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Introduction 1

1.1 About this Manual

The Intel® Internet Exchange Architecture Software Development Kit (Intel® IXA SDK) includes 
example code that demonstrates network processor features and data flow. These applications can 
be used to jump-start customer application development. 

This manual provides a high-level design overview of the hardware and software components for 
applications developed specifically for the Intel® IXP2400 Network Processor and the Intel® 
IXP2800 Network Processor. This manual focuses on the microengine components of each design, 
listing the building blocks used, describing the data flow of the application, and providing 
performance characterization data.

1.2 Organization of this Manual

Chapter 1, “Introduction,” (this chapter) describes how this manual is organized and lists other 
manuals which may be referred to for more information.

The remaining chapters in this manual describe the design details, data flow descriptions, and 
performance characterization of the following software applications:

• Chapter 2, “OC-48 POS IPv4 Forwarding Application” 

• Chapter 3, “4Gb Ethernet IPv4 Forwarding Application”

• Chapter 4, “OC-48 ATM IPv4 Forwarding Application”

• Chapter 5, “OC-192 POS IPv4/IPv6 Forwarding/Tunneling Application”

• Chapter 6, “OC-192 POS IPv4 MPLS Application”

• Chapter 7, “4Gb Ethernet IPv6/IPv4 Application”

• Chapter 8, “DiffServ for POS Application”

• Chapter 9, “DiffServ for ATM Application”

• Chapter 10, “MPLS Application”

• Chapter 11, “10 Gb Ethernet IPv4/IPv6 Forwarding/Tunneling Application”

• Chapter 12, “Core Router Application”

• Chapter 13, “Dual OC-12 POS/Dual Gb Ethernet Forwarding Application for IXDP24X1”

• Chapter 14, “Quad Gigabit Ethernet Forwarding Application for IXDP24X1”

• Chapter 15, “ATM/Ethernet IPv4 Forwarding Application for IXDP24X1”

• Chapter 16, “POS/Ethernet IPv4 Forwarding Application for IXDP28x1”
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1.3 Supported Applications

Table 1-1 describes the processor, platform, and operating system supported for the applications 
contained in the Intel® Internet Exchange Architecture (Intel® IXA) SDK. 

Table 1-1. Supported Applications

Processor Platform Operating 
System Application Name Release 3.5 Revisions

2400
IXDP 2400 
and 
simulation

VxWorks* 
and Linux* OC-48 POS-IPV4 Forwarding Application No change

2400
IXDP 2400 
and 
simulation

VxWorks* 
and Linux* 4Gb Ethernet IPv4 Forwarding Application No change

2400
IXDP 2400 
and 
simulation

VxWorks* OC-48 ATM AAL5 IPv4 Forwarding Application Add core components

2400
IXDP 2400 
and 
simulation

VxWorks* 
and Linux* 4Gb Ethernet IPv4/IPv6 Forwarding application Add local stack support on 

Linux

2400
IXDP 2400 
and 
simulation

VxWorks* OC-48 DiffServ for POS IPv4 Forwarder Application No change

2400
IXDP 2400 
and 
simulation

VxWorks* DiffServ for ATM No change

2400
IXDP 2400 
and 
simulation

VxWorks* OC-48 POS MPLS IPv4 Forwarder Application
Add MPLS core 
components and exception 
handling

2400
IXDP 2400 
and 
simulation

VxWorks* 10 Gb Ethernet IPv4 Forwarding Application No change

2400
IXDP 2400 
and 
simulation

VxWorks* 4xOC-12 POS ATM/DiffServ IPv4 Forwarder No change

2400
IXDP 2400 
and 
simulation

VxWorks* 4xOC-12 ATM AAL5 Forwarder No change

2800
IXDP 2800 
and 
simulation

VxWorks* 
and Linux*

OC-192 POS IPv6/IPv4 Forwarding and Tunneling 
Application

Add hardware support and 
support for Linux OS

2800
IXDP 2800 
and 
simulation

VxWorks* Core Router (OC-192 POS MPLS IPv4 Forwarder) No change

2800
IXDP 2800 
and 
simulation

VxWorks* 
and Linux* 10x1GbE IPv4/IPv6 Forwarding and Tunneling New, includes Linux core 

components

2800
IXDP 2800 
and 
simulation

VxWorks* 10GbE IPv4/IPv6 Tunneling New 
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1.4 Other Sources of Information

This manual is part of the Intel® Internet Exchange Architecture (Intel® IXA) Software 
Development Kit (SDK) documentation set, which also includes the following manuals:

• Intel® Internet Exchange Architecture Portability Framework Reference Manual

• Intel® Internet Exchange Architecture Portability Framework Developer’s Manual

• Intel® Internet Exchange Architecture Software Building Blocks Reference Manual

• Intel® Internet Exchange Architecture Software Building Blocks Developer’s Manual

• Intel® Internet Exchange Architecture Software Development Kit Software Framework Getting 
Started Guide

2800
IXDP 2800 
and 
simulation 

VxWorks* OC-192 POS IPv4 MPLS New 

2400
IXDP 2401 
and 
simulation

VxWorks* 
and Linux*

Dual OC-12 POS/ Dual Gigabit Ethernet Forwarding 
Application Add support for Linux OS 

2400
IXDP 2401 
and 
simulation

VxWorks* 
and Linux* Quad Gigabit Ethernet IPv4 Forwarding Application Add support for Linux OS 

2400
IXDP 2401 
and 
simulation

Linux* ATM (AAL5) IPv4 Forwarding Application New

2800
IXDP 28x1 
and 
simulation

Linux* POS/Ethernet IPv4 Forwarder Application New

Table 1-1. Supported Applications (Continued)

Processor Platform Operating 
System Application Name Release 3.5 Revisions
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OC-48 POS IPv4 Forwarding 
Application 2

This chapter describes an IPv4 Forwarding application for Packet over SONET (POS) 
implemented on two half duplex Intel® IXP2400 Network Processors connected to a CSIX switch 
fabric. The chapter also provides a high-level design overview and lists the different software 
components used to build this application.

The application described in this chapter is supported on the Intel® IXDP2400 Advanced 
Development Platform.

This chapter focuses only on the fast path or microengine components of the design. The XScale 
Core Components for this application are described in Intel® Internet Exchange Architecture 
Portability Framework Developer’s Manual.

This chapter describes the application in the context of a POS media interface. Chapter 3, “4Gb 
Ethernet IPv4 Forwarding Application” and Chapter 4, “OC-48 ATM IPv4 Forwarding 
Application” discuss the changes needed to support Ethernet and ATM.

2.1 Hardware Overview

Figure 2-1 shows two IXP2400 processors in a typical CSIX full duplex configuration. In this 
configuration, the two IXP2400 processors are identified as the ingress processor (receives from 
the Media interface and transmits to the CSIX Fabric) and the egress processor (receives from the 
CSIX Fabric and transmits to the Media interface).

Figure 2-1. Example Hardware Configuration for OC48-POS with CSIX Fabric
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The Ingress IXP2400 receives POS frames that carry IPv4 datagrams. The frames are assembled 
into IPv4 packets and the Layer-2 (PPP) headers are removed. Based on the IPv4 header, a Longest 
Prefix Match (LPM) lookup is performed and the packets are segmented into CSIX C-Frames and 
transmitted to the CSIX fabric. The result of the LPM lookup determines which IXP2400 
connected to the Fabric receives the packet, and which port on that IXP2400 the packet is 
transmitted on. 

The Egress IXP2400 receives CSIX C-Frames from the fabric and reassembles these into IPv4 
datagrams. The Layer-2 (PPP) headers are added and the packets are transmitted over the 
appropriate port.

2.2 Software Overview

Figure 2-2. Microblocks for an OC-48 POS IPv4 Forwarding Application
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Figure 2-2 shows the microblocks needed to implement an OC-48 POS IPv4 Forwarding 
application. The design for this application is based on the guidelines specified in the Intel® 
Internet Exchange Architecture Portability Framework Developer’s Manual. The driver 
microblocks (Receive, Transmit, Scheduler and Queue Manager) run on different microengines 
from the packet processing code. In this design, each driver block occupies an entire microengine. 
The packet processing blocks on the ingress IXP2400 include the IPv4 Forwarder and the PPP 
decapsulation/classify microblock. There are four microengines that run in parallel and execute the 
packet processing code. On the egress side, the only packet processing code is the PPP 
encapsulation block which runs on a single microengine. 

2.2.1 Data Flow for the Ingress IXP2400

This section describes the data flow on the Ingress IXP2400:

2.2.1.1 Packet RX

The Packet Receive is a driver microblock that performs frame-reassembly on the mpackets 
coming in on the POS media interface. It reassembles and writes the packet data to a buffer in 
DRAM and queues the packet buffer handle on a microengine-microengine scratch ring for 
processing by the packet processing microengine. The Packet RX microblock also sets up per 
packet meta information (offset, size, etc.) which are passed on either in a descriptor in SRAM or 
in the microengine-microengine scratch ring itself. In this application, the packets reassembled are 
PPP frames containing IP datagrams. RFC 2615 defines the Packet Over SONET specification and 
refers to RFC 1661 (PPP) and RFC 1662 (PPP in HDLC-like framing). PPP framing including 
header validation, FCS generation and computation and byte stuffing are handled by the POS 
framer (IXF 6048). 

The Packet RX microblock uses 8 threads on a single microengine, each of which handle one 
mpacket at a time. Up to 16 virtual ports are supported and the re-assembly context for all these 
ports is kept in local memory. To maintain packet sequencing, the threads execute in strict order.

Note: This microblock is written such that it supports up to 16 virtual ports, one or more of which may be 
unused. This allows the microblock to support different configurations such as Quad-OC12, 16 
OC-3 or a single OC-48 port.

Since POS packets may be up to 9k bytes, some large packets may be stored in multiple buffers 
chained together as a link-list. The buffer handles for the first and last packet in the chain are 
queued in the scratch ring. 

From the Packet RX block, the packet is passed on to an application specific system microblock 
(DL_Sink[]). This microblock checks if the packet has been marked to be dropped (IX_DROP) or 
sent to the XScale Core (IX_EXCEPTION). If not, it queues the packet buffer handle and associated 
packet meta data into the scratch ring for the next stage in the application. 

2.2.1.2 PPP Decapsulation and Classify

The PPP decapsulation/classify microblock runs along with the IPv4 microblock on 4 
microengines or 32 threads. 

An application specific system source microblock on each thread dequeues packet buffer handles 
from the scratch ring. This source block (DL_Source[]) is a system microblock implicit in the 
dispatch loop. It reads in the packet meta information—that is, the packet descriptor, and populates 
the dispatch loop state. It also reads in 32 bytes of the packet header from DRAM into a header 
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cache maintained in transfer registers. Since it is important to maintain packet sequencing, the 
threads in the microblock execute in strict order to dequeue from the scratch ring. This implies that 
the first thread on microengine 1 dequeues the first packet, signals the next thread to perform the 
dequeue… etc. From this block, the packet goes to the PPP decapsulation/classify microblock.

The PPP decapsulation/classify microblock removes the layer-2 PPP header from the packet by 
updating the offset and size fields in the packet meta descriptor. Based on the PPP header, it also 
classifies the packet into IPv4, IPv6, PPP control packet (LCP, IPCP etc). If the packet is a PPP 
control packet, it is marked as an exception packet to be sent to the XScale Core (IX_EXCEPTION). 
Otherwise the packet is sent down the microengine stages for further processing. In this 
application, the dispatch loop silently drops packets classified as IPv6.

2.2.1.3 IPv4 Forwarder

The IPv4 forwarder microblock validates the IP header per RFC 1812. If the validity checks fail, 
then the packet is set up to be dropped as specified in Chapter 5, “Microblocks” of the Intel® 
Internet Exchange Architecture Portability Framework Developer’s Manual. Otherwise, a Longest 
Prefix Match (LPM) is performed on the IPv4 header. The result is an IPv4 Next Hop ID, a fabric 
blade ID (identifying a unique IXP2400 on the fabric) and an output port identifying the output 
port on the Egress IXP2400. The Next Hop ID is passed over the CSIX fabric to an Egress 
IXP2400 where it is used to look up information about the Layer-2 header to be prepended to the 
packet buffer. The output port is also passed over the CSIX fabric to the Egress IXP2400 and is 
used to transmit over the appropriate port. All three fields are stored in the packet meta data—that 
is, the packet descriptor.

If no match is found, then the packet is set up to be sent up to the XScale core for further 
processing. Packets are also sent to the core in a number of other cases, for example, when the 
packet is destined for a local interface or is to be fragmented. 

From the IPv4 forwarder block, the packet is passed on to an application specific system 
microblock (DL_QM_Sink[]). This microblock checks if the packet is to be dropped or sent to the 
XScale Core. If not, it sends an enqueue request to the Queue Manager over a scratch ring. 
DL_QM_Sink[] also writes the cached packet header to DRAM and the packet meta information to 
SRAM.

2.2.1.4 Cell Based Queue Manager (Cell QM)

The Queue Manager is a driver microblock that is implemented as a single microblock that runs on 
a single microengine. Since this is the only code running on the microengine and it does not really 
process packets, there is no need for a dispatch loop.

The QM is responsible for performing enqueue and dequeue operations on the transmit queues 
which are implemented using the hardware SRAM link lists. It accepts enqueue requests from the 
functional pipeline via a scratch ring. The enqueue requests are on a per-packet basis. The dequeue 
requests come from the transmit scheduler microengine on a per-cell basis where a cell is a CSIX 
cframe. Whenever an enqueue results in the queue state going from empty to non-empty or a 
dequeue operation results in the queue state going from non-empty to empty, the Queue Manager 
sends a message to the transmit scheduler via a Next Neighbor Ring. Also after every dequeue, the 
QM passes a transmit request via a scratch ring to the CSIX TX microblock.

The threads on the QM microengine execute in strict order using local inter-thread signaling. 
SRAM Queue Array entries are cached in the SRAM Controller and the CAM is used for 
managing the tags for these. To maintain coherence among threads, folding is used. 



Software Building Blocks Applications Design Guide 27

OC-48 POS IPv4 Forwarding Application

2.2.1.5 CSIX Scheduler 

The CSIX scheduler is a driver microblock that runs on a single microengine. Since this is the only 
code running on the microengine and it does not process packets, there is no need for a dispatch 
loop.

The CSIX scheduler schedules packets to be transmitted to the CSIX fabric. The scheduling 
algorithm implemented is Round Robin among the ports on the fabric and optionally Weighted 
Round Robin among the queues on a port. Since this is not a QoS application and there is only one 
queue per port, the Weighted Round Robin scheduling may either be compiled out or made to 
degenerate to round robin scheduling. Other applications—for example, IP DiffServ, may use the 
WRR functionality. The scheduling and transmit is done a cframe at a time. 

The CSIX scheduler handles 

• Flow control messages from the fabric
These messages are sent by the fabric to the Egress IXP2400, which sends them on the c-bus 
to the Ingress IXP2400. If the fabric asserts Xoff on a particular VoQ (Virtual Output Queue), 
the scheduler stops scheduling for the queue. 

• Queue transition messages from the queue manager
A queue is scheduled only if there is data in the queue.

• MSF Transmit State Machine
The scheduler monitors how many packet cframes are in the pipeline and if it exceeds a certain 
threshold, it stops scheduling.

For both the VoQ status and the transmit queue status, the scheduler keeps hierarchical bit vectors 
and uses the MEv2 FFS (Find First Bit) instruction to scan them efficiently. During each loop, the 
scheduler 

• Checks if the TX pipeline is within a pre configure threshold

• Picking up from where it left off in the last iteration it finds the next bit set and determines 
which queue to schedule.

• It then sends a dequeue message to the Queue Manager to dequeue the head of that queue. The 
Queue Manager dequeues a cell (cframe) from the head of the queue and sends a transmit 
request on a scratch ring to the CSIX TX microblock.

2.2.1.6 CSIX TX

CSIX Transmit is a driver microblock that runs on a single microengine. It receives transmit 
messages from the queue manager. With each transmit request, the microblock moves a cframe into 
a TBUF, which is then transmitted into the fabric by the MSF Transmit State Machine. 

Every request has an associated packet, which is being segmented into cframes. The associated 
segmentation state for the packet and the packet metadata is cached in local memory and is looked 
up using the CAM. The TX microblock adds the CSIX header onto the cframe along with the 
packet data. Along with the CSIX header, a Traffic Manager (TM) header is also added per cframe 
carrying extra information (destination Layer-2 port ID, input blade ID, sequence number, next-
hop ID, etc.) about the packet to be passed to the Egress IXP2400. In addition, the flow ID, class 
ID, input port, and some other fields from the metadata are passed along to the Egress IXP2400 
using a per-packet header pre-pended to the start of the first c-frame of each packet. 
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As in other drive microblocks, the threads use folding and execute in strict order. If an entire buffer 
for a packet has been transmitted, then the buffer is freed. 

2.2.2 Data Flow for the Egress IXP2400

2.2.2.1 CSIX RX

The CSIX RX is a driver microblock that runs on a single microengine. It receives c-frames from a 
CSIX fabric and reassembles them into IP packets. A key difference between the CSIX receive and 
the POS receive microblock is that while the Packet RX block supports only 16 virtual ports, the 
CSIX RX block supports up to 64k VOQ's. This implies that the reassembly contexts (RXC) are 
stored in SRAM. The folding technique is used to optimize the read modify write of the context. 
Sixteen contexts are cached in local memory at any time and the CAM is used to lookup the 
context. The ingress blade id and the QoS class are used to uniquely identify a context and are used 
as a key for the CAM lookup.

Since the packets being reassembled may be up to 9k bytes, some large packets may be stored in 
multiple buffers chained together as a link-list. The buffer handles for the first and last packet in the 
chain are queued in the scratch ring. The CSIX RX microblock also sets up packet meta 
information (offset, size etc.) which are passed on to the packet processing microengines either in 
SRAM or in the scratch ring itself.

2.2.2.2 PPP Encapsulation

This block adds the layer-2 PPP header to the packet and enqueues it to the next stage of the 
pipeline. If the next hop id in the packet meta data is set to an invalid value (-1) then the block 
assumes that the PPP header has already been added to the packet and simply enqueues it to the 
next stage of the pipeline.

2.2.2.3 Packet Based Queue Manager

This block is virtually identical to the Cell Based Queue Manager except that it dequeues packets. 
The SRAM Q-Array hardware is programmed in packet mode and ignores the cell count field in 
the buffer handle. The cell count field may be used to store an approximation of the length of the 
packet for DRR scheduling. Another key difference between the cell based and packet based queue 
manager is that the packet based queue manager returns a dequeue response message to the 
scheduler for every dequeue request. This dequeue response contains the packet length which is 
needed by the scheduler for implementing the DRR algorithm. The dequeue response message is 
combined with the enqueue/dequeue transition messages and is returned on the same next neighbor 
ring.

On the ingress side (Cell QM), the scheduler does not need the packet length. Therefore a message 
is only sent from the QM to the scheduler in case of a queue transition or if the dequeue was 
invalid.

2.2.2.4 Egress Packet WRR/DRR Scheduler

The Egress scheduler schedules POS packets to be transmitted over the POS interface. The key 
difference between the ingress and Egress IXP2400’s is that the egress scheduler is a packet-based 
scheduler as opposed to the cell (i.e., c-frame) based scheduler on the ingress side. Also there are 
no flow control messages to be processed from the fabric. 
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The Egress scheduler implements Weighted Round Robin (WRR) scheduling among the ports and 
optionally DRR (Deficit Round Robin) scheduling among the queues on a port. Since this is not a 
QoS application and there is only one queue per port, the DRR is compiled out or made to 
degenerate to round robin. 

Using the Weighted Robin algorithm on the 16 virtual ports allows us the flexibility to support a 
number of different configurations such 16-OC3, 3 OC-12, and 4 OC-3, etc. The weights on the 
ports are adjusted according to the data rate sustained on that port.

To prevent head-of-line blocking, the scheduler with the help of feedback from the Packet TX 
block keeps track of the number of packets in flight (scheduled, but not transmitted) for each port. 
If this number exceeds a specified limit, then it stops scheduling on that port.

2.2.2.5 Packet TX

The Packet TX microblock transmits packets over the media interface. It segments a packet into 
mpackets and moves them into TBUFS for the MSF state machine to transmit. This is similar to the 
CSIX TX microblock except that instead of adding the CSIX header, the Packet TX microblock 
assumes that the layer-2 header is already prepended to the start of the packet by a previous stage of 
the packet processing pipeline. Also while the CSIX TX block receives a transmit request for every 
cframe, the Packet TX microblock receives a transmit request for the entire packet. 

The MPHY-16 Packet TX microblock supports up to 16 virtual ports. The transmit context for all 
of these are kept in local memory. Therefore the CAM is not required. The Packet TX microblock 
monitors the MSF to see if the TBUF threshold for a specific port has been exceeded. If so it stops 
transmitting on that port and any requests to transmit packets on that port are queued up in local 
memory. 

The Packet TX microblock periodically updates the scheduler with information about how many 
packets have been transmitted. If the packets in flight for a particular port (packets scheduled but 
not transmitted) exceed a certain limit (which depends on the bandwidth supported by that port), 
then the scheduler stops scheduling any more packets for the port. This combination of queuing 
packets in local memory and keeping track of the packets in flight helps prevent 'head of line 
blocking'.

One thing to note is that the design is much simpler for the case where only a single OC-48 port 
(SPHY mode) needs to be supported. This is because there are no head of line blocking issues and 
packets needed not be queued in local memory. The same applies for a quad OC12 design (MPHY-
4 mode) where we can avoid head of line blocking issues by using four different scratch rings (1 
per port) and allocate two microengine threads for each port. 

Another assumption made in this design is that the output port for egress is found via the IPv4 
lookup performed on the ingress side. A different approach is to use the next hop id and do a 
lookup on the egress side to find out the output port number. 

The Packet TX microblock can be used to support the following configurations:

• SPHY 1x32 (single port OC-48)

• MPHY-4 (or SPHY 4x8—four port OC-12)

• MPHY-16 (up to 16 virtual ports)

In the single port or four port configuration, the Packet TX microblock runs on a single 
microengine, while in the MPHY-16 mode it runs on two microengines.
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2.2.3 Dispatch Loops / Microblock Groups

There are two dispatch loops (microblock groups) on the ingress pipeline. For more information on 
dispatch loops, see Chapter 6, “Dispatch Loop” in the Intel® Internet Exchange Architecture 
Portability Framework Developer’s Manual.

• Dispatch Loop for the Packet Frame Reassembly Stage (Figure 2-3)

• Dispatch Loop for the IPv4 Forwarder functional pipeline (Figure 2-4)

The QM, Scheduler, and CSIX TX blocks don’t use a dispatch loop, though they still use the 
dispatch loop macros where required.

Note that the system microblocks dl_source, dl_sink, dl_qm_sink, etc are application 
specific. They may be change for different packet processing pipelines.

There are two dispatch loops on the egress pipeline 

• Dispatch Loop for the CSIX RX Reassembly stage (Figure 2-5)

• Dispatch Loop for the PPP encapsulation stage (Figure 2-6)

Figure 2-3. Dispatch Loop for the Packet Frame Reassembly Stage
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2.3 Performance Characterization 

The IXP2400 operates at 600 MHz. For a min POS packet of 49B, the packet inter-arrival time at 
OC-48 line rate is 97 microengine cycles. In order to maintain line rate for min packets, each stage 
of the pipeline cannot exceed this budget. In other words, each stage of the pipeline needs to retire 
a packet every 97 cycles. 

Table 2-1 summarizes the performance analysis for the POS pipeline.

Figure 2-5. Dispatch Loop for CSIX Reassembly Stage
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Table 2-1. Performance Characterization for the POS Pipeline

Parameter Value

OC-48 line rate assuming 3% SONET overhead 2.408 Gigabits/sec

Min POS packet size
49 bytes (40 byte TCP/IP, 2 bytes Address and 
Control, 2 byte PPP header, 4 byte FCS and 1 
byte flag)

Packet Throughput for min packets 6.14 million packets/sec = (2.408 / (49*8)) * 
(10**9)

IXP2400 clock frequency 600 MHZ

Inter-packet arrival time for min packets 600/6.14 = 97.7 cycles

Compute cycles per packet for a single microengine 97
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2.4 Ingress System Resource Allocation 

Table 2-2 shows the system resources mapped for the Ingress IXP2400. This mapping reflects the 
system defaults and may be changed. The allocation of microengines is done such that it optimizes 
the performance of this specific application and may be changed for other applications. 

The physical assignment of function to microengine is important since it not only affects when the 
next neighbor registers and signaling can be utilized, but it also affects the utilization of the internal 
Command bus and S-Push/Pull buses. Since ME0-ME3 belong to Microengine Cluster 0 and ME4-
ME7 belong to Microengine Cluster 1, this assignment attempts to balance the usage of the 
Command bus and S-Push/Pull buses across the two clusters.

IXP2400 supports two SRAM channels and one DRAM channel. Table 2-3 shows the SRAM, 
DRAM and scratch utilized for this application. These values are defined in a system header file 
dl_system.h and may be changed as required.

Latency per packet for a single microengine 97 * 8

Compute cycles per packet for n microengines running in 
parallel 97*n

Latency per packet for a n microengines running in parallel 97*8*n

Table 2-1. Performance Characterization for the POS Pipeline (Continued)

Parameter Value

Table 2-2. System Resources Mapped for the Ingress IXP2400

Microblock ME # Communication Mechanism with previous stage

Packet RX ME0 Auto-push status from MSF

IPv4 Forwarder + Layer2 
decapsulation/Classify ME1, ME2, M5, M6 Scratch ring

Queue Manager ME3 Scratch ring

CSIX Scheduler ME4 Next neighbor + Scratch ring

CSIX TX ME7 Scratch ring

Table 2-3. SRAM, DRAM and Scratch Utilization for Ingress System Resources

Item Size per entry in bytes Number of entries
Total 

SRAM 
used

Total 
DRAM 
used

Total 
Scratch 

used

Buffer Descriptors 32 
32k (In simulation, 
we use only 320 
buffers)

1 MB 

Buffers 2048 32k 64 MB

Queue Descriptors 16 1024 (1 per VOQ) 16K

CSIX TX contexts 32 1024 (1 per VOQ) 32k
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2.5 Egress System Resource Allocation 

Table 2-4 shows the system resources allocated for the Egress IXP2400. 

Trie Table

64 (The root Trie table 
requires at least 257k to 
support hi64k and hi256 
tables. In addition each 
node requires 64 bytes. 
These nodes are added 
as needed)

See note in previous 
column. Assuming 
256k routes, 
approximately 128k 
nodes are needed 

8MB

Route Table (Next Hop 
Information) 16 Assuming 4k next 

hops 64k

IPv4 statistics 4 16 64

Packet RX statistics 4 16*16 1024

IPv4 Directed 
Broadcast Table 32 256 8k

Ring from Packet RX 
to packet processing 
pipeline (IPv4+Layer2 
Decap/Classify) 

20 4k/20 4k

IPv4 to QM ring 12 2k/12 2k

Scheduler to QM 4 512 2k

QM to CSIX TX 8 256 2k

QM Q-Array entries N/A 16

Buffer Free list Q-Array 
entry N/A 4

Table 2-3. SRAM, DRAM and Scratch Utilization for Ingress System Resources (Continued)

Item Size per entry in bytes Number of entries
Total 

SRAM 
used

Total 
DRAM 
used

Total 
Scratch 

used

Table 2-4. System Resources Allocated for the Egress IXP2400

Microblock ME # Communication Mechanism 
with previous stage

CSIX RX ME0 Auto-push status from MSF

Packet TX
ME4, ME5 (For SPHY 1x32, one 
microengine is sufficient. For MPHY-16 
designs two microengines are needed)

Scratch ring

Layer-2 
Encapsulation ME3 Scratch ring

Egress QM ME1 Scratch Ring

Egress Scheduler ME2 Next neighbor + Scratch ring

Unused (available 
headroom) M6, ME7 N/A
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The mapping of networking functions on to the microengines shows that six microengines are used 
to perform the fast path processing for this application. Additional functionality required by 
customers can be mapped on to the remaining microengines.

Table 2-5 shows how the SRAM, DRAM and scratch are utilized for this application. These values 
are defined in a system header file dl_system.h and may be changed as required. 

2.6 Interfaces Between the Various Microblocks

This section describes the interfaces between the different microblocks in the ingress and egress 
processors for this application.

In most of the messages, there is a valid bit is used to prevent a value of zero from being enqueued 
on the scratch ring. Zero is used to detect a case where the scratch ring is empty. So the valid bit 
helps us distinguish between a zero value that was actually enqueued versus a case where the ring 
is empty. 

Table 2-5. SRAM, DRAM and Scratch Utilization for Egress System Resources

Item
Size per 
entry in 
bytes

Number of entries Total SRAM 
used

Total 
DRAM 
Used

Total Scratch 
used

Buffer 
Descriptors 32 32k (In simulation we use 

only 320 buffers) 1 MB

Queue 
Descriptors 16 256 (16 ports x 16 classes 

per port) 4k 

CSIX RX 
Reassembly 
contexts 

32 1024 32k

Buffers 2048 32k 64 MB

CSIX RX to 
Layer-2 Encap 
ring

12

512/3 (the size of the ring is 
512 long words, but each 
entry enqueued uses 3 long 
words. Therefore the total 
number of entries is 512/3 = 
170)

2k

Layer-2 Encap to 
QM ring 12 512/3 2k

Scheduler to QM 
ring 4 512 2k

QM to POS TX 4 512512 2k2k

QM Q-Array 
entries N/A 16

Buffer Free list 
Q-Array entry N/A   4
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2.6.1 Packet RX and Packet Processing Microengines

The interface between the Packet Receive microblock and the Packet Processing Microengines 
(IPv4 Forwarder + PPP decap) is a scratch ring. Table 2-6 describes each entry in the scratch 
ring— which is five words. 

2.6.2 Packet Processing Microengines and Cell Queue Manager

The interface between Packet Processing Microengines (IPv4 Forwarder + PPP decap) and Cell 
Queue manager is a scratch ring. Table 2-7 describes each entry in the scratch ring—which is three 
words.:

Table 2-6. Five-Word Entry in Scratch Ring (IPv4 Forwarder + PPP Decap) 

LW Bits Size Field Description

0 31:0 32 dl_buffer_handle Buffer Handle for the SOP Descriptor

1 32:0 32 dl_eop_buffer_handle Buffer Handle for the EOP Descriptor

2 31:16 16 buffer_size Buffer size in bytes

15:0 16 offset Offset of the start of data in the buffer in 
bytes

3 31:28 16 packet_size Total packet size across buffers

15:12 4 free_list_id Free list ID for buffer 

11:8 4 rx_stat Receive Status Flag

7:0 8 header_type Type of header at offset bytes into the 
packet

4 31:16 16 input_port Input port on ingress processor

4 15:0 16 reserved Reserved

Table 2-7. Three-Word Entry in Scratch Ring (IPv4 Forwarder + PPP Decap) 

LW Bits Size Field Description

0 31:0 32 SOP Buffer Handle Buffer Handle for the SOP Descriptor

1 31:0 32 EOP Buffer Handle Buffer Handle for EOP Descriptor (may 
be NULL)

2 31 1 Valid Bit Must be 1 

2 30:16 15 Reserved Reserved

2 0:15 16 Queue Number Queue Number 
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2.6.3 Cell Queue Manager and CSIX Scheduler 

Table 2-8 describes the CSIX scheduler issued dequeue requests to the Cell based Queue Manager 
via a scratch ring. 

Table 2-9 shows the Queue Transition Messages sent by the Queue Manager to the scheduler via a 
Next Neighbor Ring. 

2.6.4 Cell Queue Manager and CSIX TX 

The interface between the Cell based Queue Manager and the CSIX TX block is a scratch ring. 
Table 2-10 describes each entry in the scratch ring—which is two words. 

Table 2-8. Dequeue Requests via the Scratch Ring

LW Bits Size Field Description

0 31 1 Valid Bit Must be 1 

0 30:16 15 Reserved Reserved

0 0:15 16 Queue Number Queue Number 

Table 2-9. Queue Transition Messages Sent by the Queue Manager

LW Bits Size Field Description

0 31 1 Valid Bit Must be 1 

30 1 Enqueue Transition Notification that queue has gone from empty to 
non-empty

29:16 1 Reserved Reserved

28:18 11 Packet cell count Unused for CSIX 

17:16 2 Reserved Reserved

15:0 16 Queue Number Queue Number that was enqueued (Only 10 
bits are used for CSIX)

1 31 1 Valid Bit Must be 1 

30 1 Dequeue Transition Notification that queue has gone from non-
empty to empty

29 1 Invalid Dequeue If set, then dequeue request to an invalid queue 
was made

28:16 13 Packet size Unused for CSIX 

15:0 16 Queue Number Queue Number that was dequeued (Only 10 
bits are used for CSIX

Table 2-10. Two-Word Entry in Scratch Ring 

LW Bits Size Field Description

0 31 1 Valid Bit Must be 1 

0 30:16 15 Reserved Reserved

0 15:0 16 Queue Number Queue Number 

1 31:0 32 Buffer Handle Buffer Handle currently being 
transmitted for queue
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2.6.5 CSIX RX and PPP Encap

The interface between CSIX RX and PPP Encap is a scratch ring. Table 2-11 describes each entry 
in the scratch ring—which is two words. 

2.6.6 PPP Encap and Packet Queue Manager

Table 2-12 shows the scratch ring interface between the PPP Encap and Packet Queue Manager.

2.6.7 Packet Queue Manager and Scheduler 

The interface between the Packet based Queue Manager and the POS/Ethernet Scheduler is a Next 
Neighbor Ring.

The message format is identical to the interface between the Cell Queue Manager and the CSIX 
Scheduler except that an additional word containing the packet length is sent. The one difference is 
that while the Cell Queue Manager sends a message to the scheduler only on an enqueue/dequeue 
transition or in the case of an invalid dequeue, the Packet Queue Manager sends a dequeue 
response (combined with the transition messages) on every dequeue request. In the case where 
there is only an enqueue transition (no dequeue request was sent by the scheduler), the packet size 
is set to 0 by the queue manager. 

Table 2-11. Three-Word Entry in Scratch Ring (CSIX and PPP Encap)

LW Bits Size Field Description

0 31:0 32 SOP Buffer Handle Buffer Handle for the SOP Descriptor

1 31:0 32 EOP Buffer Handle Buffer Handle for EOP Descriptor 
(may be NULL)

2 31 1 Valid Bit Must be 1 

2 30:16 15 Reserved Reserved

2 0:15 16 Queue Number Queue Number 

Table 2-12. Scratch Ring Interface between PPP Encap and Packet Queue Manager

LW Bits Size Field Description

0 31:0 32 SOP Buffer Handle Buffer Handle for the SOP Descriptor

1 31:0 32 EOP Buffer Handle Buffer Handle for EOP Descriptor 
(may be NULL)

2 31 1 Valid Bit Must be 1 

2 30:16 15 Reserved Reserved

2 0:15 16 Queue Number Queue Number 

Table 2-13. Queue Transition Messages Sent by the Packet Queue Manager 

LW Bits Size Field Description

0 31 1 Valid Bit Must be 1 

30 1 Enqueue Transition Notification that queue has gone from empty to 
non-empty

29:16 1 Reserved Reserved
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2.6.8 Packet Queue Manager and Packet TX

The interface between the Egress Queue Manager and the Packet Transmit for the POS and 
Ethernet applications is a scratch ring. Table 2-11 describes each entry in the scratch ring—which 
is one word. 

2.7 Core Components

The following sections list the core components used by this application and describe how 
exception packets are handled.

2.7.1 Ingress Core Components

The core components that run on the Ingress side are POS Rx, IPv4 Forwarder, Stack Driver, 
Queue Manager, CSIX Tx, and Scheduler. In addition, there are several libraries that are required 
for the functioning of these core components: the Route Table Manager, Fragmentation, and 
Message Support libraries. There is another component called System Application that plays the 
role of a system designer. For details on these core components, refer to the Intel® Internet 
Exchange Architecture Software Building Blocks Developer’s Manual.

28:18 11 Packet cell count Unused for POS/Ethernet

17:16 2 Reserved Reserved

15:0 16 Queue Number Queue Number that was enqueued (Only 8 bits 
are used for POS/Ethernet)

1 31 1 Valid Bit Must be 1 

30 1 Dequeue Transition Notification that queue has gone from non-
empty to empty

29 1 Invalid Dequeue If set, then dequeue request to an invalid queue 
was made

28:16 13 Packet size Size of the packet in units of 128 bytes (Only 7 
bits are used)

15:0 16 Queue Number Queue Number that was dequeued (Only 8 bits 
are used for POS/Ethernet)

Table 2-13. Queue Transition Messages Sent by the Packet Queue Manager  (Continued)

LW Bits Size Field Description

Table 2-14. One-word Scratch Ring Entry

LW Bits Size Description

0 31:31 1 Valid bit

30:28 3 Reserved

27:24 4 Port number

23:0 24 Pointer to SOP buffer descriptor in SRAM in long 
words (Same as bits 0:23 of buffer handle)
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2.7.2 Egress Core Components

The core components that run on the Egress side are POS Tx, Scheduler, CSIX Rx, and Queue 
Manager. The library that is required on the Egress side is the Message Support library. There is 
another component called System Application that plays the role of a system designer. For details 
on these core components, refer to the Intel® Internet Exchange Architecture Software Building 
Blocks Developer’s Manual.

2.7.3 Exception Path Processing

Non-IP exception packets are delivered to the POS Receive core component. All such packets will 
be sent to a component output defined in the file bindings.h. By default, this output is bound to 
IX_DROP. Any other component or application that needs these packets can redefine 
communication ID for the output. Exception IP packets are delivered to IPv4 Forwarder core 
component. If the packet is for local delivery, it gets sent to the Stack Driver and then to the local or 
remote control plane.

The IPv4 Forwarder core component processes all other IPv4 packets and either forwards them to 
the Queue Manager core component, or discards them. In addition, the IPv4 Forwarder core 
component generates ICMP messages.

Outbound packets are delivered to the microblocks through the Queue Manager core component. 
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This section describes the design of an IPv4 Forwarding application using the Intel® IXP2400 
Network Processor. Two half-duplex IXP2400 processors are used to implement a 4GB Ethernet 
line card that interfaces to a CSIX switch fabric. This section provides a high-level design 
overview and lists the different software components used to build this application. It focuses only 
on the fast path or microengine components of the design. The Intel XScale® core components for 
this application are described in Intel® Internet Exchange Architecture Portability Framework 
Developer’s Manual.

The application described in this chapter is supported on the Intel® IXDP2400 Advanced 
Development Platform.

3.1 Hardware Overview

Figure 3-1 shows two IXP2400 processors in a typical CSIX full duplex configuration. In this 
configuration, the two processors are identified as the ingress processor (receives from the Media 
interface and transmits to the CSIX Fabric) and the egress processor (receives from the CSIX 
Fabric and transmits to the Media interface). The hardware is configured in SPHY 4x8 mode. Up to 
4 Gigabit Ethernet ports are supported—one port per 8-bit wide SPHY channel. 

Figure 3-1. Example Hardware Configuration for 4x1 Gigabit Ethernet with CSIX Fabric
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The Ingress IXP2400 receives Ethernet frames that carry IPv4 datagrams. The frames are 
assembled into IPv4 packets and the Layer-2 (Ethernet) headers are removed. Based on the IPv4 
header, a Longest Prefix Match (LPM) lookup is performed and the packets are segmented into 
CSIX C-Frames and transmitted to the CSIX fabric. The result of the LPM lookup determines 
which IXP2400 connected to the Fabric receives the packet, and which port on that IXP2400 the 
packet is transmitted on. 

The Egress IXP2400 receives CSIX C-Frames from the fabric and reassembles these into IPv4 
datagrams. The Layer-2 (Ethernet) headers are added and the packets are transmitted over the 
appropriate port.

3.2 Software Overview

Figure 3-2 shows the microblocks needed to implement an Ethernet IPv4 Forwarding application. 
The design for this application is based on the guidelines specified by the IXA Portability 
Framework—Intel® Internet Exchange Architecture Portability Framework Developer’s Manual. 
The driver microblocks (Receive, Transmit, Scheduler and QM) run on different microengines 
from the packet processing code. In this design, each driver block occupies an entire microengine. 
The packet processing blocks on the ingress IXP2400 include the IPv4 Forwarder and the Ethernet 
decapsulation/classify microblock. There are four microengines that run in parallel and execute the 
packet processing code. On the egress side, the only packet processing code is the Ethernet 
Encapsulation/ARP block which runs on a single microengine. 

Figure 3-2. Software Components for IPv4 Forwarding Application for Ethernet
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3.2.1 Data Flow for the Ingress IXP2400

This section describes the data flow on the Ingress IXP2400:

3.2.1.1 Packet RX 

This block is identical to the Section 2.2.1.1, “Packet RX” on page 25 except that it sets the header 
type field in the packet meta data to Ethernet.

3.2.1.2 Ethernet Decapsulation/Classify/Filter 

The Ethernet decapsulation/classify/filter microblock runs in a functional pipeline with the IPv4 
microblock on 4 microengines or 32 threads. 

This microblock removes the layer-2 Ethernet header from the packet by updating the offset and 
size fields in the packet meta data. It also implements MAC filtering based on the destination MAC 
address in the Ethernet header. Based on this filtering, the packet may be dropped.

This microblock also classifies the packet into IPv4, IPv6, MPLS, ARP etc. If the packet is an ARP 
packet, it is marked as an exception packet to be sent to the Intel XScale® core (IX_EXCEPTION). 
Otherwise the packet is sent down the microengine pipeline for further processing. In this 
application, the dispatch loop silently drops packets classified as IPv6 or MPLS.

3.2.1.3 IPv4 Forwarder

This block is identical to the block described in Section 2.2.1.3, “IPv4 Forwarder” on page 26.

3.2.1.4 Cell Based Queue Manager (Cell QM)

This block is identical to the block described in Section 2.2.1.4, “Cell Based Queue Manager (Cell 
QM)” on page 26.

3.2.1.5 CSIX Scheduler 

This block is identical to the block described in Section 2.2.1.5, “CSIX Scheduler” on page 27.

3.2.1.6 CSIX TX

This block is identical to the block described in Section 2.2.1.6, “CSIX TX” on page 27.

3.2.2 Data Flow for the Egress IXP2400

This section describes the data flow for the Egress IXP2400.

3.2.2.1 CSIX RX

This block is identical to the block described in Section 2.2.2.1, “CSIX RX” on page 28.
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3.2.2.2 Ethernet Encapsulation

This block adds the layer-2 Ethernet header to the packet and enqueues it to the next stage of the 
pipeline. It uses the next hop id as an index into a table with layer-2 header information. If the 
layer-2 header is not found, the packet is enqueued to be processed by the Intel XScale® core. ARP 
Processing is handled by the Intel XScale® core application code. If the next hop id is set to an 
invalid value (-1), the block assumes that the layer-2 header has already been added to the packet 
and sends it to the next stage of the pipeline.

3.2.2.3 Packet Based Queue Manager (Packet QM)

This block is identical to the block described in Section 2.2.2.3, “Packet Based Queue Manager” on 
page 28.

3.2.2.4 Egress Scheduler

This block is identical to the block described in Section 2.2.2.4, “Egress Packet WRR/DRR 
Scheduler” on page 28.

3.2.2.5 Packet TX

This block is identical to the block described in Section 2.2.2.5, “Packet TX” on page 29.

3.2.3 Dispatch Loops / Microblock Groups

There are two dispatch loops (microblock groups) on the ingress pipeline 

• Dispatch Loop for the Packet Frame Reassembly Stage (Figure 3-3)

• Dispatch Loop for the IPv4 Forwarder functional pipeline (Figure 3-4)

The QM, Scheduler and CSIX TX blocks don't use a dispatch loop (they still use the dispatch loop 
macros where required). 

Figure 3-3. Dispatch Loop for the Packet Frame Reassembly Stage
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Note that the system microblocks dl_source, dl_sink, dl_qm_sink etc are application specific. They 
may be changed for different packet processing pipelines.

There are two dispatch loops (microblock groups) on the egress pipeline 

• Dispatch Loop for the CSIX RX Reassembly stage (Figure 3-5)

• Dispatch Loop for the Ethernet encapsulation stage (Figure 3-6)

Figure 3-4. Dispatch Loop for the IPv4 Functional Pipeline
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Figure 3-5. Dispatch Loop for CSIX Reassembly Stage
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3.2.4 Performance Characterization 

The IXP2400 operates at 600 MHz. For a min Ethernet packet of 64B, the packet inter-arrival time 
at 4 Gbps line rate is 100 microengine cycles. In order to maintain line rate for min packets, each 
stage of the pipeline cannot exceed this budget. In other words, each stage of the pipeline needs to 
retire a packet every 100 cycles. Table 3-1 summarizes the performance analysis for the Ethernet 
pipeline. 

3.3 Ingress System Resource Allocation 

Table 3-2 shows the system resources mapped for the Ingress IXP2400. This mapping reflects the 
system defaults and may be changed to match the needs of a specific application. The allocation of 
microengines is done to optimize the performance of this specific application and may be changed 
for other applications. 

The physical assignment of function to ME is important since it not only affects when the next 
neighbor registers and signaling can be utilized, but it also affects the utilization of the internal 
Command bus and S-Push/Pull buses. Since ME0-ME3 belong to Microengine Cluster 0 and ME4-
ME7 belong to Microengine Cluster 1, this assignment attempts to balance the usage of the 
Command bus and S-Push/Pull buses across the two clusters.

Table 3-1. Performance Characterization for the Ethernet Pipeline

Line rate for 4 Gig ports 4 Gigabits/sec

Min Ethernet packet size 64 bytes (+ 20 byte inter packet gap)

Packet Throughput for min packets 5.95 million packets/sec = (4 / (84*8)) * (10**9)

IXP2400 clock frequency 600 MHZ

Inter-packet arrival time for min packets 600/5.95 = 100.84 cycles

Compute cycles per packet for a single microengine 100

Latency per packet for a context pipe single 
microengine 100 * 8

Compute cycles per packet for n microengines in 
parallel 100*n

Latency per packet for n microengines in parallel 100*8*n

Table 3-2. Ingress System Resources Mapped for the Ingress IXP2400

Microblock ME # Communication Mechanism with previous stage

Packet RX ME0 Auto-push status from MSF

IPv4 Forwarder + Ethernet 
decapsulation/Classify/Filter ME1, ME2, M5, M6 Scratch ring

Queue Manager ME3 Scratch ring

CSIX Scheduler ME4 Next neighbor + Scratch ring

CSIX TX ME7 Scratch ring
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IXP2400 supports two SRAM channels and one DRAM channel. Table 3-3 shows the SRAM, 
DRAM and scratch are utilized for this application. These values are defined in a system header 
file dl_system.h and may be changed as needed. 

Table 3-3. SRAM, DRAM, and Scratch Utilization for Ingress System Resource Allocation

Item Size per entry in 
bytes

Number of 
entries

Total 
SRAM 
used

Total 
DRAM 
used

Total 
Scratch 

used

Buffer Descriptors 32 

32k (In 
simulation, we 
use only 320 
buffers)

1 MB 

Buffers 2048 32k 64 MB

Queue Descriptors 16 1024 (1 per VOQ) 16K

CSIX TX contexts 32 1024 (1 per VOQ) 32k

Trie Table

64 (The root Trie table 
requires at least 257k 
to support hi64k and 
hi256 tables. In 
addition each node 
requires 64 bytes. 
These nodes are 
added as needed)

See note in 
previous column. 
Assuming 256k 
routes, 
approximately 
128k nodes are 
needed 

8MB

Hash table for MAC 
Filtering (Ethernet design 
only)

8 4k 32k

Route Table (Next Hop 
Information) 16 Assuming 4k next 

hops 64k

IPv4 statistics 4 16 64

Packet RX statistics 4 4*4 (4 per port) 64

IPv4 Directed Broadcast 
Table 32 256 8k

Ring from Packet RX to 
packet processing pipeline 
(IPv4+Layer2 Decap/
Classify) 

20 4k/20 4k

IPv4 to QM ring 12 2k/12 2k

Scheduler to QM 4 512 2k

QM to CSIX TX 8 256 2k

QM Q-Array entries N/A 16

Buffer Free list Q-Array 
entry N/A 4
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3.4 Egress System Resource Allocation 

Table 3-4 shows the system resources allocated for the Egress IXP2400. 

The mapping of networking functions onto the microengines shows that six microengines are used 
to perform the fast path processing for this application. Additional functionality required by 
customers can be mapped on to the remaining microengines.

Table 3-5 shows how the SRAM, DRAM and scratch are utilized for this application. These values 
are defined in a system header file dl_system.h and may be changed as needed. 

Table 3-4. System Resources Allocated for the Egress IXP2400

Microblock ME # Communication Mechanism with previous stage

CSIX RX ME0 Auto-push status from MSF

Packet TX ME4, ME-5 Scratch ring

Layer-2 Encapsulation ME3 Scratch ring

Egress QM ME1 Scratch Ring

Egress Scheduler ME2 Next neighbor + Scratch ring

Unused (available headroom) M6, ME7 N/A

Table 3-5. SRAM, DRAM, and Scratch Utilized for Egress System

Item
Size per 
entry in 
bytes

Number of entries
Total 

SRAM 
used

Total DRAM 
Used

Total Scratch 
used

Buffer Descriptors 32 32k (In simulation we 
use only 320 buffers) 1 MB

Queue Descriptors 16 64 (4 ports x 16 
classes per port) 1k

CSIX RX Reassembly 
contexts 32 1024 (1 per VOQ) 32k

Buffers 2048 32k 64 MB

Layer-2 table with mapping 
from next hop id to Ethernet 
header (Ethernet only)

32 Assuming 256 next 
hops per blade 8k

CSIX RX to Layer-2 Encap 
ring 12

512/3 (the size of the 
ring is 512 long 
words, but each entry 
enqueued uses 3 long 
words. Therefore the 
total number of 
entries is 512/3 = 
170)

2k

Layer-2 Encap to QM ring 12 512/3 2k

Scheduler to QM ring 4 512 2k

QM to POS TX 4 512512 2k2k

QM Q-Array entries N/A 15

Buffer Free list Q-Array 
entry N/A   4
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3.5 Interfaces Between the Various Microblocks

The interface between the various microblocks is virtually identical to the POS application as 
described in Section 2.6, “Interfaces Between the Various Microblocks” on page 34. One 
difference is the interface between the Queue Manager and the Packet Transmit microblocks on the 
egress IXP2400.

3.5.1 Packet Queue Manager and Packet TX

The interface between the Packet Queue Manager and the Packet Transmit microengines is four 
scratch rings—one per Gigabit Ethernet port. Table 3-6 describes each entry in the scratch ring—
which is one word. 

3.6 Core Components

The following sections list the core components used by this application. 

3.6.1 Ingress Core Components for VxWorks

The core components that run on the Ingress side are Ethernet Rx, IPv4 Forwarder, Stack Driver, 
Queue Manager, CSIX Tx, and Scheduler. In addition, there are several libraries that are required 
for the functioning of these core components. These are Route Table Manager, Fragmentation, and 
Message Support libraries. There is another component called System Application that plays the 
role of a system designer.

3.6.2 Ingress Core Components for Linux

The core components that run on the Ingress side are Ethernet Rx, IPv4 Forwarder, Queue 
Manager, CSIX Tx, and Scheduler. In addition, there are several libraries that are required for the 
functioning of these core components. They are Route Table Manager, Fragmentation, and 
Message Support libraries. There is another component called System Application that plays the 
role of a system designer. 

3.6.3 Egress Core Components for VxWorks and Linux

The core components that run on the Egress side are Ethernet Tx, Scheduler, CSIX Rx, Queue 
Manager, and Stack Driver. The libraries that are required on the Egress side are Message Support 
and L2 Table Manager libraries. There is another component called System Application that plays 
the role of a system designer.

Table 3-6. One-Word Scratch Ring (Packet Queue Manager and Packet TX)

LW Bits Size Description

0 31:31 1 Valid bit

30:24 7 Reserved

23:0 24 Pointer to SOP buffer descriptor in SRAM in long 
words (Same as bits 0:23 of buffer handle)
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This section describes the design of an IPv4 Forwarding application using the IXP2400. Two half-
duplex IXP2400's are used to implement an ATM line card at OC-48 data rates that interfaces to a 
CSIX switch fabric. This section provides a high-level design overview and lists the different 
software components used to build this application. It focuses only on the fast path or microengine 
components of the design. The XScale Core Components for this application are described in 
Intel® Internet Exchange Architecture Portability Framework Developer’s Manual.

4.1 Hardware Overview for ATM

Figure 4-1 shows two IXP2400's in a typical CSIX full duplex configuration. In this configuration, 
the two IXP2400's are identified as the ingress processor (receives from the Media interface and 
transmits to the CSIX Fabric) and the Egress Processor (receives from the CSIX Fabric and 
transmits to the Media interface). 

The Ingress IXP2400 receives ATM cells. These cells are reassembled into AAL5 frames carrying 
IP datagrams. The AAL5 header and trailer (along with any LLCSNAP encapsulation) are 
removed and a Longest Prefix Match (LPM) lookup is performed based on the IPv4 header. The IP 

Figure 4-1. Example Hardware Configuration for OC-48 ATM with CSIX Fabric
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datagrams are then segmented into CSIX C-Frames and transmitted to the CSIX fabric. The result 
of the LPM lookup determines which IXP2400 connected to the Fabric receives the packet, and 
which port on that IXP2400 the packet is transmitted on. 

The Egress IXP2400 receives CSIX C-Frames from the fabric and reassembles these into IPv4 
datagrams. The LLCSNAP headers along with the AAL5 header and trailer information are added 
to create an AAL5 frame. This AAL5 frame is segmented into ATM cells and transmitted over the 
appropriate ATM physical port.

4.2 Software Overview for ATM

Figure 4-2 shows the software components needed to implement an IPv4 forwarding application 
for OC-48 (or 4xOC-12) ATM. 

4.2.1 Data Flow for the Ingress IXP2400

This section describes the data flow on the Ingress IXP2400:

Figure 4-2. Software Components for IPv4 Forwarding Application for OC-48 ATM
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4.2.1.1 ATM AAL5 RX 

The AAL5 Receive microblock on the Ingress IXP2400 receives ATM cells in mpackets coming in 
on the media interface. It reassembles these cells into AAL5 PDU's, writes the data to a buffer in 
DRAM and queues the packet buffer handle on a ME-ME scratch ring for processing by the next 
stage of the pipeline. It also sets up per-packet meta information (offset, size etc) which are passed 
down the pipeline either in a descriptor in SRAM or in the ME-ME scratch ring itself.

The RX block uses 2 microengines (16 threads) running in parallel to support AAL5 Reassembly at 
OC-48 data rates. The block supports a compile time option that allows the code to be run such that 
4 threads of a microengine work on a single OC-12 port. Up to 64k Virtual Circuits (VCs) are 
supported and the re-assembly contexts for these are kept in local memory. To maintain packet 
sequencing and to compute CRC on the incoming cells of a frame, the threads execute in strict 
order. When the last cell of a frame is received, the block checks if the CRC for the frame is valid. 
If the CRC is invalid or the length of the packet in the trailer does not match the bytes received for 
this packet (or the length is 0), the packet is marked to be dropped. Otherwise the packet length in 
the metadata is adjusted (as per the length field in the AAL5 PDU trailer) to strip the padding and 
trailer. 

Since AAL5 frames may be up to 64k bytes, some large packets may be stored in multiple buffers 
chained together as a link-list. The buffer handles for the first and last packet in the chain are 
queued in the scratch ring. Before enqueing the packet buffer handle, the RX block sets up the 
header field in the packet meta data to be either LLCNSAP or any other protocol indicated by the 
VC Reassembly Context.

From the AAL5 RX block, the packet is passed on to an application specific system microblock 
(DL_Sink[]). This microblock checks if the packet has been marked to be dropped (IX_DROP) or 
sent to the XScale Core (IX_EXCEPTION). If not, it queues the packet buffer handle and 
associated meta data into the scratch ring for the next stage in the pipeline. OAM cells are queued 
to the core as exception packets. In addition, AAL5 frames received on any VC may be sent to the 
XScale Core, if the exception flag is set in the VC Reassembly Context.

4.2.1.2 LLCSNAP Decapsulation and Classify 

The LLCSNAP decapsulation/classify microblock runs with the IPv4 microblock on 3 
microengines or 24 threads. 

This microblock first checks if the header type in the metadata has been set to LLCSNAP. This 
indicates that the packet is using LLCSNAP encapsulation. If the header is indicated to be 
LLCSNAP, the microblock removes the header from the packet by updating the offset and size 
fields in the packet meta data. It also classifies the packet into IPv4, IPv6 etc. If the packet is not 
using the LLCSNAP encapsulation, the packet classification (dl_next_block) is done based on 
the value of the header type field in the packet metadata. The packet is then sent down the 
microengine pipeline for further processing. In this application, the dispatch loop silently drops 
packets classified as IPv6.

4.2.1.3 IPv4 Forwarder

This block is identical to the block described in Section 2.2.1.3, “IPv4 Forwarder” on page 18..
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4.2.1.4 Cell Based Queue Manager (Cell QM)

This block is identical to the block described in Section 2.2.1.4, “Cell Based Queue Manager (Cell 
QM)” on page 18.

4.2.1.5 CSIX Scheduler 

This block is identical to the block described in Section 2.2.1.5, “CSIX Scheduler” on page 19.

4.2.1.6 CSIX TX

This block is identical to the block described in Section 2.2.1.6, “CSIX TX” on page 19.

4.2.2 Data Flow for the Egress IXP2400

This section describes the data flow for the Egress IXP2400.

4.2.2.1 CSIX RX

This block is identical to the block described in Section 2.2.2.1, “CSIX RX” on page 20.

4.2.2.2 LLCSNAP Encapsulation

This block adds the LLCSNAP header to the packet and enqueues it to the next stage of the 
pipeline. It uses the next hop id as an index into a table with layer-2 header information. This table 
contains both the LLCSNAP header as well as the Virtual Circuit (VC) Queue information for the 
packet. If the next hop id is set to an invalid value (-1), the block assumes that the layer-2 header 
has already been added to the packet and sends it to the next stage of the pipeline.

Adding the LLCSNAP header implies that the cell count for the packet needs to be updated. The 
microblock computes the cell count for the packet 

4.2.2.3 Cell Based Queue Manager (Cell QM)

This block is identical to the block described in Section 2.2.1.4, “Cell Based Queue Manager (Cell 
QM)” on page 18..

4.2.2.4 Round Robin Scheduler

The AAL5 design does not support TM 4.1 Traffic Management. Instead a round robin scheduler is 
used. For an application that uses ATM TM4.1 refer to the ATM diffserv application.

The round robin scheduler handles two types of queues.

High bit rate queues that transmit traffic up to OC48 rates.

Low bit rate queues that transmit traffic up to OC48/128 rates.

Note that queue 0 is an invalid VCQ.

In OC-48 mode, queue allocation is as shown.
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Queues 1-127 are high bit rate (HBR) queues.

Queues 128-65534 are low bit rate (LBR) queues.

In quad OC-12 mode, queue allocation is as shown.

• Queues 1-127 are high bit rate (HBR) queues.

• Queues 128-65534 are low bit rate (LBR) queues.

Port 0: 
Queues 1-31 are high bit rate (HBR) queues.
Queues 128, 132, 136 etc are low bit rate (LBR queues).

Port 1: 
Queues 32-63 are high bit rate (HBR) queues.
Queue  129, 133, 137 etc are low bit rate (LBR queues).

Port 2: 
Queues 64-95 are high bit rate (HBR) queues.
Queue  130, 134, 138 etc are low bit rate (LBR queues).

Port 3: 
Queues 96-127 are high bit rate (HBR) queues.
Queue  131, 135, 139 etc are low bit rate (LBR queues).

The algorithm is summarized below
1. Read incoming request from NN ring

2. If (enqueue queue number = low bit rate queue)

If (enqueue transition)

Schedule a dequeue request for this queue on outgoing scratch ring

else // (enqueue queue number = high bit rate queue)

Add cell count to total queue cell count

Set queue to non-empty

3. If (dequeue queue number = low bit rate queue)

If (no dequeue transition)

Schedule a dequeue request for this queue on outgoing scratch ring

else // (dequeue queue number = high bit rate queue)

If (dequeue transition)

Set queue to empty

4. Schedule a dequeue request on a high bit rate queue
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a. Using round robin select the eligible queue from the set of non-empty 
queues

b. Schedule a dequeue request for this queue on outgoing scratch ring 

c. Decrement queue cell count for this queue 

d. If queue cell count reaches 0, set the queue to empty

5. Wait for all scratch ring signals and next thread signals

6. Goto step 1

4.2.2.5 ATM AAL5 TX

The AAL-5 TX microblock transmits ATM cells over a UTOPIA interface at OC-48 data rates. It 
receives transmit messages from the queue manager. With each transmit request, the microblock 
moves an ATM cell into a TBUF, which is then transmitted into the media by the MSF Transmit 
State Machine. 

Every request has an associated AAL-5 frame, which is being segmented into ATM cells. The 
associated segmentation state for the packet and the packet metadata is maintained in a Transmit 
Context (TXC) in SRAM. Sixteen TXC's are cached in local memory and the TXC is looked up 
using the CAM. Like in previous stages, the threads use folding and execute in strict order. If an 
entire buffer for a packet has been transmitted, then the buffer is freed. 

The TX microblock computes the CRC for the AAL-5 frame. For every ATM cell in the frame, the 
CRC residue (maintained in the TXC) is updated. When the end of the packet is reached, the packet 
length and CRC are used to prepare an 8-byte AAL-5 trailer, which is also sent out with the 
remaining payload. 

For each request from the QM, the ATM TX microblock processes 48 bytes of the CPCS-SDU. 
Along with the 48-byte data, it copies a four-byte header with each cell into a TBUF element. 
When the last cell for a frame is reached, the block processes between 0-48 bytes.

4.2.3 Dispatch Loop

There are two dispatch loops (microblock groups) on the ingress pipeline 

• Dispatch Loop for the AAL5 Reassembly Stage (Figure 4-3)

• Dispatch Loop for the IPv4 Forwarder functional pipeline (Figure 4-4)

The QM, Scheduler and CSIX TX blocks don't use a dispatch loop (they still use the dispatch loop 
macros where required). 

Figure 4-3. Dispatch Loop for the AAL5 Reassembly Stage
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Note that the system microblocks dl_source, dl_sink, dl_qm_sink etc are application specific. They 
may be changed for different packet processing pipelines.

There are two dispatch loops (microblock groups) on the egress pipeline: 

• Dispatch Loop for the CSIX RX Reassembly stage (Figure 4-5)

• Dispatch Loop for the LLCSNAP encapsulation stage (Figure 4-6)

Figure 4-4. Dispatch Loop for the IPv4 Functional Pipeline
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Figure 4-5. Dispatch Loop for CSIX Reassembly Stage
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Figure 4-6. Dispatch Loop for LLCSNAP Encapsulation Stage
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4.2.4 Performance Characterization 

The IXP2400 operates at 600 MHz. For an ATM cell of 53B, the cell inter-arrival time at OC-48 
line rate is 105 microengine cycles. The RX/TX blocks need to able to sustain this cell rate. For this 
design, we assume that the packet has LLCSNAP encapsulation and carries a minimum IP packet 
in two ATM cells. Therefore the packet inter-arrival time is half of the cell inter-arrival time. This 
implies that the rest of the pipeline (other than the RX/TX blocks), which process packets and not 
cells have twice the number of compute cycles per pipe-stage.

Table 4-1 summarizes the performance analysis for the ATM pipeline. 

4.3 Ingress System Resource Allocation 

Table 4-2 shows the system resources mapped for the Ingress IXP2400. This mapping reflects the 
system defaults and may be changed to match the needs of a specific application. The allocation of 
microengines is done to optimize the performance of this specific application and may be changed 
for other applications. 

Table 4-1. Performance Characterization for the ATM Pipeline

OC-48 line rate assuming 3% SONET overhead 2.408 Gigabits/sec

ATM cell size 53

Cell Throughput per second 5.67 million cells/sec = (2.408/(53*8)) * (10**9)

Packet Throughput for min packets assuming LLCSNAP 
encapsulation—2 cells per packet 2.85 million packets/sec = 5.67/2 

IXP2400 clock frequency 600 MHZ

Inter-cell arrival time 600/5.67 = 105 cycles

Compute cycles per cell for RX/TX blocks 105 cycles

Latency per cell for RX/TX blocks per microengine 105*8

Inter-packet arrival time for min packets 600/2.85 = 210 cycles

Compute cycles per packet for a context pipe stage 210 cycles

Latency per packet for a context pipe stage 210 * 8

Compute cycles per packet for a functional pipeline of n 
microengines 210*n

Latency per packet for a functional pipeline of n 
microengines 210*8*n

Table 4-2. System Resources Mapped for the Ingress IXP2400

Microblock ME # Communication Mechanism with 
previous stage

AAL-5 RX ME0, ME1 Auto-push status from MSF

IPv4 Forwarder + LLCSNAP 
Decapsulation/Classify ME2, M5, M6 Scratch ring

Queue Manager ME3 Scratch ring

CSIX Scheduler ME4 Next neighbor + Scratch ring

CSIX TX ME7 Scratch ring
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Table 4-3 shows the SRAM and DRAM utilized for this application. These values are defined in a 
system header file dl_system.h and may be changed as needed. 

Table 4-3. SRAM and DRAM Utilization for Ingress System Resource Allocation

Item Size per entry in bytes Number of entries
Total 

SRAM 
used

Total 
DRAM 
used

Total 
Scratch 

used 

Buffer Descriptors 32 32k (In simulation, we use 
only 320 buffers) 1 MB 

Buffers 2048 32k 64 MB

Queue Descriptors 16 1024 (1 per VOQ) 16k

VC Info (RXC context + statistics) 64 64k (1 per VC) 4 MB

Hash table to find RX context 
from VPI/VCI/port # 1632 64k 1k 1 MB32 

K

Trie Table

64 (The root Trie table 
requires at least 257k to 
support hi64k and hi256 
tables. In addition each 
node requires 64 bytes. 
These nodes are added as 
needed)

See note in previous 
column. Assuming 256k 
routes, approximately 
128k nodes are needed 

8MB

Route Table (Next Hop 
Information) 16 Assuming 4k next hops 64k

IPv4 statistics 4 16 64

IPv4 Directed Broadcast Table 32 256 8k

Ring from RX to packet 
processing (IPv4+Layer2 Decap/
Classify) 

16 256 4k

IPv4 to QM ring 12

512/3 (the size of the ring 
is 512 long words, but 
each entry enqueued uses 
3 long words. Therefore 
the total number of entries 
is 512/3 = 170)

2k

Scheduler to QM 4 128 512

QM to CSIX TX 8 256 512

QM Q-Array entries N/A 16

Buffer Free list Q-Array entries N/A 4
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4.4 Egress System Resource Allocation 

Table 4-4 shows the system resources allocated for the Egress IXP2400. 

Table 4-5 shows the SRAM and DRAM utilized for this application. These values are defined in a 
system header file dl_system.h and may be changed as needed. 

Table 4-4. System Resources Allocated for the Egress IXP2400

Microblock ME # Communication Mechanism with 
previous stage

CSIX RX ME0 Auto-push status from MSF

ATM TX1* ME5, ME6, ME7 Scratch ring

Layer-2 Encapsulation ME1 Scratch ring

Cell QM ME2 Scratch Ring

Round robin scheduler ME3 Next Neighbor 

1.  OC-48 configuration uses 3 ME's. For quad OC-12, only 2 ME's (ME5, ME6) are used. 

Table 4-5. SRAM and DRAM Utilization for Egress System Resource Allocation

Item
Size per 
entry in 
bytes

Number of entries Total SRAM 
used 

Total DRAM 
used

Total 
Scratch 

used

Buffer Descriptors 32 
32k (In simulation 
we use only 320 
buffers)

1 MB

Queue Descriptors 16 64k (1 per VC) 1 MB

CSIX RX contexts 64 1024 64K

Buffers 2048 32k 64 MB

Layer-2 table with 
mapping from next hop id 
to VPI/VCI and VCQ

16 4k (1 per next hop) 64k 

CSIX RX to Layer-2 
Encap ring 12

512/3 (the size of 
the ring is 512 long 
words, but each 
entry enqueued 
uses 3 long words. 
Therefore the total 
number of entries is 
512/3 = 170)

2k 

Layer-2 Encap to QM ring 12 512/3 2k

Scheduler to QM ring 4 512 2k

QM to ATM TX 8 256 256

QM Q-Array entries N/A 15 15 15

Buffer Free list Q-Array 
entries N/A   4 4 4
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4.5 Interfaces Between the Various Microblocks

This section describes the interfaces between the different microblocks on the ingress and egress 
processors for this application.

In most of the messages, there is a valid bit is used to prevent a value of zero from being enqueued 
on the scratch ring. Zero is used to detect a case where the scratch ring is empty. So the valid bit 
helps distinguish between a zero value that was actually enqueued versus a case where the ring is 
empty. 

4.5.1 AAL5 RX and Packet Processing Microengines 

The interface between the AAL5 RX Microblock and the Packet Processing Microengines 
(IPv4+L2 decap) running the layer-2 decapsulation/classify and IPv4 forwarding code is a scratch 
ring. Table 4-6 describes each entry in the scratch ring—which is six words. 

4.5.2 Packet Processing Microengines and Cell Queue Manager

This interface is identical to the POS application described in Section 2.6.2, “Packet Processing 
Microengines and Cell Queue Manager” on page 27.

4.5.3 Cell Queue Manager and CSIX Scheduler 

This interface is identical to the POS application described in Section 2.6.3, “Cell Queue Manager 
and CSIX Scheduler” on page 28.

4.5.4 Cell Queue Manager and CSIX TX

This interface is identical to the POS application described in Section 2.6.4, “Cell Queue Manager 
and CSIX TX” on page 28.

Table 4-6. Six-Word Scratch Ring Entry (IPv4+L2 Decap)

LW Bits Size Field Description

0 31:0 32 dl_buffer_handle Buffer Handle for the SOP Descriptor

1 32:0 32 dl_eop_buffer_handle Buffer Handle for the EOP Descriptor

2 31:16 16 buffer_size Buffer size in bytes

15:0 16 offset Offset of the start of data in the buffer in bytes

3 31:28 16 packet_size Total packet size across buffers

15:12 4 free_list_id Free list ID for buffer 

11:8 4 rx_stat Receive Status Flag

7:0 8 header_type Type of header at offset bytes into the packet

4 31:16 16 input_port Input port on ingress processor

4 15:0 16 reserved Reserved

5 32:0 32 flow_id VC key (8-bit VPI, 16-bit VCI and 4-bit input 
port)
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4.5.5 CSIX RX and LLCSNAP Encapsulation

The CSIX RX and LLCSNAP Encapsulation interface is a scratch ring. Table 4-7 describes each 
entry in the scratch ring—which is three words. 

4.5.6 LLCSNAP Encap and Cell Queue Manager

The interface between the LLCSNAP Encap microblock and the Cell Queue Manager is a scratch 
ring. Table 4-8 describes each entry in the scratch ring—which is three long words. 

4.5.7 Cell Queue Manager and RR Scheduler for ATM

This is similar to the interface for POS and Ethernet except that the cell count for the packet is sent 
to the shaper block on each enqueue, while the packet length is not required for the dequeue. 
Therefore for each enqueue request to the Queue Manager, a message is sent to the scheduler 
block. For dequeue requests, only transitions are sent to the scheduler. In any iteration, if there is no 
enqueue request and a dequeue transition occurs, the valid bit is set to zero in the first word of the 
message.Table 4-9 shows the Cell Queue Manager and scheduler for ATM.

Table 4-7. Three-Word Scratch Ring (CSIX RX and LLCSNAP Encap)

LW Bits Size Field Description

0 31:0 32 SOP Buffer Handle Buffer Handle for the SOP Descriptor

1 31:0 32 EOP Buffer Handle Buffer Handle for EOP Descriptor (may be 
NULL)

2 31 1 Valid Bit Must be 1 

2 30:18 13 Reserved Reserved

2 17:16 2 Port number Port Number 

2 0:15 16 Queue Number Queue Number 

Table 4-8. Three-Word Scratch Ring (LLCSNAP Encap and Cell QM)

LW Bits Size Field Description

0 31:0 32 SOP Buffer Handle Buffer Handle for the SOP Descriptor

1 31:0 32 EOP Buffer Handle Buffer Handle for EOP Descriptor (may 
be NULL)

2 31 1 Valid Bit Must be 1 

2 30:29 2 Reserved Reserved

2 28:18 11 Packet cell count Number of 48-byte cells in the entire 
packet

2 17:16 2 Output port number Output port number

2 15:0 16 Queue Number Queue Number 
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.

4.5.8 RR Scheduler to Cell Queue Manager

The interface between the RR Scheduler and the Cell Queue Manager is a scratch ring. Table 4-10 
describes each entry in the scratch ring—which is one long word.:

4.5.9 Cell Queue Manager and AAL-5 TX

The interface between the Cell Queue Manager and AAL-5 TX microblock is a scratch ring. 
Table 4-11 describes each entry in the scratch ring—which is two long words.:

Table 4-9. Cell Queue Manager and RR Scheduler for ATM

LW Bits Size Field Description

0 31 1 Valid Bit The enqueue word is valid only if this bit 
is set

30 1 Enqueue Transition Notification that queue has gone from 
empty to non-empty

29:16 1 Reserved Reserved

28:18 11 Packet cell count Unused for POS/Ethernet

17:16 2 Output port number Output port number

15:0 16 Queue Number Queue Number that was enqueued 

1 31 1 Valid Bit Must be 1

30 1 Dequeue Transition Notification that queue has gone from 
non-empty to empty

29 1 Invalid Dequeue Unused for ATM

28:16 13 Packet size Unused for ATM

15:0 16 Queue Number Queue Number that was dequeued 

Table 4-10. One-Word Scratch Ring Entry (TM 4.1 Scheduler to Cell Queue Manager)

LW Bits Size Field Description

0 31 1 Valid Bit Must be 1 

0 30:18 13 Reserved Reserved

0 16:17 2 Output port number Output port number

0 0:15 16 Queue Number Queue Number 

Table 4-11. Two-Word Scratch Ring Entry (Cell Queue Manager and AAL-5 TX)

LW Bits Size Field Description

0 31 1 Valid Bit Must be 1 

0 30:30 1 Reserved Reserved

0 29:19 11 Output port number Output port number
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0 18:16 3 Reserved Reserved 

0 15:0 16 Queue Number Queue Number

1 31:0 32 Buffer Handle Buffer Handle currently being transmitted for 
queue

Table 4-11. Two-Word Scratch Ring Entry (Cell Queue Manager and AAL-5 TX)

LW Bits Size Field Description
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This section describes the design of an IPv4/IPv6 forwarding and tunneling application using the 
Intel® IXP2800 Network Processor. Two half-duplex IXP2800 processors are used to implement a 
POS line card at OC-192 data rates that interfaces to a CSIX switch fabric. This section provides a 
high-level design overview and lists the different software components used to build this 
application. It focuses only on the fast path or microengine components of the design. The Intel 
XScale® core components for this application are described in the Intel® Internet Exchange 
Architecture Portability Framework Developer’s Manual. 

The application described in this chapter is supported on the Intel® IXDP2800 Advanced 
Development Platform.

Note: This application has been ported from the OC-48 POS IPv4 Forwarding application for the Intel® 
IXP2400 Network Processor. This section describes in detail the differences between the IXP2400 
application and the IXP2800 application and the methodology used to port from one processor to 
the other. 

5.1 Hardware Overview 

Figure 5-1 illustrates an example hardware configuration for OC-192 POS line card with CSIX 
fabric. The figure shows two IXP2800 processors in a typical CSIX full duplex configuration. In 
this configuration, the two IXP2800 processors are identified as the ingress processor (receives 
from the Media interface and transmits to the CSIX Fabric) and the egress processor (receives from 
the CSIX Fabric and transmits to the Media interface). 

The Ingress IXP2800 receives POS frames that carry IPv4 datagrams. The frames are assembled 
into IPv4 or IPv6 packets and the Layer-2 (PPP) headers are removed. Based on the IPv4 or IPv6 
header, a Longest Prefix Match (LPM) lookup is performed and the packets are segmented into 
CSIX C-Frames and transmitted to the CSIX fabric. The result of the LPM lookup determines 
which IXP2800 connected to the Fabric receives the packet, and which port on that IXP2800 the 
packet is transmitted on. 

The Egress IXP2800 receives CSIX C-Frames from the fabric and reassembles these into IPv4 or 
IPv6 datagrams. The Layer-2 (PPP) headers are added and the packets are transmitted over the 
appropriate port.
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5.2 Software Overview 

Figure 5-2 illustrates the microblocks needed to implement an OC-192 POS IPv4/IPv6 forwarding 
and tunneling application. The design for this application is based on the guidelines specified by 
the IXA Portability Framework—Intel® Internet Exchange Architecture Portability Framework 
Developer’s Manual. The driver microblocks (Receive, Transmit, Scheduler and QM) run on 
different microengines from the packet processing code. 

Figure 5-1. Example Hardware Configuration for OC-192 POS Line Card with CSIX Fabric
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5.2.1 Data Flow for the Ingress IXP2800

The data flow is essentially the same as the OC-48 POS IPv4/v6/tunneling Forwarding application 
described in Chapter 2, “OC-48 POS IPv4 Forwarding Application”. This section highlights the 
differences between the two applications.

5.2.1.1 Packet RX 

The Packet RX microblock runs on two microengines in a context pipeline connected by a Next 
Neighbor ring. The Packet RX microblock for the IXP2400 (Section 2.2.1.1, “Packet RX” on 
page 25) has been extended such that as a compile time option it now runs on two microengines. 

This microblock performs frame-reassembly on the mpackets coming in on the POS media 
interface. It reassembles and writes the packet data to a buffer in DRAM and queues the packet 
buffer handle on a ME-ME scratch ring for processing by the packet processing microengines. It 
also sets up per- packet meta information (offset, size etc) which are passed on either in a 
descriptor in SRAM or in the ME-ME scratch ring itself. Up to 16 virtual ports are supported and 
the re-assembly context for all these ports is kept in local memory. To maintain packet sequencing, 
the threads execute in strict order. The microblock is written such that it supports up to 16 virtual 
ports, but one or more of these may be unused. This allows the same microblock to support 
different configurations such as Quad-OC48, 16 OC-12, or a single OC-192 port. 

Figure 5-2. Microblocks for an OC-192 POS IPv4/IPv6 Forwarding/Tunneling Application
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In this application, the packets reassembled are PPP frames containing IP datagrams. RFC 2615 
defines the Packet Over SONET specification and refers to RFC 1661 (PPP) and RFC 1662 (PPP 
in HDLC-like framing). PPP framing including header validation, FCS generation and 
computation and byte stuffing are handled by the POS framer (IXF 18101). 

Since POS packets may be up to 9k bytes, some large packets may be stored in multiple buffers 
chained together as a link-list. The buffer handles for the first and last packet in the chain are 
queued in the scratch ring. 

From the Packet RX block, the packet is passed on to an application specific system microblock 
(DL_Sink[]). This microblock checks if the packet has been marked to be dropped (IX_DROP) or 
sent to the XScale Core (IX_EXCEPTION). If not, it queues the packet buffer handle and associated 
packet meta data into the scratch ring for the next stage in the pipeline. 

5.2.1.2 Packet Processing Microengines (PPP Decap/Classify + IPv4/IPv6 
Forwarder/Tunneling)

The PPP decapsulation/classify microblock runs along with the IPv4/IPv6 forwarding/tunneling 
microblocks. These microblocks are identical to the ones used for the IXP2400 POS application 
described in Section 2.2.1.2, “PPP Decapsulation and Classify” on page 25, Section 2.2.1.3, “IPv4 
Forwarder” on page 26, and Section 7.2.6, “IPv6/IPv4 Tunneling Microblock” on page 97. 

An application specific system source microblock on each thread dequeues packet buffer handles 
from the scratch ring. This source block (DL_Source[]) is a system microblock implicit in the 
dispatch loop. It reads in the packet meta information—that is, the packet descriptor, and populates 
the dispatch loop state. It also reads in up to 40 bytes of the packet header from DRAM into a 
header cache maintained in transfer registers. Since it is important to maintain packet sequencing, 
the threads in the microblock execute in strict order to dequeue from the scratch ring. This implies 
that the first thread on microengine 1 dequeues the first packet, signals the next thread to perform 
the dequeue and so on. From this block, the packet goes to the PPP decapsulation/classify 
microblock.

The PPP decapsulation/classify microblock removes the layer-2 PPP header from the packet by 
updating the offset and size fields in the packet descriptor. Based on the PPP header, it also 
classifies the packet into IPv4, IPv6, PPP control packet (LCP, IPCP). If the packet is a PPP control 
packet, it is marked as an exception packet to be sent to the Intel XScale® core (IX_EXCEPTION). 
Otherwise the packet is sent down the microengine pipeline for further processing.

The IPv4 forwarder microblock validates the IP header per RFC 1812. If the validity checks fail, 
then the packet is set up to be dropped as specified in Intel® Internet Exchange Architecture 
Portability Framework Developer’s Manual. Otherwise a Longest Prefix Match (LPM) is 
performed on the IPv4 header. The result is an IPv4 Next Hop ID, a fabric blade id (identifying a 
unique IXP2800 on the fabric) and an output port identifying the output port on the egress 
IXP2800. The Next Hop ID is passed over the CSIX fabric to an Egress IXP2800 where it is used 
to look up information about the Layer-2 header to be prepended to the packet buffer. The output 
port is also passed over the CSIX fabric to the egress IXP2800 and is used to transmit over the 
appropriate port. All three fields are stored in the packet meta data—that is, the packet descriptor.

If the packet is an IPv6 packet encapsulated into an IPv4 packet, the IPv4 forwarder sends the 
packet to the tunneling decap microblock. After removing the IPv4 header, the tunneling decap 
microblock sends the packet to the IPv6 forwarder for IPv6 forwarding.

The IPv6 forwarder microblock processes an IPv6 packet in a manner similar to the IPv4 
forwarder. 
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If the packet needs to be encapsulated into an IPv4 packet, the IPv6 forwarder sends the packet to 
the tunneling encap microblock. After inserting an IPv4 header, the tunneling encap microblock 
sends the packet to the IPv4 forwarder for IPv4 forwarding.

If no match is found, then the packet is set up to be sent up to the Intel XScale® core for further 
processing as specified in the Intel® Internet Exchange Architecture Portability Framework 
Developer’s Manual. Packets are also sent to the core in a number of other cases, for example, 
when the packet is destined for a local interface or is to be fragmented. 

Finally, the packet is passed on to an application specific system microblock (DL_QM_Sink[]). 
This microblock checks if the packet is to be dropped or sent to the Intel XScale® core. If not, it 
sends an enqueue request to the Statistics microengine over a scratch ring. The DL_QM_Sink[] 
microblock also writes the cached packet header to DRAM and the packet meta information to 
SRAM.

5.2.1.3 Statistics Microblock

This microblock runs on a single microengine. It is currently a place holder for statistics handling. 
It is anticipated that when this application is extended for MPLS and DiffServ, this microblock is 
used to manage per-flow statistics. 

Note: The design for handling statistics will be described in future revisions of the document. 

The statistics microengine interfaces to the IXP2800 CSIX Fabric Scheduler microblock via a Next 
Neighbor ring passing it the packet enqueue requests received from the packet processing 
microengines. It also computes the total cell count of every packet enqueued and passes it to the 
scheduler. In addition, it also handles dropping of large packets that are stored in multiple buffers. 

5.2.1.4 CSIX Scheduler

The CSIX scheduler runs on a single microengine and schedules c-frames into the CSIX fabric. 
This microblock is significantly different from the one currently used on the IXP2400. It has been 
optimized to run in 57 cycles which is the min POS packet instruction budget. Also it is placed in 
the packet processing pipeline before the queue manager allowing it to keep track of enqueue and 
dequeue transitions correctly and without any latency. Unlike the IXP2400 version which handles 
1024 VOQs, the design used for the IXP2800 supports 256 VoQs. 

The scheduling algorithm implemented is Round Robin among the ports on the fabric and 
Weighted Round Robin among the queues on a port. Since this is not a QoS application and there is 
only one queue per port, the Weighted Round Robin scheduling degenerates to round robin 
scheduling. Other applications, e.g. IP DiffServ may use the WRR functionality. The scheduling 
and transmit is done a cframe at a time. 

The CSIX scheduler handles the following:

• Flow control messages from the fabric. These messages are sent by the fabric to the egress 
IXP2800, which sends them on the c-bus to the ingress IXP2800. If the fabric asserts Xoff on a 
particular VoQ (Virtual Output Queue), the scheduler stops scheduling for the queue. 

• Packet enqueue requests from the previous microengine. It uses this information to update a 
list of active queues (queues with data) and to track queue transitions (empty to non-empty and 
vice-versa). A queue is scheduled only if there is data in the queue. The enqueue requests are 
passed on via Next Neighbor ring to the Queue Manager. 
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• MSF Transmit State Machine. The scheduler monitors how many packet cframes are in the 
pipeline and if it exceeds a certain threshold, it stops scheduling.

During each loop, the scheduler also 

• Checks its list of active queues (queues with data). Picking up from where it left off in the last 
iteration it finds the next queue to schedule.

• It then sends a dequeue message to the Queue Manager to dequeue the head of that queue. The 
Queue Manager dequeues a cell (cframe) from the head of the queue and sends a transmit 
request to the CSIX TX microblock.

5.2.1.5 Cell Based Queue Manager (Cell QM)

The Queue Manager (QM) is a driver microblock that runs on a single microengine. This 
microblock is significantly different from the one currently used in the IXP2400 application. It has 
been optimized to run within 57 cycles which is the instruction budget for a min POS packet at OC-
192 data rates. The key difference is that in the IXP2800 design, the scheduler keeps track of the 
queue size and queue transitions. This considerably simplifies the Queue Manager which no longer 
has to support this functionality. 

The QM manages enqueue and dequeue operations on the transmit queues which are implemented 
using the hardware SRAM link lists. It accepts enqueue requests from the scheduler via a Next 
Neighbor ring. The enqueue requests are on a per-packet basis. The dequeue requests are on a per-
cell basis where a cell is a CSIX cframe.

The threads on the QM microengine execute in strict order using local inter-thread signaling. 
SRAM Queue Array entries are cached in the SRAM controller and the CAM is used for managing 
the tags for these. To maintain coherence among threads, folding is used. 

5.2.1.6 CSIX TX

The CSIX Transmit microblock runs on two microengines in a context pipeline connected by a 
Next Neighbor ring. The CSIX Transmit microblock for the IXP2400 (Section 2.2.1.6, “CSIX TX” 
on page 27) has been extended so that as a compile time option it now runs on two microengines. 

This microblock receives transmit messages from the queue manager via a Next Neighbor ring. 
With each transmit request, the microblock moves a cframe into a TBUF, which is then transmitted 
into the fabric by the MSF Transmit State Machine. 

Every request has an associated packet, which is being segmented into cframes. The associated 
segmentation state for the packet and the packet metadata is cached in local memory and is looked 
up using the CAM. The TX microblock adds the CSIX header onto the cframe along with the 
packet data. Along with the CSIX header, a Traffic Manager (TM) header is also added per cframe 
carrying extra information (destination Layer-2 port id, input blade id, sequence number, next-hop 
id etc.) about the packet to be passed to the Egress IXP2800. In addition, the flow id, class id, input 
port and some other fields from the metadata are passed along to the Egress IXP2800 using a per-
packet header pre-pended to the start of the first c-frame of each packet. 

5.2.1.7 Freelist Manager

This microblock maintains the packet buffer freelist. It replaces the linked list scheme that uses 
SRAM and the Q-array hardware for maintaining a packet buffer freelist.
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Full details of the Freelist Manager microblock are contained in the Intel® Internet Exchange 
Architecture Software Building Blocks Developer’s Manual, Chapter 38, “Freelist Manager”.

5.2.2 Data Flow for the Egress IXP2800

This section describes the data flow for the Egress Intel® IXP2800 Network Processor.

5.2.2.1 CSIX RX

The CSIX Receive microblock executes on two microengines or 16 threads. The CSIX Receive 
microblock for the IXP2400 (Section 2.2.2.1, “CSIX RX” on page 28) has been extended such that 
as a compile time option it now runs on two microengines. 

This microblock receives c-frames from a CSIX fabric and reassembles them into IP packets. Since 
the packets being reassembled may be up to 9k bytes, some large packets may be stored in multiple 
buffers chained together as a link-list. The buffer handles for the first and last packet in the chain 
are queued in the scratch ring. The CSIX RX microblock also sets up packet meta information 
(offset, size, and so on) which are passed on to the next microengine either by writing to the SRAM 
packet descriptor or via the Next Neighbor ring.

5.2.2.2 Egress Packet Scheduler

The Egress scheduler schedules POS packets to be transmitted over the POS interface. This is a 
packet-based scheduler as opposed to the cell—that is, c-frame based scheduler on the Ingress side. 

The scheduler is a Deficit Round Robin scheduler, as described in the Intel® IXA Building Blocks: 
Developer’s Manual, Chapter 20, “OC-192 DRR Egress Scheduler”. The packet scheduler is a 
context pipe-stage that is implemented as a microblock that runs on 3 microengines. This 
microblock includes the Class Schedule  block, the Count block, and the Port Schedule block. Each 
block runs on one microengine.

The packet scheduler supports up to 16 virtual ports. Since these ports may have differing 
bandwidth requirements, the scheduler implements Weighted Round Robin (WRR) scheduling on 
the ports. This allows us to support different configurations (16 OC-3, 4 OC-12, 1 OC-48 etc) 
simply by adjusting the weights for the ports in the scheduler.

For each port, the scheduler supports up to256 queues per port. The Scheduler implements a 
modified version of Deficit Round Robin (DRR) scheduling on the queues within a port. 

Since there is no QoS requirement in the application, we will only use one of the classes per port. 
This means there is only one queue per port and the DRR scheduling is unused in application. 
However the same code can be reused in a QoS Diffserv application in which case the DRR 
scheduling is applicable.

The scheduler also keeps track of the number of packets in flight (scheduled, but not transmitted) 
for each port. If this number exceeds a specified limit, then it stops scheduling on that port.

Note: This scheduler is currently fully tested only in simulation mode. In a future release it will be tested 
on hardware. Currently we use a simple round robin scheduler when running this application on 
hardware.
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5.2.2.3 Packet Based Queue Manager (Packet QM)

This block is almost identical to the Ingress Queue Manager except that it dequeues packets. The 
SRAM Q-Array hardware is programmed in packet mode and ignores the cell count field in the 
buffer handle. 

5.2.2.4 TX Helper

This block acts a helper to the Packet Tx and the Packet Scheduler microblock

It gets TX requests from the Packet QM block via the Next Neighbor ring. For multi-port 
applications, it sends the request to the appropriate scratch ring that is read by Packet Tx. For single 
port applications such as this one, this is not required.

It updates the per-class counters in SRAM. These counters keep tracks of the number of packets 
transmitted per class for the DRR Packet Scheduler. To do this, the Tx Helper block reads packet 
meta data to find the class ID for each packet. Then it calculates the SRAM address of the counter, 
reads the counter, increments the content, and writes back the new value.

5.2.2.5 Packet TX

The Packet Transmit microblock transmits packets over the POS media interface. It runs on two 
microengines in a context pipeline connected by a Next Neighbor ring. It segments a packet into 
mpackets, and moves them into TBUFS for the MSF state machine to transmit. The Packet TX 
microblock supports a single OC-192 POS port. 

The Packet TX microblock monitors the MSF to see if the TBUF threshold for a specific port has 
been exceeded. If so it stops transmitting on that port and any requests to transmit packets on that 
port are queued up in local memory. This microblock also periodically updates the scheduler with 
information about how many packets have been transmitted. If the packets in flight for a particular 
port (packets scheduled but not transmitted) exceed a certain limit (which depends on the 
bandwidth supported by that port), then the scheduler stops scheduling any more packets for the 
port. 

5.3 Performance Characterization

The Intel® IXP2800 Network Processor operates at 1400 MHz. For a min POS packet of 49B, the 
packet inter-arrival time at OC-192 line rate is 57 microengine cycles. In order to maintain line rate 
for min packets, each stage of the pipeline cannot exceed this budget. In other words, each stage of 
the pipeline needs to retire a packet every 57 cycles. 

Table 5-1 summarizes the performance analysis for the POS pipeline. 

Table 5-1. Performance Analysis for the POS Pipeline

OC-192c line rate assuming 3% SONET 
overhead 9.62 Gigabits/sec

Min POS packet size 49 bytes (40 byte TCP/IP, 2 bytes Address and Control, 
2 byte PPP header, 4 byte FCS and 1 byte flag)

Packet Throughput for min packets 24.56 million packets/sec = (9.62 / (49*8)) * (10**9)

IXP2400 clock frequency 1400 MHz
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5.4 Ingress System Resource Allocation 

Table 5-2 shows the system resources mapped for the Ingress IXP2800. This mapping reflects the 
system defaults and may be changed. The allocation of microengines is done such that it optimizes 
the performance of this specific application and may be changed for other applications. 

The physical assignment of function to microengine is important since it not only affects when the 
next neighbor registers and signaling can be utilized, but it also affects the utilization of the internal 
Command bus and S-Push/Pull buses. This assignment attempts to balance the usage of the 
Command bus and S-Push/Pull buses across the two clusters.

The IXP2800 supports four SRAM channels and three DRAM channel. Table 5-3 shows the 
SRAM, DRAM and scratch utilized for this application. These values are defined in a system 
header file dl_system.h and may be changed as needed. 

Inter-packet arrival time for min packets 1400/6.14 = 57 cycles

Compute cycles per packet for a single microengine 57

Latency per packet for a single microengine 57 * 8

Compute cycles per packet for n microengines 
running in parallel 57*n

Latency per packet for n microengines running in 
parallel 57*8*n

Table 5-1. Performance Analysis for the POS Pipeline

OC-192c line rate assuming 3% SONET 
overhead 9.62 Gigabits/sec

Table 5-2. System Resources Mapped for the Ingress IXP2800

Microblock ME # Communication Mechanism with 
previous stage

Packet RX ME 1:3, 1:4 Auto-push status from MSF

IPv4 Forwarder + Layer2 
decapsulation/Classify

ME 0:0, 0:1, 0:2, 0:3, 0:4, 1:5, 
1:6, 1:7 Scratch ring

Statistics ME 0:5 Scratch ring 

CSIX Scheduler ME 0:6 NN ring

Queue Manager ME 0:7 NN ring

CSIX TX ME 1:0, 1:1 NN ring 

Freelist Manager ME 1:2 NN ring

Table 5-3. SRAM, DRAM, and Scratch Utilization for Ingress IXP2800

Item Size per entry in 
bytes Number of entries

Total 
SRAM 
used

Total 
DRAM 
used

Total 
Scratch 

used

Buffer Descriptors 32 32k (In simulation, we 
use only 320 buffers) 1 MB 

Buffers 2048 32k 64 MB

Queue Descriptors 16 256 (1 per VOQ) 4K
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5.5 Egress System Resource Allocation 

Table 5-4 shows the system resources allocated for the Egress IXP2800. 

CSIX TX contexts 32 256 (1 per VOQ) 8k

Trie Table

64 (The root Trie table 
requires at least 257k 
to support hi64k and 
hi256 tables. In 
addition each node 
requires 64 bytes. 
These nodes are 
added as needed)

See note in previous 
column. Assuming 
256k routes, 
approximately 128k 
nodes are needed 

8MB

Route Table (Next Hop 
Information) 16 Assuming 4k next 

hops 64k

Tunnel Encap (Next 
Hop Information) 32 256 8KB

Tunnel Decap(Next 
Hop Information) 4 128 512B

V6V4 Ingress Source 
List 64 256 16KB

IPv4 statistics 4 16 64

Packet RX statistics 4 16*16 1024

IPv4 Directed 
Broadcast Table 32 (local memory) 64

Ring from Packet RX 
to packet processing 
pipeline (IPv4+Layer2 
Decap/Classify) 

12 4k/3 4k

IPv4 to Statistics ring 12 2k/12 2k

QM Q-Array entries N/A 16

Buffer Free list Q-
Array entry N/A 4

Table 5-3. SRAM, DRAM, and Scratch Utilization for Ingress IXP2800 (Continued)

Item Size per entry in 
bytes Number of entries

Total 
SRAM 
used

Total 
DRAM 
used

Total 
Scratch 

used

Table 5-4. System Resources Allocated for Egress IXP2800

Microblock ME # Communication Mechanism with 
previous stage

CSIX RX ME 1:1, 1:2 Auto-push status from MSF

Statistics ME 0:0 Scratch ring 

DRR Scheduler ME 0:1, 0:2, 0:3 NN ring

Queue Manager ME 0:4 NN ring

TX Helper ME 0:5 NN ring

Packet TX ME 0:6, 0:7, 1:0 NN ring
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The mapping of networking functions on to the microengines shows that 9 microengines are used 
to perform the fast path processing for this application. Additional functionality required by 
customers can be mapped on to the remaining microengines.

Table 5-5 shows the SRAM, DRAM and scratch utilized for this application. These values are 
defined in a system header file dl_system.h and may be changed as needed. 

5.6 Interfaces Between the Various Microblocks

This section describes the interfaces between the different microblocks in the ingress and egress 
processors for this application.

Table 5-5. SRAM, DRAM, and Scratch Utilization for Egress IXP2800

Item
Size per 
entry in 
bytes

Number of entries
Total 

SRAM 
used

Total 
DRAM 
Used

Total Scratch 
used

Buffer Descriptors 32 32k (In simulation we use 
only 320 buffers) 1 MB

Queue Descriptors 16 256 (16 ports x 16 classes 
per port) 4k 

CSIX RX 
Reassembly contexts 32 1024 32k

Buffers 2048 32k 64 MB

CSIX RX to Statistics 
ring 12

512/3 (the size of the ring is 
512 long words, but each 
entry enqueued uses 3 long 
words. Therefore the total 
number of entries is 512/3 = 
170)

2k

QM Q-Array entries N/A 16

DRR Scheduler 
Queue Structures 32 16 ports * 256 queues 131 KB

DRR Scheduler 
Round Counters 4 16 ports * 4K rounds 262 KB

Buffer Free list Q-
Array entry N/A 4
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5.6.1 Packet RX—First ME to Second ME

The interface between the first Packet RX microengine and second Packet RX microengine is a 
next neighbor (NN) ring. Table 5-6 describes each entry in the NN ring—which is five long words.

5.6.2 Packet RX and Packet Processing Microengines 

The interface between the Packet RX microblock and the packet processing microengines is a 
scratch ring. Table 5-7 describes each entry in the scratch ring—which is three long words.

The format depends on whether the packet fits in one buffer or not. In the case of packets that span 
across multiple buffers, some of the packet descriptor information is written to SRAM and the rest 
to the scratch ring. In the case of packets that fit into a single buffer, all the information is packed 
into the scratch ring eliminating one read/write to SRAM in the critical path. Bit 31 of LW0 (EOP 
bit of the handle) is used to detect if a packet spans across multiple buffers. If this bit is set 
(implying that the buffer is a SOP/EOP buffer), then the packet is contained in a single buffer. 

This interface is used for packets that fit entirely in one buffer.

Table 5-6. Five-Word NN Ring Entry (Packet RX—First ME to Second ME)

LW Bits Size Field Description

0 31:0 32 dram_handle DRAM address where the m-packet should be stored

1 31:0 32 curr_buf_handle Buffer handle of the current buffer of the packet (only 
valid if eop_flag is 1)

2 31:0 32 sop_buf_handle Buffer handle of the SOP buffer of the packet (only 
valid if eop_flag is 1)

3 31:16 16 sop_buf_size SOP buffer size in bytes (only valid if eop_flag is 1)

15:15 1 eop_flag Bit indicating if this is the last m-packet of the packet

14:8 7 rbuf_elem RBUF element number containing the m-packet

7:0 8 byte_count Number of bytes to copy from RBUF to DRAM

4 31:16 16 input_port Input port on ingress processor (only valid if eop_flag is 
1)

15:0 16 packet_size Total packet size across buffers in bytes (only valid if 
eop_flag is 1)

Table 5-7. Three-Word Scratch Ring Entry —Packets fit on one Buffer

LW Bits Size Field Description

0 31:0 32 dl_buffer_handle Buffer Handle for the SOP Descriptor

1 31:16 16 input_port Input port on ingress processor

15:12 4 free_list_id Free list ID for buffer 

11:8 4 rx_stat Receive Status Flag

7:0 8 header_type Type of header at offset bytes into the packet

2 31:16 16 buffer_size Buffer size in bytes

15:0 16 offset Offset of the start of data in the SOP buffer in bytes
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This interface is used for packets that require more than one buffer. 

5.6.3 Packet Processing Microengines and Statistics

Packet Processing Microengines and Statistics interface is a scratch ring. Table 5-9 describes each 
entry in the scratch ring—which is three long words. 

5.6.4 Statistics and CSIX Scheduler

The Statistics and CSIX Scheduler interface is a next neighbor (NN) ring. Table 5-10 describes 
each entry in the NN ring—which is three long words. 

Table 5-8. Three-Word Scratch Ring Entry —Packets Require more than one Buffer

LW Bits Size Field Description

0 31:0 32 dl_buffer_handle Buffer Handle for the SOP Descriptor

1 32:0 32 dl_eop_buffer_handle Buffer Handle for the EOP Descriptor

2 31:16 16 packet_size Total packet size across buffers in bytes

15:0 16 offset Offset of the start of data in the SOP buffer in bytes

Table 5-9. Three-Word Scratch Ring Entry—Packet Processing Microengines and Statistics

LW Bits Size Field Description

0 30:16 16 MOP_EOP_buf_size Size in bytes of all MOP buffers and the EOP buffer of 
the packet

0 0:15 16 Queue Number Queue Number 

1 31:0 32 SOP Buffer Handle Buffer Handle for the SOP Descriptor

2 31:0 32 EOP Buffer Handle Buffer Handle for EOP Descriptor (may be NULL)

Table 5-10. Three-Word NN Ring Entry (Statistics and CSIX Scheduler)

LW Bits Size Field Description

0 30:16 16 Packet cell count Sum of all buffer cell counts belonging to the packet

0 0:15 16 Queue Number Queue Number 

1 31:0 32 SOP Buffer Handle Buffer Handle for the SOP Descriptor

2 31:0 32 EOP Buffer Handle Buffer Handle for EOP Descriptor (may be NULL)
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5.6.5 CSIX Scheduler and Cell Queue Manager

The CSIX Scheduler and Cell Queue Manager interface is a next neighbor ring. Table 5-11 
describes each entry in the NN ring—which is three long words. 

5.6.6 Cell Queue Manager and CSIX TX

The Cell Queue Manager and CSIX TX interface is a next neighbor ring. CSIX Transmit is a two-
microengine context pipe-stage. The cell queue manager writes to the NN ring of the first CSIX TX 
microengine. Table 5-12 describes each entry in the NN ring—which is two words. 

5.6.7 CSIX TX—First ME to Second ME

The interface between the first CSIX TX microengine and second CSIX TX microengine is a next 
neighbor ring. Table 5-13 describes each entry in the NN ring—which is eight long words.

Table 5-11. Three-Word NN Ring Entry (CSIX Scheduler and Cell Queue Manager)

LW Bits Size Field Description

0 30:16 16 Dequeue Queue # Queue number from which to dequeue. Zero implies no 
dequeue

0 0:15 16 Enqueue Queue # Queue number on which to enqueue. Zero implies no 
enqueue

1 31:0 32 SOP Buffer Handle Buffer Handle for the SOP Descriptor

2 31:0 32 EOP Buffer Handle Buffer Handle for EOP Descriptor (may be NULL)

Table 5-12. Two-Word NN Ring Entry (Cell Queue Manager and CSIX TX)

LW Bits Size Field Description

0 31:16 16 Reserved Reserved

0 15:0 16 Queue Number Queue Number 

1 31:0 32 Buffer Handle Buffer Handle currently being transmitted for 
queue

Table 5-13. Eight-Word NN Ring Entry (CSIX TX—First ME to Second ME)

LW Bits Size Field Description

0 31:0 32 Tx_request0 Same as LW0 from Cell Queue Manager to 
CSIX TX

1 31:0 32 Tx_request1 Same as LW1 from Cell Queue Manager to 
CSIX TX

2 31:0 32 dram_handle DRAM address where CSIX cell is stored

3 31:24 8 cell_count_remaining Number of cells remaining in the current 
buffer

23:18 6 Reserved Reserved

17:17 1 MOP_EOP_flag If MOP_EOP, set to 1, else 0

16:16 1 SOP_EOP_flag If SOP and EOP, set to 0, else 1

15:0 16 payload_length Length of CSIX cell payload in bytes
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5.6.8 CSIX TX (Second ME) and Freelist Manager

The interface between the second CSIX TX microengine and the Freelist Manager is a next 
neighbor ring. Table 5-14 describes each entry in the NN ring—which is eight long words.

5.6.9 Freelist Manager and Packet Rx (First ME)

The interface between the Freelist Manager and the first Packet Rx microengine is a next neighbor 
ring. Table 5-15 describes each entry in the NN ring—which is eight long words.

5.6.10 CSIX RX and Statistics 

The CSIX RX and Statistics interface is a scratch ring. Table 5-16 describes each entry in the 
scratch ring—which is three words 

4 31:0 32 prepend_header0 LW0 of CSIX cell pre-pend header

5 31:0 32 prepend_header1 LW1 of CSIX cell pre-pend header

6 31:0 32 prepend_header2 LW2 of CSIX cell pre-pend header

7 31:0 32 prepend_header3 LW3 of CSIX cell pre-pend header

Table 5-13. Eight-Word NN Ring Entry (CSIX TX—First ME to Second ME) (Continued)

LW Bits Size Field Description

Table 5-14. One-Word NN Ring Entry

LW Bits Size Field Description

1 31:0 32 Buffer Handle Buffer Handle to be freed by the Freelist 
Manager

Table 5-15. One-word NN Ring Entry

LW Bits Size Field Description

1 31:0 32 Buffer Handle Buffer Handle that is allocated by the 
Freelist Manager

Table 5-16. Three-Word Scratch Ring Entry (CSIX RX and Statistics)

LW Bits Size Field Description

0 30:16 16 Packet Size Packet Size 

0 15:12 4 Port Number Output Port Number

0 11:0 12 Queue Number Queue Number 

1 31:0 32 SOP Buffer Handle Buffer Handle for the SOP Descriptor

2 31:0 32 EOP Buffer Handle Buffer Handle for EOP Descriptor (may 
be NULL)
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5.6.11 Statistics and Packet Scheduler 

Table 5-17 shows the Statistics and Packet Scheduler interface, which is a Next Neighbor ring.

5.6.12 Packet Scheduler and Queue Manager 

The interface between the Queue Manager and the Packet Scheduler is a Next Neighbor Ring. 
Table 5-18 describes each entry in the NN ring—which is three long words.

5.6.13 Queue Manager and TX Helper

The interface between the Queue Manager and the TX helper is a Next Neighbor ring. Table 5-19 
describes each entry in the NN ring—which is one word:

Table 5-17. Three-Word NN Ring Entry (Statistics and Packet Scheduler)

LW Bits Size Field Description

0 30:16 16 Reserved Reserved

0 15:0 16 Packet Size Packet Size

1 31:0 32 SOP Buffer Handle Buffer Handle for the SOP Descriptor

2 31:16 16 Port Number Output Port Number

2 31:0 16 Queue Number Queue Number 

Table 5-18. Three-word NN Ring Entry (Queue Manager and Packet Scheduler)

LW Bits Size Field Description

0 30:16 16 Dequeue Queue # Queue number from which to dequeue. 
Zero implies no dequeue

0 0:15 16 Enqueue Queue # Queue number on which to enqueue. 
Zero implies no enqueue

1 31:0 32 SOP Buffer Handle Buffer Handle for SOP Descriptor 

1 31:0 32 EOP Buffer Handle Buffer Handle for EOP Descriptor (may 
be NULL)

Table 5-19. Two-Word NN Ring Entry (Queue Manager and Packet TX)

LW Bits Size Description

0 31:4 28 Reserved

0 3:0 4 Port number

1 31:24 8 Reserved

1 23:0 24 Pointer to SOP buffer descriptor in SRAM in long words 
(Same as bits 0:23 of buffer handle)
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5.6.14 TX Helper and Packet TX

The interface between the TX helper and the Packet Transmit is a Next Neighbor ring. Table 5-20 
describes each entry in the NN ring—which is one word:0

5.6.15 Packet TX—First ME to Second ME 

The interface between the first microengine and second microengine of Packet Transmit is a Next 
Neighbor ring. Table 5-21 describes each entry in the NN ring—which three words.

If the m-packet is non-stop, then 3 more long words are included on the ring. 

5.7 Porting from IXP2400 to IXP2800

This section describes how the POS IPv4 Forwarding application for the Intel® IXP2400 Network 
Processor was ported to the Intel® IXP2800 Network Processor. 

Table 5-20. One-Word NN Ring Entry (Queue Manager and Packet TX)

LW Bits Size Description

0 31:31 1 Valid bit

0 30:28 3 Reserved

0 27:24 4 Port number

0 23:0 24 Pointer to SOP buffer descriptor in SRAM in long words 
(Same as bits 0:23 of buffer handle)

Table 5-21. Three-Word NN Ring Entry (Packet TX—First ME to Second ME)

LW Bits Size Description

0 31:0 32 Pointer to meta data (used to free buffer 

1 31 1 Bit is clear if the m-packet is sop

30 1 Bit is clear if the m-packet is eop

29:0 29 Offset of payload to be transmitted

2 31:0 32 Payload size to be transmitted

Table 5-22. Three-Word NN Ring Entry (for Non-stop m-packet)

LW Bits Size Description

3 31:0 32 Bytes from previous buffer to be prepended to the 
current buffer 

4 31:0 32 Exe_stat_flag: information about various condition flags

5 31:0 32 Partially created transmit control word
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5.7.1 IXP2400 and IXP2800 Processing Requirement Comparison

Table 5-23 shows a comparison of IXP2400 and the IPX2800 processing requirements.

As Table 5-23 shows, the IXP2800 at OC-192 data rates needs to process 4 times as many packets 
as the IXP2400. The IXP2800 has 4.6 (= 1400/600 * 16/8) times the processing capability of the 
IXP2400. However for a single microengine in the pipeline (e.g. the Queue Manager), the 
instruction budget for a 49 byte POS min-packet for the IXP2800 is only 57 cycles compared to 97 
cycles for the IXP2400. At the same time, the IXP2800 has only twice the SRAM bandwidth and 
approximately three times the DRAM bandwidth of the IXP2400. 

This has the following implications:

• For the same application, the IXP2400 at OC-48 data rates has almost twice as much SRAM 
memory bandwidth available as the IXP2800 at OC-192 data rates. Therefore SRAM usage 
must be optimized as much as possible for the IXP2800 application. 

• For the same application, microblocks executing on a single microengine (e.g. the driver 
blocks such QM, scheduler, etc) must be optimized to run in 57 cycles or the design of these 
blocks must be modified so they can execute on multiple microengines. The packet processing 
microengines on the other hand have more compute cycles running on the IXP2800 than the 
IXP2400.

5.7.2 Optimizations for the IXP2800

This section describes various optimizations made to the IXP2400 application to port it to OC-192 
data rates on the IXP2800.

Table 5-23. Comparison of IXP2400 and the IPX2800 Processing Requirements

Item IXP2400 IXP2800

Clock Frequency 600 MHz 1400 MHz

SRAM Frequency 200 MHz 200 MHz

SRAM Channels 2 4

SRAM Read bandwidth 1600 MB/s = 200 * 2 * 4 3200 MB/s = 200 * 4 * 4

SRAM Write bandwidth 1600 MB/s 3200 MB/s

DRAM frequency 150 MHz DDR 1066 MHz RDRAM (IXP2800 drives at 1018.18)

DRAM channels 1 (4 banks) 3 (4 banks per channel)

DRAM Read/Write bandwidth 2500 MB/s 6109 MB/s = 1018 * 3 * 2

DRAM efficiency 60% 72%

Effective DRAM bandwidth 1500 MB/s 4423 MB/s = 72% * 6109

Number of microengines 8 16

Data rate OC-48 (6.12 mpps) OC-192 (24.5 mpps)

Instruction budget per 
microengine per 49 byte POS 
min packet 

97 = 600/6.12 57 = 1400/24.5
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5.7.2.1 Optimizing SRAM Memory Bandwidth Usage 

A major part of the optimization effort involved moving data structures across the SRAM channels 
to achieve better and more uniform distribution of SRAM bandwidth usage per channel. 

Table 5-24 compares the location of data structures between the IXP2400 and IXP2800 
applications. 

Also the IPv4 Next Hop data structure was compressed from four long words to two long words. 
The compressed structure is described in the Intel® Internet Exchange Architecture Software 
Building Blocks Developer’s Manual, Section 24.6.3, “Next Hop Information” on page 405.

5.7.2.2 Splitting the Packet Descriptor Across Channels

At OC-192 data rates, the channel used for queuing is completely utilized by the Q-Array. 
Therefore the per-packet descriptor—that is, metadata was split across channel 0 and 3. The first 
word (LW0) is used as a next pointer by the Q-Array hardware for maintaining the link list. This 
word is kept in channel 0. The remaining fields are moved to channel 3. This change is hidden from 
the microblocks via the dl_meta_xxx() macros. 

5.7.2.3 Splitting the RX/TX Driver Blocks to Run on Multiple Microengines

To meet the 57 cycle budget for OC-192 POS, the RX and TX blocks for POS and CSIX were 
modified to run on multiple microengines. In the case of Packet RX, CSIX TX and Packet TX, the 
two microengines run as a context pipeline connected by a Next Neighbor ring. In the case of CSIX 
RX, the two microengines run in parallel executing the same code. 

Currently these blocks all support a TWO_ME compile time option that may be used to run them 
on two microengines and achieve which may be used to run them on two microengines and achieve 
OC-192 line rates for min POS packets. 

5.7.2.4 Moving Data Structures to Local Memory 

As yet another memory usage optimization, the Directed Broadcast table used in IPv4 may be 
moved to local memory and updated only periodically. 

Table 5-24. Data Structure Location Comparison of the IXP2400 and IXP2800 Applications

Data IXP2400 SRAM channel IXP2800 SRAM channel

Buffer metadata LW0 0 0

Buffer metadata LW1-7 0 3

Queue descriptors 0 0

Packet RX counters 1 1

Next hop table 0 2

Trie table 1 1

Directed Broadcast table 1 2

Control block information 1 In scratch memory

IPv4 counters 1 In scratch memory

CSIX TX contexts 0 0
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Note: Future release will be implemented to support this.

5.7.2.5 Optimizing the Packet Buffer Freelist

One optimization to improve the Q-Array performance is to use a Next Neighbor ring between the 
TX and RX microengines for allocating and freeing buffers. The general idea is to populate this 
ring with 128 buffer handles initially. When the Receive microengine needs a buffer, it first 
attempts to allocate it from the Next Neighbor ring. If the ring is empty, it allocates it from the Q-
Array buffer free list. Similarly when the transmit code needs to free a buffer handle, it first 
attempts to write it to the Next Neighbor ring. If the ring is full, then it frees to the Q-Array free 
list. 

5.7.2.6 Using NN Ring Instead of Scratch Ring for Communication 

Throughout the design, an effort has been made to use Next Neighbor rings where possible to 
minimize use of scratch bandwidth. 

5.7.2.7 New Design for the Scheduler and Queue Manager 

The design for the scheduler and queue manager blocks had to be modified for the IXP2800. This 
change was driven by:

• The need to fit these blocks into 57 cycles

• The need to avoid invalid dequeues (dequeue requests to queues with no data). This is critical 
to meet line rate. 

The new design essentially places the scheduler after the packet processing microengines in-line 
and before the Queue Manager. It receives the enqueue requests from the packet processing 
microengines and generates the dequeue requests. This allows it to keep track of the number of 
entries in a queue thereby avoiding invalid dequeues. To keep track of which queues have data, the 
scheduler uses a link list of active queues in local memory. This is more efficient (requires less 
instructions) than the bit-vectors used for the IXP2400 design. It however can support fewer 
queues than the bit-vector based design. 

The Queue Manager is now very much simplified since:

• It no longer keeps track of queue count and queue transitions and does not need to send any 
transition messages to the scheduler.

• It reads all enqueue and dequeue requests from a Next Neighbor ring. Therefore the code no 
longer requires multiple phases.
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This section describes the design of an IPv4 MPLS Forwarding application using the Intel® 
IXP2800 Network Processor. Two half-duplex IXP2800 processors are used to implement a POS 
line card at OC-192 data rates that interfaces to a CSIX switch fabric. This section provides a high-
level design overview and lists the different software components used to build this application. It 
focuses only on the fast path or microengine components of the design. The Intel XScale® core 
components for this application are described in Intel® Internet Exchange Architecture Portability 
Framework Developer’s Manual. 

The application described in this chapter is supported on the Intel® IXDP2800 Advanced 
Development Platform.

This application is modified from the OC-192 POS IPv4/IPv6 application with the IPv6 block 
being removed and the MPLS microblocks being added. Since the changes occur in the Ingress 
side, this section describes the microblocks in the Ingress side only. Details of the microblocks in 
the Egress side (which are exactly the same for both applications) can be found in the OC-192 POS 
IPv4/IPv6 application.

6.1 Hardware Overview

Figure 6-1 illustrates an example hardware configuration for OC-192 POS line card with CSIX 
fabric. The figure shows two IXP2800 processors in a typical CSIX full duplex configuration. In 
this configuration, the two IXP2800 processors are identified as the ingress processor (receives 
from the Media interface and transmits to the CSIX Fabric) and the egress processor (receives from 
the CSIX Fabric and transmits to the Media interface). 

The Ingress IXP2800 receives POS frames that carry IPv4 or MPLS datagrams. The frames are 
assembled into IPv4 or MPLS packets and the Layer-2 (PPP) headers are removed after being 
classified. If it is IPv4 packet, a Longest Prefix Match (LPM) lookup is performed based on IPv4 
header. If it is MPLS packet, an Incoming Label Map (ILM) lookup is performed based on MPLS 
labels. Packets are then segmented into CSIX C-Frames and transmitted to the CSIX fabric. The 
result of the LPM/ILM lookup determines which IXP2800 connected to the fabric receives the 
packet, and which port on that IXP2800 the packet is transmitted on. 

The Egress IXP2800 receives CSIX C-Frames from the fabric and reassembles these into IPv4 or 
MPLS datagrams. The Layer-2 (PPP) headers are added and the packets are transmitted over the 
appropriate port.
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6.2 Software Overview

Figure 6-2 illustrates the microblocks needed to implement an OC-192 POS IPv4 MPLS 
Forwarding application. The design for this application is based on the guidelines specified by the 
IXA Portability Framework in the Intel® Internet Exchange Architecture Portability Framework 
Developer’s Manual. The driver microblocks (Receive, Transmit, Scheduler, QM, Statistics and 
FreeListManager) run on different microengines from the packet processing code.

Figure 6-1. Example Hardware Configuration for OC-192 POS Line Card with CSIX Fabric

 

POS Framer  

Ingress IXP2800  

Egress IXP2800 

CSIX  
Switch  
Fabric  

SPI-4 CSIX 

POS Frames  C Frames 
PHY 

Sonet 

POS 

IP 

POS 

IP 

C - frame  
header 

IP 

Cbus  – CSIX 
Flow control 

POS Framer  CSIX  
Switch  
Fabric  

CSIX 

POS Frames  C Frames 
PHY 

Sonet 

POS 

IP 

POS 

IP 

C - frame  
header 

IP 

Cbus  – CSIX 
Flow control 



Software Building Blocks Applications Design Guide 87

OC-192 POS IPv4 MPLS Application

6.2.1 Data Flow for the Ingress

6.2.1.1 Packet RX 

The Packet RX microblock runs on two microengines in a context pipeline connected by a Next 
Neighbor ring. The Packet RX microblock for the IXP2400 (Section 2.2.1.1, “Packet RX” on 
page 25) has been extended such that as a compile time option it now runs on two microengines. 

This microblock performs frame-reassembly on the mpackets coming in on the POS media 
interface. It reassembles and writes the packet data to a buffer in DRAM and queues the packet 
buffer handle on a ME-ME scratch ring for processing by the packet processing microengines. It 
also sets up per- packet meta information (offset, size etc) which are passed on either in a 
descriptor in SRAM or in the ME-ME scratch ring itself. Up to 16 virtual ports are supported and 
the re-assembly context for all these ports is kept in local memory. To maintain packet sequencing, 
the threads execute in strict order. The microblock is written such that it supports up to 16 virtual 
ports, but one or more of these may be unused. This allows the same microblock to support 
different configurations such as Quad OC-48, 16 OC-12 or a single OC-192 port. 

Figure 6-2. Microblocks for an OC-192 POS IPv4 MPLS Forwarding Application
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In this application, the packets reassembled are PPP frames containing IP datagrams. RFC 2615 
defines the Packet Over SONET specification and refers to RFC 1661 (PPP) and RFC 1662 (PPP 
in HDLC-like framing). PPP framing including header validation, FCS generation and 
computation and byte stuffing are handled by the POS framer (IXF 18101). 

Since POS packets may be up to 9k bytes, some large packets may be stored in multiple buffers 
chained together as a link-list. The buffer handles for the first and last packet in the chain are 
queued in the scratch ring. 

From the Packet RX block, the packet is passed on to an application specific system microblock 
(DL_Sink[]). This microblock checks if the packet has been marked to be dropped (IX_DROP) or 
sent to the Intel XScale® core (IX_EXCEPTION). If not, it queues the packet buffer handle and 
associated packet meta data into the scratch ring for the next stage in the pipeline.

6.2.1.2 Packet Processing Microengines (PPP Decap/Classify + MPLS ILM + 
IPv4 Forwarder + MPLS FTN)

The PPP decapsulation/classify microblock runs along with the IPv4 and MPLS microblocks on 8 
microengines or 64 threads. These microblocks (except MPLS blocks) are identical to the ones 
used for the IXP2400 POS application described in Section 2.2.1.2, “PPP Decapsulation and 
Classify” on page 25 and Section 2.2.1.3, “IPv4 Forwarder” on page 26.

An application specific system source microblock on each thread dequeues packet buffer handles 
from the scratch ring. This source block (DL_Source[]) is a system microblock implicit in the 
dispatch loop. It reads in the packet meta information (the packet descriptor) and populates the 
dispatch loop state. It also reads in 24 bytes of the packet header from DRAM into transfer registers 
and then caches them in local memory. Since it is important to maintain packet sequencing, the 
threads in the microblock execute in strict order to dequeue from the scratch ring. This implies that 
the first thread on microengine 1 dequeues the first packet, signals the next thread to perform the 
dequeue and so on. From this block, the packet goes to the PPP decapsulation/classify microblock.

The PPP decapsulation/classify microblock removes the layer-2 PPP header from the packet by 
updating the offset and size fields in the packet descriptor. Based on the PPP header, it also 
classifies the packet into IPv4, IPv6, MPLS, or PPP control packet (LCP, IPCP). If the packet is a 
PPP control packet, it is marked as an exception packet to be sent to the Intel XScale® core 
(IX_EXCEPTION). Otherwise the packet is sent down the microengine pipeline for further 
processing. In this application, the dispatch loop silently drops packets classified as IPv6.

If the packet is an MPLS packet, the MPLS ILM (Incoming Label Map) forwarder microblock 
forwards the packet based on the MPLS labels (per RFC 3031, 3032). First the top MPLS label is 
checked against reserved values. Then it is mapped to an entry in the ILM NHLFE table (Next Hop 
Label Forwarding Entry) where information as to how the label is processed and how the packet is 
forwarded is obtained. This microblock handles LSR and Egress LER cases (SWAP, POP, 
POP_FORWARD and SWAP_PUSH operations). The result of ILM is a Next Hop ID, a fabric 
blade id, and an output port which are all stored in the packet metadata for later use by the egress 
side. The MPLS ILM forwarder microblock supports two label space modes defined by the 
following compilation switches:

• PER_PLATFORM_LABEL_SPACE (set by default): label ranges (min, max) and table base 
offset for the whole system are configured at initialization time.

• PER_INTERFACE_LABEL_SPACE: label ranges (min, max) and table base offset are 
configured at initialization time on a per-interface basis.
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The MPLS ILM forwarder microblock reads label space values from SRAM and stores them in 
local memory at initialization time.

The IPv4 forwarder microblock validates the IP header per RFC 1812. If the validity checks fail, 
then the packet is set up to be dropped as specified in Intel® Internet Exchange Architecture 
Portability Framework Developer’s Manual. Otherwise a Longest Prefix Match (LPM) is 
performed on the IPv4 header. The result is an IPv4 Next Hop ID, a fabric blade id (identifying a 
unique IXP2800 on the fabric) and an output port identifying the output port on the egress 
IXP2800. The Next Hop ID is passed over the CSIX fabric to an Egress IXP2800 where it is used 
to look up information about the Layer-2 header to be prepended to the packet buffer. The output 
port is also passed over the CSIX fabric to the egress IXP2800 and is used to transmit over the 
appropriate port. All three fields are stored in the packet meta data—that is, the packet descriptor. If 
no match is found, then the packet is set up to be sent up to the Intel XScale® core for further 
processing as specified in Intel® Internet Exchange Architecture Portability Framework 
Developer’s Manual. Packets are also sent to the core in a number of other cases, for example when 
the packet is destined for a local interface or is to be fragmented. 

From the IPv4 forwarder block, the packet is passed on to an application specific system 
microblock (DL_QM_Sink[]) if the Next Hop ID type indicates IPv4 type or to the MPLS FTN 
microblock if the Next Hop ID type indicates MPLS type. 

The MPLS FTN (FEC-To-NHLFE) microblock maps the FEC (Forwarding Equivalence Classes) 
to an entry in the FTN NHLFE (Next Hop Label Forwarding Entry) table. The Next Hop ID 
generated from the IPv4 forward block is used as an FEC. This block handles Ingress LER cases 
(PUSH operation). The packet is encapsulated with up to 4 MPLS labels and the packet header is 
changed to MPLS type. Values of next hop id, fabric blade id and output port are obtained from the 
entry and stored in the packet metadata. The packet is passed on to an application specific system 
microblock (DL_QM_Sink[]).

This application specific system microblock checks if the packet is to be dropped or sent to the 
Intel XScale® core. If not, it sends an enqueue request to the Statistics microengine over a scratch 
ring. The DL_QM_Sink[] microblock also writes the cached packet header to DRAM and the 
packet meta information to SRAM.

6.2.1.3 Statistics Microblock

This microblock runs on a single microengine. It is currently a place holder for statistics handling. 
It is anticipated that this microblock is used to manage per-flow statistics for future MPLS and 
DiffServ applications. 

Note: The design for handling statistics will be described in future revisions of the document. 

The statistics microengine interfaces to the IXP2800 CSIX Fabric Scheduler microblock via a Next 
Neighbor ring, passing it the packet enqueue requests received from the packet processing 
microengines. It also computes the total cell count of every packet enqueued and passes it to the 
scheduler. In addition, it also handles dropping of large packets that are stored in multiple buffers. 

6.2.1.4 CSIX Scheduler

The CSIX scheduler runs on a single microengine and schedules c-frames into the CSIX fabric. 
This microblock is significantly different from the one currently used on the IXP2400. It has been 
optimized to run in 57 cycles which is the min POS packet instruction budget. Also it is placed in 
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the packet processing pipeline before the queue manager, allowing it to keep track of enqueue and 
dequeue transitions correctly and without any latency. Unlike the IXP2400 version which handles 
1024 VoQs (Virtual Output Queues), the design used for the IXP2800 supports 256 VoQs. 

The scheduling algorithm implemented is Round Robin among the ports on the fabric and 
Weighted Round Robin among the queues on a port. Since this is not a QoS application and there is 
only one queue per port, the Weighted Round Robin scheduling degenerates to round robin 
scheduling. Other applications, for example, IP DiffServ may use the WRR functionality. The 
scheduling and transmit is done a cframe at a time. 

The CSIX scheduler handles the following:

• Flow control messages from the fabric. These messages are sent by the fabric to the egress 
IXP2800, which sends them on the c-bus to the ingress IXP2800. If the fabric asserts Xoff on a 
particular VoQ (Virtual Output Queue), the scheduler stops scheduling for the queue. 

• Packet enqueue requests from the previous microengine. It uses this information to update a 
list of active queues (queues with data) and to track queue transitions (empty to non-empty and 
vice-versa). A queue is scheduled only if there is data in the queue. The enqueue requests are 
passed on via Next Neighbor ring to the Queue Manager. 

• MSF Transmit State Machine. The scheduler monitors how many packet cframes are in the 
pipeline and if it exceeds a certain threshold, it stops scheduling.

During each loop, the scheduler also:

• Checks its list of active queues (queues with data). Picking up from where it left off in the last 
iteration, it finds the next queue to schedule.

• It then sends a dequeue message to the Queue Manager to dequeue the head of that queue. The 
Queue Manager dequeues a cell (cframe) from the head of the queue and sends a transmit 
request to the CSIX TX microblock.

6.2.1.5 Cell Based Queue Manager (Cell QM)

The Queue Manager (QM) is a driver microblock that runs on a single microengine. This 
microblock is significantly different from the one currently used in the IXP2400 application. It has 
been optimized to run within 57 cycles which is the instruction budget for a min POS packet at OC-
192 data rates. The key difference is that in the IXP2800 design, the scheduler keeps track of the 
queue size and queue transitions. This considerably simplifies the Queue Manager which no longer 
has to support this functionality. 

The QM manages enqueue and dequeue operations on the transmit queues which are implemented 
using the hardware SRAM link lists. It accepts enqueue requests from the scheduler via a Next 
Neighbor ring. The enqueue requests are on a per-packet basis. The dequeue requests come are on 
a per-cell basis where a cell is a CSIX cframe.

The threads on the QM microengine execute in strict order using local inter-thread signaling. 
SRAM Queue Array entries are cached in the SRAM controller and the CAM is used for managing 
the tags for these. To maintain coherence among threads, folding is used. 

6.2.1.6 CSIX TX

The CSIX Transmit microblock runs on two microengines in a context pipeline connected by a 
Next Neighbor ring. The CSIX Transmit microblock for the IXP2400 (Section 2.2.1.6, “CSIX TX” 
on page 27) has been extended so that as a compile time option it now runs on two microengines. 
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This microblock receives transmit messages from the queue manager via a Next Neighbor ring. 
With each transmit request, the microblock moves a cframe into a TBUF, which is then transmitted 
into the fabric by the MSF Transmit State Machine. 

Every request has an associated packet, which is being segmented into cframes. The associated 
segmentation state for the packet and the packet metadata is cached in local memory and is looked 
up using the CAM. The TX microblock adds the CSIX header onto the cframe along with the 
packet data. Along with the CSIX header, a Traffic Manager (TM) header is also added per cframe 
carrying extra information (destination Layer-2 port id, input blade id, sequence number, next-hop 
id etc.) about the packet to be passed to the Egress IXP2800. In addition, the flow id, class id, input 
port and some other fields from the metadata are passed along to the Egress IXP2800 using a per-
packet header pre-pended to the start of the first c-frame of each packet.

6.2.1.7 Free List Manager

The Free List Manager service microblock runs on a single microengine. Refer to Section 5.2.1.7, 
“Freelist Manager” on page 70 inChapter 5, “OC-192 POS IPv4/IPv6 Forwarding/Tunneling 
Application” for details of this microblock.

6.2.2 Data Flow for the Egress

For details, refer to Section 5.2.2, “Data Flow for the Egress IXP2800” on page 71 in Chapter 5, 
“OC-192 POS IPv4/IPv6 Forwarding/Tunneling Application.”

6.3 Performance Characterization

The Intel® IXP2800 Network Processor operates at 1400 MHz. For a min POS packet of 49B, the 
packet inter-arrival time at OC-192 line rate is 57 ME cycles. In order to maintain line rate for min 
packets, each stage of the pipeline cannot exceed this budget. In other words, each stage of the 
pipeline needs to retire a packet every 57 cycles. 

Table 6-1 summarizes the performance analysis for the POS pipeline. 

Table 6-1. Performance Analysis for the POS Pipeline

OC-192c line rate assuming 3% SONET 
overhead 9.62 Gigabits/sec

Min POS packet size 49 bytes (40 byte TCP/IP, 2 bytes Address and Control, 
2 byte PPP header, 4 byte FCS and 1 byte flag)

Packet Throughput for min packets 24.56 million packets/sec = (9.62 / (49*8)) * (10**9)

IXP2800 clock frequency 1400 MHZ

Inter-packet arrival time for min packets 1400/6.14 = 57 cycles

Compute cycles per packet for a single microengine 57

Latency per packet for a single microengine 57 * 8

Compute cycles per packet for n microengines 
running in parallel 57*n

Latency per packet for n microengines running in 
parallel 57*8*n
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6.4 Ingress System Resource Allocation 

Table 6-2 shows the system resources mapped for the Ingress IXP2800. This mapping reflects the 
system defaults and may be changed. The allocation of microengines is done such that it optimizes 
the performance of this specific application and may be changed for other applications. 

The physical assignment of function to microengine is important since it not only affects when the 
next neighbor registers and signaling can be utilized, but it also affects the utilization of the internal 
Command bus and S-Push/Pull buses. This assignment attempts to balance the usage of the 
Command bus and S-Push/Pull buses across the two clusters.

The IXP2800 supports four SRAM channels and three DRAM channels. Table 6-3 shows the 
SRAM, DRAM and scratch utilized for this application. These values are defined in a system 
header file dl_system.h and may be changed as needed. 

Table 6-2. System Resources Mapped for the Ingress IXP2800

Microblock ME # Communication Mechanism with 
previous stage

Packet RX ME 1:3, 1:4 Auto-push status from MSF

Layer2 decapsulation/Classify + 
MPLS ILM + IPv4 Forwarder + 
MPLS FTN

ME 0:0, 0:1, 0:2, 0:3, 0:4, 1:5, 
1:6, 1:7 Scratch ring

Statistics ME 0:5 Scratch ring 

CSIX Scheduler ME 0:6 NN ring

Queue Manager ME 0:7 NN ring

CSIX TX ME 1:0, 1:1 NN ring 

FreeListManager ME 1:2 NN ring

Headroom 0 microengines 

Table 6-3. SRAM, DRAM, and Scratch Utilization for Ingress IXP2800

Item Size per entry in 
bytes Number of entries

Total 
SRAM 
used

Total 
DRAM 
used

Total 
Scratch 

used

Buffer Descriptors 32 32k (In simulation, we 
use only 320 buffers) 1 MB 

Buffers 2048 32k 64 MB

Queue Descriptors 16 256 (1 per VOQ) 4K

CSIX TX contexts 32 256 (1 per VOQ) 8k

Trie Table

64 (The root Trie table 
requires at least 257k 
to support hi64k and 
hi256 tables. In 
addition each node 
requires 64 bytes. 
These nodes are 
added as needed)

See note in previous 
column. Assuming 
256k routes, 
approximately 128k 
nodes are needed 

8MB

Route Table (Next Hop 
Information) 8 Assuming 4k next 

hops 32k

IPv4 statistics 4 16 64
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6.5 Egress System Resource Allocation

Please refer to Section 5.5, “Egress System Resource Allocation” on page 74 in Chapter 5, “OC-
192 POS IPv4/IPv6 Forwarding/Tunneling Application.”

6.6 Interfaces Between the Various Microblocks

Please refer to Section 5.6, “Interfaces Between the Various Microblocks” on page 75 in Chapter 5, 
“OC-192 POS IPv4/IPv6 Forwarding/Tunneling Application.”

6.7 Application Optimizations

This section points out optimizations made to the Ingress side of the MPLS application to achieve 
OC-192 data rates on IXP2800 besides those already mentioned in Chapter 5, “OC-192 POS IPv4/
IPv6 Forwarding/Tunneling Application.”

MPLS FTN NHLFE 32 64k 2M

MPLS ILM NHLFE 32 64k 2M

MPLS per-context 
header caching 64 (local memory) 8

Packet RX statistics 4 16*16 1024

IPv4 Directed 
Broadcast Table 32 (local memory) 64

Ring from Packet RX 
to packet processing 
pipeline (IPv4+Layer2 
Decap/Classify) 

12 4k/3 4k

IPv4 to Statistics ring 12 2k/12 2k

QM Q-Array entries N/A 16

Buffer Free list Q-Array 
entry N/A 4

Table 6-3. SRAM, DRAM, and Scratch Utilization for Ingress IXP2800 (Continued)

Item Size per entry in 
bytes Number of entries

Total 
SRAM 
used

Total 
DRAM 
used

Total 
Scratch 

used
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6.7.0.1 Optimizing SRAM Memory Bandwidth Usage 

A major part of the optimization effort involved moving data structures across the SRAM channels 
to achieve better and more uniform distribution of SRAM bandwidth usage per channel. 

Also the IPv4 Next Hop data structure was compressed from four long words to two long words. 
The compressed structure is described in the Intel® Internet Exchange Architecture Software 
Building Blocks Developer’s Manual Section 24.6.3, “Next Hop Information” on page 405.

6.7.0.2 Moving Data Structures to Local Memory

As yet another memory usage optimization, the Directed Broadcast table used in IPv4 is moved to 
local memory and updated only periodically. 

6.7.0.3 Caching Packet Header in Local Memory

Each thread of a microengine is allocated up to 16 local memory longwords (LW) to use for packet 
header caching. As packets can grow and shrink in sizes when entering and exiting MPLS domain, 
the packet headers are cached in the 5th LW of the memory cache. This allows up to 4 MPLS labels 
to be encapsulated if the incoming packet is IPv4 packet.

When all MPLS labels are removed exposing IPv4 packet, the packet header is re-aligned to the 5th 
LW in the memory cache. The cache with exposed IPv4 header can then be passed to IPv4 block 
for further processing.

Table 6-4. Data Structure Allocations

Data IXP2800 SRAM channel

Buffer metadata LW0 0

Buffer metadata LW1-7 1

Queue descriptors 0

Packet RX counters 1

Next hop table 3

Trie table 3

MPLS ILM NHLFE 2

MPLS FTN NHLFE 2

IPv4 counters In scratch memory

CSIX TX contexts 0
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This chapter describes an IPv4 and IPv6 forwarding application for Ethernet implemented on two 
Intel® IXP2400 Network Processors. The chapter also provides a high-level design overview and 
lists the different software components used to build this application.

The application described in this chapter is supported on the Intel® IXDP2400 Advanced 
Development Platform.

7.1 Software Overview

Figure 7-1 shows the software components needed to implement an IPv4 and IPv6 forwarding 
application for Ethernet. All the context pipe-stages (e.g. Packet RX, Queue Manager, Scheduler 
etc.) occupy an entire microengine. Each context pipe-stage is mapped to a single microblock 
running on a ME with or without a dispatch loop. The functional pipeline runs on four 
microengines, implements the layer-2 (Ethernet) decapsulation, the IPv4 forwarder, IPv6 
forwarder, V6/V4 tunneling and translation blocks. The tunneling microblock is required when 
IPv6 packets need to be tunneled over an IPv4 network. The translation block is required when an 
IPv4 only host needs to communicate with an IPv6 only host or vice versa. 

Figure 7-1. Software Components for IPv4/IPv6 Forwarding and IPv6/IPv4 Tunneling
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7.2 Data Flow for the Ingress IXP2400

The following sections describe the data flow on the ingress IXP2400:

7.2.1 Packet RX 

This block is identical to the Section 2.2.1.1, “Packet RX” on page 25 except that it sets the header 
type field in the packet meta data to Ethernet.

7.2.2 Ethernet Decapsulation/Classify/Filter 

The Ethernet decapsulation/classify/filter microblock runs in a functional pipeline with the IPv4 
microblock, the IPv6 microblock and the IPv6/IPv4 tunneling microblock on four microengines or 
32 threads. 

This microblock removes the layer-2 Ethernet header from the packet by updating the offset and 
size fields in the packet metadata. It also implements MAC filtering based on the destination MAC 
address in the Ethernet header. Based on this filtering, the packet may be dropped.

This microblock also classifies the packet into IPv4, IPv6, MPLS, ARP etc. If the packet is an ARP 
packet, it is marked as an exception packet to be sent to the Intel XScale® core (IX_EXCEPTION). 
Otherwise the packet is sent down the microengine pipeline for further processing. In this 
application, the dispatch loop silently drops packets classified as MPLS.

7.2.3 V6/V4 Translation Microblock

The Translation microblock implements an IPv6-IPv4 translation mechanism. The translation 
mechanisms allow IPv6 and IPv4 hosts to coexist, which allows an IPv6 host and IPv4 host to 
communicate with each other. These mechanisms are designed to support the scenario/case where 
an IPv6-only network may be deployed, but there is a need (OR the machines in the network) need 
to gain access to the resources in an IPv4-only network. The translation microblock provided 
supports the NAT-PT translation mechanism. The primary function of the translation microblock is 
to change the IP headers in the relevant packets as they pass through, which to each of the 
endpoints appears as if they are talking to a host with the same network layer.

The translation microblock examines the source or destination IP addresses in each packet to 
determine if the addresses need translation. If an appropriate packet is identified, the microblock 
extracts information from the existing IP header and converts it to the desired format. The 
translation microblock also updates the packet meta-data so that the downstream microblocks can 
work with the packet as if it had arrived in translated format. If a packet need not be translated the 
microblock simply passes it on. 

7.2.4 IPv4 Forwarder

This block is identical to the block described in Section 2.2.1.3, “IPv4 Forwarder” on page 26.
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7.2.5 IPv6 Forwarder

IPv6 is a new version of the internet protocol, designed as the successor of IPv4. IPv6 addresses are 
128 bits long, which solves the “address exhaustion” problem that IPv4 is facing. Besides the 
expanded addressing capabilities of IPv6, the changes from IPv4 to IPv6 include header format 
simplification, improved support for extensions and options (the basic header size is now fixed, 
which makes processing common-case packets really simple and fast), flow labelling capability 
(provides flow labels to support “real-time” traffic) and support for authentication and privacy 
capabilities.

The IPv6 forwarder microblock validates the IP header per RFC 2460. If the validity checks fail, 
then the packet is set up to be dropped as specified in [IXASF]. Otherwise a Longest Prefix Match 
(LPM) is performed on the IPv6 header. The result is an IPv6 next-hop ID, a fabric blade id 
(identifying a unique IXP2400 on the fabric) and an output port identifying the output port on the 
egress IXP2400. The next-hop ID is passed over the CSIX fabric to an Egress IXP2400 where it is 
used to look up information about the Layer-2 header to be prepended to the packet buffer. The 
output port is also passed over the CSIX fabric to the egress IXP2400 and is used to transmit over 
the appropriate port. All three fields are stored in the packet metadata.

If no match is found, then the packet is set up to be sent up to the XScale core for further 
processing as specified in [IXASF]. Packets are also sent to the core in a number of other cases, for 
example when the packet is destined for a local interface or is to be fragmented. 

From the IPv6 forwarder block, the packet is passed on to an application specific system 
microblock (DL_QM_Sink[]). This microblock checks if the packet is to be dropped or sent to the 
XScale Core. If not, it sends an enqueue request to the Queue Manager over a scratch ring. The 
DL_QM_Sink[] also writes the cached packet header to DRAM and the packet meta information to 
SRAM.

7.2.6 IPv6/IPv4 Tunneling Microblock

Tunneling of IPv6 packets in IPv4 packets is used in several transition mechanisms that allow the 
coexistence of both IPv6 and IPv4 on a network. Tunneling supports communication between two 
IPv6 “islands” connected by an IPv4 “cloud”. This scenario exists today because only some parts 
of the Internet have made the transition to IPv6. The rest of the Internet is still IPv4 based. Put 
simply, tunneling encapsulates IPv6 packets within IPv4 packets, which are sent over an IPv4 
network. When the packet reaches the tunnel “end-point” the IPv4 header is stripped and the IPv6 
packet is delivered to the destination node. The tunneling microblock performs the encapsulation 
and decapsulation functionality.

The tunneling microblocks are assumed to be run as part of a packet forwarding microblock group 
that includes both the IPv4 and IPv6 forwarders. After the L2 header is removed and the packet is 
classified either as an IPv4 or IPv6 packet, the packet metadata is updated to point to the L3 header. 
The IPv4 forwarder performs any required header validation, and performs a lookup based on the 
IPv4 destination address. The lookup sets the next-hop identifier in the metadata cache. The IPv4 
forwarder reads a portion of the next-hop information and determines which microblock must 
execute next. If the next-hop information indicates that the destination address does not represent a 
tunnel endpoint, the packet is passed on to the next stage for L2 header processing. If the next-hop 
information indicates that the destination address represents a tunnel endpoint, the packet is passed 
on to the V6V4-Tunnel-Decap microblock. The V6V4-Tunnel-Decap microblock validates the 
source address if necessary, removes the IPv4 header and passes the IPv6 packet on to the IPv6 
forwarder.
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The IPv6 forwarder performs any required header validation and performs a route lookup based on 
the destination address of the packet. The lookup sets the next-hop identifier in the metadata cache. 
The forwarder then reads a portion of the next-hop information to determine which microblock 
must execute next. If the next-hop information indicates that the next-hop does not require a tunnel, 
the packet is passed on to the L2 processing stage. If the next-hop information indicates that the 
destination is reachable via a V6 over V4 tunnel, the IPv6 forwarder passes the packet to the 
V6V4-Tunnel-Encap microblock. The V6V4-Tunnel-Encap microblock encapsulates the packet 
with an IPv4 header and passes the packet to the IPv4 forwarder. The IPv4 forwarder then performs 
a lookup and sets the next-hop identifier as described earlier. The packet if finally passed on to the 
L2 processing stage.

7.2.7 Cell Based Queue Manager (Cell QM)

This block is identical to the block described in Section 2.2.1.4, “Cell Based Queue Manager (Cell 
QM)” on page 26.

7.2.8 CSIX Scheduler 

This block is identical to the block described in Section 2.2.1.5, “CSIX Scheduler” on page 27.

7.2.9 CSIX TX

This block is identical to the block described in Section 2.2.1.6, “CSIX TX” on page 27.

7.3 Data Flow for the Egress IXP2400

This section describes the data flow for the Egress IXP2400.

7.3.1 CSIX RX

This block is identical to the block described in Section 2.2.2.1, “CSIX RX” on page 28.

7.3.2 Ethernet Encapsulation

This block is identical to the block described in Section 3.2.2.2, “Ethernet Encapsulation” on 
page 44

7.3.3 Packet Based Queue Manager (Packet QM)

This block is identical to the block described in Section 2.2.2.3, “Packet Based Queue Manager” on 
page 28.

7.3.4 Egress Scheduler

This block is identical to the block described in Section 2.2.2.4, “Egress Packet WRR/DRR 
Scheduler” on page 28.



Software Building Blocks Applications Design Guide 99

4Gb Ethernet IPv6/IPv4 Application

7.3.5 Packet TX

This block is identical to the block described in Section 2.2.2.5, “Packet TX” on page 29.

7.4 Dispatch Loops / Microblock Groups

There are two dispatch loops (microblock groups) on the ingress pipeline 

• Dispatch Loop for the Packet Frame Reassembly Stage (Figure 7-2)

• Dispatch Loop for the IPv4 forwarder, IPv6 forwarder and V6/V4 tunneling functional 
pipeline (Figure 7-3)

The QM, Scheduler and CSIX TX blocks don't use a dispatch loop (they still use the dispatch loop 
macros where required).

Note that the system microblocks dl_source, dl_sink, dl_qm_sink, and so on are 
application specific. They may be changed for different packet processing pipelines.

There are two dispatch loops (microblock groups) on the egress pipeline 

• Dispatch Loop for the CSIX RX Reassembly stage (Figure 7-4)

• Dispatch Loop for the Ethernet encapsulation stage (Figure 7-5)

Figure 7-2. Dispatch Loop for the Packet Frame Reassembly Stage
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7.5 Performance Analysis 

The IXP2400 operates at 600 MHz. For a min Ethernet packet of 78B, the packet inter-arrival time 
at 4 Gbps line rate is 117 ME cycles. In order to maintain line rate for min packets, each stage of 
the pipeline cannot exceed this budget. In other words, each stage of the pipeline needs to retire a 
packet every 117 cycles. Table 7-1 summarizes the performance analysis for the IPv6 Ethernet 
pipeline. 

Figure 7-4. Dispatch Loop for CSIX Reassembly Stage
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Figure 7-5. Dispatch Loop for Ethernet Encapsulation Stage
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Table 7-1. Performance Analysis for the IPv6 Ethernet Pipeline

Line rate for 4 Gig ports 4 Gigabits/sec

Min Ethernet packet size 78 bytes (+ 20 byte inter packet gap)

Packet Throughput for min packets 5.10 million packets/sec = (4 / (98*8)) * (10**9)

IXP2400 clock frequency 600 MHZ

Inter-packet arrival time for min packets 600/5.10 = 117.64 cycles

Compute cycles per packet for a context pipe stage 117

Latency per packet for a context pipe stage 117 * 8

Compute cycles per packet for a functional pipeline of n 
microengines 117*n

Latency per packet for a functional pipeline of n microengines 117*8*n
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This chapter describes a DiffServ application for Packet over SONET (POS) implemented on two 
half-duplex Intel® IXP2400 Network Processors connected to a CSIX switch fabric. It provides a 
high-level design overview and lists the different software components used to build the 
application.

The application described in this chapter is supported on the Intel® IXDP2400 Advanced 
Development Platform.

8.1 Hardware Overview

This release of DiffServ blocks runs on the Intel® IXDP2400 Advanced Development Platform. 
The platform is comprised of a chassis with the following cards: 

• Intel® IXDP2400 Advanced Development Platform Base Card: A 9U baseboard with dual 
IXP2400 Network Processors and a switch fabric connector with loop back

• Intel® IXD2448 Single OC-48 I/O Option Card: A PoS OC-48 modular media card for the 
base card

• A passive Switch Fabric loopback card for the base card

In future releases, the platform can be extended with TCAM chips to speed up classification.

As illustrated in Figure 8-1, the development platform contains two network processors, dedicated 
to ingress and egress packet processing, respectively. 

The ingress processor receives data from the OC-48 interface. It reads POS frames, assembles 
them into packets and removes L2 headers. Next, it classifies packets, polices them and makes a 
forwarding decision. Finally, the ingress processor transmits packets, along with results of the 
ingress classification, towards the CSIX fabric. Prior to transmission, packets are segmented into 
CSIX frames. In this release, the fabric is reduced to a passive loopback between the ingress to 
egress network processors. 

The egress processor reassembles CSIX frames back into IP packets, applies the required QoS 
service, and transmits packets over the POS interface. 
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8.2 Software Overview

8.2.1 Ingress IXP2400 Network Processor - DiffServ/IPv4

Figure 8-2 details the software architecture of DiffServ/IPv4 blocks on the ingress processor. The 
diagram shows mapping of functional blocks to microengines. The physical assignment determines 
inter-microengine communications such as scratch rings or next neighbor registers. The 
arrangement affects also utilization of the internal Command bus and S-Push/Pull buses. 

The DiffServ blocks (shaded boxes) extend the IPv4 POS application (white boxes) described in 
Chapter 2, “OC-48 POS IPv4 Forwarding Application.” 

Figure 8-1. IXDP2400 Advanced Development Platform Overview
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8.2.1.1 Packet RX Microblock

The Packet RX block runs as a context pipeline on one microengine. It reassembles PPP packets 
coming form the OC-48 media interface. The Packet RX microengine uses a scratch ring for 
communication with next blocks. This block is not modified for a DiffServ application. All 
messages posted in scratch/NN rings have the same format as described in Chapter 4, “Packet RX 
Microblock.”

Figure 8-2. IPv4 and DiffServ—Ingress Blocks
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8.2.1.2 DiffServ/IPv4 Functional Pipeline

The DiffServ/IPv4 functional pipe executes in parallel on four microengines. The pipeline is 
organized in a dispatch loop which starts with a 6-tuple classification and metering. In this way, 
packets dropped by a meter do not go through IP lookup. Alternatively, the SRTCM/DSCP blocks 
can be moved after the IPv4 forwarder. In such case, packets with invalid headers—for example, 
TTL expired—won't get unnecessarily metered. 

Both arrangements give the same performance in the worst case when all packets have valid 
headers and are always marked. The ingress dispatch loop can optionally contain WRED 
congestion avoidance (not shown in Table 8-2). 

Note: The ingress-side WRED accommodates multi-blade environments and will not be implemented on 
the IXDP2400 Advanced Development Platform. 

8.2.1.2.1 PPP Decapsulation /Classify Microblock

The PPP decapsulation/classify microblock removes the layer-2 PPP header from the packet. It 
also classifies the packet into IPv4, IPv6, PPP control packet (LCP, IPCP etc.). PPP control packets 
are thrown to the XScale core component. IPv4 packets are passed on to the 6-tuple classifier for 
further processing. IPv6 packets are dropped in this release. 

8.2.1.2.2 6-tuple Classifier Microblock

The 6-tuple classifier microblock performs an exact-match lookup on the IPv4 header. The 
classifier maintains a hash table with statically configured exact-match rules. Thus, a lookup can 
fail only if there is no static rule defined. An empty rule corresponds to best-effort traffic. As a 
result, on lookup failure a packet is assigned to the best-effort service (default rule) and passed on 
for further processing. The classifier core component configures a hash table used by microblock. 
In addition, it handles packets generated by a local TCP/IP stack and exception packets with IP 
header options passed by the classifier microblock.

8.2.1.2.3 TCM Meter Microblock

The TC meter implements two metering algorithms: Single Rate Three Color Meter (SRTCM) 
described in (www.ietf.org/rfc/rfc2697.txt) and Two Rate Three Color Meter (TRTCM) decribed in 
(www.ietf.org/rfc/rfc2698.txt). The algorithms contain a critical section (read-modify-write 
operation). For that reason, only the microblock processes packets, while the core component deals 
with configuration issues. If the core processed packets, it would have to synchronize its operations 
with microengines, in order to avoid corruption of shared data structures. To decrease design 
complexity, it is assumed that Xscale core components do not execute critical sections at all. 

8.2.1.2.4 DSCP Marker Microblock

The DSPC marker updates TOS field in the IP header. This operation does not result in exception 
packets, nor it requires a critical section. 

8.2.1.2.5 IPv4 Forwarder Microblock

The IPv4 Forwarder microblock validates the IP header as per RFC 1812. Invalid packets are 
dropped. Otherwise, a microblock performs Longest Prefix Match (LPM) on the IP destination 
address. The lookup result specifies destination where a packet should be forwarded. This block is 
not modified for a DiffServ application.

www.ietf.org/rfc/rfc2697.txt
www.ietf.org/rfc/rfc2698.txt
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Ideally, IP header sanity checks shall be done prior to 6-tuple classification. Unfortunately, the 
existing IPv4 combines header validation procedure with the LPM algorithm. Thus, a design 
decision is to leave header validation after 6-tuple classification. 

8.2.1.2.6 WRED Microblock

Doing WRED on ingress is optional, since the main aim of RED is to prevent persistent (long-
term) queues. The IXDP2400 Advanced Development Platform simulates switching fabric with a 
hardware loopback. Thus, ingress queuing can have transient character only, if any. For that reason 
in the IXDP2400 Advanced Development Platform, the ingress processor does not include WRED. 

8.2.1.3 Ingress Queue Manager for DiffServ

The ingress Queue Manager performs enqueue/dequeue operations on the hardware-assisted 
SRAM queues. The Queue Manager receives enqueue requests from the IPv4/DiffServ pipeline 
through a scratch ring. Another scratch ring is fed with dequeue requests from the CSIX scheduler. 
When the queue state changes between empty and non-empty, Queue Manager sends a transition 
message to the Scheduler (via Next Neighbor registers). After every dequeue operation, the QM 
passes a transmit request to the scratch ring served by the TX microblock. All messages posted in 
scratch/NN rings have the same format as described in Chapter 2, “System Data Structures and 
Design Choices.”

The only modification is that when WRED block is used, the ingress Queue Manager flushes queue 
lengths and last idle timestamp to SRAM memory. 

Note: In this release, the Ingress Queue Manager for DiffServ is a separate microblock from the Cell-
Based Queue Manager described in Chapter 13, “Queue Manager For OC-48 Microblock.”

8.2.1.4 CSIX Scheduler

This CSIX scheduler selects constant-length packet segments (cframes) to be transmitted to the 
CSIX fabric. The scheduler employs Round Robin (RR) among the fabric ports and Weighted 
Round Robin (WRR) among the port queues. The scheduler handles also flow control messages 
received from the fabric. This microblock is the same as the one used for IPv4 POS, as described in 
Chapter 17, “Fabric Scheduler For OC-48.”

8.2.1.5 CSIX TX Microblock

The CSIX TX microblock receives transmit messages from the Queue Manager and moves packet 
segments (cframes) into a transmit buffer. It also encapsulates cframe payload with a CSIX header, 
and a proprietary Traffic Manager (TM) header. The CSIX/TM headers convey metadata 
information to the egress processor. This microblock is the same as the one used for IPv4 POS, as 
described in Chapter 7, “CSIX TX Microblock.”
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8.2.2 Egress IXP2400 Network Processor—DiffServ/ IPv4

Figure 8-3 details the software architecture of DiffServ/IPv4 blocks on the egress processor. The 
diagram shows mapping of functional blocks to microengines.

8.2.2.1 CSIX RX Microblock

The CSIX RX block reassembles cframe segments back into packets, and restores metadata 
information. Next, it passes a packet to the egress DiffServ blocks, using a scratch ring for 
communication. 

8.2.2.2 DiffServ Functional Pipeline

The next two microengines run an egress-side DiffServ functional pipe stage. The pipeline is a part 
of Per Hop Behaviors implementation. The “canonical” EF PHB implementation comprises a 
priority queue protected with a token bucket rate-limiter—refer to “An Expedited Forwarding 
PHB” (www.ietf.org/rfc/rfc3246.txt). The rate limiter can be satisfied with the properly configured 
SRTCM block. The Assured Forwarding PHB starts with WRED congestion avoidance, followed 

Figure 8-3. IPv4 and DiffServ: Egress Architecture
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by a DRR scheduler. Both SRTCM and WRED algorithms implement a critical section. For that 
reason, only the microblocks process packets. The core component functionality is limited to 
configuration and management procedures.

The PPP encapsulation microblock adds the layer-2 PPP header to the packet and enqueues it to the 
next stage of the pipeline. 

8.2.2.3 Egress Queue Manager

The egress Queue Manager block is virtually identical to its ingress counterpart, except that it 
dequeues packets not segments. Moreover, this block returns dequeue response messages to the 
scheduler. The response contains length of a dequeued packet, which is needed by a DRR 
algorithm. Additionally, it generates enqueue/dequeue message—for each packet and not just upon 
queue transitions between empty and non-empty states. 

8.2.2.4 Egress Scheduler

The Egress Scheduler schedules POS packets to be transmitted over the POS interface. It 
implements Weighted Round Robin (WRR) scheduling among the ports, Strict Priority (SP) 
between two sets of port queues, and Deficit Round Robin (DRR) scheduling among the queues 
belonging to one priority group. 

8.2.2.5 Packet TX Microblock

The Packet TX microblock transmits packets over the POS interface. It moves the packets to the 
transmission buffers of 16 virtual output ports.

8.2.3 Performance Analysis

The analysis is same as for the plain IPv4/POS application—refer to the Section 2.3, “Performance 
Characterization” on page 31. In brief, the IXP2400 operates at 600 MHz. For a min POS packet of 
49B, the packet inter-arrival time at OC-48 line rate is 97 microengine cycles. In order to maintain 
line rate for min packets, each stage of the pipeline cannot exceed this budget. 

8.3 System Data Structures and Resource Allocation 

This section describes system-wide data structures used by DiffServ application. It also describes 
how system resources—for example, microengines, scratch rings, NN rings, memory regions, and 
others—are allocated and used among the different microblocks. This chapter focuses on DiffServ 
blocks; details on plain IPv4/POS structures can be found in the Chapter 2, “System Data 
Structures and Design Choices”. 
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8.3.1 Ingress System Resource Allocation

The allocation of ingress microengines is same as in the plain IPv4/POS application—refer to the 
Section 2.4, “Ingress System Resource Allocation” on page 32. Table 8-1 shows memory regions 
added by DiffServ microblocks. For performance reasons, all DiffServ structures are placed in 
SRAM. However, in a cost-oriented application it is recommended to put hash table in DRAM.

Note: The hash table size can be much smaller in an OC-48 reference application. This is because the 
flow-cache model (with dynamic hash entries) does not scale to high-speed links. Thus, only 
statically configured hash entries are supported, and it is not likely that one configures all 64k of 
rules.

8.3.2 Egress System Resource Allocation

On the egress IXP2400 Network Processor, one microengine is added to accommodate DiffServ 
PHBs, as compared with plain IPv4/POS application. Table 8-2 shows the modified microengine 
allocation.

Table 8-1. Ingress IXP2400 Memory Usage

Item
Size per 

entry 
(in bytes)

Number of 
entries

Total SRAM 
used

Total DRAM 
used

Total scratch 
used

Plain IPv4/POS application - - 9.15MB 64MB 10kB

6-tuple classifier hash table 32 64k 2 MB

6-tuple classifier collision 
chains 32 32k 1 MB

6-tuple classifier 64-bit stats 16 96k 1,5 MB

TCM table 64 1k 64 kB

TCM 64-bit stats. 32 1k 32 kB

DSCP classifier table 8 16k 128 kB

DSCP classifier 64-bit stats. 16 16k 256 kB

Total 14.52 MB 64 MB 10 kB

Table 8-2. Egress IXP2400 Microengine Allocation

Microblock ME# Communication with previous block

CSIX RX ME0 Auto-push status from MSF

SRTCM + WRED + PPP encapsulation ME1, ME6 Scratch Ring

Egress QM ME 2 Scratch Ring

Egress Scheduler ME 3 Next neighbor + xfer reflector registers

Packet TX ME4, ME5 (MPHY-16) Scratch ring

Unused (available headroom) ME7
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Table 8-3 shows memory regions added by DiffServ microblocks on the egress processor. 

8.3.3 Buffer Handle

A network processor stores packets in fixed-size buffers, chaining them if needed for large packets. 
Every buffer consists of a buffer data area in DRAM and a packet metadata in SRAM (there is 1-1 
mapping between DRAM buffers and SRAM metadata). For DiffServ application, the data portion 
of a DRAM buffer is 2048 bytes. This size is configurable as long as it is set to a power of two. The 
metadata size is 32 bytes (see Section 8.3.4, “Packet Metadata” on page 109).

A 32 bit long buffer handle uniquely identifies both buffer data area and packet metadata. See 
Chapter 2, “System Data Structures and Design Choices” for details.

8.3.4 Packet Metadata 

Chapter 2, “System Data Structures and Design Choices” describes the generic layout of a packet 
metadata. The first 8 bytes (2 long words) are always the same for every application. The 
remaining fields depend on an application. In a DiffServ scenario, the metadata structure is almost 
the same as defined in Section 2.2, “Packet Meta Data (Buffer Descriptor)” on page 58. The only 
new field is color_id used by SRTCM and WRED blocks. Table 8-4 Packet Metadata structure 

Table 8-3. Egress IXP2400 Memory Usage

Item
Size

per entry
(in bytes)

Number
of

entries

Total
SRAM
used

Total
DRAM
used

Total
scratch

used

Plain IPv4/POS application - - 1.04 MB 64MB 10kB

Queue Descriptors entry 
extension 16 1024 16 kB

SRTCM meter table 64 256 16 kB

SRTCM 64-bit stats. 32 256 8 kB

WRED table 64 256 16 kB

WRED 64-bit stats. 32 256 8 kB

Total 1.11 MB 64 MB 10 kB

Table 8-4. Packet Metadata Structure

LW Bits Size Field Description

0 31:0 32 buffer_next Buffer handle of next buffer in the packet chain

1 31:16 16 buffer_size Buffer size in bytes

15:0 16 offset Offset of the start of data in the buffer in bytes

2 31:28 16 packet_size Total packet size across all chained buffers

15:12 4 free_list_id Free list ID for buffer 

11:8 4 rx_stat Receive Status Flag

7:0 8 header_type Type of header at offset bytes into the packet

3 31:16 16 input_port Input port on ingress processor

15:0 16 output_port Output port on egress processor
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The metadata for the first buffer in a packet chain contains all these fields. For the remaining 
buffers, only the first two long words are relevant. The rest are not used. 

8.4 Interfaces Between the Various Microblocks

8.4.1 Inter-Microengine Messages

This section describes the interfaces between microengines on ingress and egress IXP processors 
for a DiffServ application. The interfaces are described in terms of messages exchanged over 
scratch and NN rings. To ensure backward compatibility and easy migration, most of these 
interfaces are unchanged as compared with the IPv4 reference design described in Section 2.6, 
“Interfaces Between the Various Microblocks” on page 34. This section highlights only 
modifications. 

8.4.1.1 POS RX and Ingress DiffServ/IPv4 Functional Pipeline

Not changed—see Section 2.6.1, “Packet RX and Packet Processing Microengines” on page 35.

8.4.1.2 Ingress DiffServ/IPv4 Functional Pipeline and Ingress Queue 
Manager

Not changed—see Section 2.6.2, “Packet Processing Microengines and Cell Queue Manager” on 
page 35.

8.4.1.3 Ingress Queue Manager and Ingress Scheduler 

Not changed—see Section 2.6.3, “Cell Queue Manager and CSIX Scheduler” on page 36.

4 31:16 16 next_hop_id Identifier of a next hop IP node 

15:8 8 fabric_port Output port for fabric indicating a destination 
blade

7:4 4 reserved Currently not used

3:0 4 nexthop_id_type ID specifying in which table to lookup the 
next_hop_id

5 31:0 32 flow_id Flow id (QoS flow id or MPLS label/flow id) 

6 31:16 16 class_id Relative identifier of a queue within an output 
port

1:0 2 color_id Packet drop precedence level (green, yellow, 
red)

15:2 14 reserved Currently not used

7 31:0 32 packet_next Pointer to next packet (unused in cell mode)

Table 8-4. Packet Metadata Structure (Continued)

LW Bits Size Field Description
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8.4.1.4 Ingress Queue Manager and CSIX TX 

Not changed—see Section 2.6.4, “Cell Queue Manager and CSIX TX” on page 36. 

8.4.1.5 CSIX RX and Egress DiffServ Pipeline

The interface between the CSIX RX pipe-stage and the egress DiffServ functional pipeline is a 
scratch ring. Table 8-5 shows each entry in the scratch ring, which is 4 long words and the message 
format between CSIX RX and egress DiffServ pipeline.

8.4.1.6 Egress DiffServ Pipeline and Egress Queue Manager

Same as interface between ingress DiffServ/IPV4 functional pipeline and the Ingress Queue 
Manager. See Section 2.6.6, “PPP Encap and Packet Queue Manager” on page 37 for details.

8.4.1.7 Egress Queue Manager and Scheduler

Table 8-6 shows the NN Ring Message format between egress Queue Manager and packet 
Scheduler. 

Table 8-5. Message Format Between CSIX RX and Egress DiffServ Pipeline

LW Bits Size Field Description

0 31:0 32 dl_buffer_handle Buffer Handle for the SOP Descriptor

1 31:0 32 dl_eop_buffer_handle Buffer Handle for EOP Descriptor (may be NULL)

2 31 1 valid_bit Must be 1

30:26 5 reserved Not used

25:24 2 color_id Packet drop precedence level

23:16 8 reserved Not used

15:8 8 packet_size Total packet size across buffers

7:4 4 output_port Output port on an egress blade

3:0 4 class_id Relative identifier of an output queue on the output 
port.

Table 8-6. Message Format Between Egress Queue Manager and Scheduler

LW Bits Size Field Description

0

31 1 reserved Not used

30 1 enqueue_event If set to 1, one packet has been enqueued.

29:16 14 reserved Not used

15:0 16 enq_queue_id
Absolute queue identifier for enqueue event 
(queue_id = port_id*QUEUES_PER_PORT + 
class_id)
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8.4.1.8 Egress Queue Manager and POS TX

See Section 2.6.8, “Packet Queue Manager and Packet TX” on page 38

8.4.2 Ingress Dispatch Loop Variables 

Microblocks running on the same microengine constitute a functional pipeline organized in a 
dispatch loop. It is not desirable that every block in a loop reads packet metadata variables and 
writes it back to SRAM. Instead, at the beginning a dedicated block (Dl_source) copies required 
metadata fields to global state variables, which may be cached in registers or local memory. At the 
loop end, another block (Dl_sink) writes back the modified fields to SRAM if necessary. All 
other blocks operate on dispatch loop variables. 

A set of cached variables depends on an application scenario. Table 4 9 lists dispatch loop variables 
relevant for DiffServ blocks in ingress pipeline. Most variables are the same as described in [IXA 
DM], except for color_id. 

1

31 1 reserved Not used

30 1 dequeue_event If set to 1, one packet has been dequeued.

29:24 6 reserved Not used

23:16 8 packet_size Packet size in 128-byte chunks

15:0 16 deq_queue_id
Absolute queue identifier for dequeue event 
(queue_id = port_id*QUEUES_PER_PORT 
+ class_id)

Table 8-6. Message Format Between Egress Queue Manager and Scheduler (Continued)

LW Bits Size Field Description

Table 8-7. Ingress Dispatch Loop Variables for DiffServ Application

Field Name Bits Description

exception_id 8
 Microblocks use this variable when sending packets to the Intel® XScale™ core. 
The exception_id should be set to identifier of a microblock, which generates an 
exception. 

exception_code 8 
The microblock sets an 8-bit exception code when a packet is sent to the Intel® 
XScale™ core component. The code is opaque to dispatch loop and Resource 
Manager.

dl_next_block 8 Identifier of a next microblock to continue with packet processing. 

dl_buf_handle 32 The handle for the buffer containing the start of the packet.

dl_packet_size 16 The total length of the packet across multiple buffers.

dl_input_port 16 The logical port number on which the packet was received on an ingress blade. An 
existing POS application supports 16 ports.

dl_output_port 16 The logical port number where a packet is to be transmitted on an egress blade. An 
existing POS application supports 16 ports.

dl_fabric_port 8 Identifier of an egress blade (used when multiple blades are connected to the 
switching fabric).

dl_header_type 4 The type of packet stored at "offset" bytes in a DRAM buffer.

dl_next_hop_id 16 The IP next hop identifier, pointing to forwarding information.
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A microblock never accesses these variables directly. Instead, it uses a set of helper functions, 
which are provided as a part of IXA framework. 

8.4.3 Egress Dispatch Loop Variables 

On egress, the functional pipeline comprises SRTCM meter and WRED congestion avoidance. 
These blocks implement DiffServ Per Hop Behaviors. Table 8-8 lists dispatch loop variables 
relevant for these blocks. 

The egress DL source does not need to retrieve the above variables from a metadata structure in 
SRAM. It can reconstruct them from a message received over a scratch ring from the CSIX RX 
microblock. Moreover, the egress DL_sink does not need to flush dispatch loop variables back to 
SRAM, because they are needed no longer. 

dl_nexthop_id_t
ype 4 The type of table where the next_hop_id is defined.

dl_flow_id 32 The flow identifier used for packet metering and policing.

dl_class_id 16 The relative identifier of an output queue, within an output port. This is set when 
classifying packets for QoS processing.

dl_color_id 2 The packet dropping precedence level, often referred to as green, yellow or red 
color.

Table 8-7. Ingress Dispatch Loop Variables for DiffServ Application (Continued)

Field Name Bits Description

Table 8-8. Egress Dispatch Loop Variables for DiffServ Application

Field Name Bits Description

dl_next_block 8 Identifier of a next microblock to continue with packet processing. 

dl_buf_handle 32 The handle for the buffer containing the start of the packet.

dl_packet_size 16 The total length of the packet across multiple buffers.

dl_header_type 4 The type of packet stored at “offset” bytes in a DRAM buffer.

dl_next_hop_id 16 The IP next hop identifier, pointing to forwarding information.

dl_output_port 16 The logical port number where a packet is to be transmitted on an egress blade. An 
existing POS application supports 16 ports.

dl_flow_id 32 The flow identifier used for packet metering and policing.

dl_class_id 16 The relative identifier of an output queue, within an output port. This is set when 
classifying packets for QoS processing.

dl_color_id 2 The packet drop precedence level, often referred to as green, yellow or red color.
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8.5 Dynamic Behavior

8.5.1 Ingress Data Flow

This section presents data flow between microblocks on an ingress network processor. The data 
flow is discussed in terms of metadata variables (recall Section 8.2.3, “Performance Analysis” on 
page 107) transmitted along with a packet. Brackets indicate variables that are set in a former block 
(right bracket) or consumed by a next block (left bracket).

The Packet RX block first sets up three long words of a metadata structure in SRAM (refer to 
Table 2-3, “Packet Metadata Format” on page 58). It also puts a buffer handle into a scratch ring 
served by IPv4/DiffServ pipeline. Along with a buffer handle, it copies the following metadata 
variables to scratch ring:

• offset—Offset of the start of packet data in the DRAM buffer.

• input_port—Identifier of an input port, where a packet was received. 

• packet_size—Total size of a packet in bytes.

The scratch ring also conveys other metadata variables, not relevant to DiffServ blocks. 

The IPv4/DiffServ functional pipeline begins with a dispatch loop source microblock (not shown in 
the figure). The block loads dispatch loop variables with metadata values received in a scratch ring. 
It also fetches the first 20 bytes of a packet header at offset in a DRAM buffer, and caches them 
inside a microengine. All subsequent blocks constituting the functional pipeline operate on 
dispatch loop variables and the cached packet header. 

• The PPP decapsulation/classifier block removes L2-PPP header by updating packet_size 
and offset metadata fields. It also sets header_type based on the PPP fields. DiffServ Ingress 
pipeline do not support IPv6 packets, so the PPP decapsulation/classifier block drops them.

• The 6-tuple classifier takes selected fields of an IPv4 header and the input port as a lookup key. 
Ideally, the classification stage should be preceded by IP header sanity checks. However, it is 
not clear if this part of the code can be easily separated from the IPv4 forwarder.
The lookup result contains flow_id (identifier of a packet flow) and class_id (a relative 
identifier of a target QoS queue). The class_id determines both the internal QoS class on the 

Table 8-9. IPv4 and Diffserv Ingress Dispatch Loop Variables

Metadata POS RX + 
decap

DSCP 
classif.

6-tuple 
classif TCM IPv4 

fwd WRED QM + 
Sched

CSIX 
TX

packet header > < < <

input_port > < < <

packet_size > < < <

flow_id > > < > <   

class_id > > < < <

color_id > > (<) > < <

output_port > <

fabric_port > < < <

next_hop_id > > <

next_hop_id_type > >
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switching fabric, as well as a target queue on the output port. If the switching fabric does not 
support QoS differentiation, the ingress IXP2400 or IXP2800 Network Processor simply 
ignores class_id. To accommodate color-aware SRTCM, the classifier may also set 
color_id. 
If a hash table lookup fails, the classifier sets default values the above metadata variables. 
Depending on configuration, such packets can be then redirected to XScale core component 
(flow-cache model) or processed in microengine according to default flow_id and 
class_id. The classifier supports four outputs: one for metered packets, one for marked 
packets, one for packets handled in ME without marking/metering, and one for invalid packets 
(exception thrown to XScale). 

• The SRTCM block takes flow_id as an index to a meter instance table. The microblock 
measures temporal flow characteristics (using packet_size), and divides packets into three 
conformance levels. It writes a conformance level to color_id variable, and updates relevant 
statistics in SRAM. A conformance level for a given flow_id can be configured with a drop 
or pass action. If a packet is allowed to pass, the microblock updates flow_id variable with 
the packet mark value—for example, DSCP value. 

• A DSCP marker block writes flow_id into the TOS field and updates IP header checksum. A 
standalone marker allows bypassing SRTCM, if metering is not needed. 

• The IPv4 forwarder validates an IP header. For valid packets, it performs Longest Prefix 
Match lookup on IP destination address. It stores the following information in dispatch loop 
variables: 

— identifier of an egress blade (fabric_port)

— identifier of an output port on that blade (output_port)

— identifier of next-hop data that can be used by L2 encapsulation on an egress blade 
(next_hop_id).

On an IXDP2400 Advanced Development Platform, there is no ingress WRED. However, this 
block can be used in multi-blade configurations. If included, this block would calculate a 
queue number from fabric_port and class_id. In addition, the packet color_id selects the 
WRED instance. In case of congestion, WRED randomly drops packets and updates statistics. 
It does not change dispatch loop variables (except for dl_next_block). 

The IPv4/DiffServ functional pipeline ends with a dispatch loop sink microblock (not shown in the 
figure). This block writes dispatch loop variables to SRAM metadata. 

The sink block of a functional pipe stage sends enqueue messages to Queue Manager. The enqueue 
message contains an absolute queue_id constructed from fabric_port and class_id. The 
composite queue_id is also exchanged between the Queue Manager and the CSIX scheduler, 
inside enqueue/dequeue transition messages—refer to the Chapter 2, “System Data Structures and 
Design Choices” for details. 

Once a packet is scheduled for transmission, it goes to the CSIX TX. The following metadata 
variables are transmitted over the switching fabric along with a packet: 

• packet_size (in CSIX-L1 base header)—needed by egress CSIX RX

• class_id (in CSIX-L1 extension header)—needed by egress WRED

• flow_id (in TM header)—not needed, unless a DSCP re-classifier is used

• color_id (in TM header)—needed by egress WRED 

• output_port (in TM header)—needed by egress WRED & POS TX

• next_hop_id (in TM header)—needed by POS encapsulation
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8.5.1.1 Ingress Core Components

Figure 8-4 illustrates slow path in the POS DiffServ application. Packets coming from local IP 
stack are directed to the DSCP classifier core components. The core component does not receive 
any exception packets. It performs classification in the same way as its microblock. If a packet 
corresponds to an input port that does not have its classification rules, the packet is directed to the 
default output that is bound to 6-tuple exact match classifier core components. If a packet requires 
traffic conditioning, the core component passes it to TC meter core components. If the packet 
requires DSCP value remarking, the core component sets the new DSCP value in the IP header by 
itself. Next all the packets that do not need metering are passed to the IPv4 forwarder core 
components. 

Figure 8-4. Slow Path for POS DiffServ Application
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The 6-tuple exact match classifier core component receives local packets not classified by the 
DSCP core components. It also gets packets with IP header options sent from 6-tuple classifier 
microblock as exception packets. The 6-tuple core component classifies packets in the same way as 
its microblock. If the packet requires traffic conditioning, they are passed to the TC meter core 
components. If the packets only require DSCP remarking, the classifier core component sets the 
new DSCP value in the packet header. Next the classfier sends all the packets that do not need 
metering to the IPv4 forwarder.

The TC meter core components does not meter the packets coming from the classifier blocks, but it 
sends them to its microblock. This avoids implementing critical section shared between the core 
component and the microblock.

The IPv4 forwarder core components receives exception packets from its microblock. It also gets 
packets from the classifier blocks. It performs the same action on the received packets as the IPv4 
forwarder microblock. It is it does LPM lookup and sets the lookup results in the packet meta-data. 
It passes the packet directed to the local IP stack to the Local Stack Driver. The packets forwarded 
to the egress processor are either sent to WRED core components (if ingress WRED is used) or to 
the QM core components. The forwarder core component also generates ICMP packets that are 
directed to the egress processor.

Both WRED core components and QM core components do not process the packets by themselves, 
but they pass the packets to their counterparts in microengines.

All the core components used on the ingress processor are responsible for initializing their 
microblocks and setting configuration tables used by the blocks. The core components expose API 
functions used by the System Application to configure the blocks.

Additional core components not shown in the figure are POS RX core components, CSIX TX core 
components and Scheduler core components. POS RX core component initializes Packet RX 
microblock and receives PPP LCP/IPCP control packet sent from the microblock as exception 
packets. The core component drops the packets. However in other applications the control packets 
can be captured by other component. The component also exposes functions for reading ingress 
POS interface state and statistics of the received packets.

CSIX TX core components initializes the CSIX TX microblock and implements a function for 
reading statistics of packets transmited over the switch fabric.

Scheduler core components initializes its corresponding microblock and fills up the configuration 
array used by the micrblock for WRR algorithm.

8.5.2 Egress Data Flow

8.5.2.1 Microblock Egress Pipeline

As per DiffServ MIB [RFC3270], a PHB program is configured for each output port and QoS class. 
The variables output_port and class_id are available in CSIX RX. Thus, the egress processor does 
not need to re-classify packets. However, the EF PHB program can start with SRTCM, while AF 
PHB typically begins with WRED. 

The PHB entry point is derived from the class_id value. If class_id indicates a high-priority queue, 
a packet is passed on to TCM. Otherwise, a packet goes to WRED. Both microblocks send packets 
to PPP encapsulation and then to Queue Manager. This corresponds to a typical PHB 
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configuration, where TCM and WRED blocks are mutually exclusive. Basically, there is no point 
in doing WRED on a priority queue, since the average queue size should be close to zero. 
Conversely, a queue protected with WRED needs no rate-limiter.

Table 8-10 shows packet metadata transmitted along with a packet. 

The egress datapaths starts with the CSIX receiver, which resembles CSIX frames and stores 
packets in DRAM buffers. It also restores metadata variables conveyed over the fabric. The block 
puts a buffer handle into a scratch ring served by IPv4/DiffServ pipeline. Along with a buffer 
handle, the microblock copies to scratch ring selected metadata variables, as specified in Table 8-5. 

The egress functional pipeline begins with a dispatch loop source microblock (not shown in the 
figure). It reads scratch ring messages and restores dispatch loop variables. It also constructs 
flow_id variable for SRTCM block. Note that the ingress NP sets flow_id to a DSCP value. This is 
not enough to discriminate between EF PHBs configured for different output ports. For that reason, 
the DL source block overrides flow_id with a combination of output_port and class_id.

The TCM block uses flow_id, prepared by a DL source, to police EF traffic stream on a given 
interface. Only two conformance levels are used: in- and out-of-profile packets. The block is 
configured so that it drops excessive packets, while in-profile packets are placed in output queues.  

The egress WRED block calculates a queue number from output_port and class_id. The remaining 
operations are same as for the ingress WRED block. 

The PPP encapsulation block checks if next_hop_id is different than -1. If true, it adds the PPP 
header to the packet based on the header_type. 

The IPv4/DiffServ functional pipeline ends with a dispatch loop sink microblock (not shown in the 
figure). This block does not need to update SRAM metadata descriptor, as the variables modified 
by TCM will be no longer used. 

The data flow between egress Scheduler, egress QM and POS TX is the same as in [IXA DM].

8.5.2.2 Egress Core Components

The egress core components are:

• CSIX RX core components

• WRED core components

• TC meter core components

• QM core components

Table 8-10. MPLS, IPv4 and Diffserv Egress Dispatch Loop Variables

Metadata CSIX RX TCM WRED PPP encap QM + Sched POS TX

packet_ size > < <

flow_id > < >   

class_id > < <

color_id > <  > <

output_ port > < < <

next_hop_id > <



Software Building Blocks Applications Design Guide 119

DiffServ for POS Application

• Scheduler core components

• ATM/POS TX core components

The core components residing on the egress processor does not implemente a slow path. They are 
only responsible for initializing the egress microblocks and for setting configuration data strcutures 
used by the microblocks. In addition, the ATM/POS TX core components is responsible for 
initialisation and configuration of the ATM/POS framer device.

8.6 Sending Packets from Core Components to 
Microblocks

Some DiffServ core components do not process local and exception packets in slow path, but direct 
the packets to their microblocks (for example, TCM core components forwards packets to TCM 
microblock in order to avoid implementation of cirtical section between the core component and 
the microblock). In particular, a core component must be able to send packets to a microblock 
residing in the middle of a functional pipeline. For this reason the core component should send not 
only the SOP buffer handle but also an identifier of the microblock to which the packet is 
directed.b

Core components cannot write packets to the scratch ring preceding the microblock (it is the 
scratch ring used by the preceding microengine), because Xscale core cannot write atomically to a 
scratch ring more than a single LW and messages put to the scratch rings usually are more than 1 
LW long. Therefore Xscale must use a separate scratch ring for sending packets to each 
microengine. However, if the functional pipeline runs on more than one microengine and it does 
not matter on which microengine the packet will be processed, only one scrach ring is needed per a 
functional pipeline. 

If the DiffServ core components are run in different threads, writing to the scratch ring must be 
synchronized so as not to mismatch messages from different core components. 

On the core component level, the packets are sent to a communication ID common for the whole 
communication from core components to micrblocks in IPv4/DIffServ pipeline. System 
Application is responsible for binding the communication ID to appropriate scratch ring and to 
register a packet handler function that builds messages to MEs and writes them to the ring.

Table 8-11 describes the format of messages exchanged between DiffServ core components and 
DiffServ functional pipeline..

Table 8-11. DiffServ Core Components to Diffserv Pipeline Message Fields

LW Field Name Bits Size (in 
bits) Description

0 SOP buffer handle 31..0 32 Handle to the buffer containing the first part of the 
packet

1 EOP buffer descriptor 31..0 32
Handle to the buffer containing the last part of the 
packet. If the packet fits single buffer, the field 
contains zero value. 

2 Reserved 31..8 24 Unused

Microblock ID 7..0 8
Identifier of the microblock that should start 
processing the packet. The source macro uses tha 
value to set dl_next_block variable.
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Assuming that the core components pass packets to microblocks rarely, only one thread on one ME 
running the functional pipeline reads the scratch ring from Xscale. This minimizes the number of 
empty read operation from the scratch ring. 

Figure 8-5 illustrates the algorithm performed by the source macro called by this thread. First the 
macro checks whether the read operation issued in the previous dispatch loop round has completed. 
If not it swaps out waiting for the end of the operation. Next the macro checks if the ring is empty. 
If the ring is empty, it handles the scratch ring from the previous ME. Otherwise, it sets 
dl_buffere_handle, dl_eop_buffer_handle and dl_next_block variables according 
to the values in the message retrieved from the Xscale scratch ring. It also caches the packet meta-
data and the packet header. 

Figure 8-5. Handling Xscale Scratch Ring by the Source Macro
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8.7 Statistics Handling

An IXP2400 SRAM controller supports atomic operations such as add or increment. It is quite 
tempting to use this feature for statistics updates. However, another option is possible if a 
microblock uses a folding technique (like SRTCM or WRED). Essentially, a microblock can 
include statistic updates within a critical section. Figure 8-6 illustrates both approaches. 

Four memory references are the main drawback of the left-side approach (a). In addition, atomic 
operations have to be always performed, independently of CAM hit. On the contrary, the right-side 
algorithm (b) causes longer memory bursts. Moreover, this method always reads statistics counters, 
even if an update is not needed (turned off dynamically). 

Figure 8-6. Statistics Update—Atomic Operations and Within a Critical Section
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Nevertheless, it seems more beneficial to perform two long memory accesses than four short ones. 
This section provides a performance comparison of both approaches. Simulator-based experiments 
exhibit the following performance of SRAM controller:

• 1 atomic operation blocks SRAM controller for about 30 cycles.

• 1 long word memory access blocks SRAM controller for about 3 cycles. Every next long word 
in a memory burst blocks SRAM controller for another 3 cycles, that is:

— 8 long words memory access blocks SRAM controller for about 24 cycles.

— 16 long words memory access blocks SRAM controller for about 48 cycles.

From the above calculation, it follows that an atomic SRAM operation is as expensive as reading/
writing a burst of 10 long words. Considering SRAM controller utilization, the approach (b) shall 
perform better if statistics data comprises less than 10 long words. In fact, both SRTCM and 
WRED blocks need 6 long words for statistics. The approach (b) shown in Table 8-12 can be even 
more advantageous, if CAM hits occur. 

Table 8-12 shows a detailed comparison of both approaches for different usage scenarios, assuming 
6 long words for counters. The cycle count overhead corresponds to one processed packet. 

The method (b) behaves significantly better if statistics are updated. Due to non-linear queuing 
characteristics, the advantage can be greater than gain expressed in cycle counts. If a method (a) 
runs concurrently on 4 microengines in a functional pipe stage, the 60 cycle overhead per packet is 
enough to overload the SRAM controller command bus. As a result of command bus overflow, 
microengines are halted and performance drops drastically. 

Overflows do not happen in method (b). This feature compensates deficiency caused by surplus 
memory reads if statistics update is not needed. For the above reasons, the method (b) is 
recommended and used in blocks implementing a critical section. 

Table 8-12. Statistics Overhead at SRAM Controller

Scenario
Statistics Update No Update Needed

All CAM Misses Max CAM Hits All CAM Misses Max CAM hits

(a) using atomic operations1

1. 3 cycles are always used to read the statistics counter location (one long word).

63 60 3/8 3 3/8 

(b) within a critical section 36 4 4/8 18 2 2/8 

Gain: (b) – (a) + 30 + 55 7/8 - 15 - 1 7/8 
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This section describes a DiffServ application for ATM implemented on two half duplex Intel® 
IXP2400 Network Processors connected to a CSIX switch fabric. It provides a high-level design 
overview and lists the different software components used to build this application.

The application described in this chapter is supported on the Intel® IXDP2400 Advanced 
Development Platform.

9.1 Hardware Architecture

The DiffServ for ATM application runs on the same hardware platform as plain ATM Application 
Intel® Internet Exchange Architecture Portability Framework Developer’s Manual. The platform 
consists of two IXP2400 processors. The ingress processor receives ATM cells from Media 
interface (ATM Framer), performs ingress DIffServ/IPv4 processing and sends the IP datagrams 
segmented into CSIX C-frames to the CSIX fabric. 

The egress processor receives CSIX C-Frames from the fabric, reassembles these into IPv4 
datagrams and performs egress DiffServ processing. Next the IPv4 datagrams are encapsulated into 
LLCSNAP packets, segmented into ATM cells and transmitted over the appropriate ATM physical 
port.

9.2 Software Architecture

9.2.1 Ingress IXP2400 

Figure 9-1 illustrates the software architecture of ATM/DiffServ/IPv4 blocks on the ingress 
processor. The diagram shows mapping of functional blocks to microengines. The physical 
assignment determines inter-microengine communications, such as scratch rings or next neighbor 
registers. The arrangement affects also utilization of the internal Command bus and S-Push/Pull 
buses. 

The DiffServ blocks (shaded boxes) extend an existing IPv4 reference design (white/clear boxes).
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9.2.1.1 Ingress Microblock Pipeline

9.2.1.1.1 ATM RX

The ATM RX block is the same microblock as used in the ATM application. It runs on two 
microengines. The block reassembles ATM cells coming from the media interface into AAL5 
PDUs, writes them into DRAM and queues the packet buffer handle on a ME-ME scratch ring for 
processing by the next stage. 

In DiffServ for ATM application, the DiffServ/IPv4 functional pipe executes in parallel on three 
microengines. The pipeline is organized in a dispatch loop, which starts with a 6-tuple 
classification and metering. In this way, packets dropped by a meter do not go through IP lookup. 
Alternatively, the TCM/DSCP blocks can be moved after the IPv4 forwarder. In such case, packets 
with invalid headers—for example, TTL expired, does not get unnecessarily metered. Both 
arrangements give the same performance in the worst case, when all packets have valid headers 

Figure 9-1. Software Architecture of ATM/DiffServ/IPv4 blocks on the Ingress Processor
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and are always marked. The ingress dispatch loop can optionally contain WRED congestion 
avoidance (not shown in Figure 9-1). The ingress-side WRED accommodates multi-blade 
environments, and will not be implemented on Angel Island hardware platform. 

9.2.1.1.2 LLCSNAP Decapsulation/Classify

The LLCSNAP decapsulation/classify microblock checks if the header type in the meta-data has 
been set to LLCSNAP. If the packet uses LLCSNAP encapsulation the block removes the 
LLCSANP header from the packet. It also classifies the packet into IPv4, IPv6, and so on. If the 
packet is not using the LLCSNAP encapsulation, the packet classification (dl_next_block) is 
done based on the value of the header type field in the packet meta-data. IPv4 packets are passed on 
to the 6-tuple classifier for further processing. IPv6 packets are dropped in this pipeline. 

9.2.1.1.3 6-tuple Classifier

The rest of the function pipestage is nearly the same as for POS application. First packets go to 
DCSP classifier microblock that performs packet classification basing on input port and DSCP 
value carried in the packet header. If the packet matches a classification rule it is either directed to 
TC meter block or DSCP marker block. If the classification fails, the packet is directed to 6-tuple 
classifier microblock that performs an exact-match lookup on the IPv4 header and classifies the 
packets into QoS flows. In ATM scenario, each VC is associated with a single queue. IPv4 
fowarder decides to which VC a packet is directed. For this reason, the class ID variable set in the 
6-tuple classifier microblock is not used at egress. 

After QoS classification the packets are metered by TCM implementing the metering algorithms 
described in [RFC2697] and [RFC2698].  Then DSCP marker updates TOS field in the IP header. 

9.2.1.1.4 IPv4 Forwarder

The IPv4 Forwarder microblock validates the IP header as per RFC 1812. Invalid packets are 
dropped. Otherwise, a mircoblock performs Longest Prefix Match (LPM) on the IP destination 
address. The lookup result specifies destination where a packet should be forwarded.

9.2.1.1.5 Queue Manager

The ingress Queue Manager performs enqueue/dequeue operations on the hardware-assisted 
SRAM queues. The QM receives enqueue requests from the IPv4/DiffServ pipeline through a 
scratch ring. Another scratch ring is fed with dequeue requests from the CSIX scheduler. When the 
queue state changes between empty and non-empty, QM sends a transition message to the 
Scheduler (via Next Neighbor registers). After every dequeue operation, the QM passes a transmit 
request to the scratch ring served by TX microblock. All messages posted in scratch/NN rings have 
the same format as described in Section 2.6, “Interfaces Between the Various Microblocks” on 
page 34. 

9.2.1.1.6 CSIX Scheduler

This CSIX scheduler selects constant-length packet segments (cframes) to be transmitted to the 
CSIX fabric. The scheduler employs Round Robin (RR) among the fabric ports and Weighted 
Round Robin (WRR) among the port queues. The scheduler handles also flow control messages 
received from the fabric. This block is not modified.
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9.2.1.1.7 CSIX TX Microblock

The CSIX TX microblock receives transmit messages from the QM, and moves packet segments 
(cframes) into a transmit buffer. It also encapsulates cframe payload with a CSIX header, and a 
proprietary Traffic Manager (TM) header. The CSIX/TM headers convey metadata information to 
the egress processor. This block is not modified.

9.2.1.2 Ingress Core Components

DiffServ for ATM application uses the same set of ingress core components as desccribed for 
Diffserv POS application in Section 8.5.1.1, “Ingress Core Components” on page 116. The core 
components form the same slow path. 

9.2.2 Egress IXP2400

Figure 9-2 illustrates the software architecture of DiffServ/IPv4/ATM blocks on the egress 
processor and mapping of functional blocks to microengines. 

Figure 9-2. ATM, IPv4 and DiffServ—Egress Architecture
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The CSIX RX block is the same as used in POS application. It reassembles cframe segments back 
into packets, and restores metadata information. Next, it passes a packet to the egress WRED 
microblock, using a scratch ring for communication. 

The next two microengines run an egress-side DiffServ functional pipe stage. The pipe stage starts 
with the LLCSNAP encapsulation microblock. It is the same block as used in IPv4/ATM 
application. It adds the LLCSNAP header to the packet and sets VC queue number identifying the 
queue to which the Queue Manager shall put the packet. The encapsulation block uses the next hop 
id as an index into a table with layer-2 header information. This table contains both the LLCSNAP 
header as well as the Virtual Circuit (VC) Queue information for the packet.

The next element of the functional pipe stage is WRED congestion avoidance. WRED uses VC 
queue number as a queue identifier instead of combination of output port and class ID. At the end 
of the pipeline packets are passed to Queue Manager microengine. 

The egress Cell Queue Manager block is similar to that used in plain ATM application. The only 
modification required by WRED is flushing queue idle timestamp on every transition of a queue 
state from non-empty to empty. 

The rest of microblocks—Chapter 23, “TM4.1 Shaper and Scheduler Microblock” and Chapter 11, 
“ATM AAL5 TX Microblock” are used unmodified.

9.2.3 Performance Analysis

The analysis is same as for plain IPv4/ATM application (see Chapter 2, “OC-48 POS IPv4 
Forwarding Application” and Section 4.2.4, “Performance Characterization” on page 58). In brief, 
IXP2400 operates at 600 MHz. For a min AAL5 packet of 2*53B, the packet inter-arrival time at 
OC-48 line rate is 210 microengine cycles. In order to maintain line rate for min packets, each 
stage of the pipeline cannot exceed this budget. 

9.3 System Data Structures, Interfaces, and Resource 
Allocation 

This section briefly depicts system-wide data structures used by DiffServ for ATM application. It 
also describes how system resources—for example, microengines, scratch rings, NN rings, 
memory regions, and so on, are allocated and used among the different microblocks. This chapter 
focuses on DiffServ blocks, while details on plain IPv4/ATM structures can be found in Chapter 4, 
“OC-48 ATM IPv4 Forwarding Application”.

9.3.1 Ingress System Resource Allocation

The allocation of ingress microengines is same as in the plain IPv4/ATM application - refer to 
Section 4.2.3, “Dispatch Loop” on page 56. Table 9-1 shows memory regions added by DiffServ 
microblocks. For performance reasons, all DiffServ structures are placed in SRAM. However, in a 
cost-oriented application it is recommended to put hash table in DRAM.
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Note: The hash table size can be much smaller. This is because the flow-cache model (with dynamic hash 
entries) does not scale to high-speed links. Thus, only statically configured hash entries are 
supported, and it is not likely that one configures all 64k of rules. 

9.3.2 Egress System Resource Allocation

On egress IXP2400, one microengine is added to accommodate DiffServ PHBs, as compared with 
plain IPv4/POS application. Table 9-2 shows the modified microengine allocation. 

Table 9-3 shows memory regions added by DiffServ microblocks on egress processor.

Table 9-1. Ingress IXP2400 Memory Usage

Item Size per entry 
(in bytes)

Number of 
entries

Total SRAM 
used

Total 
DRAM 
used

Total scratch 
used

plain IPv4/ATM application - - 14.4 MB 64 MB 10 kB

6-tuple classifier hash table 32 64k 2 MB

6-tuple classifier collision chains 32 32k 1 MB

6-tuple classifier 64-bit stats 16 96k 1,5 MB

TCM table 64 1k 64 kB

TCM 64-bit stats. 32 1k 32 kB

DSCP classifier table 8 16k 128 kB

DSCP classifier 64-bit stats. 16 16k 256 kB

Total 19.3 MB 64 MB 10 kB

Table 9-2. Egress IXP2400 Microengine Allocation

Microblock ME# Communication with previous 
block

CSIX RX ME 0 Auto-push status from MSF

WRED + LLCSNAP encapsulation ME 2, ME3 Scratch Ring

Egress Cell QM ME 4 Scratch Ring

TM 4.1 Shaper ME 5 Next neighbor

TM 4.1 Writeout / Scheduler ME 6 Scratch Ring

AAL5 TX ME1, ME7 (SPHY-4) Scratch Ring

Table 9-3. Egress IXP2400 Memory Usage

Item Size per entry 
(in bytes)

Number of 
entries

Total SRAM 
used

Total 
DRAM 
used

Total scratch 
used

Plain IPv4/ATM 
application - - 2.13 MB 64MB 10kB

Queue Descriptors entry 
extension 16 1024 16 kB
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9.3.3 Buffer Handle

The DiffServ for ATM application uses the same buffer handle as described in Section 8.3.3, 
“Buffer Handle” on page 109 for DIffServ POS application. 

9.3.4 Packet Metadata 

The DiffServ for ATM application uses the same Packet Metadata layout as described in 
Section 8.3.4, “Packet Metadata” on page 109 for DIffServ POS application. 

9.4 Interfaces Between the Various Microblocks

9.4.1 Inter-Microengine Messages

This section describes the interfaces between microengines on ingress and egress IXP processors 
for the ATM DiffServ application. The interfaces are described in terms of messages exchanged 
over scratch and NN rings. To ensure backward compatibility and easy migration, most of these 
interfaces are unchanged as compared with the IPv4 reference design described in Section 4.5, 
“Interfaces Between the Various Microblocks” on page 61. This section highlights only 
modifications. 

9.4.1.1 AAL5 RX and Ingress DiffServ/IPv4 Functional Pipeline

The same as in plain ATM application—see Section 4.5.2, “Packet Processing Microengines and 
Cell Queue Manager” on page 61.

9.4.1.2 Ingress DiffServ/IPv4 Functional Pipeline and Ingress Queue 
Manager

See Section 4.5.2, “Packet Processing Microengines and Cell Queue Manager” on page 61.

9.4.1.3 Ingress Queue Manager and Ingress Scheduler 

See Section 4.5.3, “Cell Queue Manager and CSIX Scheduler” on page 61.

9.4.1.4 Ingress Queue Manager and CSIX TX 

See Section 2.6.4, “Cell Queue Manager and CSIX TX” on page 36. 

WRED table 64 1024 64 kB

WRED 64-bit stats. 32 1024 32 kB

Total 2.24 MB 64 MB 10 kB

Table 9-3. Egress IXP2400 Memory Usage

Item Size per entry 
(in bytes)

Number of 
entries

Total SRAM 
used

Total 
DRAM 
used

Total scratch 
used
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9.4.1.5 CSIX RX and Egress DiffServ Pipeline

The interface between the CSIX RX pipe-stage and the egress DiffServ functional pipeline is the 
same as in plain ATM application. See Section 4.5.5, “CSIX RX and LLCSNAP Encapsulation” on 
page 62

9.4.1.6 Egress DiffServ pipeline and Egress Cell Queue Manager

Same as interface between ingress DiffServ/IPV4 functional pipeline and the Ingress Queue 
Manager. See Section 4.5.6, “LLCSNAP Encap and Cell Queue Manager” on page 62 for details.

9.4.1.7 Egress Cell Queue Manager and TM4.1 Shaper

See Section 4.5.7, “Cell Queue Manager and RR Scheduler for ATM” on page 62.

9.4.1.8 TM4.1 Shaper and TM 4.1 Writeout/Scheduler

See TM4.1 Shaper and Scheduler.

9.4.1.9 RR Scheduler and Egress Cell Queue Manager 

Not changed—see Section 4.5.8, “RR Scheduler to Cell Queue Manager” on page 63.

9.4.1.10 Egress Queue Manager and AAL5 TX

Not changed—see Section 4.5.9, “Cell Queue Manager and AAL-5 TX” on page 63.

9.4.2 Ingress Dispatch Loop Variables 

The DiffServ microblocks running in Ingress ATM DiffServ pipeline use the same dispatch loop 
variables as in Ingress POS DiffServ pipeline specified in Section 8.4.2, “Ingress Dispatch Loop 
Variables” on page 112.

9.4.3 Egress Dispatch Loop Variables 

Unlike the DiffServ POS application, WRED should use VC queue number as a logical queue 
identifier. In order to change the WRED microblock, the egress DiffServ dispatch loop sets class 
ID variable to VC queue number and the output port variable to 0. The color ID used by WRED 
microblock is left unaltered—it is equal to the value set by the TCM block on ingress. The rest of 
egress microblocks uses the same dispatch loop variables as in plain ATM/IPv4 application.
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This chapter provides a high-level design overview of an MPLS forwarding application and lists 
the different software components used to build this application.

The application described in this chapter is supported on the Intel® IXDP2400 Advanced 
Development Platform.

10.1 Input/Output Media Independence

The MPLS forwarder building blocks design is based on the assumption that MPLS processing is 
separated from the packet receive and transmit microblocks. This separation hides the media-
specific encapsulation details from the MPLS forwarder and enables MPLS forwarder building 
blocks reuse for Ethernet, POS and ATM. This concept is shown in Figure 10-1. 

The input processing stage receives packets with media-specific encapsulation, e.g. PPP for POS or 
802.3 for Ethernet. It handles all the media-specific details, including any encapsulation processing 
and any re-assembly, for example in case of ATM. The output from this stage is a labeled or un-
labeled packet without media encapsulation, and metadata that is needed for correct MPLS 
processing, e.g. incoming interface number. The implementation of this stage is out of scope of this 
documentation.

The MPLS processing stage begins with the classification of packets into FECs based on the 
attributes in the IP packet or incoming label and incoming interface. Next, it handles any MPLS 
specific processing of the received packet, e.g. creation, management and removal of the label 
stack, exception generation, TTL processing, etc. The output of this stage is an IP packet with or 
without label(s) and any metadata that is required by next stage to dispose off the packet correctly.

The details of MPLS processing depend on the role of the router in MPLS domain and are 
described further.

Figure 10-1. MPLS Flow Processing
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During output processing, packets received from the MPLS processing stage are put in appropriate 
media encapsulation and transmitted. The implementation of this stage is out of scope of this 
documentation.

10.2 MPLS Forwarder Decomposition

The MPLS Forwarder operation depends on the role of the router in the MPLS domain.

An MPLS router can work as the following types of forwarders: 

10.2.1 Ingress LER Generic MPLS Forwarder

The MPLS forwarder operation on an ingress LER is shown in Figure 10-2. 

Incoming IP packets are validated as specified in [RFC1812]. Then they are classified according to 
forwarding equivalency classes (FECs). FECs can be defined by statically provisioned filters 
comprising multiple-field access control lists or IP 6-tuple, and IP destination address longest 
prefix match (LPM). The multi-field classification should be performed first. It the lookup fails, the 
longest prefix match is applied. Up to this point the packet processing is common for both IP and 

Ingress LER placed at the edge of an MPLS domain, receiving 
unlabeled IP packets, labeling them and sending 
to an MPLS next hop

Section 10.2.1, “Ingress LER 
Generic MPLS Forwarder” 
on page 132

LSR placed in the middle of an MPLS domain, 
receiving labeled packets, swapping the labels 
and sending the packets to an MPLS next hop

Section 10.2.2, “LSR 
Generic MPLS Forwarder” 
on page 133

Egress LER placed at the edge of an MPLS domain, receiving 
labeled packets, stripping off the labels and 
sending the packets to an IP next hop

Section 10.2.3, “Egress LER 
Generic MPLS Forwarder” 
on page 134

Figure 10-2. MPLS Forwarding: Data Path for Ingress LER
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MPLS. The 6-tupple Classifier Rules or IP Routing table entries contain flags marking them as 
belonging to either IP or MPLS forwarding path. Therefore a match against each entry determines 
whether further packet processing will be performed by IP or MPLS forwarders. 

If a packet matches an MPLS FEC, the result of the rule or LPM lookup is an MPLS FEC identifier 
(FEC ID). Next, the packet with its meta data containing the FEC ID is passed to the FTN 
Forwarder block.

The FTN Forwarder uses the FEC ID from the packet meta-data as an index into the NHLFE table, 
to obtain a next-hop label forwarding entry assigned to this FEC. This can be either a regular entry, 
or an NHLFE set pointing to multiple NHLFE entries. In the latter case, only one entry is chosen 
by some additional load-balancing algorithm. A regular NHLFE contains information about the 
MPLS next hop, outgoing interface, and initial label(s). It is used by the FTN Forwarder, which 
appends the initial label to the beginning of the IP packet and puts the next hop information into the 
packet's meta data before passing it to a transmitting block.

According to the MPLS forwarder requirements, the 6-tuple and LPM classifiers shall be reused 
between the IP and MPLS components; therefore they are grayed and separated from the FTN 
Forwarder in Figure 10-2. In consequence, they have to be MPLS-aware, that is, the 6-tuple Rules 
and IP Routing table entries have to be distinguishable as either IP or MPLS entries.

10.2.2 LSR Generic MPLS Forwarder

At an MPLS transit node, incoming packets are classified by looking up the pair (top-most label, 
incoming interface) in the Incoming Label Map table. This operation is performed by the ILM 
Forwarder microblock. The ILM table entries contain the NHLFE information, the same as 
described for the ingress FTN Forwarder (outgoing interface, outgoing label, next-hop info). The 
ILM Forwarder performs a label swap or swap-push operation on the label stack and passes the 
MPLS packet to a transmitting microblock, together with meta-data specifying the next hop and 
outgoing interface. Figure 10-3 illustrates this functionality.

Figure 10-3. MPLS Forwarding: Data Path for LSR
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10.2.3 Egress LER Generic MPLS Forwarder

The MPLS forwarder operation on an egress LER is shown in Figure 10-4. 

An egress node of an MPLS network receives labeled packets and performs on them topmost label 
lookups in the same way as in a transit LSR. However, an egress ILM entry indicates that all labels 
should be popped, and does not specify an outgoing label. Furthermore, the packet can be treated in 
two ways. In case of penultimate hop popping (PHP), the resulting unlabeled IP packet is passed 
directly to a transmitting microblock to be sent to its next hop over the outgoing interface specified 
in the ILM entry. Otherwise, the IP packet is passed to the local IP forwarder microblock for route 
lookup and forwarding.

10.2.4 MPLS Forwarder Building Blocks

The discussion from Sections 10.2.1, 10.2.2 and 10.2.3 implies that implementation of the MPLS 
forwarder functionality requires the following building blocks:

• FTN Forwarder - for ingress LERs

• ILM Forwarder- for LSRs and egress LERs

In practice, most MPLS nodes can receive unlabeled as well as labeled packets, and transmit 
labeled and unlabeled packets. Therefore, the MPLS forwarder should comprise components for all 
types of nodes - ingress and egress LERs, and transit LSRs.

The FTN Forwarder for ingress LERs depends on the IP 6-tuple classifier and IPv4 LPM 
microblocks. They are functional parts of other building blocks, and are described in their 
respective chapters of this document. 

According to the IXA Portability Framework, the MPLS forwarder building block design follows 
the two-level software architecture. Figure 10-5 illustrates the two-level software architecture

Figure 10-4. MPLS Forwarding: Data Path for Egress LER
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.

The data plane microblocks (ILM Forwarder and FTN Forwarder) are initialized and managed by a 
common core component running on the XScale processor.  The MPLS Core Component is 
responsible for adding and deleting entries in the ILM and NHLFE tables. It also processes 
exception notifications from the MPLS forwarder microblocks. Section 10.4.3, “MPLS Forwarder 
Core Component Overview” on page 143 describes the details of the MPLS Core Component 
design and operation.

10.3 Cooperation with IP and QoS Microblocks

As it was mentioned in Section 10.2.1, “Ingress LER Generic MPLS Forwarder” on page 132, the 
FTN Forwarder reuses the LPM classification implemented in the IPv4 forwarder. Therefore, these 
two microblocks have to be combined on the same pipeline. Moreover, some MPLS nodes can be 
at the same time ingress LERs (for example, for locally connected hosts) as well as transit LSRs. 
This requires combining IP and MPLS forwarders on the same pipeline. This section shows the 
required ordering of IP and MPLS microblocks on the same pipeline (one thread). 

Figure 10-5. MPLS Forwarder Building Block
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10.3.1 IP and MPLS Functional Pipeline

Figure 10-6 illustrates the layout of IP and MPLS microblocks common for the ingress LER, LSR 
and egress LER. 

The functional pipeline starts with a Dl_Source microblock, which reads buffer handles from the 
receiving scratch ring, and populates the dispatch loop variables. One of these variables 
(dl_header_type), set by the RX microblock, specifies whether the received packet caries an IP 
or MPLS frame. 

On an ingress LER, the Dl_Source block passes IP packets to the 6-tuple Classifier microblock, 
implementing the 6-tuple classification on behalf of the MPLS forwarder. In the case of a match, 
the packet will be passed to the FTN Forwarder. Otherwise, the next block will be either IPv4 or 
IPv6, depending on the packet. (The IPv4 and IPv6 mirocblock interactions are more complex than 
those shown in Figure 10-6).

Each of the IP microblocks has to implement an LPM function operating on an MPLS-aware 
routing table. The MPLS-awareness means that IP Routing table entries can be populated both by 
the IP routing protocols and MPLS control protocols. In the case of a match, the LPM lookup result 
specifies both the next block to execute and next hop id. If the next block variable points to the 
FTN Forwarder, the next hop id has a meaning specific to MPLS.

The pipeline ends with a Dl_Sink microblock. It passes the packet either to an appropriate core 
component in case of an exception set by one of the previous blocks, or to the transmitting scratch 
ring.

Figure 10-6. Universal IP and MPLS Microblocks Layout
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Either the IPv4 or IPv6 forwarder microblock can be removed from the above pipeline, if the node 
does not forward IPv4 or IPv6 traffic. However, at least one of them has to be placed before the 
FTN Forwarder block, to provide the LPM functionality.

On a transit LSR, the Dl_Source microblock recognizes MPLS packets by their L2 protocol 
number, present in the packet's meta-data, and sets the dispatch loop next block variable to point to 
the ILM Forwarder. The ILM Forwarder performs the MPLS label lookup in the ILM table to find 
an entry specifying label stack operation and the next hop for the packet. According to the lookup 
result, the ILM Forwarder can drop the packet, or pass it to the Dl_Sink microblock for sending to 
the TX microblock.

On an egress LER, the Dl_Source microblock recognizes MPLS packets by their L2 protocol 
number, present in the packet's meta-data, and sets the dispatch loop next block variable to point to 
the ILM Forwarder. The ILM Forwarder pops MPLS labels from the incoming MPLS packets, and 
forwards them further as native IP datagrams. However, two cases are possible.

In the case of penultimate hop popping, the packet is sent directly to the IP next hop specified in the 
entry pointed to by the result of the ILM table lookup. Therefore, after performing the pop 
operation, the ILM Classifier passes the packet to the Dl_Sink microblock for sending to the TX 
microblock.

In the case of ordinary popping, the ILM Forwarder performs the pop operation and passes the IP 
packet to the IPv4 forwarder for normal route determination. 

Placing the ILM Forwarder before the IP forwarder eliminates necessity of looping back the packet 
to the beginning of the pipeline.

10.3.2 TTL Processing

[RFC3032] describes rules for TTL processing in MPLS networks. [RFC3443] updates these rules 
and ties together the tunnel terminology for MPLS support of Differentiated Services, introduced 
in [RFC3270], with TTL processing in hierarchical MPLS networks.

[RFC3270] defines three tunneling models:

• pipe—use outgoing per-hop behavior (PHB) to service the packet, leave exposed PHB 
information untouched. This model is used to hide intermediate MPLS nodes between LSP 
ingress and egress from the DiffServ perspective.

• short-pipe—use exposed PHB information to service the packet, leave exposed header 
untouched. This is a variation of the pipe model, in which the LSP egress outgoing interface 
uses the downstream cloud DiffServ policies. The short-pipe model is especially suitable when 
combined with penultimate hop popping.

• uniform—use the outgoing PHB to service packet, override exposed header with outgoing 
PHB. In this model all tunnel nodes are visible from the DiffServ perspective. The DiffServ 
information is always encoded in the outer-most label.

[RFC3270] requires that all routers implement the pipe model, while others are optional.

The Point Reyes MPLS forwarder supports all tunneling models described above.

This section summarizes TTL processing rules for different tunneling models, consistent with 
[RFC3443]. The MPLS forwarder implementation conforms to those rules. 
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10.3.2.1 TTL Processing in Different Tunneling Models

[MPLS-TTL] presents TTL processing rules for different tunneling models, consistent with 
corresponding DiffServ information processing (consistent with [RFC3032]). The MPLS 
forwarder implementation conforms to those rules. They are summarized in this section.

Figure 10-7 illustrates the TTL processing for the Uniform model MPLS LSP (with or without 
PHP). 

Note: The inner and outer TTLs of the packets are synchronized at tunnel ingress and egress.

Figure 10-8 illustrates the TTL processing for the Short Pipe model LSPs without PHP. 

Figure 10-7. TTL Processing for Uniform Model LSPs
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Figure 10-8. TTL Processing for Short Pipe Model LSPs without PHP
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The Short Pipe model was introduced in [RFC3270]. In the Short Pipe model, the forwarding 
treatment at the egress LSR is based on the tunneled packet as opposed to the encapsulating packet.

Figure 10-9 shows TTL processing for the Short Pipe model with PHP. 

Since the label has already been popped by the LSP's penultimate node, the LSP egress node just 
decrements the header TTL. Also note that at the end of the Short Pipe model LSP, the TTL of the 
tunneled packet has been decremented by two either with or without PHP.

Figure 10-10 shows TTL Processing for the Pipe Model LSPs (without PHP only). 

From the TTL perspective, the treatment for a Pipe model LSP is identical to the Short Pipe model 
without PHP.

Figure 10-9. TTL Processing for Short Pipe Model LSPs with PHP
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Figure 10-10. TTL Processing for Pipe Model LSPs without PHP
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10.4 Data Plane Architecture Dependencies

10.4.1 Target HW Architecture 

The Intel® Internet Exchange Architecture Software Development Kit (IXA SDK) building blocks 
are targeted primarily at the dual IXP blade architecture shown in Figure 10-11.

In the above blade architecture, the ingress IXP processor on a blade receives data packets from an 
external interface (Ethernet, POS, ATM), processes them and sends them to the backplane (e.g. 
CSIX switching fabric). The egress IXP processor receives data packets from the backplane, 
processes them and sends them out through an external interface (Ethernet, POS, ATM). This 
scenario imposes division of the software building blocks into an ingress and egress data path.

Figure 10-11. Dual NP Blade Architecture
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Figure 10-12 illustrates the single NP blade architecture, which may be possible in the future. 

Because the data path through the system is the same as in the previous case (external interface 1 - 
backplane port 1 - backplane port 2 - external interface 2), the software block division remains 
unchanged—they just reside on the same processor, instead of on separate processors. Therefore, 
the MPLS forwarder building blocks described in this document shall be applicable to both 
architectures.

10.4.2 Ingress and Egress Microblocks

Figure 10-13 presents the high level view of the MPLS forwarding path with division between the 
ingress and egress Network Processor (this scenario applies both to the FTN and ILM Forwarders, 
and to single and dual IXP blade designs).

Figure 10-12. Single NP Blade Architecture
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On the ingress NP, a data packet received from an external interface is stripped off of its L2 header 
by the interface RX microblock, and handed over to the MPLS forwarder (Fwd) block without the 
L2 encapsulation (the relevant L2 information is carried in a special meta-data structure associated 
with the packet). The MPLS forwarder processes the packet, determines its next hop, and stores the 
next hop information in the packet's meta-data. Additionally, the MPLS forwarder on the ingress 
NP gathers MPLS statistics connected with external input interfaces, incoming LSPs, and outgoing 
LSPs. 

Additionally, MPLS statistics for external output interfaces is gathered by the L2 Encapsulation 
microblock on the egress NP. Such design prevents from splitting the MPLS forwarder microblock 
between ingress and egress NP. Then the packet is passed to the backplane TX microblock. The 
packet still does not contain the L2 encapsulation; its associated next hop information comprises 
the egress blade number, external output interface number and egress next hop ID. This 
information is transmitted in a special header together with the packet over the backplane to the 
egress NP. There it is processed by the L2 encapsulation (L2 Enc) part of the TX microblock. This 
block uses the egress next hop ID to find a predefined L2 header that should be applied to the 
packet before sending it through the output external interface. Predefined L2 headers for known IP 
next hops are created by L2/ARP core components in a way described in the Intel® Internet 
Exchange Architecture Software Building Blocks Developer’s Manual, Chapter 47, “Ethernet ARP 
Module,” and Chapter 62, “L2 Table Manager.”. To be applicable to MPLS frames, the hardware 
protocol type in the predefined L2 header must be set to a media-specific value.

The division of the data path between media-independent forwarding and L2 encapsulation 
simplifies implementation, and allows the L2 encapsulation and transmit microblock to be reused 
by IP and MPLS forwarders. 

Figure 10-13. MPLS Ingress and Egress Microblocks
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10.4.3 MPLS Forwarder Core Component Overview

Figure 10-14 illustrates the MPLS core component and their interactions with other core 
components in the system. The dashed arrows in Figure 10-14 denote control messages or function 
calls, whereas the solid arrows show packet flows between components.. 

The MPLS Core Component operates on behalf both the ILM Forwarder and FTN Forwarder 
microblocks. It creates and maintains data structures shared among the microblocks and the core 
component, and the data comprises:

• MPLS statistics counters,

• NHLFE table,

• ILM table.

During initialization, the MPLS Core Component configures the ILM Forwarder and FTN 
Forwarder microblocks, patching it with the ILM, NHLFE, and MPLS statistics table base 
addresses. 

During normal operation, the MPLS Core Component performs two kinds of tasks:

• Processes ILM and NHLFE table add/delete requests issued by the control plane,

• Processes MPLS exception packets sent to it by the MPLS microblocks. 

Figure 10-14. MPLS Forwarder Core Component
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A FEC to NHLFE mapping add/delete request comprises a FEC definition (in most cases, an IP 
address and mask pair), and a set of corresponding NHLFE table entries. Therefore, it involves 
changes in both the IP Routing table and NHLFE table. The MPLS core component adds or deletes 
MPLS FECs to the IP Routing table by means of the IPv4 Core Component, and updates the 
NHLFE table. The NHLFE table is used by the FTN Forwarder microblock.

An LSP add/delete request comprises an MPLS label, and a set of corresponding NHLFE table 
entries. Due to performance requirements, the ILM and NHLFE information for a given LSP is 
combined into one ILM table entry, independent from the NHLFE table used by the FTN 
Forwarder. The ILM table is used by the ILM Forwarder microblock.

The ILM Forwarder microblock sends exception packets to the MPLS Core Component if:

• MPLS-labeled packet's length exceeds the maxLabPktSize parameter value set for the output 
port. Depending on the DF bit value from the packet's IP header, it can be fragmented and 
forwarded as several shorter MPLS packets through the MPLS core component (slow path), or 
an ICMP error message can be generated. If the exception packet is a non-IP packet, it is 
dropped.

• If the packet's Time-to-live (TTL) value is not greater than the TTL value from the appropriate 
ILM table entry (typically 1). In this case an ICMP "Time exceeded" message is generated, 
encapsulated in the packet's label stack and forwarded towards packet's destination.

• MPLS packet with the “Router Alert” label has been detected (label value 1). In this case, the 
actual forwarding of the packet depends on the label beneath the "Router Alert" label - the 
packet may be forwarded as one of the following:

• MPLS packet through the MPLS Core Component (slow path),

• IP packet through the IPv4 Core Component,

• Generated an ICMP error message.

The FTN Forwarder microblock sends exception packets to the MPLS Core Component if:

• MPLS-labeled packet's length exceeds the maxLabPktSize parameter value set for the output 
port. Depending on the DF bit value from the packet's IP header, it can be fragmented and 
forwarded as several shorter MPLS packets through the MPLS core component (slow path), or 
an ICMP error message can be generated. If the exception packet is a non-IP packet, it is 
dropped.

• If the packet's TTL value is not greater than the TTL value from the appropriate FTN table 
entry (typically 1). In this case an ICMP “Time exceeded” message is generated, encapsulated 
in the packet's label stack and forwarded towards packet's destination.

10.4.3.1 Inter-Component Dependencies

10.4.3.1.1 Operational Environment

The MPLS core component operates in the environment defined by the Core Component 
Infrastructure. This infrastructure allocates individual core components to so called execution 
engines (threads). To avoid synchronization problems in accessing shared data structures, the 
MPLS core component should be placed in the same execution engine as the IP forwarder core 
component, because it assumes sharing the IP Routing table with the IPv4 Forwarder. Figure 10-14 
illustrates the indicated dependencies by placing the relevant components inside a rectangle labeled 
"Execution Engine".
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10.4.3.1.2 Initialization Order

The MPLS core component should be initialized after the IPv4 Core Component, because it shares 
the IP Routing table with this component. Figure 10-15 illustrates the required initialization order..

10.4.3.1.3 De-Initialization Order

The MPLS Core Component de-initialization should be performed in the reverse order to its  
initialization sequence. Because the MPLS Core Component shares the IP forwarding table with 
the IPv4 Core Component, it is required that the IPv4 Core Component be de-initialized after the 
MPLS Core Component. Figure 10-16 illustrates the MPLS Core Component de-initialization 
order..

Figure 10-15. MPLS Core Component Initialization Order
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10.4.3.1.4 Guaranteed Shared Data Validity

The MPLS core component must ensure that other core components and the MPLS microblocks 
always have access to valid shared data. This is achieved by utilizing two general techniques:

• Shared data validity among the MPLS core component and other core components is 
guaranteed by placing the affected core components in the same execution engine (thread). In 
this way it is possible to implement atomic shared data updates without the need for table 
locking.

• Integrity of the forwarding tables and other data shared among the MPLS core component and 
microengines is achieved by adding and removing data in a specific order. Each table entry has 
a flag indicating whether this entry is valid. In a multi-word entry, an update operation is 
performed by first invalidating the entry with an atomic memory swap operation, then setting 
all other data to the desired values, and finally validating the entry with another atomic 
memory swap. In a set of related entries, an update operation is performed by first invalidating 
the first (master) entry in the lookup sequence, then changing all entries pointed to by the 
master entry, and finally validating the master entry with an atomic memory swap.
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This chapter describes the design of an 10Gb IPv4/IPv6 Forwarding and Tunneling application 
using the Intel® IXP2800 Network Processor. Two half-duplex IXP2800 network processors are 
used to implement a 10Gb (10x1Gb and 1x10Gb) Ethernet line card that interfaces to a CSIX 
switch fabric. This section provides a high-level design overview and lists the different software 
components used to build this application. It focuses only on the fast path or microengine 
components of the design. The Intel XScale® core components for this application are described in 
Intel® Internet Exchange Architecture Portability Framework Reference Manual.

The application described in this chapter is supported on the Intel® IXDP2800 Advanced 
Development Platform.

Note: The designs for 10x1Gb and 1x10Gb applications are almost identical except for the packet Tx 
blocks. Such exceptions are explicitly noted in this chapter. All other details are applicable to both 
applications.

11.1 Hardware Overview 

Figure 11-1 shows two Intel® IXP2800 Network Processors in a typical CSIX full duplex 
configuration. In this configuration, the two IXP2800 processors are identified as the ingress 
processor (receives from the Media interface and transmits to the CSIX Fabric) and the egress 
processor (receives from the CSIX Fabric and transmits to the Media interface). The hardware is 
configured in SPI-4 mode. Up to 10 Gigabit Ethernet ports are supported.

The Ingress IXP2800 receives Ethernet frames that carry IPv4 datagrams. The frames are 
assembled into IPv4 packets and the Layer-2 (Ethernet) headers are removed. Based on the IPv4 
header, a Longest Prefix Match (LPM) lookup is performed and the packets are segmented into 
CSIX C-Frames and transmitted to the CSIX fabric. The result of the LPM lookup determines 
which IXP2800 connected to the Fabric receives the packet, and on which port on that IXP2800 the 
packet is transmitted. 

The Egress IXP2800 receives CSIX C-Frames from the fabric and reassembles these into IPv4 
datagrams. The Layer-2 (Ethernet) headers are added and the packets are transmitted over the 
appropriate port.



148 Software Building Blocks Applications Design Guide

10 Gb Ethernet IPv4/IPv6 Forwarding/Tunneling Application

Figure 11-1. Example Hardware Configuration for 10x1/1x10 Gb Ethernet with CSIX Fabric
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11.2 Software Overview 

Figure 11-2 shows the microblocks needed to implement an Ethernet 10x1 Gb or 1x10 Gb IPv4/
IPv6 forwarding/tunneling application. The design for this application is based on the guidelines 
specified in the Intel® Internet Exchange Architecture Portability Framework Developer’s Manual. 
The driver microblocks (Receive, Transmit, Scheduler and QM) run on different microengines to 
process the packets. 

11.2.1 Data Flow for the Ingress IXP2800

The following sections describe the data flow on the ingress IXP2800 network processors.

11.2.1.1 Packet RX 

The packet RX block is identical to the Packet RX block described in Section 5.2.1.1, “Packet RX” 
on page 67 in Chapter 5, “OC-192 POS IPv4/IPv6 Forwarding/Tunneling Application” except that 
it sets the header type field in the packet meta data to Ethernet and runs on one microengine (ME).

Figure 11-2. Microblocks for an Ethernet 10x1/1x10 Gb IPv4 Forwarding Application
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11.2.1.2 Packet Processing Microengines (PPP Decap/Classify + IPv4/IPv6 
Forwarding + Tunneling) 

The Packet Processing microengines (Ethernet Decap/Classify + IPv4/v6 Forwarding + Tunneling) 
are identical to the Packet processing RX block in Section 5.2.1.2, “Packet Processing 
Microengines (PPP Decap/Classify + IPv4/IPv6 Forwarder/Tunneling)” on page 68 of Chapter 5, 
“OC-192 POS IPv4/IPv6 Forwarding/Tunneling Application”, except that the Ethernet 
decapsulation/classify/filter module replaces the PPP decapsulation/classify module. 

The Ethernet decapsulation/classify/filter module removes the layer-2 Ethernet header from the 
packet by updating the offset and size fields in the packet descriptor. It also implements MAC 
filtering based on the destination MAC address in the Ethernet header. Based on this filtering, the 
packet may be dropped.

11.2.1.3 Statistics Microblock

This block is identical to the Statistics block described in Section 5.2.1.3, “Statistics Microblock” 
on page 69 of Chapter 5, “OC-192 POS IPv4/IPv6 Forwarding/Tunneling Application”.

11.2.1.4 CSIX Scheduler 

This block is identical to the CSIX Scheduler block described in Section 5.2.1.4, “CSIX 
Scheduler” on page 69 of Chapter 5, “OC-192 POS IPv4/IPv6 Forwarding/Tunneling 
Application”.

11.2.1.5 Cell Based Queue Manager (Cell QM)

This block is identical to the Cell Based Queue Manager block described in Section 5.2.1.5, “Cell 
Based Queue Manager (Cell QM)” on page 70 of Chapter 5, “OC-192 POS IPv4/IPv6 Forwarding/
Tunneling Application”.

11.2.1.6 CSIX TX

This block is identical to the CSIX TX block described in Section 5.2.1.6, “CSIX TX” on page 70 
of Chapter 5, “OC-192 POS IPv4/IPv6 Forwarding/Tunneling Application”.

11.2.2 Data Flow for the Egress IXP2800

This section describes the data flow for the Egress IXP2800.

11.2.2.1 CSIX RX

This block is identical to the CSIX RX block described in Section 5.2.2.1, “CSIX RX” on page 71 
of Chapter 5, “OC-192 POS IPv4/IPv6 Forwarding/Tunneling Application” except it also puts 
output port information into the message it forwards to downstream microblocks to be used by 
Packet Scheduler.
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11.2.2.2 Ethernet ARP Microblock

This block checks whether the incoming packet has a valid L2 header table entry based on next hop 
id in the meta data. If this entry is invalid, this packet is enqueued to be processed by the Intel 
XScale® core. This block also receives packets from XScale core and sends it to the next stage of 
the pipeline.

11.2.2.3 Statistics Microblock

This block runs on a single microengine. It is currently a place-holder for statistics handling. It is 
anticipated that when this application is extended for MPLS and DiffServ, this microblock is used 
to manage per-flow statistics. 

It handles dropping of large packets that are stored in multiple buffers. It interfaces with Ethernet 
ARP block through scratch ring, and interfaces with Egress Packet Scheduler via the Next 
Neighbor ring.

11.2.2.4 Egress Packet Scheduler

This block is identical to the Egress Packet Scheduler described in Section 5.2.2.2, “Egress Packet 
Scheduler” on page 71 in Chapter 5, “OC-192 POS IPv4/IPv6 Forwarding/Tunneling 
Application”.

Note: This scheduler is currently fully tested only in simulation mode. In the future release it will be 
tested on hardware. Currently we use a simple round robin scheduler when running this application 
on hardware.

11.2.2.5 Packet Based Queue Manager (Packet QM)

This block is identical to the Packet QM described in Section 5.2.2.3, “Packet Based Queue 
Manager (Packet QM)” on page 72 in Chapter 5, “OC-192 POS IPv4/IPv6 Forwarding/Tunneling 
Application”.

11.2.2.6 TX Helper 

This block helps the Packet TX block by performing the following two functions: 

• Gets TX requests from the Packet QM block via the Next Neighbor ring and then forwards the 
TX request to the Packet TX block through the scratch ring.

• Updates the per-class counters in SRAM. These counters keep tracks of the number of packets 
transmitted per class for the DRR Egress Packet Scheduler. To do this, the TX Helper block 
reads packet meta data to find the class ID for each packet. Then it calculates the SRAM 
address of the counter, reads the counter, increments the content, and writes back the new 
value.

11.2.2.7 Packet TX

The Packet Transmit microblock transmits packets over the Ethernet media interface. There are 
two designs depending on whether the application is using 10x1 Gb Ethernet ports or 1x10 Gb 
Ethernet ports. 
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• For 10x1 Gb Ethernet ports, Packet TX runs on two microengines in a functional pipeline, 
each microengine handling the transmission of 5 ports, as described in the Intel® Internet 
Exchange Architecture Software Building Blocks Developer’s Manual, Chapter 12, “Packet 
TX–Multiports Microblock.”

• For 1x10 Gb Ethernet ports, Packet TX runs on two microengines in a context pipeline 
connected by a Next Neighbor ring, as described in Section 5.2.2.5, “Packet TX” on page 72 
of Chapter 5, “OC-192 POS IPv4/IPv6 Forwarding/Tunneling Application”.

Packet Tx segments a packet into mpackets, and moves them into TBUFS for the MSF state 
machine to transmit. It also adds the layer-2 Ethernet header to the packet.

For optimum utilization of TBUF elements, all ports share the same segment of TBUF. The port 
status and port TX FIFO high/low watermark is used to implement a flow control mechanism to 
prevent head of line blocking between ports. 

Before the Packet TX moves data into TBUF, it makes sure that the TBUF in-flight (data filled, but 
not transmitted out of TBUF) does not exceed a predefined threshold to prevent TBUF overwriting.

This block also periodically updates the scheduler with information about how many packets have 
been transmitted. If the packets in flight for a particular port (packets scheduled but not 
transmitted) exceed a certain limit (which depends on the bandwidth supported by that port), then 
the scheduler stops scheduling any more packets for the port. 

11.3 Performance Characterization

The Intel® IXP2800 Network Processor operates at 1400 MHz. For a minimum Ethernet packet of 
64B, the packet inter-arrival time at 10 Gbps line rate is 94 ME cycles. If only one microgine is 
performing a specific function in the pipeline, then in order to maintain line rate for minimum 
packets, that microblock of the pipeline needs to retire a packet every 94 cycles. If n microengines 
are sharing a specific function in the pipeline, then that microblock needs to retire a minimum 
packet every n*94 cycles. For example, there are two microengines sharing the transmission 
handling in Packet TX, then the budget for the min packet is 2*94 =188 cycles.

Table 11-1 summarizes the performance analysis for the Ethernet pipeline.

Table 11-1. Summary of Performance Analysis for the Ethernet Pipeline

Line rate for 10 Gig Ports 10 Gigabits/sec

Min Ethernet packet size 64 bytes (+ 20 byte inter packet gap)

Packet Throughput for min packets 14.88 million packets/sec = (10 / (84*8)) * (10**9)

IXP2800 clock frequency 1400 MHZ

Inter-packet arrival time for min packets 1400/14.88 = 94 cycles

Compute cycles per packet for a single microengine 94

Latency per packet for a single microengine 94 * 8

Compute cycles per packet for n microengines 
running in parallel 94*n

Latency per packet for n microengines running in 
parallel 94*8*n
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11.4 Ingress System Resource Allocation 

The tables 11-2 and 11-3 show the system resources mapped for the Ingress IXP2800. This 
mapping reflects the system defaults that may be changed. The allocation of microengines is done 
such that it optimizes the performance of this specific application and may be changed for other 
applications. 

The physical assignment of function to microengine is important since it not only affects when the 
next neighbor registers and signaling can be utilized, but it also affects the utilization of the internal 
Command bus and S-Push/Pull buses. This assignment attempts to balance the usage of the 
Command bus and S-Push/Pull buses across the two clusters.

Note: These values are defined in a system header file dl_system.h and may be changed as required.

The IXP2800 supports four SRAM channels and three DRAM channel. Table 11-3 shows the 
SRAM, DRAM and scratch utilization for the 10GB Ethernet IPv4/IPv6 Forwarding/Tunneling 
Application.  

Table 11-2. System Resources Mapped for the Ingress IXP2800 

Microblock ME # Communication Mechanism with 
previous stage

Packet RX ME 1:2 Auto-push status from MSF

IPv4 Forwarder +
Layer2 decapsulation/Classify ME 0:0, 0:1, 0:2, 0:3, 0:4, 1:4, 1:5 Scratch ring

Statistics ME 0:5 Scratch ring 

CSIX Scheduler ME 0:6 NN ring

Queue Manager ME 0:7 NN ring

CSIX TX ME 1:0, 1:1 NN ring 

Headroom 3 microengines 

Table 11-3. SRAM, DRAM and Scratch Utilized for Ingress IXP2800

Item Size per entry in bytes Number of entries
Total 

SRAM 
used

Total 
DRAM 
used

Total 
Scratch 

used

Buffer Descriptors 32 32k (In simulation, we 
use only 320 buffers) 1 MB 

Buffers 2048 32k 64 MB

Queue Descriptors 16 256 (1 per VOQ) 4K

CSIX TX contexts 32 256 (1 per VOQ) 8k

Trie Table

64 (The root Trie table 
requires at least 257k to 
support hi64k and hi256 
tables. In addition each 
node requires 64 bytes. 
These nodes are added 
as needed)

See note in previous 
column. Assuming 
256k routes, 
approximately 128k 
nodes are needed 

8MB

Route Table (Next 
Hop Information) 16 Assuming 4k next hops 64k

IPv4 statistics 4 16 64
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11.5 Egress System Resource Allocation 

Table 11-4 shows the system resources allocation for the Egress IXP2800. 

The mapping of networking functions on to the microengines shows that 11 microengines are used 
to perform the fast path processing for this application. Additional functionality required by 
customers can be mapped on to the remaining microengines.

Packet RX statistics 4 16*16 1024

IPv4 Directed 
Broadcast Table 32 (local memory) 64

Ring from Packet RX 
to packet processing 
pipeline 
(IPv4+Layer2 Decap/
Classify) 

12 2k/12 2k

IPv4 to Statistics ring 12 2k/12 2k

QM Q-Array entries N/A 16

Buffer Free list Q-
Array entry N/A 4

Table 11-3. SRAM, DRAM and Scratch Utilized for Ingress IXP2800 (Continued)

Item Size per entry in bytes Number of entries
Total 

SRAM 
used

Total 
DRAM 
used

Total 
Scratch 

used

Table 11-4. System Resources Allocation for the Egress IXP2800 

Microblock ME # Communication Mechanism with previous stage

CSIX RX ME 1:1, 1:3 Auto-push status from MSF

Ethernet ARP ME 0:1 Scratch ring

Statistics ME 0:2 Scratch ring 

Egress Scheduler ME 0:3, 0:4, 0:5 NN ring

Egress QM ME 0:6 NN ring

TX Helper ME 0:7 NN ring

Packet TX ME 1:0, 1:2 Scratch ring

Headroom 5 microengines N/A
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Table 11-5 shows the SRAM, DRAM and scratch utilization for the 10GB Ethernet IPv4/IPv6 
Forwarding/Tunneling Application. These values are defined in a system header file dl_system.h 
and may be changed as needed.

11.6 Interfaces Between the Various Microblocks

This section describes the interfaces between the different microblocks in the ingress and egress 
processors for this application. 

Table 11-5. SRAM, DRAM and Scratch Utilization for Egress IXP2800

Item Size per entry in bytes Number of entries
Total 

SRAM 
used

Total 
DRAM 
Used

Total 
Scratch 

used

Buffer Descriptors 32 32k (In simulation we 
use only 320 buffers) 1 MB

Queue Descriptors 16 256 (16 ports x 16 
classes per port) 4k 

CSIX RX 
Reassembly contexts 32 1024 32k

Buffers 2048 32k 64 MB

CSIX RX to Ethernet 
ARP   ring 12

2k/12 (the size of the 
ring is 512 long words, 
but each entry 
enqueued uses 3 long 
words. Therefore the 
total number of entries 
is 512/3 = 170)

2k

Ethernet ARP   ring 
to Statistics Ring 12

2k/12 (the size of the 
ring is 512 long words, 
but each entry 
enqueued uses 3 long 
words. Therefore the 
total number of entries 
is 512/3 = 170)

2k

Inside Scheduler 
between Count block 
and Class Scheduler 
block

4 512 2k

Layer 2 table with 
mapping from next 
hop id to Ethernet 
header 

16 65536 1 MB

TX Helper to first 
Packet TX 4 256 1K

TX Helper to second 
Packet TX 4 256 1K

QM Q-Array entries N/A 16

Buffer Free list Q-
Array entry N/A   4
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11.6.1 Packet RX and Packet Processing Microengines 

The interface between the Packet RX microblock and the packet processing microengines is a 
scratch ring. Table 11-6 describes each entry in the scratch ring—which is three long words.

The format depends on whether the packet fits in one buffer or not. In the case of packets that span 
across multiple buffers, some of the packet descriptor information is written to SRAM and the rest 
to the scratch ring. In the case of packets that fit into a single buffer, all the information is packed 
into the scratch ring eliminating one read/write to SRAM in the critical path. Bit 31 of LW0 (EOP 
bit of the handle) is used to detect if a packet spans across multiple buffers. If this bit is set 
(implying that the buffer is a SOP/EOP buffer), then the packet is contained in a single buffer. 

This interface is used for packets that fit entirely in one buffer.

This interface is used for packets that require more than one buffer. 

11.6.2 Packet Processing Microengines and Statistics

The Packet Processing Microengines and Statistics interface is a scratch ring. Table 11-8 describes 
each entry in the scratch ring—which is three long words. 

Table 11-6. Three-Word Scratch Ring Entry —Packets fit on one Buffer

LW Bits Size Field Description

0 31:0 32 dl_buffer_handle Buffer Handle for the SOP Descriptor

1 31:16 16 input_port Input port on ingress processor

15:12 4 free_list_id Free list ID for buffer 

11:8 4 rx_stat Receive Status Flag

7:0 8 header_type Type of header at offset bytes into the packet

2 31:16 16 buffer_size Buffer size in bytes

15:0 16 offset Offset of the start of data in the SOP buffer in bytes

Table 11-7. Three-Word Scratch Ring Entry —Packets Require more than one Buffer

LW Bits Size Field Description

0 31:0 32 dl_buffer_handle Buffer Handle for the SOP Descriptor

1 32:0 32 dl_eop_buffer_handle Buffer Handle for the EOP Descriptor

2 31:16 16 packet_size Total packet size across buffers in bytes

15:0 16 offset Offset of the start of data in the SOP buffer in bytes

Table 11-8. Three-Word Scratch Ring Entry—Packet Processing Microengines and Statistics

LW Bits Size Field Description

0 30:16 16 MOP_EOP_buf_size Size in bytes of all MOP buffers and the EOP buffer of 
the packet

0 0:15 16 Queue Number Queue Number 

1 31:0 32 SOP Buffer Handle Buffer Handle for the SOP Descriptor

2 31:0 32 EOP Buffer Handle Buffer Handle for EOP Descriptor (may be NULL)
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11.6.3 Statistics and CSIX Scheduler

The Statistics and CSIX Scheduler interface is a next neighbor (NN) ring. Table 11-9 describes 
each entry in the NN ring—which is three long words. 

11.6.4 CSIX Scheduler and Cell Queue Manager

The CSIX Scheduler and Cell Queue Manager interface is a next neighbor ring. Table 11-10 
describes each entry in the NN ring—which is three long words. 

11.6.5 Cell Queue Manager and CSIX TX

The Cell Queue Manager and CSIX TX interface is a next neighbor ring. CSIX Transmit is a two-
microengine context pipe-stage. The cell queue manager writes to the NN ring of the first CSIX TX 
microengine. Table 11-11 describes each entry in the NN ring—which is two words. 

Table 11-9. Three-Word NN Ring Entry (Statistics and CSIX Scheduler)

LW Bits Size Field Description

0 30:16 16 Packet cell count Sum of all buffer cell counts belonging to the packet

0 0:15 16 Queue Number Queue Number 

1 31:0 32 SOP Buffer Handle Buffer Handle for the SOP Descriptor

2 31:0 32 EOP Buffer Handle Buffer Handle for EOP Descriptor (may be NULL)

Table 11-10. Three-Word NN Ring Entry (CSIX Scheduler and Cell Queue Manager)

LW Bits Size Field Description

0 30:16 16 Dequeue Queue # Queue number from which to dequeue. Zero implies no 
dequeue

0 0:15 16 Enqueue Queue # Queue number on which to enqueue. Zero implies no 
enqueue

1 31:0 32 SOP Buffer Handle Buffer Handle for the SOP Descriptor

2 31:0 32 EOP Buffer Handle Buffer Handle for EOP Descriptor (may be NULL)

Table 11-11. Two-Word NN Ring Entry (Cell Queue Manager and CSIX TX)

LW Bits Size Field Description

0 31:16 16 Reserved Reserved

0 15:0 16 Queue Number Queue Number 

1 31:0 32 Buffer Handle Buffer Handle currently being transmitted for 
queue
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11.6.6 CSIX TX—First ME to Second ME

The interface between the first CSIX TX microengine and second CSIX TX microengine is a next 
neighbor ring. Table 11-12 describes each entry in the NN ring—which is eight long words.

11.6.7 CSIX RX and Ethernet ARP 

The CSIX RX and Statistics interface is a scratch ring. Table 11-13 describes each entry in the 
scratch ring—which is three words 

Table 11-12. Eight-Word NN Ring Entry (CSIX TX—First ME to Second ME)

LW Bits Size Field Description

0 31:0 32 Tx_request0 Same as LW0 from Cell Queue Manager to 
CSIX TX

1 31:0 32 Tx_request1 Same as LW1 from Cell Queue Manager to 
CSIX TX

2 31:0 32 dram_handle DRAM address where CSIX cell is stored

3 31:24 8 cell_count_remaining Number of cells remaining in the current 
buffer

23:18 6 Reserved Reserved

17:17 1 MOP_EOP_flag If MOP_EOP, set to 1, else 0

16:16 1 SOP_EOP_flag If SOP and EOP, set to 0, else 1

15:0 16 payload_length Length of CSIX cell payload in bytes

4 31:0 32 prepend_header0 LW0 of CSIX cell pre-pend header

5 31:0 32 prepend_header1 LW1 of CSIX cell pre-pend header

6 31:0 32 prepend_header2 LW2 of CSIX cell pre-pend header

7 31:0 32 prepend_header3 LW3 of CSIX cell pre-pend header

Table 11-13. Three-Word Scratch Ring Entry (CSIX RX and Statistics)

LW Bits Size Field Description

0 30:16 16 Packet Size Packet Size 

0 15:12 4 Port Number Output Port Number

0 11:0 12 Queue Number Queue Number 

1 31:0 32 SOP Buffer Handle Buffer Handle for the SOP Descriptor

2 31:0 32 EOP Buffer Handle Buffer Handle for EOP Descriptor (may 
be NULL)
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11.6.8 Ethernet ARP and Statistics

The Ethernet ARP to Statistics interface is a scratch ring. Table 11-14 describes each entry in the 
NN ring - which is 3 long words. 

11.6.9 Statistics and Packet Scheduler 

Table 11-15 shows the Statistics and Packet Scheduler interface, which is a Next Neighbor ring.

11.6.10 Packet Scheduler and Queue Manager 

The interface between the Queue Manager and the Packet Scheduler is a Next Neighbor Ring. 
Table 11-16 describes each entry in the NN ring—which is three long words.

Table 11-14. Three-Word Scratch Ring Entry (Statistics and Ethernet ARP)

LW Bits Size Field Description

0 30:16 16 Packet Size Packet Size 

0 15:12 4 Port Number Output Port Number

0 11:0 12 Queue Number Queue Number 

1 31:0 32 SOP Buffer Handle Buffer Handle for the SOP Descriptor

2 31:0 32 EOP Buffer Handle Buffer Handle for EOP Descriptor (may 
be NULL)

Table 11-15. Three-Word NN Ring Entry (Statistics and Packet Scheduler)

LW Bits Size Field Description

0 30:16 16 Reserved Reserved

0 15:0 16 Packet Size Packet Size

1 31:0 32 SOP Buffer Handle Buffer Handle for the SOP Descriptor

2 31:16 16 Port Number Output Port Number

2 31:0 16 Queue Number Queue Number 

Table 11-16. Three-word NN Ring Entry (Queue Manager and Packet Scheduler)

LW Bits Size Field Description

0 30:16 16 Dequeue Queue # Queue number from which to dequeue. 
Zero implies no dequeue

0 0:15 16 Enqueue Queue # Queue number on which to enqueue. 
Zero implies no enqueue

1 31:0 32 SOP Buffer Handle Buffer Handle for SOP Descriptor 

1 31:0 32 EOP Buffer Handle Buffer Handle for EOP Descriptor (may 
be NULL)
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11.6.11 Queue Manager and TX helper

The interface between the Queue Manager and the TX helper is a Next Neighbor ring. Table 11-17 
describes each entry in the NN ring—which is one word:

11.6.12 TX Helper and Packet TX (10x1 GigE)

The interface between TX Helper and Packet TX is different for 10x1 and 1x10 applications. For 
10x1, the interface between the TX Helper and the Packet Transmit is two scratch rings—one for 
the first Packet TX ME which handles the transmission of port 0 to 4, and one for the second 
Packet TX ME which handles the transmission of port 5 to 9. Table 11-18 shows each entry is one 
long word in a scratch ring.

11.6.13 TX Helper and Packet TX (1x10 GigE)

The interface between the TX helper and the Packet Transmit for 1x10 applications is a Next 
Neighbor ring. Table 11-19 describes each entry in the NN ring—which is one word. 

Table 11-17. Two-Word NN Ring Entry (Queue Manager and Packet TX)

LW Bits Size Description

0 31:4 28 Reserved

0 3:0 4 Port number

1 31:24 8 Reserved

1 23:0 24 Pointer to SOP buffer descriptor in SRAM in long words 
(Same as bits 0:23 of buffer handle)

Table 11-18. Two Scratch Ring Interface (TX Helper and Packet TX)—One Word

LW Bits Size Description

0 31:31 1 Valid bit

30:28 3 Reserved

27:24 4 Port number

23:0 24 Pointer to SOP buffer descriptor in SRAM in long words 
(Same as bits 0:23 of buffer handle)

Table 11-19. One-Word NN Ring Entry (Queue Manager and Packet TX)

LW Bits Size Description

0 31:31 1 Valid bit

0 30:28 3 Reserved

0 27:24 4 Port number

0 23:0 24 Pointer to SOP buffer descriptor in SRAM in long words 
(Same as bits 0:23 of buffer handle)
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11.6.14 Packet TX —First ME to Second ME (1x10 GigE)

The interface between the first microengine and second microengine of Packet Transmit for 1x10 
application is a Next Neighbor ring. Table 11-20 describes each entry in the NN ring—which is 
three words.

If the m-packet is non-stop, then 3 more long words are included on the ring. 

Table 11-20. Three-Word NN Ring Entry (Packet TX—First ME to Second ME)

LW Bits Size Description

0 31:0 32 Pointer to meta data (used to free buffer 

1 31 1 Bit is clear if the m-packet is sop

30 1 Bit is clear if the m-packet is eop

29:0 29 Offset of payload to be transmitted

2 31:0 32 Payload size to be transmitted

Table 11-21. Three-Word NN Ring Entry (for Non-stop m-packet)

LW Bits Size Description

3 31:0 32 Bytes from previous buffer to be prepended to the 
current buffer 

4 31:0 32 Exe_stat_flag: information about various condition flags

5 31:0 32 Partially created transmit control word



162 Software Building Blocks Applications Design Guide

10 Gb Ethernet IPv4/IPv6 Forwarding/Tunneling Application



Software Building Blocks Applications Design Guide 163

Core Router Application 12

This chapter describes the design of a Core Router application (IPv4+IPv6+MPLS+Diffserv at 
OC192 data rate) using three Intel® IXP2800 Network Processors with headroom for additional 
functionality. It provides a high-level design overview and lists the different software components 
used to build this application. It focuses only on the fast path or microengine components of the 
design. The Intel XScale® core components for this application will be described in a future 
release.

The application described in this chapter is supported on the transactor (network processor 
simulator) and on the Intel® IXDP 2800 Advanced Development Platform.

Note: The OC-192 POS IPv4/IPv6 Forwarding and Tunneling application and its associated microblocks 
are referred to frequently in this chapter. See Chapter 5, “OC-192 POS IPv4/IPv6 Forwarding/
Tunneling Application” for more details.

12.1 Hardware Overview 

Figure 12-1 shows three Intel® IXP2800 Network Processors. In this configuration, the IXP2800s 
are identified as Ingress A, Ingress B and Egress IXP2800. A distinguishing feature is that Ingress 
A and Ingress B are cascaded serially through SPI4 to form a two-chip Ingress pipeline. Ingress A 
receives packets from the media interface, looks at the IPv4/IPv6/MPLS header and makes a 
forwarding decision, and transmits the packet over SPI4 to Ingress B. Ingress B receives packets 
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from Ingress A, sends it through Meter and WRED, and transmits the packet over CSIX Fabric to 
the appropriate egress blade. The Egress IXP2800 receives from CSIX Fabric and transmits to the 
media interface.

12.2 Software Overview 

Figure 12-2 shows the microblocks needed to implement the core router pipeline application 
described in this chapter. The design for this application is based on the guidelines specified by the 
IXA Portability Framework, which is described in the following user documents:

• Intel® Internet Exchange Architecture Portability Framework Reference Manual

• Intel® Internet Exchange Architecture Portability Framework Developer’s Manual

The driver microblocks (Receive, Transmit, Scheduler and QM) are similar to those used in the 
OC-192 POS IPv4/IPv6 forwarding and tunneling application, which is implemented on two 
IXP2800s and is described in Chapter 5, “OC-192 POS IPv4/IPv6 Forwarding/Tunneling 
Application.”

The packet processing microblocks (IPv4, IPv6 and MPLS) are similar to those used in other Intel® 
IXP2400 Network Processor applications and are reused with no modifications.

This application is made available in incremental steps:

• In its initial release, IPv6 and MPLS functionality is available in two different pipelines i.e 
IPv4/IPv6 pipeline and IPv4/MPLS pipeline because it needs larger control store (8k, available 
in IXP2800 B0). 

Figure 12-1. Example Hardware Configuration for Core Metro Application Using 3 IXP2800
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• In a future release, the separate IPv6 and MPLS pipelines will be combined to form IPv4/IPv6/
MPLS pipeline. Also, DiffServ functionality, using 6 Tuple Classifier, Meter, and WRED 
microblocks, will be available in a future release. 

12.2.1 Data Flow for the Ingress A IXP2800

The following sections describe the data flow on the ingress A IXP2800 processor. 

12.2.1.1 Packet RX 

This block is identical to the Packet RX block described in Section 5.2.1.1, “Packet RX” on 
page 67 in Chapter 5, “OC-192 POS IPv4/IPv6 Forwarding/Tunneling Application.”

12.2.1.2 Packet Processing Microengines 

This section describes the following microengines:

• PPP decapsulation

• 6 tuple classifier

• IPv4 forwarder

• MPLS marker and switching

• IPv6 forwarder and tunneling

Figure 12-2. Microblocks for Core Router Application
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The PPP decapsulation microblock runs along with the IPv4/IPv6/MPLS microblocks on 8 
microengines or 64 threads. The IPv4, IPV6 and MPLS microblocks are similar to the ones used in 
various IXP2400 applications and are completely reused.

An application specific system source microblock on each thread dequeues packet buffer handles 
from the scratch ring. This source block (DL_Source[]) is a system microblock implicit in the 
dispatch loop. It reads in the packet meta information (i.e. the packet descriptor) and populates the 
dispatch loop state. It also reads in 32 or 64 bytes of the packet header from DRAM into a header 
cache maintained in transfer registers (see Section 12.2.1.3 for details). Since it is important to 
maintain packet sequencing, the threads in the microblock execute in strict order to dequeue from 
the scratch ring. This implies that the first thread on microengine 1 dequeues the first packet, 
signals the next thread to perform the dequeue, etc. From this block, the packet goes to the PPP 
decapsulation/classify microblock.

The PPP decapsulation/classify microblock removes the layer-2 PPP header from the packet by 
updating the offset and size fields in the packet descriptor. Based on the PPP header, it also 
classifies the packet into IPv4, IPv6, MPLS, PPP control packet (LCP, IPCP etc). If the packet is a 
PPP control packet, it is marked as an exception packet to be sent to the XScale Core 
(IX_EXCEPTION). Otherwise the packet is sent down the microengine pipeline for further 
processing. 

Depending on the packet type (IPv4. IPv6, MPLS) packets go through different microblocks. The 
following packet flow path will be described based on how each packet type is handled.

• IPv4 forwarding

• IPv6 forwarding

• IPv6 tunnel encapsulation and decapsulation

• Ingress LER

• LSR and egress LER

12.2.1.2.1 IPv4 Forwarding

The IPv4 forwarder microblock validates the IP header per RFC 1812. If the validity checks fail, 
then the packet is set up to be dropped as specified in the Intel® Internet Exchange Architecture 
Portability Framework Developer’s Manual. 

Otherwise a Longest Prefix Match (LPM) is performed on the IPv4 header. The result is an IPv4 
Next Hop ID, a fabric blade id (identifying a unique IXP2800 on the fabric) and an output port 
identifying the output port on the egress IXP2800. All three fields are passed to Ingress B which in 
turn is sent to Egress processor where the information is used to appropriately queue and transmit 
the packet. 

If no LPM match is found, then the packet is set up to be sent up to the XScale core for further 
processing as specified in [IXASF]. Packets are also sent to the core in a number of other cases, for 
example when the packet is destined for a local interface or is to be fragmented. (Since no core 
components are available for this application the packets will simply be dropped in such cases).

IPv6 packets are handled by three microblocks: IPv6 Forwarder, Tunnel Decap and Tunnel Encap 
microblocks.



Software Building Blocks Applications Design Guide 167

Core Router Application

12.2.1.2.2 IPv6 Forwarding

IPv6 Forwarder validates IPv6 Header and address per RFC 2460 and 2373 respectively. If the 
check fails, then the packet is set up to be dropped as specified in the Intel® Internet Exchange 
Architecture Portability Framework Developer’s Manual. Otherwise a Longest Prefix Match 
(LPM) is performed on IPv6 destination address. It uses 16, 8,…8 bit prefixes to match 128 bit 
IPv6 address. The result is an IPv6 Nexthop ID, a fabric blade id (identifying a unique IXP2800 on 
the fabric) and an output port identifying the output port on Egress IXP2800. All three fields are 
sent over to Ingress B which in turn is sent over to Egress where it is used to dispose the packet 
appropriately. 

12.2.1.2.3 IPv6 over IPv4 Tunneling

The tunneling microblocks provide the capability for the node to serve as an endpoint of an IPv6 
over IPv4 tunnel.  The types of tunneling supported are:

• Configured tunnels as defined in RFC 2893

• Automatic tunnels as defined in RFC 2893

• 6to4 tunnels as defined in RFC 3056

The V6V4-Tunnel-Decap microblock handles IPv4 packets that contain an encapsulated IPv6 
packet and that have reached the tunnel endpoint.  The V6V4-Tunnel-Encap microblock handles 
IPv6 packets that require encapsulation in an IPv4 packet in order to reach the next hop IPv6 node 
(passing through one or more IPv4 only node).

A tunnelled IPv6 (over IPv4) packet is first processed by IPv4 forwarder microblock. The nexthop 
ID obtained after an LPM lookup identifies a tunnel end point and the packet is passed to Tunnel 
Decap microblock.  The encapsulating IPv4 header is then removed by Tunnel Decap and the 
exposed IPv6 packet is sent to IPv6 microblock for forwarding.  After IPv6 LPM lookup, the 
nexthop ID obtained identifies whether this IPv6 packet goes through a tunnel or not. If a tunnel is 
required, then the packet is sent to Tunnel Encap microblock where an IPv4 header is added to the 
IPv6 packet. The resulting IPv4 packet is forwarded by IPv4 Forwarder microblock just like any 
other IPv4 packet.

Figure 12-3 shows the packet flow for the Ingress A processor in this pipeline application. In 
implementation, this flow will be converted to a flattened Microblock Call graph as explained in 
the Intel® Internet Exchange Architecture Portability Framework Developer’s Manual, in the 
Dispatch Loop chapter. 
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12.2.1.2.4 Ingress LER

In the case of an Ingress LER, an incoming IPv4 (IPv6) packet is first processed by an IPv4 (IPv6) 
microblock (as previously described in Section 12.2.1.2.1 and Section 12.2.1.2.2). The nexthop ID 
obtained indicates if this packet goes through an MPLS LSP or not. If yes, further processing is 
done by MPLS microblock. Using the nexthop ID  as an index into FTN (FEC to NHLFE) table, 
information required to form MPLS header such as the number of labels to be pushed (max of 4 
PUSH/POP supported) and the label value for each push, is obtained. The MPLS header thus 
formed is prepended to IPv4 packet and sent over to Ingress B. The case of Ingress LER handling 
IPv6 packets is similar except the packet is first processed by IPv6 microblock instead of IPv4. 

Note: With IPv6 over IPv4 tunneling, more data paths are possible as shown in Figure 12-3, but the end 
result of tunelling is always an IPv4 or IPv6 packet which is then handled as explained in this 
section.

12.2.1.2.5 LSR and Egress LER

In the case of LSR or Egress LER, the incoming packet is an MPLS packet. Using the incoming 
label as an index into ILM (Incoming Label Map) table the nexthop ID is obtained, which provides 
info like the operation to perform (PUSH or POP), number of labels to PUSH, the label value for 
each PUSH operation etc. Based on this info the packet header is accordingly modified. For Egress 
LER (at IP/MPLS domain edge) the resulting packet will be an IPv4/IPv6 packet. Subsequent 
forwarding of this packet is done based on the resulting IPv4/IPv6 packet header by passing the 
packet through IPv4/IPv6 microblock. For LSR not at penultimate hop, the resulting packet will be 
a MPLS packet. For LSR at penultimate hop, the resulting packet will be an IPv4 or IPv6 packet 
but forwarding is based on the POPed label, so no further lookup is necessary for the resulting IPv4 
packet. 

The MPLS microblock supports both per interface label space as well as per platform label space. 
It also supports NHLFE sets which is useful in load balancing, fault tolerance and diffserv 
implementations.

Figure 12-3. Packet Flow in Ingress A
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At the end of packet processing stage, the packet is passed on to an application specific system 
microblock (DL_Sink[]). DL_Sink[] simply writes the modified packet header to DRAM and the 
packet meta information to SRAM and sends a message to the next microblock in the pipeline, that 
is, the statistics microblock.

12.2.1.3 Dispatch Loop / Microblock Groups

One of the challenges of implementing this packet processing stage is the dispatch loop that brings 
all microblocks together. 

The packet header size varies from a minimum of 20 bytes (IPv4 only) to a maximum of 56 bytes 
(4 labels + IPv6 (40)). Reading in all 56 bytes for every packet wastes DRAM bandwidth that then 
impacts performance of 40B IPv4 min packets (24.5 mpps). Reading in only 20 or 32 bytes of 
header results in additional reads for IPv6 and MPLS POP3/4 operations resulting in performance 
impact for those cases.

This is solved by taking advantage of the fact that larger the header size (and hence packet size), 
the lower the packet rate (40B IPv4 is 24.5 mpps. 60B v6 is 16.3 mpps), and hence more memory 
bandwidth (and instruction budget) for larger packets. So, for example, in the IPv4/IPv6 pipeline 
64 bytes of packet header is read if the packet length is greater than or equal to 60. Otherwise only 
32 bytes are read.

Converting the packet flow shown in Figure 12-3 into a flattened Microblock Call graph in the 
dispatch loop may pose some challenges in that it may require more than 4K of control store (8K 
available in IXP2800 B0). [This will be done in an upcoming release] The current call graph for 
IPv4/MPLS and IPv4/IPv6 pipelines is:

• L2 Decap -> ILM -> IPv4 -> FTN -> Statistics

• L2 Decap -> IPv4 -> v6_decap -> IPv6 -> v6_encap -> IPv4 -> Statistics

Note: The IPv4 microblock is called twice in IPv4/IPv6 pipeline.

12.2.1.4 Statistics

This microblock runs on a single microengine. It is currently a placeholder for statistics handling. It 
is anticipated that when this application is extended for DiffServ, this microblock will be used to 
manage per-flow statistics. The design for handling statistics will be described in future releases of 
the document. 

12.2.1.5 SPI4 TX

The SPI4 Transmit microblock transmits packets over SPI4 interface. It is implemented by 
extending the Packet TX microblock described in Section 5.2.2.5, “Packet TX” on page 72 in 
Chapter 5, “OC-192 POS IPv4/IPv6 Forwarding/Tunneling Application” with a compile time 
option. It runs on two microengines in a context pipeline connected by a Next Neighbor ring. It 
segments a packet into m-packets, and moves them into TBUFS for the MSF state machine to 
transmit. The extensions to Packet TX are:

• TX to Scheduler feedback for flow control is disabled (using compile time option) as it’s not 
required in this case. (Use compile time option DISABLE_TX2SCHED_FEEDBACK)

• 16 bytes of per-packet header consisting of input and output port, color, class, flow id, nexthop 
id etc is pre-pended to start of the packet and is passed along to Ingress B. (Use compile time 
option SPI4_PREPEND)
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12.2.2 Data Flow for the Ingress B IXP2800

12.2.2.1 SPI4 RX

The SPI4 RX microblock receives packets over the SPI4 interface. It is implemented by extending 
Packet RX microblock described in Section 5.2.1.1, “Packet RX” on page 67 in Chapter 5, “OC-
192 POS IPv4/IPv6 Forwarding/Tunneling Application” with a compile time option. It runs on two 
microengines in a context pipeline connected by a Next Neighbor ring. It performs frame 
reassembly on the m-packets coming in on POS media. 

The extensions to Packet RX are:

• 16 bytes of per-packet header consisting of input and output port, color, class, flow id, nexthop 
id etc is received with every packet. This data is used to create meta-data for the packet and is 
written to SRAM after reassembly. Some of this info is passed along to the next microblock in 
the pipeline via a scratch ring. The rest of the packet is written to DRAM. (Use compile time 
option SPI4_PREPEND)

12.2.2.2 Meter & WRED

Diffserv capabilities will be available in an upcoming release. Until then a skeleton microblock 
with a complete dispatch loop is provided in the packet processing stage to pass the reassembled 
packet to statistics microblock.

12.2.2.3 Statistics Microblock

This block is identical to the Statistics block described in Section 5.2.1.3, “Statistics Microblock” 
on page 69 in Chapter 5, “OC-192 POS IPv4/IPv6 Forwarding/Tunneling Application.”

12.2.2.4 CSIX Scheduler 

This block is identical to the CSIX Scheduler block described in Section 5.2.1.4, “CSIX 
Scheduler” on page 69 in Chapter 5, “OC-192 POS IPv4/IPv6 Forwarding/Tunneling 
Application.”

12.2.2.5 Cell Based Queue Manager (Cell QM)

This block is identical to the Cell Based Queue Manager block described in Section 5.2.1.5, “Cell 
Based Queue Manager (Cell QM)” on page 70 in Chapter 5, “OC-192 POS IPv4/IPv6 Forwarding/
Tunneling Application.”

12.2.2.6 CSIX TX

This block is identical to the CSIX TX block described in Section 5.2.1.6, “CSIX TX” on page 70 
in Chapter 5, “OC-192 POS IPv4/IPv6 Forwarding/Tunneling Application.”

12.2.3 Data Flow for the Egress IXP2800

This section describes the data flow for the Egress IXP2800. The egress pipeline is identical to the 
egress pipeline described in Section 5.2.2, “Data Flow for the Egress IXP2800” on page 71 in 
Chapter 5, “OC-192 POS IPv4/IPv6 Forwarding/Tunneling Application.”
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12.2.3.1 CSIX  RX

This block is identical to the CSIX RX block described in Section 5.2.2.1, “CSIX RX” on page 71 
in Chapter 5, “OC-192 POS IPv4/IPv6 Forwarding/Tunneling Application.”

12.2.3.2 Statistics Microblock

This block runs on a single microengine. It is currently a place-holder for statistics handling. It is 
anticipated that when this application is extended for MPLS and DiffServ, this microblock will be 
used to manage per-flow statistics. The design for handling statistics will be described in future 
revisions of the document. 

This microblock handles dropping of large packets that are stored in multiple buffers. It interfaces 
with Egress Packet Scheduler via the Next Neighbor ring.

12.2.3.3 Egress Packet Scheduler

The Egress scheduler schedules packets to be transmitted over MSF interface.  This is a packet-
based scheduler as opposed to the cell-based scheduler (i.e. c-frame) on the ingress side. 

The packet scheduler is a context pipe-stage that is implemented as a microblock that runs on 3 
microengines. This microblock includes the Class Scheduler block, the Count block, and the Port 
Scheduler block. Each block runs in one microengine.

The packet scheduler supports up to 16 virtual ports. Since these ports may have differing 
bandwidth requirements, the scheduler implements Weighted Round Robin (WRR) scheduling on 
the ports. This allows us to support different configurations (16 OC-3, 4 OC-12, 1 OC-48 etc) 
simply by adjusting the weights for the ports in the scheduler.

For each port, the scheduler supports up to 256 queues per port. The Scheduler implements a 
modified version of Deficit Round Robin (DRR) scheduling on the queues within a port. For more 
details, refer to Chapter 19, “OC-48 WRR/DRR Packet Scheduler” of Intel® Internet Exchange 
Architecture Software Building Blocks Developer’s Manual.

Until diffserv capabilities (Meter, WRED, 6-tuple classifier) are added the application will only use 
one class per port. This means there is only one queue per port and the DRR scheduling is unused. 
However the same code can be reused in a QoS Diffserv application in which case the DRR 
scheduling is applicable.

The scheduler also keeps track of the number of packets in flight (scheduled, but not transmitted) 
for each port. If this number exceeds a specified limit, then it stops scheduling on that port.

12.2.3.4 Packet Based Queue Manager (Packet QM)

This block is identical to the Packet QM described in Section 5.2.2.3, “Packet Based Queue 
Manager (Packet QM)” on page 72 in Chapter 5, “OC-192 POS IPv4/IPv6 Forwarding/Tunneling 
Application.”

12.2.3.5 TX Helper 

This block prepares TX request from the information passed from Packet QM via the Next 
Neighbor ring, and forwards the TX request to Packet TX through the scratch ring. It also updates 
the queue-based counters of packets in SRAM for Egress Packet Scheduler.
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12.2.3.6 Packet TX

This is identical to the Packet TX as described in Section 5.2.2.5, “Packet TX” on page 72 in 
Chapter 5, “OC-192 POS IPv4/IPv6 Forwarding/Tunneling Application.”

12.3 Performance Characterization

The Intel® IXP2800 Network Processor operates at 1400 MHz. For a min POS packet of 49B, the 
packet inter-arrival time at OC-192 line rate is 57 ME cycles. In order to maintain line rate for min 
packets, each stage of the pipeline cannot exceed this budget. In other words, each stage of the 
pipeline needs to retire a packet every 57 cycles. Table 12-1 summarizes the performance analysis 
for the POS pipeline at OC192 rate. 

12.4 Ingress A System Resource Allocation 

Table 12-2 shows how system resources are mapped for the Ingress A IXP2800 network processor. 
This mapping reflects the system defaults and may be changed. The allocation of microengines is 
done, such that it optimizes the performance of this specific application and may be changed for 
other applications.

Table 12-1. Performance Analysis for the POS Pipeline

OC-192c  line rate assuming 3% SONET overhead 9.62 Gigabits/sec

Min POS packet size
49 bytes (40 byte TCP/IP, 2 bytes Address and 
Control, 2 byte PPP header, 4 byte FCS and 1 byte 
flag)

Packet Throughput for min packets 24.56 million packets/sec = (9.62 / (49*8)) * (10**9)

IXP2400 clock frequency 1400 MHZ

Inter-packet arrival time for min packets 1400/6.14 = 57 cycles

Compute cycles per packet for a single microengine 57

Latency per packet for a single microengine 57 * 8

Compute cycles per packet for n microengines running 
in parallel 57*n

Latency per packet for n microengines running in 
parallel 57*8*n

Table 12-2. System Resources Mapped for the Ingress IXP2800

Microblock ME # Communication Mechanism with 
previous stage

Packet RX ME 1:3, 1:4 Auto-push status from MSF, NN Ring

IPv4/IPv6/MPLS + Layer2 
decapsulation/Classify

ME 0:0, 0:1, 0:2, 0:3, 0:4,  0:5, 0:6, 
0:7 Scratch ring

Statistics ME 1:0 Scratch ring 

SPI 4 TX ME 1:1, 1:2 NN Ring

Headroom 3 microengines 
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The physical assignment of function to microengine is important since it not only affects when the 
next neighbor registers and signaling can be utilized, but it also affects the utilization of the internal 
Command Bus and S-Push/Pull buses. This assignment attempts to balance the usage of the 
Command bus and S-Push/Pull buses across the two clusters.

The IXP2800 supports four SRAM channels and three DRAM channels. Table 12-3 shows how the 
SRAM, DRAM and scratch are utilized for this application. These values are defined in a system 
header file dl_system.h and may be changed as needed. 

12.5 Ingress B System Resource Allocation 

Table 12-4 shows how system resources are mapped for the Ingress B IXP2800. 

Table 12-3. SRAM, DRAM, and Scratch Utilization for Ingress A IXP2800

Item Size per entry in bytes Number of entries Total SRAM 
used

Total 
DRAM 
used

Total 
Scratch 

used

Buffer Descriptors 32 32k (In simulation, we 
use only 320 buffers) 1 MB 

Buffers 2048 32k 64 MB

Trie Table

64 (The root Trie table 
requires at least 257k to 
support hi64k and hi256 
tables. In addition each 
node requires 64 bytes. 
These nodes are added 
as needed)

See note in previous 
column. Assuming 256k 
routes, approximately 
128k nodes are needed 

8MB

Route Table (Next Hop 
Information) 8 Assuming 4k next hops 32k

IPv4 statistics 4 16 64

Packet RX statistics 4 16*16 1024

IPv4 Directed Broadcast 
Table 32 (local memory) 64

ILM NHLFE Table 24 64k 1.5 MB

FTN NHLFE Table 24 64k 1.5MB

Ring from Packet RX to 
packet processing pipeline 
(IPv4/IPv6/MPLS+Layer2 
Decap/Classify) 

12 2k/12 2k

IPv4 to Statistics ring 12 2k/12 2k

Buffer Free list Q-Array entry N/A 4

Table 12-4. System Resources Allocated for Ingress B IXP2800

Microblock ME # Communication Mechanism with 
previous stage

SPI4 RX ME 1:2, 1:3 Auto-push status from MSF, NN Ring

Meter/WRED (only skeleton for now) ME 0:0, 0:1, Scratch Ring

Statistics MW 0:5 Scratch Ring
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Table 12-5 shows how the SRAM, DRAM and scratch are utilized for this application. These 
values are defined in a system header file dl_system.h and may be changed as needed. 

12.6 Egress System Resource Allocation 

Table 12-6 shows how the system resources are allocated for the Egress IXP2800. 

The mapping of networking functions on to the microengines shows that 10 microengines are used 
to perform the fast path processing for this application. Additional functionality required by 
customers can be mapped on to the remaining microengines.

Fabric scheduler ME 0:6 NN ring 

QM ME 0:7 NN Ring

CSIX TX ME 1:0, 1:1 NN Ring

Headroom 7 microengines 

Table 12-4. System Resources Allocated for Ingress B IXP2800 (Continued)

Microblock ME # Communication Mechanism with 
previous stage

Table 12-5. SRAM, DRAM, and Scratch Utilization for Ingress B IXP2800

Item Size per entry in bytes Number of entries Total SRAM 
used

Total DRAM 
used

Total 
Scratch 

used

Buffer Descriptors 32 32k (In simulation, we 
use only 320 buffers) 1 MB 

Buffers 2048 32k 64 MB

Queue Descriptors 16 256 (1 per VOQ) 4K

CSIX TX contexts 32 256 (1 per VOQ) 8k

Ring from Packet RX to 
packet processing pipeline 
(IPv4+Layer2 Decap/
Classify) 

12 2k/12 2k

QM Q-Array entries N/A 16

Buffer Free list Q-Array entry N/A 4

Table 12-6. System Resources Allocated for Egress IXP2800

Microblock ME # Communication Mechanism with previous 
stage

CSIX RX ME 1:2, 1:3 Auto-push status from MSF, NN ring

Statistics ME 0:2 Scratch ring 

Egress Scheduler ME 0:3, 0:4, 0:5 NN ring

Egress QM ME 0:6 NN ring

TX Helper ME 0:7 NN ring

Packet TX ME 1:0, 1:1 NN ring

Headroom 6 microengines N/A



Software Building Blocks Applications Design Guide 175

Core Router Application

Table 12-7 shows how the SRAM, DRAM and scratch are utilized for this application. These 
values are defined in a system header file dl_system.h and may be changed as needed. 

12.7 Interfaces Between the Various Microblocks

This section describes the interfaces between the different microblocks in the ingress and egress 
processors for this application. 

12.7.1 Packet RX and Packet Processing Microengines 

The interface between the Packet RX microblock and the packet processing microengines running 
the IPv4/IPv6/MPLS Forwarding and Layer-2 decap/classify microblocks is a scratch ring. Each 
entry in the scratch ring is three long words. The format depends on whether the packet fits in one 
buffer or not. In the case of packets that fit into a single buffer, all the information is packed into 
the scratch ring eliminating one read/write to SRAM in the critical path, see Table 12-8. In the case 
of packets that span across multiple buffers, some of the packet descriptor information is written to 
SRAM and the rest to the scratch ring, see Table 12-9. Bit 31 of LW0 (EOP bit of the handle) is 
used to detect if a packet spans across multiple buffers. If this bit is set (implying that the buffer is 
a SOP/EOP buffer), then the packet is contained in a single buffer. 

Table 12-7. SRAM, DRAM, and Scratch Utilization for Egress IXP2800

Item Size per entry 
in bytes Number of entries Total SRAM used Total DRAM 

Used
Total Scratch 

used

Buffer Descriptors 32 32k (In simulation we 
use only 320 buffers) 1 MB

Queue Descriptors 16 256 (16 ports x 16 
classes per port) 4k 

CSIX RX 
Reassembly contexts 32 1024 32k

Buffers 2048 32k 64 MB

Inside Scheduler 
between Count block 
and Class Scheduler 
block

4 512 2k

TX Helper to first 
Packet TX 4 256 1K

TX Helper to second  
Packet TX 4 256 1K

QM Q-Array entries N/A 16

Buffer Free list Q-
Array entry N/A   4
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This interface is used for packets that fit entirely in one buffer.

This interface is used for packets that require more than one buffer. 

12.7.2 Packet Processing Microengines and Statistics

The interface is a scratch ring. Each entry in the scratch ring is three long words as described in 
Table 12-10.

12.7.3 Statistics and SPI4 TX

The interface is a NN ring. Each entry in the NN ring is three long words as described in 
Table 12-11.

Table 12-8. Three-Word Scratch Ring Entry—Packets fit on one Buffer 

LW Bits Size Field Description

0 31:0 32 dl_buffer_handle Buffer Handle for the SOP Descriptor

1 31:16 16 input_port Input port on ingress processor

15:12 4 free_list_id Free list ID for buffer 

11:8 4 rx_stat Receive Status Flag

7:0 8 header_type Type of header at offset bytes into the packet

2 31:16 16 buffer_size Buffer size in bytes

15:0 16 offset Offset of the start of data in the SOP buffer in bytes

Table 12-9. Three-Word Scratch Ring Entry—Packets fit on more than one Buffer

LW Bits Size Field Description

0 31:0 32 dl_buffer_handle Buffer Handle for the SOP Descriptor

1 32:0 32 dl_eop_buffer_handle Buffer Handle for the EOP Descriptor

2 31:16 16 packet_size Total packet size across buffers in bytes

15:0 16 offset Offset of the start of data in the SOP buffer in bytes

Table 12-10. Three-Word Scratch Ring Entry—Packet Processing Microengines and Statistics

LW Bits Size Field Description

0 30:16 16 MOP_EOP_buf_size Size in bytes of all MOP buffers and the EOP buffer of 
the packet

0 0:15 16 Queue Number Queue Number 

1 31:0 32 SOP Buffer Handle Buffer Handle for the SOP Descriptor

2 31:0 32 EOP Buffer Handle Buffer Handle for EOP Descriptor (may be NULL)

Table 12-11. Three-Word NN Ring Entry (Statistics and SPI4 TX)

LW Bits Size Field Description

0 15:0 16 packet_len Length of packet

0 31:16 16 Reserved Not used
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12.7.4 SPI4 RX and Meter/WRED

The interface is a scratch ring. Each entry in the scratch ring is three long words as described in 
Table 12-12. 

Table 12-13 shows the interface used for packets that require more than one buffer. 

12.7.5 METER/WRED and Statistics

The interface is a scratch ring. Each entry in the scratch ring is three long words as described in 
Table 12-14. 

1 31:0 32 Sop_handle SOP Buffer handle

2 15:0 16 Port_number Port Number

2 31:16 16 Queue Number Queue Number

Table 12-11. Three-Word NN Ring Entry (Statistics and SPI4 TX)

Table 12-12. Three-Word Scratch Ring Entry (One Buffer only)

LW Bits Size Field Description

0 31:0 32 dl_buffer_handle Buffer Handle for the SOP Descriptor

1 31:16 16 input_port Input port on ingress processor

15:12 4 free_list_id Free list ID for buffer 

11:8 4 rx_stat Receive Status Flag

7:0 8 header_type Type of header at offset bytes into the packet

2 31:16 16 buffer_size Buffer size in bytes

15:0 16 offset Offset of the start of data in the SOP buffer in bytes

Table 12-13. Three-Word Scratch Ring Entry for SPI4 RX and Meter/WRED 

LW Bits Size Field Description

0 31:0 32 dl_buffer_handle Buffer Handle for the SOP Descriptor

1 32:0 32 dl_eop_buffer_handle Buffer Handle for the EOP Descriptor

2 31:16 16 packet_size Total packet size across buffers in bytes

15:0 16 offset Offset of the start of data in the SOP buffer in bytes

Table 12-14. Three-Word Scratch Ring Entry for Meter/WRED and Statistics

LW Bits Size Field Description

0 30:16 16 MOP_EOP_buf_size Size in bytes of all MOP buffers and the EOP buffer 
of the packet

0 0:15 16 Queue Number Queue Number 

1 31:0 32 SOP Buffer Handle Buffer Handle for the SOP Descriptor

2 31:0 32 EOP Buffer Handle Buffer Handle for EOP Descriptor (may be NULL)
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12.7.6 Statistics and CSIX Scheduler

The interface is a next neighbor ring. Each entry in the NN ring is three long words as described in 
Table 12-15. 

12.7.7 CSIX Scheduler and Cell Queue Manager

The interface is a next neighbor ring. Each entry in the NN ring is three long words as described in 
Table 12-16. 

12.7.8 Cell Queue Manager and CSIX TX

The interface is a next neighbor ring. CSIX Transmit is a two-microengine context pipe-stage. The 
cell queue manager writes to the NN ring of the first CSIX TX microengine. Each entry in the NN 
ring is 2 words as described in Table 12-17. 

Table 12-15. Three-Word NN Ring Entry for Statistics and CSIX Scheduler

LW Bits Size Field Description

0 30:16 16 Packet cell count Sum of all buffer cell counts belonging to the packet

0 0:15 16 Queue Number Queue Number 

1 31:0 32 SOP Buffer Handle Buffer Handle for the SOP Descriptor

2 31:0 32 EOP Buffer Handle Buffer Handle for EOP Descriptor (may be NULL)

Table 12-16. Three-Word NN Ring Entry for CSIX Scheduler and Cell Queue Manager

LW Bits Size Field Description

0 30:16 16 Dequeue Queue # Queue number from which to dequeue. Zero implies 
no dequeue

0 0:15 16 Enqueue Queue # Queue number on which to enqueue. Zero implies no 
enqueue

1 31:0 32 SOP Buffer Handle Buffer Handle for the SOP Descriptor

2 31:0 32 EOP Buffer Handle Buffer Handle for EOP Descriptor (may be NULL)

Table 12-17. Two-Word NN Ring Entry for Cell Queue Manager and CSIX TX

LW Bits Size Field Description

0 31:16 16 Reserved Reserved

0 15:0 16 Queue Number Queue Number 

1 31:0 32 Buffer Handle Buffer Handle currently being transmitted for queue
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12.7.9 CSIX TX—First ME to Second ME

The interface between the first CSIX TX microengine and second CSIX TX microengine is a next 
neighbor ring. Each entry in the NN ring is eight long words as described in Table 12-18. 

12.7.10 CSIX RX and Statistics

The interface is a scratch ring. Each entry in the scratch ring is 3 words as described in Table 12-19. 

12.7.11 Statistics and Packet Scheduler

The interface is a Next Neighbor ring as described in Table 12-20. 

Table 12-18. Eight-Word NN Ring Entry (CSIX TX—First ME to Second ME)

LW Bits Size Field Description

0 31:0 32 Tx_request0 Same as LW0 from Cell Queue Manager to CSIX TX

1 31:0 32 Tx_request1 Same as LW1 from Cell Queue Manager to CSIX TX

2 31:0 32 dram_handle DRAM address where CSIX cell is stored

3 31:24 8 cell_count_remaining Number of cells remaining in the current buffer

23:18 6 Reserved Reserved

17:17 1 MOP_EOP_flag If MOP_EOP, set to 1, else 0

16:16 1 SOP_EOP_flag If SOP and EOP, set to 0, else 1

15:0 16 payload_length Length of CSIX cell payload in bytes

4 31:0 32 prepend_header0 LW0 of CSIX cell pre-pend header

5 31:0 32 prepend_header1 LW1 of CSIX cell pre-pend header

6 31:0 32 prepend_header2 LW2 of CSIX cell pre-pend header

7 31:0 32 prepend_header3 LW3 of CSIX cell pre-pend header

Table 12-19. Three-Word Scratch Ring Entry for CSIX RX and Statistics

LW Bits Size Field Description

0 31:0 32 SOP Buffer Handle Buffer Handle for the SOP Descriptor

1 31:0 32 EOP Buffer Handle Buffer Handle for EOP Descriptor (may be NULL)

2 30:16 15 Packet Size Packet Size 

2 15:12 4 Output Port Number Output  Port Number

2 11:0 12 Queue Number Queue Number 

Table 12-20. Three-Word NN Ring Entry for Statistics and Packet Scheduler

LW Bits Size Field Description

0 31:0 32 SOP Buffer Handle Buffer Handle for the SOP Descriptor

1 31:0 32 EOP Buffer Handle Buffer Handle for EOP Descriptor (may be NULL)
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12.7.12 Packet Scheduler and Queue Manager 

The interface between the QM and the Packet Scheduler is a Next Neighbor Ring. Each entry is 2 
long words as described in Table 12-21. 

12.7.13 Queue Manager and TX Helper

The interface between the Queue Manager and the TX Helper a Next Neighbor ring. Each entry is 
two long words as described in Table 12-22. 

2 30:16 15 Packet Size Packet Size 

2 15:12 4 Output Port Number Output  Port Number

2 11:0 12 Queue Number Queue Number 

Table 12-20. Three-Word NN Ring Entry for Statistics and Packet Scheduler (Continued)

LW Bits Size Field Description

Table 12-21. Two-Word NN Ring Entry for Packet Scheduler and Queue Manager

LW Bits Size Field Description

0 30:16 16 Dequeue Queue # Queue number from which to dequeue. Zero implies 
no dequeue

0 0:15 16 Enqueue Queue # Queue number on which to enqueue. Zero implies no 
enqueue

1 31:0 32 SOP Buffer Handle Buffer Handle for SOP Descriptor  

1 31:0 32 EOP Buffer Handle Buffer Handle for EOP Descriptor (may be NULL)

Table 12-22. Two-Word NN Ring Entry for Queue Manager and TX Helper

LW Bits Size Description

0 31:4 28 Reserved

0 3:0 4 Output port number

1 31:24 8 Reserved

1 23:0 24 Pointer to SOP buffer descriptor in SRAM in long words 
(Same as bits 0:23 of buffer handle)
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12.7.14 TX Helper and Packet TX

The interface between the TX Helper and the Packet Transmit is two scratch rings – one for first 
Packet TX ME which handles the transmission of port 0 to 4, one for second Packet TX ME which 
handles the transmission of port 5 to 9. Each entry is one word as described in Table 12-23. 

Table 12-23. One-Word Scratch Ring Entry for TX Helper and Packet TX 

LW Bits Size Description

0 31:31 1 Valid bit

30:28 3 Reserved

27:24 4 Port number

23:0 24 Pointer to SOP buffer descriptor in SRAM in long words 
(Same as bits 0:23 of buffer handle)
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Dual OC-12 POS/Dual Gb Ethernet 
Forwarding Application for IXDP24X1 13

This chapter describes an IPv4 Forwarding software application for Ethernet and Packet over 
SONET (POS) implemented on an Intel® IXP2400 Network Processor. It provides a high level 
design overview and lists the different software components used to build this application. This 
chapter describes the application in the context of Ethernet and POS media interfaces. 

The application described in this chapter is supported on the Intel® IXDP2401 Advanced 
Development Platform, which uses a single IXP2400.

This chapter focuses only on the fast path or microengine components of the design. The Intel 
XScale® core components for this application are described in Intel® Internet Exchange 
Architecture (IXA) Portability Framework Developer’s Manual.

Note: It is important that all applications developed for the IXDP24X1 platform must have the 
IX_PLATFORM_2401 flag defined in the project makefiles, for both the core components and the 
microblocks. An example of required flag definitions may be found in the makefiles of this 
application. By default, newly created projects under the Windriver* Tornado* development 
environment have the flag defined as IX_PLATFORM_2400. For this application, the flag must be 
changed to IX_PLATFORM_2401.

13.1 Hardware Overview

The Intel®  IXDP2401 Advanced Development Platform consists of the Intel® IXMB2401 
baseboard, which is equipped with two daughter board connectors (DB1 and DB2). Up to two 
media mezzanine boards can be connected to the baseboard. The following mezzanine boards are 
available:

• 2xOC-12 POS ATM mezzanine card

• 2x1 Gigabit Ethernet mezzanine card with copper interfaces

• 2x1 Gigabit Ethernet mezzanine card with fiber interfaces

The Intel® IXMB2401 baseboard may also be equipped with two types of front interfaces:

• 2x1 Gigabit Ethernet copper interfaces (MIC 2C)

• 2x1 Gigabit Ethernet fiber interfaces (MIC 2F)

Table 13-1 presents all possible hardware configurations supported by the Dual OC-12 POS/Dual 
Gigabit Ethernet Forwarding Application for IXDP2401.
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Figure 13-1 shows an Intel® IXP2400 Network Processor in a typical configuration. In this 
configuration, the IXP2400 is identified as the network processor; it receives from the Ethernet or 
POS media interface and transmits to the other Ethernet or POS media interface.

The target hardware comprises four physical media interfaces. A POS media mezzanine card 
installed on a baseboard provides two OC-12 interfaces. Two Gigabit Ethernet interfaces are 
available on the baseboard Backplane Access module.

The IXP2400 receives POS or Ethernet frames that carry IPv4 datagrams. The frames are 
assembled into IPv4 packets and the Layer-2 (Ethernet or PPP) headers are removed. Based on the 
IPv4 header, a Longest Prefix Match (LPM) lookup is performed and the packets are transmitted 
over the appropriate port.

Table 13-1. Supported Hardware Configurations

Backplane
(Interface 

Supported)

DB1
(Interface 

Supported)

DB2
(Interface 

Supported)
Description Configuration with 100% 

Throughput

2x1GE
(copper only) 2xOC-12 POS N/A All supported ports 

available.
1x1GbE, 2xOC-12

(due to 2.5 Gbps limitation for board)

N/A MIC 2C 2x1GbE
(copper only) 2xOC-12 POS All supported ports 

available.
1x1GbE, 2xOC-12

(due to 2.5 Gbps limitation for board)

N/A 2xOC-12 POS MIC 2F 2x1GbE
(fiber only)

All supported ports 
available.

1x1GbE, 2xOC-12

(due to 2.5 Gbps limitation for board)

N/A 2xOC-12 POS
2x1GbE 
(mezzanine fiber 
or copper)

All supported ports 
available.

1x1GbE, 2xOC-12

(due to 2.5 Gbps limitation for board)

Figure 13-1. Example Hardware Configuration for OC48-Ethernet/POS
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13.2 Software Overview

Figure 13-2 shows the microblocks needed to implement an OC-12 Ethenet/POS IPv4 Forwarding 
application. All the context pipe-stages (for example, Packet Rx, Queue Manager, and Scheduler) 
occupy an entire microengine. Each context pipe-stage is mapped to a single microblock running 
on a microengine with or without a dispatch loop. The functional pipeline runs on three 
microengines and implements decapsulation (Ethernet and PPP) together with decapsulation and 
the IPv4 forwarder blocks. 

The design for the application shown in Figure 13-2 is based on the guidelines specified in the 
Intel® Internet Exchange Architecture (IXA) Portability Framework Developer’s Manual. The 
driver microblocks (Receive, Transmit, Scheduler and Queue Manager) run on different 
microengines from the packet processing code. In this design, each driver block occupies an entire 
microengine. The packet processing blocks on the ingress IXP2400 include the IPv4 Forwarder 
and the PPP decapsulation/classify microblock. There are four microengines that run in parallel 
and execute the packet processing code. On the egress side, the only packet processing code is the 
PPP encapsulation block which runs on a single microengine.

13.2.1 Data Flow 

This section describes the data flow on the Intel® IXP2400 Network Processor.

13.2.1.1 Ethernet Packet RX

The Ethernet Packet Receive (Rx) microblock performs frame-reassembly on the incoming 
mpackets on the media interface. It reassembles and writes the packet data to a buffer in DRAM 
and queues the packet buffer handle on a microengine-to-microengine scratch ring for processing 

Figure 13-2. Microblocks for Dual OC-12 POS/ Dual Gigabit Ethernet IPv4 Forwarding 
Application
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by the next stage of the pipeline. The Packet RX microblock also sets up per packet meta 
information (offset, size, etc.) which are passed down the pipeline either in a descriptor in SRAM 
or in the microengine-microengine scratch ring itself.

The Packet RX microblock runs on 4 threads on a single microengine (together with POS Rx). 
Each thread handles one micropacket (being in an RBUF) at a time. To maintain packet 
sequencing, the threads execute in strict order.

The Packet RX microblock works in the MSF mode. The SPI-3 bus is divided into four 8-bit SPI-3 
connections. Since the Packet RX microblock uses 4 threads, each of 4 supported ports uses one 
thread for receiving packets. The re-assembly context for all these ports is kept in local memory.

From the Packet RX block, the packet is passed on to an application-specific system microblock. 
This microblock checks if the packet is marked to be dropped or sent to the Intel XScale® core. If 
not, it queues the packet buffer handle and associated meta-data into the scratch ring for the next 
stage in the pipeline.

13.2.1.2 POS RX

The POS Receive (Rx) is a driver microblock that performs frame-reassembly on the mpackets 
coming in on the POS media interface. It reassembles and writes the packet data to a buffer in 
DRAM and queues the packet buffer handle on a microengine-microengine scratch ring for 
processing by the packet processing microengine. The Packet RX microblock also sets up per 
packet meta information (offset, size, etc.) which are passed on either in a descriptor in SRAM or 
in the microengine-microengine scratch ring itself. In this application, the packets reassembled are 
PPP frames containing IP datagrams. RFC 2615 defines the Packet Over SONET specification and 
refers to RFC 1661 (PPP) and RFC 1662 (PPP in HDLC-like framing). PPP framing, including 
header validation, FCS generation and computation and byte stuffing, is handled by the POS 
framer (IXF 6048).

The Packet RX microblock uses 4 threads on a single microengine, each of which handles one 
mpacket at a time. In the application 2 ports are supported and the re-assembly context for all these 
ports is kept in local memory. To maintain packet sequencing, the threads execute in strict order.

Note: This microblock is written such that it supports up to 16 virtual ports, one or more of which may be 
unused. This allows the microblock to support different configurations such as Quad-OC12 or 16 
OC-3 ports. However the application uses the block in the way that only 2 POS ports (OC-12 or 
OC-3) are supported.

Since POS packets may be up to 9k bytes, some large packets may be stored in multiple buffers 
chained together as a link-list. The buffer handles for the first and last packet in the chain are 
queued in the scratch ring.

From the Packet RX block, the packet is passed on to an application specific system microblock 
(DL_Sink[]). This microblock checks if the packet has been marked to be dropped (IX_DROP) or 
sent to the Intel XScale® core (IX_EXCEPTION). If not, it queues the packet buffer handle and 
associated packet meta data into the scratch ring for the next stage in the pipeline.

13.2.1.3 Ethernet Decapsulation and Classify

The Ethernet decapsulation/classify microblock runs in a functional pipeline with the PPP 
decapsulation, IPv4 and L2 validation microblocks on three microengines using 24 threads. This 
microblock classifies the incoming packets. 
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Before classification for all packets, their handlers are read from DRAM and cached in transfer 
registers. Packet descriptors are also cached in gprs.

Packet descriptor metadata is updated per decapsulation results. For an IP routed packet, the offset 
in buffer points at the IP header. IP ARP packets are passed to the Intel XScale® core as exception 
packets.

Subsequently, a packet is passed to the IPv4 forwarder, or to the Intel XScale® core (as an 
exception packet) for further processing. 

13.2.1.4 PPP Decapsulation and Classify

The PPP decapsulation/classify microblock runs in a functional pipeline with the L2 decapsulation, 
IPv4 and L2 validation microblocks on three microengines using 24 threads.

An application specific system source microblock on each thread dequeues packet buffer handles 
from the scratch ring. This source block (DL_Source[]) is a system microblock implicit in the 
dispatch loop. It reads in the packet meta information—that is, the packet descriptor, and populates 
the dispatch loop state. It also reads in 32 bytes of the packet header from DRAM into a header 
cache maintained in transfer registers. Since it is important to maintain packet sequencing, the 
threads in the microblock execute in strict order to dequeue from the scratch ring. This implies that 
the first thread on microengine 1 dequeues the first packet, and signals the next thread to perform 
dequeue. From this block, the packet goes to the PPP decapsulation/classify microblock.

The PPP decapsulation/classify microblock removes the layer-2 PPP header from the packet by 
updating the offset and size fields in the packet meta descriptor. Based on the PPP header, it also 
classifies the packet into IPv4, PPP control packet (LCP, IPCP etc). If the packet is a PPP control 
packet, it is marked as an exception packet to be sent to the XScale Core (IX_EXCEPTION). 
Otherwise the packet is sent down the microengine pipeline for further processing. In this 
application, the dispatch loop will silently drop packets classified as IPv6.

13.2.1.5 IPv4 Forwarder

The IPv4 Forwarder microblock forwards IPv4 packets based on L3 addressing. The IPv4 
Forwarder microblock uses a packet descriptor and accesses an IP header from the cache in the 
transfer registers. The IP packet is then validated against [RFC1812] and [RFC2644] within the 
data plane. If the IP packet fails any of the validation checks, the packet is dropped. The packet’s IP 
header TTL is decremented, and the IP header checksum is updated accordingly. The packet’s next 
hop is then determined (i.e., the next destination to which the packet is forwarded). To do that, the 
IP packet’s destination address is passed to a 5-trie Longest Prefix Match (LPM) algorithm that 
yields a next hop index, which is used to obtain the next hop information. The information includes 
the output port and next hop ID, which is subsequently used to access the outgoing link layer 
information. The packet metadata is updated with the next hop ID, and the packet is handed off to 
the L2 Validation microblock. If the 5-trie algorithm fails (the best match cannot be determined), 
the packet is sent to the Intel XScale® core to complete the LPM procedure.

13.2.1.6 Packet-Based Queue Manager

The Packet-Based Queue Manager (QM) performs enqueue/dequeue operations on the hardware-
assisted SRAM queues for packet-type traffic. The QM receives enqueue requests from the IPv4 
microblock through a scratch ring. When the queue state changes between empty and non-empty, 
QM sends a transition message to the scheduler (via next neighbor registers). After every dequeue 
operation, the QM passes a transmit request to the scratch ring served by the Packet TX 
microblock. Dequeue requests come from the packet scheduler microengine. 
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13.2.1.7 Packet Scheduler

The Packet Scheduler selects constant-length packet segments to be transmitted to the MSF 
interface. The Packet Scheduler sends the Queue Manager microblock a message to dequeue a 
packet from a specific port’s queue. The Queue Manager microblock services the request, and 
deposits a packet descriptor from the requested queue into the output packet ring.

The scheduler employs Round Robin (RR) algorithm among the output ports and Weighted Round 
Robin (WRR) algorithm among the port queues. Using the Weighted Round Robin algorithm on 
the 16 virtual ports allows us the flexibility to support a number of different configurations such 16 
OC-3, 3 OC-12, and 4 OC-3, etc. The weights on the ports are adjusted according to the data rate 
sustained on that port.

To prevent head-of-line blocking, the scheduler with the help of feedback from the Packet TX 
block keeps track of the number of packets in flight (scheduled, but not transmitted) for each port. 
If this number exceeds a specified limit, then it stops scheduling on that port.

13.2.1.8 Ethernet Encapsulation

Ethernet encapsulation conditionally adds an appropriate layer-2 Ethernet header to the packet 
payload while copying it to a set of TBUFs. If the next hop id is set to an invalid value (-1), the 
block assumes that the layer-2 header has already been added to the packet and simply the packet is 
copied to a set of TBUFs without changes.

Ethernet encapsulation is integrated within the Ethernet Packet TX microblock.

13.2.1.9 Ethernet Packet TX

The Ethernet Packet TX microblock transmits Ethernet frames via the MSF interface as one or 
more consecutive mpackets (containing elements/segments of Ethernet frames). The Ethernet TX 
microblock fetches a packet buffer handle (to access an upstream packet descriptor) from the per 
port assigned packet ring (i.e., scratch memory ring); the packet descriptor references the payload 
of an Ethernet frame. Using the supplied context, the Ethernet TX microblock proceeds to transmit 
frame mpackets out the output port. Upon transmitting all MPKT frames, the packet buffer(s) is 
recycled.

The Ethernet Packet TX is used in the way that it supports up to 2 Ethernet ports. The transmit 
context for all of these are kept in local memory. Therefore the CAM is not required. The 
microblock monitors the MSF to see if the TBUF threshold for a specific port has been exceeded. If 
so, it stops transmitting on that port and any requests to transmit packets on that port are queued up 
in local memory.

The Packet TX microblock periodically updates the scheduler with information about how many 
packets have been transmitted. If the packets in flight for a particular port (packets scheduled but 
not transmitted) exceed a certain limit (which depends on the bandwidth supported by that port), 
then the scheduler stops scheduling any more packets for the port. This combination of queuing 
packets in local memory and keeping track of the packets in flight helps prevent head-of-line 
blocking.

The Packet TX microblock runs on two microengines and supports SPHY 4x8 configuration.
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13.2.1.10 PPP Encapsulation

This block conditionally adds the layer-2 PPP header to the packet while copying it to a set of 
TBUFs. If the next hop id in the packet meta data is set to an invalid value (-1) then the block 
assumes that the PPP header has already been added to the packet and is simply copied to a set of 
TBUFs without changes.

PPP encapsulation is integrated within the POS Packet TX microblock.

13.2.1.11 POS Packet TX

The POS Packet TX microblock transmits packets over the media interface. It segments a packet 
into mpackets and moves them into TBUFS for the MSF state machine to transmit. The POS 
Packet TX microblock assumes that the layer-2 header is already prepended to the start of the 
packet by a previous stage of the packet processing pipeline. It also receives a transmit request for 
the entire packet.

The POS Packet TX microblock is set up to support up to 2 POS ports. The transmit context for all 
of these are kept in local memory. Therefore the CAM is not required. The microblock monitors 
the MSF to see if the TBUF threshold for a specific port has been exceeded. If so it stops 
transmitting on that port and any requests to transmit packets on that port are queued up in local 
memory.

The POS Packet TX microblock periodically updates the scheduler with information about how 
many packets have been transmitted. If the packets in flight for a particular port (packets scheduled 
but not transmitted) exceed a certain limit (which depends on the bandwidth supported by that 
port), then the scheduler stops scheduling any more packets for the port. This combination of 
queuing packets in local memory and keeping track of the packets in flight helps prevent 'head of 
line blocking'.

An assumption made in this design is that the output port for egress is found via the IPv4 lookup 
performed on the ingress side. A different approach is to use the next hop id and do a lookup on the 
egress side to find out the output port number.

The POS Packet TX microblock runs on a single microengine together with PPP encapsulation.

Note: The POS Packet TX microblock can be used to support the MPHY-4 (or SPHY 4x8—four port 
OC-12) configuration when it runs on two microengines. However, in this application it runs on a 
single microengine in SPHY 4x8 mode so that only 2 ports (OC-12 or OC-3) are supported.

13.2.2 Dispatch Loops

There are four microblock groups, called dispatch loops, used in this pipeline application. For more 
information on dispatch loops, refer to the Intel® Internet Exchange Architecture (IXA) Portability 
Framework Developer’s Manual “Dispatch Loop” chapter.

• Dispatch Loop for the Packet Frame Reassembly Stage (Figure 13-3)

• Dispatch Loop for the IPv4 Forwarder functional pipeline (Figure 13-4)

• Dispatch Loop for the PPP transmit stage (Figure 13-5)

• Dispatch Loop for the Ethernet transmit stage (Figure 13-6)
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The QM and Scheduler blocks do not use a dispatch loop, though they still use the dispatch loop 
macros where required

Note: The system microblocks dl_source, dl_sink, dl_qm_sink, etc are application-specific. 
They may be changed for different packet processing pipelines.

Figure 13-3. Dispatch Loop for the Packet Frame Reassembly Stage

Packet Rx Dl_Sink

Figure 13-4. Dispatch Loop for the IPv4 Functional Pipeline
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Figure 13-5. Dispatch Loop for POS Transmit Stage
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13.3 Performance Characterization

13.3.1 POS/Ethernet Pipeline

The Intel® IXP2400 Network Processor operates at 600 MHz. The application handles two OC-12 
POS ports and two Gigabit Ethernet ports. For a minimum POS packet of 49B, the packet inter-
arrival time at two OC-12 line rate is 194 microengine cycles.  For a minimum Ethernet packet of 
64B with extra gap of 20B (looks like 84 bytes on a wire) the packet inter-arrival time at two 
Gigabit Ethernet port is 200 microengine cycles. In order to maintain line rate for minimum 
packets on all four ports, each stage of the pipeline cannot exceed the budget following average 
value = (195,4 + 200)/4 = 98,85 microengine cycles . In other words, each stage of the pipeline 
needs to retire a packet every 98 cycles.

Table 13-2 summarizes the performance analysis for the POS pipeline.

Figure 13-6. Dispatch Loop (Microblock group) for Ethernet Transmit Stage
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Table 13-2. Performance Characterization for the POS Pipeline

Parameter Value

Summarized dual OC-12 line rate with dual Gigabit 
Ethernet line rate 3.204 Gigabits/sec

Minimum POS packet size
49 bytes (40 byte TCP/IP, 2 bytes Address and 
Control, 2 byte PPP header, 4 byte FCS and 1 byte 
flag)

Packet throughput for min packets 6.05 million packets/sec = (1.204 / (49*8)) * (10**9) + 
(2 * 1.000 /(84*8) * (10**9) 

IXP2400 clock frequency 600 MHZ

Inter-packet arrival time for min packets 600/6.05 = 98.8 cycles

Compute cycles per packet for a single microengine 98

Latency per packet for a single microengine 98 * 8

Compute cycles per packet for n microengines 
running in parallel 98 * n

Latency per packet for a n microengines running in 
parallel 98 * 8 * n
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13.4 System Resource Allocation

Table 13-3 shows the system resources mapped for the Intel® IXP2400 Network Processor. This 
mapping reflects the system defaults and may be changed. The allocation of microengines is done 
such that it optimizes the performance of this specific application and may be changed for other 
applications.

The physical assignment of function to microengine is important since it not only affects when the 
next neighbor registers and signaling can be utilized, but it also affects the utilization of the internal 
command bus and S-Push/Pull buses. Since ME0-ME3 belong to Microengine Cluster 0 and ME4- 
ME7 belong to Microengine Cluster 1, this assignment attempts to balance the usage of the 
command bus and S-Push/Pull buses across the two clusters.

The IXP2400 supports two SRAM channels and one DRAM channel. Table 13-4 shows the 
SRAM, DRAM, and scratch memory utilized for this application. These values are allocated by the 
Intel XScale® core application and patched to the microcode upon startup. The values are defined 
in a system XML configuration file ix_sa_registry.xml and may be changed as required.

Table 13-3. System Resources Mapped for the IXP2400

Microblock ME # Communication

Packet Rx ME0 Auto-push status from MSF

IPv4 Forwarder + Eth Decapsulation/ Classifier + 
PPP Decapsulation/ Classifier + L2 Validation ME1, ME2, M7 Scratch Ring

Queue Manager ME3 Scratch Ring

Packet Scheduler ME4 Scratch Ring

PPP Packet TX + PPP Encapsulation ME5 Scratch Ring

Ethernet Packet TX + Eth Encapsulation ME6 Scratch Ring

Table 13-4. SRAM, DRAM, and Scratch Utilization for Ingress Resource Allocation

Item 
Size per 
entry in 
bytes

Number 
of entries

Total 
SRAM 
used

Total DRAM 
used

Total 
Scratch 
used

Buffer Descriptors 32 16000 512000 - -

Buffers 2048 16000 - 32768000 -

Queue Descriptors 16 1025 16400 - -

Layer-2 table with mapping from next 
hop id to Ethernet header 16 1024 16384 - -

Trie Table 64B for a trie 
entry

1024 used 
for 
approxima
tion

256kB+1K
B+1/
2*1024*64
B=

295936

- -

Route Table (Next Hop Information) 16 1024 - 16384 -

IPv4 statistics 32
16 
(needed 
4)

- - 512
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13.5 Microblock Interface

This section describes the interfaces between the different microblocks for this pipeline 
application.

In most of the messages, there is a valid bit is used to prevent a value of zero from being enqueued 
on the scratch ring. Zero is used to detect a case where the scratch ring is empty. So the valid bit 
helps distinguish between a zero value that was actually enqueued versus a case where the ring is 
empty.

13.5.1 Packet RX and Packet Processing Microengines

The interface between the Packet Receive microblock and the Packet Processing microengines 
(IPv4 Forwarder + L2/PPP decap + L2 Validate) is a scratch ring. Table 13-5 describes each entry 
in the scratch ring—which is five words.

IPv4 Directed Broadcast Table 32 256 + 32 
extra 9216 - -

Processing Control Block 4 1 4 - -

Ring from Packet RX to packet 
processing pipeline (IPv4+Eth Decap/ 
Classify)

5*4B=20 204 - - 1024*4B= 
4096

IPv4 to QM ring 3*4B=12 170 - -
512*4=

2048

Scheduler to QM ring 1*4B=4 512 - -
512*4=

2048

QM Q-Array entries 4 16 64 - -

Buffer Free list Q-Array entry 4 4 16 - -

uCode to Xscale Core priority rings (1 
AF+ 1 BE) 2*4B 64 - - 2*512 = 

1024

Xscale Core to uCode rings (1 CNTRL 
+ 1 DATA)

1*4B,

2*4B
128 - -

128*4+ 
256*4=

1536

QM to Packet TX rings 1*4B=4 256 - - 4*256*4B= 
4096

Table 13-4. SRAM, DRAM, and Scratch Utilization for Ingress Resource Allocation (Continued)

Table 13-5. Packet RX and Packet Processing Microengines Scratch Ring Interface

LW Bits Size Field Description

0 31:0 32 dl_buffer_handle Buffer handle for the SOP descriptor

1 31:0 32 dl_eop_buffer_handle Buffer handle for the EOP descriptor

2 31:!6 16 buffer_size Buffer size in bytes

15:0 16 offset Offset of the start of data in the buffer in bytes

3 31:16 16 packet_size Total packet size across buffers

15:12 4 free_list_id Free list ID for buffer
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13.5.2 Packet Processing Microengines and Packet QM 

The interface between the Packet Processing microengines (IPv4 Forwarder + L2/PPP decap + L2 
Validate) and Packet QM is a scratch ring. Table 13-6 describes each entry in the scratch ring— 
which is five words.

13.5.3 Packet Queue Manager and Scheduler

The interface between the packet-based Queue Manager and the POS/Ethernet Scheduler is a Next 
Neighbor Ring.

11:8 4 rx_stat Receive Status Flag

7:0 8 header_type Type of header at offset bytes into the packet

4 31:16 16 input_port Input port on the Network Processor

15:0 16 reserved Reserved

Table 13-5. Packet RX and Packet Processing Microengines Scratch Ring Interface 

Table 13-6.  Packet Processing Microengines and Packet QM Scratch Ring Interface

LW Bits Size Field Description

0 31:0 32 SOP Buffer Handle Buffer Handle for the SOP Descriptor

1 31:0 32 EOP Buffer Handle Buffer Handle for the EOP Descriptor (can be NULL)

2 31 1 Valid Bit Must be 1

2 30:16 15 Reserved Reserved

2 15:0 16 Queue Number Queue Number

Table 13-7. Queue Transition Messages Sent by the Packet Queue Manager

LW Bits Size Field Description

0 31 1 Valid Bit Must be 1

30 1 Enqueue Transition Notification that queue has gone from empty to 
non-empty

29 1 Reserved Reserved

28:18 11 Packet Cell Count Unused for POS/Ethernet

17:16 2 Reserved Reserved

15:0 16 Queue Number Queue Number that was enqueued (only 8 bits 
used for POS/Ethernet)

1 31 1 Valid Bit Must be 1

30 1 Dequeue Transition Notification that queue has gone from non-empty 
to empty

29 1 Invalid Dequeue If set, then dequeue request to an invalid queue 
was made

28:16 13 Packet Size Packet size in 128 bytes units (only 7 bits used)

15:0 16 Queue Number Queue number that was dequeued (only 8 bits 
used for POS/Ethernet)
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13.5.4 Packet Queue Manager and POS Packet TX

The interface between the Packet Queue Manager and the POS Packet Transmit microengines is 
two scratch rings—one per OC-12 port. Table 13-8 describes each entry in the scratch ring—which 
is one word.

13.5.5 Packet Queue Manager and Ethernet Packet TX

The interface between the Packet Queue Manager and the Ethernet Packet Transmit microengines 
is two scratch rings—one per Gigabit Ethernet port. Table 13-9 describes each entry in the scratch 
ring—which is one word.

13.6 Core Components Usage

The Dual OC-12 POS/ Dual Gigabit Ethernet Forwarding pipeline application uses standard core 
components customized to use only channel 0 for SRAM. Figure 13-7 shows the interconnections 
between the application’s core components. The Resource Manager and Queue Manager core 
components employ scratch rings for communication with microblocks on microengines. 
Interactions between IPv4, Ethernet Tx, POS Tx, Stack Driver, Resource Manager and Queue 
Manager are managed by the Core Component Interface (CCI).

Table 13-8.  Packet Queue Manager and Packet TxScratch Ring Interface

LW Bits Size Field Description

0 31 1 Valid Bit Must be 1

30:28 3 Reserved Reserved

27:24 4 Port Number Port Number

23:0 24 SOP Buffer Descriptor Pointer to SOP buffer descriptor in SRAM in long 
words (same as bits 23:0 of buffer handle)

Table 13-9. One-word Scratch Ring (Packet Queue Manager and Packet TX)

LW Bits Size Field Description

0 31 1 Valid Bit Must be 1

30:28 3 Reserved Reserved

27:24 4 Port Number Port Number

23:0 24 SOP Buffer Descriptor Pointer to SOP buffer descriptor in SRAM in long 
words (same as bits 23:0 of buffer handle)
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Figure 13-7. Core Components in the OC-12 POS/Ethernet IPv4 Forwarding Application
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This chapter describes a Quad Gigabit Ethernet Forwarding pipeline application implemented on 
one Intel® IXP2400 Network Processor. This chapter contains a high-level design overview and 
lists the different software components used to build this pipeline application.

The application described in this chapter is supported on the Intel® IXDP2401 Advanced 
Development Platform, which uses a single IXP2400.

This chapter focuses only on the fast path or microengine components of the design. The Intel 
XScale® core components for this application are described in the Intel® Internet Exchange 
Architecture (IXA) Portability Framework Developer’s Manual.

Note: It is important that all applications developed for the IXDP24X1 platform must have the 
IX_PLATFORM_2401 flag defined in the project makefiles, for both the core components and the 
microblocks. An example of required flag definitions may be found in the makefiles of this 
application. By default, newly created projects under the Windriver* Tornado* development 
environment have the flag defined as IX_PLATFORM_2400. For this application, the flag must be 
changed to IX_PLATFORM_2401.

14.1 Hardware Overview

The Intel® IXDP2401 Advanced Development Platform consists of the Intel® IXMB2401 
baseboard, which is equipped with two daughter board connectors (DB1 and DB2). Up to two 
media mezzanine boards can be connected to the baseboard. The following mezzanine boards are 
available:

• 2x1 Gigabit Ethernet mezzanine card with copper interfaces

• 2x1 Gigabit Ethernet mezzanine card with fiber interfaces

The Intel® IXMB2401 baseboard may also be equipped with two types of front interfaces:

• 2x1 Gigabit Ethernet copper interfaces (MIC 2C)

• 2x1 Gigabit Ethernet fiber interfaces (MIC 2F)
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Table 14-1 presents all possible hardware configurations supported by the Quad Gigabit Ethernet 
Forwarding Application for IXDP2401. 

The application runs on an IXMB2401 baseboard with an Intel® IXP2400 Network Processor. The 
baseboard is equipped with two front panel Gigabit Ethernet interfaces (copper or fiber) as well as 
two backplane Gigabit Ethernet interfaces. Additionally, a serial console port and debug Ethernet 
port are available. The baseboard is designed according to ATCA standards and requires an ATCA-
compliant chassis.

Table 14-1. Supported Hardware Configurations

Backplane
(Interface 

Supported)

DB1
(Interface 

Supported)

DB2
(Interface 

Supported)
Description Configuration with 100% 

Throughput

2x1GE
(copper only)

MIC 2C 2x1GbE
(copper only) N/A All supported ports 

available.
1x1GbE front, 1x1GbE backplane

(due to 2.5 Gbps limitation for board)

2x1GE
(copper only) N/A MIC 2F 2x1GbE

(fiber only)
All supported ports 
available.

1x1GbE front, 1x1GbE backplane

(due to 2.5 Gbps limitation for board)

2x1GE
(copper only)

2x1GbE 
(mezzanine fiber 
or copper)

N/A All supported ports 
available.

1x1GbE front, 1x1GbE backplane

(due to 2.5 Gbps limitation for board)

Figure 14-1. Example Hardware Configuration for Quad Ethernet IPv4 Forwarding Application
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14.2 Software Overview

Figure 14-2 shows the microblocks needed to implement a Quad Ethernet IPv4 Forwarding 
pipeline application. All the context pipe-stages (for example, Packet Rx, Queue Manager, and 
Scheduler) occupy an entire microengine. Each context pipe-stage is mapped to a single 
microblock running on a microengine with or without a dispatch loop. The functional pipeline runs 
on three microengines and implements the layer-2 (Ethernet) decapsulation and the IPv4 forwarder 
blocks. 

14.2.1 Data Flow

14.2.1.1 Packet RX

The Packet Receive (RX) microblock performs frame-reassembly on the incoming packets on the 
media interface. It reassembles and writes the packet data to a buffer in DRAM and queues the 
packet buffer handle on a microengine-microengine scratch ring for processing by the next stage of 
the pipeline. The Packet RX microblock also sets up per packet meta information (offset, size, etc.) 
which are passed down the pipeline either in a descriptor in SRAM or in the microengine-
microengine scratch ring itself.

The Packet RX microblock runs on 8 threads on a single microengine. Each thread handles one 
micropacket (rbuf) at a time. To maintain packet sequencing, the threads execute in strict order.

The Packet RX microblock works in MSF mode. The SPI-3 bus is divided into four 8-bit SPI-3 
connections. Since the Packet RX microblock uses 8 threads, each of 4 supported ports uses two 
threads for receiving packets. The re-assembly context for all these ports is kept in local memory.

From the Packet RX block, the packet is passed on to an application-specific system microblock. 
This microblock checks if the packet is marked to be dropped or sent to the Intel XScale® core. If 
not, it queues the packet buffer handle and associated meta-data into the scratch ring for the next 
stage in the pipeline.

Figure 14-2. Microblocks for a Quad Ethernet IPv4 Forwarding Application
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14.2.1.2 Ethernet Classify/Decapsulate

The Ethernet decapsulation/classify microblock runs in a functional pipeline with the IPv4 
microblock on three microengines using 23 threads. This microblock classifies the incoming 
packets. 

Before classification for all packets, their handlers are read from DRAM and cached in transfer 
registers. Packet descriptors are also cached in gprs.

Packet descriptor metadata is updated per decapsulation results. For an IP routed packet, the offset 
in buffer points at the IP header. IP ARP packets are passed to the Intel XScale® core as exception 
packets. Subsequently, a packet is passed to the IPv4 forwarder, or to the XScale core (as an 
exception packet) for further processing. 

14.2.1.3 IPv4 Forwarder

The IPv4 Forwarder microblock forwards IPv4 packets based on L3 addressing. The IPv4 
Forwarder microblock uses a packet descriptor and accesses an IP header from the cache in the 
transfer registers. The IP packet is then validated against [RFC1812] and [RFC2644] within the 
data plane. If the IP packet fails any of the validation checks, the packet is dropped. The packet’s IP 
header TTL is decremented, and the IP header checksum is updated accordingly. The packet’s next 
hop is then determined (that is, the next destination to which the packet is forwarded). To do that, 
the IP packet’s destination address is passed to a 5-trie Longest Prefix Match (LPM) algorithm that 
yields a next hop index, which is used to obtain the next hop information. The information includes 
the output port and next hop ID, which is subsequently used to access the outgoing link layer 
information. The packet metadata is updated with the next hop ID, and the packet is handed off to 
the L2 Validation microblock. If the 5-trie algorithm fails (the best match cannot be determined), 
the packet is sent to the Intel XScale® core to complete the LPM procedure.

14.2.1.4 L2 Validate

The L2 Validate microblock checks for outgoing packets if layer-2 Ethernet header exists in the L2 
Table. If the header is not found, the packet is enqueued to be processed by the XScale Core. ARP 
Processing is handled by the XScale application code. 

The L2 Validate microblock is located after IPv4 Forwarder in the functional pipeline.

14.2.1.5 Packet-Based Queue Manager

The Packet-Based Queue Manager (QM) performs enqueue/dequeue operations on the hardware-
assisted SRAM queues for packet-type traffic. The QM receives enqueue requests from the IPv4 
microblock through a scratch ring. When the queue state changes between empty and non-empty, 
QM sends a transition message to the scheduler (via next neighbor registers). After every dequeue 
operation, the QM passes a transmit request to the scratch ring served by Packet TX microblock. 
Dequeue requests come from the packet scheduler microengine. 

14.2.1.6 Packet Scheduler

The Packet Scheduler selects constant-length packet segments to be transmitted to the MSF 
interface. The Packet Scheduler sends the Queue Manager microblock a message to dequeue a 
packet from a specific port’s queue. The Queue Manager microblock services the request, and 
deposits a packet descriptor from the requested queue into the output packet ring.



Software Building Blocks Applications Design Guide 201

Quad Gigabit Ethernet Forwarding Application for IXDP24X1

The scheduler employs Round Robin (RR) algorithm among the output ports and Weighted Round 
Robin (WRR) algorithm among the port queues.

To prevent head-of-line blocking, the scheduler with the help of feedback from the Packet TX 
block keeps track of the number of packets in flight (scheduled, but not transmitted) for each port. 
If this number exceeds a specified limit, then it stops scheduling on that port.

14.2.1.7 Ethernet Encapsulation

Ethernet encapsulation conditionally adds an appropriate layer-2 Ethernet header to the packet 
payload while copying it to a set of TBUFs. If the next hop id is set to an invalid value (-1), the 
block assumes that the layer-2 header has already been added to the packet and the packet is simply 
copied to a set of TBUFs without changes.

Ethernet encapsulation is integrated within the Ethernet Packet TX microblock and runs on the 
same two microengines.

14.2.1.8 Packet TX

The Packet TX microblock transmits Ethernet frames via the MSF interface as one or more 
consecutive MPKTs (containing elements/segments of Ethernet frames). The Ethernet TX 
microblock fetches a packet buffer handle (to access an upstream packet descriptor) from the 
egress packet ring (i.e., scratch memory ring); the packet descriptor references the payload of an 
Ethernet frame. Using the supplied context, the Ethernet TX microblock proceeds to transmit 
frame MPKTs out the egress port. Upon transmitting all MPKT frames, the packet buffer(s) is 
recycled.

The Packet TX microblock periodically updates the scheduler with information about how many 
packets have been transmitted. If the packets in flight for a particular port (packets scheduled but 
not transmitted) exceed a certain limit (which depends on the bandwidth supported by that port), 
then the scheduler stops scheduling any more packets for the port. This combination of queuing 
packets in local memory and keeping track of the packets in flight helps prevent head-of-line 
blocking.

The Packet TX microblock runs on two microengines and supports SPHY 4x8 configuration. Thus 
4 Gigabit Ethernet ports are supported.

14.2.2 Dispatch Loops

There are three dispatch loops on the application’s pipeline:

• Dispatch Loop for the Packet Frame Reassembly Stage (Figure 14-3)

• Dispatch Loop for the IPv4 Forwarder functional pipeline (Figure 14-4)

• Dispatch Loop for the Ethernet transmit stage (Figure 14-5)

The QM and Scheduler blocks do not use a dispatch loop (they still use the dispatch loop macros 
where required).
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Note: Note that the system microblocks dl_source, dl_sink, dl_qm_sink, etc. are application- 
specific. They may be changed for different packet processing pipelines.

14.2.3 HW Architecture-Specific Code

14.2.3.1 Quad Gigabit Ethernet MAC Driver

A Quad Gigabit Ethernet MAC device is used to access front panel Gigabit Ethernet ports as well 
as the base interface in the backplane access module. Two ports are configured to support front 
panel ports; two other ports are configured for access to the base interface on the ATCA backplane.

Figure 14-3. Dispatch Loop for the Packet Frame Reassembly Stage
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The Quad Gigabit Ethernet MAC device is connected to the IXP2400 through SPI-3 buses for 
packet transmission/reception and through the slow port for device configuration and management. 
The device is configured for 1 Gigabit per second full duplex and its device driver supports only 
GMII (copper) mode. The Quad Gigabit Ethernet MAC device is also used for programming the 
Quad Ethernet PHY.

14.2.3.2 Ethernet PHY Driver

The Quad Gigabit Ethernet PHY is connected to the Quad Gigabit Ethernet MAC device through 
GMII switch. Two PHY ports are connected to front panel Gigabit Ethernet ports; two other ports 
are connected to the base interface on ATCA backplane. The Quad Gigabit Ethernet PHY is 
configured and managed by the IXP2400 through the Quad Gigabit Ethernet MAC device.

Figure 14-6. Ethernet Interface Connections to Quad Gigabit Ethernet MAC Device
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14.3 Performance Characterization

The Intel® IXP2400 Network Processor operates at 600 MHz. For a minimum Ethernet packet of 
64B, the packet inter-arrival time at 4 Gbps line rate is 100 microengine cycles. In order to 
maintain line rate for minimum packets, each stage of the pipeline cannot exceed this budget. In 
other words, each stage of the pipeline needs to retire a packet every 100 cycles. Table 14-2 
summarizes the performance analysis for the Ethernet pipeline.

14.4 System Resource Allocation

Table 14-3 shows the system resources mapped for the Intel® IXP2400 Network Processor. This 
mapping reflects the system defaults and may be changed to match the needs of a specific 
application. Microengine allocation has been made to optimize the performance of this specific 
pipeline application; it may be modified for other applications.

The physical assignment of function to microengine is important since it not only affects when the 
next neighbor registers and signaling can be utilized, but it also affects the utilization of the internal 
command bus and S-Push/Pull buses. Since ME0-ME3 belong to Microengine Cluster 0 and ME4-
ME7 belong to Microengine Cluster 1, this assignment attempts to balance the usage of the 
command bus and S-Push/Pull buses across the two clusters.

The IXP2400 supports two SRAM channels and one DRAM channel. Table 14-4 shows the 
SRAM, DRAM, and scratch memory utilized for this application. These values are allocated by the 
Intel XScale® core application and patched to the microcode upon startup. The values are defined 
in a system XML configuration file ix_sa_registry.xml and may be changed as required.

Table 14-2. Performance Characterization for the Ethernet Pipeline

Line rate for 4 Gig ports 4 Gigabits/sec

Min Ethernet packet size 64 bytes (+ 20 byte inter packet gap)

Packet throughput for minimum packets 5.95 million packets/sec = (4 / (84*8)) * (10**9)

IXP2400 clock frequency 600 MHZ

Inter-packet arrival time for minimum packets 600/5.95 = 100.84 cycles

Compute cycles per packet for a single microengine 100

Latency per packet for a context pipe single microengine 100 * 8

Compute cycles per packet for n microengines in parallel 100*n

Latency per packet for n microengines in parallel 100*8*n

Table 14-3. System Resources Mapped for the IXP2400

Microblock ME # Communication

Packet Rx ME0 Auto-push status from MSF

IPv4 Forwarder + Eth Decapsulation/ 
Classifier + L2 Validation ME1, ME2, M7 Scratch Ring

Queue Manager ME3 Scratch Ring

Packet Scheduler ME4 Scratch Ring

Packet TX + Eth Encapsulation ME5, ME6 Scratch Ring
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14.5 Microblock Interfaces

This section describes the interfaces between the different microblocks for this pipeline 
application. In most of the messages, there is a valid bit is used to prevent a value of zero from 
being enqueued on the scratch ring. Zero is used to detect a case where the scratch ring is empty. So 
the valid bit helps distinguish between a zero value that was actually enqueued versus a case where 
the ring is empty.

Table 14-4. SRAM, DRAM and Scratch Utilization for System Resource Allocation

Item 
Size per 
entry in 
bytes

Number 
of entries

Total 
SRAM 
used

Total DRAM 
used

Total 
Scratch 
used

Buffer descriptors 32 16000 512000 - -

Buffers 2048 16000 - 32768000 -

Queue descriptors 16 1025 16400 - -

Layer-2 table with mapping from 
next hop id to Ethernet header 16 1024 16384 - -

Trie table 64B for a trie 
entry

1024 used 
for 
approxima
tion

256kB+1K
B+1/
2*1024*64
B=

295936

- -

Route table (next hop information) 16 1024 - 16384 -

IPv4 statistics 32
16 
(needed 
4)

- - 512

IPv4 directed broadcast table 32 256 + 32 
extra 9216 - -

Processing control block 4 1 4 - -

Ring from packet RX to packet 
processing pipeline (IPv4+Eth 
Decap/ Classify)

5*4B=20 204 - - 1024*4B= 
4096

IPv4 to QM ring 3*4B=12 170 - -
512*4=

2048

Scheduler to QM ring 1*4B=4 512 - -
512*4=

2048

QM Q-Array entries 4 16 64 - -

Buffer free list Q-Array entry 4 4 16 - -

uCode to Xscale core priority rings 
(1 AF+ 1 BE) 2*4B 64 - - 2*512 = 1024

Xscale core to uCode rings (1 
CNTRL + 1 DATA)

1*4B,

2*4B
128 - -

128*4+ 
256*4=

1536

QM to packet TX rings 1*4B=4 256 - - 4*256*4B= 
4096
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14.5.1 Packet RX and Packet Processing Microengines

The interface between Packet RX and Packet Processing Microengines is identical to the OC-12 
POS/Ethernet IPv4 Forwarding Application – see Section 13.5.1, “Packet RX and Packet 
Processing Microengines” on page 193.

14.5.2 Packet Processing Microengines and Packet QM

The interface between Packet Processing Microengines and Packet QM is identical to the OC-12 
POS/Ethernet IPv4 Forwarding Application – see Section 13.5.2, “Packet Processing Microengines 
and Packet QM” on page 194.

14.5.3 Packet Scheduler and Packet QM

The interface between Packet Scheduler and Packet QM is identical to the OC-12 POS/Ethernet 
IPv4 Forwarding Application – see Section 14.5.3, “Packet Scheduler and Packet QM” on 
page 206.

14.5.4 Packet Queue Manager and Packet TX

The interface between the Packet Queue Manager and the Packet Transmit microengines is four 
scratch rings—one per Gigabit Ethernet port. Table 14-5 describes each entry in the scratch ring—
which is one word.

14.6 Core Component Usage

The Quad Gigabit Ethernet Forwarding pipeline application uses standard core components 
customized to use only channel 0 for SRAM. Figure 14-7 shows the interconnection between the 
pipeline application’s core components. Resource Manager and Queue Manager core components 

Table 14-5. One-word Scratch Ring (Packet Queue Manager and Packet TX)

LW Bits Size Field Description

0 31 1 Valid Bit Must be 1

30:28 3 Reserved Reserved

27:24 4 Port Number Port number

23:0 24 SOP Buffer Descriptor Pointer to SOP buffer descriptor in SRAM in long 
words (same as bits 23:0 of buffer handle)
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employ scratch rings for communication with microblocks on microengines. Interactions between 
IPv4, Ethernet Tx, Stack Driver, Resource Manager and Queue Manager are managed by the Core 
Component Interface (CCI).

Figure 14-7. Core Components in the Quad Ethernet IPv4 Forwarding Application
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ATM/Ethernet IPv4 Forwarding 
Application for IXDP24X1 15

This chapter describes an IPv4 Forwarding software application for Ethernet and ATM 
implemented on an Intel® IXP2400 Network Processor. It provides a high level design overview 
and lists the different software components used to build this application. The example application 
uses standard building blocks from the IXA SDK. 

The application described in this chapter is supported on the Intel® IXDP 2401 Advanced 
Development Platform, which uses a single Intel® IXP2400 Network Processor installed on the 
Intel® IXMB2401 baseboard. 

Note: It is important that all applications developed for the IXDP24X1 platform must have the 
IX_PLATFORM_2401 flag defined in the project makefiles, for both the core components and the 
microblocks. An example of required flag definitions may be found in the makefiles of this 
application. By default, newly created projects under the Windriver* Tornado* development 
environment have the flag defined as IX_PLATFORM_2400. For this application, the flag must be 
changed to IX_PLATFORM_2401.

15.1 Hardware Overview

The application runs on the Intel®  IXDP 2401 Advanced Development Platform. Up to two media 
mezzanine boards may be connected to the baseboard. Two SRAM channels are required, so one 
additional QDR with 4MB memory must be used. The baseboard is equipped with two 
daughterboard connectors (DB1 and DB2). There are two available mezzanine boards.

• 4xOC-12 POS ATM mezzanine card

• 4x1Gigabit Ethernet mezzanine card

Table 15-1 presents all possible hardware configurations supported by the ATM/Ethernet IPv4 
Forwarding Application for the Intel® IXDP 2401 platform. 

The example application receives traffic from the Ethernet media interface and transmits to the 
corresponding VCC on the ATM media interface with the configured encapsulation (VC MUX/
LLC SNAP). It also receives traffic from the ATM media interface and forwards it to the Gigabit 
Ethernet interface adding correct MAC addresses. 

Note: Packet forwarding between two VCs is not supported in this release.

Table 15-1. Supported Hardware Configurations

DB1 DB2 Description

4xOC-12 ATM 4x1GE one Gigabit Ethernet port available, one OC-12 ATM port. 
The ATM-IPv4-ETH application supports only one OC-12 
ATM interface.
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15.2 Software Overview

Figure 15-1 shows the microblocks needed to implement an OC-12 ATM/Ethernet IPv4 forwarding 
application. Context pipe stages like AAL5 TX, Ethernet TX and ATM TM4.1 Scheduler occupy 
one single microengine. All other pipe stages must work simultaneously. For example, AAL5 RX 
and Ethernet RX work on one single microengine, QM Packet and Scheduler Packet work on one 
single microengine, and the QM ATM and QM Shaper work on one single microengine. The 
forwarder consists of the IPv4 microblock. One microengine is dedicated to forwarding from the 
ATM media interface to the Ethernet media interface and one microengine is dedicated to 
forwarding from the Ethernet to the ATM media interface. 

The packet processing blocks include the IPv4 Forwarder, the LLC decapsulation/classify 
microblock, the L2 Ethernet decapsulation/classify microblock, the LLC SNAP encapsulation and 
the L2 Ethernet encapsulation microblock. The ATM interface supports VC MUX and LLC 
encapsulation. There are eight microengines that run in parallel and execute the packet processing 
code. 

The ATM/Ethernet IPv4 Forwarding application can be tested on the hardware platform using the 
Core Components and the transactor platform. The IXA SDK contains test configurations and 
packet streams for running on hardware and under simulation. For details, see the Readme file for 
the ATM/Ethernet IPv4 Forwarding Application.

Two encapsulation types are supported: VC multiplexing and LLC encapsulation. Virtual 
Connections that supports VC multiplexing carry only one specific type of traffic. For example, in 
the case of IPv4, traffic classification is determined by VC configuration. Virtual Connections that 
support LLC encapsulation can carry many different traffic types and the packet classification is 
determined from packet content. Supported encapsulations are listed below:

• ATM, VC multiplexing
IPv4 ([RFC2684])
C-Data /* IPv4 */

• ATM, LLC encapsulation (options determined from packet contents)

Figure 15-1. ATM-IPv4-Ethernet Application Microblocks
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Routed packets
PPP NLPID ([RFC2364], [RFC1661])
LLC=FEFE03, NLPID=CF, PID= 0021, C-Data, PAD  /* IPv4 */
Routed SNAP ([RFC2684])
LLC=AAAA03, OUI = 000000, PID= 0800, C-Data  /* IPv4 */

Note: The ATM/Ethernet IPv4 Forwarding application supports only the “fast” path. Currently there is no 
support for communication between the microengines and Intel XScale® core. The described 
application requires two separate free lists. This is because two different Queue Managers are used: 
(QM ATM and QM Packet) which must work on two separate free lists. The buffer management 
implementation does not offer fully functional support for two (or more) free lists. Buffers sent 
from microcode to core components cannot be classified and assigned to the correct free list.

15.3 Data Flow

The Intel® IXP2400 Network Processor receives ATM cells or Ethernet frames that carry IPv4 
datagrams. The frames are assembled into IPv4 packets and the Layer-2 (Ethernet or PPP)/ATM 
cell headers are removed. Based on the IPv4 header, a Longest Prefix Match (LPM) lookup is 
performed and the packets are transmitted over the appropriate VC/port. The sections located 
below describe the data flow on the Intel® IXP2400 Network Processor.

15.3.1 AAL5 RX/Ethernet RX

The AAL5 RX and the Ethernet RX microblock work simultaneously on one microengine. Each 
interface type (ATM and Ethernet) is being serviced by four threads.

The Ethernet Rx microblock receives Ethernet frames from the MSF interface. The Ethernet Rx 
microblock typically receives a number of MPKTs per Ethernet frame (containing elements/
segments of Ethernet frames). Since jumbo Ethernet frames may be up to 9K bytes, some large 
packets may be stored in multiple buffers chained together as a link-list. The first MPKT of an 
Ethernet frame is processed further by an Ethernet Classify / Decap macro. Upon having received 
all of the MPKTs comprising a complete and valid Ethernet frame, buffer handles for the first and 
last packet in the chain are queued in the scratch ring.

The ATM AAL5 Rx microblock receives MPKTs containing ATM cells from the MSF interface. 
Each ATM cell is read into transfer registers. AAL5 ATM cells are reassembled into complete 
AAL5 PDUs. The ATM AAL5 Rx microblock hashes an ingress ATM cell’s physical port, VPI, 
and VCI to perform a lookup yielding a VC flow ID. The VCID is an index to one of 64K possible 
VCs. Using the VCID, the ATM AAL5 Rx microblock fetches the VC information containing the 
current AAL5 PDU reassembly context. If the PDU reassembly context indicates the first cell of an 
AAL5 PDU, then a packet buffer is allocated for the AAL5 PDU, packet metadata is established 
from relevant VC information, and the ATM Classify/Decap macro is invoked to classify the 
AAL5 PDU payload. 

When the final cell of an AAL5 PDU is received, the PDU CRC is checked for validity, and the 
packet buffer descriptor length is adjusted to strip the AAL5 PDU padding and trailer. Upon receipt 
of a complete and valid AAL5 PDU, buffer handles for the first and last buffer of the packet, along 
with other metadata, are passed to the next microblock in the functional pipeline via the scratch 
ring.
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15.3.2 Packet Processing

The Packet Processing is responsible for packet forwarding according to the IPv4 protocol. It 
occupies 2 microengines. The IPv4 protocol could be conveyed within various L2 encapsulations, 
so depending on the input port type (ATM or Ethernet) all layers must be decapsulated. The 
decapsulation is done in the LLC Decap or the L2 Ethernet Decap microblocks. Then if the packet 
contains an IPv4 header, it is passed to the IPV4 Forwarder microblock, otherwise it is dropped. 
Currently communication between microengines and Intel XScale® core is not supported.

The IPv4 Forwarder microblock forwards IPv4 packets based on L3 addressing. The IPv4 
Forwarder microblock uses a packet descriptor and accesses an IP header from the cache in the 
transfer registers. The IP packet is then validated against [RFC1812] and [RFC2644] within the 
data plane. If the IP packet fails any of the validation checks, the packet is dropped. The packet’s IP 
header TTL is decremented, and the IP header checksum is updated accordingly. The packet’s next 
hop is then determined (that is, the next destination to which the packet is forwarded). To do that, 
the IP packet’s destination address is passed to a 5-trie Longest Prefix Match (LPM) algorithm that 
yields a next hop index, which is used to obtain the next hop information. The information includes 
the output port and next hop ID, which is subsequently used to access the outgoing link layer 
information. The packet metadata is updated with the next hop ID. If the 5-trie algorithm fails (the 
best match cannot be determined), the packet is dropped.

After the IPv4 Forwarding the packets must be encapsulated with an L2 header or VC MUX/LLC 
header. 

15.3.3 Packet-Based Queue Manager

The Packet-Based Queue Manager (QM) performs enqueue/dequeue operations on the hardware-
assisted SRAM queues for packet-type traffic. The QM receives enqueue requests from the IPv4/
DiffServ pipeline through a scratch ring. Another scratch ring is fed with dequeue requests from 
the packet scheduler. When the queue state changes between empty and non-empty, QM sends a 
transition message to the scheduler (via next neighbor registers). After every dequeue operation, 
the QM passes a transmit request to the scratch ring served by a Tx microblock. Dequeue requests 
come from the packet scheduler microengine. 

15.3.4 Packet Scheduler

The Packet Scheduler selects constant-length packet segments to be transmitted to the MSF 
interface. The scheduler employs Round Robin (RR) among the fabric ports and Weighted Round 
Robin (WRR) among the port queues.

The Packet Scheduler sends the Queue Manager microblock a message to dequeue a packet from a 
specific port’s queue. The Queue Manager microblock services the request, and deposits a packet 
descriptor from the requested queue into the output packet ring.

15.3.5 Cell-Based Queue Manager

The Cell-Based Queue Manager microblock enqueues packets and dequeues cells to/from an 
egress VC scheduling queue.  Client microblocks send the Cell-Based Queue Manager microblock 
a message indicating the type of action to perform (enqueue or dequeue), and the ID of the queue 
(VCID) to or from which a packet or cell will be enqueued/dequeued.  Upon a queue transition 
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from queue empty to non-empty, or non-empty to empty, the Cell Scheduler microblock is sent a 
message indicating the type of transition and VC queue to which it pertains. The messages inform 
the Cell Scheduler to start or stop scheduling a given VC.

15.3.6 TM 4.1 Shaper

The Shaper microblock determines transmission times for cells comprising an AAL5 PDU.  It 
calculates cell transmission times to ensure that the transmission of VC cells does not violate the 
traffic contract established for the VC, and update/populate ATM cell transmit time queues. That is, 
the calendar queues the Cell Scheduler microblock services to schedule ATM cells for transmission 
at specific times.

15.3.7 TM 4.1 Cell Scheduler

The Cell Scheduler microblock requests the TM 4.1 Shaper to calculate the intended departure time 
for the cells comprising an AAL5 PDU.  The Tx Shaper updates cell transmit time queues (within a 
calendar queue), which the Cell Scheduler queries/services.  The Cell Scheduler notes the current 
time, and schedules cells within the current cell transmit time queue. ATM cells for a VC are 
scheduled for transmission per the calendar departure time. Providing the target port isn’t blocked, 
a cell (48 bytes of ATM cell payload) from the current packet at the head of the VC’s queue is 
scheduled for transmission.

To effect scheduling of individual ATM cells, the Cell Scheduler microblock sends the Queue 
Manager microblock a message to dequeue a cell for a specific VC. The Queue Manager 
microblock services the request, and deposits a cell descriptor from the requested VC queue into 
the output ring.

15.3.8 Ethernet Tx

The Ethernet Tx microblock transmits Ethernet frames via the MSF interface as one or more 
consecutive MPKTs (containing elements/segments of Ethernet frames). The Ethernet Tx 
microblock fetches a packet buffer handle (to access an upstream packet descriptor) from the 
egress packet ring (a scratch memory ring); the packet descriptor references the payload of an 
Ethernet frame. Using the supplied context, the Ethernet Tx microblock proceeds to transmit frame 
MPKTs out the egress port. Upon transmitting all MPKT frames, the packet buffer(s) is recycled.

15.3.9 ATM AAL5 Tx

The ATM AAL5 Tx microblock transmits MPKTs containing ATM cells to the MSF interface. 
Each ATM cell is an individual element/segment of an AAL5 PDU. The ATM AAL5 Tx 
microblock fetches a buffer handle (to access a downstream packet descriptor) from the egress 
packet ring (a scratch memory ring). The ATM AAL5 Tx microblock uses the ATM VC flow ID to 
fetch VC information that contains the VC’s AAL5 PDU Tx context (which maintains the current 
PDU Tx byte count, AAL5 PDU CRC residue, etc).

In the case of the last cell of an AAL5 PDU, the ATM AAL5 Tx microblock appends AAL5 PDU 
padding as required, and updates the AAL5 CPCS-PDU trailer with the PDU length and PDU 
CRC.  Upon having constructed a complete ATM cell, the cell is transmitted out the egress port 
(specified within the packet descriptor). When the last cell of an AAL5 PDU is transmitted, the 
VC’s Tx context PDU length and PDU CRC values get reset, and the associated packet buffers get 
recycled.
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15.4 Dispatch Loops

There are six microblock groups, organized as dispatch loops, used in this application. For more 
information on dispatch loops, refer to the Intel® Internet Exchange Architecture Portability 
Framework Developer’s Manual “Dispatch Loop” chapter.

• Dispatch Loop for the Ethernet Receive Stage, Figure 15-2

• Dispatch Loop for the ATM Receive Stage, Figure 15-3

• Dispatch Loop for the IPv4 Forwarder packet processing (ATM to Ethernet), Figure 15-4

• Dispatch Loop for the IPv4 Forwarder packet processing (Ethernet toATM), Figure 15-5

• Dispatch Loop for the Ethernet transmit stage, Figure 15-6

• Dispatch Loop for the ATM transmit stage, Figure 15-7

The Cell/Packet Queue Manager, Scheduler Packet TX, and TM4.1 blocks do not use a dispatch 
loop, though they still use the dispatch loop macros where required.

Note: The system microblocks dl_source, dl_sink, dl_qm_sink, etc. are application-specific. 
They may be changed for different packet processing pipelines. 

Figure 15-2. Dispatch Loop for Ethernet Receive Stage

Ethernet Rx DL_Sink

Figure 15-3. Dispatch Loop for ATM Receive Stage

AAL5 Rx DL_Sink



Software Building Blocks Applications Design Guide 215

ATM/Ethernet IPv4 Forwarding Application for IXDP24X1

Figure 15-4. Dispatch Loop for IPv4 Forwarder Packet Processing (Ethernet to ATM)
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Figure 15-5. Dispatch Loop for IPv4 Forwarder Packet Processing (ATM to Ethernet)
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15.5 Performance Characterization

The Intel® IXP2400 Network Processor operates at 600 MHz frequency. 

The OC-12 line rate is 622 Mbps, but the SONET overhead (approximately 3.8%) reduces it 
effectively to 599 Gbps available to ATM cells. An ATM cell payload with an ATM header forms a 
53-byte cell. Assuming 53 bytes/cell: (53 bytes/cell * 8 bits/byte)/599 Mbps equals 708 ns/cell. At 
600 MHz, this results in 425 cycles/cell. 

Ethernet has variable-sized frames and a variable per-frame cycle budget. The worst case is 
minimum-sized 64-byte frames, so they are the focus for per-frame calculations here. A 64-byte 
frame actually occupies 84 bytes on the wire: (12 byte Inter Packet Gap) + (8 byte preamble) + (46 
byte payload) + (14 byte Ethernet Header) + (4 byte Ethernet FCS) = 84 bytes/minimum frame}
Assuming 84 bytes/frame: (84 bytes/frame * 8 bits/byte)/1 Gbps equals 672 ns/frame. At 600 
MHz, this results in 403 cycles/frame.

For minimum Ethernet packets of 64 bytes in length and minimum POS packets of 49 bytes in 
length, the packet inter-arrival time at 6 Gbps line rate for Ethernet and 2.4 Gbps OC48 line rate for 
POS is 91 microengine cycles. In order to maintain line rate for minimum length packets, each 
stage of the pipeline cannot exceed this budget. In other words, each stage of the pipeline needs to 
retire a packet every 91 cycles. 

Table 15-2 summarizes the performance analysis for the pipeline.

Figure 15-6. Dispatch Loop for ATM Transmit Stage 
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Figure 15-7. Dispatch Loop for Ethernet Transmit Stage
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15.6 System Resource Allocation

Table 15-2 shows the system resources mapped for the Intel® IXP2400 Network Processor. This 
mapping reflects the system defaults and may be changed. The allocation of microengines is done 
such that it optimizes the performance of this specific application and may be changed for other 
applications. 

Table 15-2. System Resources Mapped for the Intel® IXP2400 Network 
Processor

Microblock ME # Communication

Ethernet Rx/AAL5 RX ME00 Auto-push status from MSF

L2 Ethernet Decap + IPv4 Fwd + LLC Decap + 
LLC Encap + L2 Encap ME01, ME10 Scratch Ring

QM Shaper ME02 Scratch Ring

TM4.1 ME03 Scratch Ring

Ethernet TX ME12 Scratch Ring

AAL5 TX ME13 Scratch Ring

QM Packet + Scheduler Packet ME11 Scratch Ring

Table 15-3. SRAM Memory Map

Table Name Size
[bytes] 

SRAM Channel 0 
Usage

SRAM Channel 1 
Usage

AAL5 RX hash table (primary) 16 4096*16

AAL5 RX hash table (secondary) 32 4096*32

AAL5 RX VC Info 64 4096*64

AAL5 Port statistics 32 4096*32

AAL5 TX statistics (cells per outport) 4 4*4

AAL5 TX statistics (packets per outport) 4 4*4

AAL5 TX statistics (cells per VCC) 4 4096*4

AAL5 TX statistics (packets per VCC) 4 4096*4

AAL5 TX Context table 64 4096*64

GCRA table 64 4096*64

PortShaping table 4 4*4

Portinfo Table 64 4*4

UBR TQ Table 128 4096*128

nrtVBR TQ Table 128 4096*128

rtVBR TQ Table 128 4096*128

HBR TQ Table 128 4096*128

LLC next hop table 128 4096*128

Next Hop Table 8 4096*8

† Compiled optionally – not for benchmarking
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15.7 Microblock Interfaces

This section describes the interfaces between the different microblocks for this pipeline 
application. In most of the messages, there is a valid bit is used to prevent a value of zero from 
being enqueued on the scratch ring. Zero is used to detect a case where the scratch ring is empty. So 
the valid bit helps distinguish between a zero value that was actually enqueued versus a case where 
the ring is empty.

15.7.1 Common RX to Packet Processing

The interface between the Common Receive microblock (AAL5 RX and Ethernet Rx) and the 
Packet Processing microengines (IPv4 Forwarder ) is a scratch ring. Table 15-4 describes each 
entry in the scratch ring—which is five words. 

QM Q-Array entries 4 16*6

Packet RX statistics† 32 512

Packet TX statistics† 16

I/O Buffer Descriptors 32 8192*32 8132*32

Total n/a 1441920 2882208

Table 15-3. SRAM Memory Map (Continued)

Table Name Size
[bytes] 

SRAM Channel 0 
Usage

SRAM Channel 1 
Usage

† Compiled optionally – not for benchmarking

Table 15-4. Common RX to Packet Processing Microengines Scratch Ring Interface

Variable Size
[bits] Description

buff_handle 32 A handle to a buffer

buff_handle_eop 32 A handle to the last buffer in buffer chain – or NULL if single-buffer packet.

buffer_offset 16 The offset of the packet in the first buffer

buffer_size 16 Size of data in the first buffer

packet_size 16 Size of the whole packet

free_list 4 Freelist ID

rx_stat 4 Receive status flags

header_type 8 A packet type: ETHER_TYPE, PPP_TYPE

input_port 16 Input port number

output_port 16 Output port number – here unused – always 0
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15.7.2 Packet Processing to Packet Queue Manager

The interface between the Packet Processing microengines (IPv4 Forwarder) and Packet QM is a 
scratch ring. Table 15-5 describes each entry in the scratch ring— which is five words. 

15.7.3 Scheduler to Queue Manager

The interface between the Packet Scheduler and the packet-based Queue Manager is a Scratch 
Ring. 

15.7.4 Queue Manager to Scheduler

The interface between the packet-based Queue Manager and the Packet Scheduler is a Next 
Neighbor Ring. 

15.7.5 Queue Manager to Packet TX

The interface between the packet-based Queue Manager and the Packet Tx blocks is a Scratch 
Ring. 

Table 15-5. Packet Processing to Packet Queue Manager Scratch Ring Interface

Variable Size
[bits] Description

buff_handle 32 A handle to a buffer

buff_handle_eop 32 A handle to the last buffer in buffer chain – or NULL if single-buffer packet.

validity bit 1 [31] If set message is valid – prevention from producing value 0 on the ring

queue_number 31 output_port * 16 + class_id

Table 15-6. Scheduler to Queue Manager Scratch Ring Interface

Variable Size
[bits] Description

validity bit 1 [31] If set message is valid – prevention from producing value 0 on the ring

Queue_number 31 output_port * 16 + class_id

Table 15-7. Queue Manager to Scheduler Next Neighbor Ring Interface

Variable Size
[bits] Description

Validity bit 1 [31] If set message is valid – prevention from producing value 0 on the ring

Queue_number 31 output_port * 16 + class_id

Table 15-8. Queue Manager to Packet TX Scratch Ring Interface

Variable Size
[bits] Description

Output_port 8 Output port number

buff_handle 24 A handle to a buffer without SOP and EOP flags (the highest byte conveys ouput_port)
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15.7.6 Queue Manager to TM 4.1 Shaper

The interface between the cell-based Queue Manager and the Schaper blocks is a next neighbor 
ring. 

15.7.7 TM4.1 Scheduler to Queue Manager

The interface between the TM4.1 Scheduler and the cell based Queue Manager blocks is a scratch 
ring. 

Table 15-9. Queue Manager to TM 4.1 Shaper Next Neighbor Ring Interface

Variable Size
[bits] Description

Valid bit 1 [31] The enqueue word is valid only if this bit is set

transition 1 [30] Notification that queue has gone from empty to nonempty

CLP 1 [29]

cell_count 11 Cell count provides the number of cells in the frame.

SOP 1 [17] This field is important only for VCs shaped using GFR: “1” for Enqueue message when 
transition bit is also set, otherwise “0” 

Enq VCQ 17 Queue Number that was enqueued

Valid bit 1 [31] Must be 1

Transition 1 [30]
Notification that queue has gone from non-empty to

empty

CLP 1 [29]

cell_count 11 Cell count provides the number of cells in the frame.

SOP 17
This field is important only for VCs shaped using GFR:”1” for dequeue message when 
the Queue Manager has transmitted last cell from current packet and there ia another 
packet is the queue, otherwise “0”

Deq VCQ 17 Queue Number that was dequeued

Table 15-10. TM4.1 Scheduler to Queue Manager Scratch Ring Interface

Variable Size
[bits] Description

Valid bit 1 [31] Must be 1

Reserved 1 [30] Reserved

Port 11 Output port number

CLP 1 [18]

Reserved 1 [17] Reserved

VCQ 17 Queue Number
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15.7.8 Queue Manager to TM4.1 Scheduler

The interface between the cell-based Queue Manager and TM4.1 scheduler blocks is a scratch ring. 

15.7.9 Queue Manager to AAL5 TX

The interface between the cell based Queue Manager and AAL5 TX blocks is a scratch ring. 

Table 15-11. Queue Manager to TM4.1 Scheduler Scratch Ring Interface

Variable Size
[bits] Description

Valid bit 1 [31] Must be 1

Reserved 1 [30] Reserved

Port 11 Output port number

CLP 1 [18]

Reserved 1 [17] Reserved

VCQ 17 Queue Number

Buff_handle 32 Buffer Handle currently being transmitted for queue

Table 15-12. Queue Manager to AAL5 TX Scratch Ring Interface

Variable Size
[bits] Description

Valid bit 1 [31] Must be 1

Reserved 1 [30] Reserved

Port 11 Output port number

Reserved 3 Reserved

qnum 16 Queue Number

Buff_handle 32 Buffer Handle currently being transmitted for queue
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This chapter describes an IPv4 Forwarding software application for Ethernet and Packet over 
SONET (POS) implemented on one Intel® IXP2800 Network Processor. The chapter provides a 
high level design overview and lists the different software components used to build this 
application. This chapter describes the application in the context of Ethernet and POS media 
interfaces.

The application described in this chapter is supported on the Intel® IXDP28X1 Advanced 
Development Platform, which uses a single Intel® IXP2800 Network Processor.

This chapter focuses only on the fast path or microengine components of the design. The Intel 
XScale® core components for this application are described in the Intel® Internet Exchange 
Architecture Portability Framework Developer’s Manual.

Note: It is important that all applications developed for the IXDP28X1 platform must have the 
IX_PLATFORM_2801 flag defined in the project makefiles, for both the core components and the 
microblocks. An example of required flag definitions may be found in the makefiles of this 
application. By default, newly created projects under the Windriver* Tornado* development 
environment have the flag defined as IX_PLATFORM_2800. For this application, the flag must be 
changed to IX_PLATFORM_2801.

16.1 Hardware Overview

The Intel® IXDP28X1 Advanced Development Platform consists of the IXMB28X1 baseboard, 
which is equipped with two daughterboard connectors (DB1 and DB2). Up to two media 
mezzanine boards (also called line cards) may be connected to the baseboard. There are three 
available mezzanine boards:

• 4xOC-12 POS ATM mezzanine board

• 1xOC-48 POS ATM mezzanine board

• 4x1Gigabit Ethernet mezzanine board
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Table 16-1 presents all possible hardware configurations supported by the POS/Ethernet Ipv4 
Forwarding Application for IXDP28X1. 

Figure 16-1 shows an Intel® IXP2800 Network Processor in a typical configuration. In this 
configuration, the IXP2800 is identified as the network processor. It receives traffic from the 
Ethernet or POS media interface and transmits to the other Ethernet or POS media interface.

The target hardware comprises up to ten physical media interfaces. A POS media mezzanine card 
installed on a baseboard provides four OC-12 interfaces. Four Gigabit Ethernet interfaces are 
provided on a Gigabit Ethernet mezzanine and two Gigabit Ethernet interfaces are available on the 
baseboard Backplane Access module. 

The Intel® IXP2800 Network Processor receives POS or Ethernet frames that carry IPv4 
datagrams. The frames are assembled into IPv4 packets and the Layer-2 (Ethernet or PPP) headers 
are removed. Based on the IPv4 header, a Longest Prefix Match (LPM) lookup is performed and 
the packets are transmitted over the appropriate port.

Table 16-1. Supported Hardware Configurations

Backplane DB1 DB2 Description Throughput

2x1GE† 4xOC-12 POS 4x1GE All supported ports available.

6.5 Gbps example:

• 2x1GE 100%

• 4xOC-12 100%

• 2x1GE 100%

2x1GE† 4xOC-12 POS POS on the front side and Ethernet on 
the backplane.

3.3 Gbps example:

• 2x1GE 100%

• 3xOC-12 100%

2x1GE† 4x1GE Only Ethernet ports vailable. Full bandwith

2x1GE† 1xOC-48 POS 4x1GE 1 POS on the front and all Ethernet 
ports supported

6.5 Gbps example:

• 2x1GE 100%

• 1xOC-48 100%

• 2x1GE 100%

2x1GE† 1xOC-48 POS POS on the front side and Ethernet on 
the backplane.

3.3 Gbps example:

• 1x1GE 100%

• 1xOC-48 100%

† 2x1Gigabit Ethernet base ATCA interfaces
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16.2 Software Overview

Figure 16-2 shows the microblocks needed to implement an POS/Ethernet IPv4 forwarding 
application. All the context pipe-stages (for example, Packet Rx, Queue Manager, and Scheduler) 
occupy an entire microengine. Each context pipe-stage is mapped to a single microblock running 
on a microengine with or without a dispatch loop. The packet processing runs on eight 
microengines and implements decapsulation (Ethernet and PPP) together with encapsulation and 
the IPv4 forwarder blocks.

Figure 16-1. POS/Ethernet Hardware Configuration on IXDP28X1
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The design for the application shown in Figure 16-2 is based on the guidelines specified in the 
Intel® Internet Exchange Architecture Portability Framework Developer’s Manual. The driver 
microblocks (Receive, Transmit, Scheduler and Queue Manager) run on different microengines 
from the packet processing code. In this design, each driver block occupies an entire microengine. 
The packet processing blocks include the IPv4 Forwarder, the PPP decapsulation/classify 
microblock, the L2 Ethernet decapsulation/classify microblock, the PPP encapsulation and the L2 
Ethernet encapsulation microblock. There are eight microengines that run in parallel and execute 
the packet processing code.

16.2.1 Data Flow

This section describes the data flow on the Intel® IXP2800 Network Processor.

16.2.1.1 Packet RX

Packet reception from the MSF interface is done in the Packet RX microblock that runs on one 
microengine. It is a standard microblock compiled to run in MPHY_16 mode. The microblock 
performs packet reassembly from the incoming micropackets being burst on the SPI-4 BUS. 
Packets for processing are conveyed in I/O buffers, so they are copied from MSF receive buffers 
(RBUFs) into DRAM memory, and also packet descriptors are initially filled in SRAM. Then 
packet buffer handles and some meta-data about the packets are passed via scratch ring to be 
processed in the Packet Processing block.

16.2.1.2 Packet Processing

The Packet Processing is responsible for packet forwarding according to the IPv4 protocol. It 
occupies 8 microengines. The IPv4 protocol could be conveyed within various L2 encapsulations, 
so depending on the input port type, L2 PPP or L2 Ethernet MAC layers must be decapsulated. The 
decapsulation is done in the PPP Decap or the L2 Ethernet Decap microblocks. Then if the packet 

Figure 16-2. POS-Ethernet IPv4 Application Microblocks
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contains an IPv4 header, it is passed to the IPV4 Forwarder microblock, otherwise (in the case of 
ARP, for example) packets are transferred through an exception ring to the Core Components 
framework running on the Intel XScale® core. There the packets are processed by the slow path.

The IPv4 Forwarder microblock forwards IPv4 packets based on L3 addressing. The IPv4 
Forwarder microblock uses a packet descriptor and accesses an IP header from the cache in the 
transfer registers. The IP packet is then validated against [RFC1812] and [RFC2644] within the 
data plane. If the IP packet fails any of the validation checks, the packet is dropped. The packet’s IP 
header TTL is decremented, and the IP header checksum is updated accordingly. The packet’s next 
hop is then determined (i.e., the next destination to which the packet is forwarded). To do that, the 
IP packet’s destination address is passed to a 5-trie Longest Prefix Match (LPM) algorithm that 
yields a next hop index, which is used to obtain the next hop information. The information includes 
the output port and next hop ID, which is subsequently used to access the outgoing link layer 
information. The packet metadata is updated with the next hop ID, and the packet is handed off to 
the L2 Validation microblock. If the 5-trie algorithm fails (the best match cannot be determined), 
the packet is sent to the Intel XScale® core to complete the LPM procedure.

After the IPv4 Forwarding, the packets must be encapsulated with an L2 header. The encapsulation 
takes place in the PPP Encap or the L2 Ether Encap microblocks, depending on the output 
(destination) port of the packet. The packet buffer handle and some related meta-data are passed 
via scratch ring to the Queue Manager microblock.

16.2.1.3 Packet-Based Queue Manager

The Packet-Based Queue Manager (QM) performs enqueue/dequeue operations on the hardware 
assisted SRAM queues for packet-type traffic. The QM receives enqueue requests from the IPv4 
microblock through a scratch ring. When the queue state changes between empty and non-empty, 
QM sends a transition message to the scheduler (via next neighbor registers). After every dequeue 
operation, the QM passes a transmit request to the scratch ring served by the Packet TX 
microblock. Dequeue requests come from the packet scheduler microengine.

16.2.1.4 Packet Scheduler

Packet Scheduler selects packets to be transmitted out of the MSF interface. The Packet Scheduler 
sends a message to the Queue Manager microblock to dequeue a packet from a specific port’s 
queue. The Queue Manager microblock services the request, and deposits a packet descriptor from 
the requested queue into the output packet ring.

16.2.1.5 Packet TX

The Packet TX microblock transmits packets via the MSF interface as one or more consecutive 
micro-packets are being burst on the SPI-4 BUS. The Packet TX microblock runs on two 
microengines and supports MPHY_16 mode. Thus up to 16 Gigabit Ethernet or OC-12 POS ports 
are supported. The first microengine transmits packets destined to ports 0 to 7, the second 
microengine transmits packets destined to ports 8 to 15. 

The microblock fetches a transmit request from a scratch ring. The transmit request is used to 
access the packet meta-data. Using the supplied meta-data, the microblock fragments the packet 
into micropackets and sends them out of the MSF. Upon transmitting all fragments, the packet 
buffer(s) is recycled.

The Packet TX microblock periodically updates the scheduler with information about how many 
packets have been transmitted. If the packets in flight for a particular port (packets scheduled but 
not transmitted) exceed a certain limit (which depends on the bandwidth supported by that port), 
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then the scheduler stops scheduling more packets for that port. This combination of queuing 
packets in local memory and keeping track of the packets in flight, helps prevent head-of-line 
blocking.

16.2.2 Dispatch Loops

There are two microblock groups, called dispatch loops, used in this pipeline application. 

• Dispatch Loop for the Packet Frame Reassembly Stage, shown in Figure 16-3

• Dispatch Loop for the IPv4 Forwarder packet processing, shown in Figure 16-4

The Queue Manager, Scheduler and Packet TX blocks do not use a dispatch loop, although they 
use the dispatch loop macros where required.

For more information on dispatch loops, refer to the Intel® Internet Exchange Architecture 
Portability Framework Developer’s Manual “Dispatch Loop” chapter.

Note: The system microblocks dl_source, dl_sink, dl_qm_sink, etc are application-specific. 
They may be changed for different packet processing pipelines. 

Figure 16-3. Dispatch Loop for the Packet Frame Reassembly Stage
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16.3 Performance Characterization

The Intel® IXP2800 Network Processor operates at 1400 MHz frequency. For a minimum Ethernet 
packets of 64 bytes in length and minimum POS packets of 49 bytes in length, the packet inter-
arrival time at 6 Gbps line rate for Ethernet and 2.4 Gbps OC48 line rate for POS is 91 microengine 
cycles. In order to maintain line rate for minimum length packets, each stage of the pipeline cannot 
exceed this budget. In other words, each stage of the pipeline needs to retire a packet every 91 
cycles. Table 16-2 summarizes the performance analysis for the pipeline. 

16.4 System Resource Allocation

Table 16-3 shows the system resources mapped for the Intel® IXP2800 Network Processor. This 
mapping reflects the system defaults and may be changed. The allocation of microengines is done 
such that it optimizes the performance of this specific application and may be changed for other 
applications. 

Table 16-2. Performance Characterization for the POS-Ethernet IPv4 Application

Line rate for 6 Gigabit Ethernet Ports and 4 OC-12 
POS Ports 8.54 Gigabits/sec

Min Ethernet packet size 64 bytes (+ 20 byte inter packet gap)

Packet Throughput for min Ethernet packets 8.93 million packets/sec = (6 / (84*8)) * (10^9)

Min POS packet size 49 bytes (40 byte TCP/IP, 2 bytes Address and Control, 
2 byte PPP header, 4 byte FCS and 1 byte flag)

Packet Throughput for min POS packets 6.34 million packets/sec = (4/(49*8)) * 622 * (10^6)

Summarized Packet Throughput for all interfaces 15.3 million packets

Intel® IXP2800 Network Processor clock frequency 1400 MHZ

Inter-packet arrival time for min packets 1400/15.3 = 91.46 cycles

Compute cycles per packet for a single microengine 91

Latency per packet for a context pipe single 
microengine 91 * 8

Compute cycles per packet for n microengines in 
parallel 91*n

Latency per packet for n microengines in parallel 91*8*n

Table 16-3. System Resources Mapped for the Intel® IXP2800 Network Processor

Microblock ME # Communication

Packet Rx ME0 Auto-push status from MSF

L2 Rthernet Decap + L2 PPP Decap, 
+Ipv4 Fwd + L2 Ethernet Encap + L2 PPP 
Encap

ME2, ME3, ME4, ME5, 
ME12, ME13, ME14, 
ME15

Scratch Ring

Queue Manager ME8 Scratch Ring

Scheduler ME9 Scratch Ring

Packet TX Ports 0..7 ME10 Scratch Ring

Packet TX Ports 8..11 ME11 Scratch Ring
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Table 16-4 shows data distribution in SRAM memory channels. 

Table 16-5 shows the budget for every memory access that is needed for packet processing that 
influences the memory distribution. 

Table 16-4. SRAM Memory Map

Table Name Size
[bytes] 

SRAM 
channel 0 

usage

SRAM 
channel 1 

usage

SRAM 
channel 2 

usage
Comments

I/O Buffer Descriptors 32 512000 512000 † 16000 entries use 512000 bytes

Queue Descriptors 16 16400 1025 entries

L2 Table 16 2MB 64k entries

Trie Table 2MB Structured tree of tries

Broadcast Table 8192

Next Hop Table 8 4096

QM Q-Array entries 4 64

Buffer Free list Q-Array 
entry 4 16

Packet RX statistics ‡ 32 512 16 statistics

Packet TX statistics ‡ 16 256 16 statistics

† Additional channel used when splitting buffer descriptors.
‡ Compiled optionally – not for benchmarking.

Table 16-5. SRAM Channels Budget For Packets Processing with Minimal Length†

Microblock/Access Operation 

SRAM 
channel 0 
utilization 
worst/best 

case

SRAM 
channel 1 
utilization 
worst/best 

case

SRAM 
channel 2 
utilization
worst/best 

case

Comments

Packet RX/ I/O Buffer 
allocation dequeue 4/4

Packet Processing/ I/O 
buffer descriptor write write

20/20
†4/4

--
†16/16

For min packets packet descriptor is 
written by Packet Processing when for 
packets > 128 bytes packet descriptor 
is also written by Packet RX.

Packet Processing/ IPv4 
Directed Broadcast check read 32/32

Worst case depends on the 
configuration – when there aren’t 
conflicting directed broadcast hashes, 
it is the same as best case.

Packet Processing/ IPv4 
lookup read 20/12 Worst case tries to read up to 5 times

Packet Processing/ IPv4 
NH read read 8/8

Packet Processing/ L2 
Table read read 16/16

Queue Manager/ queuing enqueue 4/4

† Additional channel used when splitting buffer descriptors.
‡ Compiled optionally – not for benchmarking.
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16.5 Microblock Interfaces

This section describes the interfaces between the different microblocks for this pipeline 
application. In most of the messages, there is a valid bit used to prevent a value of zero from being 
enqueued on the scratch ring. Zero is used to detect a case where the scratch ring is empty. The 
valid bit helps distinguish between a zero value that was actually enqueued versus a case where the 
ring is empty.

16.5.1 Packet RX to Packet Processing Microengine

The interface between the Packet Receive microblock and the Packet Processing microengines 
(IPv4 Forwarder + L2/PPP decap) is a scratch ring. Table 16-6 describes each entry in the scratch 
ring—which is five words. 

Queue Manager/ QD read read 12/0 In best case CAM always hits

Queue Manager/ 
dequeue dequeue 4/4

Packet TX/ I/O buffer 
descriptor read Read

16/16

(4/4)

--

(12/12)

Packet RX/Packet RX 
statistics†—number of 
packets RX

atomic 
increment

‡4/4

Packet RX/Packet RX 
statistics†—number of 
bytes RX

atomic add ‡4/4

Packet TX†—number of 
packets TX

atomic 
increment

‡4/4

Packet TX/Packet TX 
statistics†—number of 
bytes TX

atomic add ‡4/4

Table 16-5. SRAM Channels Budget For Packets Processing with Minimal Length†

Microblock/Access Operation 

SRAM 
channel 0 
utilization 
worst/best 

case

SRAM 
channel 1 
utilization 
worst/best 

case

SRAM 
channel 2 
utilization
worst/best 

case

Comments

† Additional channel used when splitting buffer descriptors.
‡ Compiled optionally – not for benchmarking.

Table 16-6. Packet RX to Packet Processing Microengine Scratch Ring Interface

Variable Size
[bits] Description

buff_handle 32 A handle to a buffer

buff_handle_eop 32 A handle to the last buffer in buffer chain – or NULL if single-buffer packet.

buffer_offset 16 The offset of the packet in the first buffer

buffer_size 16 Size of data in the first buffer

packet_size 16 Size of the whole packet
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16.5.2 Packet Processing to Queue Manager Microengine

The interface between the Packet Processing microengines (IPv4 Forwarder + L2/PPP decap + L2 
Validate) and Packet QM is a scratch ring. Table 16-7 describes each entry in the scratch ring— 
which is five words. 

16.5.3 Scheduler to Queue Manager Microengine

The interface between the POS/Ethernet Scheduler and the packet-based Queue Manager is a 
Scratch Ring. 

16.5.4 Queue Manager to Scheduler Microengine

The interface between the packet-based Queue Manager and the POS/Ethernet Scheduler is a Next 
Neighbor Ring. 

free_list 4 Freelist ID

rx_stat 4 Receive status flags

header_type 8 A packet type: ETHER_TYPE, PPP_TYPE

input_port 16 Input port number

output_port 16 Output port number – unused, always 0

Table 16-6. Packet RX to Packet Processing Microengine Scratch Ring Interface (Continued)

Variable Size
[bits] Description

Table 16-7. Packet Processing to Queue Manager Microengine Scratch Ring Interface

Variable Size
[bits] Description

buff_handle 32 A handle to a buffer

buff_handle_eop 32 A handle to the last buffer in buffer chain – or NULL if single-buffer packet.

validity bit 1 [31] If set message is valid – prevention from producing value 0 on the ring

queue_number 31 output_port * 16 + class_id

Table 16-8. Scheduler to Queue Manager Microengine Scratch Ring Interface

Variable Size
[bits] Description

Validity bit 1 [31] If set message is valid – prevention from producing value 0 on the ring

Queue_number 31 output_port * 16 + class_id

Table 16-9. Queue Manager to Scheduler Microengine Next Neighbor Ring Interface

Variable Size
[bits] Description

Validity bit 1 [31] If set message is valid – prevention from producing value 0 on the ring

Queue_number 31 output_port * 16 + class_id
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16.5.5 Queue Manager to Packet TX Microengine

The interface between the packet-based Queue Manager and the Packet Tx blocks is a Scratch 
Ring. 

16.6 Core Components Integration

The POS/Ethernet Forwarding Application uses standard core components customized to use 
channels 0, 1, and 2 for SRAM. Figure 16-5 shows the interconnections between the application’s 
core components. The Resource Manager and Queue Manager core components employ scratch 
rings for communication with microblocks on microengines. Interactions between IPv4, Ethernet 
Tx, POS Tx, Stack Driver, Resource Manager and Queue Manager are managed by the Core 
Component Interface (CCI). 

Table 16-10. Queue Manager to Packet TX Microengine Scratch Ring Interface

Variable Size
[bits] Description

Validity bit 1 [31] If set message is valid – prevention from producing value 0 on the ring

Output_port 7 Output port number

buff_handle 24 A handle to a buffer without SOP and EOP flags (the highest byte 
conveys ouput_port)

Figure 16-5. POS-Ethernet IPv4 Application Core Components
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