Platform Namespace API

Reference Guide

Control Plane-Platform Development Kit 2.11
March 2004

Information in this document is provided in connection with Intel® products and services. No license, express or
implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in
Intel's Terms and Conditions of Sale for such products and services, Intel assumes no liability whatsoever, and Intel
disclaims any express or implied warranty, relating to sale and/or use of Intel® products and services including liability
or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or
other intellectual property right. Intel products and services are not intended for use in medical, life saving, or life
sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Copyright© 2004 Intel Corporation.

* Other brands and names are the property of their respective owners.

i Platform Namespace API Reference Guide
Intel Confidential

intal.

Contents

LI © 1 =Y V7= 7
1.1 NAMESPACEcoieeeeiiirri i irre e e s s e s e s s s s e s s e s e nn s s e e nnn s e e e nnn s e e e nnn s nernnnnnan 7
1.2 Assumptions and DependencCies.........ccciiieiiiieiiieeciieec s e e e 8
R T = 1 41T Lo o o 8

2 Namespace ArchiteCture...........ccooiieeeiiiiimiciiirrr s e s e e s s e e e s e e e nassasernnas 1
2.1 Name Strings and Object TYPeSc.uuuciiiiiiiiiricecccsr s s 11
2.2 Referring to ObjJects.....cc..cciiiiiiiiiiiicccr s e 1
2.3 The Namespace Hierarchy ... 11
2.4 Canonical Names and AliaSesccccccceeiiiiiirirecmmnssss s s s s s e s e s 12
28 S X1 o Yo - 11 oY o 1P 13
2.6 Namespace Meta-Data............ccomiimmmiiiiii 13
2.7 Namespace Initialization ... e e 13
2.8 Naming ConVeNtioNSccciiiiiiiiiiieesss e e rr s s r e s e e n s 13

3 Data StruCtUres ... s 17
3.1 Common Data TYPEScceerreremmmmmmmmmmmmnnnnnnsnnnsnnesenssssesssssssss s ss s s sssnnnnsnnnnnnnnnnnns 17
3.2 Basic Data Structures............eeeiiiiiiiiiiccccr e 17
3.3 ReturN ValUes ..o s s s s s s s s s s e s s s s s s s e s s e s s nmnnn s s s s s e s e nnnnnnnn 18

4 NameSPaACE APl ... e nn s 23
4.1 |Initialize the Namespace.........cccmmieeiiiiiiiiirr s 24
4.2 Add a Namespace NOdecoeeiiiiieeiiiirrecr e e e s s s e e e e e e nmn s e nennn 24
4.3 Create an Aliasccoviieeeiiiiiiiiirirrisss e 25
4.4 Delete a Namespace NOdecoooiieeeiiiiiiiiiinrries s 26
4.5 Rename a Namespace NOdecccoiimmmmciiimrmesssrrrsssss s s s s e smssss s s e nmssssennnns 26
46 GetaHandletoaNode....... i e e e e e e e e enas 27
4.7 Get Path by Handle ... 27
4.8 Get Data TYPe ..ot e e e n s 28
4.9 GetData Handle ...t rr s r s s s s s s e e m s s s e e mn e e ennnn 29
410 GetlInstance Parenticciirrrrr 29
4.11 Get Parent in NameSPaCe........cccvireemmecciiiiiirerrrcmsssss s s e e s e ssnnmss s s s s e s e e e nmnnnnssnnns 30
412 Get Node Directory INfo.........cccociiiiiiiiininini s 30
413 Get Handle to First Child Nodecoiiiiiimc e 31
4.14 Get Next Node Iterator...........oo i 31
4.15 Get Previous Node lterator..........cceiiiiiceciiiriccc e s s s s s e s e e 32
416 Get Number of Children.......... e 32
30 (R 0 Lo XT38 B 11 =Y o o V7P 33
418 Add an ASSOCIAte........cceeeiiiiiiiii e e e e ennan 33
4.19 Delete an ASSOCIALEciiiiiiiiiiiic 33

iii
Control Plane-PDK 2.11

Contents
4.20 Enumerate ASSOCIateS.......cccoiiieiiiieiiiii i rr e e e e e enn 34
4.21 Close aNode HaNAIecuoieeiiiiiiiiieiiri e rserrs s rsa s rss s rsa s rea s en s s na s rnnn s en s enes 35
4.22 Get Canonical Node Nameccoieeiiiieiiiiieiiieser e resa s rsna s sns e na s e nassrens 35
Figures
Figure 1. Instance of NamMESPACEuuiiiiiii e 12
Figure 2. Namespace node lINKage............oooeriiiiiiiii i 18
Tables
Table 1. TEIMINOIOQY ...ttt esnssnseennes 8
Table 2. Namespace fUNCLONS...........coiiiiiieeeee e 23
Revision History
Revision Description Date Author
2.1 Updated for Release 2.11 March 2004 Shailesh Suman
21 Updated for Release 2.1 December 2003 Shailesh Suman
2.0 Updated for Release 2.0 August 2003 Shailesh Suman
iv

Intel Confidential

intal.

Part 1: Overview

intal

1 Overview

1.1

Network elements such as switches and routers can be classified into three logical operational
components: Control plane, Forwarding plane, and Management plane.

The control plane controls and configures the forwarding plane. The control plane executes different
signaling or routing protocols and provides all the routing information to the forwarding plane.

The forwarding plane manipulates network traffic and makes decisions based on this information. The
forwarding plane performs operations on packets such as forwarding, classification, filtering, and so on.

An orthogonal management plane manages the control and forwarding planes.

For example, the control plane in a router executes routing protocols, the forwarding plane performs
hardware-based switching, and the management plane starts or stops routing process or performs

logging.

The introduction of standardized APIs within the above-mentioned planes can help system vendors,
OEMs, and end users of these network elements to mix and match components available from different
vendors to achieve a device of their choice. The Network Processing Forum (NPF) API is designed for
this purpose, as it presents a flexible and well-known programming interface to the control plane
applications. It makes the existence of multiple forwarding planes, as well as vendor-specific details,
transparent to control plane applications. Furthermore, the hardware properties and nature of
interconnect used between the control and the forwarding planes are isolated. Thus, the protocol stacks
and network processors available from different vendors can be easily integrated with the NPF APIs.
The APIs included in the Control Plane Platform Development Kit are based on the NPF APIs. For
more information about NPF, refer to http://www.npforum.org/.

Namespace

This document specifies the namespace for the CP-PDK. The namespace is used for locating objects
within a compliant system. The system is thought of as a single physical entity such as a chassis
containing multiple line cards, a control processor, and an interconnect fabric, but a more
comprehensive view of the architecture is provided in the API Framework Reference.

The namespace contains names for compliant and vendor-specific objects and provides the operations
necessary for converting between names of such objects and strongly typed methods of accessing and
manipulating them. The namespace need not contain objects, or object-specific, or type-specific
properties about objects. The implementation of the namespace is left to the system implementer. This
document describes the types of functions and semantics required of the namespace.

The goal of the namespace is to provide a convenient set of APIs and naming conventions that can be
used to gain access to the system data defined by the NPF and implemented by vendors on network
processing platforms. Vendors may also use the namespace to expose new, proprietary services beyond
those already defined. Consumers (users) of the namespace API and other CP-PDK APIs are expected
to be application writers or box vendors.

Application writers include providers of portable protocol stacks written on top of the APIs, as well as
writers of user-level software applications that make inquiries or modifications of the overall system
configuration state. Box vendors include providers of networking devices that write control software or
integrate third-party application software on top of the APIs in their released systems.

7
Control Plane-PDK 2.11

http://www.npforum.org/

Platform Namespace API
Reference Guide

1.2

1.3

intel
Assumptions and Dependencies

The namespace, along with the other APIs and services, will be provided in the form of header files and
libraries appropriate to the language environment in which they will be used. For compiled language
environments (C, C++, and so on), application writers compile against such files and libraries to
produce an executable, which runs on the particular network processor platform that was compiled
against. If application writers wish to support multiple platforms, they must produce an executable of
the appropriate format. Thus, the namespace and other APIs provide compatibility at source code level.

The addition of new services to a network-processing platform (and the associated proprietary additions
to the namespace) will be accomplished through source code additions. Such additions could be
implemented either by the original platform vendor implementing the APIs or by a third party.

Terminology

Table 1 lists terms used in this document and provides the expansion of each term.

Table 1. Terminology

Term Description

Control Element (CE) In a separated control/data system, refers to the processor(s) responsible for control and configuration of
forwarding elements. Used interchangeably with Control Plane (CP).

Control Plane (CP) See Control Element (CE)

CP PDK Control Plane Platform Development Kit

Forwarding Element (FE) In a separated control/data system, refers to the processor(s) responsible for fast path forwarding of
data. Used interchangeably with FP.

Forwarding Plane (FP) See Forwarding Element (FE)

P Internet Protocol

MPLS Multiprotocol Label Switching

NPF Network Processing Forum

OSAS Operating System Abstraction Services

8
Intel Confidential

intal.

Part 2: Namespace Architecture

intal

2 Namespace Architecture

2.1

2.2

2.3

The purpose of the namespace is to allow multiple management applications within a system to identify
and group names of managed objects in a hierarchical fashion. The namespace does not logically
contain objects. Instead, it contains the names of objects and other system-specific, nonstandard
information required to access an object’s methods.

Name Strings and Object Types

Clients of the namespace API interested only in the hierarchical naming layout of the namespace are not
ordinarily required to distinguish between the different types of objects it contains. Applications
wishing to invoke methods on a particular object must know its type.

A name in the namespace consists of a sequence of 7-bit ASCII characters called a name string. Name
strings have no maximum length, although implementations may limit name strings to a maximum of
NPF_NS_PATH_NMAX characters. NPF_NS_PATH_ MAX should be a system-defined integral constant
with a value no less than 256. The special character / acts as a hierarchy delimiter. All name strings
begin with the hierarchy character. The hierarchy character by itself represents the highest level or root
of the hierarchy.

Referring to Objects

The namespace contains names of objects and the low-level information necessary to invoke methods
on them. In addition, the API Framework Reference and API Reference Guides contain definitions of
data types used to refer to objects in the system. Combined, several mechanisms are available to refer to
objects:

1. Object name — called a name string and implemented by the name space service. May be used
to acquire a handle. There is one canonical name per namespace entry, see below.

2. Handle — a process-local reference to an object (generic). May be used to acquire a type-
specific handle used in invoking object methods.

3. Alias — an alternative name for an object that has a canonical name (see Section 2.4, Canonical
Names and Aliases.)

There are several functions for converting between representations (refer to Section 3, Namespace
APL).

The Namespace Hierarchy

The namespace is a generic tree consisting of vertices and edges rooted at a specially identified root
vertex. Each vertex has an identifying name string and may contain zero or more children vertices
(immediate descendants of a vertex away from the root along the DAG), as well as zero or one object
references. Vertices are known as directories when they contain the names of one or more children
vertices. Vertices without children are called leaf vertices or leaves. Objects lacking object references
are known as placeholders.

With the exception of the root vertex, all other vertices contain a distinct parent vertex, which is
identified by the name of the directory that contains it. The root vertex is its own parent. A directory

11
Control Plane-PDK 2.11

Platform Namespace API
Reference Guide

intel

may contain any number of children, although an implementation may limit this number to
NPF_NS_MAX. The integral constant NPF_NS_MAX should have a value of 256 or more.

The following diagram shows an instance of the namespace. The solid directional lines show the logical
parent-child relationship, and the dotted directional lines show the associate relationship. For example,
the node / Syst eni 1/ Vi rt ual Rout er/ 1/ | nt er f aceb5 is associated with

/ Syst eml 1/ Bl ade/ O/ Por t / 0. If just the solid lines are counted, the graph is generic tree. If both
solid and dotted lines are counted, the graph is a directional acyclic graph (DAG).

Blade Virtual
Router

Figure 1. Instance of namespace

24 Canonical Names and Aliases

Each vertex identified in the namespace has a specific string that refers to it, which is termed as its
canonical name. A namespace vertex may also have zero or more aliases that refer to its canonical
name. Aliases and canonical names are not ordinarily distinguished from each other, as both can be
used interchangeably within the API to refer to the underlying objects. Special management
circumstances like creating or removing an alias are exceptions. Ultimately, the presence or lack of a
canonical name within the namespace dictates whether its corresponding object may be referenced
through the namespace. If a canonical name is removed from the namespace, its possible illegal aliases
may remain, as they are not automatically removed.

12
Intel Confidential

2.6

2.7

2.8

Namespace Architecture

Association

Alias is a type of relationship among the namespace nodes. The primary motivation of the concept of
association is to capture the generic many-to-many relationship between ports and interfaces. Here a

port is a software representation of a layer-2 network port. An interface is a layer-3 protocol address,

such as an IP address.

Since one or many IP addresses can be assigned to one or many ports, the relationship between ports
and interfaces is many-to-many. Multiple one-to-many associations represent these many-to-many
relationships. In terms of namespace, a set of nodes is associated to another node N. This set of nodes is
called associates of N. Another example of association is a port-based VLAN associated with one or
more ports.

Namespace Meta-Data

Each vertex within the namespace is named, and also has a set of associated properties. Vendor-
specific extensions required for system operation to these properties are not permitted. This document
defines the following properties:

1. Vertex type
Applies to: all vertices

Contains: an enumerated type, indicating whether vertex is an alias or canonical name

2. Canonical name
Applies to: (leaf) vertices that are aliases

Contains: the canonical name of the referred-to object

Namespace Initialization

The namespace does not specify whether it is automatically populated, perhaps by underlying vendor-
specific glue code that detects devices, or if it is populated by a management application using the
namespace creation APIs defined in Section Error! Reference source not found.. In either case, actual
discovery of system devices is done in a fashion that is beyond the scope of this document.

Naming Conventions

Canonical names for objects are created according to a special convention. The convention dictates that
names are constructed as a concatenation of pairs (type name, instance number), each separated by the
hierarchy character. Thus, a canonical name consists of a repetition of the following:

/type nane/instance numnber

For example, assume objects of type | Pv4Uni cast Rout er contain the names of multiple objects of
type Logi cal | nt er f ace, the first of which is called 0. The following name string can be used to
refer to this object:

/ Systenml 0/ Vi rtual View 1/ 1 Pv4Uni cast Router/ 1/ Logi cal I nterface/0

13
Control Plane-PDK 2.11

Platform Namespace API
Reference Guide

intel

The actual string literals Logi cal | nt er f ace, | Pv4Uni cast Rout er are not given in this
document, but are defined in per-type standards documents. These documents define the name of the
type and the containment relationship between types. For example, the fact that

| Pv4Uni cast Rout er might contain Logi cal | nt er f aces.

14
Intel Confidential

intal.

Part 3: Data Structures

intal

3 Data Structures

3.1

3.2

Please refer to the API Framework Reference for the definitions and semantics of basic data types
including NPF_HANDL E and NPF_RET.

The following methods are part of the NPF_ MANAGEMENT module and the NPF_NAMESPACE
interface.

Common Data Types

The following are some manifest constants and basic data structures used by namespace both in its API
and internal implementation.

NPF_HANDLE Handle to system data managed by the owning components of the data
NPF_NSHDL Handle to namespace node managed by the namespace

NPF_NS_PATH_MAX System constant — maximum length of name string (bytes) for namespace path
NPF_NS_MAXNAME System constant — maximum length of name string (bytes) for a node
NPF_NS_MAXCHI LD Maximum number of children vertices from a vertex

NPF_RET Enumerated i nt return type (see return type section)

Basic Data Structures

The following is the type of a vertex (node) in the namespace that could be type node, instance node, or
alias node.

enum NPF_NSNODETYPE{

TYPE, /1 type node
| NSTANCE, /1 instance node contai ni ng object reference
ALl AS /1 indirect node containing alias

}

The following is the entry part of a vertex. The handle to instance node field is ignored if the node is not
an alias node. The data handle field is ignored when the node is not an instance node.

struct NPF_NS ENTRY{

char * nane; // null term nated nane string for the node

enum NPF_NSNODETYPE nodeType; // type, instance, alias

enum NPF_NSDATATYPE dat aType; // blade, port, interface, etc

uni on {
NPF_NSHDL hl nstance; // the instance node handle for alias
NPF_HANDLE hData; // handle to systemdata for instance

} entryAttrib;

int refCount; // reference count to this node

17
Control Plane-PDK 2.11

Platform Namespace API
Reference Guide

3.3

The following is the directory part of a vertex. This can be potentially large.
struct npf_ns_directory {

i nt nchildren;

DLi st children

}

The following is the basic building block of the namespace hierarchy — the vertex that contains: parent,
directory part, and entry part. A handle to a namespace node is a pointer to that node.

struct NPF_NS_ NODE{
NPF_NSHDL parent; // pointer to the parent node, null for root
struct npf_ns_directory directory;
struct npf_ns_entry entry;

rw ock | ock; /!l read-write lock for this node

Node

A

parent
directory

A

entry Node

Linked list of nodes
Node H Node

Figure 2. Namespace node linkage

Return Values

NPF_SUCCESS Successful return of a function

NPF_I NVALI D_PARANVETERS Failed due to invalid input

NPF_OUT_OF_VEMORY Failed due to out of memory

NPF_NS_NCDE_EXI STS Failed to create a new node, since this node already exists
NPF_NS_NCDE_| N_USE Cannot edit this node because it is in use

18
Intel Confidential

Intel Data Structures

NPF_OSAS_FAI L Failure coming from OS abstraction services layer below
the namespace system

NPF_COMPONENT_UNI NI TI ALI ZED Failed due to the namespace not being initialized

19
Control Plane-PDK 2.11

intal.

Part 4: Namespace API

intal

4 Namespace API

Table 2 lists the namespace functions and provides a brief description of each function. The sections that follow provide
detailed descriptions of these functions.

Table 2. Namespace functions

Function

Description

ns_init

Initialize the namespace

npf_ns_create

Create a namespace entry or an alias name

npf_ns_alias

Create an alias for an instance node

npf_ns_delete

Delete an alias or a namespace entry

npf_ns_rename

Change the name string

npf_ns_open

Open a vertex and get a handle to it

npf_ns_getPath

Get the namespace path

npf_ns_getDataType

Get the type of the system data

npf_ns_getDataHandle

Get a handle to the system data

npf_ns_getinstParent

Get the instance parent

npf_ns_getParentNode

Get the parent node

npf_ns_readDir

Retrieve a vertex’s directory portion

npf_ns_first Get a handle to the first child in the directory
npf_ns_next Get a handle to the next child in the directory
npf_ns_prev Get a handle to the previous child in the directory

npf_ns_count

Get the number of children in the directory

npf_ns_done

Done with directory iterator

npf_ns_addAssociate

Add an associate

npf_ns_delAssociate

Delete an associate

npf_ns_enumAssociate

Enumerate associates

npf_ns_close

Relinquish a handle

npf_ns_canon

Get the canonical name of a vertex

23
Control Plane-PDK 2.11

Platform Namespace API
Reference Guide

4.1

4.2

Initialize the Namespace

Syntax
NPF_RET ns_init()

Description

Initialize the namespace.

Input Parameters

None.

Return Values

NPF_SUCCESS Call successful

NPF_OSAS _FAI L Failure from the OS Abstraction Services layer

Add a Namespace Node

Syntax
NPF_RET npf _ns_creat ¢(in char *pathstr,
in npf_ns_vertex_type nodeType,
in npf_data_type dat aType,
i n NPF_NSHDL hl nst ance,
out NPF_NSHDL *hNode) ;
Description

Create a namespace node at the given path. If the node type is an instance node, the namespace calls the
PDK component responsible for the management of this type of data to create the system data and gets
the handle to the system data. You can then call npf _ns_get Dat aHandl e to translate the
namespace handle to the system data handle. The caller can manipulate using set, get, and other data-
specific operations the system data based on the data handle. If the node type is alias, the namespace
should validate the existence of the instance node aliased by this node.

Input Parameters

pathstr The null-terminated name string for the path of the node to be created
nodeType The type of namespace node
dataType The type of the system data to be referenced by this node if the node is an

instance, or by its children node if the node is a type node. This parameter is
ignored if the node is an alias node.

hInstance The handle to the instance node if the node type is alias, ignored otherwise

24
Intel Confidential

4.3

Output Parameters

Namespace API

hNode Handle to the created node

Return Values

NPF_SUCCESS
NPF_QUT_OF_MEMORY
NPF_COMPONENT_UNI NI TI ALl ZED
NPF_I NVALI D_PARAMETERS

NPF_NS_NODE_EXI STS

Create an Alias

Call successful

Call failed due to out of memory
Namespace not initialized
Invalid input parameters

Node already exists

Syntax

NPF_RET npf_ns_al i as(in char * canonNane,
in char * aliasNane)

Description

Create a namespace alias node for the instance node whose canonical name is provided.

Input Parameters

canonNane

al i asNane

Return Values

NPF_SUCCESS

NPF_OUT_OF _NMEMORY
NPF_COMPONENT_UNI NI TI ALI ZED
NPF_I NVALI D_PARAMETERS

NPF_NS_NODE_EXI STS

Null-terminated canonical path name string of the node

Null-terminated alias path name string of the node

Call successful

Call failed due to out of memory
Namespace not initialized
Invalid input parameters

Node already exists

25

Control Plane-PDK 2.11

Platform Namespace API
Reference Guide

4.4

4.5

Delete a Namespace Node

Syntax
NPF_RET npf_ns_del ete(in char * name)

Description

If the path string is an alias, remove the specified alias node. If the path string is the canonical name,
remove the instance node and preserve all aliases associated with this vertex. A node can only be
deleted there is no open handle to the node and its descendant nodes. If a node is deleted, all of its
children are also deleted.

Input Parameters

name Null-terminated canonical path name string

Return Values

NPF_SUCCESS Call successful

NPF_COMPONENT_UNI NI TI ALI ZED Namespace not initialized

NPF_I NVALI D_PARAMETERS Invalid input parameters

NPF_NS _NCDE_| N_USE The node is currently in use

Rename a Namespace Node

Syntax

NPF_RET npf_ns_renane(in char * ol dNane,
i n char * newNane)

Description

Change the name of a node. This may result in moving a node from one location on the hierarchy to
another location. These names are either canonical names, or alias names. One cannot change a
canonical name to an alias name or vice versa. Note that an alias node to an instance node need not be
updated if the canonical name of the instance node is changed, since the alias node refers to the instance
node by namespace handle, not by path name string.

Input Parameters

ol dNanme Null-terminated old path name string of the node

newNane Null-terminated new path name string of the node

26
Intel Confidential

4.6

4.7

Namespace API

Return Values

NPF_SUCCESS Call successful
NPF_OUT_COF_MEMORY Call failed due to out of memory
NPF_COMPONENT_UNI NI TI ATED Namespace is not initiated
NPF_I NVALI D_PARAMETERS Invalid input parameters
NPF_NS_NODE_EXI STS Node already exists

Get a Handle to a Node

Syntax

NPF_RET npf _ns_open(in char * nanme,
out NPF_NSHDL * hNode)

Description

Open a node and output a handle to the namespace node.

Input Parameters

nanme Null-terminated path name string of the node
Output Parameters

hNode Handle to the node

Return Values

NPF_SUCCESS Call successful

NPF_COMPONENT_UNI NI TI ALI ZED Namespace not initialized

NPF_I NVALI D_PARAMETERS Invalid input parameters

Get Path by Handle

Syntax

NPF_RET npf_ns_getPath(in NPF_NSHDL hNode,
out char * path);

Description

Get the namespace path from the namespace handle of a node. The caller is responsible for allocating
memory of size NPF_NS_PATH_MAX for the path string before calling this function.

Input Parameters

hNode Namespace handle to a node

27
Control Plane-PDK 2.11

Platform Namespace API
Reference Guide

4.8

Output Parameters

pat h

Return Values

NPF_SUCCESS
NPF_COMPONENT_UNI NI TI ALI ZED
NPF_I NVALI D_PARAMETERS

NPF_OUT_OF MEMORY

Get Data Type

Syntax
NPF_RET npf _ns_get Dat aType(

intel

Null-terminated path string of the node. The caller should
allocate memory of size NPF_NS_PATH_MAX for this
string before calling this function.

Call successful
Namespace not initialized
Invalid input parameters

Call failed due to out of memory

in NPF_NSHDL nh,

out DataType * dataType);

Description

Reads the type of system data referenced by the argument namespace handle nh.

Input Parameters

nh

Output Parameters

dat aType

Return Values
NPF_SUCCESS

NPF_I NVALI D_PARAMETERS

NPF_OUT_OF MEMORY

Handle to the node

Output data type

Call successful
Invalid input parameters

Call failed due to out of memory

28
Intel Confidential

410

Namespace API

Get Data Handle

Syntax

NPF_RET npf _ns_get Dat aHandl e(i n NPF_NSHDL nh,
out NPF_HANDLE * hDat a) ;

Description

Get the handle to the system data referenced by a node. The function returns an invalid input error if the
node is not an instance node.

Input Parameters

nh Handle to the node
Output Parameters

hDat a Output data handle

Return Values

NPF_SUCCESS Call successful
NPF_I NVALI D_PARAMETERS Invalid input parameters
NPF_QOUT_OF_MEMORY Call failed due to out of memory

Get Instance Parent

Syntax
NPF_RET npf _ns_getlnstParent(in NPF_NSHDL nh,

out NPF_NSHDL * hlnstParent);
Description

Get an open handle to the instance parent of an instance node nh, which is the grandparent in the
namespace hierarchy. The caller must close the open handle after using it. The function returns an
invalid input error if the node is not an instance node.

Input Parameters

nh Open handle to an instance node

Output Parameters

hl nst Par ent Output open handle to the instance parent

29
Control Plane-PDK 2.11

Platform Namespace API
Reference Guide

4.11

412

Return Values
NPF_SUCCESS Call successful
NPF_I NVALI D_PARAMETERS Invalid input parameters

NPF_COMPONENT_UNI NI TI ALI ZED Namespace not initialized

Get Parent in Namespace

Syntax

NPF_RET npf _ns_get Par ent Node(in NPF_NSHDL nh,
out NPF_NSHDL * hParent);

Description

Get an open handle to the parent node in the namespace hierarchy. The caller must close the handle
after using it.

Input Parameters

nh Open handle to the node

Output Parameters

hPar ent Output open handle to the parent node
Return Values

NPF_SUCCESS Call successful

NPF_I NVALI D_PARAMETERS Invalid input parameters

NPF_COMPONENT_UNI NI TI ALI ZED Namespace not initialized

Get Node Directory Info

Syntax
NPF_RET npf _ns readDir(in char * nane,

out NODE_| TERATOR * dirltr)
Description

Retrieve the directory information of a node. This allows you to access the children nodes of the current
node. NODE_| TERATCOR is an iterator of a set of ordered namespace nodes, in this case, the ordered
set of children. The functions used to traverse or count the set of nodes are:

NPF_NSHDL npf _ns first(NODE | TERATOR dirltr);
NPF_NSHDL npf _ns_next (NODE_ | TERATOR dirltr);
NPF_NSHDL npf _ns_prev(NODE | TERATOR dirltr);

i nt npf_ns_count (NODE_ | TERATOR dirltr);

30
Intel Confidential

413

4.14

Namespace API
voi d npf_ns_done(NODE_| TERATOR dirltr);
npf _ns_first() returns an open handle to the first node in the directory, npf _ns_next ()
returns an open handle to the next node, and npf _ns_pr ev() returns an open handle to the previous
node. A return of O signals the end of the iteration. The client must call npf _ns_cl ose() for each of
the open handles and npf _ns_done() after using the iterator.
Input Parameters
name Null-terminated path name string of the node
Output Parameter
dirltr An iterator of the directory
Return Values
NPF_SUCCESS Call successful
NPF_COMPONENT_UNI NI TI ALI ZED Namespace not initialized
NPF_I NVALI D_PARAMETERS Invalid input parameters

NPF_OUT_COF _MEMORY Call failed due to out of memory

Get Handle to First Child Node

Syntax
NPF_NSHDL npf_ns_first (in NODE_| TERATOR dirltr)

Description

Returns an open namespace handle to the first child in the directory. The client must close this handle
after using it.

Input Parameters
Dirltr A directory handle
Return Values

Open namespace handle to the first child, or NULL if none are available.

Get Next Node Iterator

Syntax
NPF_NSHDL npf_ns_next (i n NODE_| TERATOR nodeltr)

Description

Get an open namespace handle to the next child in the directory. The caller must close the handle after
using it.

31
Control Plane-PDK 2.11

Platform Namespace API
Reference Guide

415

4.16

Input Parameters
nodel tr An open handle on the node
Return Values

Handle to next child, or NULL if child does not exist.

Get Previous Node lterator

Syntax
NPF_NSHDL npf_ns_prev(in NODE_| TERATOR nodeltr)

Description

Get an open namespace handle to the previous child in the directory. The caller must close the handle
after using it.

Input Parameters
nodel tr An open handle on the node
Return Values

Handle to previous child, or NULL if child does not exist.

Get Number of Children

Syntax
int npf_ns_count (in NODE_|I TERATOR nodeltr)

Description

Returns the number of children in the directory.

Input Parameters

nodel tr An open handle on the node
Return Values

Number of children in the directory, or —1 if the call is not successful.

32
Intel Confidential

418

419

Namespace API

Close Directory

Syntax
voi d npf_ns_done(i n NODE_| TERATOR nodel tr)

Description
Removes directory node after the client has finished using it.
Input Parameters

nodeltr An open handle on the node

Add an Associate

Syntax
NPF_RET npf _ns_addAssociate(in NPF_NSHDL hNode,

i n NPF_NSHDL hAssoci at e)
Description
This function adds an associate to the namespace node.
Input Parameters
hNode Handle to a namespace node
hAssoci at e Handle to the node to be associated with hNode
Return Values
NPF_SUCCESS Call successful
NPF_COMPONENT_UNI NI TI ALI ZED Namespace not initialized

NPF_I NVALI D_PARAMETERS Invalid input parameters

Delete an Associate

Syntax

NPF_RET npf_ns_del Associate(in NPF_NSHDL hNode,
i n NPF_NSHDL hAssoci at e)

Description

This function deletes an associate from the namespace node.

33
Control Plane-PDK 2.11

Platform Namespace API
Reference Guide

Input Parameters

hNode

hAssoci at e

Return Values

NPF_SUCCESS
NPF_COMPONENT_UNI NI TI ALl ZED

NPF_I NVALI D_PARAMETERS

4.20 Enumerate Associates

Syntax
NPF_RET npf _ns_enunAssoci at e(

Description

Handle to a namespace node

Handle to the associated node

Call successful
Namespace not initialized

Invalid input parameters

i n NPF_NSHDL hNode,
out NODE_|I TERATOR associ ateltr)

This function enumerates associates of a namespace node. The interface of NODE_| TERATOR is

described in Section 4.12.

Input Parameters

hNode

Output Parameters
associateltr

Return Values

NPF_SUCCESS
NPF_COVPONENT_UNI NI TI ALI ZED
NPF_I NVALI D_PARAMETERS

NPF_OUT_OF_NMEMORY

Handle to a namespace node

Node iterator for the associates

Call successful
Namespace not initialized
Invalid input parameters

Call failed due to out of memory

34
Intel Confidential

4.22

Namespace API

Close a Node Handle

Syntax
NPF_RET npf_ns_cl ose(i n NPF_NSHDL nh)

Description

Close an open handle on a node. After using an open handle to a node obtained from

npf _ns_create(),npf_ns_open(),npf_ns first(),npf_ns_next(),

npf _ns_get | nst Parent (), or npf _ns_get Par ent Node(), the handle must be closed with
this function.

Input Parameters

nh Open handle on the node

Return Values

NPF_SUCCESS Call successful

NPF_COMPONENT_UNI NI TI ALI ZED Namespace not initialized

NPF_I NVALI D_PARAMETERS Invalid input parameters

Get Canonical Node Name

Syntax

NPF_RET npf _ns_canon(in char * nanestring,
out char * canon_nane)

Description

Given a name string (usually an alias), provide the canonical name. The function returns an error if the
provided name string is a dangling alias name. The caller is responsible for allocating memory of size
NPF_NS PATH_NMAX before calling this function.

Input Parameters

nanest ri ng Null-terminated path name string of the node

Output Parameters

canon_name Canonical path name string of the node

35
Control Plane-PDK 2.11

Platform Namespace API
Reference Guide

Return Values

NPF_SUCCESS
NPF_COVMPONENT_UNI NI TI ALI ZED
NPF_I NVALI D_PARAMETERS

NPF_OUT_OF MEMORY

Call successful
Namespace not initialized
Invalid input parameters

Call failed due to out of memory

36
Intel Confidential

	Overview
	Namespace
	Assumptions and Dependencies
	Terminology

	Namespace Architecture
	Name Strings and Object Types
	Referring to Objects
	The Namespace Hierarchy
	Canonical Names and Aliases
	Association
	Namespace Meta-Data
	Namespace Initialization
	Naming Conventions

	Data Structures
	Common Data Types
	Basic Data Structures
	Return Values

	Namespace API
	Initialize the Namespace
	Add a Namespace Node
	Create an Alias
	Delete a Namespace Node
	Rename a Namespace Node
	Get a Handle to a Node
	Get Path by Handle
	Get Data Type
	Get Data Handle
	Get Instance Parent
	Get Parent in Namespace
	Get Node Directory Info
	Get Handle to First Child Node
	Get Next Node Iterator
	Get Previous Node Iterator
	Get Number of Children
	Close Directory
	Add an Associate
	Delete an Associate
	Enumerate Associates
	Close a Node Handle
	Get Canonical Node Name

