are also sent to the core in a number of other cases, for example,
when the packet is destined for a local interface or is to be fragmented.

Finally, the packet is passed on to an application specific system microblock (DL_QM_Sink[]).
This microblock checks if the packet is to be dropped or sent to the Intel XScale® core. If not, it
sends an enqueue request to the Statistics microengine over a scratch ring. The DL_QM_Sink[]
microblock also writes the cached packet header to DRAM and the packet meta information to
SRAM.

5.2.1.3 Statistics Microblock

This microblock runs on a single microengine. It is currently a place holder for statistics handling.
It is anticipated that when this application is extended for MPLS and DiffServ, this microblock is
used to manage per-flow statistics.

Note: The design for handling statistics will be described in future revisions of the document.

The statistics microengine interfaces to the IXP2800 CSIX Fabric Scheduler microblock via a Next
Neighbor ring passing it the packet enqueue requests received from the packet processing
microengines. It also computes the total cell count of every packet enqueued and passes it to the
scheduler. In addition, it also handles dropping of large packets that are stored in multiple buffers.

5.2.1.4 CSIX Scheduler

The CSIX scheduler runs on a single microengine and schedules c-frames into the CSIX fabric.
This microblock is significantly different from the one currently used on the IXP2400. It has been
optimized to run in 57 cycles which is the min POS packet instruction budget. Also it is placed in
the packet processing pipeline before the queue manager allowing it to keep track of enqueue and
dequeue transitions correctly and without any latency. Unlike the IXP2400 version which handles
1024 VOQs, the design used for the IXP2800 supports 256 VoQs.

The scheduling algorithm implemented is Round Robin among the ports on the fabric and
Weighted Round Robin among the queues on a port. Since this is not a QoS application and there is
only one queue per port, the Weighted Round Robin scheduling degenerates to round robin
scheduling. Other applications, e.g. IP DiffServ may use the WRR functionality. The scheduling
and transmit is done a cframe at a time.

The CSIX scheduler handles the following:

• Flow control messages from the fabric. These messages are sent by the fabric to the egress
IXP2800, which sends them on the c-bus to the ingress IXP2800. If the fabric asserts Xoff on a
particular VoQ (Virtual Output Queue), the scheduler stops scheduling for the queue.

• Packet enqueue requests from the previous microengine. It uses this information to update a
list of active queues (queues with data) and to track queue transitions (empty to non-empty and
vice-versa). A queue is scheduled only if there is data in the queue. The enqueue requests are
passed on via Next Neighbor ring to the Queue Manager.

70 Software Building Blocks Applications Design Guide

OC-192 POS IPv4/IPv6 Forwarding/Tunneling Application

• MSF Transmit State Machine. The scheduler monitors how many packet cframes are in the
pipeline and if it exceeds a certain threshold, it stops scheduling.

During each loop, the scheduler also

• Checks its list of active queues (queues with data). Picking up from where it left off in the last
iteration it finds the next queue to schedule.

• It then sends a dequeue message to the Queue Manager to dequeue the head of that queue. The
Queue Manager dequeues a cell (cframe) from the head of the queue and sends a transmit
request to the CSIX TX microblock.

5.2.1.5 Cell Based Queue Manager (Cell QM)

The Queue Manager (QM) is a driver microblock that runs on a single microengine. This
microblock is significantly different from the one currently used in the IXP2400 application. It has
been optimized to run within 57 cycles which is the instruction budget for a min POS packet at OC-
192 data rates. The key difference is that in the IXP2800 design, the scheduler keeps track of the
queue size and queue transitions. This considerably simplifies the Queue Manager which no longer
has to support this functionality.

The QM manages enqueue and dequeue operations on the transmit queues which are implemented
using the hardware SRAM link lists. It accepts enqueue requests from the scheduler via a Next
Neighbor ring. The enqueue requests are on a per-packet basis. The dequeue requests are on a per-
cell basis where a cell is a CSIX cframe.

The threads on the QM microengine execute in strict order using local inter-thread signaling.
SRAM Queue Array entries are cached in the SRAM controller and the CAM is used for managing
the tags for these. To maintain coherence among threads, folding is used.

5.2.1.6 CSIX TX

The CSIX Transmit microblock runs on two microengines in a context pipeline connected by a
Next Neighbor ring. The CSIX Transmit microblock for the IXP2400 (Section 2.2.1.6, “CSIX TX”
on page 27) has been extended so that as a compile time option it now runs on two microengines.

This microblock receives transmit messages from the queue manager via a Next Neighbor ring.
With each transmit request, the microblock moves a cframe into a TBUF, which is then transmitted
into the fabric by the MSF Transmit State Machine.

Every request has an associated packet, which is being segmented into cframes. The associated
segmentation state for the packet and the packet metadata is cached in local memory and is looked
up using the CAM. The TX microblock adds the CSIX header onto the cframe along with the
packet data. Along with the CSIX header, a Traffic Manager (TM) header is also added per cframe
carrying extra information (destination Layer-2 port id, input blade id, sequence number, next-hop
id etc.) about the packet to be passed to the Egress IXP2800. In addition, the flow id, class id, input
port and some other fields from the metadata are passed along to the Egress IXP2800 using a per-
packet header pre-pended to the start of the first c-frame of each packet.

5.2.1.7 Freelist Manager

This microblock maintains the packet buffer freelist. It replaces the linked list scheme that uses
SRAM and the Q-array hardware for maintaining a packet buffer freelist.

Software Building Blocks Applications Design Guide 71

OC-192 POS IPv4/IPv6 Forwarding/Tunneling Application

Full details of the Freelist Manager microblock are contained in the Intel® Internet Exchange
Architecture Software Building Blocks Developer’s Manual, Chapter 38, “Freelist Manager”.

5.2.2 Data Flow for the Egress IXP2800

This section describes the data flow for the Egress Intel® IXP2800 Network Processor.

5.2.2.1 CSIX RX

The CSIX Receive microblock executes on two microengines or 16 threads. The CSIX Receive
microblock for the IXP2400 (Section 2.2.2.1, “CSIX RX” on page 28) has been extended such that
as a compile time option it now runs on two microengines.

This microblock receives c-frames from a CSIX fabric and reassembles them into IP packets. Since
the packets being reassembled may be up to 9k bytes, some large packets may be stored in multiple
buffers chained together as a link-list. The buffer handles for the first and last packet in the chain
are queued in the scratch ring. The CSIX RX microblock also sets up packet meta information
(offset, size, and so on) which are passed on to the next microengine either by writing to the SRAM
packet descriptor or via the Next Neighbor ring.

5.2.2.2 Egress Packet Scheduler

The Egress scheduler schedules POS packets to be transmitted over the POS interface. This is a
packet-based scheduler as opposed to the cell—that is, c-frame based scheduler on the Ingress side.

The scheduler is a Deficit Round Robin scheduler, as described in the Intel® IXA Building Blocks:
Developer’s Manual, Chapter 20, “OC-192 DRR Egress Scheduler”. The packet scheduler is a
context pipe-stage that is implemented as a microblock that runs on 3 microengines. This
microblock includes the Class Schedule block, the Count block, and the Port Schedule block. Each
block runs on one microengine.

The packet scheduler supports up to 16 virtual ports. Since these ports may have differing
bandwidth requirements, the scheduler implements Weighted Round Robin (WRR) scheduling on
the ports. This allows us to support different configurations (16 OC-3, 4 OC-12, 1 OC-48 etc)
simply by adjusting the weights for the ports in the scheduler.

For each port, the scheduler supports up to256 queues per port. The Scheduler implements a
modified version of Deficit Round Robin (DRR) scheduling on the queues within a port.

Since there is no QoS requirement in the application, we will only use one of the classes per port.
This means there is only one queue per port and the DRR scheduling is unused in application.
However the same code can be reused in a QoS Diffserv application in which case the DRR
scheduling is applicable.

The scheduler also keeps track of the number of packets in flight (scheduled, but not transmitted)
for each port. If this number exceeds a specified limit, then it stops scheduling on that port.

Note: This scheduler is currently fully tested only in simulation mode. In a future release it will be tested
on hardware. Currently we use a simple round robin scheduler when running this application on
hardware.

72 Software Building Blocks Applications Design Guide

OC-192 POS IPv4/IPv6 Forwarding/Tunneling Application

5.2.2.3 Packet Based Queue Manager (Packet QM)

This block is almost identical to the Ingress Queue Manager except that it dequeues packets. The
SRAM Q-Array hardware is programmed in packet mode and ignores the cell count field in the
buffer handle.

5.2.2.4 TX Helper

This block acts a helper to the Packet Tx and the Packet Scheduler microblock

It gets TX requests from the Packet QM block via the Next Neighbor ring. For multi-port
applications, it sends the request to the appropriate scratch ring that is read by Packet Tx. For single
port applications such as this one, this is not required.

It updates the per-class counters in SRAM. These counters keep tracks of the number of packets
transmitted per class for the DRR Packet Scheduler. To do this, the Tx Helper block reads packet
meta data to find the class ID for each packet. Then it calculates the SRAM address of the counter,
reads the counter, increments the content, and writes back the new value.

5.2.2.5 Packet TX

The Packet Transmit microblock transmits packets over the POS media interface. It runs on two
microengines in a context pipeline connected by a Next Neighbor ring. It segments a packet into
mpackets, and moves them into TBUFS for the MSF state machine to transmit. The Packet TX
microblock supports a single OC-192 POS port.

The Packet TX microblock monitors the MSF to see if the TBUF threshold for a specific port has
been exceeded. If so it stops transmitting on that port and any requests to transmit packets on that
port are queued up in local memory. This microblock also periodically updates the scheduler with
information about how many packets have been transmitted. If the packets in flight for a particular
port (packets scheduled but not transmitted) exceed a certain limit (which depends on the
bandwidth supported by that port), then the scheduler stops scheduling any more packets for the
port.

5.3 Performance Characterization

The Intel® IXP2800 Network Processor operates at 1400 MHz. For a min POS packet of 49B, the
packet inter-arrival time at OC-192 line rate is 57 microengine cycles. In order to maintain line rate
for min packets, each stage of the pipeline cannot exceed this budget. In other words, each stage of
the pipeline needs to retire a packet every 57 cycles.

Table 5-1 summarizes the performance analysis for the POS pipeline.

Table 5-1. Performance Analysis for the POS Pipeline

OC-192c line rate assuming 3% SONET
overhead 9.62 Gigabits/sec

Min POS packet size 49 bytes (40 byte TCP/IP, 2 bytes Address and Control,
2 byte PPP header, 4 byte FCS and 1 byte flag)

Packet Throughput for min packets 24.56 million packets/sec = (9.62 / (49*8)) * (10**9)

IXP2400 clock frequency 1400 MHz

Software Building Blocks Applications Design Guide 73

OC-192 POS IPv4/IPv6 Forwarding/Tunneling Application

5.4 Ingress System Resource Allocation

Table 5-2 shows the system resources mapped for the Ingress IXP2800. This mapping reflects the
system defaults and may be changed. The allocation of microengines is done such that it optimizes
the performance of this specific application and may be changed for other applications.

The physical assignment of function to microengine is important since it not only affects when the
next neighbor registers and signaling can be utilized, but it also affects the utilization of the internal
Command bus and S-Push/Pull buses. This assignment attempts to balance the usage of the
Command bus and S-Push/Pull buses across the two clusters.

The IXP2800 supports four SRAM channels and three DRAM channel. Table 5-3 shows the
SRAM, DRAM and scratch utilized for this application. These values are defined in a system
header file dl_system.h and may be changed as needed.

Inter-packet arrival time for min packets 1400/6.14 = 57 cycles

Compute cycles per packet for a single microengine 57

Latency per packet for a single microengine 57 * 8

Compute cycles per packet for n microengines
running in parallel 57*n

Latency per packet for n microengines running in
parallel 57*8*n

Table 5-1. Performance Analysis for the POS Pipeline

OC-192c line rate assuming 3% SONET
overhead 9.62 Gigabits/sec

Table 5-2. System Resources Mapped for the Ingress IXP2800

Microblock ME # Communication Mechanism with
previous stage

Packet RX ME 1:3, 1:4 Auto-push status from MSF

IPv4 Forwarder + Layer2
decapsulation/Classify

ME 0:0, 0:1, 0:2, 0:3, 0:4, 1:5,
1:6, 1:7 Scratch ring

Statistics ME 0:5 Scratch ring

CSIX Scheduler ME 0:6 NN ring

Queue Manager ME 0:7 NN ring

CSIX TX ME 1:0, 1:1 NN ring

Freelist Manager ME 1:2 NN ring

Table 5-3. SRAM, DRAM, and Scratch Utilization for Ingress IXP2800

Item Size per entry in
bytes Number of entries

Total
SRAM
used

Total
DRAM
used

Total
Scratch

used

Buffer Descriptors 32 32k (In simulation, we
use only 320 buffers) 1 MB

Buffers 2048 32k 64 MB

Queue Descriptors 16 256 (1 per VOQ) 4K

74 Software Building Blocks Applications Design Guide

OC-192 POS IPv4/IPv6 Forwarding/Tunneling Application

5.5 Egress System Resource Allocation

Table 5-4 shows the system resources allocated for the Egress IXP2800.

CSIX TX contexts 32 256 (1 per VOQ) 8k

Trie Table

64 (The root Trie table
requires at least 257k
to support hi64k and
hi256 tables. In
addition each node
requires 64 bytes.
These nodes are
added as needed)

See note in previous
column. Assuming
256k routes,
approximately 128k
nodes are needed

8MB

Route Table (Next Hop
Information) 16 Assuming 4k next

hops 64k

Tunnel Encap (Next
Hop Information) 32 256 8KB

Tunnel Decap(Next
Hop Information) 4 128 512B

V6V4 Ingress Source
List 64 256 16KB

IPv4 statistics 4 16 64

Packet RX statistics 4 16*16 1024

IPv4 Directed
Broadcast Table 32 (local memory) 64

Ring from Packet RX
to packet processing
pipeline (IPv4+Layer2
Decap/Classify)

12 4k/3 4k

IPv4 to Statistics ring 12 2k/12 2k

QM Q-Array entries N/A 16

Buffer Free list Q-
Array entry N/A 4

Table 5-3. SRAM, DRAM, and Scratch Utilization for Ingress IXP2800 (Continued)

Item Size per entry in
bytes Number of entries

Total
SRAM
used

Total
DRAM
used

Total
Scratch

used

Table 5-4. System Resources Allocated for Egress IXP2800

Microblock ME # Communication Mechanism with
previous stage

CSIX RX ME 1:1, 1:2 Auto-push status from MSF

Statistics ME 0:0 Scratch ring

DRR Scheduler ME 0:1, 0:2, 0:3 NN ring

Queue Manager ME 0:4 NN ring

TX Helper ME 0:5 NN ring

Packet TX ME 0:6, 0:7, 1:0 NN ring

Software Building Blocks Applications Design Guide 75

OC-192 POS IPv4/IPv6 Forwarding/Tunneling Application

The mapping of networking functions on to the microengines shows that 9 microengines are used
to perform the fast path processing for this application. Additional functionality required by
customers can be mapped on to the remaining microengines.

Table 5-5 shows the SRAM, DRAM and scratch utilized for this application. These values are
defined in a system header file dl_system.h and may be changed as needed.

5.6 Interfaces Between the Various Microblocks

This section describes the interfaces between the different microblocks in the ingress and egress
processors for this application.

Table 5-5. SRAM, DRAM, and Scratch Utilization for Egress IXP2800

Item
Size per
entry in
bytes

Number of entries
Total

SRAM
used

Total
DRAM
Used

Total Scratch
used

Buffer Descriptors 32 32k (In simulation we use
only 320 buffers) 1 MB

Queue Descriptors 16 256 (16 ports x 16 classes
per port) 4k

CSIX RX
Reassembly contexts 32 1024 32k

Buffers 2048 32k 64 MB

CSIX RX to Statistics
ring 12

512/3 (the size of the ring is
512 long words, but each
entry enqueued uses 3 long
words. Therefore the total
number of entries is 512/3 =
170)

2k

QM Q-Array entries N/A 16

DRR Scheduler
Queue Structures 32 16 ports * 256 queues 131 KB

DRR Scheduler
Round Counters 4 16 ports * 4K rounds 262 KB

Buffer Free list Q-
Array entry N/A 4

76 Software Building Blocks Applications Design Guide

OC-192 POS IPv4/IPv6 Forwarding/Tunneling Application

5.6.1 Packet RX—First ME to Second ME

The interface between the first Packet RX microengine and second Packet RX microengine is a
next neighbor (NN) ring. Table 5-6 describes each entry in the NN ring—which is five long words.

5.6.2 Packet RX and Packet Processing Microengines

The interface between the Packet RX microblock and the packet processing microengines is a
scratch ring. Table 5-7 describes each entry in the scratch ring—which is three long words.

The format depends on whether the packet fits in one buffer or not. In the case of packets that span
across multiple buffers, some of the packet descriptor information is written to SRAM and the rest
to the scratch ring. In the case of packets that fit into a single buffer, all the information is packed
into the scratch ring eliminating one read/write to SRAM in the critical path. Bit 31 of LW0 (EOP
bit of the handle) is used to detect if a packet spans across multiple buffers. If this bit is set
(implying that the buffer is a SOP/EOP buffer), then the packet is contained in a single buffer.

This interface is used for packets that fit entirely in one buffer.

Table 5-6. Five-Word NN Ring Entry (Packet RX—First ME to Second ME)

LW Bits Size Field Description

0 31:0 32 dram_handle DRAM address where the m-packet should be stored

1 31:0 32 curr_buf_handle Buffer handle of the current buffer of the packet (only
valid if eop_flag is 1)

2 31:0 32 sop_buf_handle Buffer handle of the SOP buffer of the packet (only
valid if eop_flag is 1)

3 31:16 16 sop_buf_size SOP buffer size in bytes (only valid if eop_flag is 1)

15:15 1 eop_flag Bit indicating if this is the last m-packet of the packet

14:8 7 rbuf_elem RBUF element number containing the m-packet

7:0 8 byte_count Number of bytes to copy from RBUF to DRAM

4 31:16 16 input_port Input port on ingress processor (only valid if eop_flag is
1)

15:0 16 packet_size Total packet size across buffers in bytes (only valid if
eop_flag is 1)

Table 5-7. Three-Word Scratch Ring Entry —Packets fit on one Buffer

LW Bits Size Field Description

0 31:0 32 dl_buffer_handle Buffer Handle for the SOP Descriptor

1 31:16 16 input_port Input port on ingress processor

15:12 4 free_list_id Free list ID for buffer

11:8 4 rx_stat Receive Status Flag

7:0 8 header_type Type of header at offset bytes into the packet

2 31:16 16 buffer_size Buffer size in bytes

15:0 16 offset Offset of the start of data in the SOP buffer in bytes

Software Building Blocks Applications Design Guide 77

OC-192 POS IPv4/IPv6 Forwarding/Tunneling Application

This interface is used for packets that require more than one buffer.

5.6.3 Packet Processing Microengines and Statistics

Packet Processing Microengines and Statistics interface is a scratch ring. Table 5-9 describes each
entry in the scratch ring—which is three long words.

5.6.4 Statistics and CSIX Scheduler

The Statistics and CSIX Scheduler interface is a next neighbor (NN) ring. Table 5-10 describes
each entry in the NN ring—which is three long words.

Table 5-8. Three-Word Scratch Ring Entry —Packets Require more than one Buffer

LW Bits Size Field Description

0 31:0 32 dl_buffer_handle Buffer Handle for the SOP Descriptor

1 32:0 32 dl_eop_buffer_handle Buffer Handle for the EOP Descriptor

2 31:16 16 packet_size Total packet size across buffers in bytes

15:0 16 offset Offset of the start of data in the SOP buffer in bytes

Table 5-9. Three-Word Scratch Ring Entry—Packet Processing Microengines and Statistics

LW Bits Size Field Description

0 30:16 16 MOP_EOP_buf_size Size in bytes of all MOP buffers and the EOP buffer of
the packet

0 0:15 16 Queue Number Queue Number

1 31:0 32 SOP Buffer Handle Buffer Handle for the SOP Descriptor

2 31:0 32 EOP Buffer Handle Buffer Handle for EOP Descriptor (may be NULL)

Table 5-10. Three-Word NN Ring Entry (Statistics and CSIX Scheduler)

LW Bits Size Field Description

0 30:16 16 Packet cell count Sum of all buffer cell counts belonging to the packet

0 0:15 16 Queue Number Queue Number

1 31:0 32 SOP Buffer Handle Buffer Handle for the SOP Descriptor

2 31:0 32 EOP Buffer Handle Buffer Handle for EOP Descriptor (may be NULL)

78 Software Building Blocks Applications Design Guide

OC-192 POS IPv4/IPv6 Forwarding/Tunneling Application

5.6.5 CSIX Scheduler and Cell Queue Manager

The CSIX Scheduler and Cell Queue Manager interface is a next neighbor ring. Table 5-11
describes each entry in the NN ring—which is three long words.

5.6.6 Cell Queue Manager and CSIX TX

The Cell Queue Manager and CSIX TX interface is a next neighbor ring. CSIX Transmit is a two-
microengine context pipe-stage. The cell queue manager writes to the NN ring of the first CSIX TX
microengine. Table 5-12 describes each entry in the NN ring—which is two words.

5.6.7 CSIX TX—First ME to Second ME

The interface between the first CSIX TX microengine and second CSIX TX microengine is a next
neighbor ring. Table 5-13 describes each entry in the NN ring—which is eight long words.

Table 5-11. Three-Word NN Ring Entry (CSIX Scheduler and Cell Queue Manager)

LW Bits Size Field Description

0 30:16 16 Dequeue Queue # Queue number from which to dequeue. Zero implies no
dequeue

0 0:15 16 Enqueue Queue # Queue number on which to enqueue. Zero implies no
enqueue

1 31:0 32 SOP Buffer Handle Buffer Handle for the SOP Descriptor

2 31:0 32 EOP Buffer Handle Buffer Handle for EOP Descriptor (may be NULL)

Table 5-12. Two-Word NN Ring Entry (Cell Queue Manager and CSIX TX)

LW Bits Size Field Description

0 31:16 16 Reserved Reserved

0 15:0 16 Queue Number Queue Number

1 31:0 32 Buffer Handle Buffer Handle currently being transmitted for
queue

Table 5-13. Eight-Word NN Ring Entry (CSIX TX—First ME to Second ME)

LW Bits Size Field Description

0 31:0 32 Tx_request0 Same as LW0 from Cell Queue Manager to
CSIX TX

1 31:0 32 Tx_request1 Same as LW1 from Cell Queue Manager to
CSIX TX

2 31:0 32 dram_handle DRAM address where CSIX cell is stored

3 31:24 8 cell_count_remaining Number of cells remaining in the current
buffer

23:18 6 Reserved Reserved

17:17 1 MOP_EOP_flag If MOP_EOP, set to 1, else 0

16:16 1 SOP_EOP_flag If SOP and EOP, set to 0, else 1

15:0 16 payload_length Length of CSIX cell payload in bytes

Software Building Blocks Applications Design Guide 79

OC-192 POS IPv4/IPv6 Forwarding/Tunneling Application

5.6.8 CSIX TX (Second ME) and Freelist Manager

The interface between the second CSIX TX microengine and the Freelist Manager is a next
neighbor ring. Table 5-14 describes each entry in the NN ring—which is eight long words.

5.6.9 Freelist Manager and Packet Rx (First ME)

The interface between the Freelist Manager and the first Packet Rx microengine is a next neighbor
ring. Table 5-15 describes each entry in the NN ring—which is eight long words.

5.6.10 CSIX RX and Statistics

The CSIX RX and Statistics interface is a scratch ring. Table 5-16 describes each entry in the
scratch ring—which is three words

4 31:0 32 prepend_header0 LW0 of CSIX cell pre-pend header

5 31:0 32 prepend_header1 LW1 of CSIX cell pre-pend header

6 31:0 32 prepend_header2 LW2 of CSIX cell pre-pend header

7 31:0 32 prepend_header3 LW3 of CSIX cell pre-pend header

Table 5-13. Eight-Word NN Ring Entry (CSIX TX—First ME to Second ME) (Continued)

LW Bits Size Field Description

Table 5-14. One-Word NN Ring Entry

LW Bits Size Field Description

1 31:0 32 Buffer Handle Buffer Handle to be freed by the Freelist
Manager

Table 5-15. One-word NN Ring Entry

LW Bits Size Field Description

1 31:0 32 Buffer Handle Buffer Handle that is allocated by the
Freelist Manager

Table 5-16. Three-Word Scratch Ring Entry (CSIX RX and Statistics)

LW Bits Size Field Description

0 30:16 16 Packet Size Packet Size

0 15:12 4 Port Number Output Port Number

0 11:0 12 Queue Number Queue Number

1 31:0 32 SOP Buffer Handle Buffer Handle for the SOP Descriptor

2 31:0 32 EOP Buffer Handle Buffer Handle for EOP Descriptor (may
be NULL)

80 Software Building Blocks Applications Design Guide

OC-192 POS IPv4/IPv6 Forwarding/Tunneling Application

5.6.11 Statistics and Packet Scheduler

Table 5-17 shows the Statistics and Packet Scheduler interface, which is a Next Neighbor ring.

5.6.12 Packet Scheduler and Queue Manager

The interface between the Queue Manager and the Packet Scheduler is a Next Neighbor Ring.
Table 5-18 describes each entry in the NN ring—which is three long words.

5.6.13 Queue Manager and TX Helper

The interface between the Queue Manager and the TX helper is a Next Neighbor ring. Table 5-19
describes each entry in the NN ring—which is one word:

Table 5-17. Three-Word NN Ring Entry (Statistics and Packet Scheduler)

LW Bits Size Field Description

0 30:16 16 Reserved Reserved

0 15:0 16 Packet Size Packet Size

1 31:0 32 SOP Buffer Handle Buffer Handle for the SOP Descriptor

2 31:16 16 Port Number Output Port Number

2 31:0 16 Queue Number Queue Number

Table 5-18. Three-word NN Ring Entry (Queue Manager and Packet Scheduler)

LW Bits Size Field Description

0 30:16 16 Dequeue Queue # Queue number from which to dequeue.
Zero implies no dequeue

0 0:15 16 Enqueue Queue # Queue number on which to enqueue.
Zero implies no enqueue

1 31:0 32 SOP Buffer Handle Buffer Handle for SOP Descriptor

1 31:0 32 EOP Buffer Handle Buffer Handle for EOP Descriptor (may
be NULL)

Table 5-19. Two-Word NN Ring Entry (Queue Manager and Packet TX)

LW Bits Size Description

0 31:4 28 Reserved

0 3:0 4 Port number

1 31:24 8 Reserved

1 23:0 24 Pointer to SOP buffer descriptor in SRAM in long words
(Same as bits 0:23 of buffer handle)

Software Building Blocks Applications Design Guide 81

OC-192 POS IPv4/IPv6 Forwarding/Tunneling Application

5.6.14 TX Helper and Packet TX

The interface between the TX helper and the Packet Transmit is a Next Neighbor ring. Table 5-20
describes each entry in the NN ring—which is one word:0

5.6.15 Packet TX—First ME to Second ME

The interface between the first microengine and second microengine of Packet Transmit is a Next
Neighbor ring. Table 5-21 describes each entry in the NN ring—which three words.

If the m-packet is non-stop, then 3 more long words are included on the ring.

5.7 Porting from IXP2400 to IXP2800

This section describes how the POS IPv4 Forwarding application for the Intel® IXP2400 Network
Processor was ported to the Intel® IXP2800 Network Processor.

Table 5-20. One-Word NN Ring Entry (Queue Manager and Packet TX)

LW Bits Size Description

0 31:31 1 Valid bit

0 30:28 3 Reserved

0 27:24 4 Port number

0 23:0 24 Pointer to SOP buffer descriptor in SRAM in long words
(Same as bits 0:23 of buffer handle)

Table 5-21. Three-Word NN Ring Entry (Packet TX—First ME to Second ME)

LW Bits Size Description

0 31:0 32 Pointer to meta data (used to free buffer

1 31 1 Bit is clear if the m-packet is sop

30 1 Bit is clear if the m-packet is eop

29:0 29 Offset of payload to be transmitted

2 31:0 32 Payload size to be transmitted

Table 5-22. Three-Word NN Ring Entry (for Non-stop m-packet)

LW Bits Size Description

3 31:0 32 Bytes from previous buffer to be prepended to the
current buffer

4 31:0 32 Exe_stat_flag: information about various condition flags

5 31:0 32 Partially created transmit control word

82 Software Building Blocks Applications Design Guide

OC-192 POS IPv4/IPv6 Forwarding/Tunneling Application

5.7.1 IXP2400 and IXP2800 Processing Requirement Comparison

Table 5-23 shows a comparison of IXP2400 and the IPX2800 processing requirements.

As Table 5-23 shows, the IXP2800 at OC-192 data rates needs to process 4 times as many packets
as the IXP2400. The IXP2800 has 4.6 (= 1400/600 * 16/8) times the processing capability of the
IXP2400. However for a single microengine in the pipeline (e.g. the Queue Manager), the
instruction budget for a 49 byte POS min-packet for the IXP2800 is only 57 cycles compared to 97
cycles for the IXP2400. At the same time, the IXP2800 has only twice the SRAM bandwidth and
approximately three times the DRAM bandwidth of the IXP2400.

This has the following implications:

• For the same application, the IXP2400 at OC-48 data rates has almost twice as much SRAM
memory bandwidth available as the IXP2800 at OC-192 data rates. Therefore SRAM usage
must be optimized as much as possible for the IXP2800 application.

• For the same application, microblocks executing on a single microengine (e.g. the driver
blocks such QM, scheduler, etc) must be optimized to run in 57 cycles or the design of these
blocks must be modified so they can execute on multiple microengines. The packet processing
microengines on the other hand have more compute cycles running on the IXP2800 than the
IXP2400.

5.7.2 Optimizations for the IXP2800

This section describes various optimizations made to the IXP2400 application to port it to OC-192
data rates on the IXP2800.

Table 5-23. Comparison of IXP2400 and the IPX2800 Processing Requirements

Item IXP2400 IXP2800

Clock Frequency 600 MHz 1400 MHz

SRAM Frequency 200 MHz 200 MHz

SRAM Channels 2 4

SRAM Read bandwidth 1600 MB/s = 200 * 2 * 4 3200 MB/s = 200 * 4 * 4

SRAM Write bandwidth 1600 MB/s 3200 MB/s

DRAM frequency 150 MHz DDR 1066 MHz RDRAM (IXP2800 drives at 1018.18)

DRAM channels 1 (4 banks) 3 (4 banks per channel)

DRAM Read/Write bandwidth 2500 MB/s 6109 MB/s = 1018 * 3 * 2

DRAM efficiency 60% 72%

Effective DRAM bandwidth 1500 MB/s 4423 MB/s = 72% * 6109

Number of microengines 8 16

Data rate OC-48 (6.12 mpps) OC-192 (24.5 mpps)

Instruction budget per
microengine per 49 byte POS
min packet

97 = 600/6.12 57 = 1400/24.5

Software Building Blocks Applications Design Guide 83

OC-192 POS IPv4/IPv6 Forwarding/Tunneling Application

5.7.2.1 Optimizing SRAM Memory Bandwidth Usage

A major part of the optimization effort involved moving data structures across the SRAM channels
to achieve better and more uniform distribution of SRAM bandwidth usage per channel.

Table 5-24 compares the location of data structures between the IXP2400 and IXP2800
applications.

Also the IPv4 Next Hop data structure was compressed from four long words to two long words.
The compressed structure is described in the Intel® Internet Exchange Architecture Software
Building Blocks Developer’s Manual, Section 24.6.3, “Next Hop Information” on page 405.

5.7.2.2 Splitting the Packet Descriptor Across Channels

At OC-192 data rates, the channel used for queuing is completely utilized by the Q-Array.
Therefore the per-packet descriptor—that is, metadata was split across channel 0 and 3. The first
word (LW0) is used as a next pointer by the Q-Array hardware for maintaining the link list. This
word is kept in channel 0. The remaining fields are moved to channel 3. This change is hidden from
the microblocks via the dl_meta_xxx() macros.

5.7.2.3 Splitting the RX/TX Driver Blocks to Run on Multiple Microengines

To meet the 57 cycle budget for OC-192 POS, the RX and TX blocks for POS and CSIX were
modified to run on multiple microengines. In the case of Packet RX, CSIX TX and Packet TX, the
two microengines run as a context pipeline connected by a Next Neighbor ring. In the case of CSIX
RX, the two microengines run in parallel executing the same code.

Currently these blocks all support a TWO_ME compile time option that may be used to run them
on two microengines and achieve which may be used to run them on two microengines and achieve
OC-192 line rates for min POS packets.

5.7.2.4 Moving Data Structures to Local Memory

As yet another memory usage optimization, the Directed Broadcast table used in IPv4 may be
moved to local memory and updated only periodically.

Table 5-24. Data Structure Location Comparison of the IXP2400 and IXP2800 Applications

Data IXP2400 SRAM channel IXP2800 SRAM channel

Buffer metadata LW0 0 0

Buffer metadata LW1-7 0 3

Queue descriptors 0 0

Packet RX counters 1 1

Next hop table 0 2

Trie table 1 1

Directed Broadcast table 1 2

Control block information 1 In scratch memory

IPv4 counters 1 In scratch memory

CSIX TX contexts 0 0

84 Software Building Blocks Applications Design Guide

OC-192 POS IPv4/IPv6 Forwarding/Tunneling Application

Note: Future release will be implemented to support this.

5.7.2.5 Optimizing the Packet Buffer Freelist

One optimization to improve the Q-Array performance is to use a Next Neighbor ring between the
TX and RX microengines for allocating and freeing buffers. The general idea is to populate this
ring with 128 buffer handles initially. When the Receive microengine needs a buffer, it first
attempts to allocate it from the Next Neighbor ring. If the ring is empty, it allocates it from the Q-
Array buffer free list. Similarly when the transmit code needs to free a buffer handle, it first
attempts to write it to the Next Neighbor ring. If the ring is full, then it frees to the Q-Array free
list.

5.7.2.6 Using NN Ring Instead of Scratch Ring for Communication

Throughout the design, an effort has been made to use Next Neighbor rings where possible to
minimize use of scratch bandwidth.

5.7.2.7 New Design for the Scheduler and Queue Manager

The design for the scheduler and queue manager blocks had to be modified for the IXP2800. This
change was driven by:

• The need to fit these blocks into 57 cycles

• The need to avoid invalid dequeues (dequeue requests to queues with no data). This is critical
to meet line rate.

The new design essentially places the scheduler after the packet processing microengines in-line
and before the Queue Manager. It receives the enqueue requests from the packet processing
microengines and generates the dequeue requests. This allows it to keep track of the number of
entries in a queue thereby avoiding invalid dequeues. To keep track of which queues have data, the
scheduler uses a link list of active queues in local memory. This is more efficient (requires less
instructions) than the bit-vectors used for the IXP2400 design. It however can support fewer
queues than the bit-vector based design.

The Queue Manager is now very much simplified since:

• It no longer keeps track of queue count and queue transitions and does not need to send any
transition messages to the scheduler.

• It reads all enqueue and dequeue requests from a Next Neighbor ring. Therefore the code no
longer requires multiple phases.

Software Building Blocks Applications Design Guide 85

OC-192 POS IPv4 MPLS Application 6

This section describes the design of an IPv4 MPLS Forwarding application using the Intel®
IXP2800 Network Processor. Two half-duplex IXP2800 processors are used to implement a POS
line card at OC-192 data rates that interfaces to a CSIX switch fabric. This section provides a high-
level design overview and lists the different software components used to build this application. It
focuses only on the fast path or microengine components of the design. The Intel XScale® core
components for this application are described in Intel® Internet Exchange Architecture Portability
Framework Developer’s Manual.

The application described in this chapter is supported on the Intel® IXDP2800 Advanced
Development Platform.

This application is modified from the OC-192 POS IPv4/IPv6 application with the IPv6 block
being removed and the MPLS microblocks being added. Since the changes occur in the Ingress
side, this section describes the microblocks in the Ingress side only. Details of the microblocks in
the Egress side (which are exactly the same for both applications) can be found in the OC-192 POS
IPv4/IPv6 application.

6.1 Hardware Overview

Figure 6-1 illustrates an example hardware configuration for OC-192 POS line card with CSIX
fabric. The figure shows two IXP2800 processors in a typical CSIX full duplex configuration. In
this configuration, the two IXP2800 processors are identified as the ingress processor (receives
from the Media interface and transmits to the CSIX Fabric) and the egress processor (receives from
the CSIX Fabric and transmits to the Media interface).

The Ingress IXP2800 receives POS frames that carry IPv4 or MPLS datagrams. The frames are
assembled into IPv4 or MPLS packets and the Layer-2 (PPP) headers are removed after being
classified. If it is IPv4 packet, a Longest Prefix Match (LPM) lookup is performed based on IPv4
header. If it is MPLS packet, an Incoming Label Map (ILM) lookup is performed based on MPLS
labels. Packets are then segmented into CSIX C-Frames and transmitted to the CSIX fabric. The
result of the LPM/ILM lookup determines which IXP2800 connected to the fabric receives the
packet, and which port on that IXP2800 the packet is transmitted on.

The Egress IXP2800 receives CSIX C-Frames from the fabric and reassembles these into IPv4 or
MPLS datagrams. The Layer-2 (PPP) headers are added and the packets are transmitted over the
appropriate port.

86 Software Building Blocks Applications Design Guide

OC-192 POS IPv4 MPLS Application

6.2 Software Overview

Figure 6-2 illustrates the microblocks needed to implement an OC-192 POS IPv4 MPLS
Forwarding application. The design for this application is based on the guidelines specified by the
IXA Portability Framework in the Intel® Internet Exchange Architecture Portability Framework
Developer’s Manual. The driver microblocks (Receive, Transmit, Scheduler, QM, Statistics and
FreeListManager) run on different microengines from the packet processing code.

Figure 6-1. Example Hardware Configuration for OC-192 POS Line Card with CSIX Fabric

POS Framer

Ingress IXP2800

Egress IXP2800

CSIX
Switch
Fabric

SPI-4 CSIX

POS Frames C Frames
PHY

Sonet

POS

IP

POS

IP

C - frame
header

IP

Cbus – CSIX
Flow control

POS Framer CSIX
Switch
Fabric

CSIX

POS Frames C Frames
PHY

Sonet

POS

IP

POS

IP

C - frame
header

IP

Cbus – CSIX
Flow control

Software Building Blocks Applications Design Guide 87

OC-192 POS IPv4 MPLS Application

6.2.1 Data Flow for the Ingress

6.2.1.1 Packet RX

The Packet RX microblock runs on two microengines in a context pipeline connected by a Next
Neighbor ring. The Packet RX microblock for the IXP2400 (Section 2.2.1.1, “Packet RX” on
page 25) has been extended such that as a compile time option it now runs on two microengines.

This microblock performs frame-reassembly on the mpackets coming in on the POS media
interface. It reassembles and writes the packet data to a buffer in DRAM and queues the packet
buffer handle on a ME-ME scratch ring for processing by the packet processing microengines. It
also sets up per- packet meta information (offset, size etc) which are passed on either in a
descriptor in SRAM or in the ME-ME scratch ring itself. Up to 16 virtual ports are supported and
the re-assembly context for all these ports is kept in local memory. To maintain packet sequencing,
the threads execute in strict order. The microblock is written such that it supports up to 16 virtual
ports, but one or more of these may be unused. This allows the same microblock to support
different configurations such as Quad OC-48, 16 OC-12 or a single OC-192 port.

Figure 6-2. Microblocks for an OC-192 POS IPv4 MPLS Forwarding Application

CSIX
Fabric

Ingress
IXP2800

Egress
IXP2800

Packet
RX 1

CSIX
TX 1

PPP
decap/

classify

Packet
RX 2

CSIX
TX 2

Statistics

Packet
TX 3

QM CSIX RXPacket
Scheduler

Statistics
CSIX RX

Packet
TX 2

CSIX Cell
Scheduler

QM
IPv4

Forwarder
MPLS
ILM

MPLS
FTN

Freelist
Manager

Packet
TX 1

88 Software Building Blocks Applications Design Guide

OC-192 POS IPv4 MPLS Application

In this application, the packets reassembled are PPP frames containing IP datagrams. RFC 2615
defines the Packet Over SONET specification and refers to RFC 1661 (PPP) and RFC 1662 (PPP
in HDLC-like framing). PPP framing including header validation, FCS generation and
computation and byte stuffing are handled by the POS framer (IXF 18101).

Since POS packets may be up to 9k bytes, some large packets may be stored in multiple buffers
chained together as a link-list. The buffer handles for the first and last packet in the chain are
queued in the scratch ring.

From the Packet RX block, the packet is passed on to an application specific system microblock
(DL_Sink[]). This microblock checks if the packet has been marked to be dropped (IX_DROP) or
sent to the Intel XScale® core (IX_EXCEPTION). If not, it queues the packet buffer handle and
associated packet meta data into the scratch ring for the next stage in the pipeline.

6.2.1.2 Packet Processing Microengines (PPP Decap/Classify + MPLS ILM +
IPv4 Forwarder + MPLS FTN)

The PPP decapsulation/classify microblock runs along with the IPv4 and MPLS microblocks on 8
microengines or 64 threads. These microblocks (except MPLS blocks) are identical to the ones
used for the IXP2400 POS application described in Section 2.2.1.2, “PPP Decapsulation and
Classify” on page 25 and Section 2.2.1.3, “IPv4 Forwarder” on page 26.

An application specific system source microblock on each thread dequeues packet buffer handles
from the scratch ring. This source block (DL_Source[]) is a system microblock implicit in the
dispatch loop. It reads in the packet meta information (the packet descriptor) and populates the
dispatch loop state. It also reads in 24 bytes of the packet header from DRAM into transfer registers
and then caches them in local memory. Since it is important to maintain packet sequencing, the
threads in the microblock execute in strict order to dequeue from the scratch ring. This implies that
the first thread on microengine 1 dequeues the first packet, signals the next thread to perform the
dequeue and so on. From this block, the packet goes to the PPP decapsulation/classify microblock.

The PPP decapsulation/classify microblock removes the layer-2 PPP header from the packet by
updating the offset and size fields in the packet descriptor. Based on the PPP header, it also
classifies the packet into IPv4, IPv6, MPLS, or PPP control packet (LCP, IPCP). If the packet is a
PPP control packet, it is marked as an exception packet to be sent to the Intel XScale® core
(IX_EXCEPTION). Otherwise the packet is sent down the microengine pipeline for further
processing. In this application, the dispatch loop silently drops packets classified as IPv6.

If the packet is an MPLS packet, the MPLS ILM (Incoming Label Map) forwarder microblock
forwards the packet based on the MPLS labels (per RFC 3031, 3032). First the top MPLS label is
checked against reserved values. Then it is mapped to an entry in the ILM NHLFE table (Next Hop
Label Forwarding Entry) where information as to how the label is processed and how the packet is
forwarded is obtained. This microblock handles LSR and Egress LER cases (SWAP, POP,
POP_FORWARD and SWAP_PUSH operations). The result of ILM is a Next Hop ID, a fabric
blade id, and an output port which are all stored in the packet metadata for later use by the egress
side. The MPLS ILM forwarder microblock supports two label space modes defined by the
following compilation switches:

• PER_PLATFORM_LABEL_SPACE (set by default): label ranges (min, max) and table base
offset for the whole system are configured at initialization time.

• PER_INTERFACE_LABEL_SPACE: label ranges (min, max) and table base offset are
configured at initialization time on a per-interface basis.

Software Building Blocks Applications Design Guide 89

OC-192 POS IPv4 MPLS Application

The MPLS ILM forwarder microblock reads label space values from SRAM and stores them in
local memory at initialization time.

The IPv4 forwarder microblock validates the IP header per RFC 1812. If the validity checks fail,
then the packet is set up to be dropped as specified in Intel® Internet Exchange Architecture
Portability Framework Developer’s Manual. Otherwise a Longest Prefix Match (LPM) is
performed on the IPv4 header. The result is an IPv4 Next Hop ID, a fabric blade id (identifying a
unique IXP2800 on the fabric) and an output port identifying the output port on the egress
IXP2800. The Next Hop ID is passed over the CSIX fabric to an Egress IXP2800 where it is used
to look up information about the Layer-2 header to be prepended to the packet buffer. The output
port is also passed over the CSIX fabric to the egress IXP2800 and is used to transmit over the
appropriate port. All three fields are stored in the packet meta data—that is, the packet descriptor. If
no match is found, then the packet is set up to be sent up to the Intel XScale® core for further
processing as specified in Intel® Internet Exchange Architecture Portability Framework
Developer’s Manual. Packets are also sent to the core in a number of other cases, for example when
the packet is destined for a local interface or is to be fragmented.

From the IPv4 forwarder block, the packet is passed on to an application specific system
microblock (DL_QM_Sink[]) if the Next Hop ID type indicates IPv4 type or to the MPLS FTN
microblock if the Next Hop ID type indicates MPLS type.

The MPLS FTN (FEC-To-NHLFE) microblock maps the FEC (Forwarding Equivalence Classes)
to an entry in the FTN NHLFE (Next Hop Label Forwarding Entry) table. The Next Hop ID
generated from the IPv4 forward block is used as an FEC. This block handles Ingress LER cases
(PUSH operation). The packet is encapsulated with up to 4 MPLS labels and the packet header is
changed to MPLS type. Values of next hop id, fabric blade id and output port are obtained from the
entry and stored in the packet metadata. The packet is passed on to an application specific system
microblock (DL_QM_Sink[]).

This application specific system microblock checks if the packet is to be dropped or sent to the
Intel XScale® core. If not, it sends an enqueue request to the Statistics microengine over a scratch
ring. The DL_QM_Sink[] microblock also writes the cached packet header to DRAM and the
packet meta information to SRAM.

6.2.1.3 Statistics Microblock

This microblock runs on a single microengine. It is currently a place holder for statistics handling.
It is anticipated that this microblock is used to manage per-flow statistics for future MPLS and
DiffServ applications.

Note: The design for handling statistics will be described in future revisions of the document.

The statistics microengine interfaces to the IXP2800 CSIX Fabric Scheduler microblock via a Next
Neighbor ring, passing it the packet enqueue requests received from the packet processing
microengines. It also computes the total cell count of every packet enqueued and passes it to the
scheduler. In addition, it also handles dropping of large packets that are stored in multiple buffers.

6.2.1.4 CSIX Scheduler

The CSIX scheduler runs on a single microengine and schedules c-frames into the CSIX fabric.
This microblock is significantly different from the one currently used on the IXP2400. It has been
optimized to run in 57 cycles which is the min POS packet instruction budget. Also it is placed in

90 Software Building Blocks Applications Design Guide

OC-192 POS IPv4 MPLS Application

the packet processing pipeline before the queue manager, allowing it to keep track of enqueue and
dequeue transitions correctly and without any latency. Unlike the IXP2400 version which handles
1024 VoQs (Virtual Output Queues), the design used for the IXP2800 supports 256 VoQs.

The scheduling algorithm implemented is Round Robin among the ports on the fabric and
Weighted Round Robin among the queues on a port. Since this is not a QoS application and there is
only one queue per port, the Weighted Round Robin scheduling degenerates to round robin
scheduling. Other applications, for example, IP DiffServ may use the WRR functionality. The
scheduling and transmit is done a cframe at a time.

The CSIX scheduler handles the following:

• Flow control messages from the fabric. These messages are sent by the fabric to the egress
IXP2800, which sends them on the c-bus to the ingress IXP2800. If the fabric asserts Xoff on a
particular VoQ (Virtual Output Queue), the scheduler stops scheduling for the queue.

• Packet enqueue requests from the previous microengine. It uses this information to update a
list of active queues (queues with data) and to track queue transitions (empty to non-empty and
vice-versa). A queue is scheduled only if there is data in the queue. The enqueue requests are
passed on via Next Neighbor ring to the Queue Manager.

• MSF Transmit State Machine. The scheduler monitors how many packet cframes are in the
pipeline and if it exceeds a certain threshold, it stops scheduling.

During each loop, the scheduler also:

• Checks its list of active queues (queues with data). Picking up from where it left off in the last
iteration, it finds the next queue to schedule.

• It then sends a dequeue message to the Queue Manager to dequeue the head of that queue. The
Queue Manager dequeues a cell (cframe) from the head of the queue and sends a transmit
request to the CSIX TX microblock.

6.2.1.5 Cell Based Queue Manager (Cell QM)

The Queue Manager (QM) is a driver microblock that runs on a single microengine. This
microblock is significantly different from the one currently used in the IXP2400 application. It has
been optimized to run within 57 cycles which is the instruction budget for a min POS packet at OC-
192 data rates. The key difference is that in the IXP2800 design, the scheduler keeps track of the
queue size and queue transitions. This considerably simplifies the Queue Manager which no longer
has to support this functionality.

The QM manages enqueue and dequeue operations on the transmit queues which are implemented
using the hardware SRAM link lists. It accepts enqueue requests from the scheduler via a Next
Neighbor ring. The enqueue requests are on a per-packet basis. The dequeue requests come are on
a per-cell basis where a cell is a CSIX cframe.

The threads on the QM microengine execute in strict order using local inter-thread signaling.
SRAM Queue Array entries are cached in the SRAM controller and the CAM is used for managing
the tags for these. To maintain coherence among threads, folding is used.

6.2.1.6 CSIX TX

The CSIX Transmit microblock runs on two microengines in a context pipeline connected by a
Next Neighbor ring. The CSIX Transmit microblock for the IXP2400 (Section 2.2.1.6, “CSIX TX”
on page 27) has been extended so that as a compile time option it now runs on two microengines.

Software Building Blocks Applications Design Guide 91

OC-192 POS IPv4 MPLS Application

This microblock receives transmit messages from the queue manager via a Next Neighbor ring.
With each transmit request, the microblock moves a cframe into a TBUF, which is then transmitted
into the fabric by the MSF Transmit State Machine.

Every request has an associated packet, which is being segmented into cframes. The associated
segmentation state for the packet and the packet metadata is cached in local memory and is looked
up using the CAM. The TX microblock adds the CSIX header onto the cframe along with the
packet data. Along with the CSIX header, a Traffic Manager (TM) header is also added per cframe
carrying extra information (destination Layer-2 port id, input blade id, sequence number, next-hop
id etc.) about the packet to be passed to the Egress IXP2800. In addition, the flow id, class id, input
port and some other fields from the metadata are passed along to the Egress IXP2800 using a per-
packet header pre-pended to the start of the first c-frame of each packet.

6.2.1.7 Free List Manager

The Free List Manager service microblock runs on a single microengine. Refer to Section 5.2.1.7,
“Freelist Manager” on page 70 inChapter 5, “OC-192 POS IPv4/IPv6 Forwarding/Tunneling
Application” for details of this microblock.

6.2.2 Data Flow for the Egress

For details, refer to Section 5.2.2, “Data Flow for the Egress IXP2800” on page 71 in Chapter 5,
“OC-192 POS IPv4/IPv6 Forwarding/Tunneling Application.”

6.3 Performance Characterization

The Intel® IXP2800 Network Processor operates at 1400 MHz. For a min POS packet of 49B, the
packet inter-arrival time at OC-192 line rate is 57 ME cycles. In order to maintain line rate for min
packets, each stage of the pipeline cannot exceed this budget. In other words, each stage of the
pipeline needs to retire a packet every 57 cycles.

Table 6-1 summarizes the performance analysis for the POS pipeline.

Table 6-1. Performance Analysis for the POS Pipeline

OC-192c line rate assuming 3% SONET
overhead 9.62 Gigabits/sec

Min POS packet size 49 bytes (40 byte TCP/IP, 2 bytes Address and Control,
2 byte PPP header, 4 byte FCS and 1 byte flag)

Packet Throughput for min packets 24.56 million packets/sec = (9.62 / (49*8)) * (10**9)

IXP2800 clock frequency 1400 MHZ

Inter-packet arrival time for min packets 1400/6.14 = 57 cycles

Compute cycles per packet for a single microengine 57

Latency per packet for a single microengine 57 * 8

Compute cycles per packet for n microengines
running in parallel 57*n

Latency per packet for n microengines running in
parallel 57*8*n

92 Software Building Blocks Applications Design Guide

OC-192 POS IPv4 MPLS Application

6.4 Ingress System Resource Allocation

Table 6-2 shows the system resources mapped for the Ingress IXP2800. This mapping reflects the
system defaults and may be changed. The allocation of microengines is done such that it optimizes
the performance of this specific application and may be changed for other applications.

The physical assignment of function to microengine is important since it not only affects when the
next neighbor registers and signaling can be utilized, but it also affects the utilization of the internal
Command bus and S-Push/Pull buses. This assignment attempts to balance the usage of the
Command bus and S-Push/Pull buses across the two clusters.

The IXP2800 supports four SRAM channels and three DRAM channels. Table 6-3 shows the
SRAM, DRAM and scratch utilized for this application. These values are defined in a system
header file dl_system.h and may be changed as needed.

Table 6-2. System Resources Mapped for the Ingress IXP2800

Microblock ME # Communication Mechanism with
previous stage

Packet RX ME 1:3, 1:4 Auto-push status from MSF

Layer2 decapsulation/Classify +
MPLS ILM + IPv4 Forwarder +
MPLS FTN

ME 0:0, 0:1, 0:2, 0:3, 0:4, 1:5,
1:6, 1:7 Scratch ring

Statistics ME 0:5 Scratch ring

CSIX Scheduler ME 0:6 NN ring

Queue Manager ME 0:7 NN ring

CSIX TX ME 1:0, 1:1 NN ring

FreeListManager ME 1:2 NN ring

Headroom 0 microengines

Table 6-3. SRAM, DRAM, and Scratch Utilization for Ingress IXP2800

Item Size per entry in
bytes Number of entries

Total
SRAM
used

Total
DRAM
used

Total
Scratch

used

Buffer Descriptors 32 32k (In simulation, we
use only 320 buffers) 1 MB

Buffers 2048 32k 64 MB

Queue Descriptors 16 256 (1 per VOQ) 4K

CSIX TX contexts 32 256 (1 per VOQ) 8k

Trie Table

64 (The root Trie table
requires at least 257k
to support hi64k and
hi256 tables. In
addition each node
requires 64 bytes.
These nodes are
added as needed)

See note in previous
column. Assuming
256k routes,
approximately 128k
nodes are needed

8MB

Route Table (Next Hop
Information) 8 Assuming 4k next

hops 32k

IPv4 statistics 4 16 64

Software Building Blocks Applications Design Guide 93

OC-192 POS IPv4 MPLS Application

6.5 Egress System Resource Allocation

Please refer to Section 5.5, “Egress System Resource Allocation” on page 74 in Chapter 5, “OC-
192 POS IPv4/IPv6 Forwarding/Tunneling Application.”

6.6 Interfaces Between the Various Microblocks

Please refer to Section 5.6, “Interfaces Between the Various Microblocks” on page 75 in Chapter 5,
“OC-192 POS IPv4/IPv6 Forwarding/Tunneling Application.”

6.7 Application Optimizations

This section points out optimizations made to the Ingress side of the MPLS application to achieve
OC-192 data rates on IXP2800 besides those already mentioned in Chapter 5, “OC-192 POS IPv4/
IPv6 Forwarding/Tunneling Application.”

MPLS FTN NHLFE 32 64k 2M

MPLS ILM NHLFE 32 64k 2M

MPLS per-context
header caching 64 (local memory) 8

Packet RX statistics 4 16*16 1024

IPv4 Directed
Broadcast Table 32 (local memory) 64

Ring from Packet RX
to packet processing
pipeline (IPv4+Layer2
Decap/Classify)

12 4k/3 4k

IPv4 to Statistics ring 12 2k/12 2k

QM Q-Array entries N/A 16

Buffer Free list Q-Array
entry N/A 4

Table 6-3. SRAM, DRAM, and Scratch Utilization for Ingress IXP2800 (Continued)

Item Size per entry in
bytes Number of entries

Total
SRAM
used

Total
DRAM
used

Total
Scratch

used

94 Software Building Blocks Applications Design Guide

OC-192 POS IPv4 MPLS Application

6.7.0.1 Optimizing SRAM Memory Bandwidth Usage

A major part of the optimization effort involved moving data structures across the SRAM channels
to achieve better and more uniform distribution of SRAM bandwidth usage per channel.

Also the IPv4 Next Hop data structure was compressed from four long words to two long words.
The compressed structure is described in the Intel® Internet Exchange Architecture Software
Building Blocks Developer’s Manual Section 24.6.3, “Next Hop Information” on page 405.

6.7.0.2 Moving Data Structures to Local Memory

As yet another memory usage optimization, the Directed Broadcast table used in IPv4 is moved to
local memory and updated only periodically.

6.7.0.3 Caching Packet Header in Local Memory

Each thread of a microengine is allocated up to 16 local memory longwords (LW) to use for packet
header caching. As packets can grow and shrink in sizes when entering and exiting MPLS domain,
the packet headers are cached in the 5th LW of the memory cache. This allows up to 4 MPLS labels
to be encapsulated if the incoming packet is IPv4 packet.

When all MPLS labels are removed exposing IPv4 packet, the packet header is re-aligned to the 5th
LW in the memory cache. The cache with exposed IPv4 header can then be passed to IPv4 block
for further processing.

Table 6-4. Data Structure Allocations

Data IXP2800 SRAM channel

Buffer metadata LW0 0

Buffer metadata LW1-7 1

Queue descriptors 0

Packet RX counters 1

Next hop table 3

Trie table 3

MPLS ILM NHLFE 2

MPLS FTN NHLFE 2

IPv4 counters In scratch memory

CSIX TX contexts 0

Software Building Blocks Applications Design Guide 95

4Gb Ethernet IPv6/IPv4 Application 7

This chapter describes an IPv4 and IPv6 forwarding application for Ethernet implemented on two
Intel® IXP2400 Network Processors. The chapter also provides a high-level design overview and
lists the different software components used to build this application.

The application described in this chapter is supported on the Intel® IXDP2400 Advanced
Development Platform.

7.1 Software Overview

Figure 7-1 shows the software components needed to implement an IPv4 and IPv6 forwarding
application for Ethernet. All the context pipe-stages (e.g. Packet RX, Queue Manager, Scheduler
etc.) occupy an entire microengine. Each context pipe-stage is mapped to a single microblock
running on a ME with or without a dispatch loop. The functional pipeline runs on four
microengines, implements the layer-2 (Ethernet) decapsulation, the IPv4 forwarder, IPv6
forwarder, V6/V4 tunneling and translation blocks. The tunneling microblock is required when
IPv6 packets need to be tunneled over an IPv4 network. The translation block is required when an
IPv4 only host needs to communicate with an IPv6 only host or vice versa.

Figure 7-1. Software Components for IPv4/IPv6 Forwarding and IPv6/IPv4 Tunneling

B0858-01

CSIX
Fabric

Packet
RX

QM

CSIX Cell
Scheduler

CSIX
Tx

Ingress
Intel® IXP2400
Processor

QM

Packet
Scheduler

CSIX
Rx

Ethernet
Encap

Egress
Intel® IXP2400
Processor

Packet
TX

Ethernet
decap/
classify/

filter

V6/V4
Tunneling

IPv6
Forwarder

IPv4
Forwarder

V
6/

V
4

T
ra

ns
la

tio
n

96 Software Building Blocks Applications Design Guide

4Gb Ethernet IPv6/IPv4 Application

7.2 Data Flow for the Ingress IXP2400

The following sections describe the data flow on the ingress IXP2400:

7.2.1 Packet RX

This block is identical to the Section 2.2.1.1, “Packet RX” on page 25 except that it sets the header
type field in the packet meta data to Ethernet.

7.2.2 Ethernet Decapsulation/Classify/Filter

The Ethernet decapsulation/classify/filter microblock runs in a functional pipeline with the IPv4
microblock, the IPv6 microblock and the IPv6/IPv4 tunneling microblock on four microengines or
32 threads.

This microblock removes the layer-2 Ethernet header from the packet by updating the offset and
size fields in the packet metadata. It also implements MAC filtering based on the destination MAC
address in the Ethernet header. Based on this filtering, the packet may be dropped.

This microblock also classifies the packet into IPv4, IPv6, MPLS, ARP etc. If the packet is an ARP
packet, it is marked as an exception packet to be sent to the Intel XScale® core (IX_EXCEPTION).
Otherwise the packet is sent down the microengine pipeline for further processing. In this
application, the dispatch loop silently drops packets classified as MPLS.

7.2.3 V6/V4 Translation Microblock

The Translation microblock implements an IPv6-IPv4 translation mechanism. The translation
mechanisms allow IPv6 and IPv4 hosts to coexist, which allows an IPv6 host and IPv4 host to
communicate with each other. These mechanisms are designed to support the scenario/case where
an IPv6-only network may be deployed, but there is a need (OR the machines in the network) need
to gain access to the resources in an IPv4-only network. The translation microblock provided
supports the NAT-PT translation mechanism. The primary function of the translation microblock is
to change the IP headers in the relevant packets as they pass through, which to each of the
endpoints appears as if they are talking to a host with the same network layer.

The translation microblock examines the source or destination IP addresses in each packet to
determine if the addresses need translation. If an appropriate packet is identified, the microblock
extracts information from the existing IP header and converts it to the desired format. The
translation microblock also updates the packet meta-data so that the downstream microblocks can
work with the packet as if it had arrived in translated format. If a packet need not be translated the
microblock simply passes it on.

7.2.4 IPv4 Forwarder

This block is identical to the block described in Section 2.2.1.3, “IPv4 Forwarder” on page 26.

Software Building Blocks Applications Design Guide 97

4Gb Ethernet IPv6/IPv4 Application

7.2.5 IPv6 Forwarder

IPv6 is a new version of the internet protocol, designed as the successor of IPv4. IPv6 addresses are
128 bits long, which solves the “address exhaustion” problem that IPv4 is facing. Besides the
expanded addressing capabilities of IPv6, the changes from IPv4 to IPv6 include header format
simplification, improved support for extensions and options (the basic header size is now fixed,
which makes processing common-case packets really simple and fast), flow labelling capability
(provides flow labels to support “real-time” traffic) and support for authentication and privacy
capabilities.

The IPv6 forwarder microblock validates the IP header per RFC 2460. If the validity checks fail,
then the packet is set up to be dropped as specified in [IXASF]. Otherwise a Longest Prefix Match
(LPM) is performed on the IPv6 header. The result is an IPv6 next-hop ID, a fabric blade id
(identifying a unique IXP2400 on the fabric) and an output port identifying the output port on the
egress IXP2400. The next-hop ID is passed over the CSIX fabric to an Egress IXP2400 where it is
used to look up information about the Layer-2 header to be prepended to the packet buffer. The
output port is also passed over the CSIX fabric to the egress IXP2400 and is used to transmit over
the appropriate port. All three fields are stored in the packet metadata.

If no match is found, then the packet is set up to be sent up to the XScale core for further
processing as specified in [IXASF]. Packets are also sent to the core in a number of other cases, for
example when the packet is destined for a local interface or is to be fragmented.

From the IPv6 forwarder block, the packet is passed on to an application specific system
microblock (DL_QM_Sink[]). This microblock checks if the packet is to be dropped or sent to the
XScale Core. If not, it sends an enqueue request to the Queue Manager over a scratch ring. The
DL_QM_Sink[] also writes the cached packet header to DRAM and the packet meta information to
SRAM.

7.2.6 IPv6/IPv4 Tunneling Microblock

Tunneling of IPv6 packets in IPv4 packets is used in several transition mechanisms that allow the
coexistence of both IPv6 and IPv4 on a network. Tunneling supports communication between two
IPv6 “islands” connected by an IPv4 “cloud”. This scenario exists today because only some parts
of the Internet have made the transition to IPv6. The rest of the Internet is still IPv4 based. Put
simply, tunneling encapsulates IPv6 packets within IPv4 packets, which are sent over an IPv4
network. When the packet reaches the tunnel “end-point” the IPv4 header is stripped and the IPv6
packet is delivered to the destination node. The tunneling microblock performs the encapsulation
and decapsulation functionality.

The tunneling microblocks are assumed to be run as part of a packet forwarding microblock group
that includes both the IPv4 and IPv6 forwarders. After the L2 header is removed and the packet is
classified either as an IPv4 or IPv6 packet, the packet metadata is updated to point to the L3 header.
The IPv4 forwarder performs any required header validation, and performs a lookup based on the
IPv4 destination address. The lookup sets the next-hop identifier in the metadata cache. The IPv4
forwarder reads a portion of the next-hop information and determines which microblock must
execute next. If the next-hop information indicates that the destination address does not represent a
tunnel endpoint, the packet is passed on to the next stage for L2 header processing. If the next-hop
information indicates that the destination address represents a tunnel endpoint, the packet is passed
on to the V6V4-Tunnel-Decap microblock. The V6V4-Tunnel-Decap microblock validates the
source address if necessary, removes the IPv4 header and passes the IPv6 packet on to the IPv6
forwarder.

98 Software Building Blocks Applications Design Guide

4Gb Ethernet IPv6/IPv4 Application

The IPv6 forwarder performs any required header validation and performs a route lookup based on
the destination address of the packet. The lookup sets the next-hop identifier in the metadata cache.
The forwarder then reads a portion of the next-hop information to determine which microblock
must execute next. If the next-hop information indicates that the next-hop does not require a tunnel,
the packet is passed on to the L2 processing stage. If the next-hop information indicates that the
destination is reachable via a V6 over V4 tunnel, the IPv6 forwarder passes the packet to the
V6V4-Tunnel-Encap microblock. The V6V4-Tunnel-Encap microblock encapsulates the packet
with an IPv4 header and passes the packet to the IPv4 forwarder. The IPv4 forwarder then performs
a lookup and sets the next-hop identifier as described earlier. The packet if finally passed on to the
L2 processing stage.

7.2.7 Cell Based Queue Manager (Cell QM)

This block is identical to the block described in Section 2.2.1.4, “Cell Based Queue Manager (Cell
QM)” on page 26.

7.2.8 CSIX Scheduler

This block is identical to the block described in Section 2.2.1.5, “CSIX Scheduler” on page 27.

7.2.9 CSIX TX

This block is identical to the block described in Section 2.2.1.6, “CSIX TX” on page 27.

7.3 Data Flow for the Egress IXP2400

This section describes the data flow for the Egress IXP2400.

7.3.1 CSIX RX

This block is identical to the block described in Section 2.2.2.1, “CSIX RX” on page 28.

7.3.2 Ethernet Encapsulation

This block is identical to the block described in Section 3.2.2.2, “Ethernet Encapsulation” on
page 44

7.3.3 Packet Based Queue Manager (Packet QM)

This block is identical to the block described in Section 2.2.2.3, “Packet Based Queue Manager” on
page 28.

7.3.4 Egress Scheduler

This block is identical to the block described in Section 2.2.2.4, “Egress Packet WRR/DRR
Scheduler” on page 28.

Software Building Blocks Applications Design Guide 99

4Gb Ethernet IPv6/IPv4 Application

7.3.5 Packet TX

This block is identical to the block described in Section 2.2.2.5, “Packet TX” on page 29.

7.4 Dispatch Loops / Microblock Groups

There are two dispatch loops (microblock groups) on the ingress pipeline

• Dispatch Loop for the Packet Frame Reassembly Stage (Figure 7-2)

• Dispatch Loop for the IPv4 forwarder, IPv6 forwarder and V6/V4 tunneling functional
pipeline (Figure 7-3)

The QM, Scheduler and CSIX TX blocks don't use a dispatch loop (they still use the dispatch loop
macros where required).

Note that the system microblocks dl_source, dl_sink, dl_qm_sink, and so on are
application specific. They may be changed for different packet processing pipelines.

There are two dispatch loops (microblock groups) on the egress pipeline

• Dispatch Loop for the CSIX RX Reassembly stage (Figure 7-4)

• Dispatch Loop for the Ethernet encapsulation stage (Figure 7-5)

Figure 7-2. Dispatch Loop for the Packet Frame Reassembly Stage

B0849-01

Dl_Sink
Packet

Rx

Figure 7-3. Dispatch Loop for the IPv4, IPv6 and V6/V4 Tunneling Functional Pipeline

B1775

Dl_Source Dl_QM_Sink

Ethernet
Decap/

Classify/
Filter

IPv4
Forwarder

V6/V4
Translation

IPv6
Forwarder

V6/V4
Tunneling

Rx-Packet
Processing
scratch ring

Packet processing
-QM scratch ring

100 Software Building Blocks Applications Design Guide

4Gb Ethernet IPv6/IPv4 Application

7.5 Performance Analysis

The IXP2400 operates at 600 MHz. For a min Ethernet packet of 78B, the packet inter-arrival time
at 4 Gbps line rate is 117 ME cycles. In order to maintain line rate for min packets, each stage of
the pipeline cannot exceed this budget. In other words, each stage of the pipeline needs to retire a
packet every 117 cycles. Table 7-1 summarizes the performance analysis for the IPv6 Ethernet
pipeline.

Figure 7-4. Dispatch Loop for CSIX Reassembly Stage

B0851-01

Dl_Sink
CSIX

Rx

Figure 7-5. Dispatch Loop for Ethernet Encapsulation Stage

B0852--01

Ethernet
Encap Dl_QM_SinkDl_Source

Table 7-1. Performance Analysis for the IPv6 Ethernet Pipeline

Line rate for 4 Gig ports 4 Gigabits/sec

Min Ethernet packet size 78 bytes (+ 20 byte inter packet gap)

Packet Throughput for min packets 5.10 million packets/sec = (4 / (98*8)) * (10**9)

IXP2400 clock frequency 600 MHZ

Inter-packet arrival time for min packets 600/5.10 = 117.64 cycles

Compute cycles per packet for a context pipe stage 117

Latency per packet for a context pipe stage 117 * 8

Compute cycles per packet for a functional pipeline of n
microengines 117*n

Latency per packet for a functional pipeline of n microengines 117*8*n

Software Building Blocks Applications Design Guide 101

DiffServ for POS Application 8

This chapter describes a DiffServ application for Packet over SONET (POS) implemented on two
half-duplex Intel® IXP2400 Network Processors connected to a CSIX switch fabric. It provides a
high-level design overview and lists the different software components used to build the
application.

The application described in this chapter is supported on the Intel® IXDP2400 Advanced
Development Platform.

8.1 Hardware Overview

This release of DiffServ blocks runs on the Intel® IXDP2400 Advanced Development Platform.
The platform is comprised of a chassis with the following cards:

• Intel® IXDP2400 Advanced Development Platform Base Card: A 9U baseboard with dual
IXP2400 Network Processors and a switch fabric connector with loop back

• Intel® IXD2448 Single OC-48 I/O Option Card: A PoS OC-48 modular media card for the
base card

• A passive Switch Fabric loopback card for the base card

In future releases, the platform can be extended with TCAM chips to speed up classification.

As illustrated in Figure 8-1, the development platform contains two network processors, dedicated
to ingress and egress packet processing, respectively.

The ingress processor receives data from the OC-48 interface. It reads POS frames, assembles
them into packets and removes L2 headers. Next, it classifies packets, polices them and makes a
forwarding decision. Finally, the ingress processor transmits packets, along with results of the
ingress classification, towards the CSIX fabric. Prior to transmission, packets are segmented into
CSIX frames. In this release, the fabric is reduced to a passive loopback between the ingress to
egress network processors.

The egress processor reassembles CSIX frames back into IP packets, applies the required QoS
service, and transmits packets over the POS interface.

102 Software Building Blocks Applications Design Guide

DiffServ for POS Application

8.2 Software Overview

8.2.1 Ingress IXP2400 Network Processor - DiffServ/IPv4

Figure 8-2 details the software architecture of DiffServ/IPv4 blocks on the ingress processor. The
diagram shows mapping of functional blocks to microengines. The physical assignment determines
inter-microengine communications such as scratch rings or next neighbor registers. The
arrangement affects also utilization of the internal Command bus and S-Push/Pull buses.

The DiffServ blocks (shaded boxes) extend the IPv4 POS application (white boxes) described in
Chapter 2, “OC-48 POS IPv4 Forwarding Application.”

Figure 8-1. IXDP2400 Advanced Development Platform Overview

B0846-01

OC-48
Framer

Ingress
Intel® IXP2400 Processor

Egress
Intel® IXP2400 Processor

CSIX
Passive

Loopback
Cbus
(flow control)

2.5 Gbps > 4 Gbps

> 4 Gbps

DDR
Packet
MemoryQDR

Queues
& Tables

DDR
Packet
Memory

QDR
Queues
& Tables

2.5 Gbps

Base Card

S
R
A
M

S
R
A
M

D
R
A
M

S
R
A
M

S
R
A
M

D
R
A
M

Software Building Blocks Applications Design Guide 103

DiffServ for POS Application

8.2.1.1 Packet RX Microblock

The Packet RX block runs as a context pipeline on one microengine. It reassembles PPP packets
coming form the OC-48 media interface. The Packet RX microengine uses a scratch ring for
communication with next blocks. This block is not modified for a DiffServ application. All
messages posted in scratch/NN rings have the same format as described in Chapter 4, “Packet RX
Microblock.”

Figure 8-2. IPv4 and DiffServ—Ingress Blocks

B1738-01

Scratch
Ring

Stack
Driver

DiffServ Application

DiffServIIP functional pipeline (ME1, ME2, ME5, ME6)

IP
v4

 F
or

w
ar

de
r

C
or

e

CSIX
Scheduler

(ME 4)

RESOURCE MANAGER

Intel® XScale

Microengines

CSIX
Scheduler

Core

QM
Core

CSIX
TX

Core

Scratch
Ring

POS
RX

(ME 0)

POS
RX

Core

Ingress
Intel® Sausalito Processor

D
S

C
P

 c
la

ss
if.

6-
tu

pl
e

cl
as

si
f.

T
C

M
 (

m
et

er
)

D
S

C
P

 M
ar

ke
r

D
S

C
P

 c
la

ss
if.

 c
or

e

6-
tu

pl
e

cl
as

si
f.

co
re

T
C

M
 c

or
e

Scratch
Ring

Scratch
Ring

CSIX
TX

(ME 7)

Scratch
Ring

LEGEND:

Fast path New block Optional block Modified blockSlow path Configuration

QM

(ME 3)

P
P

P
 d

ec
ap

s
/ c

la
ss

ify

IP
v4

 F
or

w
ar

de
r

W
R

E
D

 C
or

e
W

R
E

D
 C

or
e

104 Software Building Blocks Applications Design Guide

DiffServ for POS Application

8.2.1.2 DiffServ/IPv4 Functional Pipeline

The DiffServ/IPv4 functional pipe executes in parallel on four microengines. The pipeline is
organized in a dispatch loop which starts with a 6-tuple classification and metering. In this way,
packets dropped by a meter do not go through IP lookup. Alternatively, the SRTCM/DSCP blocks
can be moved after the IPv4 forwarder. In such case, packets with invalid headers—for example,
TTL expired—won't get unnecessarily metered.

Both arrangements give the same performance in the worst case when all packets have valid
headers and are always marked. The ingress dispatch loop can optionally contain WRED
congestion avoidance (not shown in Table 8-2).

Note: The ingress-side WRED accommodates multi-blade environments and will not be implemented on
the IXDP2400 Advanced Development Platform.

8.2.1.2.1 PPP Decapsulation /Classify Microblock

The PPP decapsulation/classify microblock removes the layer-2 PPP header from the packet. It
also classifies the packet into IPv4, IPv6, PPP control packet (LCP, IPCP etc.). PPP control packets
are thrown to the XScale core component. IPv4 packets are passed on to the 6-tuple classifier for
further processing. IPv6 packets are dropped in this release.

8.2.1.2.2 6-tuple Classifier Microblock

The 6-tuple classifier microblock performs an exact-match lookup on the IPv4 header. The
classifier maintains a hash table with statically configured exact-match rules. Thus, a lookup can
fail only if there is no static rule defined. An empty rule corresponds to best-effort traffic. As a
result, on lookup failure a packet is assigned to the best-effort service (default rule) and passed on
for further processing. The classifier core component configures a hash table used by microblock.
In addition, it handles packets generated by a local TCP/IP stack and exception packets with IP
header options passed by the classifier microblock.

8.2.1.2.3 TCM Meter Microblock

The TC meter implements two metering algorithms: Single Rate Three Color Meter (SRTCM)
described in (www.ietf.org/rfc/rfc2697.txt) and Two Rate Three Color Meter (TRTCM) decribed in
(www.ietf.org/rfc/rfc2698.txt). The algorithms contain a critical section (read-modify-write
operation). For that reason, only the microblock processes packets, while the core component deals
with configuration issues. If the core processed packets, it would have to synchronize its operations
with microengines, in order to avoid corruption of shared data structures. To decrease design
complexity, it is assumed that Xscale core components do not execute critical sections at all.

8.2.1.2.4 DSCP Marker Microblock

The DSPC marker updates TOS field in the IP header. This operation does not result in exception
packets, nor it requires a critical section.

8.2.1.2.5 IPv4 Forwarder Microblock

The IPv4 Forwarder microblock validates the IP header as per RFC 1812. Invalid packets are
dropped. Otherwise, a microblock performs Longest Prefix Match (LPM) on the IP destination
address. The lookup result specifies destination where a packet should be forwarded. This block is
not modified for a DiffServ application.

www.ietf.org/rfc/rfc2697.txt
www.ietf.org/rfc/rfc2698.txt

Software Building Blocks Applications Design Guide 105

DiffServ for POS Application

Ideally, IP header sanity checks shall be done prior to 6-tuple classification. Unfortunately, the
existing IPv4 combines header validation procedure with the LPM algorithm. Thus, a design
decision is to leave header validation after 6-tuple classification.

8.2.1.2.6 WRED Microblock

Doing WRED on ingress is optional, since the main aim of RED is to prevent persistent (long-
term) queues. The IXDP2400 Advanced Development Platform simulates switching fabric with a
hardware loopback. Thus, ingress queuing can have transient character only, if any. For that reason
in the IXDP2400 Advanced Development Platform, the ingress processor does not include WRED.

8.2.1.3 Ingress Queue Manager for DiffServ

The ingress Queue Manager performs enqueue/dequeue operations on the hardware-assisted
SRAM queues. The Queue Manager receives enqueue requests from the IPv4/DiffServ pipeline
through a scratch ring. Another scratch ring is fed with dequeue requests from the CSIX scheduler.
When the queue state changes between empty and non-empty, Queue Manager sends a transition
message to the Scheduler (via Next Neighbor registers). After every dequeue operation, the QM
passes a transmit request to the scratch ring served by the TX microblock. All messages posted in
scratch/NN rings have the same format as described in Chapter 2, “System Data Structures and
Design Choices.”

The only modification is that when WRED block is used, the ingress Queue Manager flushes queue
lengths and last idle timestamp to SRAM memory.

Note: In this release, the Ingress Queue Manager for DiffServ is a separate microblock from the Cell-
Based Queue Manager described in Chapter 13, “Queue Manager For OC-48 Microblock.”

8.2.1.4 CSIX Scheduler

This CSIX scheduler selects constant-length packet segments (cframes) to be transmitted to the
CSIX fabric. The scheduler employs Round Robin (RR) among the fabric ports and Weighted
Round Robin (WRR) among the port queues. The scheduler handles also flow control messages
received from the fabric. This microblock is the same as the one used for IPv4 POS, as described in
Chapter 17, “Fabric Scheduler For OC-48.”

8.2.1.5 CSIX TX Microblock

The CSIX TX microblock receives transmit messages from the Queue Manager and moves packet
segments (cframes) into a transmit buffer. It also encapsulates cframe payload with a CSIX header,
and a proprietary Traffic Manager (TM) header. The CSIX/TM headers convey metadata
information to the egress processor. This microblock is the same as the one used for IPv4 POS, as
described in Chapter 7, “CSIX TX Microblock.”

106 Software Building Blocks Applications Design Guide

DiffServ for POS Application

8.2.2 Egress IXP2400 Network Processor—DiffServ/ IPv4

Figure 8-3 details the software architecture of DiffServ/IPv4 blocks on the egress processor. The
diagram shows mapping of functional blocks to microengines.

8.2.2.1 CSIX RX Microblock

The CSIX RX block reassembles cframe segments back into packets, and restores metadata
information. Next, it passes a packet to the egress DiffServ blocks, using a scratch ring for
communication.

8.2.2.2 DiffServ Functional Pipeline

The next two microengines run an egress-side DiffServ functional pipe stage. The pipeline is a part
of Per Hop Behaviors implementation. The “canonical” EF PHB implementation comprises a
priority queue protected with a token bucket rate-limiter—refer to “An Expedited Forwarding
PHB” (www.ietf.org/rfc/rfc3246.txt). The rate limiter can be satisfied with the properly configured
SRTCM block. The Assured Forwarding PHB starts with WRED congestion avoidance, followed

Figure 8-3. IPv4 and DiffServ: Egress Architecture

B0861-01

DiffServ Application

DiffServ functional pipeline (ME1, ME6)

Flow Control

RESOURCE MANAGER

INTEL® XScale CARD

MICROENGINES

Egress
Scheduler

Core

QM
Core

CSIX
RX

Core

Scratch
Ring

POS TX
(ME 4, ME 5)

POS
TX

core

Egress
Intel® IXP2400 Processor

PPP
encaps

WRED
core

WRED

TCM
core

TCM
(meter)

Scratch
Ring

Scratch
Ring

CSIX
RX

(ME 0)

NN
Ring

X
f
e
r

LEGEND:

Fast path

New block Optional block Modified block

Slow path Configuration

Egress
QM

(ME 3)

Egress
Scheduler

(ME 3)

Scratch
Ring

www.ietf.org/rfc/rfc3246.txt

Software Building Blocks Applications Design Guide 107

DiffServ for POS Application

by a DRR scheduler. Both SRTCM and WRED algorithms implement a critical section. For that
reason, only the microblocks process packets. The core component functionality is limited to
configuration and management procedures.

The PPP encapsulation microblock adds the layer-2 PPP header to the packet and enqueues it to the
next stage of the pipeline.

8.2.2.3 Egress Queue Manager

The egress Queue Manager block is virtually identical to its ingress counterpart, except that it
dequeues packets not segments. Moreover, this block returns dequeue response messages to the
scheduler. The response contains length of a dequeued packet, which is needed by a DRR
algorithm. Additionally, it generates enqueue/dequeue message—for each packet and not just upon
queue transitions between empty and non-empty states.

8.2.2.4 Egress Scheduler

The Egress Scheduler schedules POS packets to be transmitted over the POS interface. It
implements Weighted Round Robin (WRR) scheduling among the ports, Strict Priority (SP)
between two sets of port queues, and Deficit Round Robin (DRR) scheduling among the queues
belonging to one priority group.

8.2.2.5 Packet TX Microblock

The Packet TX microblock transmits packets over the POS interface. It moves the packets to the
transmission buffers of 16 virtual output ports.

8.2.3 Performance Analysis

The analysis is same as for the plain IPv4/POS application—refer to the Section 2.3, “Performance
Characterization” on page 31. In brief, the IXP2400 operates at 600 MHz. For a min POS packet of
49B, the packet inter-arrival time at OC-48 line rate is 97 microengine cycles. In order to maintain
line rate for min packets, each stage of the pipeline cannot exceed this budget.

8.3 System Data Structures and Resource Allocation

This section describes system-wide data structures used by DiffServ application. It also describes
how system resources—for example, microengines, scratch rings, NN rings, memory regions, and
others—are allocated and used among the different microblocks. This chapter focuses on DiffServ
blocks; details on plain IPv4/POS structures can be found in the Chapter 2, “System Data
Structures and Design Choices”.

108 Software Building Blocks Applications Design Guide

DiffServ for POS Application

8.3.1 Ingress System Resource Allocation

The allocation of ingress microengines is same as in the plain IPv4/POS application—refer to the
Section 2.4, “Ingress System Resource Allocation” on page 32. Table 8-1 shows memory regions
added by DiffServ microblocks. For performance reasons, all DiffServ structures are placed in
SRAM. However, in a cost-oriented application it is recommended to put hash table in DRAM.

Note: The hash table size can be much smaller in an OC-48 reference application. This is because the
flow-cache model (with dynamic hash entries) does not scale to high-speed links. Thus, only
statically configured hash entries are supported, and it is not likely that one configures all 64k of
rules.

8.3.2 Egress System Resource Allocation

On the egress IXP2400 Network Processor, one microengine is added to accommodate DiffServ
PHBs, as compared with plain IPv4/POS application. Table 8-2 shows the modified microengine
allocation.

Table 8-1. Ingress IXP2400 Memory Usage

Item
Size per

entry
(in bytes)

Number of
entries

Total SRAM
used

Total DRAM
used

Total scratch
used

Plain IPv4/POS application - - 9.15MB 64MB 10kB

6-tuple classifier hash table 32 64k 2 MB

6-tuple classifier collision
chains 32 32k 1 MB

6-tuple classifier 64-bit stats 16 96k 1,5 MB

TCM table 64 1k 64 kB

TCM 64-bit stats. 32 1k 32 kB

DSCP classifier table 8 16k 128 kB

DSCP classifier 64-bit stats. 16 16k 256 kB

Total 14.52 MB 64 MB 10 kB

Table 8-2. Egress IXP2400 Microengine Allocation

Microblock ME# Communication with previous block

CSIX RX ME0 Auto-push status from MSF

SRTCM + WRED + PPP encapsulation ME1, ME6 Scratch Ring

Egress QM ME 2 Scratch Ring

Egress Scheduler ME 3 Next neighbor + xfer reflector registers

Packet TX ME4, ME5 (MPHY-16) Scratch ring

Unused (available headroom) ME7

Software Building Blocks Applications Design Guide 109

DiffServ for POS Application

Table 8-3 shows memory regions added by DiffServ microblocks on the egress processor.

8.3.3 Buffer Handle

A network processor stores packets in fixed-size buffers, chaining them if needed for large packets.
Every buffer consists of a buffer data area in DRAM and a packet metadata in SRAM (there is 1-1
mapping between DRAM buffers and SRAM metadata). For DiffServ application, the data portion
of a DRAM buffer is 2048 bytes. This size is configurable as long as it is set to a power of two. The
metadata size is 32 bytes (see Section 8.3.4, “Packet Metadata” on page 109).

A 32 bit long buffer handle uniquely identifies both buffer data area and packet metadata. See
Chapter 2, “System Data Structures and Design Choices” for details.

8.3.4 Packet Metadata

Chapter 2, “System Data Structures and Design Choices” describes the generic layout of a packet
metadata. The first 8 bytes (2 long words) are always the same for every application. The
remaining fields depend on an application. In a DiffServ scenario, the metadata structure is almost
the same as defined in Section 2.2, “Packet Meta Data (Buffer Descriptor)” on page 58. The only
new field is color_id used by SRTCM and WRED blocks. Table 8-4 Packet Metadata structure

Table 8-3. Egress IXP2400 Memory Usage

Item
Size

per entry
(in bytes)

Number
of

entries

Total
SRAM
used

Total
DRAM
used

Total
scratch

used

Plain IPv4/POS application - - 1.04 MB 64MB 10kB

Queue Descriptors entry
extension 16 1024 16 kB

SRTCM meter table 64 256 16 kB

SRTCM 64-bit stats. 32 256 8 kB

WRED table 64 256 16 kB

WRED 64-bit stats. 32 256 8 kB

Total 1.11 MB 64 MB 10 kB

Table 8-4. Packet Metadata Structure

LW Bits Size Field Description

0 31:0 32 buffer_next Buffer handle of next buffer in the packet chain

1 31:16 16 buffer_size Buffer size in bytes

15:0 16 offset Offset of the start of data in the buffer in bytes

2 31:28 16 packet_size Total packet size across all chained buffers

15:12 4 free_list_id Free list ID for buffer

11:8 4 rx_stat Receive Status Flag

7:0 8 header_type Type of header at offset bytes into the packet

3 31:16 16 input_port Input port on ingress processor

15:0 16 output_port Output port on egress processor

110 Software Building Blocks Applications Design Guide

DiffServ for POS Application

The metadata for the first buffer in a packet chain contains all these fields. For the remaining
buffers, only the first two long words are relevant. The rest are not used.

8.4 Interfaces Between the Various Microblocks

8.4.1 Inter-Microengine Messages

This section describes the interfaces between microengines on ingress and egress IXP processors
for a DiffServ application. The interfaces are described in terms of messages exchanged over
scratch and NN rings. To ensure backward compatibility and easy migration, most of these
interfaces are unchanged as compared with the IPv4 reference design described in Section 2.6,
“Interfaces Between the Various Microblocks” on page 34. This section highlights only
modifications.

8.4.1.1 POS RX and Ingress DiffServ/IPv4 Functional Pipeline

Not changed—see Section 2.6.1, “Packet RX and Packet Processing Microengines” on page 35.

8.4.1.2 Ingress DiffServ/IPv4 Functional Pipeline and Ingress Queue
Manager

Not changed—see Section 2.6.2, “Packet Processing Microengines and Cell Queue Manager” on
page 35.

8.4.1.3 Ingress Queue Manager and Ingress Scheduler

Not changed—see Section 2.6.3, “Cell Queue Manager and CSIX Scheduler” on page 36.

4 31:16 16 next_hop_id Identifier of a next hop IP node

15:8 8 fabric_port Output port for fabric indicating a destination
blade

7:4 4 reserved Currently not used

3:0 4 nexthop_id_type ID specifying in which table to lookup the
next_hop_id

5 31:0 32 flow_id Flow id (QoS flow id or MPLS label/flow id)

6 31:16 16 class_id Relative identifier of a queue within an output
port

1:0 2 color_id Packet drop precedence level (green, yellow,
red)

15:2 14 reserved Currently not used

7 31:0 32 packet_next Pointer to next packet (unused in cell mode)

Table 8-4. Packet Metadata Structure (Continued)

LW Bits Size Field Description

Software Building Blocks Applications Design Guide 111

DiffServ for POS Application

8.4.1.4 Ingress Queue Manager and CSIX TX

Not changed—see Section 2.6.4, “Cell Queue Manager and CSIX TX” on page 36.

8.4.1.5 CSIX RX and Egress DiffServ Pipeline

The interface between the CSIX RX pipe-stage and the egress DiffServ functional pipeline is a
scratch ring. Table 8-5 shows each entry in the scratch ring, which is 4 long words and the message
format between CSIX RX and egress DiffServ pipeline.

8.4.1.6 Egress DiffServ Pipeline and Egress Queue Manager

Same as interface between ingress DiffServ/IPV4 functional pipeline and the Ingress Queue
Manager. See Section 2.6.6, “PPP Encap and Packet Queue Manager” on page 37 for details.

8.4.1.7 Egress Queue Manager and Scheduler

Table 8-6 shows the NN Ring Message format between egress Queue Manager and packet
Scheduler.

Table 8-5. Message Format Between CSIX RX and Egress DiffServ Pipeline

LW Bits Size Field Description

0 31:0 32 dl_buffer_handle Buffer Handle for the SOP Descriptor

1 31:0 32 dl_eop_buffer_handle Buffer Handle for EOP Descriptor (may be NULL)

2 31 1 valid_bit Must be 1

30:26 5 reserved Not used

25:24 2 color_id Packet drop precedence level

23:16 8 reserved Not used

15:8 8 packet_size Total packet size across buffers

7:4 4 output_port Output port on an egress blade

3:0 4 class_id Relative identifier of an output queue on the output
port.

Table 8-6. Message Format Between Egress Queue Manager and Scheduler

LW Bits Size Field Description

0

31 1 reserved Not used

30 1 enqueue_event If set to 1, one packet has been enqueued.

29:16 14 reserved Not used

15:0 16 enq_queue_id
Absolute queue identifier for enqueue event
(queue_id = port_id*QUEUES_PER_PORT +
class_id)

112 Software Building Blocks Applications Design Guide

DiffServ for POS Application

8.4.1.8 Egress Queue Manager and POS TX

See Section 2.6.8, “Packet Queue Manager and Packet TX” on page 38

8.4.2 Ingress Dispatch Loop Variables

Microblocks running on the same microengine constitute a functional pipeline organized in a
dispatch loop. It is not desirable that every block in a loop reads packet metadata variables and
writes it back to SRAM. Instead, at the beginning a dedicated block (Dl_source) copies required
metadata fields to global state variables, which may be cached in registers or local memory. At the
loop end, another block (Dl_sink) writes back the modified fields to SRAM if necessary. All
other blocks operate on dispatch loop variables.

A set of cached variables depends on an application scenario. Table 4 9 lists dispatch loop variables
relevant for DiffServ blocks in ingress pipeline. Most variables are the same as described in [IXA
DM], except for color_id.

1

31 1 reserved Not used

30 1 dequeue_event If set to 1, one packet has been dequeued.

29:24 6 reserved Not used

23:16 8 packet_size Packet size in 128-byte chunks

15:0 16 deq_queue_id
Absolute queue identifier for dequeue event
(queue_id = port_id*QUEUES_PER_PORT
+ class_id)

Table 8-6. Message Format Between Egress Queue Manager and Scheduler (Continued)

LW Bits Size Field Description

Table 8-7. Ingress Dispatch Loop Variables for DiffServ Application

Field Name Bits Description

exception_id 8
 Microblocks use this variable when sending packets to the Intel® XScale™ core.
The exception_id should be set to identifier of a microblock, which generates an
exception.

exception_code 8
The microblock sets an 8-bit exception code when a packet is sent to the Intel®
XScale™ core component. The code is opaque to dispatch loop and Resource
Manager.

dl_next_block 8 Identifier of a next microblock to continue with packet processing.

dl_buf_handle 32 The handle for the buffer containing the start of the packet.

dl_packet_size 16 The total length of the packet across multiple buffers.

dl_input_port 16 The logical port number on which the packet was received on an ingress blade. An
existing POS application supports 16 ports.

dl_output_port 16 The logical port number where a packet is to be transmitted on an egress blade. An
existing POS application supports 16 ports.

dl_fabric_port 8 Identifier of an egress blade (used when multiple blades are connected to the
switching fabric).

dl_header_type 4 The type of packet stored at "offset" bytes in a DRAM buffer.

dl_next_hop_id 16 The IP next hop identifier, pointing to forwarding information.

Software Building Blocks Applications Design Guide 113

DiffServ for POS Application

A microblock never accesses these variables directly. Instead, it uses a set of helper functions,
which are provided as a part of IXA framework.

8.4.3 Egress Dispatch Loop Variables

On egress, the functional pipeline comprises SRTCM meter and WRED congestion avoidance.
These blocks implement DiffServ Per Hop Behaviors. Table 8-8 lists dispatch loop variables
relevant for these blocks.

The egress DL source does not need to retrieve the above variables from a metadata structure in
SRAM. It can reconstruct them from a message received over a scratch ring from the CSIX RX
microblock. Moreover, the egress DL_sink does not need to flush dispatch loop variables back to
SRAM, because they are needed no longer.

dl_nexthop_id_t
ype 4 The type of table where the next_hop_id is defined.

dl_flow_id 32 The flow identifier used for packet metering and policing.

dl_class_id 16 The relative identifier of an output queue, within an output port. This is set when
classifying packets for QoS processing.

dl_color_id 2 The packet dropping precedence level, often referred to as green, yellow or red
color.

Table 8-7. Ingress Dispatch Loop Variables for DiffServ Application (Continued)

Field Name Bits Description

Table 8-8. Egress Dispatch Loop Variables for DiffServ Application

Field Name Bits Description

dl_next_block 8 Identifier of a next microblock to continue with packet processing.

dl_buf_handle 32 The handle for the buffer containing the start of the packet.

dl_packet_size 16 The total length of the packet across multiple buffers.

dl_header_type 4 The type of packet stored at “offset” bytes in a DRAM buffer.

dl_next_hop_id 16 The IP next hop identifier, pointing to forwarding information.

dl_output_port 16 The logical port number where a packet is to be transmitted on an egress blade. An
existing POS application supports 16 ports.

dl_flow_id 32 The flow identifier used for packet metering and policing.

dl_class_id 16 The relative identifier of an output queue, within an output port. This is set when
classifying packets for QoS processing.

dl_color_id 2 The packet drop precedence level, often referred to as green, yellow or red color.

114 Software Building Blocks Applications Design Guide

DiffServ for POS Application

8.5 Dynamic Behavior

8.5.1 Ingress Data Flow

This section presents data flow between microblocks on an ingress network processor. The data
flow is discussed in terms of metadata variables (recall Section 8.2.3, “Performance Analysis” on
page 107) transmitted along with a packet. Brackets indicate variables that are set in a former block
(right bracket) or consumed by a next block (left bracket).

The Packet RX block first sets up three long words of a metadata structure in SRAM (refer to
Table 2-3, “Packet Metadata Format” on page 58). It also puts a buffer handle into a scratch ring
served by IPv4/DiffServ pipeline. Along with a buffer handle, it copies the following metadata
variables to scratch ring:

• offset—Offset of the start of packet data in the DRAM buffer.

• input_port—Identifier of an input port, where a packet was received.

• packet_size—Total size of a packet in bytes.

The scratch ring also conveys other metadata variables, not relevant to DiffServ blocks.

The IPv4/DiffServ functional pipeline begins with a dispatch loop source microblock (not shown in
the figure). The block loads dispatch loop variables with metadata values received in a scratch ring.
It also fetches the first 20 bytes of a packet header at offset in a DRAM buffer, and caches them
inside a microengine. All subsequent blocks constituting the functional pipeline operate on
dispatch loop variables and the cached packet header.

• The PPP decapsulation/classifier block removes L2-PPP header by updating packet_size
and offset metadata fields. It also sets header_type based on the PPP fields. DiffServ Ingress
pipeline do not support IPv6 packets, so the PPP decapsulation/classifier block drops them.

• The 6-tuple classifier takes selected fields of an IPv4 header and the input port as a lookup key.
Ideally, the classification stage should be preceded by IP header sanity checks. However, it is
not clear if this part of the code can be easily separated from the IPv4 forwarder.
The lookup result contains flow_id (identifier of a packet flow) and class_id (a relative
identifier of a target QoS queue). The class_id determines both the internal QoS class on the

Table 8-9. IPv4 and Diffserv Ingress Dispatch Loop Variables

Metadata POS RX +
decap

DSCP
classif.

6-tuple
classif TCM IPv4

fwd WRED QM +
Sched

CSIX
TX

packet header > < < <

input_port > < < <

packet_size > < < <

flow_id > > < > <

class_id > > < < <

color_id > > (<) > < <

output_port > <

fabric_port > < < <

next_hop_id > > <

next_hop_id_type > >

Software Building Blocks Applications Design Guide 115

DiffServ for POS Application

switching fabric, as well as a target queue on the output port. If the switching fabric does not
support QoS differentiation, the ingress IXP2400 or IXP2800 Network Processor simply
ignores class_id. To accommodate color-aware SRTCM, the classifier may also set
color_id.
If a hash table lookup fails, the classifier sets default values the above metadata variables.
Depending on configuration, such packets can be then redirected to XScale core component
(flow-cache model) or processed in microengine according to default flow_id and
class_id. The classifier supports four outputs: one for metered packets, one for marked
packets, one for packets handled in ME without marking/metering, and one for invalid packets
(exception thrown to XScale).

• The SRTCM block takes flow_id as an index to a meter instance table. The microblock
measures temporal flow characteristics (using packet_size), and divides packets into three
conformance levels. It writes a conformance level to color_id variable, and updates relevant
statistics in SRAM. A conformance level for a given flow_id can be configured with a drop
or pass action. If a packet is allowed to pass, the microblock updates flow_id variable with
the packet mark value—for example, DSCP value.

• A DSCP marker block writes flow_id into the TOS field and updates IP header checksum. A
standalone marker allows bypassing SRTCM, if metering is not needed.

• The IPv4 forwarder validates an IP header. For valid packets, it performs Longest Prefix
Match lookup on IP destination address. It stores the following information in dispatch loop
variables:

— identifier of an egress blade (fabric_port)

— identifier of an output port on that blade (output_port)

— identifier of next-hop data that can be used by L2 encapsulation on an egress blade
(next_hop_id).

On an IXDP2400 Advanced Development Platform, there is no ingress WRED. However, this
block can be used in multi-blade configurations. If included, this block would calculate a
queue number from fabric_port and class_id. In addition, the packet color_id selects the
WRED instance. In case of congestion, WRED randomly drops packets and updates statistics.
It does not change dispatch loop variables (except for dl_next_block).

The IPv4/DiffServ functional pipeline ends with a dispatch loop sink microblock (not shown in the
figure). This block writes dispatch loop variables to SRAM metadata.

The sink block of a functional pipe stage sends enqueue messages to Queue Manager. The enqueue
message contains an absolute queue_id constructed from fabric_port and class_id. The
composite queue_id is also exchanged between the Queue Manager and the CSIX scheduler,
inside enqueue/dequeue transition messages—refer to the Chapter 2, “System Data Structures and
Design Choices” for details.

Once a packet is scheduled for transmission, it goes to the CSIX TX. The following metadata
variables are transmitted over the switching fabric along with a packet:

• packet_size (in CSIX-L1 base header)—needed by egress CSIX RX

• class_id (in CSIX-L1 extension header)—needed by egress WRED

• flow_id (in TM header)—not needed, unless a DSCP re-classifier is used

• color_id (in TM header)—needed by egress WRED

• output_port (in TM header)—needed by egress WRED & POS TX

• next_hop_id (in TM header)—needed by POS encapsulation

116 Software Building Blocks Applications Design Guide

DiffServ for POS Application

8.5.1.1 Ingress Core Components

Figure 8-4 illustrates slow path in the POS DiffServ application. Packets coming from local IP
stack are directed to the DSCP classifier core components. The core component does not receive
any exception packets. It performs classification in the same way as its microblock. If a packet
corresponds to an input port that does not have its classification rules, the packet is directed to the
default output that is bound to 6-tuple exact match classifier core components. If a packet requires
traffic conditioning, the core component passes it to TC meter core components. If the packet
requires DSCP value remarking, the core component sets the new DSCP value in the IP header by
itself. Next all the packets that do not need metering are passed to the IPv4 forwarder core
components.

Figure 8-4. Slow Path for POS DiffServ Application

B1795

Local Stack

Driver

6-tuple IPv4

exact match
classifier

CC

Exception packets from 6-
tuple classifier microblock
(packets with IP header

options)

IPv4
forwarder

CC

Packets
from local IP stack

Packets not requiring
metering

TC meter CC

Packets requiring
metering

Packets to TC meter
microblock

Queue
Manager

CC

WRED CC

(optional)

Packets to WRED
microblock

Packets forwarded to the
egress processor

Packets forwarded
to the egress

processor (when
there is no ingress

WRED block)

Packets to QM
microblock

Packets to local IP
stack

Exception packets from
IPv4 forwarder microblock

DSCP
classifier

CC

Packets requiring
metering

Packets from
input ports

without DSCP
rule set

Packets not requiring
metering

IP packets
from OS

Software Building Blocks Applications Design Guide 117

DiffServ for POS Application

The 6-tuple exact match classifier core component receives local packets not classified by the
DSCP core components. It also gets packets with IP header options sent from 6-tuple classifier
microblock as exception packets. The 6-tuple core component classifies packets in the same way as
its microblock. If the packet requires traffic conditioning, they are passed to the TC meter core
components. If the packets only require DSCP remarking, the classifier core component sets the
new DSCP value in the packet header. Next the classfier sends all the packets that do not need
metering to the IPv4 forwarder.

The TC meter core components does not meter the packets coming from the classifier blocks, but it
sends them to its microblock. This avoids implementing critical section shared between the core
component and the microblock.

The IPv4 forwarder core components receives exception packets from its microblock. It also gets
packets from the classifier blocks. It performs the same action on the received packets as the IPv4
forwarder microblock. It is it does LPM lookup and sets the lookup results in the packet meta-data.
It passes the packet directed to the local IP stack to the Local Stack Driver. The packets forwarded
to the egress processor are either sent to WRED core components (if ingress WRED is used) or to
the QM core components. The forwarder core component also generates ICMP packets that are
directed to the egress processor.

Both WRED core components and QM core components do not process the packets by themselves,
but they pass the packets to their counterparts in microengines.

All the core components used on the ingress processor are responsible for initializing their
microblocks and setting configuration tables used by the blocks. The core components expose API
functions used by the System Application to configure the blocks.

Additional core components not shown in the figure are POS RX core components, CSIX TX core
components and Scheduler core components. POS RX core component initializes Packet RX
microblock and receives PPP LCP/IPCP control packet sent from the microblock as exception
packets. The core component drops the packets. However in other applications the control packets
can be captured by other component. The component also exposes functions for reading ingress
POS interface state and statistics of the received packets.

CSIX TX core components initializes the CSIX TX microblock and implements a function for
reading statistics of packets transmited over the switch fabric.

Scheduler core components initializes its corresponding microblock and fills up the configuration
array used by the micrblock for WRR algorithm.

8.5.2 Egress Data Flow

8.5.2.1 Microblock Egress Pipeline

As per DiffServ MIB [RFC3270], a PHB program is configured for each output port and QoS class.
The variables output_port and class_id are available in CSIX RX. Thus, the egress processor does
not need to re-classify packets. However, the EF PHB program can start with SRTCM, while AF
PHB typically begins with WRED.

The PHB entry point is derived from the class_id value. If class_id indicates a high-priority queue,
a packet is passed on to TCM. Otherwise, a packet goes to WRED. Both microblocks send packets
to PPP encapsulation and then to Queue Manager. This corresponds to a typical PHB

118 Software Building Blocks Applications Design Guide

DiffServ for POS Application

configuration, where TCM and WRED blocks are mutually exclusive. Basically, there is no point
in doing WRED on a priority queue, since the average queue size should be close to zero.
Conversely, a queue protected with WRED needs no rate-limiter.

Table 8-10 shows packet metadata transmitted along with a packet.

The egress datapaths starts with the CSIX receiver, which resembles CSIX frames and stores
packets in DRAM buffers. It also restores metadata variables conveyed over the fabric. The block
puts a buffer handle into a scratch ring served by IPv4/DiffServ pipeline. Along with a buffer
handle, the microblock copies to scratch ring selected metadata variables, as specified in Table 8-5.

The egress functional pipeline begins with a dispatch loop source microblock (not shown in the
figure). It reads scratch ring messages and restores dispatch loop variables. It also constructs
flow_id variable for SRTCM block. Note that the ingress NP sets flow_id to a DSCP value. This is
not enough to discriminate between EF PHBs configured for different output ports. For that reason,
the DL source block overrides flow_id with a combination of output_port and class_id.

The TCM block uses flow_id, prepared by a DL source, to police EF traffic stream on a given
interface. Only two conformance levels are used: in- and out-of-profile packets. The block is
configured so that it drops excessive packets, while in-profile packets are placed in output queues.

The egress WRED block calculates a queue number from output_port and class_id. The remaining
operations are same as for the ingress WRED block.

The PPP encapsulation block checks if next_hop_id is different than -1. If true, it adds the PPP
header to the packet based on the header_type.

The IPv4/DiffServ functional pipeline ends with a dispatch loop sink microblock (not shown in the
figure). This block does not need to update SRAM metadata descriptor, as the variables modified
by TCM will be no longer used.

The data flow between egress Scheduler, egress QM and POS TX is the same as in [IXA DM].

8.5.2.2 Egress Core Components

The egress core components are:

• CSIX RX core components

• WRED core components

• TC meter core components

• QM core components

Table 8-10. MPLS, IPv4 and Diffserv Egress Dispatch Loop Variables

Metadata CSIX RX TCM WRED PPP encap QM + Sched POS TX

packet_ size > < <

flow_id > < >

class_id > < <

color_id > < > <

output_ port > < < <

next_hop_id > <

Software Building Blocks Applications Design Guide 119

DiffServ for POS Application

• Scheduler core components

• ATM/POS TX core components

The core components residing on the egress processor does not implemente a slow path. They are
only responsible for initializing the egress microblocks and for setting configuration data strcutures
used by the microblocks. In addition, the ATM/POS TX core components is responsible for
initialisation and configuration of the ATM/POS framer device.

8.6 Sending Packets from Core Components to
Microblocks

Some DiffServ core components do not process local and exception packets in slow path, but direct
the packets to their microblocks (for example, TCM core components forwards packets to TCM
microblock in order to avoid implementation of cirtical section between the core component and
the microblock). In particular, a core component must be able to send packets to a microblock
residing in the middle of a functional pipeline. For this reason the core component should send not
only the SOP buffer handle but also an identifier of the microblock to which the packet is
directed.b

Core components cannot write packets to the scratch ring preceding the microblock (it is the
scratch ring used by the preceding microengine), because Xscale core cannot write atomically to a
scratch ring more than a single LW and messages put to the scratch rings usually are more than 1
LW long. Therefore Xscale must use a separate scratch ring for sending packets to each
microengine. However, if the functional pipeline runs on more than one microengine and it does
not matter on which microengine the packet will be processed, only one scrach ring is needed per a
functional pipeline.

If the DiffServ core components are run in different threads, writing to the scratch ring must be
synchronized so as not to mismatch messages from different core components.

On the core component level, the packets are sent to a communication ID common for the whole
communication from core components to micrblocks in IPv4/DIffServ pipeline. System
Application is responsible for binding the communication ID to appropriate scratch ring and to
register a packet handler function that builds messages to MEs and writes them to the ring.

Table 8-11 describes the format of messages exchanged between DiffServ core components and
DiffServ functional pipeline..

Table 8-11. DiffServ Core Components to Diffserv Pipeline Message Fields

LW Field Name Bits Size (in
bits) Description

0 SOP buffer handle 31..0 32 Handle to the buffer containing the first part of the
packet

1 EOP buffer descriptor 31..0 32
Handle to the buffer containing the last part of the
packet. If the packet fits single buffer, the field
contains zero value.

2 Reserved 31..8 24 Unused

Microblock ID 7..0 8
Identifier of the microblock that should start
processing the packet. The source macro uses tha
value to set dl_next_block variable.

120 Software Building Blocks Applications Design Guide

DiffServ for POS Application

Assuming that the core components pass packets to microblocks rarely, only one thread on one ME
running the functional pipeline reads the scratch ring from Xscale. This minimizes the number of
empty read operation from the scratch ring.

Figure 8-5 illustrates the algorithm performed by the source macro called by this thread. First the
macro checks whether the read operation issued in the previous dispatch loop round has completed.
If not it swaps out waiting for the end of the operation. Next the macro checks if the ring is empty.
If the ring is empty, it handles the scratch ring from the previous ME. Otherwise, it sets
dl_buffere_handle, dl_eop_buffer_handle and dl_next_block variables according
to the values in the message retrieved from the Xscale scratch ring. It also caches the packet meta-
data and the packet header.

Figure 8-5. Handling Xscale Scratch Ring by the Source Macro

B1800

Read operation from Xscale
scratch ring completed?

H dl_source(...)

YES

scratch ring from Xscale
empty ?

issue read request from the Xscale
scratch ring for the next round

Handle regular inter-ME
scratch ring

YES

H

dl_buffer_handle = sr_msg.sop_buffer_handle
dl_eop_buffer_handle = sr_msg.eop_buffer_handle

dl_next_block = sr_msg.micoblock_ID

Load packet meta-data
Cache IP header

Swap out waiting for the read
operation

NO

Software Building Blocks Applications Design Guide 121

DiffServ for POS Application

8.7 Statistics Handling

An IXP2400 SRAM controller supports atomic operations such as add or increment. It is quite
tempting to use this feature for statistics updates. However, another option is possible if a
microblock uses a folding technique (like SRTCM or WRED). Essentially, a microblock can
include statistic updates within a critical section. Figure 8-6 illustrates both approaches.

Four memory references are the main drawback of the left-side approach (a). In addition, atomic
operations have to be always performed, independently of CAM hit. On the contrary, the right-side
algorithm (b) causes longer memory bursts. Moreover, this method always reads statistics counters,
even if an update is not needed (turned off dynamically).

Figure 8-6. Statistics Update—Atomic Operations and Within a Critical Section

B0826-01

Read shared data
from SRAM

No

Yes

CAM hit
?

SRAM
Read Stage

a. Atomic Operations

SRAM atomic inc
SRAM atomic add

Yes

No

Statistics
update on

?

Critical Section
(modify)

Write shared data
back to SRAM

Yes

No

Last CAM user
?

SRAM
Write Stage

Read data and
statistics from SRAM

No

Yes

CAM hit
?

SRAM
Read Stage

b. Within a Critical Section

Update statistics in
local memory

Yes

No

Statistics
update on

?

Critical Section
(modify)

Write data and
statistics to SRAM

Yes

No

Last CAM user
?

SRAM
Write Stage

122 Software Building Blocks Applications Design Guide

DiffServ for POS Application

Nevertheless, it seems more beneficial to perform two long memory accesses than four short ones.
This section provides a performance comparison of both approaches. Simulator-based experiments
exhibit the following performance of SRAM controller:

• 1 atomic operation blocks SRAM controller for about 30 cycles.

• 1 long word memory access blocks SRAM controller for about 3 cycles. Every next long word
in a memory burst blocks SRAM controller for another 3 cycles, that is:

— 8 long words memory access blocks SRAM controller for about 24 cycles.

— 16 long words memory access blocks SRAM controller for about 48 cycles.

From the above calculation, it follows that an atomic SRAM operation is as expensive as reading/
writing a burst of 10 long words. Considering SRAM controller utilization, the approach (b) shall
perform better if statistics data comprises less than 10 long words. In fact, both SRTCM and
WRED blocks need 6 long words for statistics. The approach (b) shown in Table 8-12 can be even
more advantageous, if CAM hits occur.

Table 8-12 shows a detailed comparison of both approaches for different usage scenarios, assuming
6 long words for counters. The cycle count overhead corresponds to one processed packet.

The method (b) behaves significantly better if statistics are updated. Due to non-linear queuing
characteristics, the advantage can be greater than gain expressed in cycle counts. If a method (a)
runs concurrently on 4 microengines in a functional pipe stage, the 60 cycle overhead per packet is
enough to overload the SRAM controller command bus. As a result of command bus overflow,
microengines are halted and performance drops drastically.

Overflows do not happen in method (b). This feature compensates deficiency caused by surplus
memory reads if statistics update is not needed. For the above reasons, the method (b) is
recommended and used in blocks implementing a critical section.

Table 8-12. Statistics Overhead at SRAM Controller

Scenario
Statistics Update No Update Needed

All CAM Misses Max CAM Hits All CAM Misses Max CAM hits

(a) using atomic operations1

1. 3 cycles are always used to read the statistics counter location (one long word).

63 60 3/8 3 3/8

(b) within a critical section 36 4 4/8 18 2 2/8

Gain: (b) – (a) + 30 + 55 7/8 - 15 - 1 7/8

Software Building Blocks Applications Design Guide 123

DiffServ for ATM Application 9

This section describes a DiffServ application for ATM implemented on two half duplex Intel®
IXP2400 Network Processors connected to a CSIX switch fabric. It provides a high-level design
overview and lists the different software components used to build this application.

The application described in this chapter is supported on the Intel® IXDP2400 Advanced
Development Platform.

9.1 Hardware Architecture

The DiffServ for ATM application runs on the same hardware platform as plain ATM Application
Intel® Internet Exchange Architecture Portability Framework Developer’s Manual. The platform
consists of two IXP2400 processors. The ingress processor receives ATM cells from Media
interface (ATM Framer), performs ingress DIffServ/IPv4 processing and sends the IP datagrams
segmented into CSIX C-frames to the CSIX fabric.

The egress processor receives CSIX C-Frames from the fabric, reassembles these into IPv4
datagrams and performs egress DiffServ processing. Next the IPv4 datagrams are encapsulated into
LLCSNAP packets, segmented into ATM cells and transmitted over the appropriate ATM physical
port.

9.2 Software Architecture

9.2.1 Ingress IXP2400

Figure 9-1 illustrates the software architecture of ATM/DiffServ/IPv4 blocks on the ingress
processor. The diagram shows mapping of functional blocks to microengines. The physical
assignment determines inter-microengine communications, such as scratch rings or next neighbor
registers. The arrangement affects also utilization of the internal Command bus and S-Push/Pull
buses.

The DiffServ blocks (shaded boxes) extend an existing IPv4 reference design (white/clear boxes).

124 Software Building Blocks Applications Design Guide

DiffServ for ATM Application

9.2.1.1 Ingress Microblock Pipeline

9.2.1.1.1 ATM RX

The ATM RX block is the same microblock as used in the ATM application. It runs on two
microengines. The block reassembles ATM cells coming from the media interface into AAL5
PDUs, writes them into DRAM and queues the packet buffer handle on a ME-ME scratch ring for
processing by the next stage.

In DiffServ for ATM application, the DiffServ/IPv4 functional pipe executes in parallel on three
microengines. The pipeline is organized in a dispatch loop, which starts with a 6-tuple
classification and metering. In this way, packets dropped by a meter do not go through IP lookup.
Alternatively, the TCM/DSCP blocks can be moved after the IPv4 forwarder. In such case, packets
with invalid headers—for example, TTL expired, does not get unnecessarily metered. Both
arrangements give the same performance in the worst case, when all packets have valid headers

Figure 9-1. Software Architecture of ATM/DiffServ/IPv4 blocks on the Ingress Processor

B1791

Resource Manager

DiffServ/IP functional pipeline (ME2, ME5, ME6)

legend

Ingress Intel IXDP2400 Processor

ATM
ALL5 RX

(ME 0,
ME1)

CSIX
scheduler

(ME 4)

IPv4
forwarder

QM

(ME 3)

CSIX
TX

(ME 7)

6-tuple
classif.

TC
meter

new block modified
block

6-tuple
classif.

core

ATM
RX
core

microengines
XScale

IPv4
forwarder
core

TC
meter
core

System Application

QM
core

CSIX
TX
core

fast path slow path configuration optional
block

Stack Driver
CSIX

scheduler
core

DSCP
Marker

scratch
ring

scratch
ring

NN
ring

scratch
ring

scratch
ring

LLCSNAP
decaps./
classify

An alternative configuration is also
possible, when TCM and DSCP
marker are moved after IPv4
forwarder

DSCP
classif.

DSCP
classif.

core

(R)

Software Building Blocks Applications Design Guide 125

DiffServ for ATM Application

and are always marked. The ingress dispatch loop can optionally contain WRED congestion
avoidance (not shown in Figure 9-1). The ingress-side WRED accommodates multi-blade
environments, and will not be implemented on Angel Island hardware platform.

9.2.1.1.2 LLCSNAP Decapsulation/Classify

The LLCSNAP decapsulation/classify microblock checks if the header type in the meta-data has
been set to LLCSNAP. If the packet uses LLCSNAP encapsulation the block removes the
LLCSANP header from the packet. It also classifies the packet into IPv4, IPv6, and so on. If the
packet is not using the LLCSNAP encapsulation, the packet classification (dl_next_block) is
done based on the value of the header type field in the packet meta-data. IPv4 packets are passed on
to the 6-tuple classifier for further processing. IPv6 packets are dropped in this pipeline.

9.2.1.1.3 6-tuple Classifier

The rest of the function pipestage is nearly the same as for POS application. First packets go to
DCSP classifier microblock that performs packet classification basing on input port and DSCP
value carried in the packet header. If the packet matches a classification rule it is either directed to
TC meter block or DSCP marker block. If the classification fails, the packet is directed to 6-tuple
classifier microblock that performs an exact-match lookup on the IPv4 header and classifies the
packets into QoS flows. In ATM scenario, each VC is associated with a single queue. IPv4
fowarder decides to which VC a packet is directed. For this reason, the class ID variable set in the
6-tuple classifier microblock is not used at egress.

After QoS classification the packets are metered by TCM implementing the metering algorithms
described in [RFC2697] and [RFC2698]. Then DSCP marker updates TOS field in the IP header.

9.2.1.1.4 IPv4 Forwarder

The IPv4 Forwarder microblock validates the IP header as per RFC 1812. Invalid packets are
dropped. Otherwise, a mircoblock performs Longest Prefix Match (LPM) on the IP destination
address. The lookup result specifies destination where a packet should be forwarded.

9.2.1.1.5 Queue Manager

The ingress Queue Manager performs enqueue/dequeue operations on the hardware-assisted
SRAM queues. The QM receives enqueue requests from the IPv4/DiffServ pipeline through a
scratch ring. Another scratch ring is fed with dequeue requests from the CSIX scheduler. When the
queue state changes between empty and non-empty, QM sends a transition message to the
Scheduler (via Next Neighbor registers). After every dequeue operation, the QM passes a transmit
request to the scratch ring served by TX microblock. All messages posted in scratch/NN rings have
the same format as described in Section 2.6, “Interfaces Between the Various Microblocks” on
page 34.

9.2.1.1.6 CSIX Scheduler

This CSIX scheduler selects constant-length packet segments (cframes) to be transmitted to the
CSIX fabric. The scheduler employs Round Robin (RR) among the fabric ports and Weighted
Round Robin (WRR) among the port queues. The scheduler handles also flow control messages
received from the fabric. This block is not modified.

126 Software Building Blocks Applications Design Guide

DiffServ for ATM Application

9.2.1.1.7 CSIX TX Microblock

The CSIX TX microblock receives transmit messages from the QM, and moves packet segments
(cframes) into a transmit buffer. It also encapsulates cframe payload with a CSIX header, and a
proprietary Traffic Manager (TM) header. The CSIX/TM headers convey metadata information to
the egress processor. This block is not modified.

9.2.1.2 Ingress Core Components

DiffServ for ATM application uses the same set of ingress core components as desccribed for
Diffserv POS application in Section 8.5.1.1, “Ingress Core Components” on page 116. The core
components form the same slow path.

9.2.2 Egress IXP2400

Figure 9-2 illustrates the software architecture of DiffServ/IPv4/ATM blocks on the egress
processor and mapping of functional blocks to microengines.

Figure 9-2. ATM, IPv4 and DiffServ—Egress Architecture

B1793

DiffServ functional pipeline (ME 2, ME 3)

ATM
AAL5 Tx

(ME 1, ME 7)

TM 4.1
scheduler
writeout

(ME 6)

Egress
QM

(ME 4)

CSIX
Rx

(ME 0)
WRED

ATM
AAL5

Tx core

microengines
XScale

WRED
core

System Application

QM
core

CSIX
Rx

core

Resource Manager

NN
ring

scratch
ring

scratch
ring

scratch
ring

scratch
ring

LLCSNAP
encaps

legend

new blockfast path slow path configuration

TM 4.1
shaper
(ME 5)

NN
ring

Egress Intel IXDP2400 Processor(R)

Software Building Blocks Applications Design Guide 127

DiffServ for ATM Application

The CSIX RX block is the same as used in POS application. It reassembles cframe segments back
into packets, and restores metadata information. Next, it passes a packet to the egress WRED
microblock, using a scratch ring for communication.

The next two microengines run an egress-side DiffServ functional pipe stage. The pipe stage starts
with the LLCSNAP encapsulation microblock. It is the same block as used in IPv4/ATM
application. It adds the LLCSNAP header to the packet and sets VC queue number identifying the
queue to which the Queue Manager shall put the packet. The encapsulation block uses the next hop
id as an index into a table with layer-2 header information. This table contains both the LLCSNAP
header as well as the Virtual Circuit (VC) Queue information for the packet.

The next element of the functional pipe stage is WRED congestion avoidance. WRED uses VC
queue number as a queue identifier instead of combination of output port and class ID. At the end
of the pipeline packets are passed to Queue Manager microengine.

The egress Cell Queue Manager block is similar to that used in plain ATM application. The only
modification required by WRED is flushing queue idle timestamp on every transition of a queue
state from non-empty to empty.

The rest of microblocks—Chapter 23, “TM4.1 Shaper and Scheduler Microblock” and Chapter 11,
“ATM AAL5 TX Microblock” are used unmodified.

9.2.3 Performance Analysis

The analysis is same as for plain IPv4/ATM application (see Chapter 2, “OC-48 POS IPv4
Forwarding Application” and Section 4.2.4, “Performance Characterization” on page 58). In brief,
IXP2400 operates at 600 MHz. For a min AAL5 packet of 2*53B, the packet inter-arrival time at
OC-48 line rate is 210 microengine cycles. In order to maintain line rate for min packets, each
stage of the pipeline cannot exceed this budget.

9.3 System Data Structures, Interfaces, and Resource
Allocation

This section briefly depicts system-wide data structures used by DiffServ for ATM application. It
also describes how system resources—for example, microengines, scratch rings, NN rings,
memory regions, and so on, are allocated and used among the different microblocks. This chapter
focuses on DiffServ blocks, while details on plain IPv4/ATM structures can be found in Chapter 4,
“OC-48 ATM IPv4 Forwarding Application”.

9.3.1 Ingress System Resource Allocation

The allocation of ingress microengines is same as in the plain IPv4/ATM application - refer to
Section 4.2.3, “Dispatch Loop” on page 56. Table 9-1 shows memory regions added by DiffServ
microblocks. For performance reasons, all DiffServ structures are placed in SRAM. However, in a
cost-oriented application it is recommended to put hash table in DRAM.

128 Software Building Blocks Applications Design Guide

DiffServ for ATM Application

Note: The hash table size can be much smaller. This is because the flow-cache model (with dynamic hash
entries) does not scale to high-speed links. Thus, only statically configured hash entries are
supported, and it is not likely that one configures all 64k of rules.

9.3.2 Egress System Resource Allocation

On egress IXP2400, one microengine is added to accommodate DiffServ PHBs, as compared with
plain IPv4/POS application. Table 9-2 shows the modified microengine allocation.

Table 9-3 shows memory regions added by DiffServ microblocks on egress processor.

Table 9-1. Ingress IXP2400 Memory Usage

Item Size per entry
(in bytes)

Number of
entries

Total SRAM
used

Total
DRAM
used

Total scratch
used

plain IPv4/ATM application - - 14.4 MB 64 MB 10 kB

6-tuple classifier hash table 32 64k 2 MB

6-tuple classifier collision chains 32 32k 1 MB

6-tuple classifier 64-bit stats 16 96k 1,5 MB

TCM table 64 1k 64 kB

TCM 64-bit stats. 32 1k 32 kB

DSCP classifier table 8 16k 128 kB

DSCP classifier 64-bit stats. 16 16k 256 kB

Total 19.3 MB 64 MB 10 kB

Table 9-2. Egress IXP2400 Microengine Allocation

Microblock ME# Communication with previous
block

CSIX RX ME 0 Auto-push status from MSF

WRED + LLCSNAP encapsulation ME 2, ME3 Scratch Ring

Egress Cell QM ME 4 Scratch Ring

TM 4.1 Shaper ME 5 Next neighbor

TM 4.1 Writeout / Scheduler ME 6 Scratch Ring

AAL5 TX ME1, ME7 (SPHY-4) Scratch Ring

Table 9-3. Egress IXP2400 Memory Usage

Item Size per entry
(in bytes)

Number of
entries

Total SRAM
used

Total
DRAM
used

Total scratch
used

Plain IPv4/ATM
application - - 2.13 MB 64MB 10kB

Queue Descriptors entry
extension 16 1024 16 kB

Software Building Blocks Applications Design Guide 129

DiffServ for ATM Application

9.3.3 Buffer Handle

The DiffServ for ATM application uses the same buffer handle as described in Section 8.3.3,
“Buffer Handle” on page 109 for DIffServ POS application.

9.3.4 Packet Metadata

The DiffServ for ATM application uses the same Packet Metadata layout as described in
Section 8.3.4, “Packet Metadata” on page 109 for DIffServ POS application.

9.4 Interfaces Between the Various Microblocks

9.4.1 Inter-Microengine Messages

This section describes the interfaces between microengines on ingress and egress IXP processors
for the ATM DiffServ application. The interfaces are described in terms of messages exchanged
over scratch and NN rings. To ensure backward compatibility and easy migration, most of these
interfaces are unchanged as compared with the IPv4 reference design described in Section 4.5,
“Interfaces Between the Various Microblocks” on page 61. This section highlights only
modifications.

9.4.1.1 AAL5 RX and Ingress DiffServ/IPv4 Functional Pipeline

The same as in plain ATM application—see Section 4.5.2, “Packet Processing Microengines and
Cell Queue Manager” on page 61.

9.4.1.2 Ingress DiffServ/IPv4 Functional Pipeline and Ingress Queue
Manager

See Section 4.5.2, “Packet Processing Microengines and Cell Queue Manager” on page 61.

9.4.1.3 Ingress Queue Manager and Ingress Scheduler

See Section 4.5.3, “Cell Queue Manager and CSIX Scheduler” on page 61.

9.4.1.4 Ingress Queue Manager and CSIX TX

See Section 2.6.4, “Cell Queue Manager and CSIX TX” on page 36.

WRED table 64 1024 64 kB

WRED 64-bit stats. 32 1024 32 kB

Total 2.24 MB 64 MB 10 kB

Table 9-3. Egress IXP2400 Memory Usage

Item Size per entry
(in bytes)

Number of
entries

Total SRAM
used

Total
DRAM
used

Total scratch
used

130 Software Building Blocks Applications Design Guide

DiffServ for ATM Application

9.4.1.5 CSIX RX and Egress DiffServ Pipeline

The interface between the CSIX RX pipe-stage and the egress DiffServ functional pipeline is the
same as in plain ATM application. See Section 4.5.5, “CSIX RX and LLCSNAP Encapsulation” on
page 62

9.4.1.6 Egress DiffServ pipeline and Egress Cell Queue Manager

Same as interface between ingress DiffServ/IPV4 functional pipeline and the Ingress Queue
Manager. See Section 4.5.6, “LLCSNAP Encap and Cell Queue Manager” on page 62 for details.

9.4.1.7 Egress Cell Queue Manager and TM4.1 Shaper

See Section 4.5.7, “Cell Queue Manager and RR Scheduler for ATM” on page 62.

9.4.1.8 TM4.1 Shaper and TM 4.1 Writeout/Scheduler

See TM4.1 Shaper and Scheduler.

9.4.1.9 RR Scheduler and Egress Cell Queue Manager

Not changed—see Section 4.5.8, “RR Scheduler to Cell Queue Manager” on page 63.

9.4.1.10 Egress Queue Manager and AAL5 TX

Not changed—see Section 4.5.9, “Cell Queue Manager and AAL-5 TX” on page 63.

9.4.2 Ingress Dispatch Loop Variables

The DiffServ microblocks running in Ingress ATM DiffServ pipeline use the same dispatch loop
variables as in Ingress POS DiffServ pipeline specified in Section 8.4.2, “Ingress Dispatch Loop
Variables” on page 112.

9.4.3 Egress Dispatch Loop Variables

Unlike the DiffServ POS application, WRED should use VC queue number as a logical queue
identifier. In order to change the WRED microblock, the egress DiffServ dispatch loop sets class
ID variable to VC queue number and the output port variable to 0. The color ID used by WRED
microblock is left unaltered—it is equal to the value set by the TCM block on ingress. The rest of
egress microblocks uses the same dispatch loop variables as in plain ATM/IPv4 application.

Software Building Blocks Applications Design Guide 131

MPLS Application 10

This chapter provides a high-level design overview of an MPLS forwarding application and lists
the different software components used to build this application.

The application described in this chapter is supported on the Intel® IXDP2400 Advanced
Development Platform.

10.1 Input/Output Media Independence

The MPLS forwarder building blocks design is based on the assumption that MPLS processing is
separated from the packet receive and transmit microblocks. This separation hides the media-
specific encapsulation details from the MPLS forwarder and enables MPLS forwarder building
blocks reuse for Ethernet, POS and ATM. This concept is shown in Figure 10-1.

The input processing stage receives packets with media-specific encapsulation, e.g. PPP for POS or
802.3 for Ethernet. It handles all the media-specific details, including any encapsulation processing
and any re-assembly, for example in case of ATM. The output from this stage is a labeled or un-
labeled packet without media encapsulation, and metadata that is needed for correct MPLS
processing, e.g. incoming interface number. The implementation of this stage is out of scope of this
documentation.

The MPLS processing stage begins with the classification of packets into FECs based on the
attributes in the IP packet or incoming label and incoming interface. Next, it handles any MPLS
specific processing of the received packet, e.g. creation, management and removal of the label
stack, exception generation, TTL processing, etc. The output of this stage is an IP packet with or
without label(s) and any metadata that is required by next stage to dispose off the packet correctly.

The details of MPLS processing depend on the role of the router in MPLS domain and are
described further.

Figure 10-1. MPLS Flow Processing

B0864-01

MPLS
Processing

Output
Processing
(Tx µblocks)

Input
Processing

(Rx µblocks)

Packets with
media-specific
encapsulation

Packets with
media-specific
encapsulation

Packets without
media-specific
encapsulation,
with or without
MPLS labels +

metadata

Packets without
media-specific
encapsulation,
with or without
MPLS labels +

metadata

132 Software Building Blocks Applications Design Guide

MPLS Application

During output processing, packets received from the MPLS processing stage are put in appropriate
media encapsulation and transmitted. The implementation of this stage is out of scope of this
documentation.

10.2 MPLS Forwarder Decomposition

The MPLS Forwarder operation depends on the role of the router in the MPLS domain.

An MPLS router can work as the following types of forwarders:

10.2.1 Ingress LER Generic MPLS Forwarder

The MPLS forwarder operation on an ingress LER is shown in Figure 10-2.

Incoming IP packets are validated as specified in [RFC1812]. Then they are classified according to
forwarding equivalency classes (FECs). FECs can be defined by statically provisioned filters
comprising multiple-field access control lists or IP 6-tuple, and IP destination address longest
prefix match (LPM). The multi-field classification should be performed first. It the lookup fails, the
longest prefix match is applied. Up to this point the packet processing is common for both IP and

Ingress LER placed at the edge of an MPLS domain, receiving
unlabeled IP packets, labeling them and sending
to an MPLS next hop

Section 10.2.1, “Ingress LER
Generic MPLS Forwarder”
on page 132

LSR placed in the middle of an MPLS domain,
receiving labeled packets, swapping the labels
and sending the packets to an MPLS next hop

Section 10.2.2, “LSR
Generic MPLS Forwarder”
on page 133

Egress LER placed at the edge of an MPLS domain, receiving
labeled packets, stripping off the labels and
sending the packets to an IP next hop

Section 10.2.3, “Egress LER
Generic MPLS Forwarder”
on page 134

Figure 10-2. MPLS Forwarding: Data Path for Ingress LER

B0865-01

IP Packet

IP Packet

No match

6 Tuple
Classifier

Rules
Table

FEC ID

FEC ID

IP LPM
Classifier

IP Forwarding Path

MPLS
Packet

FEC to NHLFE mappingIP next hop info No match or
IP next hop info

IP Routing
Table

FTN
Forwarder

NHLFE
Table

Software Building Blocks Applications Design Guide 133

MPLS Application

MPLS. The 6-tupple Classifier Rules or IP Routing table entries contain flags marking them as
belonging to either IP or MPLS forwarding path. Therefore a match against each entry determines
whether further packet processing will be performed by IP or MPLS forwarders.

If a packet matches an MPLS FEC, the result of the rule or LPM lookup is an MPLS FEC identifier
(FEC ID). Next, the packet with its meta data containing the FEC ID is passed to the FTN
Forwarder block.

The FTN Forwarder uses the FEC ID from the packet meta-data as an index into the NHLFE table,
to obtain a next-hop label forwarding entry assigned to this FEC. This can be either a regular entry,
or an NHLFE set pointing to multiple NHLFE entries. In the latter case, only one entry is chosen
by some additional load-balancing algorithm. A regular NHLFE contains information about the
MPLS next hop, outgoing interface, and initial label(s). It is used by the FTN Forwarder, which
appends the initial label to the beginning of the IP packet and puts the next hop information into the
packet's meta data before passing it to a transmitting block.

According to the MPLS forwarder requirements, the 6-tuple and LPM classifiers shall be reused
between the IP and MPLS components; therefore they are grayed and separated from the FTN
Forwarder in Figure 10-2. In consequence, they have to be MPLS-aware, that is, the 6-tuple Rules
and IP Routing table entries have to be distinguishable as either IP or MPLS entries.

10.2.2 LSR Generic MPLS Forwarder

At an MPLS transit node, incoming packets are classified by looking up the pair (top-most label,
incoming interface) in the Incoming Label Map table. This operation is performed by the ILM
Forwarder microblock. The ILM table entries contain the NHLFE information, the same as
described for the ingress FTN Forwarder (outgoing interface, outgoing label, next-hop info). The
ILM Forwarder performs a label swap or swap-push operation on the label stack and passes the
MPLS packet to a transmitting microblock, together with meta-data specifying the next hop and
outgoing interface. Figure 10-3 illustrates this functionality.

Figure 10-3. MPLS Forwarding: Data Path for LSR

B0866-01

MPLS Packet MPLS Packet

ILM
Forwarder

ILM
Table

Label to NHLFE mapping

MPLS
Label

134 Software Building Blocks Applications Design Guide

MPLS Application

10.2.3 Egress LER Generic MPLS Forwarder

The MPLS forwarder operation on an egress LER is shown in Figure 10-4.

An egress node of an MPLS network receives labeled packets and performs on them topmost label
lookups in the same way as in a transit LSR. However, an egress ILM entry indicates that all labels
should be popped, and does not specify an outgoing label. Furthermore, the packet can be treated in
two ways. In case of penultimate hop popping (PHP), the resulting unlabeled IP packet is passed
directly to a transmitting microblock to be sent to its next hop over the outgoing interface specified
in the ILM entry. Otherwise, the IP packet is passed to the local IP forwarder microblock for route
lookup and forwarding.

10.2.4 MPLS Forwarder Building Blocks

The discussion from Sections 10.2.1, 10.2.2 and 10.2.3 implies that implementation of the MPLS
forwarder functionality requires the following building blocks:

• FTN Forwarder - for ingress LERs

• ILM Forwarder- for LSRs and egress LERs

In practice, most MPLS nodes can receive unlabeled as well as labeled packets, and transmit
labeled and unlabeled packets. Therefore, the MPLS forwarder should comprise components for all
types of nodes - ingress and egress LERs, and transit LSRs.

The FTN Forwarder for ingress LERs depends on the IP 6-tuple classifier and IPv4 LPM
microblocks. They are functional parts of other building blocks, and are described in their
respective chapters of this document.

According to the IXA Portability Framework, the MPLS forwarder building block design follows
the two-level software architecture. Figure 10-5 illustrates the two-level software architecture

Figure 10-4. MPLS Forwarding: Data Path for Egress LER

B0867-01

MPLS Packet

IP Packet
to next hop
(PHP)

IP Packet
(no PHP)

ILM
Forwarder

IP
Forwarder

Label to NHLFE mapping

ILM
TableMPLS

Label

Software Building Blocks Applications Design Guide 135

MPLS Application

.

The data plane microblocks (ILM Forwarder and FTN Forwarder) are initialized and managed by a
common core component running on the XScale processor. The MPLS Core Component is
responsible for adding and deleting entries in the ILM and NHLFE tables. It also processes
exception notifications from the MPLS forwarder microblocks. Section 10.4.3, “MPLS Forwarder
Core Component Overview” on page 143 describes the details of the MPLS Core Component
design and operation.

10.3 Cooperation with IP and QoS Microblocks

As it was mentioned in Section 10.2.1, “Ingress LER Generic MPLS Forwarder” on page 132, the
FTN Forwarder reuses the LPM classification implemented in the IPv4 forwarder. Therefore, these
two microblocks have to be combined on the same pipeline. Moreover, some MPLS nodes can be
at the same time ingress LERs (for example, for locally connected hosts) as well as transit LSRs.
This requires combining IP and MPLS forwarders on the same pipeline. This section shows the
required ordering of IP and MPLS microblocks on the same pipeline (one thread).

Figure 10-5. MPLS Forwarder Building Block

B0868-01

Intel® XScale™ Core (level 1 framework)

Intel® IXP2000 Network Processor

MPLS core
component

Memory

ILM
Table

NHLFE
Table

Microengines (level 0 framework)

Data OutData In
ILM

Forwarder
Microblock

FTN
Forwarder
Microblock

Exception
processing and
management

Fast
datapath

136 Software Building Blocks Applications Design Guide

MPLS Application

10.3.1 IP and MPLS Functional Pipeline

Figure 10-6 illustrates the layout of IP and MPLS microblocks common for the ingress LER, LSR
and egress LER.

The functional pipeline starts with a Dl_Source microblock, which reads buffer handles from the
receiving scratch ring, and populates the dispatch loop variables. One of these variables
(dl_header_type), set by the RX microblock, specifies whether the received packet caries an IP
or MPLS frame.

On an ingress LER, the Dl_Source block passes IP packets to the 6-tuple Classifier microblock,
implementing the 6-tuple classification on behalf of the MPLS forwarder. In the case of a match,
the packet will be passed to the FTN Forwarder. Otherwise, the next block will be either IPv4 or
IPv6, depending on the packet. (The IPv4 and IPv6 mirocblock interactions are more complex than
those shown in Figure 10-6).

Each of the IP microblocks has to implement an LPM function operating on an MPLS-aware
routing table. The MPLS-awareness means that IP Routing table entries can be populated both by
the IP routing protocols and MPLS control protocols. In the case of a match, the LPM lookup result
specifies both the next block to execute and next hop id. If the next block variable points to the
FTN Forwarder, the next hop id has a meaning specific to MPLS.

The pipeline ends with a Dl_Sink microblock. It passes the packet either to an appropriate core
component in case of an exception set by one of the previous blocks, or to the transmitting scratch
ring.

Figure 10-6. Universal IP and MPLS Microblocks Layout

B1770

IPv4
Fwd.

IPv6
Fwd.

MPLS
FTN
Fwd.

6-tuple
ClassifierRx TxDl_SinkDl_Source

to core
component

MPLS
ILM
Fwd.

IPv4
Fwd.

IPv6
Fwd.

MPLS
FTN
Fwd.

6-tuple
ClassifierRx TxDl_SinkDl_Source

to core
component

Logical layout

Flattened layout

MPLS
ILM
Fwd.

Software Building Blocks Applications Design Guide 137

MPLS Application

Either the IPv4 or IPv6 forwarder microblock can be removed from the above pipeline, if the node
does not forward IPv4 or IPv6 traffic. However, at least one of them has to be placed before the
FTN Forwarder block, to provide the LPM functionality.

On a transit LSR, the Dl_Source microblock recognizes MPLS packets by their L2 protocol
number, present in the packet's meta-data, and sets the dispatch loop next block variable to point to
the ILM Forwarder. The ILM Forwarder performs the MPLS label lookup in the ILM table to find
an entry specifying label stack operation and the next hop for the packet. According to the lookup
result, the ILM Forwarder can drop the packet, or pass it to the Dl_Sink microblock for sending to
the TX microblock.

On an egress LER, the Dl_Source microblock recognizes MPLS packets by their L2 protocol
number, present in the packet's meta-data, and sets the dispatch loop next block variable to point to
the ILM Forwarder. The ILM Forwarder pops MPLS labels from the incoming MPLS packets, and
forwards them further as native IP datagrams. However, two cases are possible.

In the case of penultimate hop popping, the packet is sent directly to the IP next hop specified in the
entry pointed to by the result of the ILM table lookup. Therefore, after performing the pop
operation, the ILM Classifier passes the packet to the Dl_Sink microblock for sending to the TX
microblock.

In the case of ordinary popping, the ILM Forwarder performs the pop operation and passes the IP
packet to the IPv4 forwarder for normal route determination.

Placing the ILM Forwarder before the IP forwarder eliminates necessity of looping back the packet
to the beginning of the pipeline.

10.3.2 TTL Processing

[RFC3032] describes rules for TTL processing in MPLS networks. [RFC3443] updates these rules
and ties together the tunnel terminology for MPLS support of Differentiated Services, introduced
in [RFC3270], with TTL processing in hierarchical MPLS networks.

[RFC3270] defines three tunneling models:

• pipe—use outgoing per-hop behavior (PHB) to service the packet, leave exposed PHB
information untouched. This model is used to hide intermediate MPLS nodes between LSP
ingress and egress from the DiffServ perspective.

• short-pipe—use exposed PHB information to service the packet, leave exposed header
untouched. This is a variation of the pipe model, in which the LSP egress outgoing interface
uses the downstream cloud DiffServ policies. The short-pipe model is especially suitable when
combined with penultimate hop popping.

• uniform—use the outgoing PHB to service packet, override exposed header with outgoing
PHB. In this model all tunnel nodes are visible from the DiffServ perspective. The DiffServ
information is always encoded in the outer-most label.

[RFC3270] requires that all routers implement the pipe model, while others are optional.

The Point Reyes MPLS forwarder supports all tunneling models described above.

This section summarizes TTL processing rules for different tunneling models, consistent with
[RFC3443]. The MPLS forwarder implementation conforms to those rules.

138 Software Building Blocks Applications Design Guide

MPLS Application

10.3.2.1 TTL Processing in Different Tunneling Models

[MPLS-TTL] presents TTL processing rules for different tunneling models, consistent with
corresponding DiffServ information processing (consistent with [RFC3032]). The MPLS
forwarder implementation conforms to those rules. They are summarized in this section.

Figure 10-7 illustrates the TTL processing for the Uniform model MPLS LSP (with or without
PHP).

Note: The inner and outer TTLs of the packets are synchronized at tunnel ingress and egress.

Figure 10-8 illustrates the TTL processing for the Short Pipe model LSPs without PHP.

Figure 10-7. TTL Processing for Uniform Model LSPs

B0872-01

TTL=n-1

Ingress Node Egress or Penultimate
Node

TTL=n-2(Swap) TTL=n-i(Swap)

TTL=n (Push) TTL=n-i-1(Pop)TTL=non-meaningful

Inner Header

Outer Header

LSP

Figure 10-8. TTL Processing for Short Pipe Model LSPs without PHP

B0873-01

TTL=N* TTL=N-1(Swap) TTL=N-1(Swap)

TTL=n (Push) TTL=n-2(Pop)TTL=n-1

Inner Header

Outer Header

Ingress Node

* -N value is unrelated to n

Egress Node

LSP

Software Building Blocks Applications Design Guide 139

MPLS Application

The Short Pipe model was introduced in [RFC3270]. In the Short Pipe model, the forwarding
treatment at the egress LSR is based on the tunneled packet as opposed to the encapsulating packet.

Figure 10-9 shows TTL processing for the Short Pipe model with PHP.

Since the label has already been popped by the LSP's penultimate node, the LSP egress node just
decrements the header TTL. Also note that at the end of the Short Pipe model LSP, the TTL of the
tunneled packet has been decremented by two either with or without PHP.

Figure 10-10 shows TTL Processing for the Pipe Model LSPs (without PHP only).

From the TTL perspective, the treatment for a Pipe model LSP is identical to the Short Pipe model
without PHP.

Figure 10-9. TTL Processing for Short Pipe Model LSPs with PHP

B0874-01

TTL=N* TTL=N-1(Swap) TTL=N-i(Swap)

TTL=n (Push) TTL=n-1(Pop) (Decr)

LSP

TTL=n-2TTL=n-1

Inner Header

Outer Header

Ingress Node

* -N value is unrelated to n

Penultimate
 Node

Egress Node

Figure 10-10. TTL Processing for Pipe Model LSPs without PHP

B0875-01

TTL=N* TTL=N-1(Swap) TTL=N-i(Swap)

TTL=n (Push) TTL=n-2(Pop)

LSP

TTL=n-1

Inner Header

Outer Header

Ingress Node

* -N value is unrelated to n

Egress Node

140 Software Building Blocks Applications Design Guide

MPLS Application

10.4 Data Plane Architecture Dependencies

10.4.1 Target HW Architecture

The Intel® Internet Exchange Architecture Software Development Kit (IXA SDK) building blocks
are targeted primarily at the dual IXP blade architecture shown in Figure 10-11.

In the above blade architecture, the ingress IXP processor on a blade receives data packets from an
external interface (Ethernet, POS, ATM), processes them and sends them to the backplane (e.g.
CSIX switching fabric). The egress IXP processor receives data packets from the backplane,
processes them and sends them out through an external interface (Ethernet, POS, ATM). This
scenario imposes division of the software building blocks into an ingress and egress data path.

Figure 10-11. Dual NP Blade Architecture

B0878-01

Data Plane

Blade 1

Ingress
Intel® IXP2400

Network Processor

S
w

itc
hi

ng
F

ab
ric

(e
.g

.,
C

S
IX

-b
as

ed
)Data In

Data Out

Data Out

Data In

Egress
Intel® IXP2400

Network Processor

Blade 2

Egress
Intel® IXP2400

Network Processor

Ingress
Intel® IXP2400

Network Processor

Ingress datapath
building block

Egress datapath
building block

Ingress datapath
building block

Egress datapath
building block

Software Building Blocks Applications Design Guide 141

MPLS Application

Figure 10-12 illustrates the single NP blade architecture, which may be possible in the future.

Because the data path through the system is the same as in the previous case (external interface 1 -
backplane port 1 - backplane port 2 - external interface 2), the software block division remains
unchanged—they just reside on the same processor, instead of on separate processors. Therefore,
the MPLS forwarder building blocks described in this document shall be applicable to both
architectures.

10.4.2 Ingress and Egress Microblocks

Figure 10-13 presents the high level view of the MPLS forwarding path with division between the
ingress and egress Network Processor (this scenario applies both to the FTN and ILM Forwarders,
and to single and dual IXP blade designs).

Figure 10-12. Single NP Blade Architecture

B0883-01

Data Plane

Blade 1

Ingress/Egress
Intel® IXP2400

Network Processor

S
w

itc
hi

ng
F

ab
ric

(e
.g

.,
C

S
IX

-b
as

ed
)

Data In

Data Out

Data Out

Data In

Blade 2

Egress/Ingress
Intel® IXP2400

Network Processor

Ingress datapath
building block

Egress datapath
building block

Ingress datapath
building block

Egress datapath
building block

142 Software Building Blocks Applications Design Guide

MPLS Application

On the ingress NP, a data packet received from an external interface is stripped off of its L2 header
by the interface RX microblock, and handed over to the MPLS forwarder (Fwd) block without the
L2 encapsulation (the relevant L2 information is carried in a special meta-data structure associated
with the packet). The MPLS forwarder processes the packet, determines its next hop, and stores the
next hop information in the packet's meta-data. Additionally, the MPLS forwarder on the ingress
NP gathers MPLS statistics connected with external input interfaces, incoming LSPs, and outgoing
LSPs.

Additionally, MPLS statistics for external output interfaces is gathered by the L2 Encapsulation
microblock on the egress NP. Such design prevents from splitting the MPLS forwarder microblock
between ingress and egress NP. Then the packet is passed to the backplane TX microblock. The
packet still does not contain the L2 encapsulation; its associated next hop information comprises
the egress blade number, external output interface number and egress next hop ID. This
information is transmitted in a special header together with the packet over the backplane to the
egress NP. There it is processed by the L2 encapsulation (L2 Enc) part of the TX microblock. This
block uses the egress next hop ID to find a predefined L2 header that should be applied to the
packet before sending it through the output external interface. Predefined L2 headers for known IP
next hops are created by L2/ARP core components in a way described in the Intel® Internet
Exchange Architecture Software Building Blocks Developer’s Manual, Chapter 47, “Ethernet ARP
Module,” and Chapter 62, “L2 Table Manager.”. To be applicable to MPLS frames, the hardware
protocol type in the predefined L2 header must be set to a media-specific value.

The division of the data path between media-independent forwarding and L2 encapsulation
simplifies implementation, and allows the L2 encapsulation and transmit microblock to be reused
by IP and MPLS forwarders.

Figure 10-13. MPLS Ingress and Egress Microblocks

B0884-01

Data Plane

Blade 1

Ingress
Intel® IXP2400

Network Processor

S
w

itc
hi

ng
F

ab
ric

(e
.g

.,
C

S
IX

-b
as

ed
)

Data In Data Out

Blade 2

Egress
Intel® IXP2400

Network Processor

packet with
L2 header

MPLS Statistics for
input ports, incoming LSPs,

 outgoing LSPs

RX MPLS
Fwd

RX L2
Enc

TX

MPLS Statistics for
output ports

packet + metadata
with blade#, port#,

next hop ID

MPLS
Stats

TX

Software Building Blocks Applications Design Guide 143

MPLS Application

10.4.3 MPLS Forwarder Core Component Overview

Figure 10-14 illustrates the MPLS core component and their interactions with other core
components in the system. The dashed arrows in Figure 10-14 denote control messages or function
calls, whereas the solid arrows show packet flows between components..

The MPLS Core Component operates on behalf both the ILM Forwarder and FTN Forwarder
microblocks. It creates and maintains data structures shared among the microblocks and the core
component, and the data comprises:

• MPLS statistics counters,

• NHLFE table,

• ILM table.

During initialization, the MPLS Core Component configures the ILM Forwarder and FTN
Forwarder microblocks, patching it with the ILM, NHLFE, and MPLS statistics table base
addresses.

During normal operation, the MPLS Core Component performs two kinds of tasks:

• Processes ILM and NHLFE table add/delete requests issued by the control plane,

• Processes MPLS exception packets sent to it by the MPLS microblocks.

Figure 10-14. MPLS Forwarder Core Component

B0999-01

INTEL® XSCALE

MICROENGINES

Legend:
Control
Packet flow

Control & Configuration APIs

FTN Forwarder
microblock

ILM Forwarder
microblock

MPLS CC

QM CC

IPv4 CC

Execution Engine

144 Software Building Blocks Applications Design Guide

MPLS Application

A FEC to NHLFE mapping add/delete request comprises a FEC definition (in most cases, an IP
address and mask pair), and a set of corresponding NHLFE table entries. Therefore, it involves
changes in both the IP Routing table and NHLFE table. The MPLS core component adds or deletes
MPLS FECs to the IP Routing table by means of the IPv4 Core Component, and updates the
NHLFE table. The NHLFE table is used by the FTN Forwarder microblock.

An LSP add/delete request comprises an MPLS label, and a set of corresponding NHLFE table
entries. Due to performance requirements, the ILM and NHLFE information for a given LSP is
combined into one ILM table entry, independent from the NHLFE table used by the FTN
Forwarder. The ILM table is used by the ILM Forwarder microblock.

The ILM Forwarder microblock sends exception packets to the MPLS Core Component if:

• MPLS-labeled packet's length exceeds the maxLabPktSize parameter value set for the output
port. Depending on the DF bit value from the packet's IP header, it can be fragmented and
forwarded as several shorter MPLS packets through the MPLS core component (slow path), or
an ICMP error message can be generated. If the exception packet is a non-IP packet, it is
dropped.

• If the packet's Time-to-live (TTL) value is not greater than the TTL value from the appropriate
ILM table entry (typically 1). In this case an ICMP "Time exceeded" message is generated,
encapsulated in the packet's label stack and forwarded towards packet's destination.

• MPLS packet with the “Router Alert” label has been detected (label value 1). In this case, the
actual forwarding of the packet depends on the label beneath the "Router Alert" label - the
packet may be forwarded as one of the following:

• MPLS packet through the MPLS Core Component (slow path),

• IP packet through the IPv4 Core Component,

• Generated an ICMP error message.

The FTN Forwarder microblock sends exception packets to the MPLS Core Component if:

• MPLS-labeled packet's length exceeds the maxLabPktSize parameter value set for the output
port. Depending on the DF bit value from the packet's IP header, it can be fragmented and
forwarded as several shorter MPLS packets through the MPLS core component (slow path), or
an ICMP error message can be generated. If the exception packet is a non-IP packet, it is
dropped.

• If the packet's TTL value is not greater than the TTL value from the appropriate FTN table
entry (typically 1). In this case an ICMP “Time exceeded” message is generated, encapsulated
in the packet's label stack and forwarded towards packet's destination.

10.4.3.1 Inter-Component Dependencies

10.4.3.1.1 Operational Environment

The MPLS core component operates in the environment defined by the Core Component
Infrastructure. This infrastructure allocates individual core components to so called execution
engines (threads). To avoid synchronization problems in accessing shared data structures, the
MPLS core component should be placed in the same execution engine as the IP forwarder core
component, because it assumes sharing the IP Routing table with the IPv4 Forwarder. Figure 10-14
illustrates the indicated dependencies by placing the relevant components inside a rectangle labeled
"Execution Engine".

Software Building Blocks Applications Design Guide 145

MPLS Application

10.4.3.1.2 Initialization Order

The MPLS core component should be initialized after the IPv4 Core Component, because it shares
the IP Routing table with this component. Figure 10-15 illustrates the required initialization order..

10.4.3.1.3 De-Initialization Order

The MPLS Core Component de-initialization should be performed in the reverse order to its
initialization sequence. Because the MPLS Core Component shares the IP forwarding table with
the IPv4 Core Component, it is required that the IPv4 Core Component be de-initialized after the
MPLS Core Component. Figure 10-16 illustrates the MPLS Core Component de-initialization
order..

Figure 10-15. MPLS Core Component Initialization Order

B1000-01

Core
Component

Infrastructure

ix_cc_ipv4_init()

ix_cc_mpls_init()

IPv4 CC MPLS CC

Figure 10-16. MPLS Core Component De-Initialization Order

B1002-01

Core
Component

Infrastructure

ix_cc_ipv4_fini()

ix_cc_mpls_fini()

IPv4 CC MPLS CC

146 Software Building Blocks Applications Design Guide

MPLS Application

10.4.3.1.4 Guaranteed Shared Data Validity

The MPLS core component must ensure that other core components and the MPLS microblocks
always have access to valid shared data. This is achieved by utilizing two general techniques:

• Shared data validity among the MPLS core component and other core components is
guaranteed by placing the affected core components in the same execution engine (thread). In
this way it is possible to implement atomic shared data updates without the need for table
locking.

• Integrity of the forwarding tables and other data shared among the MPLS core component and
microengines is achieved by adding and removing data in a specific order. Each table entry has
a flag indicating whether this entry is valid. In a multi-word entry, an update operation is
performed by first invalidating the entry with an atomic memory swap operation, then setting
all other data to the desired values, and finally validating the entry with another atomic
memory swap. In a set of related entries, an update operation is performed by first invalidating
the first (master) entry in the lookup sequence, then changing all entries pointed to by the
master entry, and finally validating the master entry with an atomic memory swap.

Software Building Blocks Applications Design Guide 147

10 Gb Ethernet IPv4/IPv6 Forwarding/
Tunneling Application 11

This chapter describes the design of an 10Gb IPv4/IPv6 Forwarding and Tunneling application
using the Intel® IXP2800 Network Processor. Two half-duplex IXP2800 network processors are
used to implement a 10Gb (10x1Gb and 1x10Gb) Ethernet line card that interfaces to a CSIX
switch fabric. This section provides a high-level design overview and lists the different software
components used to build this application. It focuses only on the fast path or microengine
components of the design. The Intel XScale® core components for this application are described in
Intel® Internet Exchange Architecture Portability Framework Reference Manual.

The application described in this chapter is supported on the Intel® IXDP2800 Advanced
Development Platform.

Note: The designs for 10x1Gb and 1x10Gb applications are almost identical except for the packet Tx
blocks. Such exceptions are explicitly noted in this chapter. All other details are applicable to both
applications.

11.1 Hardware Overview

Figure 11-1 shows two Intel® IXP2800 Network Processors in a typical CSIX full duplex
configuration. In this configuration, the two IXP2800 processors are identified as the ingress
processor (receives from the Media interface and transmits to the CSIX Fabric) and the egress
processor (receives from the CSIX Fabric and transmits to the Media interface). The hardware is
configured in SPI-4 mode. Up to 10 Gigabit Ethernet ports are supported.

The Ingress IXP2800 receives Ethernet frames that carry IPv4 datagrams. The frames are
assembled into IPv4 packets and the Layer-2 (Ethernet) headers are removed. Based on the IPv4
header, a Longest Prefix Match (LPM) lookup is performed and the packets are segmented into
CSIX C-Frames and transmitted to the CSIX fabric. The result of the LPM lookup determines
which IXP2800 connected to the Fabric receives the packet, and on which port on that IXP2800 the
packet is transmitted.

The Egress IXP2800 receives CSIX C-Frames from the fabric and reassembles these into IPv4
datagrams. The Layer-2 (Ethernet) headers are added and the packets are transmitted over the
appropriate port.

148 Software Building Blocks Applications Design Guide

10 Gb Ethernet IPv4/IPv6 Forwarding/Tunneling Application

Figure 11-1. Example Hardware Configuration for 10x1/1x10 Gb Ethernet with CSIX Fabric

B1846

Ethernet MAC

Ingress IXP2800

Egress IXP2800

CSIX
Switch
Fabric

SPI-4 CSIX

Ethernet frames C Frames

C-frame
header

IP

Cbus –CSIX
Flow control

CSIX
Switch
Fabric

CSIX

C Frames

Ethernet

IP IP

Cbus –CSIX
Flow control

Software Building Blocks Applications Design Guide 149

10 Gb Ethernet IPv4/IPv6 Forwarding/Tunneling Application

11.2 Software Overview

Figure 11-2 shows the microblocks needed to implement an Ethernet 10x1 Gb or 1x10 Gb IPv4/
IPv6 forwarding/tunneling application. The design for this application is based on the guidelines
specified in the Intel® Internet Exchange Architecture Portability Framework Developer’s Manual.
The driver microblocks (Receive, Transmit, Scheduler and QM) run on different microengines to
process the packets.

11.2.1 Data Flow for the Ingress IXP2800

The following sections describe the data flow on the ingress IXP2800 network processors.

11.2.1.1 Packet RX

The packet RX block is identical to the Packet RX block described in Section 5.2.1.1, “Packet RX”
on page 67 in Chapter 5, “OC-192 POS IPv4/IPv6 Forwarding/Tunneling Application” except that
it sets the header type field in the packet meta data to Ethernet and runs on one microengine (ME).

Figure 11-2. Microblocks for an Ethernet 10x1/1x10 Gb IPv4 Forwarding Application

B1847

CSIX
Fabric

Ingress IXP2800 Network Processor

Egress IXP2800 Network Processor

CSIX Cell
Scheduler QM CSIX

TX 1

IPv4 / IPv6
Forwarding and

Tunneling

PPP
decap/
classify

CSIX
TX 2Statistics

QM Packet
Scheduler Statistics CSIX RXEthernet

ARP
TX

HelperTX

Packet
RX

Packet
TX

150 Software Building Blocks Applications Design Guide

10 Gb Ethernet IPv4/IPv6 Forwarding/Tunneling Application

11.2.1.2 Packet Processing Microengines (PPP Decap/Classify + IPv4/IPv6
Forwarding + Tunneling)

The Packet Processing microengines (Ethernet Decap/Classify + IPv4/v6 Forwarding + Tunneling)
are identical to the Packet processing RX block in Section 5.2.1.2, “Packet Processing
Microengines (PPP Decap/Classify + IPv4/IPv6 Forwarder/Tunneling)” on page 68 of Chapter 5,
“OC-192 POS IPv4/IPv6 Forwarding/Tunneling Application”, except that the Ethernet
decapsulation/classify/filter module replaces the PPP decapsulation/classify module.

The Ethernet decapsulation/classify/filter module removes the layer-2 Ethernet header from the
packet by updating the offset and size fields in the packet descriptor. It also implements MAC
filtering based on the destination MAC address in the Ethernet header. Based on this filtering, the
packet may be dropped.

11.2.1.3 Statistics Microblock

This block is identical to the Statistics block described in Section 5.2.1.3, “Statistics Microblock”
on page 69 of Chapter 5, “OC-192 POS IPv4/IPv6 Forwarding/Tunneling Application”.

11.2.1.4 CSIX Scheduler

This block is identical to the CSIX Scheduler block described in Section 5.2.1.4, “CSIX
Scheduler” on page 69 of Chapter 5, “OC-192 POS IPv4/IPv6 Forwarding/Tunneling
Application”.

11.2.1.5 Cell Based Queue Manager (Cell QM)

This block is identical to the Cell Based Queue Manager block described in Section 5.2.1.5, “Cell
Based Queue Manager (Cell QM)” on page 70 of Chapter 5, “OC-192 POS IPv4/IPv6 Forwarding/
Tunneling Application”.

11.2.1.6 CSIX TX

This block is identical to the CSIX TX block described in Section 5.2.1.6, “CSIX TX” on page 70
of Chapter 5, “OC-192 POS IPv4/IPv6 Forwarding/Tunneling Application”.

11.2.2 Data Flow for the Egress IXP2800

This section describes the data flow for the Egress IXP2800.

11.2.2.1 CSIX RX

This block is identical to the CSIX RX block described in Section 5.2.2.1, “CSIX RX” on page 71
of Chapter 5, “OC-192 POS IPv4/IPv6 Forwarding/Tunneling Application” except it also puts
output port information into the message it forwards to downstream microblocks to be used by
Packet Scheduler.

Software Building Blocks Applications Design Guide 151

10 Gb Ethernet IPv4/IPv6 Forwarding/Tunneling Application

11.2.2.2 Ethernet ARP Microblock

This block checks whether the incoming packet has a valid L2 header table entry based on next hop
id in the meta data. If this entry is invalid, this packet is enqueued to be processed by the Intel
XScale® core. This block also receives packets from XScale core and sends it to the next stage of
the pipeline.

11.2.2.3 Statistics Microblock

This block runs on a single microengine. It is currently a place-holder for statistics handling. It is
anticipated that when this application is extended for MPLS and DiffServ, this microblock is used
to manage per-flow statistics.

It handles dropping of large packets that are stored in multiple buffers. It interfaces with Ethernet
ARP block through scratch ring, and interfaces with Egress Packet Scheduler via the Next
Neighbor ring.

11.2.2.4 Egress Packet Scheduler

This block is identical to the Egress Packet Scheduler described in Section 5.2.2.2, “Egress Packet
Scheduler” on page 71 in Chapter 5, “OC-192 POS IPv4/IPv6 Forwarding/Tunneling
Application”.

Note: This scheduler is currently fully tested only in simulation mode. In the future release it will be
tested on hardware. Currently we use a simple round robin scheduler when running this application
on hardware.

11.2.2.5 Packet Based Queue Manager (Packet QM)

This block is identical to the Packet QM described in Section 5.2.2.3, “Packet Based Queue
Manager (Packet QM)” on page 72 in Chapter 5, “OC-192 POS IPv4/IPv6 Forwarding/Tunneling
Application”.

11.2.2.6 TX Helper

This block helps the Packet TX block by performing the following two functions:

• Gets TX requests from the Packet QM block via the Next Neighbor ring and then forwards the
TX request to the Packet TX block through the scratch ring.

• Updates the per-class counters in SRAM. These counters keep tracks of the number of packets
transmitted per class for the DRR Egress Packet Scheduler. To do this, the TX Helper block
reads packet meta data to find the class ID for each packet. Then it calculates the SRAM
address of the counter, reads the counter, increments the content, and writes back the new
value.

11.2.2.7 Packet TX

The Packet Transmit microblock transmits packets over the Ethernet media interface. There are
two designs depending on whether the application is using 10x1 Gb Ethernet ports or 1x10 Gb
Ethernet ports.

152 Software Building Blocks Applications Design Guide

10 Gb Ethernet IPv4/IPv6 Forwarding/Tunneling Application

• For 10x1 Gb Ethernet ports, Packet TX runs on two microengines in a functional pipeline,
each microengine handling the transmission of 5 ports, as described in the Intel® Internet
Exchange Architecture Software Building Blocks Developer’s Manual, Chapter 12, “Packet
TX–Multiports Microblock.”

• For 1x10 Gb Ethernet ports, Packet TX runs on two microengines in a context pipeline
connected by a Next Neighbor ring, as described in Section 5.2.2.5, “Packet TX” on page 72
of Chapter 5, “OC-192 POS IPv4/IPv6 Forwarding/Tunneling Application”.

Packet Tx segments a packet into mpackets, and moves them into TBUFS for the MSF state
machine to transmit. It also adds the layer-2 Ethernet header to the packet.

For optimum utilization of TBUF elements, all ports share the same segment of TBUF. The port
status and port TX FIFO high/low watermark is used to implement a flow control mechanism to
prevent head of line blocking between ports.

Before the Packet TX moves data into TBUF, it makes sure that the TBUF in-flight (data filled, but
not transmitted out of TBUF) does not exceed a predefined threshold to prevent TBUF overwriting.

This block also periodically updates the scheduler with information about how many packets have
been transmitted. If the packets in flight for a particular port (packets scheduled but not
transmitted) exceed a certain limit (which depends on the bandwidth supported by that port), then
the scheduler stops scheduling any more packets for the port.

11.3 Performance Characterization

The Intel® IXP2800 Network Processor operates at 1400 MHz. For a minimum Ethernet packet of
64B, the packet inter-arrival time at 10 Gbps line rate is 94 ME cycles. If only one microgine is
performing a specific function in the pipeline, then in order to maintain line rate for minimum
packets, that microblock of the pipeline needs to retire a packet every 94 cycles. If n microengines
are sharing a specific function in the pipeline, then that microblock needs to retire a minimum
packet every n*94 cycles. For example, there are two microengines sharing the transmission
handling in Packet TX, then the budget for the min packet is 2*94 =188 cycles.

Table 11-1 summarizes the performance analysis for the Ethernet pipeline.

Table 11-1. Summary of Performance Analysis for the Ethernet Pipeline

Line rate for 10 Gig Ports 10 Gigabits/sec

Min Ethernet packet size 64 bytes (+ 20 byte inter packet gap)

Packet Throughput for min packets 14.88 million packets/sec = (10 / (84*8)) * (10**9)

IXP2800 clock frequency 1400 MHZ

Inter-packet arrival time for min packets 1400/14.88 = 94 cycles

Compute cycles per packet for a single microengine 94

Latency per packet for a single microengine 94 * 8

Compute cycles per packet for n microengines
running in parallel 94*n

Latency per packet for n microengines running in
parallel 94*8*n

Software Building Blocks Applications Design Guide 153

10 Gb Ethernet IPv4/IPv6 Forwarding/Tunneling Application

11.4 Ingress System Resource Allocation

The tables 11-2 and 11-3 show the system resources mapped for the Ingress IXP2800. This
mapping reflects the system defaults that may be changed. The allocation of microengines is done
such that it optimizes the performance of this specific application and may be changed for other
applications.

The physical assignment of function to microengine is important since it not only affects when the
next neighbor registers and signaling can be utilized, but it also affects the utilization of the internal
Command bus and S-Push/Pull buses. This assignment attempts to balance the usage of the
Command bus and S-Push/Pull buses across the two clusters.

Note: These values are defined in a system header file dl_system.h and may be changed as required.

The IXP2800 supports four SRAM channels and three DRAM channel. Table 11-3 shows the
SRAM, DRAM and scratch utilization for the 10GB Ethernet IPv4/IPv6 Forwarding/Tunneling
Application.

Table 11-2. System Resources Mapped for the Ingress IXP2800

Microblock ME # Communication Mechanism with
previous stage

Packet RX ME 1:2 Auto-push status from MSF

IPv4 Forwarder +
Layer2 decapsulation/Classify ME 0:0, 0:1, 0:2, 0:3, 0:4, 1:4, 1:5 Scratch ring

Statistics ME 0:5 Scratch ring

CSIX Scheduler ME 0:6 NN ring

Queue Manager ME 0:7 NN ring

CSIX TX ME 1:0, 1:1 NN ring

Headroom 3 microengines

Table 11-3. SRAM, DRAM and Scratch Utilized for Ingress IXP2800

Item Size per entry in bytes Number of entries
Total

SRAM
used

Total
DRAM
used

Total
Scratch

used

Buffer Descriptors 32 32k (In simulation, we
use only 320 buffers) 1 MB

Buffers 2048 32k 64 MB

Queue Descriptors 16 256 (1 per VOQ) 4K

CSIX TX contexts 32 256 (1 per VOQ) 8k

Trie Table

64 (The root Trie table
requires at least 257k to
support hi64k and hi256
tables. In addition each
node requires 64 bytes.
These nodes are added
as needed)

See note in previous
column. Assuming
256k routes,
approximately 128k
nodes are needed

8MB

Route Table (Next
Hop Information) 16 Assuming 4k next hops 64k

IPv4 statistics 4 16 64

154 Software Building Blocks Applications Design Guide

10 Gb Ethernet IPv4/IPv6 Forwarding/Tunneling Application

11.5 Egress System Resource Allocation

Table 11-4 shows the system resources allocation for the Egress IXP2800.

The mapping of networking functions on to the microengines shows that 11 microengines are used
to perform the fast path processing for this application. Additional functionality required by
customers can be mapped on to the remaining microengines.

Packet RX statistics 4 16*16 1024

IPv4 Directed
Broadcast Table 32 (local memory) 64

Ring from Packet RX
to packet processing
pipeline
(IPv4+Layer2 Decap/
Classify)

12 2k/12 2k

IPv4 to Statistics ring 12 2k/12 2k

QM Q-Array entries N/A 16

Buffer Free list Q-
Array entry N/A 4

Table 11-3. SRAM, DRAM and Scratch Utilized for Ingress IXP2800 (Continued)

Item Size per entry in bytes Number of entries
Total

SRAM
used

Total
DRAM
used

Total
Scratch

used

Table 11-4. System Resources Allocation for the Egress IXP2800

Microblock ME # Communication Mechanism with previous stage

CSIX RX ME 1:1, 1:3 Auto-push status from MSF

Ethernet ARP ME 0:1 Scratch ring

Statistics ME 0:2 Scratch ring

Egress Scheduler ME 0:3, 0:4, 0:5 NN ring

Egress QM ME 0:6 NN ring

TX Helper ME 0:7 NN ring

Packet TX ME 1:0, 1:2 Scratch ring

Headroom 5 microengines N/A

Software Building Blocks Applications Design Guide 155

10 Gb Ethernet IPv4/IPv6 Forwarding/Tunneling Application

Table 11-5 shows the SRAM, DRAM and scratch utilization for the 10GB Ethernet IPv4/IPv6
Forwarding/Tunneling Application. These values are defined in a system header file dl_system.h
and may be changed as needed.

11.6 Interfaces Between the Various Microblocks

This section describes the interfaces between the different microblocks in the ingress and egress
processors for this application.

Table 11-5. SRAM, DRAM and Scratch Utilization for Egress IXP2800

Item Size per entry in bytes Number of entries
Total

SRAM
used

Total
DRAM
Used

Total
Scratch

used

Buffer Descriptors 32 32k (In simulation we
use only 320 buffers) 1 MB

Queue Descriptors 16 256 (16 ports x 16
classes per port) 4k

CSIX RX
Reassembly contexts 32 1024 32k

Buffers 2048 32k 64 MB

CSIX RX to Ethernet
ARP ring 12

2k/12 (the size of the
ring is 512 long words,
but each entry
enqueued uses 3 long
words. Therefore the
total number of entries
is 512/3 = 170)

2k

Ethernet ARP ring
to Statistics Ring 12

2k/12 (the size of the
ring is 512 long words,
but each entry
enqueued uses 3 long
words. Therefore the
total number of entries
is 512/3 = 170)

2k

Inside Scheduler
between Count block
and Class Scheduler
block

4 512 2k

Layer 2 table with
mapping from next
hop id to Ethernet
header

16 65536 1 MB

TX Helper to first
Packet TX 4 256 1K

TX Helper to second
Packet TX 4 256 1K

QM Q-Array entries N/A 16

Buffer Free list Q-
Array entry N/A 4

156 Software Building Blocks Applications Design Guide

10 Gb Ethernet IPv4/IPv6 Forwarding/Tunneling Application

11.6.1 Packet RX and Packet Processing Microengines

The interface between the Packet RX microblock and the packet processing microengines is a
scratch ring. Table 11-6 describes each entry in the scratch ring—which is three long words.

The format depends on whether the packet fits in one buffer or not. In the case of packets that span
across multiple buffers, some of the packet descriptor information is written to SRAM and the rest
to the scratch ring. In the case of packets that fit into a single buffer, all the information is packed
into the scratch ring eliminating one read/write to SRAM in the critical path. Bit 31 of LW0 (EOP
bit of the handle) is used to detect if a packet spans across multiple buffers. If this bit is set
(implying that the buffer is a SOP/EOP buffer), then the packet is contained in a single buffer.

This interface is used for packets that fit entirely in one buffer.

This interface is used for packets that require more than one buffer.

11.6.2 Packet Processing Microengines and Statistics

The Packet Processing Microengines and Statistics interface is a scratch ring. Table 11-8 describes
each entry in the scratch ring—which is three long words.

Table 11-6. Three-Word Scratch Ring Entry —Packets fit on one Buffer

LW Bits Size Field Description

0 31:0 32 dl_buffer_handle Buffer Handle for the SOP Descriptor

1 31:16 16 input_port Input port on ingress processor

15:12 4 free_list_id Free list ID for buffer

11:8 4 rx_stat Receive Status Flag

7:0 8 header_type Type of header at offset bytes into the packet

2 31:16 16 buffer_size Buffer size in bytes

15:0 16 offset Offset of the start of data in the SOP buffer in bytes

Table 11-7. Three-Word Scratch Ring Entry —Packets Require more than one Buffer

LW Bits Size Field Description

0 31:0 32 dl_buffer_handle Buffer Handle for the SOP Descriptor

1 32:0 32 dl_eop_buffer_handle Buffer Handle for the EOP Descriptor

2 31:16 16 packet_size Total packet size across buffers in bytes

15:0 16 offset Offset of the start of data in the SOP buffer in bytes

Table 11-8. Three-Word Scratch Ring Entry—Packet Processing Microengines and Statistics

LW Bits Size Field Description

0 30:16 16 MOP_EOP_buf_size Size in bytes of all MOP buffers and the EOP buffer of
the packet

0 0:15 16 Queue Number Queue Number

1 31:0 32 SOP Buffer Handle Buffer Handle for the SOP Descriptor

2 31:0 32 EOP Buffer Handle Buffer Handle for EOP Descriptor (may be NULL)

Software Building Blocks Applications Design Guide 157

10 Gb Ethernet IPv4/IPv6 Forwarding/Tunneling Application

11.6.3 Statistics and CSIX Scheduler

The Statistics and CSIX Scheduler interface is a next neighbor (NN) ring. Table 11-9 describes
each entry in the NN ring—which is three long words.

11.6.4 CSIX Scheduler and Cell Queue Manager

The CSIX Scheduler and Cell Queue Manager interface is a next neighbor ring. Table 11-10
describes each entry in the NN ring—which is three long words.

11.6.5 Cell Queue Manager and CSIX TX

The Cell Queue Manager and CSIX TX interface is a next neighbor ring. CSIX Transmit is a two-
microengine context pipe-stage. The cell queue manager writes to the NN ring of the first CSIX TX
microengine. Table 11-11 describes each entry in the NN ring—which is two words.

Table 11-9. Three-Word NN Ring Entry (Statistics and CSIX Scheduler)

LW Bits Size Field Description

0 30:16 16 Packet cell count Sum of all buffer cell counts belonging to the packet

0 0:15 16 Queue Number Queue Number

1 31:0 32 SOP Buffer Handle Buffer Handle for the SOP Descriptor

2 31:0 32 EOP Buffer Handle Buffer Handle for EOP Descriptor (may be NULL)

Table 11-10. Three-Word NN Ring Entry (CSIX Scheduler and Cell Queue Manager)

LW Bits Size Field Description

0 30:16 16 Dequeue Queue # Queue number from which to dequeue. Zero implies no
dequeue

0 0:15 16 Enqueue Queue # Queue number on which to enqueue. Zero implies no
enqueue

1 31:0 32 SOP Buffer Handle Buffer Handle for the SOP Descriptor

2 31:0 32 EOP Buffer Handle Buffer Handle for EOP Descriptor (may be NULL)

Table 11-11. Two-Word NN Ring Entry (Cell Queue Manager and CSIX TX)

LW Bits Size Field Description

0 31:16 16 Reserved Reserved

0 15:0 16 Queue Number Queue Number

1 31:0 32 Buffer Handle Buffer Handle currently being transmitted for
queue

158 Software Building Blocks Applications Design Guide

10 Gb Ethernet IPv4/IPv6 Forwarding/Tunneling Application

11.6.6 CSIX TX—First ME to Second ME

The interface between the first CSIX TX microengine and second CSIX TX microengine is a next
neighbor ring. Table 11-12 describes each entry in the NN ring—which is eight long words.

11.6.7 CSIX RX and Ethernet ARP

The CSIX RX and Statistics interface is a scratch ring. Table 11-13 describes each entry in the
scratch ring—which is three words

Table 11-12. Eight-Word NN Ring Entry (CSIX TX—First ME to Second ME)

LW Bits Size Field Description

0 31:0 32 Tx_request0 Same as LW0 from Cell Queue Manager to
CSIX TX

1 31:0 32 Tx_request1 Same as LW1 from Cell Queue Manager to
CSIX TX

2 31:0 32 dram_handle DRAM address where CSIX cell is stored

3 31:24 8 cell_count_remaining Number of cells remaining in the current
buffer

23:18 6 Reserved Reserved

17:17 1 MOP_EOP_flag If MOP_EOP, set to 1, else 0

16:16 1 SOP_EOP_flag If SOP and EOP, set to 0, else 1

15:0 16 payload_length Length of CSIX cell payload in bytes

4 31:0 32 prepend_header0 LW0 of CSIX cell pre-pend header

5 31:0 32 prepend_header1 LW1 of CSIX cell pre-pend header

6 31:0 32 prepend_header2 LW2 of CSIX cell pre-pend header

7 31:0 32 prepend_header3 LW3 of CSIX cell pre-pend header

Table 11-13. Three-Word Scratch Ring Entry (CSIX RX and Statistics)

LW Bits Size Field Description

0 30:16 16 Packet Size Packet Size

0 15:12 4 Port Number Output Port Number

0 11:0 12 Queue Number Queue Number

1 31:0 32 SOP Buffer Handle Buffer Handle for the SOP Descriptor

2 31:0 32 EOP Buffer Handle Buffer Handle for EOP Descriptor (may
be NULL)

Software Building Blocks Applications Design Guide 159

10 Gb Ethernet IPv4/IPv6 Forwarding/Tunneling Application

11.6.8 Ethernet ARP and Statistics

The Ethernet ARP to Statistics interface is a scratch ring. Table 11-14 describes each entry in the
NN ring - which is 3 long words.

11.6.9 Statistics and Packet Scheduler

Table 11-15 shows the Statistics and Packet Scheduler interface, which is a Next Neighbor ring.

11.6.10 Packet Scheduler and Queue Manager

The interface between the Queue Manager and the Packet Scheduler is a Next Neighbor Ring.
Table 11-16 describes each entry in the NN ring—which is three long words.

Table 11-14. Three-Word Scratch Ring Entry (Statistics and Ethernet ARP)

LW Bits Size Field Description

0 30:16 16 Packet Size Packet Size

0 15:12 4 Port Number Output Port Number

0 11:0 12 Queue Number Queue Number

1 31:0 32 SOP Buffer Handle Buffer Handle for the SOP Descriptor

2 31:0 32 EOP Buffer Handle Buffer Handle for EOP Descriptor (may
be NULL)

Table 11-15. Three-Word NN Ring Entry (Statistics and Packet Scheduler)

LW Bits Size Field Description

0 30:16 16 Reserved Reserved

0 15:0 16 Packet Size Packet Size

1 31:0 32 SOP Buffer Handle Buffer Handle for the SOP Descriptor

2 31:16 16 Port Number Output Port Number

2 31:0 16 Queue Number Queue Number

Table 11-16. Three-word NN Ring Entry (Queue Manager and Packet Scheduler)

LW Bits Size Field Description

0 30:16 16 Dequeue Queue # Queue number from which to dequeue.
Zero implies no dequeue

0 0:15 16 Enqueue Queue # Queue number on which to enqueue.
Zero implies no enqueue

1 31:0 32 SOP Buffer Handle Buffer Handle for SOP Descriptor

1 31:0 32 EOP Buffer Handle Buffer Handle for EOP Descriptor (may
be NULL)

160 Software Building Blocks Applications Design Guide

10 Gb Ethernet IPv4/IPv6 Forwarding/Tunneling Application

11.6.11 Queue Manager and TX helper

The interface between the Queue Manager and the TX helper is a Next Neighbor ring. Table 11-17
describes each entry in the NN ring—which is one word:

11.6.12 TX Helper and Packet TX (10x1 GigE)

The interface between TX Helper and Packet TX is different for 10x1 and 1x10 applications. For
10x1, the interface between the TX Helper and the Packet Transmit is two scratch rings—one for
the first Packet TX ME which handles the transmission of port 0 to 4, and one for the second
Packet TX ME which handles the transmission of port 5 to 9. Table 11-18 shows each entry is one
long word in a scratch ring.

11.6.13 TX Helper and Packet TX (1x10 GigE)

The interface between the TX helper and the Packet Transmit for 1x10 applications is a Next
Neighbor ring. Table 11-19 describes each entry in the NN ring—which is one word.

Table 11-17. Two-Word NN Ring Entry (Queue Manager and Packet TX)

LW Bits Size Description

0 31:4 28 Reserved

0 3:0 4 Port number

1 31:24 8 Reserved

1 23:0 24 Pointer to SOP buffer descriptor in SRAM in long words
(Same as bits 0:23 of buffer handle)

Table 11-18. Two Scratch Ring Interface (TX Helper and Packet TX)—One Word

LW Bits Size Description

0 31:31 1 Valid bit

30:28 3 Reserved

27:24 4 Port number

23:0 24 Pointer to SOP buffer descriptor in SRAM in long words
(Same as bits 0:23 of buffer handle)

Table 11-19. One-Word NN Ring Entry (Queue Manager and Packet TX)

LW Bits Size Description

0 31:31 1 Valid bit

0 30:28 3 Reserved

0 27:24 4 Port number

0 23:0 24 Pointer to SOP buffer descriptor in SRAM in long words
(Same as bits 0:23 of buffer handle)

Software Building Blocks Applications Design Guide 161

10 Gb Ethernet IPv4/IPv6 Forwarding/Tunneling Application

11.6.14 Packet TX —First ME to Second ME (1x10 GigE)

The interface between the first microengine and second microengine of Packet Transmit for 1x10
application is a Next Neighbor ring. Table 11-20 describes each entry in the NN ring—which is
three words.

If the m-packet is non-stop, then 3 more long words are included on the ring.

Table 11-20. Three-Word NN Ring Entry (Packet TX—First ME to Second ME)

LW Bits Size Description

0 31:0 32 Pointer to meta data (used to free buffer

1 31 1 Bit is clear if the m-packet is sop

30 1 Bit is clear if the m-packet is eop

29:0 29 Offset of payload to be transmitted

2 31:0 32 Payload size to be transmitted

Table 11-21. Three-Word NN Ring Entry (for Non-stop m-packet)

LW Bits Size Description

3 31:0 32 Bytes from previous buffer to be prepended to the
current buffer

4 31:0 32 Exe_stat_flag: information about various condition flags

5 31:0 32 Partially created transmit control word

162 Software Building Blocks Applications Design Guide

10 Gb Ethernet IPv4/IPv6 Forwarding/Tunneling Application

Software Building Blocks Applications Design Guide 163

Core Router Application 12

This chapter describes the design of a Core Router application (IPv4+IPv6+MPLS+Diffserv at
OC192 data rate) using three Intel® IXP2800 Network Processors with headroom for additional
functionality. It provides a high-level design overview and lists the different software components
used to build this application. It focuses only on the fast path or microengine components of the
design. The Intel XScale® core components for this application will be described in a future
release.

The application described in this chapter is supported on the transactor (network processor
simulator) and on the Intel® IXDP 2800 Advanced Development Platform.

Note: The OC-192 POS IPv4/IPv6 Forwarding and Tunneling application and its associated microblocks
are referred to frequently in this chapter. See Chapter 5, “OC-192 POS IPv4/IPv6 Forwarding/
Tunneling Application” for more details.

12.1 Hardware Overview

Figure 12-1 shows three Intel® IXP2800 Network Processors. In this configuration, the IXP2800s
are identified as Ingress A, Ingress B and Egress IXP2800. A distinguishing feature is that Ingress
A and Ingress B are cascaded serially through SPI4 to form a two-chip Ingress pipeline. Ingress A
receives packets from the media interface, looks at the IPv4/IPv6/MPLS header and makes a
forwarding decision, and transmits the packet over SPI4 to Ingress B. Ingress B receives packets

164 Software Building Blocks Applications Design Guide

Core Router Application

from Ingress A, sends it through Meter and WRED, and transmits the packet over CSIX Fabric to
the appropriate egress blade. The Egress IXP2800 receives from CSIX Fabric and transmits to the
media interface.

12.2 Software Overview

Figure 12-2 shows the microblocks needed to implement the core router pipeline application
described in this chapter. The design for this application is based on the guidelines specified by the
IXA Portability Framework, which is described in the following user documents:

• Intel® Internet Exchange Architecture Portability Framework Reference Manual

• Intel® Internet Exchange Architecture Portability Framework Developer’s Manual

The driver microblocks (Receive, Transmit, Scheduler and QM) are similar to those used in the
OC-192 POS IPv4/IPv6 forwarding and tunneling application, which is implemented on two
IXP2800s and is described in Chapter 5, “OC-192 POS IPv4/IPv6 Forwarding/Tunneling
Application.”

The packet processing microblocks (IPv4, IPv6 and MPLS) are similar to those used in other Intel®
IXP2400 Network Processor applications and are reused with no modifications.

This application is made available in incremental steps:

• In its initial release, IPv6 and MPLS functionality is available in two different pipelines i.e
IPv4/IPv6 pipeline and IPv4/MPLS pipeline because it needs larger control store (8k, available
in IXP2800 B0).

Figure 12-1. Example Hardware Configuration for Core Metro Application Using 3 IXP2800

POS Framer

Ingress A
IXP2800

Egress IXP2800

CSIX
Switch
Fabric

SPI-4 CSIX

POS Frames C Frames
PHY

Sonet

POS

IP

POS

IP

C-frame
header

IP

Cbus –CSIX
Flow control

POS Framer CSIX
Switch
Fabric

CSIX

POS Frames C Frames
PHY

Sonet

POS

IP

POS

IP

C-frame
header

IP

Cbus –CSIX
Flow control

Ingress B
IXP2800

SPI-4

Software Building Blocks Applications Design Guide 165

Core Router Application

• In a future release, the separate IPv6 and MPLS pipelines will be combined to form IPv4/IPv6/
MPLS pipeline. Also, DiffServ functionality, using 6 Tuple Classifier, Meter, and WRED
microblocks, will be available in a future release.

12.2.1 Data Flow for the Ingress A IXP2800

The following sections describe the data flow on the ingress A IXP2800 processor.

12.2.1.1 Packet RX

This block is identical to the Packet RX block described in Section 5.2.1.1, “Packet RX” on
page 67 in Chapter 5, “OC-192 POS IPv4/IPv6 Forwarding/Tunneling Application.”

12.2.1.2 Packet Processing Microengines

This section describes the following microengines:

• PPP decapsulation

• 6 tuple classifier

• IPv4 forwarder

• MPLS marker and switching

• IPv6 forwarder and tunneling

Figure 12-2. Microblocks for Core Router Application

Ingress A
Intel® IXP2800 Network Processor

Egress

Packet
RX 1

CSIX Cell
Scheduler

QM
CSIX
TX 1

Packet
RX 2

CSIX
TX 2

Statistics

Packet TX
2QMCSIX RX

Packet
SchedulerStatistics

CSIX RX Packet TX
1

SPI4
TX2

SPI4
Tx1

IPV4 IPV6MPLS
ILM

MPLS
FTN

6 Tuple

Classifier
SPI 4

CSIX Fabric

Media

Media

SPI4
RX1

SPI4
RX2 Meter WRED Statistics

SPI 4 CSIX Fabric

Ingress B

Intel® IXP2800 Network Processor

Intel® IXP2800 Network Processor

166 Software Building Blocks Applications Design Guide

Core Router Application

The PPP decapsulation microblock runs along with the IPv4/IPv6/MPLS microblocks on 8
microengines or 64 threads. The IPv4, IPV6 and MPLS microblocks are similar to the ones used in
various IXP2400 applications and are completely reused.

An application specific system source microblock on each thread dequeues packet buffer handles
from the scratch ring. This source block (DL_Source[]) is a system microblock implicit in the
dispatch loop. It reads in the packet meta information (i.e. the packet descriptor) and populates the
dispatch loop state. It also reads in 32 or 64 bytes of the packet header from DRAM into a header
cache maintained in transfer registers (see Section 12.2.1.3 for details). Since it is important to
maintain packet sequencing, the threads in the microblock execute in strict order to dequeue from
the scratch ring. This implies that the first thread on microengine 1 dequeues the first packet,
signals the next thread to perform the dequeue, etc. From this block, the packet goes to the PPP
decapsulation/classify microblock.

The PPP decapsulation/classify microblock removes the layer-2 PPP header from the packet by
updating the offset and size fields in the packet descriptor. Based on the PPP header, it also
classifies the packet into IPv4, IPv6, MPLS, PPP control packet (LCP, IPCP etc). If the packet is a
PPP control packet, it is marked as an exception packet to be sent to the XScale Core
(IX_EXCEPTION). Otherwise the packet is sent down the microengine pipeline for further
processing.

Depending on the packet type (IPv4. IPv6, MPLS) packets go through different microblocks. The
following packet flow path will be described based on how each packet type is handled.

• IPv4 forwarding

• IPv6 forwarding

• IPv6 tunnel encapsulation and decapsulation

• Ingress LER

• LSR and egress LER

12.2.1.2.1 IPv4 Forwarding

The IPv4 forwarder microblock validates the IP header per RFC 1812. If the validity checks fail,
then the packet is set up to be dropped as specified in the Intel® Internet Exchange Architecture
Portability Framework Developer’s Manual.

Otherwise a Longest Prefix Match (LPM) is performed on the IPv4 header. The result is an IPv4
Next Hop ID, a fabric blade id (identifying a unique IXP2800 on the fabric) and an output port
identifying the output port on the egress IXP2800. All three fields are passed to Ingress B which in
turn is sent to Egress processor where the information is used to appropriately queue and transmit
the packet.

If no LPM match is found, then the packet is set up to be sent up to the XScale core for further
processing as specified in [IXASF]. Packets are also sent to the core in a number of other cases, for
example when the packet is destined for a local interface or is to be fragmented. (Since no core
components are available for this application the packets will simply be dropped in such cases).

IPv6 packets are handled by three microblocks: IPv6 Forwarder, Tunnel Decap and Tunnel Encap
microblocks.

Software Building Blocks Applications Design Guide 167

Core Router Application

12.2.1.2.2 IPv6 Forwarding

IPv6 Forwarder validates IPv6 Header and address per RFC 2460 and 2373 respectively. If the
check fails, then the packet is set up to be dropped as specified in the Intel® Internet Exchange
Architecture Portability Framework Developer’s Manual. Otherwise a Longest Prefix Match
(LPM) is performed on IPv6 destination address. It uses 16, 8,…8 bit prefixes to match 128 bit
IPv6 address. The result is an IPv6 Nexthop ID, a fabric blade id (identifying a unique IXP2800 on
the fabric) and an output port identifying the output port on Egress IXP2800. All three fields are
sent over to Ingress B which in turn is sent over to Egress where it is used to dispose the packet
appropriately.

12.2.1.2.3 IPv6 over IPv4 Tunneling

The tunneling microblocks provide the capability for the node to serve as an endpoint of an IPv6
over IPv4 tunnel. The types of tunneling supported are:

• Configured tunnels as defined in RFC 2893

• Automatic tunnels as defined in RFC 2893

• 6to4 tunnels as defined in RFC 3056

The V6V4-Tunnel-Decap microblock handles IPv4 packets that contain an encapsulated IPv6
packet and that have reached the tunnel endpoint. The V6V4-Tunnel-Encap microblock handles
IPv6 packets that require encapsulation in an IPv4 packet in order to reach the next hop IPv6 node
(passing through one or more IPv4 only node).

A tunnelled IPv6 (over IPv4) packet is first processed by IPv4 forwarder microblock. The nexthop
ID obtained after an LPM lookup identifies a tunnel end point and the packet is passed to Tunnel
Decap microblock. The encapsulating IPv4 header is then removed by Tunnel Decap and the
exposed IPv6 packet is sent to IPv6 microblock for forwarding. After IPv6 LPM lookup, the
nexthop ID obtained identifies whether this IPv6 packet goes through a tunnel or not. If a tunnel is
required, then the packet is sent to Tunnel Encap microblock where an IPv4 header is added to the
IPv6 packet. The resulting IPv4 packet is forwarded by IPv4 Forwarder microblock just like any
other IPv4 packet.

Figure 12-3 shows the packet flow for the Ingress A processor in this pipeline application. In
implementation, this flow will be converted to a flattened Microblock Call graph as explained in
the Intel® Internet Exchange Architecture Portability Framework Developer’s Manual, in the
Dispatch Loop chapter.

168 Software Building Blocks Applications Design Guide

Core Router Application

12.2.1.2.4 Ingress LER

In the case of an Ingress LER, an incoming IPv4 (IPv6) packet is first processed by an IPv4 (IPv6)
microblock (as previously described in Section 12.2.1.2.1 and Section 12.2.1.2.2). The nexthop ID
obtained indicates if this packet goes through an MPLS LSP or not. If yes, further processing is
done by MPLS microblock. Using the nexthop ID as an index into FTN (FEC to NHLFE) table,
information required to form MPLS header such as the number of labels to be pushed (max of 4
PUSH/POP supported) and the label value for each push, is obtained. The MPLS header thus
formed is prepended to IPv4 packet and sent over to Ingress B. The case of Ingress LER handling
IPv6 packets is similar except the packet is first processed by IPv6 microblock instead of IPv4.

Note: With IPv6 over IPv4 tunneling, more data paths are possible as shown in Figure 12-3, but the end
result of tunelling is always an IPv4 or IPv6 packet which is then handled as explained in this
section.

12.2.1.2.5 LSR and Egress LER

In the case of LSR or Egress LER, the incoming packet is an MPLS packet. Using the incoming
label as an index into ILM (Incoming Label Map) table the nexthop ID is obtained, which provides
info like the operation to perform (PUSH or POP), number of labels to PUSH, the label value for
each PUSH operation etc. Based on this info the packet header is accordingly modified. For Egress
LER (at IP/MPLS domain edge) the resulting packet will be an IPv4/IPv6 packet. Subsequent
forwarding of this packet is done based on the resulting IPv4/IPv6 packet header by passing the
packet through IPv4/IPv6 microblock. For LSR not at penultimate hop, the resulting packet will be
a MPLS packet. For LSR at penultimate hop, the resulting packet will be an IPv4 or IPv6 packet
but forwarding is based on the POPed label, so no further lookup is necessary for the resulting IPv4
packet.

The MPLS microblock supports both per interface label space as well as per platform label space.
It also supports NHLFE sets which is useful in load balancing, fault tolerance and diffserv
implementations.

Figure 12-3. Packet Flow in Ingress A

RX L2decapCl
assify

MPLS ILM
switch

IPv4

IPv6

Tunnel/
Detunnel MPLS

FTN

Statistics

Software Building Blocks Applications Design Guide 169

Core Router Application

At the end of packet processing stage, the packet is passed on to an application specific system
microblock (DL_Sink[]). DL_Sink[] simply writes the modified packet header to DRAM and the
packet meta information to SRAM and sends a message to the next microblock in the pipeline, that
is, the statistics microblock.

12.2.1.3 Dispatch Loop / Microblock Groups

One of the challenges of implementing this packet processing stage is the dispatch loop that brings
all microblocks together.

The packet header size varies from a minimum of 20 bytes (IPv4 only) to a maximum of 56 bytes
(4 labels + IPv6 (40)). Reading in all 56 bytes for every packet wastes DRAM bandwidth that then
impacts performance of 40B IPv4 min packets (24.5 mpps). Reading in only 20 or 32 bytes of
header results in additional reads for IPv6 and MPLS POP3/4 operations resulting in performance
impact for those cases.

This is solved by taking advantage of the fact that larger the header size (and hence packet size),
the lower the packet rate (40B IPv4 is 24.5 mpps. 60B v6 is 16.3 mpps), and hence more memory
bandwidth (and instruction budget) for larger packets. So, for example, in the IPv4/IPv6 pipeline
64 bytes of packet header is read if the packet length is greater than or equal to 60. Otherwise only
32 bytes are read.

Converting the packet flow shown in Figure 12-3 into a flattened Microblock Call graph in the
dispatch loop may pose some challenges in that it may require more than 4K of control store (8K
available in IXP2800 B0). [This will be done in an upcoming release] The current call graph for
IPv4/MPLS and IPv4/IPv6 pipelines is:

• L2 Decap -> ILM -> IPv4 -> FTN -> Statistics

• L2 Decap -> IPv4 -> v6_decap -> IPv6 -> v6_encap -> IPv4 -> Statistics

Note: The IPv4 microblock is called twice in IPv4/IPv6 pipeline.

12.2.1.4 Statistics

This microblock runs on a single microengine. It is currently a placeholder for statistics handling. It
is anticipated that when this application is extended for DiffServ, this microblock will be used to
manage per-flow statistics. The design for handling statistics will be described in future releases of
the document.

12.2.1.5 SPI4 TX

The SPI4 Transmit microblock transmits packets over SPI4 interface. It is implemented by
extending the Packet TX microblock described in Section 5.2.2.5, “Packet TX” on page 72 in
Chapter 5, “OC-192 POS IPv4/IPv6 Forwarding/Tunneling Application” with a compile time
option. It runs on two microengines in a context pipeline connected by a Next Neighbor ring. It
segments a packet into m-packets, and moves them into TBUFS for the MSF state machine to
transmit. The extensions to Packet TX are:

• TX to Scheduler feedback for flow control is disabled (using compile time option) as it’s not
required in this case. (Use compile time option DISABLE_TX2SCHED_FEEDBACK)

• 16 bytes of per-packet header consisting of input and output port, color, class, flow id, nexthop
id etc is pre-pended to start of the packet and is passed along to Ingress B. (Use compile time
option SPI4_PREPEND)

170 Software Building Blocks Applications Design Guide

Core Router Application

12.2.2 Data Flow for the Ingress B IXP2800

12.2.2.1 SPI4 RX

The SPI4 RX microblock receives packets over the SPI4 interface. It is implemented by extending
Packet RX microblock described in Section 5.2.1.1, “Packet RX” on page 67 in Chapter 5, “OC-
192 POS IPv4/IPv6 Forwarding/Tunneling Application” with a compile time option. It runs on two
microengines in a context pipeline connected by a Next Neighbor ring. It performs frame
reassembly on the m-packets coming in on POS media.

The extensions to Packet RX are:

• 16 bytes of per-packet header consisting of input and output port, color, class, flow id, nexthop
id etc is received with every packet. This data is used to create meta-data for the packet and is
written to SRAM after reassembly. Some of this info is passed along to the next microblock in
the pipeline via a scratch ring. The rest of the packet is written to DRAM. (Use compile time
option SPI4_PREPEND)

12.2.2.2 Meter & WRED

Diffserv capabilities will be available in an upcoming release. Until then a skeleton microblock
with a complete dispatch loop is provided in the packet processing stage to pass the reassembled
packet to statistics microblock.

12.2.2.3 Statistics Microblock

This block is identical to the Statistics block described in Section 5.2.1.3, “Statistics Microblock”
on page 69 in Chapter 5, “OC-192 POS IPv4/IPv6 Forwarding/Tunneling Application.”

12.2.2.4 CSIX Scheduler

This block is identical to the CSIX Scheduler block described in Section 5.2.1.4, “CSIX
Scheduler” on page 69 in Chapter 5, “OC-192 POS IPv4/IPv6 Forwarding/Tunneling
Application.”

12.2.2.5 Cell Based Queue Manager (Cell QM)

This block is identical to the Cell Based Queue Manager block described in Section 5.2.1.5, “Cell
Based Queue Manager (Cell QM)” on page 70 in Chapter 5, “OC-192 POS IPv4/IPv6 Forwarding/
Tunneling Application.”

12.2.2.6 CSIX TX

This block is identical to the CSIX TX block described in Section 5.2.1.6, “CSIX TX” on page 70
in Chapter 5, “OC-192 POS IPv4/IPv6 Forwarding/Tunneling Application.”

12.2.3 Data Flow for the Egress IXP2800

This section describes the data flow for the Egress IXP2800. The egress pipeline is identical to the
egress pipeline described in Section 5.2.2, “Data Flow for the Egress IXP2800” on page 71 in
Chapter 5, “OC-192 POS IPv4/IPv6 Forwarding/Tunneling Application.”

Software Building Blocks Applications Design Guide 171

Core Router Application

12.2.3.1 CSIX RX

This block is identical to the CSIX RX block described in Section 5.2.2.1, “CSIX RX” on page 71
in Chapter 5, “OC-192 POS IPv4/IPv6 Forwarding/Tunneling Application.”

12.2.3.2 Statistics Microblock

This block runs on a single microengine. It is currently a place-holder for statistics handling. It is
anticipated that when this application is extended for MPLS and DiffServ, this microblock will be
used to manage per-flow statistics. The design for handling statistics will be described in future
revisions of the document.

This microblock handles dropping of large packets that are stored in multiple buffers. It interfaces
with Egress Packet Scheduler via the Next Neighbor ring.

12.2.3.3 Egress Packet Scheduler

The Egress scheduler schedules packets to be transmitted over MSF interface. This is a packet-
based scheduler as opposed to the cell-based scheduler (i.e. c-frame) on the ingress side.

The packet scheduler is a context pipe-stage that is implemented as a microblock that runs on 3
microengines. This microblock includes the Class Scheduler block, the Count block, and the Port
Scheduler block. Each block runs in one microengine.

The packet scheduler supports up to 16 virtual ports. Since these ports may have differing
bandwidth requirements, the scheduler implements Weighted Round Robin (WRR) scheduling on
the ports. This allows us to support different configurations (16 OC-3, 4 OC-12, 1 OC-48 etc)
simply by adjusting the weights for the ports in the scheduler.

For each port, the scheduler supports up to 256 queues per port. The Scheduler implements a
modified version of Deficit Round Robin (DRR) scheduling on the queues within a port. For more
details, refer to Chapter 19, “OC-48 WRR/DRR Packet Scheduler” of Intel® Internet Exchange
Architecture Software Building Blocks Developer’s Manual.

Until diffserv capabilities (Meter, WRED, 6-tuple classifier) are added the application will only use
one class per port. This means there is only one queue per port and the DRR scheduling is unused.
However the same code can be reused in a QoS Diffserv application in which case the DRR
scheduling is applicable.

The scheduler also keeps track of the number of packets in flight (scheduled, but not transmitted)
for each port. If this number exceeds a specified limit, then it stops scheduling on that port.

12.2.3.4 Packet Based Queue Manager (Packet QM)

This block is identical to the Packet QM described in Section 5.2.2.3, “Packet Based Queue
Manager (Packet QM)” on page 72 in Chapter 5, “OC-192 POS IPv4/IPv6 Forwarding/Tunneling
Application.”

12.2.3.5 TX Helper

This block prepares TX request from the information passed from Packet QM via the Next
Neighbor ring, and forwards the TX request to Packet TX through the scratch ring. It also updates
the queue-based counters of packets in SRAM for Egress Packet Scheduler.

172 Software Building Blocks Applications Design Guide

Core Router Application

12.2.3.6 Packet TX

This is identical to the Packet TX as described in Section 5.2.2.5, “Packet TX” on page 72 in
Chapter 5, “OC-192 POS IPv4/IPv6 Forwarding/Tunneling Application.”

12.3 Performance Characterization

The Intel® IXP2800 Network Processor operates at 1400 MHz. For a min POS packet of 49B, the
packet inter-arrival time at OC-192 line rate is 57 ME cycles. In order to maintain line rate for min
packets, each stage of the pipeline cannot exceed this budget. In other words, each stage of the
pipeline needs to retire a packet every 57 cycles. Table 12-1 summarizes the performance analysis
for the POS pipeline at OC192 rate.

12.4 Ingress A System Resource Allocation

Table 12-2 shows how system resources are mapped for the Ingress A IXP2800 network processor.
This mapping reflects the system defaults and may be changed. The allocation of microengines is
done, such that it optimizes the performance of this specific application and may be changed for
other applications.

Table 12-1. Performance Analysis for the POS Pipeline

OC-192c line rate assuming 3% SONET overhead 9.62 Gigabits/sec

Min POS packet size
49 bytes (40 byte TCP/IP, 2 bytes Address and
Control, 2 byte PPP header, 4 byte FCS and 1 byte
flag)

Packet Throughput for min packets 24.56 million packets/sec = (9.62 / (49*8)) * (10**9)

IXP2400 clock frequency 1400 MHZ

Inter-packet arrival time for min packets 1400/6.14 = 57 cycles

Compute cycles per packet for a single microengine 57

Latency per packet for a single microengine 57 * 8

Compute cycles per packet for n microengines running
in parallel 57*n

Latency per packet for n microengines running in
parallel 57*8*n

Table 12-2. System Resources Mapped for the Ingress IXP2800

Microblock ME # Communication Mechanism with
previous stage

Packet RX ME 1:3, 1:4 Auto-push status from MSF, NN Ring

IPv4/IPv6/MPLS + Layer2
decapsulation/Classify

ME 0:0, 0:1, 0:2, 0:3, 0:4, 0:5, 0:6,
0:7 Scratch ring

Statistics ME 1:0 Scratch ring

SPI 4 TX ME 1:1, 1:2 NN Ring

Headroom 3 microengines

Software Building Blocks Applications Design Guide 173

Core Router Application

The physical assignment of function to microengine is important since it not only affects when the
next neighbor registers and signaling can be utilized, but it also affects the utilization of the internal
Command Bus and S-Push/Pull buses. This assignment attempts to balance the usage of the
Command bus and S-Push/Pull buses across the two clusters.

The IXP2800 supports four SRAM channels and three DRAM channels. Table 12-3 shows how the
SRAM, DRAM and scratch are utilized for this application. These values are defined in a system
header file dl_system.h and may be changed as needed.

12.5 Ingress B System Resource Allocation

Table 12-4 shows how system resources are mapped for the Ingress B IXP2800.

Table 12-3. SRAM, DRAM, and Scratch Utilization for Ingress A IXP2800

Item Size per entry in bytes Number of entries Total SRAM
used

Total
DRAM
used

Total
Scratch

used

Buffer Descriptors 32 32k (In simulation, we
use only 320 buffers) 1 MB

Buffers 2048 32k 64 MB

Trie Table

64 (The root Trie table
requires at least 257k to
support hi64k and hi256
tables. In addition each
node requires 64 bytes.
These nodes are added
as needed)

See note in previous
column. Assuming 256k
routes, approximately
128k nodes are needed

8MB

Route Table (Next Hop
Information) 8 Assuming 4k next hops 32k

IPv4 statistics 4 16 64

Packet RX statistics 4 16*16 1024

IPv4 Directed Broadcast
Table 32 (local memory) 64

ILM NHLFE Table 24 64k 1.5 MB

FTN NHLFE Table 24 64k 1.5MB

Ring from Packet RX to
packet processing pipeline
(IPv4/IPv6/MPLS+Layer2
Decap/Classify)

12 2k/12 2k

IPv4 to Statistics ring 12 2k/12 2k

Buffer Free list Q-Array entry N/A 4

Table 12-4. System Resources Allocated for Ingress B IXP2800

Microblock ME # Communication Mechanism with
previous stage

SPI4 RX ME 1:2, 1:3 Auto-push status from MSF, NN Ring

Meter/WRED (only skeleton for now) ME 0:0, 0:1, Scratch Ring

Statistics MW 0:5 Scratch Ring

174 Software Building Blocks Applications Design Guide

Core Router Application

Table 12-5 shows how the SRAM, DRAM and scratch are utilized for this application. These
values are defined in a system header file dl_system.h and may be changed as needed.

12.6 Egress System Resource Allocation

Table 12-6 shows how the system resources are allocated for the Egress IXP2800.

The mapping of networking functions on to the microengines shows that 10 microengines are used
to perform the fast path processing for this application. Additional functionality required by
customers can be mapped on to the remaining microengines.

Fabric scheduler ME 0:6 NN ring

QM ME 0:7 NN Ring

CSIX TX ME 1:0, 1:1 NN Ring

Headroom 7 microengines

Table 12-4. System Resources Allocated for Ingress B IXP2800 (Continued)

Microblock ME # Communication Mechanism with
previous stage

Table 12-5. SRAM, DRAM, and Scratch Utilization for Ingress B IXP2800

Item Size per entry in bytes Number of entries Total SRAM
used

Total DRAM
used

Total
Scratch

used

Buffer Descriptors 32 32k (In simulation, we
use only 320 buffers) 1 MB

Buffers 2048 32k 64 MB

Queue Descriptors 16 256 (1 per VOQ) 4K

CSIX TX contexts 32 256 (1 per VOQ) 8k

Ring from Packet RX to
packet processing pipeline
(IPv4+Layer2 Decap/
Classify)

12 2k/12 2k

QM Q-Array entries N/A 16

Buffer Free list Q-Array entry N/A 4

Table 12-6. System Resources Allocated for Egress IXP2800

Microblock ME # Communication Mechanism with previous
stage

CSIX RX ME 1:2, 1:3 Auto-push status from MSF, NN ring

Statistics ME 0:2 Scratch ring

Egress Scheduler ME 0:3, 0:4, 0:5 NN ring

Egress QM ME 0:6 NN ring

TX Helper ME 0:7 NN ring

Packet TX ME 1:0, 1:1 NN ring

Headroom 6 microengines N/A

Software Building Blocks Applications Design Guide 175

Core Router Application

Table 12-7 shows how the SRAM, DRAM and scratch are utilized for this application. These
values are defined in a system header file dl_system.h and may be changed as needed.

12.7 Interfaces Between the Various Microblocks

This section describes the interfaces between the different microblocks in the ingress and egress
processors for this application.

12.7.1 Packet RX and Packet Processing Microengines

The interface between the Packet RX microblock and the packet processing microengines running
the IPv4/IPv6/MPLS Forwarding and Layer-2 decap/classify microblocks is a scratch ring. Each
entry in the scratch ring is three long words. The format depends on whether the packet fits in one
buffer or not. In the case of packets that fit into a single buffer, all the information is packed into
the scratch ring eliminating one read/write to SRAM in the critical path, see Table 12-8. In the case
of packets that span across multiple buffers, some of the packet descriptor information is written to
SRAM and the rest to the scratch ring, see Table 12-9. Bit 31 of LW0 (EOP bit of the handle) is
used to detect if a packet spans across multiple buffers. If this bit is set (implying that the buffer is
a SOP/EOP buffer), then the packet is contained in a single buffer.

Table 12-7. SRAM, DRAM, and Scratch Utilization for Egress IXP2800

Item Size per entry
in bytes Number of entries Total SRAM used Total DRAM

Used
Total Scratch

used

Buffer Descriptors 32 32k (In simulation we
use only 320 buffers) 1 MB

Queue Descriptors 16 256 (16 ports x 16
classes per port) 4k

CSIX RX
Reassembly contexts 32 1024 32k

Buffers 2048 32k 64 MB

Inside Scheduler
between Count block
and Class Scheduler
block

4 512 2k

TX Helper to first
Packet TX 4 256 1K

TX Helper to second
Packet TX 4 256 1K

QM Q-Array entries N/A 16

Buffer Free list Q-
Array entry N/A 4

176 Software Building Blocks Applications Design Guide

Core Router Application

This interface is used for packets that fit entirely in one buffer.

This interface is used for packets that require more than one buffer.

12.7.2 Packet Processing Microengines and Statistics

The interface is a scratch ring. Each entry in the scratch ring is three long words as described in
Table 12-10.

12.7.3 Statistics and SPI4 TX

The interface is a NN ring. Each entry in the NN ring is three long words as described in
Table 12-11.

Table 12-8. Three-Word Scratch Ring Entry—Packets fit on one Buffer

LW Bits Size Field Description

0 31:0 32 dl_buffer_handle Buffer Handle for the SOP Descriptor

1 31:16 16 input_port Input port on ingress processor

15:12 4 free_list_id Free list ID for buffer

11:8 4 rx_stat Receive Status Flag

7:0 8 header_type Type of header at offset bytes into the packet

2 31:16 16 buffer_size Buffer size in bytes

15:0 16 offset Offset of the start of data in the SOP buffer in bytes

Table 12-9. Three-Word Scratch Ring Entry—Packets fit on more than one Buffer

LW Bits Size Field Description

0 31:0 32 dl_buffer_handle Buffer Handle for the SOP Descriptor

1 32:0 32 dl_eop_buffer_handle Buffer Handle for the EOP Descriptor

2 31:16 16 packet_size Total packet size across buffers in bytes

15:0 16 offset Offset of the start of data in the SOP buffer in bytes

Table 12-10. Three-Word Scratch Ring Entry—Packet Processing Microengines and Statistics

LW Bits Size Field Description

0 30:16 16 MOP_EOP_buf_size Size in bytes of all MOP buffers and the EOP buffer of
the packet

0 0:15 16 Queue Number Queue Number

1 31:0 32 SOP Buffer Handle Buffer Handle for the SOP Descriptor

2 31:0 32 EOP Buffer Handle Buffer Handle for EOP Descriptor (may be NULL)

Table 12-11. Three-Word NN Ring Entry (Statistics and SPI4 TX)

LW Bits Size Field Description

0 15:0 16 packet_len Length of packet

0 31:16 16 Reserved Not used

Software Building Blocks Applications Design Guide 177

Core Router Application

12.7.4 SPI4 RX and Meter/WRED

The interface is a scratch ring. Each entry in the scratch ring is three long words as described in
Table 12-12.

Table 12-13 shows the interface used for packets that require more than one buffer.

12.7.5 METER/WRED and Statistics

The interface is a scratch ring. Each entry in the scratch ring is three long words as described in
Table 12-14.

1 31:0 32 Sop_handle SOP Buffer handle

2 15:0 16 Port_number Port Number

2 31:16 16 Queue Number Queue Number

Table 12-11. Three-Word NN Ring Entry (Statistics and SPI4 TX)

Table 12-12. Three-Word Scratch Ring Entry (One Buffer only)

LW Bits Size Field Description

0 31:0 32 dl_buffer_handle Buffer Handle for the SOP Descriptor

1 31:16 16 input_port Input port on ingress processor

15:12 4 free_list_id Free list ID for buffer

11:8 4 rx_stat Receive Status Flag

7:0 8 header_type Type of header at offset bytes into the packet

2 31:16 16 buffer_size Buffer size in bytes

15:0 16 offset Offset of the start of data in the SOP buffer in bytes

Table 12-13. Three-Word Scratch Ring Entry for SPI4 RX and Meter/WRED

LW Bits Size Field Description

0 31:0 32 dl_buffer_handle Buffer Handle for the SOP Descriptor

1 32:0 32 dl_eop_buffer_handle Buffer Handle for the EOP Descriptor

2 31:16 16 packet_size Total packet size across buffers in bytes

15:0 16 offset Offset of the start of data in the SOP buffer in bytes

Table 12-14. Three-Word Scratch Ring Entry for Meter/WRED and Statistics

LW Bits Size Field Description

0 30:16 16 MOP_EOP_buf_size Size in bytes of all MOP buffers and the EOP buffer
of the packet

0 0:15 16 Queue Number Queue Number

1 31:0 32 SOP Buffer Handle Buffer Handle for the SOP Descriptor

2 31:0 32 EOP Buffer Handle Buffer Handle for EOP Descriptor (may be NULL)

178 Software Building Blocks Applications Design Guide

Core Router Application

12.7.6 Statistics and CSIX Scheduler

The interface is a next neighbor ring. Each entry in the NN ring is three long words as described in
Table 12-15.

12.7.7 CSIX Scheduler and Cell Queue Manager

The interface is a next neighbor ring. Each entry in the NN ring is three long words as described in
Table 12-16.

12.7.8 Cell Queue Manager and CSIX TX

The interface is a next neighbor ring. CSIX Transmit is a two-microengine context pipe-stage. The
cell queue manager writes to the NN ring of the first CSIX TX microengine. Each entry in the NN
ring is 2 words as described in Table 12-17.

Table 12-15. Three-Word NN Ring Entry for Statistics and CSIX Scheduler

LW Bits Size Field Description

0 30:16 16 Packet cell count Sum of all buffer cell counts belonging to the packet

0 0:15 16 Queue Number Queue Number

1 31:0 32 SOP Buffer Handle Buffer Handle for the SOP Descriptor

2 31:0 32 EOP Buffer Handle Buffer Handle for EOP Descriptor (may be NULL)

Table 12-16. Three-Word NN Ring Entry for CSIX Scheduler and Cell Queue Manager

LW Bits Size Field Description

0 30:16 16 Dequeue Queue # Queue number from which to dequeue. Zero implies
no dequeue

0 0:15 16 Enqueue Queue # Queue number on which to enqueue. Zero implies no
enqueue

1 31:0 32 SOP Buffer Handle Buffer Handle for the SOP Descriptor

2 31:0 32 EOP Buffer Handle Buffer Handle for EOP Descriptor (may be NULL)

Table 12-17. Two-Word NN Ring Entry for Cell Queue Manager and CSIX TX

LW Bits Size Field Description

0 31:16 16 Reserved Reserved

0 15:0 16 Queue Number Queue Number

1 31:0 32 Buffer Handle Buffer Handle currently being transmitted for queue

Software Building Blocks Applications Design Guide 179

Core Router Application

12.7.9 CSIX TX—First ME to Second ME

The interface between the first CSIX TX microengine and second CSIX TX microengine is a next
neighbor ring. Each entry in the NN ring is eight long words as described in Table 12-18.

12.7.10 CSIX RX and Statistics

The interface is a scratch ring. Each entry in the scratch ring is 3 words as described in Table 12-19.

12.7.11 Statistics and Packet Scheduler

The interface is a Next Neighbor ring as described in Table 12-20.

Table 12-18. Eight-Word NN Ring Entry (CSIX TX—First ME to Second ME)

LW Bits Size Field Description

0 31:0 32 Tx_request0 Same as LW0 from Cell Queue Manager to CSIX TX

1 31:0 32 Tx_request1 Same as LW1 from Cell Queue Manager to CSIX TX

2 31:0 32 dram_handle DRAM address where CSIX cell is stored

3 31:24 8 cell_count_remaining Number of cells remaining in the current buffer

23:18 6 Reserved Reserved

17:17 1 MOP_EOP_flag If MOP_EOP, set to 1, else 0

16:16 1 SOP_EOP_flag If SOP and EOP, set to 0, else 1

15:0 16 payload_length Length of CSIX cell payload in bytes

4 31:0 32 prepend_header0 LW0 of CSIX cell pre-pend header

5 31:0 32 prepend_header1 LW1 of CSIX cell pre-pend header

6 31:0 32 prepend_header2 LW2 of CSIX cell pre-pend header

7 31:0 32 prepend_header3 LW3 of CSIX cell pre-pend header

Table 12-19. Three-Word Scratch Ring Entry for CSIX RX and Statistics

LW Bits Size Field Description

0 31:0 32 SOP Buffer Handle Buffer Handle for the SOP Descriptor

1 31:0 32 EOP Buffer Handle Buffer Handle for EOP Descriptor (may be NULL)

2 30:16 15 Packet Size Packet Size

2 15:12 4 Output Port Number Output Port Number

2 11:0 12 Queue Number Queue Number

Table 12-20. Three-Word NN Ring Entry for Statistics and Packet Scheduler

LW Bits Size Field Description

0 31:0 32 SOP Buffer Handle Buffer Handle for the SOP Descriptor

1 31:0 32 EOP Buffer Handle Buffer Handle for EOP Descriptor (may be NULL)

180 Software Building Blocks Applications Design Guide

Core Router Application

12.7.12 Packet Scheduler and Queue Manager

The interface between the QM and the Packet Scheduler is a Next Neighbor Ring. Each entry is 2
long words as described in Table 12-21.

12.7.13 Queue Manager and TX Helper

The interface between the Queue Manager and the TX Helper a Next Neighbor ring. Each entry is
two long words as described in Table 12-22.

2 30:16 15 Packet Size Packet Size

2 15:12 4 Output Port Number Output Port Number

2 11:0 12 Queue Number Queue Number

Table 12-20. Three-Word NN Ring Entry for Statistics and Packet Scheduler (Continued)

LW Bits Size Field Description

Table 12-21. Two-Word NN Ring Entry for Packet Scheduler and Queue Manager

LW Bits Size Field Description

0 30:16 16 Dequeue Queue # Queue number from which to dequeue. Zero implies
no dequeue

0 0:15 16 Enqueue Queue # Queue number on which to enqueue. Zero implies no
enqueue

1 31:0 32 SOP Buffer Handle Buffer Handle for SOP Descriptor

1 31:0 32 EOP Buffer Handle Buffer Handle for EOP Descriptor (may be NULL)

Table 12-22. Two-Word NN Ring Entry for Queue Manager and TX Helper

LW Bits Size Description

0 31:4 28 Reserved

0 3:0 4 Output port number

1 31:24 8 Reserved

1 23:0 24 Pointer to SOP buffer descriptor in SRAM in long words
(Same as bits 0:23 of buffer handle)

Software Building Blocks Applications Design Guide 181

Core Router Application

12.7.14 TX Helper and Packet TX

The interface between the TX Helper and the Packet Transmit is two scratch rings – one for first
Packet TX ME which handles the transmission of port 0 to 4, one for second Packet TX ME which
handles the transmission of port 5 to 9. Each entry is one word as described in Table 12-23.

Table 12-23. One-Word Scratch Ring Entry for TX Helper and Packet TX

LW Bits Size Description

0 31:31 1 Valid bit

30:28 3 Reserved

27:24 4 Port number

23:0 24 Pointer to SOP buffer descriptor in SRAM in long words
(Same as bits 0:23 of buffer handle)

182 Software Building Blocks Applications Design Guide

Core Router Application

Software Building Blocks Applications Design Guide 183

Dual OC-12 POS/Dual Gb Ethernet
Forwarding Application for IXDP24X1 13

This chapter describes an IPv4 Forwarding software application for Ethernet and Packet over
SONET (POS) implemented on an Intel® IXP2400 Network Processor. It provides a high level
design overview and lists the different software components used to build this application. This
chapter describes the application in the context of Ethernet and POS media interfaces.

The application described in this chapter is supported on the Intel® IXDP2401 Advanced
Development Platform, which uses a single IXP2400.

This chapter focuses only on the fast path or microengine components of the design. The Intel
XScale® core components for this application are described in Intel® Internet Exchange
Architecture (IXA) Portability Framework Developer’s Manual.

Note: It is important that all applications developed for the IXDP24X1 platform must have the
IX_PLATFORM_2401 flag defined in the project makefiles, for both the core components and the
microblocks. An example of required flag definitions may be found in the makefiles of this
application. By default, newly created projects under the Windriver* Tornado* development
environment have the flag defined as IX_PLATFORM_2400. For this application, the flag must be
changed to IX_PLATFORM_2401.

13.1 Hardware Overview

The Intel® IXDP2401 Advanced Development Platform consists of the Intel® IXMB2401
baseboard, which is equipped with two daughter board connectors (DB1 and DB2). Up to two
media mezzanine boards can be connected to the baseboard. The following mezzanine boards are
available:

• 2xOC-12 POS ATM mezzanine card

• 2x1 Gigabit Ethernet mezzanine card with copper interfaces

• 2x1 Gigabit Ethernet mezzanine card with fiber interfaces

The Intel® IXMB2401 baseboard may also be equipped with two types of front interfaces:

• 2x1 Gigabit Ethernet copper interfaces (MIC 2C)

• 2x1 Gigabit Ethernet fiber interfaces (MIC 2F)

Table 13-1 presents all possible hardware configurations supported by the Dual OC-12 POS/Dual
Gigabit Ethernet Forwarding Application for IXDP2401.

184 Software Building Blocks Applications Design Guide

Dual OC-12 POS/Dual Gb Ethernet Forwarding Application for IXDP24X1

Figure 13-1 shows an Intel® IXP2400 Network Processor in a typical configuration. In this
configuration, the IXP2400 is identified as the network processor; it receives from the Ethernet or
POS media interface and transmits to the other Ethernet or POS media interface.

The target hardware comprises four physical media interfaces. A POS media mezzanine card
installed on a baseboard provides two OC-12 interfaces. Two Gigabit Ethernet interfaces are
available on the baseboard Backplane Access module.

The IXP2400 receives POS or Ethernet frames that carry IPv4 datagrams. The frames are
assembled into IPv4 packets and the Layer-2 (Ethernet or PPP) headers are removed. Based on the
IPv4 header, a Longest Prefix Match (LPM) lookup is performed and the packets are transmitted
over the appropriate port.

Table 13-1. Supported Hardware Configurations

Backplane
(Interface

Supported)

DB1
(Interface

Supported)

DB2
(Interface

Supported)
Description Configuration with 100%

Throughput

2x1GE
(copper only) 2xOC-12 POS N/A All supported ports

available.
1x1GbE, 2xOC-12

(due to 2.5 Gbps limitation for board)

N/A MIC 2C 2x1GbE
(copper only) 2xOC-12 POS All supported ports

available.
1x1GbE, 2xOC-12

(due to 2.5 Gbps limitation for board)

N/A 2xOC-12 POS MIC 2F 2x1GbE
(fiber only)

All supported ports
available.

1x1GbE, 2xOC-12

(due to 2.5 Gbps limitation for board)

N/A 2xOC-12 POS
2x1GbE
(mezzanine fiber
or copper)

All supported ports
available.

1x1GbE, 2xOC-12

(due to 2.5 Gbps limitation for board)

Figure 13-1. Example Hardware Configuration for OC48-Ethernet/POS

Ethernet
MAC

Intel IXP2400
Network

Processor
Ethernet Frames

SPI3 (1/2 SPHY
4x8)

Ethernet
IP

Ethernet
IP

POS
Framer POS Frames

POS PHY L2 (1/2
SPHY 4x8)

POS
IPPOS

IP

Sonet

Software Building Blocks Applications Design Guide 185

Dual OC-12 POS/Dual Gb Ethernet Forwarding Application for IXDP24X1

13.2 Software Overview

Figure 13-2 shows the microblocks needed to implement an OC-12 Ethenet/POS IPv4 Forwarding
application. All the context pipe-stages (for example, Packet Rx, Queue Manager, and Scheduler)
occupy an entire microengine. Each context pipe-stage is mapped to a single microblock running
on a microengine with or without a dispatch loop. The functional pipeline runs on three
microengines and implements decapsulation (Ethernet and PPP) together with decapsulation and
the IPv4 forwarder blocks.

The design for the application shown in Figure 13-2 is based on the guidelines specified in the
Intel® Internet Exchange Architecture (IXA) Portability Framework Developer’s Manual. The
driver microblocks (Receive, Transmit, Scheduler and Queue Manager) run on different
microengines from the packet processing code. In this design, each driver block occupies an entire
microengine. The packet processing blocks on the ingress IXP2400 include the IPv4 Forwarder
and the PPP decapsulation/classify microblock. There are four microengines that run in parallel
and execute the packet processing code. On the egress side, the only packet processing code is the
PPP encapsulation block which runs on a single microengine.

13.2.1 Data Flow

This section describes the data flow on the Intel® IXP2400 Network Processor.

13.2.1.1 Ethernet Packet RX

The Ethernet Packet Receive (Rx) microblock performs frame-reassembly on the incoming
mpackets on the media interface. It reassembles and writes the packet data to a buffer in DRAM
and queues the packet buffer handle on a microengine-to-microengine scratch ring for processing

Figure 13-2. Microblocks for Dual OC-12 POS/ Dual Gigabit Ethernet IPv4 Forwarding
Application

uE 0:0

uEs 0:1, 0:2, 1:3

uE 0:3

uE 1:1

uE 1:2

uE 1:0

Ethernet
Packet Rx

E
th

 D
ec

ap
/

C
la

ss
ify

Packet
Scheduler

Packet
QM

POS Packet Tx

PPP Encap

IP
v4

 F
w

d

L2
Va

lid
at

e Ethernet
Packet Tx

Eth Encap

Functional pipeline

POS Packet Rx

communication w ith core
components

P
P

P
 D

ec
ap

/
C

la
ss

ify

186 Software Building Blocks Applications Design Guide

Dual OC-12 POS/Dual Gb Ethernet Forwarding Application for IXDP24X1

by the next stage of the pipeline. The Packet RX microblock also sets up per packet meta
information (offset, size, etc.) which are passed down the pipeline either in a descriptor in SRAM
or in the microengine-microengine scratch ring itself.

The Packet RX microblock runs on 4 threads on a single microengine (together with POS Rx).
Each thread handles one micropacket (being in an RBUF) at a time. To maintain packet
sequencing, the threads execute in strict order.

The Packet RX microblock works in the MSF mode. The SPI-3 bus is divided into four 8-bit SPI-3
connections. Since the Packet RX microblock uses 4 threads, each of 4 supported ports uses one
thread for receiving packets. The re-assembly context for all these ports is kept in local memory.

From the Packet RX block, the packet is passed on to an application-specific system microblock.
This microblock checks if the packet is marked to be dropped or sent to the Intel XScale® core. If
not, it queues the packet buffer handle and associated meta-data into the scratch ring for the next
stage in the pipeline.

13.2.1.2 POS RX

The POS Receive (Rx) is a driver microblock that performs frame-reassembly on the mpackets
coming in on the POS media interface. It reassembles and writes the packet data to a buffer in
DRAM and queues the packet buffer handle on a microengine-microengine scratch ring for
processing by the packet processing microengine. The Packet RX microblock also sets up per
packet meta information (offset, size, etc.) which are passed on either in a descriptor in SRAM or
in the microengine-microengine scratch ring itself. In this application, the packets reassembled are
PPP frames containing IP datagrams. RFC 2615 defines the Packet Over SONET specification and
refers to RFC 1661 (PPP) and RFC 1662 (PPP in HDLC-like framing). PPP framing, including
header validation, FCS generation and computation and byte stuffing, is handled by the POS
framer (IXF 6048).

The Packet RX microblock uses 4 threads on a single microengine, each of which handles one
mpacket at a time. In the application 2 ports are supported and the re-assembly context for all these
ports is kept in local memory. To maintain packet sequencing, the threads execute in strict order.

Note: This microblock is written such that it supports up to 16 virtual ports, one or more of which may be
unused. This allows the microblock to support different configurations such as Quad-OC12 or 16
OC-3 ports. However the application uses the block in the way that only 2 POS ports (OC-12 or
OC-3) are supported.

Since POS packets may be up to 9k bytes, some large packets may be stored in multiple buffers
chained together as a link-list. The buffer handles for the first and last packet in the chain are
queued in the scratch ring.

From the Packet RX block, the packet is passed on to an application specific system microblock
(DL_Sink[]). This microblock checks if the packet has been marked to be dropped (IX_DROP) or
sent to the Intel XScale® core (IX_EXCEPTION). If not, it queues the packet buffer handle and
associated packet meta data into the scratch ring for the next stage in the pipeline.

13.2.1.3 Ethernet Decapsulation and Classify

The Ethernet decapsulation/classify microblock runs in a functional pipeline with the PPP
decapsulation, IPv4 and L2 validation microblocks on three microengines using 24 threads. This
microblock classifies the incoming packets.

Software Building Blocks Applications Design Guide 187

Dual OC-12 POS/Dual Gb Ethernet Forwarding Application for IXDP24X1

Before classification for all packets, their handlers are read from DRAM and cached in transfer
registers. Packet descriptors are also cached in gprs.

Packet descriptor metadata is updated per decapsulation results. For an IP routed packet, the offset
in buffer points at the IP header. IP ARP packets are passed to the Intel XScale® core as exception
packets.

Subsequently, a packet is passed to the IPv4 forwarder, or to the Intel XScale® core (as an
exception packet) for further processing.

13.2.1.4 PPP Decapsulation and Classify

The PPP decapsulation/classify microblock runs in a functional pipeline with the L2 decapsulation,
IPv4 and L2 validation microblocks on three microengines using 24 threads.

An application specific system source microblock on each thread dequeues packet buffer handles
from the scratch ring. This source block (DL_Source[]) is a system microblock implicit in the
dispatch loop. It reads in the packet meta information—that is, the packet descriptor, and populates
the dispatch loop state. It also reads in 32 bytes of the packet header from DRAM into a header
cache maintained in transfer registers. Since it is important to maintain packet sequencing, the
threads in the microblock execute in strict order to dequeue from the scratch ring. This implies that
the first thread on microengine 1 dequeues the first packet, and signals the next thread to perform
dequeue. From this block, the packet goes to the PPP decapsulation/classify microblock.

The PPP decapsulation/classify microblock removes the layer-2 PPP header from the packet by
updating the offset and size fields in the packet meta descriptor. Based on the PPP header, it also
classifies the packet into IPv4, PPP control packet (LCP, IPCP etc). If the packet is a PPP control
packet, it is marked as an exception packet to be sent to the XScale Core (IX_EXCEPTION).
Otherwise the packet is sent down the microengine pipeline for further processing. In this
application, the dispatch loop will silently drop packets classified as IPv6.

13.2.1.5 IPv4 Forwarder

The IPv4 Forwarder microblock forwards IPv4 packets based on L3 addressing. The IPv4
Forwarder microblock uses a packet descriptor and accesses an IP header from the cache in the
transfer registers. The IP packet is then validated against [RFC1812] and [RFC2644] within the
data plane. If the IP packet fails any of the validation checks, the packet is dropped. The packet’s IP
header TTL is decremented, and the IP header checksum is updated accordingly. The packet’s next
hop is then determined (i.e., the next destination to which the packet is forwarded). To do that, the
IP packet’s destination address is passed to a 5-trie Longest Prefix Match (LPM) algorithm that
yields a next hop index, which is used to obtain the next hop information. The information includes
the output port and next hop ID, which is subsequently used to access the outgoing link layer
information. The packet metadata is updated with the next hop ID, and the packet is handed off to
the L2 Validation microblock. If the 5-trie algorithm fails (the best match cannot be determined),
the packet is sent to the Intel XScale® core to complete the LPM procedure.

13.2.1.6 Packet-Based Queue Manager

The Packet-Based Queue Manager (QM) performs enqueue/dequeue operations on the hardware-
assisted SRAM queues for packet-type traffic. The QM receives enqueue requests from the IPv4
microblock through a scratch ring. When the queue state changes between empty and non-empty,
QM sends a transition message to the scheduler (via next neighbor registers). After every dequeue
operation, the QM passes a transmit request to the scratch ring served by the Packet TX
microblock. Dequeue requests come from the packet scheduler microengine.

188 Software Building Blocks Applications Design Guide

Dual OC-12 POS/Dual Gb Ethernet Forwarding Application for IXDP24X1

13.2.1.7 Packet Scheduler

The Packet Scheduler selects constant-length packet segments to be transmitted to the MSF
interface. The Packet Scheduler sends the Queue Manager microblock a message to dequeue a
packet from a specific port’s queue. The Queue Manager microblock services the request, and
deposits a packet descriptor from the requested queue into the output packet ring.

The scheduler employs Round Robin (RR) algorithm among the output ports and Weighted Round
Robin (WRR) algorithm among the port queues. Using the Weighted Round Robin algorithm on
the 16 virtual ports allows us the flexibility to support a number of different configurations such 16
OC-3, 3 OC-12, and 4 OC-3, etc. The weights on the ports are adjusted according to the data rate
sustained on that port.

To prevent head-of-line blocking, the scheduler with the help of feedback from the Packet TX
block keeps track of the number of packets in flight (scheduled, but not transmitted) for each port.
If this number exceeds a specified limit, then it stops scheduling on that port.

13.2.1.8 Ethernet Encapsulation

Ethernet encapsulation conditionally adds an appropriate layer-2 Ethernet header to the packet
payload while copying it to a set of TBUFs. If the next hop id is set to an invalid value (-1), the
block assumes that the layer-2 header has already been added to the packet and simply the packet is
copied to a set of TBUFs without changes.

Ethernet encapsulation is integrated within the Ethernet Packet TX microblock.

13.2.1.9 Ethernet Packet TX

The Ethernet Packet TX microblock transmits Ethernet frames via the MSF interface as one or
more consecutive mpackets (containing elements/segments of Ethernet frames). The Ethernet TX
microblock fetches a packet buffer handle (to access an upstream packet descriptor) from the per
port assigned packet ring (i.e., scratch memory ring); the packet descriptor references the payload
of an Ethernet frame. Using the supplied context, the Ethernet TX microblock proceeds to transmit
frame mpackets out the output port. Upon transmitting all MPKT frames, the packet buffer(s) is
recycled.

The Ethernet Packet TX is used in the way that it supports up to 2 Ethernet ports. The transmit
context for all of these are kept in local memory. Therefore the CAM is not required. The
microblock monitors the MSF to see if the TBUF threshold for a specific port has been exceeded. If
so, it stops transmitting on that port and any requests to transmit packets on that port are queued up
in local memory.

The Packet TX microblock periodically updates the scheduler with information about how many
packets have been transmitted. If the packets in flight for a particular port (packets scheduled but
not transmitted) exceed a certain limit (which depends on the bandwidth supported by that port),
then the scheduler stops scheduling any more packets for the port. This combination of queuing
packets in local memory and keeping track of the packets in flight helps prevent head-of-line
blocking.

The Packet TX microblock runs on two microengines and supports SPHY 4x8 configuration.

Software Building Blocks Applications Design Guide 189

Dual OC-12 POS/Dual Gb Ethernet Forwarding Application for IXDP24X1

13.2.1.10 PPP Encapsulation

This block conditionally adds the layer-2 PPP header to the packet while copying it to a set of
TBUFs. If the next hop id in the packet meta data is set to an invalid value (-1) then the block
assumes that the PPP header has already been added to the packet and is simply copied to a set of
TBUFs without changes.

PPP encapsulation is integrated within the POS Packet TX microblock.

13.2.1.11 POS Packet TX

The POS Packet TX microblock transmits packets over the media interface. It segments a packet
into mpackets and moves them into TBUFS for the MSF state machine to transmit. The POS
Packet TX microblock assumes that the layer-2 header is already prepended to the start of the
packet by a previous stage of the packet processing pipeline. It also receives a transmit request for
the entire packet.

The POS Packet TX microblock is set up to support up to 2 POS ports. The transmit context for all
of these are kept in local memory. Therefore the CAM is not required. The microblock monitors
the MSF to see if the TBUF threshold for a specific port has been exceeded. If so it stops
transmitting on that port and any requests to transmit packets on that port are queued up in local
memory.

The POS Packet TX microblock periodically updates the scheduler with information about how
many packets have been transmitted. If the packets in flight for a particular port (packets scheduled
but not transmitted) exceed a certain limit (which depends on the bandwidth supported by that
port), then the scheduler stops scheduling any more packets for the port. This combination of
queuing packets in local memory and keeping track of the packets in flight helps prevent 'head of
line blocking'.

An assumption made in this design is that the output port for egress is found via the IPv4 lookup
performed on the ingress side. A different approach is to use the next hop id and do a lookup on the
egress side to find out the output port number.

The POS Packet TX microblock runs on a single microengine together with PPP encapsulation.

Note: The POS Packet TX microblock can be used to support the MPHY-4 (or SPHY 4x8—four port
OC-12) configuration when it runs on two microengines. However, in this application it runs on a
single microengine in SPHY 4x8 mode so that only 2 ports (OC-12 or OC-3) are supported.

13.2.2 Dispatch Loops

There are four microblock groups, called dispatch loops, used in this pipeline application. For more
information on dispatch loops, refer to the Intel® Internet Exchange Architecture (IXA) Portability
Framework Developer’s Manual “Dispatch Loop” chapter.

• Dispatch Loop for the Packet Frame Reassembly Stage (Figure 13-3)

• Dispatch Loop for the IPv4 Forwarder functional pipeline (Figure 13-4)

• Dispatch Loop for the PPP transmit stage (Figure 13-5)

• Dispatch Loop for the Ethernet transmit stage (Figure 13-6)

190 Software Building Blocks Applications Design Guide

Dual OC-12 POS/Dual Gb Ethernet Forwarding Application for IXDP24X1

The QM and Scheduler blocks do not use a dispatch loop, though they still use the dispatch loop
macros where required

Note: The system microblocks dl_source, dl_sink, dl_qm_sink, etc are application-specific.
They may be changed for different packet processing pipelines.

Figure 13-3. Dispatch Loop for the Packet Frame Reassembly Stage

Packet Rx Dl_Sink

Figure 13-4. Dispatch Loop for the IPv4 Functional Pipeline

Dl_Source

Eth Decap /
Classify

IPv4
Forwarder

L2 Validate

Dl_QM_Sink

PPP Decap
/ Classify

Figure 13-5. Dispatch Loop for POS Transmit Stage

Dl_Tx
_Source PPP Encap POS

 Packet Tx

Software Building Blocks Applications Design Guide 191

Dual OC-12 POS/Dual Gb Ethernet Forwarding Application for IXDP24X1

13.3 Performance Characterization

13.3.1 POS/Ethernet Pipeline

The Intel® IXP2400 Network Processor operates at 600 MHz. The application handles two OC-12
POS ports and two Gigabit Ethernet ports. For a minimum POS packet of 49B, the packet inter-
arrival time at two OC-12 line rate is 194 microengine cycles. For a minimum Ethernet packet of
64B with extra gap of 20B (looks like 84 bytes on a wire) the packet inter-arrival time at two
Gigabit Ethernet port is 200 microengine cycles. In order to maintain line rate for minimum
packets on all four ports, each stage of the pipeline cannot exceed the budget following average
value = (195,4 + 200)/4 = 98,85 microengine cycles . In other words, each stage of the pipeline
needs to retire a packet every 98 cycles.

Table 13-2 summarizes the performance analysis for the POS pipeline.

Figure 13-6. Dispatch Loop (Microblock group) for Ethernet Transmit Stage

Dl_Tx
_Source

Ethernet
Encap

Ethernet
 Packet Tx

Table 13-2. Performance Characterization for the POS Pipeline

Parameter Value

Summarized dual OC-12 line rate with dual Gigabit
Ethernet line rate 3.204 Gigabits/sec

Minimum POS packet size
49 bytes (40 byte TCP/IP, 2 bytes Address and
Control, 2 byte PPP header, 4 byte FCS and 1 byte
flag)

Packet throughput for min packets 6.05 million packets/sec = (1.204 / (49*8)) * (10**9) +
(2 * 1.000 /(84*8) * (10**9)

IXP2400 clock frequency 600 MHZ

Inter-packet arrival time for min packets 600/6.05 = 98.8 cycles

Compute cycles per packet for a single microengine 98

Latency per packet for a single microengine 98 * 8

Compute cycles per packet for n microengines
running in parallel 98 * n

Latency per packet for a n microengines running in
parallel 98 * 8 * n

192 Software Building Blocks Applications Design Guide

Dual OC-12 POS/Dual Gb Ethernet Forwarding Application for IXDP24X1

13.4 System Resource Allocation

Table 13-3 shows the system resources mapped for the Intel® IXP2400 Network Processor. This
mapping reflects the system defaults and may be changed. The allocation of microengines is done
such that it optimizes the performance of this specific application and may be changed for other
applications.

The physical assignment of function to microengine is important since it not only affects when the
next neighbor registers and signaling can be utilized, but it also affects the utilization of the internal
command bus and S-Push/Pull buses. Since ME0-ME3 belong to Microengine Cluster 0 and ME4-
ME7 belong to Microengine Cluster 1, this assignment attempts to balance the usage of the
command bus and S-Push/Pull buses across the two clusters.

The IXP2400 supports two SRAM channels and one DRAM channel. Table 13-4 shows the
SRAM, DRAM, and scratch memory utilized for this application. These values are allocated by the
Intel XScale® core application and patched to the microcode upon startup. The values are defined
in a system XML configuration file ix_sa_registry.xml and may be changed as required.

Table 13-3. System Resources Mapped for the IXP2400

Microblock ME # Communication

Packet Rx ME0 Auto-push status from MSF

IPv4 Forwarder + Eth Decapsulation/ Classifier +
PPP Decapsulation/ Classifier + L2 Validation ME1, ME2, M7 Scratch Ring

Queue Manager ME3 Scratch Ring

Packet Scheduler ME4 Scratch Ring

PPP Packet TX + PPP Encapsulation ME5 Scratch Ring

Ethernet Packet TX + Eth Encapsulation ME6 Scratch Ring

Table 13-4. SRAM, DRAM, and Scratch Utilization for Ingress Resource Allocation

Item
Size per
entry in
bytes

Number
of entries

Total
SRAM
used

Total DRAM
used

Total
Scratch
used

Buffer Descriptors 32 16000 512000 - -

Buffers 2048 16000 - 32768000 -

Queue Descriptors 16 1025 16400 - -

Layer-2 table with mapping from next
hop id to Ethernet header 16 1024 16384 - -

Trie Table 64B for a trie
entry

1024 used
for
approxima
tion

256kB+1K
B+1/
2*1024*64
B=

295936

- -

Route Table (Next Hop Information) 16 1024 - 16384 -

IPv4 statistics 32
16
(needed
4)

- - 512

Software Building Blocks Applications Design Guide 193

Dual OC-12 POS/Dual Gb Ethernet Forwarding Application for IXDP24X1

13.5 Microblock Interface

This section describes the interfaces between the different microblocks for this pipeline
application.

In most of the messages, there is a valid bit is used to prevent a value of zero from being enqueued
on the scratch ring. Zero is used to detect a case where the scratch ring is empty. So the valid bit
helps distinguish between a zero value that was actually enqueued versus a case where the ring is
empty.

13.5.1 Packet RX and Packet Processing Microengines

The interface between the Packet Receive microblock and the Packet Processing microengines
(IPv4 Forwarder + L2/PPP decap + L2 Validate) is a scratch ring. Table 13-5 describes each entry
in the scratch ring—which is five words.

IPv4 Directed Broadcast Table 32 256 + 32
extra 9216 - -

Processing Control Block 4 1 4 - -

Ring from Packet RX to packet
processing pipeline (IPv4+Eth Decap/
Classify)

5*4B=20 204 - - 1024*4B=
4096

IPv4 to QM ring 3*4B=12 170 - -
512*4=

2048

Scheduler to QM ring 1*4B=4 512 - -
512*4=

2048

QM Q-Array entries 4 16 64 - -

Buffer Free list Q-Array entry 4 4 16 - -

uCode to Xscale Core priority rings (1
AF+ 1 BE) 2*4B 64 - - 2*512 =

1024

Xscale Core to uCode rings (1 CNTRL
+ 1 DATA)

1*4B,

2*4B
128 - -

128*4+
256*4=

1536

QM to Packet TX rings 1*4B=4 256 - - 4*256*4B=
4096

Table 13-4. SRAM, DRAM, and Scratch Utilization for Ingress Resource Allocation (Continued)

Table 13-5. Packet RX and Packet Processing Microengines Scratch Ring Interface

LW Bits Size Field Description

0 31:0 32 dl_buffer_handle Buffer handle for the SOP descriptor

1 31:0 32 dl_eop_buffer_handle Buffer handle for the EOP descriptor

2 31:!6 16 buffer_size Buffer size in bytes

15:0 16 offset Offset of the start of data in the buffer in bytes

3 31:16 16 packet_size Total packet size across buffers

15:12 4 free_list_id Free list ID for buffer

194 Software Building Blocks Applications Design Guide

Dual OC-12 POS/Dual Gb Ethernet Forwarding Application for IXDP24X1

13.5.2 Packet Processing Microengines and Packet QM

The interface between the Packet Processing microengines (IPv4 Forwarder + L2/PPP decap + L2
Validate) and Packet QM is a scratch ring. Table 13-6 describes each entry in the scratch ring—
which is five words.

13.5.3 Packet Queue Manager and Scheduler

The interface between the packet-based Queue Manager and the POS/Ethernet Scheduler is a Next
Neighbor Ring.

11:8 4 rx_stat Receive Status Flag

7:0 8 header_type Type of header at offset bytes into the packet

4 31:16 16 input_port Input port on the Network Processor

15:0 16 reserved Reserved

Table 13-5. Packet RX and Packet Processing Microengines Scratch Ring Interface

Table 13-6. Packet Processing Microengines and Packet QM Scratch Ring Interface

LW Bits Size Field Description

0 31:0 32 SOP Buffer Handle Buffer Handle for the SOP Descriptor

1 31:0 32 EOP Buffer Handle Buffer Handle for the EOP Descriptor (can be NULL)

2 31 1 Valid Bit Must be 1

2 30:16 15 Reserved Reserved

2 15:0 16 Queue Number Queue Number

Table 13-7. Queue Transition Messages Sent by the Packet Queue Manager

LW Bits Size Field Description

0 31 1 Valid Bit Must be 1

30 1 Enqueue Transition Notification that queue has gone from empty to
non-empty

29 1 Reserved Reserved

28:18 11 Packet Cell Count Unused for POS/Ethernet

17:16 2 Reserved Reserved

15:0 16 Queue Number Queue Number that was enqueued (only 8 bits
used for POS/Ethernet)

1 31 1 Valid Bit Must be 1

30 1 Dequeue Transition Notification that queue has gone from non-empty
to empty

29 1 Invalid Dequeue If set, then dequeue request to an invalid queue
was made

28:16 13 Packet Size Packet size in 128 bytes units (only 7 bits used)

15:0 16 Queue Number Queue number that was dequeued (only 8 bits
used for POS/Ethernet)

Software Building Blocks Applications Design Guide 195

Dual OC-12 POS/Dual Gb Ethernet Forwarding Application for IXDP24X1

13.5.4 Packet Queue Manager and POS Packet TX

The interface between the Packet Queue Manager and the POS Packet Transmit microengines is
two scratch rings—one per OC-12 port. Table 13-8 describes each entry in the scratch ring—which
is one word.

13.5.5 Packet Queue Manager and Ethernet Packet TX

The interface between the Packet Queue Manager and the Ethernet Packet Transmit microengines
is two scratch rings—one per Gigabit Ethernet port. Table 13-9 describes each entry in the scratch
ring—which is one word.

13.6 Core Components Usage

The Dual OC-12 POS/ Dual Gigabit Ethernet Forwarding pipeline application uses standard core
components customized to use only channel 0 for SRAM. Figure 13-7 shows the interconnections
between the application’s core components. The Resource Manager and Queue Manager core
components employ scratch rings for communication with microblocks on microengines.
Interactions between IPv4, Ethernet Tx, POS Tx, Stack Driver, Resource Manager and Queue
Manager are managed by the Core Component Interface (CCI).

Table 13-8. Packet Queue Manager and Packet TxScratch Ring Interface

LW Bits Size Field Description

0 31 1 Valid Bit Must be 1

30:28 3 Reserved Reserved

27:24 4 Port Number Port Number

23:0 24 SOP Buffer Descriptor Pointer to SOP buffer descriptor in SRAM in long
words (same as bits 23:0 of buffer handle)

Table 13-9. One-word Scratch Ring (Packet Queue Manager and Packet TX)

LW Bits Size Field Description

0 31 1 Valid Bit Must be 1

30:28 3 Reserved Reserved

27:24 4 Port Number Port Number

23:0 24 SOP Buffer Descriptor Pointer to SOP buffer descriptor in SRAM in long
words (same as bits 23:0 of buffer handle)

196 Software Building Blocks Applications Design Guide

Dual OC-12 POS/Dual Gb Ethernet Forwarding Application for IXDP24X1

Figure 13-7. Core Components in the OC-12 POS/Ethernet IPv4 Forwarding Application

Eth Tx coreEth ARP core

QM core RM core Scheduler
core

Stack Driver
core

IPv4 core

VxWorks
Stack

POS Tx core

CCI

CCI

CCI

CCI

CCI

CCI

CCI

Software Building Blocks Applications Design Guide 197

Quad Gigabit Ethernet Forwarding
Application for IXDP24X1 14

This chapter describes a Quad Gigabit Ethernet Forwarding pipeline application implemented on
one Intel® IXP2400 Network Processor. This chapter contains a high-level design overview and
lists the different software components used to build this pipeline application.

The application described in this chapter is supported on the Intel® IXDP2401 Advanced
Development Platform, which uses a single IXP2400.

This chapter focuses only on the fast path or microengine components of the design. The Intel
XScale® core components for this application are described in the Intel® Internet Exchange
Architecture (IXA) Portability Framework Developer’s Manual.

Note: It is important that all applications developed for the IXDP24X1 platform must have the
IX_PLATFORM_2401 flag defined in the project makefiles, for both the core components and the
microblocks. An example of required flag definitions may be found in the makefiles of this
application. By default, newly created projects under the Windriver* Tornado* development
environment have the flag defined as IX_PLATFORM_2400. For this application, the flag must be
changed to IX_PLATFORM_2401.

14.1 Hardware Overview

The Intel® IXDP2401 Advanced Development Platform consists of the Intel® IXMB2401
baseboard, which is equipped with two daughter board connectors (DB1 and DB2). Up to two
media mezzanine boards can be connected to the baseboard. The following mezzanine boards are
available:

• 2x1 Gigabit Ethernet mezzanine card with copper interfaces

• 2x1 Gigabit Ethernet mezzanine card with fiber interfaces

The Intel® IXMB2401 baseboard may also be equipped with two types of front interfaces:

• 2x1 Gigabit Ethernet copper interfaces (MIC 2C)

• 2x1 Gigabit Ethernet fiber interfaces (MIC 2F)

198 Software Building Blocks Applications Design Guide

Quad Gigabit Ethernet Forwarding Application for IXDP24X1

Table 14-1 presents all possible hardware configurations supported by the Quad Gigabit Ethernet
Forwarding Application for IXDP2401.

The application runs on an IXMB2401 baseboard with an Intel® IXP2400 Network Processor. The
baseboard is equipped with two front panel Gigabit Ethernet interfaces (copper or fiber) as well as
two backplane Gigabit Ethernet interfaces. Additionally, a serial console port and debug Ethernet
port are available. The baseboard is designed according to ATCA standards and requires an ATCA-
compliant chassis.

Table 14-1. Supported Hardware Configurations

Backplane
(Interface

Supported)

DB1
(Interface

Supported)

DB2
(Interface

Supported)
Description Configuration with 100%

Throughput

2x1GE
(copper only)

MIC 2C 2x1GbE
(copper only) N/A All supported ports

available.
1x1GbE front, 1x1GbE backplane

(due to 2.5 Gbps limitation for board)

2x1GE
(copper only) N/A MIC 2F 2x1GbE

(fiber only)
All supported ports
available.

1x1GbE front, 1x1GbE backplane

(due to 2.5 Gbps limitation for board)

2x1GE
(copper only)

2x1GbE
(mezzanine fiber
or copper)

N/A All supported ports
available.

1x1GbE front, 1x1GbE backplane

(due to 2.5 Gbps limitation for board)

Figure 14-1. Example Hardware Configuration for Quad Ethernet IPv4 Forwarding Application

Ethernet
MAC

Intel IXP2400
Network

Processor
Ethernet
Frames

SPI3
SPHY 4x8

Ethernet
IP

Ethernet
IP

Software Building Blocks Applications Design Guide 199

Quad Gigabit Ethernet Forwarding Application for IXDP24X1

14.2 Software Overview

Figure 14-2 shows the microblocks needed to implement a Quad Ethernet IPv4 Forwarding
pipeline application. All the context pipe-stages (for example, Packet Rx, Queue Manager, and
Scheduler) occupy an entire microengine. Each context pipe-stage is mapped to a single
microblock running on a microengine with or without a dispatch loop. The functional pipeline runs
on three microengines and implements the layer-2 (Ethernet) decapsulation and the IPv4 forwarder
blocks.

14.2.1 Data Flow

14.2.1.1 Packet RX

The Packet Receive (RX) microblock performs frame-reassembly on the incoming packets on the
media interface. It reassembles and writes the packet data to a buffer in DRAM and queues the
packet buffer handle on a microengine-microengine scratch ring for processing by the next stage of
the pipeline. The Packet RX microblock also sets up per packet meta information (offset, size, etc.)
which are passed down the pipeline either in a descriptor in SRAM or in the microengine-
microengine scratch ring itself.

The Packet RX microblock runs on 8 threads on a single microengine. Each thread handles one
micropacket (rbuf) at a time. To maintain packet sequencing, the threads execute in strict order.

The Packet RX microblock works in MSF mode. The SPI-3 bus is divided into four 8-bit SPI-3
connections. Since the Packet RX microblock uses 8 threads, each of 4 supported ports uses two
threads for receiving packets. The re-assembly context for all these ports is kept in local memory.

From the Packet RX block, the packet is passed on to an application-specific system microblock.
This microblock checks if the packet is marked to be dropped or sent to the Intel XScale® core. If
not, it queues the packet buffer handle and associated meta-data into the scratch ring for the next
stage in the pipeline.

Figure 14-2. Microblocks for a Quad Ethernet IPv4 Forwarding Application

uE 0:0 uEs 0:1, 0:2, 1:3 uE 0:3

uE 1:1

uE 1:2

uE 1:0

Packet Rx

Eth Decap /
Classify

Packet
Scheduler

Packet QM

Packet Tx

Eth Encap

IPv4 Fwd
L2 Validate

Packet Tx

Eth EncapFunctional pipeline

communication with core
components

200 Software Building Blocks Applications Design Guide

Quad Gigabit Ethernet Forwarding Application for IXDP24X1

14.2.1.2 Ethernet Classify/Decapsulate

The Ethernet decapsulation/classify microblock runs in a functional pipeline with the IPv4
microblock on three microengines using 23 threads. This microblock classifies the incoming
packets.

Before classification for all packets, their handlers are read from DRAM and cached in transfer
registers. Packet descriptors are also cached in gprs.

Packet descriptor metadata is updated per decapsulation results. For an IP routed packet, the offset
in buffer points at the IP header. IP ARP packets are passed to the Intel XScale® core as exception
packets. Subsequently, a packet is passed to the IPv4 forwarder, or to the XScale core (as an
exception packet) for further processing.

14.2.1.3 IPv4 Forwarder

The IPv4 Forwarder microblock forwards IPv4 packets based on L3 addressing. The IPv4
Forwarder microblock uses a packet descriptor and accesses an IP header from the cache in the
transfer registers. The IP packet is then validated against [RFC1812] and [RFC2644] within the
data plane. If the IP packet fails any of the validation checks, the packet is dropped. The packet’s IP
header TTL is decremented, and the IP header checksum is updated accordingly. The packet’s next
hop is then determined (that is, the next destination to which the packet is forwarded). To do that,
the IP packet’s destination address is passed to a 5-trie Longest Prefix Match (LPM) algorithm that
yields a next hop index, which is used to obtain the next hop information. The information includes
the output port and next hop ID, which is subsequently used to access the outgoing link layer
information. The packet metadata is updated with the next hop ID, and the packet is handed off to
the L2 Validation microblock. If the 5-trie algorithm fails (the best match cannot be determined),
the packet is sent to the Intel XScale® core to complete the LPM procedure.

14.2.1.4 L2 Validate

The L2 Validate microblock checks for outgoing packets if layer-2 Ethernet header exists in the L2
Table. If the header is not found, the packet is enqueued to be processed by the XScale Core. ARP
Processing is handled by the XScale application code.

The L2 Validate microblock is located after IPv4 Forwarder in the functional pipeline.

14.2.1.5 Packet-Based Queue Manager

The Packet-Based Queue Manager (QM) performs enqueue/dequeue operations on the hardware-
assisted SRAM queues for packet-type traffic. The QM receives enqueue requests from the IPv4
microblock through a scratch ring. When the queue state changes between empty and non-empty,
QM sends a transition message to the scheduler (via next neighbor registers). After every dequeue
operation, the QM passes a transmit request to the scratch ring served by Packet TX microblock.
Dequeue requests come from the packet scheduler microengine.

14.2.1.6 Packet Scheduler

The Packet Scheduler selects constant-length packet segments to be transmitted to the MSF
interface. The Packet Scheduler sends the Queue Manager microblock a message to dequeue a
packet from a specific port’s queue. The Queue Manager microblock services the request, and
deposits a packet descriptor from the requested queue into the output packet ring.

Software Building Blocks Applications Design Guide 201

Quad Gigabit Ethernet Forwarding Application for IXDP24X1

The scheduler employs Round Robin (RR) algorithm among the output ports and Weighted Round
Robin (WRR) algorithm among the port queues.

To prevent head-of-line blocking, the scheduler with the help of feedback from the Packet TX
block keeps track of the number of packets in flight (scheduled, but not transmitted) for each port.
If this number exceeds a specified limit, then it stops scheduling on that port.

14.2.1.7 Ethernet Encapsulation

Ethernet encapsulation conditionally adds an appropriate layer-2 Ethernet header to the packet
payload while copying it to a set of TBUFs. If the next hop id is set to an invalid value (-1), the
block assumes that the layer-2 header has already been added to the packet and the packet is simply
copied to a set of TBUFs without changes.

Ethernet encapsulation is integrated within the Ethernet Packet TX microblock and runs on the
same two microengines.

14.2.1.8 Packet TX

The Packet TX microblock transmits Ethernet frames via the MSF interface as one or more
consecutive MPKTs (containing elements/segments of Ethernet frames). The Ethernet TX
microblock fetches a packet buffer handle (to access an upstream packet descriptor) from the
egress packet ring (i.e., scratch memory ring); the packet descriptor references the payload of an
Ethernet frame. Using the supplied context, the Ethernet TX microblock proceeds to transmit
frame MPKTs out the egress port. Upon transmitting all MPKT frames, the packet buffer(s) is
recycled.

The Packet TX microblock periodically updates the scheduler with information about how many
packets have been transmitted. If the packets in flight for a particular port (packets scheduled but
not transmitted) exceed a certain limit (which depends on the bandwidth supported by that port),
then the scheduler stops scheduling any more packets for the port. This combination of queuing
packets in local memory and keeping track of the packets in flight helps prevent head-of-line
blocking.

The Packet TX microblock runs on two microengines and supports SPHY 4x8 configuration. Thus
4 Gigabit Ethernet ports are supported.

14.2.2 Dispatch Loops

There are three dispatch loops on the application’s pipeline:

• Dispatch Loop for the Packet Frame Reassembly Stage (Figure 14-3)

• Dispatch Loop for the IPv4 Forwarder functional pipeline (Figure 14-4)

• Dispatch Loop for the Ethernet transmit stage (Figure 14-5)

The QM and Scheduler blocks do not use a dispatch loop (they still use the dispatch loop macros
where required).

202 Software Building Blocks Applications Design Guide

Quad Gigabit Ethernet Forwarding Application for IXDP24X1

Note: Note that the system microblocks dl_source, dl_sink, dl_qm_sink, etc. are application-
specific. They may be changed for different packet processing pipelines.

14.2.3 HW Architecture-Specific Code

14.2.3.1 Quad Gigabit Ethernet MAC Driver

A Quad Gigabit Ethernet MAC device is used to access front panel Gigabit Ethernet ports as well
as the base interface in the backplane access module. Two ports are configured to support front
panel ports; two other ports are configured for access to the base interface on the ATCA backplane.

Figure 14-3. Dispatch Loop for the Packet Frame Reassembly Stage

Packet Rx Dl_Sink

Figure 14-4. Dispatch Loop for the IPv4 Functional Pipeline

Dl_Source Eth Decap /
Classify

IPv4
Forwarder L2 Validate Dl_QM_Sink

Figure 14-5. Dispatch Loop for the Ethernet Transmit Stage

Dl_Tx
_Source

Ethernet
Encap

Ethernet
 Packet Tx

Software Building Blocks Applications Design Guide 203

Quad Gigabit Ethernet Forwarding Application for IXDP24X1

The Quad Gigabit Ethernet MAC device is connected to the IXP2400 through SPI-3 buses for
packet transmission/reception and through the slow port for device configuration and management.
The device is configured for 1 Gigabit per second full duplex and its device driver supports only
GMII (copper) mode. The Quad Gigabit Ethernet MAC device is also used for programming the
Quad Ethernet PHY.

14.2.3.2 Ethernet PHY Driver

The Quad Gigabit Ethernet PHY is connected to the Quad Gigabit Ethernet MAC device through
GMII switch. Two PHY ports are connected to front panel Gigabit Ethernet ports; two other ports
are connected to the base interface on ATCA backplane. The Quad Gigabit Ethernet PHY is
configured and managed by the IXP2400 through the Quad Gigabit Ethernet MAC device.

Figure 14-6. Ethernet Interface Connections to Quad Gigabit Ethernet MAC Device

SPI-3
SPI-3

SPI-3
Switch

4x Gb Eth MAC

IXP2400

AdvancedTCA
Backplane Connector

 4x 1000Base-T
Eth PHY

ATCA Base Interface

2x Front Panel
Gigabit

Ethernet

GMII Switch

204 Software Building Blocks Applications Design Guide

Quad Gigabit Ethernet Forwarding Application for IXDP24X1

14.3 Performance Characterization

The Intel® IXP2400 Network Processor operates at 600 MHz. For a minimum Ethernet packet of
64B, the packet inter-arrival time at 4 Gbps line rate is 100 microengine cycles. In order to
maintain line rate for minimum packets, each stage of the pipeline cannot exceed this budget. In
other words, each stage of the pipeline needs to retire a packet every 100 cycles. Table 14-2
summarizes the performance analysis for the Ethernet pipeline.

14.4 System Resource Allocation

Table 14-3 shows the system resources mapped for the Intel® IXP2400 Network Processor. This
mapping reflects the system defaults and may be changed to match the needs of a specific
application. Microengine allocation has been made to optimize the performance of this specific
pipeline application; it may be modified for other applications.

The physical assignment of function to microengine is important since it not only affects when the
next neighbor registers and signaling can be utilized, but it also affects the utilization of the internal
command bus and S-Push/Pull buses. Since ME0-ME3 belong to Microengine Cluster 0 and ME4-
ME7 belong to Microengine Cluster 1, this assignment attempts to balance the usage of the
command bus and S-Push/Pull buses across the two clusters.

The IXP2400 supports two SRAM channels and one DRAM channel. Table 14-4 shows the
SRAM, DRAM, and scratch memory utilized for this application. These values are allocated by the
Intel XScale® core application and patched to the microcode upon startup. The values are defined
in a system XML configuration file ix_sa_registry.xml and may be changed as required.

Table 14-2. Performance Characterization for the Ethernet Pipeline

Line rate for 4 Gig ports 4 Gigabits/sec

Min Ethernet packet size 64 bytes (+ 20 byte inter packet gap)

Packet throughput for minimum packets 5.95 million packets/sec = (4 / (84*8)) * (10**9)

IXP2400 clock frequency 600 MHZ

Inter-packet arrival time for minimum packets 600/5.95 = 100.84 cycles

Compute cycles per packet for a single microengine 100

Latency per packet for a context pipe single microengine 100 * 8

Compute cycles per packet for n microengines in parallel 100*n

Latency per packet for n microengines in parallel 100*8*n

Table 14-3. System Resources Mapped for the IXP2400

Microblock ME # Communication

Packet Rx ME0 Auto-push status from MSF

IPv4 Forwarder + Eth Decapsulation/
Classifier + L2 Validation ME1, ME2, M7 Scratch Ring

Queue Manager ME3 Scratch Ring

Packet Scheduler ME4 Scratch Ring

Packet TX + Eth Encapsulation ME5, ME6 Scratch Ring

Software Building Blocks Applications Design Guide 205

Quad Gigabit Ethernet Forwarding Application for IXDP24X1

14.5 Microblock Interfaces

This section describes the interfaces between the different microblocks for this pipeline
application. In most of the messages, there is a valid bit is used to prevent a value of zero from
being enqueued on the scratch ring. Zero is used to detect a case where the scratch ring is empty. So
the valid bit helps distinguish between a zero value that was actually enqueued versus a case where
the ring is empty.

Table 14-4. SRAM, DRAM and Scratch Utilization for System Resource Allocation

Item
Size per
entry in
bytes

Number
of entries

Total
SRAM
used

Total DRAM
used

Total
Scratch
used

Buffer descriptors 32 16000 512000 - -

Buffers 2048 16000 - 32768000 -

Queue descriptors 16 1025 16400 - -

Layer-2 table with mapping from
next hop id to Ethernet header 16 1024 16384 - -

Trie table 64B for a trie
entry

1024 used
for
approxima
tion

256kB+1K
B+1/
2*1024*64
B=

295936

- -

Route table (next hop information) 16 1024 - 16384 -

IPv4 statistics 32
16
(needed
4)

- - 512

IPv4 directed broadcast table 32 256 + 32
extra 9216 - -

Processing control block 4 1 4 - -

Ring from packet RX to packet
processing pipeline (IPv4+Eth
Decap/ Classify)

5*4B=20 204 - - 1024*4B=
4096

IPv4 to QM ring 3*4B=12 170 - -
512*4=

2048

Scheduler to QM ring 1*4B=4 512 - -
512*4=

2048

QM Q-Array entries 4 16 64 - -

Buffer free list Q-Array entry 4 4 16 - -

uCode to Xscale core priority rings
(1 AF+ 1 BE) 2*4B 64 - - 2*512 = 1024

Xscale core to uCode rings (1
CNTRL + 1 DATA)

1*4B,

2*4B
128 - -

128*4+
256*4=

1536

QM to packet TX rings 1*4B=4 256 - - 4*256*4B=
4096

206 Software Building Blocks Applications Design Guide

Quad Gigabit Ethernet Forwarding Application for IXDP24X1

14.5.1 Packet RX and Packet Processing Microengines

The interface between Packet RX and Packet Processing Microengines is identical to the OC-12
POS/Ethernet IPv4 Forwarding Application – see Section 13.5.1, “Packet RX and Packet
Processing Microengines” on page 193.

14.5.2 Packet Processing Microengines and Packet QM

The interface between Packet Processing Microengines and Packet QM is identical to the OC-12
POS/Ethernet IPv4 Forwarding Application – see Section 13.5.2, “Packet Processing Microengines
and Packet QM” on page 194.

14.5.3 Packet Scheduler and Packet QM

The interface between Packet Scheduler and Packet QM is identical to the OC-12 POS/Ethernet
IPv4 Forwarding Application – see Section 14.5.3, “Packet Scheduler and Packet QM” on
page 206.

14.5.4 Packet Queue Manager and Packet TX

The interface between the Packet Queue Manager and the Packet Transmit microengines is four
scratch rings—one per Gigabit Ethernet port. Table 14-5 describes each entry in the scratch ring—
which is one word.

14.6 Core Component Usage

The Quad Gigabit Ethernet Forwarding pipeline application uses standard core components
customized to use only channel 0 for SRAM. Figure 14-7 shows the interconnection between the
pipeline application’s core components. Resource Manager and Queue Manager core components

Table 14-5. One-word Scratch Ring (Packet Queue Manager and Packet TX)

LW Bits Size Field Description

0 31 1 Valid Bit Must be 1

30:28 3 Reserved Reserved

27:24 4 Port Number Port number

23:0 24 SOP Buffer Descriptor Pointer to SOP buffer descriptor in SRAM in long
words (same as bits 23:0 of buffer handle)

Software Building Blocks Applications Design Guide 207

Quad Gigabit Ethernet Forwarding Application for IXDP24X1

employ scratch rings for communication with microblocks on microengines. Interactions between
IPv4, Ethernet Tx, Stack Driver, Resource Manager and Queue Manager are managed by the Core
Component Interface (CCI).

Figure 14-7. Core Components in the Quad Ethernet IPv4 Forwarding Application

Eth Tx coreEth ARP core

QM core RM core Scheduler
core

Stack Driver
core

IPv4 core

VxWorks
Stack

CCI

CCI

CCICCI

CCI

CCI

208 Software Building Blocks Applications Design Guide

Quad Gigabit Ethernet Forwarding Application for IXDP24X1

Software Building Blocks Applications Design Guide 209

ATM/Ethernet IPv4 Forwarding
Application for IXDP24X1 15

This chapter describes an IPv4 Forwarding software application for Ethernet and ATM
implemented on an Intel® IXP2400 Network Processor. It provides a high level design overview
and lists the different software components used to build this application. The example application
uses standard building blocks from the IXA SDK.

The application described in this chapter is supported on the Intel® IXDP 2401 Advanced
Development Platform, which uses a single Intel® IXP2400 Network Processor installed on the
Intel® IXMB2401 baseboard.

Note: It is important that all applications developed for the IXDP24X1 platform must have the
IX_PLATFORM_2401 flag defined in the project makefiles, for both the core components and the
microblocks. An example of required flag definitions may be found in the makefiles of this
application. By default, newly created projects under the Windriver* Tornado* development
environment have the flag defined as IX_PLATFORM_2400. For this application, the flag must be
changed to IX_PLATFORM_2401.

15.1 Hardware Overview

The application runs on the Intel® IXDP 2401 Advanced Development Platform. Up to two media
mezzanine boards may be connected to the baseboard. Two SRAM channels are required, so one
additional QDR with 4MB memory must be used. The baseboard is equipped with two
daughterboard connectors (DB1 and DB2). There are two available mezzanine boards.

• 4xOC-12 POS ATM mezzanine card

• 4x1Gigabit Ethernet mezzanine card

Table 15-1 presents all possible hardware configurations supported by the ATM/Ethernet IPv4
Forwarding Application for the Intel® IXDP 2401 platform.

The example application receives traffic from the Ethernet media interface and transmits to the
corresponding VCC on the ATM media interface with the configured encapsulation (VC MUX/
LLC SNAP). It also receives traffic from the ATM media interface and forwards it to the Gigabit
Ethernet interface adding correct MAC addresses.

Note: Packet forwarding between two VCs is not supported in this release.

Table 15-1. Supported Hardware Configurations

DB1 DB2 Description

4xOC-12 ATM 4x1GE one Gigabit Ethernet port available, one OC-12 ATM port.
The ATM-IPv4-ETH application supports only one OC-12
ATM interface.

210 Software Building Blocks Applications Design Guide

ATM/Ethernet IPv4 Forwarding Application for IXDP24X1

15.2 Software Overview

Figure 15-1 shows the microblocks needed to implement an OC-12 ATM/Ethernet IPv4 forwarding
application. Context pipe stages like AAL5 TX, Ethernet TX and ATM TM4.1 Scheduler occupy
one single microengine. All other pipe stages must work simultaneously. For example, AAL5 RX
and Ethernet RX work on one single microengine, QM Packet and Scheduler Packet work on one
single microengine, and the QM ATM and QM Shaper work on one single microengine. The
forwarder consists of the IPv4 microblock. One microengine is dedicated to forwarding from the
ATM media interface to the Ethernet media interface and one microengine is dedicated to
forwarding from the Ethernet to the ATM media interface.

The packet processing blocks include the IPv4 Forwarder, the LLC decapsulation/classify
microblock, the L2 Ethernet decapsulation/classify microblock, the LLC SNAP encapsulation and
the L2 Ethernet encapsulation microblock. The ATM interface supports VC MUX and LLC
encapsulation. There are eight microengines that run in parallel and execute the packet processing
code.

The ATM/Ethernet IPv4 Forwarding application can be tested on the hardware platform using the
Core Components and the transactor platform. The IXA SDK contains test configurations and
packet streams for running on hardware and under simulation. For details, see the Readme file for
the ATM/Ethernet IPv4 Forwarding Application.

Two encapsulation types are supported: VC multiplexing and LLC encapsulation. Virtual
Connections that supports VC multiplexing carry only one specific type of traffic. For example, in
the case of IPv4, traffic classification is determined by VC configuration. Virtual Connections that
support LLC encapsulation can carry many different traffic types and the packet classification is
determined from packet content. Supported encapsulations are listed below:

• ATM, VC multiplexing
IPv4 ([RFC2684])
C-Data /* IPv4 */

• ATM, LLC encapsulation (options determined from packet contents)

Figure 15-1. ATM-IPv4-Ethernet Application Microblocks

uE 0:0

uE 1:0 uE 1:1 uE 1:2

Packet Rx

LL
C

 D
ec

ap
 /

Cl
as

si
fy

Packet
Scheduler

Packet
QMIP

v4
 F

w
d

Packet Tx

L2
 E

th
er

 E
nc

ap

tx notifications

AAL5 RX

uE 0:1

L2
 E

th
er

 D
ec

ap
/ C

la
ss

ify

IP
v4

 F
w

d

LL
C

EN
ca

p

uE 0:2

TM4.1
Shaper

QM ATM

uE 1:3

AAL5 TX

uE 0:3

TM4.1
Scheduler

Software Building Blocks Applications Design Guide 211

ATM/Ethernet IPv4 Forwarding Application for IXDP24X1

Routed packets
PPP NLPID ([RFC2364], [RFC1661])
LLC=FEFE03, NLPID=CF, PID= 0021, C-Data, PAD /* IPv4 */
Routed SNAP ([RFC2684])
LLC=AAAA03, OUI = 000000, PID= 0800, C-Data /* IPv4 */

Note: The ATM/Ethernet IPv4 Forwarding application supports only the “fast” path. Currently there is no
support for communication between the microengines and Intel XScale® core. The described
application requires two separate free lists. This is because two different Queue Managers are used:
(QM ATM and QM Packet) which must work on two separate free lists. The buffer management
implementation does not offer fully functional support for two (or more) free lists. Buffers sent
from microcode to core components cannot be classified and assigned to the correct free list.

15.3 Data Flow

The Intel® IXP2400 Network Processor receives ATM cells or Ethernet frames that carry IPv4
datagrams. The frames are assembled into IPv4 packets and the Layer-2 (Ethernet or PPP)/ATM
cell headers are removed. Based on the IPv4 header, a Longest Prefix Match (LPM) lookup is
performed and the packets are transmitted over the appropriate VC/port. The sections located
below describe the data flow on the Intel® IXP2400 Network Processor.

15.3.1 AAL5 RX/Ethernet RX

The AAL5 RX and the Ethernet RX microblock work simultaneously on one microengine. Each
interface type (ATM and Ethernet) is being serviced by four threads.

The Ethernet Rx microblock receives Ethernet frames from the MSF interface. The Ethernet Rx
microblock typically receives a number of MPKTs per Ethernet frame (containing elements/
segments of Ethernet frames). Since jumbo Ethernet frames may be up to 9K bytes, some large
packets may be stored in multiple buffers chained together as a link-list. The first MPKT of an
Ethernet frame is processed further by an Ethernet Classify / Decap macro. Upon having received
all of the MPKTs comprising a complete and valid Ethernet frame, buffer handles for the first and
last packet in the chain are queued in the scratch ring.

The ATM AAL5 Rx microblock receives MPKTs containing ATM cells from the MSF interface.
Each ATM cell is read into transfer registers. AAL5 ATM cells are reassembled into complete
AAL5 PDUs. The ATM AAL5 Rx microblock hashes an ingress ATM cell’s physical port, VPI,
and VCI to perform a lookup yielding a VC flow ID. The VCID is an index to one of 64K possible
VCs. Using the VCID, the ATM AAL5 Rx microblock fetches the VC information containing the
current AAL5 PDU reassembly context. If the PDU reassembly context indicates the first cell of an
AAL5 PDU, then a packet buffer is allocated for the AAL5 PDU, packet metadata is established
from relevant VC information, and the ATM Classify/Decap macro is invoked to classify the
AAL5 PDU payload.

When the final cell of an AAL5 PDU is received, the PDU CRC is checked for validity, and the
packet buffer descriptor length is adjusted to strip the AAL5 PDU padding and trailer. Upon receipt
of a complete and valid AAL5 PDU, buffer handles for the first and last buffer of the packet, along
with other metadata, are passed to the next microblock in the functional pipeline via the scratch
ring.

212 Software Building Blocks Applications Design Guide

ATM/Ethernet IPv4 Forwarding Application for IXDP24X1

15.3.2 Packet Processing

The Packet Processing is responsible for packet forwarding according to the IPv4 protocol. It
occupies 2 microengines. The IPv4 protocol could be conveyed within various L2 encapsulations,
so depending on the input port type (ATM or Ethernet) all layers must be decapsulated. The
decapsulation is done in the LLC Decap or the L2 Ethernet Decap microblocks. Then if the packet
contains an IPv4 header, it is passed to the IPV4 Forwarder microblock, otherwise it is dropped.
Currently communication between microengines and Intel XScale® core is not supported.

The IPv4 Forwarder microblock forwards IPv4 packets based on L3 addressing. The IPv4
Forwarder microblock uses a packet descriptor and accesses an IP header from the cache in the
transfer registers. The IP packet is then validated against [RFC1812] and [RFC2644] within the
data plane. If the IP packet fails any of the validation checks, the packet is dropped. The packet’s IP
header TTL is decremented, and the IP header checksum is updated accordingly. The packet’s next
hop is then determined (that is, the next destination to which the packet is forwarded). To do that,
the IP packet’s destination address is passed to a 5-trie Longest Prefix Match (LPM) algorithm that
yields a next hop index, which is used to obtain the next hop information. The information includes
the output port and next hop ID, which is subsequently used to access the outgoing link layer
information. The packet metadata is updated with the next hop ID. If the 5-trie algorithm fails (the
best match cannot be determined), the packet is dropped.

After the IPv4 Forwarding the packets must be encapsulated with an L2 header or VC MUX/LLC
header.

15.3.3 Packet-Based Queue Manager

The Packet-Based Queue Manager (QM) performs enqueue/dequeue operations on the hardware-
assisted SRAM queues for packet-type traffic. The QM receives enqueue requests from the IPv4/
DiffServ pipeline through a scratch ring. Another scratch ring is fed with dequeue requests from
the packet scheduler. When the queue state changes between empty and non-empty, QM sends a
transition message to the scheduler (via next neighbor registers). After every dequeue operation,
the QM passes a transmit request to the scratch ring served by a Tx microblock. Dequeue requests
come from the packet scheduler microengine.

15.3.4 Packet Scheduler

The Packet Scheduler selects constant-length packet segments to be transmitted to the MSF
interface. The scheduler employs Round Robin (RR) among the fabric ports and Weighted Round
Robin (WRR) among the port queues.

The Packet Scheduler sends the Queue Manager microblock a message to dequeue a packet from a
specific port’s queue. The Queue Manager microblock services the request, and deposits a packet
descriptor from the requested queue into the output packet ring.

15.3.5 Cell-Based Queue Manager

The Cell-Based Queue Manager microblock enqueues packets and dequeues cells to/from an
egress VC scheduling queue. Client microblocks send the Cell-Based Queue Manager microblock
a message indicating the type of action to perform (enqueue or dequeue), and the ID of the queue
(VCID) to or from which a packet or cell will be enqueued/dequeued. Upon a queue transition

Software Building Blocks Applications Design Guide 213

ATM/Ethernet IPv4 Forwarding Application for IXDP24X1

from queue empty to non-empty, or non-empty to empty, the Cell Scheduler microblock is sent a
message indicating the type of transition and VC queue to which it pertains. The messages inform
the Cell Scheduler to start or stop scheduling a given VC.

15.3.6 TM 4.1 Shaper

The Shaper microblock determines transmission times for cells comprising an AAL5 PDU. It
calculates cell transmission times to ensure that the transmission of VC cells does not violate the
traffic contract established for the VC, and update/populate ATM cell transmit time queues. That is,
the calendar queues the Cell Scheduler microblock services to schedule ATM cells for transmission
at specific times.

15.3.7 TM 4.1 Cell Scheduler

The Cell Scheduler microblock requests the TM 4.1 Shaper to calculate the intended departure time
for the cells comprising an AAL5 PDU. The Tx Shaper updates cell transmit time queues (within a
calendar queue), which the Cell Scheduler queries/services. The Cell Scheduler notes the current
time, and schedules cells within the current cell transmit time queue. ATM cells for a VC are
scheduled for transmission per the calendar departure time. Providing the target port isn’t blocked,
a cell (48 bytes of ATM cell payload) from the current packet at the head of the VC’s queue is
scheduled for transmission.

To effect scheduling of individual ATM cells, the Cell Scheduler microblock sends the Queue
Manager microblock a message to dequeue a cell for a specific VC. The Queue Manager
microblock services the request, and deposits a cell descriptor from the requested VC queue into
the output ring.

15.3.8 Ethernet Tx

The Ethernet Tx microblock transmits Ethernet frames via the MSF interface as one or more
consecutive MPKTs (containing elements/segments of Ethernet frames). The Ethernet Tx
microblock fetches a packet buffer handle (to access an upstream packet descriptor) from the
egress packet ring (a scratch memory ring); the packet descriptor references the payload of an
Ethernet frame. Using the supplied context, the Ethernet Tx microblock proceeds to transmit frame
MPKTs out the egress port. Upon transmitting all MPKT frames, the packet buffer(s) is recycled.

15.3.9 ATM AAL5 Tx

The ATM AAL5 Tx microblock transmits MPKTs containing ATM cells to the MSF interface.
Each ATM cell is an individual element/segment of an AAL5 PDU. The ATM AAL5 Tx
microblock fetches a buffer handle (to access a downstream packet descriptor) from the egress
packet ring (a scratch memory ring). The ATM AAL5 Tx microblock uses the ATM VC flow ID to
fetch VC information that contains the VC’s AAL5 PDU Tx context (which maintains the current
PDU Tx byte count, AAL5 PDU CRC residue, etc).

In the case of the last cell of an AAL5 PDU, the ATM AAL5 Tx microblock appends AAL5 PDU
padding as required, and updates the AAL5 CPCS-PDU trailer with the PDU length and PDU
CRC. Upon having constructed a complete ATM cell, the cell is transmitted out the egress port
(specified within the packet descriptor). When the last cell of an AAL5 PDU is transmitted, the
VC’s Tx context PDU length and PDU CRC values get reset, and the associated packet buffers get
recycled.

214 Software Building Blocks Applications Design Guide

ATM/Ethernet IPv4 Forwarding Application for IXDP24X1

15.4 Dispatch Loops

There are six microblock groups, organized as dispatch loops, used in this application. For more
information on dispatch loops, refer to the Intel® Internet Exchange Architecture Portability
Framework Developer’s Manual “Dispatch Loop” chapter.

• Dispatch Loop for the Ethernet Receive Stage, Figure 15-2

• Dispatch Loop for the ATM Receive Stage, Figure 15-3

• Dispatch Loop for the IPv4 Forwarder packet processing (ATM to Ethernet), Figure 15-4

• Dispatch Loop for the IPv4 Forwarder packet processing (Ethernet toATM), Figure 15-5

• Dispatch Loop for the Ethernet transmit stage, Figure 15-6

• Dispatch Loop for the ATM transmit stage, Figure 15-7

The Cell/Packet Queue Manager, Scheduler Packet TX, and TM4.1 blocks do not use a dispatch
loop, though they still use the dispatch loop macros where required.

Note: The system microblocks dl_source, dl_sink, dl_qm_sink, etc. are application-specific.
They may be changed for different packet processing pipelines.

Figure 15-2. Dispatch Loop for Ethernet Receive Stage

Ethernet Rx DL_Sink

Figure 15-3. Dispatch Loop for ATM Receive Stage

AAL5 Rx DL_Sink

Software Building Blocks Applications Design Guide 215

ATM/Ethernet IPv4 Forwarding Application for IXDP24X1

Figure 15-4. Dispatch Loop for IPv4 Forwarder Packet Processing (Ethernet to ATM)

DL_Source
Ethernet
Decap/
Classify

IPv4
Forwarder LLC Encap DL_QM_Sink

Figure 15-5. Dispatch Loop for IPv4 Forwarder Packet Processing (ATM to Ethernet)

DL_Source LLC Decap/
Classify

IPv4
Forwarder

Ethernet
Encap DL_QM_Sink

216 Software Building Blocks Applications Design Guide

ATM/Ethernet IPv4 Forwarding Application for IXDP24X1

15.5 Performance Characterization

The Intel® IXP2400 Network Processor operates at 600 MHz frequency.

The OC-12 line rate is 622 Mbps, but the SONET overhead (approximately 3.8%) reduces it
effectively to 599 Gbps available to ATM cells. An ATM cell payload with an ATM header forms a
53-byte cell. Assuming 53 bytes/cell: (53 bytes/cell * 8 bits/byte)/599 Mbps equals 708 ns/cell. At
600 MHz, this results in 425 cycles/cell.

Ethernet has variable-sized frames and a variable per-frame cycle budget. The worst case is
minimum-sized 64-byte frames, so they are the focus for per-frame calculations here. A 64-byte
frame actually occupies 84 bytes on the wire: (12 byte Inter Packet Gap) + (8 byte preamble) + (46
byte payload) + (14 byte Ethernet Header) + (4 byte Ethernet FCS) = 84 bytes/minimum frame}
Assuming 84 bytes/frame: (84 bytes/frame * 8 bits/byte)/1 Gbps equals 672 ns/frame. At 600
MHz, this results in 403 cycles/frame.

For minimum Ethernet packets of 64 bytes in length and minimum POS packets of 49 bytes in
length, the packet inter-arrival time at 6 Gbps line rate for Ethernet and 2.4 Gbps OC48 line rate for
POS is 91 microengine cycles. In order to maintain line rate for minimum length packets, each
stage of the pipeline cannot exceed this budget. In other words, each stage of the pipeline needs to
retire a packet every 91 cycles.

Table 15-2 summarizes the performance analysis for the pipeline.

Figure 15-6. Dispatch Loop for ATM Transmit Stage

Dl_Tx
_Source AAL5 TX

Figure 15-7. Dispatch Loop for Ethernet Transmit Stage

Dl_Tx
_Source

Ethernet
Encap

Ethernet
 Packet Tx

Software Building Blocks Applications Design Guide 217

ATM/Ethernet IPv4 Forwarding Application for IXDP24X1

15.6 System Resource Allocation

Table 15-2 shows the system resources mapped for the Intel® IXP2400 Network Processor. This
mapping reflects the system defaults and may be changed. The allocation of microengines is done
such that it optimizes the performance of this specific application and may be changed for other
applications.

Table 15-2. System Resources Mapped for the Intel® IXP2400 Network
Processor

Microblock ME # Communication

Ethernet Rx/AAL5 RX ME00 Auto-push status from MSF

L2 Ethernet Decap + IPv4 Fwd + LLC Decap +
LLC Encap + L2 Encap ME01, ME10 Scratch Ring

QM Shaper ME02 Scratch Ring

TM4.1 ME03 Scratch Ring

Ethernet TX ME12 Scratch Ring

AAL5 TX ME13 Scratch Ring

QM Packet + Scheduler Packet ME11 Scratch Ring

Table 15-3. SRAM Memory Map

Table Name Size
[bytes]

SRAM Channel 0
Usage

SRAM Channel 1
Usage

AAL5 RX hash table (primary) 16 4096*16

AAL5 RX hash table (secondary) 32 4096*32

AAL5 RX VC Info 64 4096*64

AAL5 Port statistics 32 4096*32

AAL5 TX statistics (cells per outport) 4 4*4

AAL5 TX statistics (packets per outport) 4 4*4

AAL5 TX statistics (cells per VCC) 4 4096*4

AAL5 TX statistics (packets per VCC) 4 4096*4

AAL5 TX Context table 64 4096*64

GCRA table 64 4096*64

PortShaping table 4 4*4

Portinfo Table 64 4*4

UBR TQ Table 128 4096*128

nrtVBR TQ Table 128 4096*128

rtVBR TQ Table 128 4096*128

HBR TQ Table 128 4096*128

LLC next hop table 128 4096*128

Next Hop Table 8 4096*8

† Compiled optionally – not for benchmarking

218 Software Building Blocks Applications Design Guide

ATM/Ethernet IPv4 Forwarding Application for IXDP24X1

15.7 Microblock Interfaces

This section describes the interfaces between the different microblocks for this pipeline
application. In most of the messages, there is a valid bit is used to prevent a value of zero from
being enqueued on the scratch ring. Zero is used to detect a case where the scratch ring is empty. So
the valid bit helps distinguish between a zero value that was actually enqueued versus a case where
the ring is empty.

15.7.1 Common RX to Packet Processing

The interface between the Common Receive microblock (AAL5 RX and Ethernet Rx) and the
Packet Processing microengines (IPv4 Forwarder) is a scratch ring. Table 15-4 describes each
entry in the scratch ring—which is five words.

QM Q-Array entries 4 16*6

Packet RX statistics† 32 512

Packet TX statistics† 16

I/O Buffer Descriptors 32 8192*32 8132*32

Total n/a 1441920 2882208

Table 15-3. SRAM Memory Map (Continued)

Table Name Size
[bytes]

SRAM Channel 0
Usage

SRAM Channel 1
Usage

† Compiled optionally – not for benchmarking

Table 15-4. Common RX to Packet Processing Microengines Scratch Ring Interface

Variable Size
[bits] Description

buff_handle 32 A handle to a buffer

buff_handle_eop 32 A handle to the last buffer in buffer chain – or NULL if single-buffer packet.

buffer_offset 16 The offset of the packet in the first buffer

buffer_size 16 Size of data in the first buffer

packet_size 16 Size of the whole packet

free_list 4 Freelist ID

rx_stat 4 Receive status flags

header_type 8 A packet type: ETHER_TYPE, PPP_TYPE

input_port 16 Input port number

output_port 16 Output port number – here unused – always 0

Software Building Blocks Applications Design Guide 219

ATM/Ethernet IPv4 Forwarding Application for IXDP24X1

15.7.2 Packet Processing to Packet Queue Manager

The interface between the Packet Processing microengines (IPv4 Forwarder) and Packet QM is a
scratch ring. Table 15-5 describes each entry in the scratch ring— which is five words.

15.7.3 Scheduler to Queue Manager

The interface between the Packet Scheduler and the packet-based Queue Manager is a Scratch
Ring.

15.7.4 Queue Manager to Scheduler

The interface between the packet-based Queue Manager and the Packet Scheduler is a Next
Neighbor Ring.

15.7.5 Queue Manager to Packet TX

The interface between the packet-based Queue Manager and the Packet Tx blocks is a Scratch
Ring.

Table 15-5. Packet Processing to Packet Queue Manager Scratch Ring Interface

Variable Size
[bits] Description

buff_handle 32 A handle to a buffer

buff_handle_eop 32 A handle to the last buffer in buffer chain – or NULL if single-buffer packet.

validity bit 1 [31] If set message is valid – prevention from producing value 0 on the ring

queue_number 31 output_port * 16 + class_id

Table 15-6. Scheduler to Queue Manager Scratch Ring Interface

Variable Size
[bits] Description

validity bit 1 [31] If set message is valid – prevention from producing value 0 on the ring

Queue_number 31 output_port * 16 + class_id

Table 15-7. Queue Manager to Scheduler Next Neighbor Ring Interface

Variable Size
[bits] Description

Validity bit 1 [31] If set message is valid – prevention from producing value 0 on the ring

Queue_number 31 output_port * 16 + class_id

Table 15-8. Queue Manager to Packet TX Scratch Ring Interface

Variable Size
[bits] Description

Output_port 8 Output port number

buff_handle 24 A handle to a buffer without SOP and EOP flags (the highest byte conveys ouput_port)

220 Software Building Blocks Applications Design Guide

ATM/Ethernet IPv4 Forwarding Application for IXDP24X1

15.7.6 Queue Manager to TM 4.1 Shaper

The interface between the cell-based Queue Manager and the Schaper blocks is a next neighbor
ring.

15.7.7 TM4.1 Scheduler to Queue Manager

The interface between the TM4.1 Scheduler and the cell based Queue Manager blocks is a scratch
ring.

Table 15-9. Queue Manager to TM 4.1 Shaper Next Neighbor Ring Interface

Variable Size
[bits] Description

Valid bit 1 [31] The enqueue word is valid only if this bit is set

transition 1 [30] Notification that queue has gone from empty to nonempty

CLP 1 [29]

cell_count 11 Cell count provides the number of cells in the frame.

SOP 1 [17] This field is important only for VCs shaped using GFR: “1” for Enqueue message when
transition bit is also set, otherwise “0”

Enq VCQ 17 Queue Number that was enqueued

Valid bit 1 [31] Must be 1

Transition 1 [30]
Notification that queue has gone from non-empty to

empty

CLP 1 [29]

cell_count 11 Cell count provides the number of cells in the frame.

SOP 17
This field is important only for VCs shaped using GFR:”1” for dequeue message when
the Queue Manager has transmitted last cell from current packet and there ia another
packet is the queue, otherwise “0”

Deq VCQ 17 Queue Number that was dequeued

Table 15-10. TM4.1 Scheduler to Queue Manager Scratch Ring Interface

Variable Size
[bits] Description

Valid bit 1 [31] Must be 1

Reserved 1 [30] Reserved

Port 11 Output port number

CLP 1 [18]

Reserved 1 [17] Reserved

VCQ 17 Queue Number

Software Building Blocks Applications Design Guide 221

ATM/Ethernet IPv4 Forwarding Application for IXDP24X1

15.7.8 Queue Manager to TM4.1 Scheduler

The interface between the cell-based Queue Manager and TM4.1 scheduler blocks is a scratch ring.

15.7.9 Queue Manager to AAL5 TX

The interface between the cell based Queue Manager and AAL5 TX blocks is a scratch ring.

Table 15-11. Queue Manager to TM4.1 Scheduler Scratch Ring Interface

Variable Size
[bits] Description

Valid bit 1 [31] Must be 1

Reserved 1 [30] Reserved

Port 11 Output port number

CLP 1 [18]

Reserved 1 [17] Reserved

VCQ 17 Queue Number

Buff_handle 32 Buffer Handle currently being transmitted for queue

Table 15-12. Queue Manager to AAL5 TX Scratch Ring Interface

Variable Size
[bits] Description

Valid bit 1 [31] Must be 1

Reserved 1 [30] Reserved

Port 11 Output port number

Reserved 3 Reserved

qnum 16 Queue Number

Buff_handle 32 Buffer Handle currently being transmitted for queue

222 Software Building Blocks Applications Design Guide

ATM/Ethernet IPv4 Forwarding Application for IXDP24X1

Software Building Blocks Applications Design Guide 223

POS/Ethernet IPv4 Forwarding
Application for IXDP28x1 16

This chapter describes an IPv4 Forwarding software application for Ethernet and Packet over
SONET (POS) implemented on one Intel® IXP2800 Network Processor. The chapter provides a
high level design overview and lists the different software components used to build this
application. This chapter describes the application in the context of Ethernet and POS media
interfaces.

The application described in this chapter is supported on the Intel® IXDP28X1 Advanced
Development Platform, which uses a single Intel® IXP2800 Network Processor.

This chapter focuses only on the fast path or microengine components of the design. The Intel
XScale® core components for this application are described in the Intel® Internet Exchange
Architecture Portability Framework Developer’s Manual.

Note: It is important that all applications developed for the IXDP28X1 platform must have the
IX_PLATFORM_2801 flag defined in the project makefiles, for both the core components and the
microblocks. An example of required flag definitions may be found in the makefiles of this
application. By default, newly created projects under the Windriver* Tornado* development
environment have the flag defined as IX_PLATFORM_2800. For this application, the flag must be
changed to IX_PLATFORM_2801.

16.1 Hardware Overview

The Intel® IXDP28X1 Advanced Development Platform consists of the IXMB28X1 baseboard,
which is equipped with two daughterboard connectors (DB1 and DB2). Up to two media
mezzanine boards (also called line cards) may be connected to the baseboard. There are three
available mezzanine boards:

• 4xOC-12 POS ATM mezzanine board

• 1xOC-48 POS ATM mezzanine board

• 4x1Gigabit Ethernet mezzanine board

224 Software Building Blocks Applications Design Guide

POS/Ethernet IPv4 Forwarding Application for IXDP28x1

Table 16-1 presents all possible hardware configurations supported by the POS/Ethernet Ipv4
Forwarding Application for IXDP28X1.

Figure 16-1 shows an Intel® IXP2800 Network Processor in a typical configuration. In this
configuration, the IXP2800 is identified as the network processor. It receives traffic from the
Ethernet or POS media interface and transmits to the other Ethernet or POS media interface.

The target hardware comprises up to ten physical media interfaces. A POS media mezzanine card
installed on a baseboard provides four OC-12 interfaces. Four Gigabit Ethernet interfaces are
provided on a Gigabit Ethernet mezzanine and two Gigabit Ethernet interfaces are available on the
baseboard Backplane Access module.

The Intel® IXP2800 Network Processor receives POS or Ethernet frames that carry IPv4
datagrams. The frames are assembled into IPv4 packets and the Layer-2 (Ethernet or PPP) headers
are removed. Based on the IPv4 header, a Longest Prefix Match (LPM) lookup is performed and
the packets are transmitted over the appropriate port.

Table 16-1. Supported Hardware Configurations

Backplane DB1 DB2 Description Throughput

2x1GE† 4xOC-12 POS 4x1GE All supported ports available.

6.5 Gbps example:

• 2x1GE 100%

• 4xOC-12 100%

• 2x1GE 100%

2x1GE† 4xOC-12 POS POS on the front side and Ethernet on
the backplane.

3.3 Gbps example:

• 2x1GE 100%

• 3xOC-12 100%

2x1GE† 4x1GE Only Ethernet ports vailable. Full bandwith

2x1GE† 1xOC-48 POS 4x1GE 1 POS on the front and all Ethernet
ports supported

6.5 Gbps example:

• 2x1GE 100%

• 1xOC-48 100%

• 2x1GE 100%

2x1GE† 1xOC-48 POS POS on the front side and Ethernet on
the backplane.

3.3 Gbps example:

• 1x1GE 100%

• 1xOC-48 100%

† 2x1Gigabit Ethernet base ATCA interfaces

Software Building Blocks Applications Design Guide 225

POS/Ethernet IPv4 Forwarding Application for IXDP28x1

16.2 Software Overview

Figure 16-2 shows the microblocks needed to implement an POS/Ethernet IPv4 forwarding
application. All the context pipe-stages (for example, Packet Rx, Queue Manager, and Scheduler)
occupy an entire microengine. Each context pipe-stage is mapped to a single microblock running
on a microengine with or without a dispatch loop. The packet processing runs on eight
microengines and implements decapsulation (Ethernet and PPP) together with encapsulation and
the IPv4 forwarder blocks.

Figure 16-1. POS/Ethernet Hardware Configuration on IXDP28X1

POS Framer

Intel IXP2800
Network Processor

Ethernet MAC Ethernet frames

MPHY 1x32

POS frames

MPHY 1x32

Sonet

POS

IP

4xOC-12

Ethernet

IP

4x1G Ethernet

Ethernet

IP

POS

IP

Ethernet MAC

E
thern

et fram
es

M
P

H
Y

 1x32
2x1G

E
thernet

226 Software Building Blocks Applications Design Guide

POS/Ethernet IPv4 Forwarding Application for IXDP28x1

The design for the application shown in Figure 16-2 is based on the guidelines specified in the
Intel® Internet Exchange Architecture Portability Framework Developer’s Manual. The driver
microblocks (Receive, Transmit, Scheduler and Queue Manager) run on different microengines
from the packet processing code. In this design, each driver block occupies an entire microengine.
The packet processing blocks include the IPv4 Forwarder, the PPP decapsulation/classify
microblock, the L2 Ethernet decapsulation/classify microblock, the PPP encapsulation and the L2
Ethernet encapsulation microblock. There are eight microengines that run in parallel and execute
the packet processing code.

16.2.1 Data Flow

This section describes the data flow on the Intel® IXP2800 Network Processor.

16.2.1.1 Packet RX

Packet reception from the MSF interface is done in the Packet RX microblock that runs on one
microengine. It is a standard microblock compiled to run in MPHY_16 mode. The microblock
performs packet reassembly from the incoming micropackets being burst on the SPI-4 BUS.
Packets for processing are conveyed in I/O buffers, so they are copied from MSF receive buffers
(RBUFs) into DRAM memory, and also packet descriptors are initially filled in SRAM. Then
packet buffer handles and some meta-data about the packets are passed via scratch ring to be
processed in the Packet Processing block.

16.2.1.2 Packet Processing

The Packet Processing is responsible for packet forwarding according to the IPv4 protocol. It
occupies 8 microengines. The IPv4 protocol could be conveyed within various L2 encapsulations,
so depending on the input port type, L2 PPP or L2 Ethernet MAC layers must be decapsulated. The
decapsulation is done in the PPP Decap or the L2 Ethernet Decap microblocks. Then if the packet

Figure 16-2. POS-Ethernet IPv4 Application Microblocks

uEs 0:0

uEs 0:2, 0:3, 0:4, 0:5, 1:4, 1:5, 1:6, 1:7

uE 1:0

uE 1:2

uE 1:3

uE 1:1

Packet Rx
MPHY_16

L2
 E

th
er

 D
ec

ap
/ C

la
ss

ify

Packet
Scheduler

Packet
QM

Packet Tx
MPHY_16
ports: 0-7

IP
v4

 F
w

d

Packet Tx
MPHY_16
ports: 8-11

Packet Processing

communication with core
components

P
P

P
 D

ec
ap

 /
C

la
ss

ify

P
P

P
 E

n
ca

p
L2

 E
th

er
 E

n
ca

p

tx notifications

Software Building Blocks Applications Design Guide 227

POS/Ethernet IPv4 Forwarding Application for IXDP28x1

contains an IPv4 header, it is passed to the IPV4 Forwarder microblock, otherwise (in the case of
ARP, for example) packets are transferred through an exception ring to the Core Components
framework running on the Intel XScale® core. There the packets are processed by the slow path.

The IPv4 Forwarder microblock forwards IPv4 packets based on L3 addressing. The IPv4
Forwarder microblock uses a packet descriptor and accesses an IP header from the cache in the
transfer registers. The IP packet is then validated against [RFC1812] and [RFC2644] within the
data plane. If the IP packet fails any of the validation checks, the packet is dropped. The packet’s IP
header TTL is decremented, and the IP header checksum is updated accordingly. The packet’s next
hop is then determined (i.e., the next destination to which the packet is forwarded). To do that, the
IP packet’s destination address is passed to a 5-trie Longest Prefix Match (LPM) algorithm that
yields a next hop index, which is used to obtain the next hop information. The information includes
the output port and next hop ID, which is subsequently used to access the outgoing link layer
information. The packet metadata is updated with the next hop ID, and the packet is handed off to
the L2 Validation microblock. If the 5-trie algorithm fails (the best match cannot be determined),
the packet is sent to the Intel XScale® core to complete the LPM procedure.

After the IPv4 Forwarding, the packets must be encapsulated with an L2 header. The encapsulation
takes place in the PPP Encap or the L2 Ether Encap microblocks, depending on the output
(destination) port of the packet. The packet buffer handle and some related meta-data are passed
via scratch ring to the Queue Manager microblock.

16.2.1.3 Packet-Based Queue Manager

The Packet-Based Queue Manager (QM) performs enqueue/dequeue operations on the hardware
assisted SRAM queues for packet-type traffic. The QM receives enqueue requests from the IPv4
microblock through a scratch ring. When the queue state changes between empty and non-empty,
QM sends a transition message to the scheduler (via next neighbor registers). After every dequeue
operation, the QM passes a transmit request to the scratch ring served by the Packet TX
microblock. Dequeue requests come from the packet scheduler microengine.

16.2.1.4 Packet Scheduler

Packet Scheduler selects packets to be transmitted out of the MSF interface. The Packet Scheduler
sends a message to the Queue Manager microblock to dequeue a packet from a specific port’s
queue. The Queue Manager microblock services the request, and deposits a packet descriptor from
the requested queue into the output packet ring.

16.2.1.5 Packet TX

The Packet TX microblock transmits packets via the MSF interface as one or more consecutive
micro-packets are being burst on the SPI-4 BUS. The Packet TX microblock runs on two
microengines and supports MPHY_16 mode. Thus up to 16 Gigabit Ethernet or OC-12 POS ports
are supported. The first microengine transmits packets destined to ports 0 to 7, the second
microengine transmits packets destined to ports 8 to 15.

The microblock fetches a transmit request from a scratch ring. The transmit request is used to
access the packet meta-data. Using the supplied meta-data, the microblock fragments the packet
into micropackets and sends them out of the MSF. Upon transmitting all fragments, the packet
buffer(s) is recycled.

The Packet TX microblock periodically updates the scheduler with information about how many
packets have been transmitted. If the packets in flight for a particular port (packets scheduled but
not transmitted) exceed a certain limit (which depends on the bandwidth supported by that port),

228 Software Building Blocks Applications Design Guide

POS/Ethernet IPv4 Forwarding Application for IXDP28x1

then the scheduler stops scheduling more packets for that port. This combination of queuing
packets in local memory and keeping track of the packets in flight, helps prevent head-of-line
blocking.

16.2.2 Dispatch Loops

There are two microblock groups, called dispatch loops, used in this pipeline application.

• Dispatch Loop for the Packet Frame Reassembly Stage, shown in Figure 16-3

• Dispatch Loop for the IPv4 Forwarder packet processing, shown in Figure 16-4

The Queue Manager, Scheduler and Packet TX blocks do not use a dispatch loop, although they
use the dispatch loop macros where required.

For more information on dispatch loops, refer to the Intel® Internet Exchange Architecture
Portability Framework Developer’s Manual “Dispatch Loop” chapter.

Note: The system microblocks dl_source, dl_sink, dl_qm_sink, etc are application-specific.
They may be changed for different packet processing pipelines.

Figure 16-3. Dispatch Loop for the Packet Frame Reassembly Stage

Packet Rx DL_Sink

Figure 16-4. Dispatch Loop for IPv4 Forwarder Packet Processing

DL_Source

PPP
Decap/
Classify

Ethenet
Decap/
Classify

IPv4
Forwarder

PPP
Encap

Ethenet
Encap

DL_QM_Sink

Software Building Blocks Applications Design Guide 229

POS/Ethernet IPv4 Forwarding Application for IXDP28x1

16.3 Performance Characterization

The Intel® IXP2800 Network Processor operates at 1400 MHz frequency. For a minimum Ethernet
packets of 64 bytes in length and minimum POS packets of 49 bytes in length, the packet inter-
arrival time at 6 Gbps line rate for Ethernet and 2.4 Gbps OC48 line rate for POS is 91 microengine
cycles. In order to maintain line rate for minimum length packets, each stage of the pipeline cannot
exceed this budget. In other words, each stage of the pipeline needs to retire a packet every 91
cycles. Table 16-2 summarizes the performance analysis for the pipeline.

16.4 System Resource Allocation

Table 16-3 shows the system resources mapped for the Intel® IXP2800 Network Processor. This
mapping reflects the system defaults and may be changed. The allocation of microengines is done
such that it optimizes the performance of this specific application and may be changed for other
applications.

Table 16-2. Performance Characterization for the POS-Ethernet IPv4 Application

Line rate for 6 Gigabit Ethernet Ports and 4 OC-12
POS Ports 8.54 Gigabits/sec

Min Ethernet packet size 64 bytes (+ 20 byte inter packet gap)

Packet Throughput for min Ethernet packets 8.93 million packets/sec = (6 / (84*8)) * (10^9)

Min POS packet size 49 bytes (40 byte TCP/IP, 2 bytes Address and Control,
2 byte PPP header, 4 byte FCS and 1 byte flag)

Packet Throughput for min POS packets 6.34 million packets/sec = (4/(49*8)) * 622 * (10^6)

Summarized Packet Throughput for all interfaces 15.3 million packets

Intel® IXP2800 Network Processor clock frequency 1400 MHZ

Inter-packet arrival time for min packets 1400/15.3 = 91.46 cycles

Compute cycles per packet for a single microengine 91

Latency per packet for a context pipe single
microengine 91 * 8

Compute cycles per packet for n microengines in
parallel 91*n

Latency per packet for n microengines in parallel 91*8*n

Table 16-3. System Resources Mapped for the Intel® IXP2800 Network Processor

Microblock ME # Communication

Packet Rx ME0 Auto-push status from MSF

L2 Rthernet Decap + L2 PPP Decap,
+Ipv4 Fwd + L2 Ethernet Encap + L2 PPP
Encap

ME2, ME3, ME4, ME5,
ME12, ME13, ME14,
ME15

Scratch Ring

Queue Manager ME8 Scratch Ring

Scheduler ME9 Scratch Ring

Packet TX Ports 0..7 ME10 Scratch Ring

Packet TX Ports 8..11 ME11 Scratch Ring

230 Software Building Blocks Applications Design Guide

POS/Ethernet IPv4 Forwarding Application for IXDP28x1

Table 16-4 shows data distribution in SRAM memory channels.

Table 16-5 shows the budget for every memory access that is needed for packet processing that
influences the memory distribution.

Table 16-4. SRAM Memory Map

Table Name Size
[bytes]

SRAM
channel 0

usage

SRAM
channel 1

usage

SRAM
channel 2

usage
Comments

I/O Buffer Descriptors 32 512000 512000 † 16000 entries use 512000 bytes

Queue Descriptors 16 16400 1025 entries

L2 Table 16 2MB 64k entries

Trie Table 2MB Structured tree of tries

Broadcast Table 8192

Next Hop Table 8 4096

QM Q-Array entries 4 64

Buffer Free list Q-Array
entry 4 16

Packet RX statistics ‡ 32 512 16 statistics

Packet TX statistics ‡ 16 256 16 statistics

† Additional channel used when splitting buffer descriptors.
‡ Compiled optionally – not for benchmarking.

Table 16-5. SRAM Channels Budget For Packets Processing with Minimal Length†

Microblock/Access Operation

SRAM
channel 0
utilization
worst/best

case

SRAM
channel 1
utilization
worst/best

case

SRAM
channel 2
utilization
worst/best

case

Comments

Packet RX/ I/O Buffer
allocation dequeue 4/4

Packet Processing/ I/O
buffer descriptor write write

20/20
†4/4

--
†16/16

For min packets packet descriptor is
written by Packet Processing when for
packets > 128 bytes packet descriptor
is also written by Packet RX.

Packet Processing/ IPv4
Directed Broadcast check read 32/32

Worst case depends on the
configuration – when there aren’t
conflicting directed broadcast hashes,
it is the same as best case.

Packet Processing/ IPv4
lookup read 20/12 Worst case tries to read up to 5 times

Packet Processing/ IPv4
NH read read 8/8

Packet Processing/ L2
Table read read 16/16

Queue Manager/ queuing enqueue 4/4

† Additional channel used when splitting buffer descriptors.
‡ Compiled optionally – not for benchmarking.

Software Building Blocks Applications Design Guide 231

POS/Ethernet IPv4 Forwarding Application for IXDP28x1

16.5 Microblock Interfaces

This section describes the interfaces between the different microblocks for this pipeline
application. In most of the messages, there is a valid bit used to prevent a value of zero from being
enqueued on the scratch ring. Zero is used to detect a case where the scratch ring is empty. The
valid bit helps distinguish between a zero value that was actually enqueued versus a case where the
ring is empty.

16.5.1 Packet RX to Packet Processing Microengine

The interface between the Packet Receive microblock and the Packet Processing microengines
(IPv4 Forwarder + L2/PPP decap) is a scratch ring. Table 16-6 describes each entry in the scratch
ring—which is five words.

Queue Manager/ QD read read 12/0 In best case CAM always hits

Queue Manager/
dequeue dequeue 4/4

Packet TX/ I/O buffer
descriptor read Read

16/16

(4/4)

--

(12/12)

Packet RX/Packet RX
statistics†—number of
packets RX

atomic
increment

‡4/4

Packet RX/Packet RX
statistics†—number of
bytes RX

atomic add ‡4/4

Packet TX†—number of
packets TX

atomic
increment

‡4/4

Packet TX/Packet TX
statistics†—number of
bytes TX

atomic add ‡4/4

Table 16-5. SRAM Channels Budget For Packets Processing with Minimal Length†

Microblock/Access Operation

SRAM
channel 0
utilization
worst/best

case

SRAM
channel 1
utilization
worst/best

case

SRAM
channel 2
utilization
worst/best

case

Comments

† Additional channel used when splitting buffer descriptors.
‡ Compiled optionally – not for benchmarking.

Table 16-6. Packet RX to Packet Processing Microengine Scratch Ring Interface

Variable Size
[bits] Description

buff_handle 32 A handle to a buffer

buff_handle_eop 32 A handle to the last buffer in buffer chain – or NULL if single-buffer packet.

buffer_offset 16 The offset of the packet in the first buffer

buffer_size 16 Size of data in the first buffer

packet_size 16 Size of the whole packet

232 Software Building Blocks Applications Design Guide

POS/Ethernet IPv4 Forwarding Application for IXDP28x1

16.5.2 Packet Processing to Queue Manager Microengine

The interface between the Packet Processing microengines (IPv4 Forwarder + L2/PPP decap + L2
Validate) and Packet QM is a scratch ring. Table 16-7 describes each entry in the scratch ring—
which is five words.

16.5.3 Scheduler to Queue Manager Microengine

The interface between the POS/Ethernet Scheduler and the packet-based Queue Manager is a
Scratch Ring.

16.5.4 Queue Manager to Scheduler Microengine

The interface between the packet-based Queue Manager and the POS/Ethernet Scheduler is a Next
Neighbor Ring.

free_list 4 Freelist ID

rx_stat 4 Receive status flags

header_type 8 A packet type: ETHER_TYPE, PPP_TYPE

input_port 16 Input port number

output_port 16 Output port number – unused, always 0

Table 16-6. Packet RX to Packet Processing Microengine Scratch Ring Interface (Continued)

Variable Size
[bits] Description

Table 16-7. Packet Processing to Queue Manager Microengine Scratch Ring Interface

Variable Size
[bits] Description

buff_handle 32 A handle to a buffer

buff_handle_eop 32 A handle to the last buffer in buffer chain – or NULL if single-buffer packet.

validity bit 1 [31] If set message is valid – prevention from producing value 0 on the ring

queue_number 31 output_port * 16 + class_id

Table 16-8. Scheduler to Queue Manager Microengine Scratch Ring Interface

Variable Size
[bits] Description

Validity bit 1 [31] If set message is valid – prevention from producing value 0 on the ring

Queue_number 31 output_port * 16 + class_id

Table 16-9. Queue Manager to Scheduler Microengine Next Neighbor Ring Interface

Variable Size
[bits] Description

Validity bit 1 [31] If set message is valid – prevention from producing value 0 on the ring

Queue_number 31 output_port * 16 + class_id

Software Building Blocks Applications Design Guide 233

POS/Ethernet IPv4 Forwarding Application for IXDP28x1

16.5.5 Queue Manager to Packet TX Microengine

The interface between the packet-based Queue Manager and the Packet Tx blocks is a Scratch
Ring.

16.6 Core Components Integration

The POS/Ethernet Forwarding Application uses standard core components customized to use
channels 0, 1, and 2 for SRAM. Figure 16-5 shows the interconnections between the application’s
core components. The Resource Manager and Queue Manager core components employ scratch
rings for communication with microblocks on microengines. Interactions between IPv4, Ethernet
Tx, POS Tx, Stack Driver, Resource Manager and Queue Manager are managed by the Core
Component Interface (CCI).

Table 16-10. Queue Manager to Packet TX Microengine Scratch Ring Interface

Variable Size
[bits] Description

Validity bit 1 [31] If set message is valid – prevention from producing value 0 on the ring

Output_port 7 Output port number

buff_handle 24 A handle to a buffer without SOP and EOP flags (the highest byte
conveys ouput_port)

Figure 16-5. POS-Ethernet IPv4 Application Core Components

Eth Tx coreEth ARP &
L2 Tbl Mgr

QM core RM core
Scheduler

core
(control only)

Stack Driver
core

IPv4 core

VxWorks
Stack

POS Tx core
(control only)

CCI

CCI

CCI

CCI

CCI

POS Rx core CCICCI

234 Software Building Blocks Applications Design Guide

POS/Ethernet IPv4 Forwarding Application for IXDP28x1

	Intel® Internet Exchange Architecture Software Building Blocks Applications
	Introduction 1
	1.1 About this Manual
	1.2 Organization of this Manual
	1.3 Supported Applications
	1.4 Other Sources of Information

	OC-48 POS IPv4 Forwarding Application 2
	2.1 Hardware Overview
	2.2 Software Overview
	2.2.1 Data Flow for the Ingress IXP2400
	2.2.1.1 Packet RX
	2.2.1.2 PPP Decapsulation and Classify
	2.2.1.3 IPv4 Forwarder
	2.2.1.4 Cell Based Queue Manager (Cell QM)
	2.2.1.5 CSIX Scheduler
	2.2.1.6 CSIX TX

	2.2.2 Data Flow for the Egress IXP2400
	2.2.2.1 CSIX RX
	2.2.2.2 PPP Encapsulation
	2.2.2.3 Packet Based Queue Manager
	2.2.2.4 Egress Packet WRR/DRR Scheduler
	2.2.2.5 Packet TX

	2.2.3 Dispatch Loops / Microblock Groups

	2.3 Performance Characterization
	2.4 Ingress System Resource Allocation
	2.5 Egress System Resource Allocation
	2.6 Interfaces Between the Various Microblocks
	2.6.1 Packet RX and Packet Processing Microengines
	2.6.2 Packet Processing Microengines and Cell Queue Manager
	2.6.3 Cell Queue Manager and CSIX Scheduler
	2.6.4 Cell Queue Manager and CSIX TX
	2.6.5 CSIX RX and PPP Encap
	2.6.6 PPP Encap and Packet Queue Manager
	2.6.7 Packet Queue Manager and Scheduler
	2.6.8 Packet Queue Manager and Packet TX

	2.7 Core Components
	2.7.1 Ingress Core Components
	2.7.2 Egress Core Components
	2.7.3 Exception Path Processing

	4Gb Ethernet IPv4 Forwarding Application 3
	3.1 Hardware Overview
	3.2 Software Overview
	3.2.1 Data Flow for the Ingress IXP2400
	3.2.1.1 Packet RX
	3.2.1.2 Ethernet Decapsulation/Classify/Filter
	3.2.1.3 IPv4 Forwarder
	3.2.1.4 Cell Based Queue Manager (Cell QM)
	3.2.1.5 CSIX Scheduler
	3.2.1.6 CSIX TX

	3.2.2 Data Flow for the Egress IXP2400
	3.2.2.1 CSIX RX
	3.2.2.2 Ethernet Encapsulation
	3.2.2.3 Packet Based Queue Manager (Packet QM)
	3.2.2.4 Egress Scheduler
	3.2.2.5 Packet TX

	3.2.3 Dispatch Loops / Microblock Groups
	3.2.4 Performance Characterization

	3.3 Ingress System Resource Allocation
	3.4 Egress System Resource Allocation
	3.5 Interfaces Between the Various Microblocks
	3.5.1 Packet Queue Manager and Packet TX

	3.6 Core Components
	3.6.1 Ingress Core Components for VxWorks
	3.6.2 Ingress Core Components for Linux
	3.6.3 Egress Core Components for VxWorks and Linux

	OC-48 ATM IPv4 Forwarding Application 4
	4.1 Hardware Overview for ATM
	4.2 Software Overview for ATM
	4.2.1 Data Flow for the Ingress IXP2400
	4.2.1.1 ATM AAL5 RX
	4.2.1.2 LLCSNAP Decapsulation and Classify
	4.2.1.3 IPv4 Forwarder
	4.2.1.4 Cell Based Queue Manager (Cell QM)
	4.2.1.5 CSIX Scheduler
	4.2.1.6 CSIX TX

	4.2.2 Data Flow for the Egress IXP2400
	4.2.2.1 CSIX RX
	4.2.2.2 LLCSNAP Encapsulation
	4.2.2.3 Cell Based Queue Manager (Cell QM)
	4.2.2.4 Round Robin Scheduler
	4.2.2.5 ATM AAL5 TX

	4.2.3 Dispatch Loop
	4.2.4 Performance Characterization

	4.3 Ingress System Resource Allocation
	4.4 Egress System Resource Allocation
	4.5 Interfaces Between the Various Microblocks
	4.5.1 AAL5 RX and Packet Processing Microengines
	4.5.2 Packet Processing Microengines and Cell Queue Manager
	4.5.3 Cell Queue Manager and CSIX Scheduler
	4.5.4 Cell Queue Manager and CSIX TX
	4.5.5 CSIX RX and LLCSNAP Encapsulation
	4.5.6 LLCSNAP Encap and Cell Queue Manager
	4.5.7 Cell Queue Manager and RR Scheduler for ATM
	4.5.8 RR Scheduler to Cell Queue Manager
	4.5.9 Cell Queue Manager and AAL-5 TX

	OC-192 POS IPv4/IPv6 Forwarding/ Tunneling Application 5
	5.1 Hardware Overview
	5.2 Software Overview
	5.2.1 Data Flow for the Ingress IXP2800
	5.2.1.1 Packet RX
	5.2.1.2 Packet Processing Microengines (PPP Decap/Classify + IPv4/IPv6 Forwarder/Tunneling)
	5.2.1.3 Statistics Microblock
	5.2.1.4 CSIX Scheduler
	5.2.1.5 Cell Based Queue Manager (Cell QM)
	5.2.1.6 CSIX TX
	5.2.1.7 Freelist Manager

	5.2.2 Data Flow for the Egress IXP2800
	5.2.2.1 CSIX RX
	5.2.2.2 Egress Packet Scheduler
	5.2.2.3 Packet Based Queue Manager (Packet QM)
	5.2.2.4 TX Helper
	5.2.2.5 Packet TX

	5.3 Performance Characterization
	5.4 Ingress System Resource Allocation
	5.5 Egress System Resource Allocation
	5.6 Interfaces Between the Various Microblocks
	5.6.1 Packet RX—First ME to Second ME
	5.6.2 Packet RX and Packet Processing Microengines
	5.6.3 Packet Processing Microengines and Statistics
	5.6.4 Statistics and CSIX Scheduler
	5.6.5 CSIX Scheduler and Cell Queue Manager
	5.6.6 Cell Queue Manager and CSIX TX
	5.6.7 CSIX TX—First ME to Second ME
	5.6.8 CSIX TX (Second ME) and Freelist Manager
	5.6.9 Freelist Manager and Packet Rx (First ME)
	5.6.10 CSIX RX and Statistics
	5.6.11 Statistics and Packet Scheduler
	5.6.12 Packet Scheduler and Queue Manager
	5.6.13 Queue Manager and TX Helper
	5.6.14 TX Helper and Packet TX
	5.6.15 Packet TX—First ME to Second ME

	5.7 Porting from IXP2400 to IXP2800
	5.7.1 IXP2400 and IXP2800 Processing Requirement Comparison
	5.7.2 Optimizations for the IXP2800
	5.7.2.1 Optimizing SRAM Memory Bandwidth Usage
	5.7.2.2 Splitting the Packet Descriptor Across Channels
	5.7.2.3 Splitting the RX/TX Driver Blocks to Run on Multiple Microengines
	5.7.2.4 Moving Data Structures to Local Memory
	5.7.2.5 Optimizing the Packet Buffer Freelist
	5.7.2.6 Using NN Ring Instead of Scratch Ring for Communication
	5.7.2.7 New Design for the Scheduler and Queue Manager

	OC-192 POS IPv4 MPLS Application 6
	6.1 Hardware Overview
	6.2 Software Overview
	6.2.1 Data Flow for the Ingress
	6.2.1.1 Packet RX
	6.2.1.2 Packet Processing Microengines (PPP Decap/Classify + MPLS ILM + IPv4 Forwarder + MPLS FTN)
	6.2.1.3 Statistics Microblock
	6.2.1.4 CSIX Scheduler
	6.2.1.5 Cell Based Queue Manager (Cell QM)
	6.2.1.6 CSIX TX
	6.2.1.7 Free List Manager

	6.2.2 Data Flow for the Egress

	6.3 Performance Characterization
	6.4 Ingress System Resource Allocation
	6.5 Egress System Resource Allocation
	6.6 Interfaces Between the Various Microblocks
	6.7 Application Optimizations
	6.7.0.1 Optimizing SRAM Memory Bandwidth Usage
	6.7.0.2 Moving Data Structures to Local Memory
	6.7.0.3 Caching Packet Header in Local Memory

	4Gb Ethernet IPv6/IPv4 Application 7
	7.1 Software Overview
	7.2 Data Flow for the Ingress IXP2400
	7.2.1 Packet RX
	7.2.2 Ethernet Decapsulation/Classify/Filter
	7.2.3 V6/V4 Translation Microblock
	7.2.4 IPv4 Forwarder
	7.2.5 IPv6 Forwarder
	7.2.6 IPv6/IPv4 Tunneling Microblock
	7.2.7 Cell Based Queue Manager (Cell QM)
	7.2.8 CSIX Scheduler
	7.2.9 CSIX TX

	7.3 Data Flow for the Egress IXP2400
	7.3.1 CSIX RX
	7.3.2 Ethernet Encapsulation
	7.3.3 Packet Based Queue Manager (Packet QM)
	7.3.4 Egress Scheduler
	7.3.5 Packet TX

	7.4 Dispatch Loops / Microblock Groups
	7.5 Performance Analysis

	DiffServ for POS Application 8
	8.1 Hardware Overview
	8.2 Software Overview
	8.2.1 Ingress IXP2400 Network Processor - DiffServ/IPv4
	8.2.1.1 Packet RX Microblock
	8.2.1.2 DiffServ/IPv4 Functional Pipeline
	8.2.1.3 Ingress Queue Manager for DiffServ
	8.2.1.4 CSIX Scheduler
	8.2.1.5 CSIX TX Microblock

	8.2.2 Egress IXP2400 Network Processor—DiffServ/ IPv4
	8.2.2.1 CSIX RX Microblock
	8.2.2.2 DiffServ Functional Pipeline
	8.2.2.3 Egress Queue Manager
	8.2.2.4 Egress Scheduler
	8.2.2.5 Packet TX Microblock

	8.2.3 Performance Analysis

	8.3 System Data Structures and Resource Allocation
	8.3.1 Ingress System Resource Allocation
	8.3.2 Egress System Resource Allocation
	8.3.3 Buffer Handle
	8.3.4 Packet Metadata

	8.4 Interfaces Between the Various Microblocks
	8.4.1 Inter-Microengine Messages
	8.4.1.1 POS RX and Ingress DiffServ/IPv4 Functional Pipeline
	8.4.1.2 Ingress DiffServ/IPv4 Functional Pipeline and Ingress Queue Manager
	8.4.1.3 Ingress Queue Manager and Ingress Scheduler
	8.4.1.4 Ingress Queue Manager and CSIX TX
	8.4.1.5 CSIX RX and Egress DiffServ Pipeline
	8.4.1.6 Egress DiffServ Pipeline and Egress Queue Manager
	8.4.1.7 Egress Queue Manager and Scheduler
	8.4.1.8 Egress Queue Manager and POS TX

	8.4.2 Ingress Dispatch Loop Variables
	8.4.3 Egress Dispatch Loop Variables

	8.5 Dynamic Behavior
	8.5.1 Ingress Data Flow
	8.5.1.1 Ingress Core Components

	8.5.2 Egress Data Flow
	8.5.2.1 Microblock Egress Pipeline
	8.5.2.2 Egress Core Components

	8.6 Sending Packets from Core Components to Microblocks
	8.7 Statistics Handling

	DiffServ for ATM Application 9
	9.1 Hardware Architecture
	9.2 Software Architecture
	9.2.1 Ingress IXP2400
	9.2.1.1 Ingress Microblock Pipeline
	9.2.1.2 Ingress Core Components

	9.2.2 Egress IXP2400
	9.2.3 Performance Analysis

	9.3 System Data Structures, Interfaces, and Resource Allocation
	9.3.1 Ingress System Resource Allocation
	9.3.2 Egress System Resource Allocation
	9.3.3 Buffer Handle
	9.3.4 Packet Metadata

	9.4 Interfaces Between the Various Microblocks
	9.4.1 Inter-Microengine Messages
	9.4.1.1 AAL5 RX and Ingress DiffServ/IPv4 Functional Pipeline
	9.4.1.2 Ingress DiffServ/IPv4 Functional Pipeline and Ingress Queue Manager
	9.4.1.3 Ingress Queue Manager and Ingress Scheduler
	9.4.1.4 Ingress Queue Manager and CSIX TX
	9.4.1.5 CSIX RX and Egress DiffServ Pipeline
	9.4.1.6 Egress DiffServ pipeline and Egress Cell Queue Manager
	9.4.1.7 Egress Cell Queue Manager and TM4.1 Shaper
	9.4.1.8 TM4.1 Shaper and TM 4.1 Writeout/Scheduler
	9.4.1.9 RR Scheduler and Egress Cell Queue Manager
	9.4.1.10 Egress Queue Manager and AAL5 TX

	9.4.2 Ingress Dispatch Loop Variables
	9.4.3 Egress Dispatch Loop Variables

	MPLS Application 10
	10.1 Input/Output Media Independence
	10.2 MPLS Forwarder Decomposition
	10.2.1 Ingress LER Generic MPLS Forwarder
	10.2.2 LSR Generic MPLS Forwarder
	10.2.3 Egress LER Generic MPLS Forwarder
	10.2.4 MPLS Forwarder Building Blocks

	10.3 Cooperation with IP and QoS Microblocks
	10.3.1 IP and MPLS Functional Pipeline
	10.3.2 TTL Processing
	10.3.2.1 TTL Processing in Different Tunneling Models

	10.4 Data Plane Architecture Dependencies
	10.4.1 Target HW Architecture
	10.4.2 Ingress and Egress Microblocks
	10.4.3 MPLS Forwarder Core Component Overview
	10.4.3.1 Inter-Component Dependencies

	10 Gb Ethernet IPv4/IPv6 Forwarding/ Tunneling Application 11
	11.1 Hardware Overview
	11.2 Software Overview
	11.2.1 Data Flow for the Ingress IXP2800
	11.2.1.1 Packet RX
	11.2.1.2 Packet Processing Microengines (PPP Decap/Classify + IPv4/IPv6 Forwarding + Tunneling)
	11.2.1.3 Statistics Microblock
	11.2.1.4 CSIX Scheduler
	11.2.1.5 Cell Based Queue Manager (Cell QM)
	11.2.1.6 CSIX TX

	11.2.2 Data Flow for the Egress IXP2800
	11.2.2.1 CSIX RX
	11.2.2.2 Ethernet ARP Microblock
	11.2.2.3 Statistics Microblock
	11.2.2.4 Egress Packet Scheduler
	11.2.2.5 Packet Based Queue Manager (Packet QM)
	11.2.2.6 TX Helper
	11.2.2.7 Packet TX

	11.3 Performance Characterization
	11.4 Ingress System Resource Allocation
	11.5 Egress System Resource Allocation
	11.6 Interfaces Between the Various Microblocks
	11.6.1 Packet RX and Packet Processing Microengines
	11.6.2 Packet Processing Microengines and Statistics
	11.6.3 Statistics and CSIX Scheduler
	11.6.4 CSIX Scheduler and Cell Queue Manager
	11.6.5 Cell Queue Manager and CSIX TX
	11.6.6 CSIX TX—First ME to Second ME
	11.6.7 CSIX RX and Ethernet ARP
	11.6.8 Ethernet ARP and Statistics
	11.6.9 Statistics and Packet Scheduler
	11.6.10 Packet Scheduler and Queue Manager
	11.6.11 Queue Manager and TX helper
	11.6.12 TX Helper and Packet TX (10x1 GigE)
	11.6.13 TX Helper and Packet TX (1x10 GigE)
	11.6.14 Packet TX —First ME to Second ME (1x10 GigE)

	Core Router Application 12
	12.1 Hardware Overview
	12.2 Software Overview
	12.2.1 Data Flow for the Ingress A IXP2800
	12.2.1.1 Packet RX
	12.2.1.2 Packet Processing Microengines
	12.2.1.3 Dispatch Loop / Microblock Groups
	12.2.1.4 Statistics
	12.2.1.5 SPI4 TX

	12.2.2 Data Flow for the Ingress B IXP2800
	12.2.2.1 SPI4 RX
	12.2.2.2 Meter & WRED
	12.2.2.3 Statistics Microblock
	12.2.2.4 CSIX Scheduler
	12.2.2.5 Cell Based Queue Manager (Cell QM)
	12.2.2.6 CSIX TX

	12.2.3 Data Flow for the Egress IXP2800
	12.2.3.1 CSIX RX
	12.2.3.2 Statistics Microblock
	12.2.3.3 Egress Packet Scheduler
	12.2.3.4 Packet Based Queue Manager (Packet QM)
	12.2.3.5 TX Helper
	12.2.3.6 Packet TX

	12.3 Performance Characterization
	12.4 Ingress A System Resource Allocation
	12.5 Ingress B System Resource Allocation
	12.6 Egress System Resource Allocation
	12.7 Interfaces Between the Various Microblocks
	12.7.1 Packet RX and Packet Processing Microengines
	12.7.2 Packet Processing Microengines and Statistics
	12.7.3 Statistics and SPI4 TX
	12.7.4 SPI4 RX and Meter/WRED
	12.7.5 METER/WRED and Statistics
	12.7.6 Statistics and CSIX Scheduler
	12.7.7 CSIX Scheduler and Cell Queue Manager
	12.7.8 Cell Queue Manager and CSIX TX
	12.7.9 CSIX TX—First ME to Second ME
	12.7.10 CSIX RX and Statistics
	12.7.11 Statistics and Packet Scheduler
	12.7.12 Packet Scheduler and Queue Manager
	12.7.13 Queue Manager and TX Helper
	12.7.14 TX Helper and Packet TX

	Dual OC-12 POS/Dual Gb Ethernet Forwarding Application for IXDP24X1 13
	13.1 Hardware Overview
	13.2 Software Overview
	13.2.1 Data Flow
	13.2.1.1 Ethernet Packet RX
	13.2.1.2 POS RX
	13.2.1.3 Ethernet Decapsulation and Classify
	13.2.1.4 PPP Decapsulation and Classify
	13.2.1.5 IPv4 Forwarder
	13.2.1.6 Packet-Based Queue Manager
	13.2.1.7 Packet Scheduler
	13.2.1.8 Ethernet Encapsulation
	13.2.1.9 Ethernet Packet TX
	13.2.1.10 PPP Encapsulation
	13.2.1.11 POS Packet TX

	13.2.2 Dispatch Loops

	13.3 Performance Characterization
	13.3.1 POS/Ethernet Pipeline

	13.4 System Resource Allocation
	13.5 Microblock Interface
	13.5.1 Packet RX and Packet Processing Microengines
	13.5.2 Packet Processing Microengines and Packet QM
	13.5.3 Packet Queue Manager and Scheduler
	13.5.4 Packet Queue Manager and POS Packet TX
	13.5.5 Packet Queue Manager and Ethernet Packet TX

	13.6 Core Components Usage

	Quad Gigabit Ethernet Forwarding Application for IXDP24X1 14
	14.1 Hardware Overview
	14.2 Software Overview
	14.2.1 Data Flow
	14.2.1.1 Packet RX
	14.2.1.2 Ethernet Classify/Decapsulate
	14.2.1.3 IPv4 Forwarder
	14.2.1.4 L2 Validate
	14.2.1.5 Packet-Based Queue Manager
	14.2.1.6 Packet Scheduler
	14.2.1.7 Ethernet Encapsulation
	14.2.1.8 Packet TX

	14.2.2 Dispatch Loops
	14.2.3 HW Architecture-Specific Code
	14.2.3.1 Quad Gigabit Ethernet MAC Driver
	14.2.3.2 Ethernet PHY Driver

	14.3 Performance Characterization
	14.4 System Resource Allocation
	14.5 Microblock Interfaces
	14.5.1 Packet RX and Packet Processing Microengines
	14.5.2 Packet Processing Microengines and Packet QM
	14.5.3 Packet Scheduler and Packet QM
	14.5.4 Packet Queue Manager and Packet TX

	14.6 Core Component Usage

	ATM/Ethernet IPv4 Forwarding Application for IXDP24X1 15
	15.1 Hardware Overview
	15.2 Software Overview
	15.3 Data Flow
	15.3.1 AAL5 RX/Ethernet RX
	15.3.2 Packet Processing
	15.3.3 Packet-Based Queue Manager
	15.3.4 Packet Scheduler
	15.3.5 Cell-Based Queue Manager
	15.3.6 TM 4.1 Shaper
	15.3.7 TM 4.1 Cell Scheduler
	15.3.8 Ethernet Tx
	15.3.9 ATM AAL5 Tx

	15.4 Dispatch Loops
	15.5 Performance Characterization
	15.6 System Resource Allocation
	15.7 Microblock Interfaces
	15.7.1 Common RX to Packet Processing
	15.7.2 Packet Processing to Packet Queue Manager
	15.7.3 Scheduler to Queue Manager
	15.7.4 Queue Manager to Scheduler
	15.7.5 Queue Manager to Packet TX
	15.7.6 Queue Manager to TM 4.1 Shaper
	15.7.7 TM4.1 Scheduler to Queue Manager
	15.7.8 Queue Manager to TM4.1 Scheduler
	15.7.9 Queue Manager to AAL5 TX

	POS/Ethernet IPv4 Forwarding Application for IXDP28x1 16
	16.1 Hardware Overview
	16.2 Software Overview
	16.2.1 Data Flow
	16.2.1.1 Packet RX
	16.2.1.2 Packet Processing
	16.2.1.3 Packet-Based Queue Manager
	16.2.1.4 Packet Scheduler
	16.2.1.5 Packet TX

	16.2.2 Dispatch Loops

	16.3 Performance Characterization
	16.4 System Resource Allocation
	16.5 Microblock Interfaces
	16.5.1 Packet RX to Packet Processing Microengine
	16.5.2 Packet Processing to Queue Manager Microengine
	16.5.3 Scheduler to Queue Manager Microengine
	16.5.4 Queue Manager to Scheduler Microengine
	16.5.5 Queue Manager to Packet TX Microengine

	16.6 Core Components Integration

