APl Framework

Reference Guide

Control Plane-Platform Development Kit 2.11
March 2004

Information in this document is provided in connection with Intel® products and services. No license, express or
implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in
Intel's Terms and Conditions of Sale for such products and services, Intel assumes no liability whatsoever, and Intel
disclaims any express or implied warranty, relating to sale and/or use of Intel® products and services including liability
or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or
other intellectual property right. Intel products and services are not intended for use in medical, life saving, or life
sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.
Copyright© 2004 Intel Corporation.

* Other brands and names are the property of their respective owners.

ii APl Framework Reference Guide
Intel Confidential

intal.

Contents

LI © 1 =Y V7 9
1 Y 1= g ¢ 414 U] o o 2 1
1.2 Assumptions and Dependencies 1
72 O o 4104 Lo o T I3/ 1= 15
2.1 ODbjJECt TYPES.. . 15
72200t Pt N | PRSPPI 15
2.1.2 npf_ipaddr_addr2char...............iiiiiii 15
P2 I T o A I 1 o PP 15
21.4 npf_hwaddr_addr2Char 15
2.1.5 npf_hwaddr char2saddrcooiiiiiiiiiiiice e 16

272 0 T 1 < TR Y/ o 1= 16
221 PTR_UNDEFINEDcooiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeee ettt 16
2.2.2 NPF _DATATYPE ...ttt eeeeeees 17
FZ 2 T | = e o PP 17
224 NPF_HANDLE ...t 18
225 NPF_NSHDL....co oot 18
226 NPF_CBHANDLE ..ottt 18
227 NPF_USERCONTEXT ..ottt 18
2.2.8 NPF_CORRELATOR ..ottt 19
227 S B | o Y4 =l o] = 1 1 I I 19
2210 NPF_RESPONSEcooiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeee ettt 19

2.3 LISt s 20
2.4 Basic Operations........cccccccciiiiiiiiicccecsss s e s e e e 20
241 NP LSt iNit. ..o 20
242 NP LISt dESIrOY . .ouueiii i 20
243 NP IISE SIZE oo 21
244 npf list_ pUShFront.........oooom e 21
245 npf list_ pUShBACK......cccoo i 22
246 npf list_ POPFIONt ..o 22
247 NPf LISt POPBACK.....ccii i 23
2.4.8 npf list POPFrONtFreecoomveeiieieeee e 23
249 npf list_ pOPBaCKFIEeoovueiiii e 24
2410 nPf list SEXISt..cuuuueiiii i 24
2411 npf list_getFirstData..........ooouviiiiiiii 24
2412 npf list_ getlastData........ccccoveeiiiiiiii 25
2.413 Example of Basic OperationS..........ccoovviiiiiiiiiieeeeeecie e 25

2.5 lterator Operations.........ccccciiiiiiminiiccir e 26
251 NPflist rCreate........ooiiiiiii e 26
252 NPf list_ rDEIete ... 26
2.5.3 NP LSt ISt ... 27
1

Control Plane-PDK 2.11

Contents Intel

254 NP LISt HILast. .o 27
255 NP LSt HINEXE; cooveee 27
256 NP LISt IPreV ..o 28
257 npf list rINSNEXt......ccoo o 28
2.5.8 NP LSt HIINSPrev.. ..o 29
259 npf list HIREMOVEcooiii e 29
2.5.10 npf_list_itrReMOVEFTEe.......cooveeeee e 30
2511 npf list itrGetData ... 30

2.6 Example of Iterator Operations..........cccccceieiiiririirinnnssr s 31
BTN 0= 1] o F= T @ [=T o3 o F= 4 1= 1 o RN 35
B B O 1 || o= T2 QR I3/ o == 35
311 Event CallDacKsScoooviiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeee e 35
3.1.2 Response to API Function Callbacks.........ccccooeeviiiiiiiiiiiiieieeeeeeie e 35

3.2 Callback INterfacescccccciiiiiieiiiiiicr s r e e e e s e e e r e 35
K 0t B =T o | 35
3.2.1.1 NPf_XX_@VENE FEQISIEN ..o 35

3.2.1.2 npf_XX_eVvent _deregiStero 36

3.21.3 NPF_EVENT _CBFUNC ...ttt e e e e e e e e ee e e e e an 36

3.2.2 Event Callback EXampleoiiiiiiiiieeccee e 37
3.2.3 ReSPONSES 10 APIS..... o 37
T2 T B o) oo G (=Y |] (= PR 37

T2 IZ N o) HD ¢ o Qo (=T =T 1< (= PR 38

3.2.3.3 NPF_XXXX_CBFUNCttiiieiiiiie ettt sttt e sttt a e e sntee e e s staeaeesnaeeaeannneeaeens 38

3.2.4 Asynchronous API Callback Example........ccccoviiiiiiiiiiiieeeeeee e 39
Memory Allocation and State Maintenance........ccccccccciiiiiiimiicccnnre e 43
E I I T T 114 T TS 7= T o =P 47
5.1 ReqUIremMents oo n s n s 47
L O T 1 - TR 1/ o 1 47
5.2.1 npf_logger_VerboSity ... 47
5.2.2 NPf logger IEVEL.......cooi oo 48
5.2.3 npf_logger COMPONENt ..o 48

5.3 INterfaces ... e 49
5.3.1 npf logger Start ... 49
5.3.2 NP 10gger StOP ... e 49
5.3.3 npf logger SetLevel ... 49
5.3.4 npf_logger_SetVerbosity........cccooviiiiiiiiiiiiiiiiii 50
5.3.5 npf logger WIEE......cooo oo 50

5.4 Logging EXamplesccceeeeiiiiiiiiiminicesssissss s s s ssssssssssss s s e s s s s ssssssssssss s s e s s ssnnnnns 51
6 Locks and Multiple Threads........ccoueeeeiiiiiiiiiiii s 55
6.1 Locks 55
6.2 Single Process and Multiple Threads 56
7 Initialization and Shutdown e e 61
71 [T 12 11 oY o 61
iv

Intel Confidential

intel.

Contents
7% R~ £ 1§ T [X, o T OO 61
8 Naming GUIdelNES ... 65
8.1 External APl FUNCLION NAMES.......cccuiieieeiieiiee e rse s rsns s rea s sen s s rnanrennns 65
8.2 Internal PDK FUuNCtiON NAmeS........cuoiieiieiiiiiii s s reesssme s ssasenss s rnnnsnnnns 65
< T T V- T F- 1 o1 (=0 11 = T == 66
8.4 Names for APl Level TYPeSccuuimmemmmmmmmmmmmmmmmennsssssesssssssssssssssssssssssssssssssssnnnns 66
2 T 0o Y o =3 -1 4| £ 66
Figures
Figure 1: CP-PDK architeCture ... 10
Figure 2: PDK under multiple threads...........cooooiiiiiiiiii e 57
Tables
Table 1. LI 0110 Te] (0o)PP 11
Revision History
Revision Description Date Author
2.1 Updated for Release 2.11 March 2004 Anantha Rathnam
21 Updated for Release 2.1 December 2003 Anantha Rathnam
2.0 Updated for Release 2.0 August 2003 Anantha Rathnam
v

Control Plane-PDK 2.11

intal.

Part 1: Overview

intal

1 Overview

Network elements such as switches and routers can be classified into three logical operational
components: Control plane, Forwarding plane, and Management plane.

The control plane controls and configures the forwarding plane. The control plane executes different
signaling or routing protocols and provides all the routing information to the forwarding plane.

The forwarding plane manipulates network traffic and makes decisions based on this information. The
forwarding plane performs operations on packets such as forwarding, classification, filtering, and so on.

An orthogonal management plane manages the control and forwarding planes.

For example, the control plane in a router executes routing protocols, the forwarding plane performs
hardware-based switching, and the management plane starts or stops routing process or performs

logging.

The introduction of standardized APIs within the above-mentioned planes can help system vendors,
OEMs, and end users of these network elements to mix and match components available from different
vendors to achieve a device of their choice. The Network Processing Forum (NPF) API is designed for
this purpose, as it presents a flexible and well-known programming interface to the control plane
applications. It makes the existence of multiple forwarding planes, as well as vendor-specific details,
transparent to control plane applications. Furthermore, the hardware properties and nature of
interconnect used between the control and the forwarding planes are isolated. Thus, the protocol stacks
and network processors available from different vendors can be easily integrated with the NPF APIs.
The APIs included in the Control Plane Platform Development Kit are based on the NPF APIs. For
more information about NPF, refer to http://www.npforum.org/.

This document describes the Control Plane PDK framework design and common issues. The PDK is
designed in C language with object-oriented abstraction of forwarding engine functionality. Each
component provides sets of APIs to operate and manage the forwarding plane.

The Configuration and Management and GTP APIs use the data structures and function signatures
presented in this document. All other modules, including IPv4, IPv6, IPv6TM, MPLS, DiffServ, IntServ
and ATM use conventions specified in the NPF Conventions document.

The PDK is also designed for a multi-thread-safe environment. It is linked as a shared library to all the
application threads/processes, so applications can invoke multiple PDK API calls simultaneously. Keep
in mind that applications must still enforce the proper critical sections if their PDK API calls contain
dependencies.

Figure 1 illustrates the CP-PDK architecture.

9
Control Plane-PDK 2.11

http://www.npforum.org/

APl Framework

Reference Guide .
intal

F({:%“g;]”f LDP QoS App Config
Manager Manager || Manager Utility App
NPF Programming API | | NPF Management API
NPF API Implementation
8
§ PDK ATM DiffServ Config
- Manager Manager Manager Manager
ontrol plane | <
2
S Binding
@ IPv4 MPLS
< Namespace Manager Manager) &
8 Discover
Common (log,
R B R O lock, callback, I-T ac(lj(le t M:il;eler LOPOIOQV
S G | S datatypes) andler g anager
Vilel|p||P
P F
FP Plugin API
— Transport plugin
Virtual Interfaces

Transport plugin
Backend API

Forwarding plane

FP Module

Forwarding engine (ACEs)

Figure 1: CP-PDK architecture

10
Intel Confidential

intal.

1.1

Terminology

Table 1 lists terms used in this document and provides the expansion of each term.

Overview

Table 1. Terminology

Version Description
API Application Programming Interface
CE Control Element
COPS Common Open Policy Service
CP Control Plane

DiffServ Differentiated Services

FE Forwarding Element

ForCES Forwarding and Control Element Separation protocol
IntServ Integrated Services

IXA Internet Exchange Architecture
NPF Network Processing Forum
PDK Platform Development Kit

1.2

Assumptions and Dependencies

The following assumptions apply to CP-PDK:

The APIs assume the existence of a compliant namespace present on the system

It is the responsibility of the PDK to handle the packet flows traveling over multiple blades
inside a single ON router. The application running on top of the APIs is hidden from the fact of

multiple forwarding planes.

The APIs operates on handles. Handles to objects are assigned in the manner required by the

Namespace APIL

Most functions of the API are asynchronous. Applications have to register callbacks for any
subset of the API calls. The callback mechanism and usage model is described in the subsequent

section.

11

Control Plane-PDK 2.11

intal.

Part 2: Common Types

intal

2 Common Types

2.1

211

2.1.2

213

21.4

Object Types

IPA

Definition
typedef uint32_t IPA

Description

Common data type for IP address.

npf_ipaddr_addr2char

Signature

i nt npf_i paddr_addr2char(struct in_addr in,
char *buff

Description

Converts the binary i n_addr to number-and-dot format.

Input Parameters
struct in_addr or npf_ipaddr

Output Parameters
buff = 111.112.113.114

Return Values
NPF_SUCCESS
NPF_| NVALI D_PARANVETERS

HWADDR

Definition
t ypedef unsi gned char HWADDR] MAX_ADDR _LEN|

Description

Common data structure for MAC address.

npf_hwaddr_addr2char

Signature
i nt npf_hwaddr _addr2char(char *ptr,
char *buff)

15
Control Plane-PDK 2.11

APl Framework
Reference Guide

21.5

2.2

2.21

Description

Converts an ethernet address to readable format.

Input Parameters
unsi gned char|[6]

Output Parameters
buff = 00: AA: BB: CC. DD: EE

Return Values
NPF_SUCCESS
NPF_| NVALI D_PARANVETERS

npf_hwaddr_char2saddr

Signature
i nt npf_hwaddr _char 2saddr(char *bufp,
struct sockaddr *sap

Description
Inputs an ethernet address and converts to binary.

Input Parameters
buf p = "00: AA: BB: CC. DD: EE" or " 00OAABBCCDDEE"

Output Parameters
sap->sa_famly = ARPHRD ETHER;
sap->sa_data = unsigned char[6] type

Return Values
NPF_SUCCESS
NPF_| NVALI D_PARANVETERS

Data Types

PTR_UNDEFINED

Definition
#defi ne PTR_UNDEFI NED OxFFFFFFFF

Description

Used for all undefined pointers.

16
Intel Confidential

Intel Common Types
2.2.2 NPF_DATATYPE

Definition

enum { NPF_SYSTEM
NPF_| PROUTER,
NPF_ROUTETABLE,
NPF_ARPTABLE,
NPF_FTNTABLE,
NPF_| LMTABLE,
NPF_FE,
NPF_| NTERFACE,
NPF_PORT,
NPF_I NTCONFI G '} NPF_DATATYPE

Description

All data types supported in the PDK.

2.2.3 NPF_RET

Definition

enum { NPF_SUCCESS,
NPF_OSAS FAI L,
NPF_| NVALI D_PARANMETERS,
NPF_QOUT_OF_MEMORY,
NPF_DUPLI CATE_CONTEXT,
NPF_NO | NTERNAL _PORT,
NPF_COMPONENT _UNI NI Tl ALI ZED,
NPF_COMPONENT _REI NI Tl ALI ZED,
NPF_NS PATH OVER LENGTH,
NPF_NS NODE | N_USE,
NPF_NS NODE_EXI STS,
NPF_NS_NODE_NOTFOUND,
NPF_CALLBACK FAI L,
NPF_FE_CONNECTI ON_FAI L,
NPF_| F_| NVALI D_PORT_ASSOCI ATION } NPF_RET

Description

All return types supported in the PDK.

17
Control Plane-PDK 2.11

APl Framework
Reference Guide

224

2.2.5

2.2.6

2.2.7

NPF_HANDLE

Definition
typedef uint32_t NPF_HANDLE

Description

The object ID of the operation destination, which is obtained from namespace API calls. A HANDLE
may represent one or a group of forwarding plane objects, such as a virtual router, an FE, or an

interface. The object handle must be obtained before API operations, and each operation can only pass
in one HANDLE.

NPF_NSHDL

Definition
typedef uint32_t NPF_NSHDL

Description

The namespace provides the directory service to the other components to access basic system data, as
well as more high-level logical data such as virtual router configuration. The namespace handle points
to the node in the namespace.

NPF_CBHANDLE

Definition
typedef uint32_t NPF_CBHANDLE

Description

The APIs are grouped into different categories, and each API is associated with a callback handle. This
handle is provided by the PDK when a user application registers for that category. The handle is
returned to the user application, and is used by the application when making the same category of API
calls. A handle obtained when registering with one category must not be used in another category of
API calls. The user application does not interpret this callback handle.

NPF_USERCONTEXT

Definition
t ypedef void *NPF_USERCONTEXT

Description

Provided by the registering application at the time the application registers the APIs. Its value is not
interpreted by the API components, but is put as a parameter when the PDK gets the response from
forwarding plane and invokes a callback provided by the registering application.

The application need not enforce a unique user context for each registration. The PDK uses the callback
handle of this user context to map the correct callback functions.

18
Intel Confidential

2.2.8

2.2.9

2.2.10

Common Types

A single application-provided callback function may be registered in multiple situations. For example,
an application may provide the same function in response to an administrative interface shutdown API
and an abrupt interface shutdown event. In this case, the application registers both API callback and
event callback with the same callback function, but a different user context. It is the application’s
responsibility to differentiate the callback type by checking the returned user context. The PDK does
not interpret or modify the user context passed in by the application.

NPF_CORRELATOR

Definition
typedef void *NPF_CORRELATOR

Description

An application must provide an NPF_CORRELATOR for each invocation of the API call. This is
required to support scenarios where an application might have multiple outstanding requests of the
same type. For example, an application might have multiple function calls to assign IP addresses to

different interfaces on the forwarding plane, all of which expect acknowledgements as asynchronous
callbacks.

The NPF_ CORRELATOR provides a way for the application to differentiate the correlation of each
asynchronous response to the same registered callback return. When the application makes API calls, it
includes the NPF_ CORRELATOR in the request, and the API components do not interpret its value.
When the PDK gets the response from the forwarding plane, it includes this same NPF_
CORRELATOCR as well as the NPF_USERCONTEXT to this type of callback when invoking the
registered callback function in response to this request.

NPF_VERBOSITY

Definition
enum NPF_VERBOSI TY { NPF_ACK, NPF_NOACK, NPF_FAI LACK }

Description

Defines the behavior of the asynchronous mode of operation present in the request. ACK causes the
PDK to always send a response to the application indicating the operation results. NOACK indicates that
no response should be generated. FAI LACK indicates that a response should be sent only for
unsuccessful results.

NPF_RESPONSE

Definition
t ypedef voi d *NPF_RESPONSE

Description

This defines the response type returned from the PDK APIs. It is passed in callback functions provided
by applications. The PDK defines different data structures for different types of callback functions. An
application must cast the void data into the correct structure types depending on the return callback
type. There could be more than one response.

19
Control Plane-PDK 2.11

APl Framework
Reference Guide

2.3

24

241

24.2

intel
List

The CP-PDK provides a thread-safe double-link list that can convey any user-defined data structure.
User applications must allocate memory for their data and de-allocate memory after deletion from the
list. If the de-allocate function is provided, the list can also de-allocate the data in the list when the user
deletes the list element.

There are two types of operations in the list. The first is the basic operation and the second is the iterator

operation. Basic operations are multi-thread-safe. For iterator operations, always use an external lock
while traversing the list.

Basic Operations

Basic operations are multiple thread-safe and can be invoked simultaneously.

npf_list_init

Definition
int npf list init(DList *, void (*destroy)(void *data));

Description

Initialize a list.

Input Parameters

DLi st * The list pointer

voi d (*destroy) The destroy function to de-allocate the user data in the list
Output Parameters

None.

Return Values

0 Successful

-1 Not successful

npf_list_destroy

Definition
int npf list _destroy(DList *);

Description

Remove all elements in the list and de-allocate user data.

20
Intel Confidential

243

24.4

Input Parameters
DLi st *

Output Parameters
None.

Return Values
Return Values

0

-1

npf_list_size

Signature

The list pointer

Successful

Not successful

int npf _list _size(DList *);

Description

Get the size of the list.
Input Parameters
DLi st *

Output Parameters
None.

Return Values

0

-1

The list pointer

Successful

Not successful

npf_list_pushFront

Signature

int npf_list _pushFront(DList *, const void *);

Description

Push data to the front of the list.

Input Parameters
DLi st *

void *

The list pointer

The pointer to the new data

Common Types

21
Control Plane-PDK 2.11

APl Framework
Reference Guide

2.4.5

2.4.6

Output Parameters

None.

Return Values

0 Successful

-1 Not successful

npf_list_pushBack

Signature
int npf_list _pushBack(DList *, const void *);

Description

Push data to the back of the list.

Input Parameters

DLi st * The list pointer

void * The pointer to the new data
Output Parameters

None.

Return Values

0 Successful

-1 Not successful

npf_list_popFront

Signature
int npf_Iist_popFront(DList *, void **);

Description

Delete the first list element and return the pointer to the deleted user data.

Input Parameters
DLi st * The list pointer
Output Parameters

voi d * The pointer to the deleted data

22
Intel Confidential

2.4.7

2438

Return Values
0 Successful

-1 Not successful

npf_list_popBack

Signature
int npf_Ilist_popBack(DList *, void **);

Description

Delete the last list element and return the pointer to the deleted user data.
Input Parameters

DLi st * The pointer to the list

Output Parameters

void * The pointer to the deleted data

Return Values

0 Successful

-1 Not successful

npf_list_popFrontFree

Signature
int npf_|ist _popFrontFree(DList *);

Description

Common Types

Delete the first list element and de-allocate the user data if the destroy function is provided at list

registration time.

Input Parameters

DLi st * The list pointer
Output Parameters

None.

Return Values

0 Successful

-1 Not successful

23
Control Plane-PDK 2.11

APl Framework
Reference Guide

249 npf_list_popBackFree

Signature
int npf_|ist popBackFree(DList *);

Description

Delete the last list element and de-allocate the user data if the destroy function is provided at list
registration time.

Input Parameters

DLi st * The list pointer
Output Parameters

None.

Return Values

0 Successful

-1 Not successful

2410 npf_list_isExist

Signature
int npf_list_isExist(DList *, const void *);

Description

Check if the pass-in pointer exists in the list.

Input Parameters

DLi st * The list pointer

void * The pointer to the pass-in data
Output Parameters

None

Return Values

0

2.4.11 npf_list_getFirstData

Signature
void *npf |ist_getFirstData(DList *);

24
Intel Confidential

2412

2413

Description

Get the first user data stored in the first list element.
Input Parameters

DLi st * The list pointer
Output Parameters

None.

Return Values

Pointer to the first user data.

npf_list_getLastData

Signature
void *npf _|ist_getlLastData(DList *);

Description

Get the last user data stored in the last list element.
Input Parameters

DLi st * The list pointer
Output Parameters

None

Return Values

Pointer to the last user data.

Example of Basic Operations

Create a list, push data at the back, and then pop it out.

DLi st pi peli ne;

struct segnment *seg;

voi d *dat a;

npf _Iist_init(&pipeline, free);

seg = (struct segnent *)nmall oc(sizeof (struct
npf _|ist_pushBack(&pi pel i ne, seg);

npf _|ist_popFront (&pipeline, (void **)&data);

if (list->destroy != NULL) pipeline->destroy(data);

Common Types

segnent));

25
Control Plane-PDK 2.11

APl Framework
Reference Guide

2.5

2.5.1

2.5.2

intel
Iterator Operations

An iterator marks a position in the list. It provides a way to access a list element without exposing its
underlying representation. When using iterator operations, it is important for user programs to ensure
that the proper lock is acquired, since a series of iterator operations are usually called sequentially and
there may be some dependency between them.

Iterators are also useful for inserting and deleting middle nodes. After inserting or deleting the nodes,
the return iterator is different in other API calls. Refer to the following descriptions for details.

npf_list_itrCreate

Signature
DListltr *npf list itrCreate(DList *);

Description

Create an undefined iterator, return NULL if the list is empty.
Input Parameters

DLi st * The list pointer

Output Parameters

None.

Return Values

Pointer to an undefined iterator; NULL if the list is empty.

npf_list_itrDelete

Signature
int npf list itrDelete(DListltr *);

Description

Delete the iterator.

Input Parameters

DLi st * The list pointer
Output Parameters

None.

26
Intel Confidential

2.5.3

2.5.4

2.5.5

Return Values
0 Successful

-1 Not successful

npf_list_itrFirst

Signature
int npf_list_itrFRirst(DListltr *);

Description

Get the first iterator in the list.

Input Parameters

DListltr * The pointer to the current iterator

Output Parameters

DListltr * The pointer to the first iterator of the list

Return Values

0 if successful; -1 if the list is empty.

npf_list_itrLast

Signature
int npf_list_itrLast(DListltr *);

Description

Get the last iterator in the list.

Input Parameters

DListltr * The pointer to the current iterator
Output Parameters

DListltr * The pointer to the last iterator of the list
Return Values

0 if successful; -1 if the list is empty.

npf_list_itrNext;

Signature
int npf _list itrNext(DListltr *);

Common Types

27
Control Plane-PDK 2.11

APl Framework
Reference Guide

2.5.6

2.5.7

Description

Get the next iterator of the pass-in current iterator.

Input Parameters

DListltr * The pointer to the current iterator

Output Parameters

DListltr * The pointer to the iterator following the pass-in iterator
Return Values

0 if successful; -1 if the pass-in iterator is undefined or the next is NULL.

npf_list_itrPrev

Signature
int npf _list itrPrev(DListltr *);

Description

Get the previous iterator of the pass-in current iterator.

Input Parameters

DListltr * The pointer to the current iterator

Output Parameters

DListltr * The pointer to the iterator prior to the pass-in iterator
Return Values

0 if successful; -1 if the pass-in iterator is undefined or the previous iterator is NULL.

npf_list_itrinsNext

Signature
int npf _list itrinsNext(DListiltr *, const void *);

Description
Insert new data next to the pass-in iterator
Input Parameters

DListltr * The pointer to the current iterator

28
Intel Confidential

2.5.8

2.5.9

Common Types

Output Parameters

DListltr * The pointer to the iterator next to the new added one
const void * The pointer to the newly inserted data

Return Values

0 if successful, -1 if the pass-in iterator is undefined.

npf_list_itrinsPrev

Signature
int npf_list_itrinsPrev(DListltr *, const void *);

Description

Insert new data prior to the pass-in iterator.

Input Parameters

DListltr * The pointer to the current iterator
Output Parameters

DListltr * The pointer to the iterator does not change. It remains the one next to the
newly added iterator.

Return Values

0 if successful, -1 if the pass-in iterator is undefined.

npf_list_itrRemove

Signature
int npf _list itrRenove(DListltr *, void **);

Description

Delete the list element and return the pointer to the user data.
Input Parameters

DListltr * The pointer to the current iterator
Output Parameters

DListltr * The pointer to the iterator next to the removed one, set to undefined if the
removed one is the last one

void * The pointer to the removed user data

29
Control Plane-PDK 2.11

APl Framework
Reference Guide

2.5.10

2.5.11

Return Values

0 if successful; -1 if the pass-in iterator is undefined.

npf_list_itrRemoveFree

Signature
int npf_list itrRenoveFree(DListltr *);

Description

Delete the list element and de-allocate the user data using a user-provided destroy function.
Input Parameters

DListltr * The pointer to the current iterator

Output Parameters

DListltr * The pointer to the iterator next to the removed one, set to undefined if the
removed iterator is the last one

Return Values

0 if successful; -1 if the pass-in iterator is undefined.

npf_list_itrGetData

Signature
void *npf list itrGetData(DListltr *);

Description

Return to the pointer inside the iterator that points to the user data.
Input Parameters

DListltr * The pointer to the current iterator
Output Parameters

None.

Return Values

Pointer to the user data of the current iterator; returns NULL if pass-in iterator is undefined.

30
Intel Confidential

2.6

Example of Iterator Operations

Traverse a list:

DListltr *itr;

voi d *dat a;

if ((itr = npf_list_itrCreate(&pipeline))

return;
LOCK() ;
npf list itrFirst(itr);
do {

data = npf _list _itrGetData(itr);

} while (npf _list_itrNext(itr) !'=-1);
UNLOCK() ;
npf list itrDelete(itr);

= NULL)

Common Types

31
Control Plane-PDK 2.11

intal.

Part 3: Callback Mechanism

intal

3 Callback Mechanism

3.1

3.1.1

3.1.2

3.2

3.21

3.2.11

Callback Types

CP-PDK provides two different types of callback, which are described in the following sections.

Event Callbacks

Applications may have interest in events happening in the underlying hardware. This kind of callback is
not in response to a particular API call, but is in response to an event that occurs. Applications must
register for events of interest, and when these events happen, the PDK invokes the registered callback
function. In this case, only the NPF_USERCONTEXT and result data are passed back to the application.
Refer to the Configuration and Management API Reference Guide for a description of event callbacks.

Response to API Function Callbacks

Most of the APIs do not receive an immediate response, because they have to wait for a certain time to
allow for the underlying hardware execution. These APIs return immediately without an execution
result. When the result returns, the PDK invokes an asynchronous callback in another callback thread
based on the verbosity level. In this case, both the original NPF_USERCONTEXT and
NPF_CORRELATOR are passed back to the application along with the result data. An application must
differentiate each callback based on the types NFP_USERCONTEXT and NPF_CORRELATOR.

Callback Interfaces

Event

npf_xx_event_register

Signature

i nt npf_xx_event _register(NPF_USERCONTEXT,
NPF_EVENT_CBFUNC,
NPF_CBHANDLE *)

Description

Allows the application to register a callback function with the event related callback type, and
associates a unique callback handle. The possible event categories are: f e, port,i f,i pv4 andi pr.

Input Parameters
NPF_USERCONTEXT
NPF_EVENT_CBFUNC

Output Parameters
NPF_CBHANDLE

35
Control Plane-PDK 2.1

APl Framework
Reference Guide

Return Values
NPF_SUCCESS
NPF_| NVALI D_PARANVETERS

Async Callback

None.

3.21.2 npf_xx_event_deregister

Signature
i nt npf_xx_event deregi ster(NPF_CBHANDLE)

Description

Allows the application to de-register the event callback function associated with the unique previously
assigned callback handle.

Input Parameters
NPF_CBHANDLE

Output Parameters
None.

Return Values
NPF_SUCCESS
NPF_| NVALI D_PARAVETERS

Async Callback
None.
3.21.3 NPF_EVENT_CBFUNC

Definition

t ypedef void (*NPF_EVENT_CBFUNC) (NPF_USERCONTEXT,
NPF_EVENT,
NPF_HANDLE,
NPF_RESPONSE)

Description

The uniform event callback function format. The application names the content of NPF_ RESPONSE
based on the NPF_EVENT_CBTYPE. This function is invoked by the PDK whenever the registered
event happens. Applications check the NPF_EVENT _CBTYPE to know what information is returned.
NPF_USERCONTEXT and NPF_HANDLE are the original values passed in from the applications.

36
Intel Confidential

3.23

3.2.31

Callback Mechanism

Event Callback Example

voi d onCB_FEEvent (NPF_USERCONTEXT cont ext,
NPF_EVENT event,
NPF_HANDLE handl e,
NPF_DATA data)
{

switch (event) {
case NPF_EVENT_FE BI ND:
br eak;
case NPF_EVENT _FE UP:
br eak;
defaul t:

int main() {
NPF_CBHANDLE cbhandl e;
NPF_EVENT_CBFUNC evencbfunc = &nCB_FEEvent;
npf _fe event register((void*)getpid(), eventcbfunc, &cbhandle);

npf _fe_event _deregi ster(cbhandl e);

Responses to APIs

Most function calls in the CP-PDK APIs are asynchronous. They are grouped into different categories.
An application must register a callback for a given category to get the callback response. At
registration time, the PDK returns a callback handle. When an application needs to invoke the
subsequent API calls from that category, the application must use the corresponding callback handle.
An application can register or de-register a callback category at any time, or during initialization or
during shutdown.

npf_xxxx_register

Signature

i nt npf_xxxx_register(NPF_USERCONTEXT,
NPF_xxxx_CBFUNC,
NPF_CBHANDLE *)

Description

Allows the application to register a callback function with all the XXXX related callback types, and
associates a unique callback handle.

Input Parameters
NPF_USERCONTEXT
NPF_XXXX_CBFUNC

37
Control Plane-PDK 2.11

APl Framework
Reference Guide

3.2.3.2

3.2.3.3

Output Parameters
NPF_CBHANDLE

Return Values
NPF_SUCCESS
NPF_| NVALI D_PARANVETERS

Async Callback

None

npf_xxxx_deregister

Signature
i nt npf_xxxx_deregister(NPF_CBHANDLE)

Description

Allows the application to de-register the XXXX callback function that associates with the unique pre-
assigned callback handle.

Input Parameters
NPF_CBHANDLE

Output Parameters
None.

Return Values
NPF_SUCCESS
NPF_| NVALI D_PARANVETERS

Async Callback

None.

NPF_XXXX_CBFUNC

Definition

typedef void (*NPF_XXXX_CBFUNC) (NPF_USERCONTEXT,
NPF_CORRELATOR,
NPF_VERBOCSI TY,
NPF_HANDLE,
NPF_(___)_CBTYPE,
NPF_RESPONSE)

Description

The uniform XXXX callback function format. An application names the content of NPF_RESPONSE
based on the NPF_XXXX_CBTYPE. The PDK invokes this function whenever the registered XXXX
related event happens. Applications check the NPF_XXXX_CBTYPE to know the information that is

38
Intel Confidential

3.24

Callback Mechanism

returned. NPF_USERCONTEXT, NPF_CORRELATOR, NPF_HANDLE and NPF_VERBCSI TY are the
original values passed in from the applications.

Asynchronous API Callback Example

void onCB_I F(NPF_USERCONTEXT cont ext

NPF_CORRELATOR correl ator,
NPF_VERBOSI TY verbosity,

NPF_HANDLE handl e,
NPF_I P_CBTYPE type,
NPF_DATA dat a)
{
switch (type) {
case NPF_I F_SET_I| PADDR:
br eak;
case NPF_| F_SET_FORWARDI NG
br eak;
def aul t:
}
}
int main() {
NPF_CBHANDLE cbhandl e;
NPF | F_CBFUNC i fcbfunc = &nCB I F;
npf if _register("ConlF", ifcbfunc, &cbhandle);
npf if _set ipaddr(fehandl e, cbhandle, “Correlator”, NPF_ACK,
i paddr);
npf _if _deregi ster(cbhandl e);
H

39
Control Plane-PDK 2.11

intal.

Part 4: Memory Allocation and State
Maintenance

intal

4 Memory Allocation and State Maintenance

The memory allocation and usage model for the API implementation is as follows:

The entity that may be an application or API implementation that allocates memory, is responsible for
freeing it.

When an application makes a CP-PDK API invocation and passes in any data for which it allocated the
memory, the API implementation always copies that data and returns a HANDLE. The PDK also
guarantees that the memory passed in is used only for the duration of the API call. The application can
use it in any manner desired, once the API call is complete and control is returned to the application.
An application can only access the PDK data through the HANDLE that was returned from the PDK.

Similarly, when the API implementation invokes a registered application callback, the application must
ensure that it copies the passed data, if required, after the duration of the callback function execution.

There are four types of transient data in the PDK:
e Data created by the application, such as routing information or FTN/ILM information
e Data collected from the FEs that cannot be changed, such as MAC addresses
e Data collected from the FEs that can be changed, such as MTU

e Traffic statistics in the FEs

The PDK will cache type 2 and type 3 data in the Configuration and Management module, since it is
not as volatile as type 1 and type 4. It is under the PDK’s control. For routing information and MPLS
FIB information, the tables are stored in the user application. The PDK does not keep a state of that data
except overhead information generated by the PDK, such as inter-FE forwarding labels.

43
Control Plane-PDK 2.11

intal.

Part 5: Logging Service

intal

5 Logging Service

5.1

5.2

5.2.1

The PDK provides a basic logging service for both user programs and internal PDK components to
record runtime messages. Messages can be logged by component or based on severity.

Requirements

The following are requirements of the logging service:

Write results to a specific log file

Timestamp of every entry

Show name of source file and function in use
Display variables in dynamic format
Granulate the severity of the debug message
Maintain the log file within a certain length

Log by severity and/or component, as assigned from command line

Data Types

npf_logger_verbosity

Definition
enum { LOG VERB COWP,

LOG VERB_LEVEL,
LOG_VERB_FUNC,
LOG_VERB_LI NE,
LOG_VERB_FI LE,
LOG_VERB_PI D,
LOG VERB_TI ME }

Description

The verbosity levels provided by the PDK.

47
Control Plane-PDK 2.11

APl Framework
Reference Guide

5.2.2 npf_logger_level
Definition
enum { LOG DI SABLED,
LOG_TRACE,
LOG | NFO,
LOG ERR,
LOG CRIT,
} npf_l ogger | evel
Description
The debug levels provided by the PDK.
5.2.3 npf_logger_component
Definition
enum { LOG_PDKMGR, /1
LOG NS, /1
LOG LBM /1
LOG TPM /1
LOG CM 11
LOG _BD, /1
LOG | PV4, /1
LOG I NTSERV, [/
LOG DS, 11l
LOG MPLS, /1
LOG ATM /1
LOG_TOPO, /1
LOG CB, /1
LOG VI C, /1
LOG_PH, /1
LOG APP, /1
LOG TPI, /1

LOG FP_QOS, /1
LOG FP_MPLS [/

Description

/1 logging is disabled

/1 trace messages, function
entered/exited

/1 information nmessage
/1l error condition
// critical error,

print debuggi ng

unr ecover abl e

pdk manager
namespace

| abel manager

t opol ogy manager
confi g nanager

bi ndi ng di scovery
i pvd

i ntserv

diffserv

mpl s
ATM

t opol ogy

cal | back

virtual device

packet handl er
application

transport plugin

FP QoSManager

FP MPLS Manager }

The debug components supported by the PDK.

48
Intel Confidential

5.3.1

5.3.2

5.3.3

Interfaces

npf_logger_Start

Signature
int npf_logger_Start (char *filenane)

Description

Open the log file and start the logging service.

Input Parameters

fil enane The log filename and path
Output Parameters

None.

Return Values

0 if success; otherwise return —1.

npf_logger_Stop

Signature
i nt npf_Il ogger_Stop (void)

Description

Close the log file and turn off the logging service.
Input Parameters

None.

Output Parameters

None.

Return Values

0 if success.

npf_logger_SetLevel

Signature

i nt npf_| ogger_ SetlLevel (npf_l ogger conponent,

npf _I ogger _| evel)
Description

Set the component and level of the logging service.

Logging Service

uint 32_t

49
Control Plane-PDK 2.11

APl Framework
Reference Guide

5.3.4

5.3.5

Input Parameters

npf _I ogger _conponent
npf _I| ogger _conponent
Output Parameters
None.

Return Values

0 if success.

The component for which the level is set

The severity level

npf_logger_SetVerbosity

Signature

i nt npf_I| ogger_ Set Verbosity(npf_| ogger _verbosity)

Description
Set the log verbosity.

Input Parameters

npf | ogger _verbosity

Output Parameters
None.
Return Values

0 if success.

npf_logger_Write

Signature

int npf_logger_wite (

Description

Log the message to the log file.

The logger verbosity

npf _| ogger _conponent,
npf | ogger | evel,
format,

args ...)

50
Intel Confidential

5.4

Input Parameters

npf | ogger _conponent
npf | ogger _| evel

f or mat

ar gs

Output Parameters
None.

Return Values

0 if success.

Logging Examples

Logging Service

The component to which this message refers
The severity level
The format of the message

The argument(s)

The following are examples of the logging service.
npf | ogger _Start(“/tnp/log.txt");
npf | ogger Set Level (LOG CM LOG ERR);

npf | ogger Set Ver bosity(LOG Tl ME) ;

npf | ogger Wite("Connection Refuse!");

npf _| ogger _Wite("Call back %th from%!", 100, "FP");
npf | ogger Wite("This will not show up!");

npf | ogger Stop();

Logged messages in/ t np/ | 0og. t xt :

(pid|file:function:line|date tine|conponent:|evel - nessage)

22314| 1 og. c: mai n: 85| 05/ 04 12:57:53.225|1:3 - Connecti on Refused!
22314| | og. c: mai n: 86| 05/ 04 12:57:53.226|0:6 - Call back 100th from FP!

51
Control Plane-PDK 2.11

intal.

Part 6: Locks and Multiple Threads

53
Control Plane-PDK 2.11

intal

6 Locks and Multiple Threads

6.1

Locks

Locks are used in the PDK to protect system data for thread safety. There are two levels of operations
inside the PDK that should be guarded by locks:

1. For intra-component operations

2. For inter-component operations

The intra-domain operations need to only access the data inside a single component. The
implementations of the APIs exposed by these components are mostly intra-component. Each
component should use internal locks to protect its own data.

For inter-component operations, each component should expose a per-component lock. These locks are
coordinated in the inter-component operations so that deadlock is avoided while thread safety is
provided. This single lock semantic is exposed by a component, while internal to the implementation of
this single lock, multiple mutexes or locks can be used in a coordinated manner to enhance the
efficiency of the locking mechanism.

There are two recommendations for the locks used with the PDK:

1. All locks should be read-write, which promotes a greater degree of concurrency and efficiency
while enforcing protection.

2. An order of nesting of the locks is used to avoid deadlock among the per-component locks for
inter-component operations. This order says that a lower lock in the order must be unlocked
before a higher order lock is locked. The order of the locks, from high to low, is:

1. PDK manager

Configuration manager
Namespace

Binding and discovery manager
Topology manager

Label manager

IPV4 manager

MPLS manager

o ® =N kWD

IntServ manager

—
(=]

. DiffServ manager

—_—
—_—

. ATM manager

55
Control Plane-PDK 2.11

APl Framework
Reference Guide

intel

6.2 Single Process and Multiple Threads

In this release of the PDK, user applications and PDK components are compiled into one single
executable file. Each user program has its own thread to invoke PDK API calls. Each FE has one thread
in the CE to receive the message coming from that FE. The main function of that thread is to receive the
message from the FE and execute the callback based on the incoming message.

When an asynchronous API is invoked in the application threads, it returns immediately without having
a result. After the underlying FE finishes the command, the receiving thread in CE is notified and
triggers a series of callback to return to the application. Besides the application threads and receiving
threads, there is a timer thread and connection listen thread that are parts of COPS.

Figure 2 illustrates the multiple threads in one process PDK implementation.

56
Intel Confidential

Locks and Multiple Threads

PDK Under One Process

CE Process

Callback
Thread

RCM Thread

] Bl N2

TRANSPORT
PLUGIN
COPS/ForCES

Callback
Thread

MPLS Thread

___%)______ZE____

PDK API PDK API
FE A Call Call FE B
Receiving Send Send Receiving
Thread \ Vi Thread
imer
RCV LISTEN RCV

X
s
s
v

Z

o/‘

—
&
&

C,°

SEND

RCV

Callback
Thread

NPF AP1

N

RCV

Callback
Thread

-/

Timer

FE A

* Each rectangle represents a single thread
** Each FE uses two threads but a single socket descriptor to send and receive message between CE
*** Thread number in CE = 1 listen + 1 Timer + X FE Callbacks + Y applications + Z callback threads

R

Timer

SEND

FE B

Figure 2: PDK under multiple threads

57
Control Plane-PDK 2.11

APl Framework
Reference Guide

intel

A thread pool that contains multiple threads executes the application callback. When the receiving
thread FP Plugin in the control plane receives the response, it executes all the internal callbacks in its
context and pipes the response information to one of the callback threads in the thread pool to have the
callback thread run the application callback jobs. In this way, the PDK does not run the risk that the
application callback never returns.

It is important to protect the global data because of the multiple thread issues. Data can be modified
only by a component that owns the data. The component may use a per-component lock to protect all
the internal data or use a per-data lock to minimize the lock time. This should be decided case-by-case,
depending on the situation.

58
Intel Confidential

intal.

Part 7: Initialization and Shutdown

intal

7 Initialization and Shutdown

71

7.2

Initialization

Initialization starts from a PDK application, such as the configuration application. The application first
calls PDKi ni t () exposing the PDK manager. The PDK manager initializes the internal PDK
components one-by-one in a well-defined order. This order must take two considerations into account:

e The Control Plane portion of the PDK should configure its internal components before accepting
any binding from forwarding elements. In this way, when an FE comes to bind, the CE portion
of the PDK is ready to control it. This implies that the part of the FP Plugin that first accepts a
binding request from an FE should be the last one to be initialized.

e A PDK component may need to register callback functions with the FP Plugin for completing
routines of CE to FE calls and event notifications from FE to CE. This means that the API
portion of the FP Plugin should be initialized before those components that register callbacks.

These considerations require breaking the FP Plugin into two parts: the API part and the FE connection
part. These two parts will be initialized separately in the following order:

e FP Plugin API

¢ Configuration manager

e Namespace

¢ Binding and discovery manager
e Topology manager

e Label manager

e [PV4 manager

e MPLS manager

After initialization, the configuration application reads the initial configuration information from the
persistent IDB, and uses it to populate the namespace and configure all other PDK components. After
initialization, the PDK Manager calls PDKSt art () to enable the connection part of the FP Plugin.

Shutdown

Shutdown is triggered by a PDK application, such as the configuration application. The configuration
application reads the current configuration state from each PDK component and saves this information
into the IDB. It then calls the PDK manager to shut down the PDK. The PDK manager calls the
configuration manager to shut down each component one-by-one in the defined order.

Shutdown can also be triggered by an FE Unbi nd event. When an FE Unbi nd event is sent back to
CE, the configuration manager calls all callback functions registered for FE DOWN event for this FE.

Each component in the PDK must provide a function for an FE down event, onCB_FEDOWN\() . The
onCB_FEDOWN() calls back all the outstanding requests, closes all the open nodes, and releases all
locks. The PDK Manager calls the administrative SHUTDOWN() , and the Transport Plugin calls the
FEDown event callback, but they do the same thing to clean the internal data structures.

61
Control Plane-PDK 2.11

intal.

Part 8: Naming Guidelines

8 Naming Guidelines

8.1

8.2

External APl Function names

Function names comprise three parts:
1. The npf _ preface
2. The API name

3. The name of the function

The name portion of the function should start with a capitalized letter and should use additional capital
letters for separating additional words. If an acronym is included in the name, the acronym should be
typed as it normally would, such as VoIP or COPS. Function names should always contain a verb.

The following are some examples:

npf i pv4_AddRout e

npf _cm Get L3Properties

npf _i pv4_Regi st er ARPCal | back
npf i pv4_Der egi st er ARPCal | back

Note: For the register and deregister functions, Regi st er and Der egi st er must come before the
event/callback type.

The abbreviated API names to include in the function name prefix are:

| Pv4 | Pv4

| Pv6 | Pv6

| Pv6 Tunnel | Pv6TM
Configurati on and Managenment cm
Namespace ns

MPLS MPLS

I nt Ser v | NTSERV
DiffServ DS

ATM ATM

Internal PDK Function Names

For functions internal to the PDK implementation but used as an interface between components (for
example, if CM exposes a function to other internal components but does not expose this function to
external applications), the function name should have the component name, an underscore, and then the
function name. The name should start with a capitalized letter and should use additional capital letters
for separating additional words. If an acronym is included in the name, the acronym should be typed as
it normally would, such as VoIP or COPS. Function names should always contain a verb.

The following are some examples:
t opo_LookupTopol ogy
| bl man_Al | ocat eLabel

<Title>
<Document Type>

intel.

The abbreviated API names to include in the function name prefix are:

| Pv4 i pvd
Configurati on and Management cm
Nanmespace ns

MPLS npl s

I nt Serv i ntserv
DiffServ ds
Topol ogy Manager t opo
Label Manager [bl man
ATM atm

8.3 Variable Names

Variable names include function parameter names, structure/union members, and any other variables
defined by an API. They must be in lower case with an underscore (_) used as a separator.

The following are some examples:
route_entry_ list
port _nunber

8.4 Names for API Level Types

These naming guidelines are only for types exposed at the NPF API level. Types defined in the PDK
implementation should use the naming guidelines found elsewhere in this document.

Type names include structure/union types, enums and typedefs. These should be prefaced with npf _
and the first letter of the type name should be lower case. The name should be terminated with _t to

indicate that it is a type. If the type name is composed of multiple words, additional words should be

started with an upper case letter. Acronyms should be typed as they normally would, such as VoIP or
COPS. This is a possible exception to the first letter lower case rule.

The following are some examples:
npf _routeEntry_t
npf | PAddress_t

8.5 Constants

Any numerical should be a constant. This includes preprocessor constants such as #def i ne, as well as
the values inside an enumeration. These numerical constants should be in all caps and use underscores
(L) as separators between multiple words.

The following is an example:

IPV4 MAX_ROUTES

66
Intel Confidential

	Overview
	Terminology
	Assumptions and Dependencies

	Common Types
	Object Types
	IPA
	npf_ipaddr_addr2char
	HWADDR
	npf_hwaddr_addr2char
	npf_hwaddr_char2saddr

	Data Types
	PTR_UNDEFINED
	NPF_DATATYPE
	NPF_RET
	NPF_HANDLE
	NPF_NSHDL
	NPF_CBHANDLE
	NPF_USERCONTEXT
	NPF_CORRELATOR
	NPF_VERBOSITY
	NPF_RESPONSE

	List
	Basic Operations
	npf_list_init
	npf_list_destroy
	npf_list_size
	npf_list_pushFront
	npf_list_pushBack
	npf_list_popFront
	npf_list_popBack
	npf_list_popFrontFree
	npf_list_popBackFree
	npf_list_isExist
	npf_list_getFirstData
	npf_list_getLastData
	Example of Basic Operations

	Iterator Operations
	npf_list_itrCreate
	npf_list_itrDelete
	npf_list_itrFirst
	npf_list_itrLast
	npf_list_itrNext;
	npf_list_itrPrev
	npf_list_itrInsNext
	npf_list_itrInsPrev
	npf_list_itrRemove
	npf_list_itrRemoveFree
	npf_list_itrGetData

	Example of Iterator Operations

	Callback Mechanism
	Callback Types
	Event Callbacks
	Response to API Function Callbacks

	Callback Interfaces
	Event
	npf_xx_event_register
	npf_xx_event_deregister
	NPF_EVENT_CBFUNC

	Event Callback Example
	Responses to APIs
	npf_xxxx_register
	npf_xxxx_deregister
	NPF_XXXX_CBFUNC

	Asynchronous API Callback Example

	Memory Allocation and State Maintenance
	Logging Service
	Requirements
	Data Types
	npf_logger_verbosity
	npf_logger_level
	npf_logger_component

	Interfaces
	npf_logger_Start
	npf_logger_Stop
	npf_logger_SetLevel
	npf_logger_SetVerbosity
	npf_logger_Write

	Logging Examples

	Locks and Multiple Threads
	Locks
	Single Process and Multiple Threads

	Initialization and Shutdown
	Initialization
	Shutdown

	Naming Guidelines
	External API Function names
	Internal PDK Function Names
	Variable Names
	Names for API Level Types
	Constants

