

Interface Manager
Design Specification
Control Plane-Platform Development Kit 2.11

March 2004

R

ii Intel Confidential

Information in this document is provided in connection with Intel® products and services. No license, express or
implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in
Intel's Terms and Conditions of Sale for such products and services, Intel assumes no liability whatsoever, and Intel
disclaims any express or implied warranty, relating to sale and/or use of Intel® products and services including liability
or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or
other intellectual property right. Intel products and services are not intended for use in medical, life saving, or life
sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Copyright© 2004 Intel Corporation.

* Other brands and names are the property of their respective owners.

R

Contents
Interface Manager... i

Contents.. iii

Part 1: Introduction ... 5

1 Introduction... 7
1.1 Interface Manager .. 7
1.2 Assumptions .. 8
1.3 Dependencies... 8
1.4 Terminology.. 8
1.5 References.. 9

Part 2: Overview .. 11

2 Overview.. 13

Part 3: Interface Management API Design .. 15

3 Interface Management API Design .. 17
3.1 Adaptation to Existing Implementation.. 17
3.2 Initialization .. 20
3.3 Shutdown.. 20
3.4 API Calls ... 20

3.4.1 Synchronous APIs... 21
3.4.2 Asynchronous API Calls.. 21
3.4.3 Asynchronous API Completion Callback... 21

3.5 API extensions ... 22
3.5.1 IPv6... 23
3.5.2 ATM OAM ... 23

Part 4: Runtime Interactions .. 25

4 Runtime Interactions .. 27

Part 5: Implementation details ... 29

5 Implementation details ... 31
5.1 Data structures... 31
5.2 Memory Allocation ... 32
5.3 Memory Free... 32
5.4 Threading and Synchronization.. 32

Part 6: Pseudo Code ... 33

iii
Control Plane PDK 2.11

R

6 Pseudo Code... 35
6.1 Initialization .. 35
6.2 Shutdown.. 35
6.3 Asynchronous API Calls ... 35
6.4 API Callback ... 36

Revision History
Revision Description Date Author

2.11 Updated for Release 2.11 March 2004 Ds Sreedhara

2.1 Updated for Release 2.1 December 2003 Ds Sreedhara

2.0 Updated for Release 2.0 August 2003 Ds Sreedhara

iv
Intel Confidential

Part 1: Introduction

R

1 Introduction
Network elements such as switches and routers can be classified into three logical operational
components:

• Control plane

• Forwarding plane

• Management plane

The control plane controls and configures the forwarding plane and the forwarding plane
manipulates the network traffic. The control plane executes different signaling or routing protocols
and provides all the routing information to the forwarding plane.

The forwarding plane makes decisions based on this information and performs operations on
packets such as forwarding, classification, filtering, and so on.

An orthogonal management plane manages the control and forwarding planes. For example, the
control plane in a router executes routing protocols, the forwarding plane performs hardware-
based switching, and the management plane starts or stops routing process, and performs logging.

The introduction of standardized Application Program Interface (API) within the above-mentioned
planes can help system vendors, Original Equipment Manufacturer (OEM), and end-users of these
network elements to mix and match components available from different vendors to achieve a
device of their choice. The Network Processing Forum (NPF) API is designed for this purpose, as
it presents a flexible and well-known programming interface to the control plane applications. It
makes the existence of multiple forwarding planes, as well as vendor-specific details, transparent
to control plane applications.

The hardware properties and nature of interconnect used between the control and the forwarding
planes are isolated. The protocol stacks and network processors available from different vendors
can be easily integrated with the NPF APIs. The APIs included in the Control Plane Platform
Development Kit (CP-PDK) are based on the NPF APIs. For more information about NPF, refer to
http://www.npforum.org/.

1.1 Interface Manager

This document provides information on the internal design of the interface management (IM)
component of the CP-PDK. This document includes the description and design of the main
internal data structures and algorithms used within the component.

The IM is responsible for creating, configuring and enabling various types of interfaces that are
used by the internal and external components to configure system information.

This document describes the design of the IM component. It does not address the individual IM
APIs implemented by this component. The intended audience for this document are developers
implementing and/or maintaining the IM component, or test engineers who are performing quality
analysis (QA) on the IM component.

7
Control Plane-PDK 2.11

http://www.npforum.org/

Interface Management Design
Design Specification

R
1.2 Assumptions

Some assumptions are made to simplify the design:

• The configuration and management module (C&M) refers to the information represented
by the namespace nodes. In this design of the IM, the C&M handle corresponds to the IM
interface handle.

• The APIs assumes the existence of a C&M on the system. This component stores the
system information.

• The APIs assumes the existence of a compliant namespace present on the system. The
namespace provides handles for applications and components to access objects.

1.3 Dependencies

The IM component depends on the namespace and C&M to create and store information and the
FP plug-in component for contacting FEs. The IM component must also make use of several other
components:

Double Link List (DList) DList is the double-link list designed in C. It provides
multiple thread safety operations to manipulate the
list.

Platform Independence Layer (PIL) For reuse of software components for different
applications, writing the modules in a high-level
language is not sufficient. Differences within the
operating systems on the platform and the compilers
can make porting difficult. The PDK uses PIL to
minimize compiler exceptions and provides an
operating system independent API, reducing the
porting effort.

1.4 Terminology

Table 1 lists terms used in this document and provides an expansion for each term.

Table 1. Terminology table

Term Description

CE Control Element

FE Forwarding Element

IXA Internet eXchange Architecture

NPF Network Processing Forum

8

Intel Confidential

R
 Introduction

PDK Platform Development Kit

ATM Asynchronous Transfer Mode

IM Interface Management

CMM Configuration and Management Module

NS Namespace

1.5 References

Table 2 lists documents referenced in, or related to, this document.

Table 2. Document reference table

Reference Description

[1] Software Architecture Overview

[2] Forwarding Plane Plugin API Reference

[3] Platform Namespace Design Reference

[4] Platform Independence Layer API Reference

[5] API Framework Reference

[6] Configuration and Management Design Reference

 9

Control Plane-PDK 2.11

Part 2: Overview

R

2 Overview
The interface manager is responsible for creating, configuring, and enabling various types of
interfaces that are used by the internal and external components to configure system information.
Figure 1. displays the NPF PDF architecture.

Figure 1. NPF PDK architecture

13
Control Plane-PDK 2.11

Interface Management Design
Design Specification

R

The interface represents the state information as seen by the forwarding plane. It is not a cache for
the control plane and it does not allow any get * attribute style APIs.

14

Intel Confidential

Part 3: Interface Management API
Design

R

3 Interface Management API Design

3.1 Adaptation to Existing Implementation

This design is based on reusing the existing namespace and C&M module and extending it to provide the special
functionality of the API, as shown in Figure 2. .

Client
Application

Control Plane

Forwarding
Plane

Interface Mgr API

Namespace CMM

Figure 2. Interface management API interactions

The namespace creates nodes corresponding to various network entities and provides handles to
access them. The information associated with the nodes is stored in the C&M module and can be
accessed through the C&M API.

The design of this component would different if the NS and C&M were not already in use by the
other PDK components.

The interface manager APIs are divided into the following types:

1. Registering and deregistering callbacks

17
Control Plane-PDK 2.11

Interface Management Design
Design Specification

R
2. Creation and deletion of interfaces

3. Enabling or disabling interfaces

4. Setting the various interface attributes

5. Getting statistics for various interfaces - POS, ATM, IPv4 and LAN

The first type can be implemented independently in the interface manager.

Types 2, 3, and 4 of APIs use the existing C&M to store and access information. Type 5 of APIs
are not provided very easily by the C&M, so it is necessary for this module to communicate with
the FP plug-in API directly to get the statistics.

In this design of the IM, the C&M handles correspond to the IM interface handles.

The IM uses the namespace to set up the interfaces and the C&M to access it. The namespace
nodes need to be set up for each interface that may be added or updated. The initial namespace
tree is setup during the initialization and each interface added from the IM API forms a node in
this tree.

The attributes of the interfaces form the attributes of the namespace nodes. For example, the
namespace represents an interface on an FE as /System/0/Router/0/Interface/2. The
IM should create /System/0/Router/0 at initialization and then listen for FE bind events to
create the /System/0/Router/0/FE/1. The FE bind event also creates the ports, such as,
/System/0/Router/0/FE/1/Port/4. The attributes of the port may be changed or
updated by the application.

When an interface is added it creates /System/0/Router/0/Interface/2. An FE bind
causes a port to be added as /System/0/FE/1/Port/4 by the IM into the namespace, along
with any other attributes configured by the application. Interfaces of type LAN, POS and ATM
has port as an attribute. This port attribute is a logical port number.

Users of CP-PDK are expected to create the logical port number in the namespace as
/System/0/Router/0/IfPort/3 and associate the logical port to physical port
/System/0/FE/1/Port/4 using namespace association. Users could attach LAN and POS interface
below the IPv4 interface. This task can be performed using interface bind API. On interface bind,
IMM find the logical port number from the LAN or POS attributes. It finds the associated physical
port and performs the namespace association between IPv4 interface and physical port.

Creation of namespace nodes for each ATM Vcc is expensive, as a system can have thousands of
Vcc. For the same reason it is not reasonable to store the attributes of each Vcc. IM does not store
the attributes, it transparently passes the attributes to core components through FPPAPI and get the
attributes from core components as needed.

Table 3. Mapping the interfaces API to various internal components

Interface Management API call Dependent Components

NPF_IfRegister Internally handled in IM

NPF_IfDeregister Internally handled in IM

NPF_IfEventRegister Internally handled in IM

NPF_IfEventDeregister Internally handled in IM

18
Intel Confidential

R
 Interface Management API Design

NPF_IfCreate Uses Namespace and CMM

NPF_IfDelete Uses Namespace and CMM

NPF_IfBind Uses Namespace

NPF_IfGenericStatsGet Uses Interfaces core component via the FP Plugin

NPF_IfAttrSet Uses Namespace and CMM

NPF_IfEnable Uses Interfaces core component via the FP Plugin

NPF_IfDisable Uses Interfaces core component via the FP Plugin

NPF_IfOperStatusGet Uses Interfaces core component via the FP Plugin

NPF_IfLAN_Src_AddrSet Uses Namespace and CMM

NPF_IfLAN_MAC_RcvAddrListAdd Uses Namespace and CMM

NPF_IfLAN_MAC_RcvAddrListAdd Uses Namespace and CMM

NPF_IfLAN_PromiscSet Uses Namespace and CMM

NPF_IfLAN_PromiscClear Uses Namespace and CMM

NPF_IfLAN_FullDuplexSet Uses Namespace and CMM

NPF_IfLAN_FullDuplexClear Uses Namespace and CMM

NPF_IfLAN_SpeedSet Uses Namespace and CMM

NPF_IfLAN_FlowControlTxEnable Uses Namespace and CMM

NPF_IfLAN_FlowControlTxDisable Uses Namespace and CMM

NPF_IfLAN_FlowControlRxEnable Uses Namespace and CMM

NPF_IfLAN_FlowControlRxDisable Uses Namespace and CMM

NPF_IfIPv4AddrSet Uses Namespace and CMM

NPF_IfIPv4MTUSet Uses Namespace and CMM

NPF_IfIPv4FIBSet Uses Namespace and CMM

NPF_IfATM_VccSet Uses Namespace and CMM

NPF_IfATM_VccBind Uses Namespace and CMM

NPF_IfATM_VccDelete Uses Namespace and CMM

 19

Control Plane-PDK 2.11

Interface Management Design
Design Specification

R
3.2 Initialization

Interface manager initialization should be called after C&M, namespace and binding and
discovery (B&D) and FP plug-in. It should be done before any APIs or internal components that
are interested in event notification or API callbacks in order to provide registration service.

During initialization in the co-located case, the root is setup but in the remote case, the IM must
setup the namespace root and register with the CMM to use the FP plug-in callback service that it
has registered for. The IM also initializes its internal lists to save callback state information from
the FP plug-in and directly registers for the callback service with the FP plug-in. Since the CM
already has the lists, it is recommended to use them because replication of information could
potentially cause consistency issues.

3.3 Shutdown

As with initialization, IM shutdown must be called after all the internal components have
deregistered the IM callback service. The IM shutdown must deregister callbacks to the CM, B&D
and the FP plug-in callback. IM must then destroy all state information.

In the PDK shutdown process, the PDK manager should invoke the IM shutdown before the CM
has been shutdown.

3.4 API Calls

The IM APIs are split into two different sections - synchronous and asynchronous. In synchronous
IM APIs, the API gets the result almost immediately. In asynchronous IM APIs, the API returns
almost immediately but it does not get the result right away. The result is called back some time
later by the IM implementation. The reason for asynchronous calls is that some APIs must
communicate with forwarding planes, which may be connected through the wire, and they need
time for the control plane to communicate with the forwarding plane and return the result.

The synchronous calls consist of registering and deregistering callbacks.

The asynchronous calls have the following categories:

1. Creation and deletion of interfaces

2. Enabling or disabling interfaces

3. Setting the various interface attributes

4. Getting statistics for various interfaces - POS, ATM, IPv4 and LAN

The first three types of APIs use the existing C&M to store and access information. The type of
APIs are not provided very easily by the C&M, so it is necessary for this module to communicate
with the FP plug-in API to get the statistics.

20
Intel Confidential

R
 Interface Management API Design

3.4.1 Synchronous APIs

The callback register, deregister, and IM initialization/shutdown calls are all synchronous calls.
The application registers for event callbacks like NPF_IF_UP, NPF_IF_DOWN and
NPF_IF_COUNTER_DISCONTINUITY or API callbacks.

3.4.2 Asynchronous API Calls

There is no top-down NPF API for events, except the register and deregister. For the normal NPF
asynchronous API calls, the user program must use the unique PDK callback handle. The PDK
callback handle is created at registration along with the NPF interface handle, user correlator, error
reporting strategy, and request user data to make the subsequent API call. After IM receives the
NPF API calls, it validates the input arguments, such as, callback handle and NPF interface handle
and type. Then it calls the FP plug-in or the C&M. It also creates and stores the callback state,
released after the receiving the callbacks and IM has returned them to the client application.

3.4.2.1 Setting the Interface Attributes

The IM exposes one or multiple calls to SET properties of an interface. For a small change, it is
recommended to use a set of single property, such as, NPF_IfLAN_PromiscSet or
NPF_IfLAN_SpeedSet. Using NPF_IfCreateandSet or NPF_IfAttrSet may be
easier to initialize the interface. The user program may also want to assign one value at a time.
These calls map to the C&M that allows setting one property at a time.

The IM must save state and make multiple calls to the C&M. Once all the callbacks from the
C&M have been received, it compiles the callbacks to make a single callback into the client
application. This operation is done in the callback thread of the C&M. In the current
implementation, most of the IM APIs directly calls the FP plug-in APIs and updates the C&M data
structures on the response from FP plug-in APIs.

3.4.2.2 Setting an Array of Information

The IM functions take an array of information elements and the length of the array but the C&M
APIs takes one information element. The IM shall call the C&M function multiple times, one per
information element. The IM shall provide unique correlator value for each C&M function call
and shall store the state of each C&M call. On receiving asynchronous response, the IM shall
update the return status. When all responses are received, send a single response back to user of
IM. In the current implementation, most of the IM APIs directly call the FP plug-in APIs and
update the CMM data structures on the response from FP plug-in APIs.

3.4.3 Asynchronous API Completion Callback

After the user program makes asynchronous API calls, the commands are sent to the C&M or
forwarding plane and a response later returns to the IM from the C&M or FP plug-in. When the
C&M or FP plug-in calls back the IM, the callback is executed in a thread different from the
original thread that made the request.

 21

Control Plane-PDK 2.11

Interface Management Design
Design Specification

R
The call and the callback refer to the callback state stored in a callback info list. It is recommended
to put the callback info lists into IM global data and synchronize it with a lock. When all callbacks
from the C&M that relate to a single callback in the IM, the state associated with it is cleaned out
and a compiled callback is returned to the IM. The FP plug-in always calls back the IM and C&M
API is with the verbosity set to always callback the IM. This prevents a memory leak in the IM
due to callback state stored while making a call but never cleared up when a callback completes.

The response data is dynamically created by the FP plug-in and passed into the callback functions
to the user program. After all the callback return, the FP plug-in deletes the response data
immediately. It is a responsibility of the user program or internal component to make a copy of the
response data, if needed after exiting the callback context.

3.4.3.1 Example: General SET Algorithm

The general callback algorithm for a set API is listed as follows:

5. The C&M or FP plug-in is invoked with the interface handle and its attributes to be set.

6. The C&M or FP plug-in invokes the callback function provided by IM registered at IM
initialization time. The function parameter contains feid, correlator and response data.

7. In the callback functions, IM validates the correlator and feid.

8. If the validation passes, the IM may need to copy the callback data into the IM response
into the correct data object.

9. At each callback, the state is checked to see if any more callbacks are expected. When all
the callbacks completed, the callback to the client application is invoked

3.5 API extensions

The current NPF specification only contains interfaces of types: LAN, IPv4 and ATM. This API
needs to be extended to add support for creation and deletion of IPv6 interfaces and to get
statistics for them in the following generic interfaces management API.

Table 4. API extension table

APIs Dependent Components

NPF_IfCreate Uses Namespace and CMM

NPF_IfDelete Uses Namespace and CMM

NPF_IfBind Uses Namespace

NPF_IfGenericStatsGet Uses Interfaces core component via the FP Plugin

NPF_IfVccStatsGet Uses Interfaces core component via the FP Plugin

NPF_IfAttrSet Uses Namespace and CMM

NPF_IfEnable Uses Interfaces core component via the FP Plugin

NPF_IfDisable Uses Interfaces core component via the FP Plugin

22
Intel Confidential

R
 Interface Management API Design

NPF_IfOperStatusGet Uses Interfaces core component via the FP Plugin

The data structures NPF_IfCallbackType, NPF_IfAsyncResponse, NPF_IfType and
NPF_IfGeneric_t should be extended to add support for IPv6 and ATM OAM. For more
information on this, please refer to the Interfaces API document.

3.5.1 IPv6

It must also provide support the following IPv6 specific APIs, which are not part of the NPF
specification.

Table 5. IPv6-specific API table

APIs Dependent Components

NPF_IfIPv6AddrAdd Uses Namespace and CMM

NPF_IfIPv6AddrDelete Uses Namespace and CMM

NPF_IfIPv6UCZoneSet Uses Namespace and CMM

NPF_IfIPv6MTUSet Uses Namespace and CMM

NPF_IfIPv6FIBSet Uses Namespace and CMM

NPF_IfIPv6inv4DstAddrSet Uses Namespace and CMM

NPF_IfIPv6inv4SrcAddrSet Uses Namespace and CMM

NPF_IfIPv6inv4TTLSet Uses Namespace and CMM

NPF_IfIPv6inv4DSCPSet Uses Namespace and CMM

NPF_IfICMPv6RateLimitSet Uses Namespace and CMM

3.5.2 ATM OAM

It must also provide support the following ATM OAM specific APIs, which are not part of the
NPF specification.

Table 6. ATM OAM-specific API table

APIs Dependent Components

NPF_IfATMOAMSetStatistics Uses Namespace and CMM

NPF_IfATMOAMSetContinuityCheck Uses Namespace and CMM

NPF_IfATMOAMSetLoopback Uses Namespace and CMM

NPF_IfATMOAMSetAlarm Uses Namespace and CMM

 23

Control Plane-PDK 2.11

Interface Management Design
Design Specification

 R
NPF_IfATMOAMSetPM Uses Namespace and CMM

NPF_IfATMOAMSetConnectionPointType Uses Namespace and CMM

NPF_IfATMOAMGetProperties Uses Namespace and CMM

24
Intel Confidential

Part 4: Runtime Interactions

R

4 Runtime Interactions
Figure 3. displays the sequence diagrams for the synchronous APIs.

Figure 3. Sequence diagram for synchronous APIs

Figure 4. displays the sequence diagrams for the asynchronous APIs.

CMM or FP
Plug-in IM

Return callback handle

Register callback
f or all the APIs

Register callback f or
interested Categories

Return callback handle

User
Program

NPF Asy nc
Call

Return

FP Plug-in
Asy nc Call

Callback to IM

Callback to
user program

Return

Return

Figure 4. Sequence diagram for asynchronous APIs

27
Control Plane-PDK 2.11

Interface Management Design
Design Specification

R
Figure 5. displays the sequence diagrams for the event notification.

FP
Plug-in C&M Namespace

Return callback handle

Register callback
for all the Events

Register callback for
interested Events

Return callback handle

User
Program

Event Callback to C&M

Event Callback
to user program

Return

Return

Internal
Components

Event Callback to
Internal Components

Return

Figure 5. Sequence diagram for event notification

28
Intel Confidential

Part 5: Implementation details

R

5 Implementation details

5.1 Data structures

A list of active application requests is kept for processing callbacks. The structure is as follows:

typedef struct {
FPPI_FEID id;
NPF_boolean_t ok; /* Set to TRUE when req = resp */
uint32_t req; /* No. of requests for this FE id */
uint32_t resp; /* No. of responses for this FE id */
} feReq_t;

typedef struct {
NPF_IfCallbackType_t type; /* callback type */
NPF_callbackHandle_t cbh; /* callback handle */
NPF_userContext_t context; /* user context */
NPF_correlator_t corr; /* user correlator */
NPF_errorReporting_t report; /* user error report */
uint32_t no; /* No. of requests generated */
uint32_t fpReq; /* No. of FP API requests to be mabde */
uint32_t fpResp; /* No. of FP responses generated */
uint32_t resp; /* No. of responses generated for this request */
NPF_IfCallbackData_t data; /* user callback data */
NPF_DS_CallbackFunc_t callback; /* user registered callback function */
NPF_IfHandle_t ihandle; /* interface handle */
NPF_error_t error; /* error code */
If_t ifc; /* interface for which request made */
uint32_t id; /* last FE id this request sent */
void *asyncResp[IF_MAX_NO];

uint32_t ecount;

void events[IF_MAX_NO];

NPF_boolean_t ok; /* Set to TRUE if all FE of this interface responded
*/
feReq_t fe[MAXFENUM]; /* Request per FE */
 } request_t;

A linked list is used to keep a number of these structures. Whenever the application makes a
request, a new callback structure is allocated and added to the list. This request is sent to the FP.
When all asynchronous responses associated with the call are received from the forwarding plane,
the list is searched to retrieve the appropriate callback structure and, with the information in the

31
Control Plane-PDK 2.11

Interfaqce Management Design
Design Specification

 R
structure, appropriate callback of the application is invoked. After the callback is invoked, the
structure is removed from the list and allocated memory is freed.

5.2 Memory Allocation

In the PDK IM implementation, the same data is passed down to the FP plug-in. After the
callback, IM copies this data into its callback data structure. The callback data structure contains
an array of response pointers. The IM needs to make a copy of the response data before passing it
to the user. This step needs to be performed for each registered user.

5.3 Memory Free

Since the NPF user is running in a thread different from FPPAPI callback thread, IM or C&M
shall not free the allocated memory as soon as it sends the data to the other thread using pipe/mail
box. For maintaining data integrity, the user shall free memory after use.

5.4 Threading and Synchronization

The IM API component does not create any new threads. The functions are called by the
application and the callbacks may be in different thread contexts. For this reason, the list that
holds callback states must be locked when they are being accessed. The IM uses
PIL_EnterCriticalSection and PIL_LeaveCriticalSection.

32
Intel Confidential

Part 6: Pseudo Code

R

6 Pseudo Code

6.1 Initialization

The following is the pseudo code for initializing the interface manager:
NPF_ERROR_t im_init(void){

 // int CB state list
 npf_list_init(&CBList, PIL_FreeMemory);

 //register CMM cb

 npf_category_register();

 //register fpplugin cb

 fppapi_deregister_cb();

 return NPF_SUCCESS;
}

6.2 Shutdown

The following is the pseudo code for shutting down the interface manager:
NPF_ERROR_t im_destroy(void)

{

 for each registered cb fppapi_deregister_cb();

 for each registered CMM cb npf_category_deregister();

 // destroy the callback state list
 npf_list_destroy(&CBList);

 return NPF_SUCCESS;

}

6.3 Asynchronous API Calls

The following is the pseudo code for assigning the port IP address:
NPF_RET NPF_IfIPv4AddrSet (NPF_callbackHandle cbid,
 NPF_correlator_t correlator,
 NPF_errorReporting_t verbosity,

 NPF_unir32_t n_hanldes,

 NPF_IfHandle_t *ifHandleArray
 NPF_IIIPv4NetAddr_t *ipaddr)

{

 // check if the CB exists
 if (cm_isCBIdExist(cbid) == -1)

35
Control Plane-PDK 2.11

Interface Management Design
Design Specification

R
 return NPF_INVALID_PARAMETERS;

 // create callback state info IM_CBState_t;
 cbState = PIL_MemoryAllocate(sizeof(IM_CBState_t), 0);

for (int I = 0; I < n_handles; I++)

{
 // create fppi_correaltorState_t for each entry
 corrState =
PIL_MemoryAllocate(sizeof(fppi_correaltorState_t), 0);

 npf_list_push_back(cbState->fppi_CorrelatorStateList,
corrState);

 npf_set_ipaddr(imcbHandle,

 fppi_correlatorState.fppi_corr,

 verbosity, ifHandleArray[I], ipaddr[I]);

}
 npf_list_push_back(cbStateList, cbState);
}

6.4 API Callback

The following is the pseudo code for the callback on setting the port IP address:
Void IfAPICB (NPF_userContext cmcontext,
 NPF_correlator cmcorrelator,
 NPF_CallbackData data)

{

 // Find cbstate
 FindCBStatefromcontext(cbStateList, context, &cbstate)

 // Find corrState

 FindCorrStatefromcorrelator(

 cbState->corrStateList, correlator, &corrState)

// Update state of correlator
 corrState->done = 1;

 // Update callback state
 UpdateCallbackState(cbState, data);

 //Check to see if all callbacks completed
 itr = npf_list_itrCreate(cbState->corrStateList);

 allDone = 1;

 for(itr = npf_list_first(); itr != -1; itr =
npf_list_itrNext())

 {

 corrState = npf_list_itrGetData(itr);

 if (corrState->done != 1)

 {

 allDone = 0; break;

 }

 }

36
Intel Confidential

R
 Pseudo Code

 if(allDone)

 {

 // GetIMCallbackfunc by appcorrelator
 IMCallbackFunc = GetIMCallbackfunc(cbState.correlator)

 // Call the IM Callback
 NPF_IMCallbackFunc(cbState.context, cbState.correlator,
cbstate.ifcallbackData)

 // free the temporary data and c&m correlator
 PIL_FreeMemory(corrState);
 PIL_FreeMemory(cbState);

 }
 return;
}

 37

Control Plane-PDK 2.11

	Introduction
	Interface Manager
	Assumptions
	Dependencies
	Terminology
	References

	Overview
	Interface Management API Design
	Adaptation to Existing Implementation
	Initialization
	Shutdown
	API Calls
	Synchronous APIs
	Asynchronous API Calls
	Setting the Interface Attributes
	Setting an Array of Information

	Asynchronous API Completion Callback
	Example: General SET Algorithm

	API extensions
	IPv6
	ATM OAM

	Runtime Interactions
	Implementation details
	Data structures
	Memory Allocation
	Memory Free
	Threading and Synchronization

	Pseudo Code
	Initialization
	Shutdown
	Asynchronous API Calls
	API Callback

