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1 Overview

1.1

Network elements such as switches and routers can be classified into three logical operational
components:

e Control plane
e Forwarding plane

e Management plane

The control plane controls and configures the forwarding plane and the forwarding plane
manipulates the network traffic. The control plane executes different signaling or routing protocols
and provides all the routing information to the forwarding plane.

The forwarding plane makes decisions based on this information and performs operations on
packets such as forwarding, classification, filtering, and so on.

An orthogonal management plane manages the control and forwarding planes. For example, the
control plane in a router executes routing protocols, the forwarding plane performs hardware-
based switching, and the management plane starts or stops routing process or performs logging.

The introduction of standardized Application Program Interface (API) within the above-mentioned
planes can help system vendors, Original Equipment Manufacturer (OEM), and end-users of these
network elements to mix and match components available from different vendors to achieve a
device of their choice. The Network Processing Forum (NPF) services API is designed for this
purpose, as it presents a flexible and well-known programming interface to the control plane
applications.

It makes the existence of multiple forwarding planes, as well as vendor-specific details,
transparent to control plane applications. The hardware properties and nature of interconnect used
between the control and the forwarding planes are isolated. The protocol stacks and network
processors available from different vendors can be easily integrated with the NPF APIs. The APIs
included in the Control Plane Platform Development Kit (CP-PDK) are based on the NPF APIs.
For more information about NPF, refer to http://www.npforum.org/.

This document specifies the high-level design for the transport plug-in module of the CP-PDK.

Terminology

Table 1 lists terms used in this document and provides an expansion for each term.

Table 1. Terminology table

Term Description
NPF Network Processing Forum
CE Control Element
FE Forwarding Element
ForCES Forwarding and Control Element Separation protocol
PDK Platform Development Kit
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Term Description
COPS Common Open Policy Service protocol
GSMP General Switch Management Protocol
PCI Peripheral Connect Interface
BER Basic Encoding Rules
XML Extensible Markup Language
TLV Type Length Value

1.2

Reference

Table 2 lists documents referenced in, or related to, this document.

Table 2. Reference table

Reference

Document

(]

NPF Application Level APl Framework; NP Forum, September 2000.

[2] CP-PDK : Software Architecture Overview

[3] CP-PDK : Forwarding Plane Plug-in APl Reference

[4] Requirements for Separation of IP Control and Forwarding, IETF draft
[5] ForCES FE Functional Model, IETF draft

[6] ForCES Architectural Framework, IETF draft

[7] COPS Portability Layer Specification
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2 Transport Plug-in Architecture

The control plane and forwarding plane can have different communication mechanism or
protocols to exchange information with each other. These protocols could either be IETF standard
protocols like ForCES/COPS/GSMP or mechanisms such as CORBA, and so on. The planes can
be connected using a number of different types of interconnects. Some examples of such
interconnects are InfiniBand, PCI, various back-plane switching fabrics and shared memory.

The transport plug-in abstracts out the type and the details of the communication mechanisms
from the rest of the PDK implementation, at the same time providing the functionality required for
separation of the CP and FP. It enables plug-and-play functionality for different communication
mechanisms with the rest of the PDK. Different types of transport plug-ins can be placed between
the planes such that CPs and FPs communicate transparently. This section describes the
architecture for a transport plug-in.

The architecture of a transport plug-in is shown in the figure that follows. The plug-in is composed
of four distinct parts:

1. FP Plug-in API - The abstraction API that hides the transport plug-in details and
presents a uniform API that gets invoked by the NPF API implementation modules on the
control plane.

2. Backend API - The API exposed by the transport plug-in on the FP, which is used by
the FP module of the PDK.

In addition to the two APIs above, the transport plug-in includes the following components:

3. Transport Protocol - This is the standard or propriety protocol used to exchange
information between the planes and consists of two agents.

e Control plane agent - Part of the transport protocol that resides on the control
plane and communicates with the FP agent

o Forwarding plane agent - Part of the transport protocol that resides on the FP
and communicates with the CP agent

4. Interconnect abstraction layer - This abstraction layer hides the interconnect details
and is used by the transport protocol to send and receive messages

11
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Figure 1: Transport plug-in architecture

Transport plug-in sends NPF API invocations from the CP to the FP. It is used by the FP for
sending control data to the control plane for processing as well as data packets.

Forwarding Plane Plug-in API (FP Plug-in API)

Transport plug-in introduces the concept of a FP plug-in API in order to provide an abstraction to
the CP-PDK. This API has been described in detail in [3]. This API allows the CP to send
configuration and other control requests to the FP, receive the responses from the FP as well as
send and receive data packets to and from the FP.

Plug-in Backend API

The API exposed by the transport plug-in on the forwarding plane, which is used by the FP
module of the PDK. This API has been described in detail in [3]. This API allows the FP module
to receive configuration and other requests from the CP, respond to those requests, as well as send
and receive data packets, such as, RIP and OSPF to and from the CP.

12
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2.3.2

24

Transport Plug-in Architecture

Transport Protocol

This can be an IETF standard protocol like ForCES/COPS/GSMP or any other messaging system
such as CORBA that can be used for transporting the messages between the control and the
forwarding plane. The transport protocol implementation consists of the CP agent and the FP
agent.

Control Plane Agent

The control plane agent implements the transport plug-in specific transport protocol and the
messaging. It is invoked by the FP plug-in API and converts the API calls to wire format
messages, sent to the forwarding plane agent.

Forwarding Plane Agent

This agent sits on the forwarding plane, parses the transport protocol messages and generates well-
known messages which are used by the forwarding plane module to invoke the vendor specific
API for the forwarding plane.

Interconnect Abstraction Layer

This provides an abstraction layer that hides the interconnect technology details from the transport
protocol. The transport protocol uses this layer to send and receive messages without knowing
whether the interconnect is PCI, Infiniband, Ethernet, or some other interconnect.

13
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3 Transport Protocol Design

3.1

3.2

This section describes the transport protocol design. The protocol can be considered as a
preliminary implementation of the ForCES protocol and is based on the requirements [4],
framework [6] and FE model [5] being defined in the ForCES working group in the IETF. The
protocol described in the sections below is named the FLEX protocol.

Overview

The ForCES protocol referred to as the FLEX protocol is designed to be a simple, stateless,
request-response protocol between the control and forwarding elements in a system. The protocol
is designed to be lightweight in terms of low message parsing overhead as well as small message
sizes. The protocol has a fixed length header that is 8-bytes long; all messages are 32-bit aligned.
The protocol is easily extensible in several ways. It allows for a separate data model [5], which
will define the data that needs to be exchanged.

It allows different encapsulation methods, such as, TLV, BER, XML, for both the control
messages and the data packets being carried. A separate data channel, such as, GRE tunnel, can be
established to exchange only data packets between control and forwarding elements. It encourages
the use of TLV encapsulation for control messages since it has the lowest overhead. The protocol
supports different interconnect technologies by allowing different encapsulations to be defined for
different interconnects.

It assumes a reliable transport mechanism for the control channel. It has been designed to provide
message level acknowledgements. The FLEX protocol meets all the requirements for separation of
control and forwarding elements defined in [4] including command bundling, message priority,
dynamic association and failover support.

Protocol Operation

The information exchanged between the CE and FE using the FLEX protocol in the CP-PDK can
be classified into three phases. First is the binding phase, second is the capability & topology
discovery phase, and the third is the configuration/normal operation phase. The following figure
shows the information exchange.

17
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Figure 2: CE-FE information exchange

In the binding phase, the FE sends a bind request to the CE, which sends back a bind response to
the FE. The bind response indicates whether the bind was successful or not. During this phase the
encapsulation information is exchanged between the CE and FE, which might lead to the creation
of a separate data channel, such as GRE tunnel, for the exchange of data packets only between the
CE and FE.

In the capability discovery phase, the CE sends a capability request to the FE, which sends back a
response with its capability information to the CE. The CE sends a topology request and the FE
responds with its topology information relative to other FEs. If the CE is fine with the FE
capabilities and topology and is ready to control and configure the FE, it sends a start operation
message to the FE. Only after this message is received can the FE report events or send packets to
the CE. The heartbeat message exchange starts after this message is sent. If the CE is not capable
of controlling or configuring the FE based on the FE’s capabilities or topology, it would send an
unbind message to the FE at this point.

In the configuration operation phase, configuration and query messages are sent from the CE to
the FE. The FE sends back the appropriate responses to the CE. Asynchronous FE events, such as
port down event, are reported to the CE. Packet redirection between the CE and the FE takes place
that is, control packets such as RIP, OSPF messages are redirected to the CE from the FE and
vice-versa. Heartbeat messages are exchanged between the CE and FE according to the interval set
during the binding phase.

Finally during the shutdown process, the FE or CE send an unbind message to the other which
ends their association.

18
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Protocol Headers and Messages

The ForCES or FLEX protocol headers, commands, and messages are described as follows.

FLEX Protocol Header

The ForCES protocol has a fixed length header, which appears as follows:

Version

Flags Message Type

Command Correlator

typedef struct header tag {

Uint8 t version;

Uint8 t flags;
Uintl6 t msg_type;

Uint32 t cmd correlator;
} header;

The fields in the header are:
Version : 8 bhits

This field defines the version of the FLEX protocol.
Flags : 8 bits

This field defines any flags for the protocol message.

Flags could be used to indicate that protocol reliability or responses to certain messages are not
mandatory. This field could be used to indicate the priority of the ForCES message.

The valid values for this field are: normal priority, high priority, low priority, passive message,
and no acknowledgment

Msg type: 16 bits

This field defines the message type. The valid values for this field are: FE bind request, FE bind
response, capability request, capability response, topology request, topology response, FE start
operation, configuration/query request, configuration/query response, FE event/packet
notification, unbind, and heartbeat.

Cnd_correlator: 32 bits

This field is used to distinguish between responses of multiple outstanding requests of the same
type.

A value of 0 is reserved for bind, unbind and capability messages.

19
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The FE binding phase consists of the FE sending a bind request to the CE, which responds with a
bind response. The response indicates whether the CE accepts or rejects the bind request. Based on
the CE response, any separate data channel for communication between CE and FE would be
established after this phase. Communication using this channel would only start after the start
operation command is issued by the CE to the FE.

FE Binding

The ForCES bind request appears as follows:

Version = 1

Flags=0 Message Type = Bind Req

Command Correlator =0

FEID

Control Encapsulation Type = TLV Data Encapsulation Type = GRE

typedef struct bindinfo_tag {
Ui nt32_t feid,

U ntl6 t control _encapsul ati on_type;

U nt16_t dat a_encapsul ati on_t ype;

Ui nt32_t bind_status; /* optional */

U nt32_ t heart beat interval; /* optional */
} bi ndi nf o;

The fields in the bind request are:
Feid : 32 bits

This field uniquely identifies an FE.
Control Encapsulation_type : 16 bits

This field defines the encapsulation method for ForCES control messages, which is supported by
the FE. The valid values for this field are: TLV, BER, and XML.

Data Encapsulation_type : 16 bits
This field defines the encapsulation method for the data packets, which is supported by the FE.

The valid values for this field are: TLV, BER, XML, GRE protocol, and IP-in-IP protocol.
Bind Status : 32 bits

This is an optional field, which defines the status of the FE bind.

The valid values for this filed are:
Active
Passi ve

20
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Heartbeat Interval : 32 bits

This is an optional field, which defines the interval in milliseconds at which heartbeat messages
should be exchanged between the CE and FE.

The ForCES bind response appears as follows:

Version = 1

Flags=0 Message Type = Bind Resp

Command Correlator = 0

Bind Result = 1 (Accept)

3.3.3

Bind result : 32 bits

This field defines whether the FE bind request was successful or not. The valid values for this
field are:

Accept
Rej ect

FE Capability Discovery

The FE capability discovery phase consists of the CE sending a capability request message to the
FE, which responds with a capability response message. The capability request message consists
of the common header with the message type set to capability request. The capability response
message consists of the common header along with information about the FE Ports as well as the
logical blocks [5]. The port information consists of the number of ports followed by an array of
the port _i nf o structs. The block information consists of the number of blocks followed by
an array of the bl ock_i nf o structs.

The ForCES capability response appears as follows:

Version = 1

Flags=0 Message Type = Caps Resp

Command Correlator = 0

Port Count

Port Info

_____________

____________________________________________________

Block Count

21
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Block Info

__________________________________________________________

Port Count : 32 bits

This field defines the number of ports on the FE.
Port Info : 64 bits

This field defines the port information for each port on the FE and consists of a 32-bit field that
defines a unique port identifier followed by a 32-bit field that defines the port type.

typedef struct portInfo tag ({
Uint32 t port id;
Uint32 t port type;
} portiInfo t;

typedef struct portlist tag {
Uint32 t port count;
portInfo t “*portArray;

} portlist t;

Bl ock Count: 32 bits

This field defines the number of logical blocks that exist on the FE. The blocks represent the
logical functionality, or capabilities of the FE, see [5].

Bl ock I nfo: variable

This field defines the block information for each logical functional block on the FE and consists of
a 32-bit field that defines the block type followed by a 32-bit field that defines a unique block
identifier or handle.

typedef struct blocklnfo_ tag {

Ui nt 32_t bl ock_t ype;
Ui nt 32_t bl ock_handl e;
U nt32_t downst r eanBl ockCount ;

Ui nt 32_t *downst r eanBl ockArray;
} blocklnfo_t;
typedef struct blocklist tag {

U nt32_t bl ock_count;

bl ockl nfo_t *Bl ockArray;
} blocklist t;

22
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3.34 FE Topology Discovery
The FE topology discovery phase consists of the CE sending a topology request message to the
FE, which responds with a topology response message. The topology request message consists of
the common header with the message type set to topology request. The Topology response
message consists of the common header along with information about the FEs directly connected
to the communicating FE. This information consists of the number of directly connected FEs
followed by an array of the FE identifiers.
The ForCES topology response appears as follows:

Version =1 Flags=0 Message Type = Topology Resp
Command Correlator = 0
Connected FE Count
FE ID

FE ID

typedef struct connected FElist tag {
Ui nt32_t fe_count;
U nt32_t *fei dArray;

} connected FElist t;
The fields in the topology response are:
FE Count : 32 bits
This field defines the number of FEs directly connected to the FE communicating with the CE.
FE ID: 32 bits
This field defines the unique FE identifier for each FE directly connected to the communicating
FE.

3.3.5 FE Start Operation

Once the capability discovery and topology phase of the protocol is complete, the CE sends the FE
start operation message. This message indicates that the CE is fine with the FE capabilities and
topology and is ready to control and configure the FE. This indicates that the CE is ready to
receive messages from the FE such as event notification and packet redirection. The exchange of
the heartbeat messages begins after this. If the CE is not capable of controlling or configuring the
FE based on its capabilities or topology, it would send an unbind message to the FE at this point.

23
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The FE configuration or query messages are exchanged during the operational phase. They are in
the form of a request that is sent from the CE to the FE to configure certain blocks/ FE
functionality [5] or to query information. The FE sends back a response, which indicates the result
of the configuration request or the information requested by the query. They consist of the fixed
length header followed by one or more variable length commands. The protocol supports the
command bundling requirement.

3.3.6 FE Configuration/Query Messages

The ForCES configuration/query messages appear as follows:

Common Header

Variable length Command

Command Type

Block Handle

Length

Command Data

Uint32 t cmd_type;
Uint32 t block handle;
Uint32 t length;
Void* cmd data;

} command,;

The fields in the command are:
Cnd_type : 32 bits

This field defines the command type. The valid values for this field are: null, add, update, delete,
delete all, send packet, query statistics, and query properties.

24
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Bl ock_handle : 32 bits

This field defines the block handle or block identifier for which this command is being issued.
Length : 32 bits

This field defines the length of the command data in bytes that is encapsulated in the command.
Cnd_data : variable length

This is the configuration/query data, which is encapsulated using the method negotiated during FE
bind phase of the protocol. For the FLEX protocol implementation, the command data is
encapsulated as a TLV structure. During the configuration/query request, this structure is
essentially the NPF data structure that is passed from the CP module to the FP Plug-in API. For
example, in case of a Add IPv4 NextHop() call, the NPF IPv4 NextHop structure which is
passed in the call will be copied in this field.

In general, this field will contain the Block structures defined in the ForCES FE Model [5]. In the
configuration/ query response, the command data will contain the result of the configuration or the
query information again in the form of NPF data structures, which are passed by the FP module to
the Backend API.

The ForCES protocol command status (response) appears as follows:

Command Type

Block Handle

Global Result

Length

Command Data

1
Uint32 t cmd_type;
Uint32 t block handle;
Uint32 t global result;
Uint32 t length;
Void* cmd _data;

} command resp;

Block handle : 32 bits

This field defines the block handle or block identifier for which this command is being issued.

25
Control Plane-PDK 2.11



Transport Plugin Design
Design Specification

Length : 32 bits

intal

This field defines the length of the command data in bytes that is encapsulated in the command.

Global result : 32 bits

This field defines the global result of the command. The individual results will be part of the
command data.

3.3.7 FE Events/Packet Redirection
The FE events, such as, port down or change in certain capabilities, are reported to the CE using
the FE event notification message. The packets being redirected to the CE from the FE are sent
using this message. It is similar to the configuration/query messages as in it consists of the
common header followed by one or more variable length commands or events.
The ForCES FE event notification appears as follows:
Version = 1 Flags=0 Message Type = FE Event Not

Command Correlator = 0

Command or Event Type = Port Event

Block Handle

Length

Command or Event Data

TITC TICTUDS IIT UTC T I © VOITT ITUTITICAatIUIT arc.

Event_type : 32 bits

This field defines the event type. The valid values for this field are

11 = Port Event

12 = Block Specific Event

13 = Packet Redirection

14 = Capability Event

The ForCES FE packet redirection appears as follows:

26
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Version = 1

Flags =0

Message Type = FE Event Not.

Command Correlator = 0

Event Type = Packet Redirection

Block Handle

Packet + metadata

3.3.8

CE, FE Unbinding

Transport Protocol Design

The CE or FE can send an unbind message to the other at any time to end their association.

The unbind message appears as follows:

Version = 1

Flags =0

Message Type = Unbind

Command Correlator =0

Reason (optional)

FE Behavior (CE unbind)

FE behavior : 32 bits

This field defines the behavior of the FE after the unbind occurs. The valid values for this field

are:

1 = Continue Operation

2 = Stop Operation

27
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The heartbeat is an optional message, which is exchanged between the CE and FE according to the
interval set during FE binding. It is used to detect failure in communication between the CE and
FE and helps the fast failover mechanism.

3.3.9 Heartbeat

The heartbeat message appears as follows:

Version = 1 Flags =0 Message Type = Heartbeat

Command Correlator =0

3.4 Failover Support

The ForCES protocol provides support for redundant control elements in the CP-PDK architecture
and fast failover between primary and secondary CEs in case of failure. In order to provide this
support, the protocol provides a failure detection mechanism using heartbeat messages, which can
be used to detect any failure in communication between the control and FE.

3.5 Protocol Encapsulations

There are several encapsulations defined for ForCES protocol messages to work over different
interconnect technologies. The interconnect technologies can consist or [P-centric technologies
such as TCP/IP over Ethernet or non-IP centric such as PCI or Infiniband.

3.5.1 ForCES protocol Encapsulation for TCP

The ForCES protocol encapsulation for TCP appears as follows:

Length

ForCES protocol message

LUIIELII . J UITS

This defines the length of the entire ForCES protocol message in bytes including the header.
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4 Interconnect Abstraction Layer Design

This section describes the design details of the interconnect abstraction layer. It is based on the
COPS portability layer specification defined in [7]. It has certain features such as the packet buffer
manager, which help in enhancing the performance of the transport plug-in implementation.

4.1 Packet Buffer Management

This module helps in reducing the cost or performance penalty of memory related operations, such
as malloc, in the transport plug-in. A chunk of memory is pre-initialized and divided into equal
sized buffers. One or more buffers depending on the size requested by the transport plug-in APIs
are made available.

typedef struct _pl Buf Mem {
uint32 t total Q size;
uint32 t buffers_used,;
unsi gned char *pBuf Mem
uint32_t pBuf FreeMem
uint32 t pBufFreeTail;
ui nt 32_t pBuf Send;
uint32 t pSendTail;
ui nt 32_t pBuf Recv;
uint32_t pRecvTail;

} pl Buf Mem

typedef struct _pl Buf Header ({
uint32_t connect _id;
ui nt 32_t fl ags;

} pl Buf Header ;
typedef struct _pl Header ({

ui nt 32_t cooki e;
uint 32_t | engt h;
} pl Header;

typedef struct _pl Buf {
pl Buf Header pbuf header;
pl Header pl header;

unsi gned char pbuf[0];
} pl Buf;
The following shows the packet buffer encapsulated and ready to be delivered over interconnect:
FEID
FLAGS
MAGIC COOKIE
Length
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FEI D. 32

This defines the identifier the interconnect uses to send and receive to the correct FE. The field is
used and filled by the interconnect; this part of the buffer is not delivered across the interconnect.

FLAGS: 32 bits

This defines the buffer management flags (FREE/UNCHAINED/CHAINED). CHAINED is used
when more than one consecutive buffers have been chained when size requested is more than a
single buffer. This part of the buffer is not delivered across the interconnect.

MAG CCOKI E: 32 bits

Reserved or used to identify a valid transport plug-in interconnect message. Delivered across the
interconnect

Length: 32 bits
This defines the length of the ForCES protocol message. Delivered across the interconnect.

Table 3. Packet buffer encapsulation table

Function Description

ui nt 32_t Returns a pointer to the Buffer of size
pb_getBuffer (

uint32_t FEI D,
uint32_ t size,
uint32 t flags)

ui nt 32_t Free Buffer to be called by the layer that no longer passes the
pb_freeBuffer( buffer to another layer

Void * buf)

Ui nt 32 Initialize Buffer API

pb_PlI Buf ferlnit(
U nt32 Qsize)

Ui nt 32 ) De-initialize Buffer API
pb_PlI Buf fer Del ni t (

voi d)

4.2 Datagram API

This module provides a generic API to transport datagram based messages over a reliable
connection. The transport plug-in will use the datagram API and the packet buffer management
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API to send and receive messages. Datagram API implementation could use TCP/IP for reliable

and fast delivery of messages over the networked CE/FE.

t ypedef void (*CB_Dat agranRecei ve) (void
connect _id, uint32_t length);

typedef void (*CB _Dat agranException) (uint32_t ex,

connect _id);

typedef struct _CBServer Dat agranParans {
dat agram r ecei ve;
dat agr am excepti on;

CB_Dat agr anReci eve
CB_Dat agr anExcepti on
} CBSer ver Dat agr anfuncs;

typedef struct _datagram connect {
uint32_t
uni on {

struct sockaddr _
struct sockaddr

/1 Place holder for the
pr ot ocol s.

}

} dat agr am connect ;

t ypedef struct
dat agr am connect
CB_Dat agr anRecei ve
CB_Dat agr ankExcepti on
} CBd i ent Dat agr anfuncs;

Table 4. Datagram API function table

_CBd i ent Dat agr anPar ans {
connect _info;

*pbuf, uint32_t

ui nt 32_t
fl ags;
in i pv4_addr;
i n6 i pv6_addr;
ot her connection

saddr ;

dat agram r ecei ve;
dat agr am excepti on;

Function

Description

Ui nt 32
InitializeDatagranBerver
( CBSer ver Dat agr anfFuncs)

Initialize Datagram API for server

Ui nt 32
InitializeDatagranmdient
(CBd i ent Dat agr anfuncs,
uint32 t)

Initialize Datagram API for client

Voi d SendDat agr an{ui nt 32_t,
voi d* nmeg, uint32 t size,
uint32 t flags)

Send Client Datagram across the interconnect

Void DelnitializeDatagram)

De-initialize Datagram API
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5 Transport Plug-in Design

5.1

5.2

5.3

5.4

5.5

This section describes the design and implementation details of the transport plug-in.

Overview

This layer is responsible for the controlling, initialization and shutdown of the protocol
implementation. On the control plane, it converts structures from the FP plug-in API format or
NPF format to the ForCES message formats. On the forwarding plane, it converts structures from
the ForCES message formats to the backend API format or FP plug-in API format, which is
understood by the FP module in the forwarding plane.

Memory Management

The memory management for the transport plug-in is the same as that described in FP Plug-in API
specification [3].

Threading Model

The transport plug-in has many threads. Most of these threads reside in the interconnect layer,
there are three which always exist: the listen, send, and receive threads. The listen thread accepts
incoming connections and binds from FE’s. The send and receive threads which handle buffer
flow. There is one thread for every FE connected, which reads packets from the network and
places them in the receive thread’s queue.

The transport plug-in creates a heartbeat thread for each FE when it binds. The heartbeat thread
sends heartbeat messages at a negotiated rate.

These threads are initialized and provided by the portability layer.

Timeout Mechanism

This layer provides a timeout mechanism to help make the PDK design more robust. This allows
the control plane PDK to set a timeout interval for each request sent to the forwarding plane. If the
FP does not send a response within a certain time interval, the transport plug-in informs the CP-
PDK.

Data Structures

On the control plane, the transport plug-in maintains a list of connected FEs. It uses the FEList to
maintain the mapping of FEI D, which is the FE identifier generated by the transport plug-in, to
connectionid, which is used by the interconnect layers to identify the connection to the FE or
client. The FEInfo structure, which is stored in the list is shown below.

typedef struct FEInfo_t{
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FPPI _FEID feid;

ui nt 32_t connecti oni d;
forces_bind info_t bindinfo; /* all the information */
forces_portlist_t* portlist; /* about the FE */
forces_blocklist t* bl ockl i st;
FPPI _FE Caps* f ecaps;
DLi st out st andi ngcommands; /* comrands sent to FE */
Pi | Thread heart beatt hr ead; /* heartbeat info: thread
handl e */
iy i nt nsgpi pe[ 2] ; /* pipe to shut it down
i nt m ssedbeat s; /* count of m ssed beats
fromFE */
} *FEl nfo;

It uses the outstandingcommands list to maintain the callback information required for all queries
and commands. The CBInfo structure, which is stored in the list shown below.

t ypedef struct FPPCommand t ({

FEI nfo feinfo; /* FE this command bel ongs to */

For CESMessage neg; /* handl e to nessage sent */

ui nt 32_t cnd_type; /* For CES conmmand */

uint 32_t bl ock_type; /* and bl ock */

char* buf fer;

si ze_t si ze;

uint 32_t forces_correl ator; /* correlator sent with
this
comand to FE */

FPPI _CORRELATOR fppi _correl ator; /* correlator to return
to PDK */

FPPI _CBHANDLE fppi _cbhandl e; /* call back to invoke */

FPPCommandHandl er handl er; /* function to invoke to
decap

any results */
} * FPPCommand;

Pseudo-Code for Control Plane

The Pseudo-Code for calls such as Initialize, Shutdown, Start, Stop, RouteAdd, RouteDel, that are
exposed by FP Plug-in API on the control plane, has been shown below.

FPPAPI Initialize

{
/1 Initialize all state info lists
npf _list_init(&Connectlist, PlIL_FreeMenory);
npf list_init(&CBInfoList, PIL_FreeMenory);
/1 Initialize portability |ayer
return success;
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}

FPPAPI_Shutdown

{
/1 destroy all lists that were initialized
npf |ist_destroy(&ConnectList);
npf _|ist_destroy(&CBI nfolist);
/] De-initialize portability |ayer
return success;

}

FPPAPI_ Start

{
/1 ready to receive any FE bind requests
return success;

}

FPPAPI Stop

{
//send unbi nd nmessage to all FEs
return success;

}

FPPAPI_ipv4_unicastRouteAdd

{

/1 Determ ne size of buffer needed to send command

/1 Create new FPPCommand wit h:

/1 appropriate ForCES command and bl ock for ipv4 route add
/1 size required for buffer

/1 cal I back handl e

/1 correl ator

/1 and a handl er

/1 encapsul ate paraneters into FPPCommand’ s buffer

buf fer = encapsul ate_uint32_t(route_count, buffer);

buf fer = encapsul ate_array_i pv4Route(route_list, route_count,
buffer);

// Send command
FPPConmandSend() ;
return success;

Pseudo-Code for Forwarding Plane

The Pseudo-Code for calls such as Initialize, Shutdown, bindRequest, SendEvent, SendPacket,
ReportStatus, which are exposed by Backend API on the forwarding plane, has been shown below.

BENDAPI_Initialize
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{ /1 Initialize all state info lists
npf _list_init(&ReportList, PIL_FreeMenory);
/1 Initialize portability |ayer
return success;
}
BENDAPI_Shutdown
{
/! Destroy all lists that were initialized
npf |ist_destroy(&ReportlList);
/1 De-initialize portability |ayer
return success;
}
BENDAPI_bindRequest
{
/1 send FE bi nd nessage
return success;
}
BENDAPI_unbindRequest
{
/1 send FE unbi nd nessage
return success;
}
BENDAPI_sendPacket
{
/1l encapsul ate packet list into ForCES nessage
/1 send nessage to the CP
return success;
}
BENDAPI_sendEvent
{
/1 encapsul ate event type & event data into ForCES nessage
/1 send nessage to CP
return success;
}
BENDAPI_Report_Status
{

/1 search ReportList for cbtype, cbcorrelator

/1 initialize Report nessage
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/1 check response _data if cbtype is GetProperties or
GetStatistics

/1 otherwi se encapsul ate a success or failure report
/1 send nessage to CP
return success;
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6 Code Generator Design

6.1

6.2

6.3

Code Generator Introduction

This section describes the design for the transport plug-in code generator, and the reasoning behind it.

The transport plug-in consists of two major parts: the core where all the state is maintained and all the
ForCES communication takes place, and the APIs. The APIs expose the functionality of the forwarding
plane to the control plane. Each function in an API serializes the command and any data from the
control plane, sends them to the correct client, which then de-serializes the data and makes the
appropriate calls into the forwarding plane. Then, any results are serialized and sent back to the server,
which de-serializes the data and makes the appropriate callback into control plane.

Code Generator Requirements

The ultimate goal of the code generator is to take a transport plug-in API description, including
functions and data types, and generate all the code required to build and send ForCES commands, and
serialize and de-serialize all commands, data and results, for both the server and client sides of the
transport plug-in. At this stage the focus is on generating the serialization.

The code generator must:

o Take as input a standard C header file, which contains all the data types that will need to be
serialized. This C header file must be able to coexist and be used by the rest of the PDK. This will
insure that there is no duplication of data type definitions, thereby reducing the chances of
synchronization problems later, if the types were to change.

e Be able to do all the same preprocessing on the input file that the compiler will do when building
the PDK. This insures that any code that is #ifdef’d is not included, or any macro substitution is
performed.

o Generate all serialization, encapsulation/decapsulation routines for all types in the input file, and
put them into appropriate . ¢ fi | es, and generate appropriate . h fi | es for use by other . c
files.

¢ Any changes to the input file required by the code generator must easy to write, human readable,
and not impact any other . ¢ fi | es that may be including the input .h file.

o All output of the code generator must compile without any changes by the user

Code Generator Design Considerations

Given that the code generator cannot be omniscient, the input file must give it some hints about certain
data types and fields.

For example, given this data type:

t ypedef struct {
uint32_t num
uint32_t * arr;

} ny_array;
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What is the meaning of the field arr? Is it a pointer to a single uint32 t, or is an array of length num
uint32 t’s? In order to instruct the code generator on how to treat array, the code needs to be marked
up. For other C compilers, we have elected to use comments to hide our markups. Here is the above
example, reworked to tell the code generator that array is an array.

typedef struct {

uint32_t num

uint32t * arr; /* @array-1length: num */
} nmy_array;

The code generator knows that the f i el d arr is an array of length num, and will encapsulate and
decapsulate accordingly. Notice that the markup is entirely enclosed in a C style comment, effectively
hiding it from the compiler.

Note: The special @!<command>:<value>! notation should prevent normal comments from interfering
with the code generator.

The only other markup needed is for unions. Given any union, encapsulation and decapsulation of the
appropriate field is the only motive. Here is an example of unions:

typedef struct {
uint32_t type;
union /* @union-swtch:type! */

{
uint32_t a; /* @union-case: 0! */
ny_array b; /* @union-case: 1! */
f oo bar; /* @ union-case: GLCOBAL_DEFI NE! */
}ous
} ny_array;

The resulting encapsulation/decapsulation code produced by the code generator will then switch off of
the field type, and if the result is 0 will encapsulate/decapsulate a uint32_t and store it in UA.

To avoid multiple copies of data types in header files and to avoid feeding extraneous information to the
code generator, a developer can break existing header files into two parts. The main header file and a
sub-header file that holds all the information, should be given to the code generator. For example:

npf_header.h:
t ypedef voi d* npf_context;
.various other things never encapsul ated...
#i ncl ude npf _header _renpte_types. h
.more |local stuff...

npf_header_remote_types.h:
#typedef uint32 t npf_correl ator;
#typedef uint8_t npf_array_foo[ SI ZE OF FOJ ;

Only the npf _header _r enot e_t ypes. h would be run through the code generator, or one could
put #i f def around only those types that need to have code generated and then make sure that the code
generator has defined it.
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Code Generator Design

Much of the design of the code generator is decided by the requirement that it uses existing C header
files. The code generator must be able to parse C syntax, so the majority of the logic behind the code
generator is focused on that.

Code Generator Parser Design

The code generator parser actually has two parts: the lexical analyzer and the parser. The code generator
relies on the Lex and Yacc tools for these parts.

The basic design of the definition file given to Lex to build the lexical analyzer is:

%A

%4

ws [ \t]+ /* white space */

id [a-zA-Z][a-zA-Z20-9 ]* /* identifiers, types etc */

si ze [0-9] + /* hard coded sizes of arrays */
comand [a-z][a-z-]* [* markup commands */

nl [\n] /* newlines */

/* States */

% COMVENT /* ¢ style coments */
% CPPCOMMENT /* c++ style coments */
% COMIVAND /* markup command */

%0

/1 { BEG N CPPCOMMENT; } /* start c++ coment */
<CPPCOVVENT>. {} /* ignore all */
<CPPCOWENT>\n { BEG N O; } /* ends at end of line */
/* { BEG N COMVENT; } /* begin ¢ conment */
<COMIVENT>* / { BEG@N O; } /* end comment */

<COMMENT>@ { BEG N COMVAND; } /* begin markup comrand */
<COWMENT>\ n {}

<COMIVENT>. {} /* ignore everything else */
<COMVAND>{ conmand} { /* return conmand */
return I D;
}
<COVWAND>{i d} { /[* return id for comand */
return I D;
}
<COWWAND>{ si ze} { /* return size for conmand */
return SlZE;
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}
<COMIVAND>! { BEG N COMVENT; } /* end conmand, resune conment */
<COMVAND>{ ws} ;
<COWAND>{ nl } {}
<COVMAND>. { }
{ws} /* ignore all whitespace */
{nl} {} /* ignore new ines */
{id} {} /* return an id */
{size} {} /* return an size */
{}
%0

Other than some state maintenance for the comments and commands, the lexer is seems to be simpleer.
The parser appears to be little complicated. Following is a basic design for the input to Yacc:

A
%

Ustart statenents
%0

statenents: /* statenents are : */
statenments statenent /* nmany statenents and a statenment */
| st at emrent /* a statenment */
| /* nothing */

statenent: /* a statement is : */
definition /* a type's definition */
| functi ondef /* a functions's definition */

definition:
TYPEDEF nodi fi eddecl arati on

functi ondef:
type id '(

arglist )" ';

declaration: /* a declaration can be what is being typedef's or
mght be a field in a struct or union */
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/* basic type */
type id ;'

/* pointer to a basic type */
type "*' id";'

/* hard core array. already allocated within
the struct. size is a value or define or sonething */
type id '[' size ']" ;'

/* a struct, contains multiple fields */
STRUCT optid decllist id optarr ';'

/* a union, like a struct, but different */
UNFON optid '@ id"':" size decllist optid ';"'

/* enuns are basically ignored
but we need to remenber themfor later fields
and encap/decap themas uint32 t's */

ENUM optid '{'" enumist "}' id"';"

/* functions and function pointers, not used yet

but may be handy for auto generating api calls */
type "('" "*" id ') '"('" arglist )" ';'
type "*' ‘(" id )y

/* incase of an array of structs */
"['" size ']" [/* size of the array */
/* or nothing as it is optional */

/* types may be nodified, unsigned, long etc */
nodi fier id

nodi fier nodifier /* long long? */

id

nodifier: /* possible nodifiers */

conmmand:

UNSI GNED
SI GNED
SHORT
LONG

/* markup comands */
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'@ id':" size

decl | i st:
"{" declarationlist "}

commandchain: /* in future may allow nultiple markup conmands */

conmmandchai n command
| comand

nodi fi eddecl aration: /* markedup decl aration */
decl arati on conmandchai n

decl arationlist: /* a list of declarationis : */
| declarationlist nodifieddeclaration
| rodi fieddecl aration

optval: /* optional value in enum*/
‘= SIZE [/* = nunber, or id */
| /* or nothing */

enum /* enumentry */
i d optval

enumMist: /* list of enumentries */
enum ', enumi st
| enum

arglist: /* list of arguments to a function */
arg
| arglist ',' arg

arg: /* argunent to a function */
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type id
| type "*" id

size: /* sizes mght be hardcoded nunbers, or identifiers */
S| ZE
| id{ $$ = $1; }

id: /* identifier, returned by |exer */
ID{ $$ = strdup($1); }

optid: /* optional id */
id

9%

Lex and Yacc can be run on the definitions files described by the above, generating the code that will
parse the input files of the code generator. The required output of the parser is a list of type definitions.
A type definition is defined as:

typedef struct type_ t {

char* nane; /* nane of type */
int typeid; /* unique id for type */
i nt kindoftype; /* regular, pointer, array, etc */
char* size; /* if array or pointer array,
m ght be 100 or MAX SIZE OF ARR, etc */
char* kase; /* case kase: if union nenber */

/* pointer to type this type is based on
i.e. uint32_t or struct, or FOO */
struct type_t* basetype;

/[* if this is a struct or union, this is a list of the
fields conprising it */
list fields;
}o*oitype;

Code Generator Code Generation

Once the parser builds the list of type definitions, it is time to start generating code. The code generator
emits encapsulation, sizeof, and decapsulation functions for all entries in the list, as well as header files
for those functions. All code generation is simplistic, following strict templates, and assumes the
existence of encapsulation, decapsulation, or sizeof functions elsewhere for any unknown types. All
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functions for basetypes have been handwritten earlier and are part of the core of the transport plug-in.
General strategy of all encapsulation, decapsulation and sizeof functions is to reduce all types to their
base types, and call the encapsulation, decapsulation, and sizeof functions of those base types.
Following is an example of this principle:

Example type:

typedef struct {
uint32_t x;
char vy;
bar z;

} foo;

generated encapsulation function:
char* encapsul ate_f oo(

foo* a,
char* buf
)
{
buf = encapsul ate_uint32 _t (& a->x), buf);
buf = encapsul ate_char (&(a->y), buf);
buf = encapsul ate_bar (&(a->z), buf);
return buf;
}

Notice how the encapsul at e_f 00 function calls the encapsulation functions for all the members of
af 00, irrespective of their types, It assumes the encapsulation function exists and takes care of the
encapsulation detail. Notice that the pointer to the buffer that is being encapsulated into is never directly
manipulated, except through assigning it to the result of an encapsulation. The only functions that must
know how much to move forward, in the buffer to encapsulate the next item, are the very base functions
that have been built by hand.

Following is a little complicated example for a decapsulation function:

Example type:
typedef struct {

uint32_t len;

bar * arr; /* @array-length:len! */
} foo;

generated decapsulation function:
char* decapsul ate_f oo(

foo* a,

char* buf

)

buf = decapsul ate_uint32_t (& a->len), buf);
a->arr = (buf*)mall oc(sizeof (bar)*a->len);
buf = decapsul ate_array_bar (a->bar, a->I en, buf);
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return buf;

}

Notice that the decapsulation function needs to allocate space for the bar array, also known as arr. From
the markup command array-length, the code generator knows that arr is a pointer to an array of len
bar’s. Notice that the function decapsulate array bar is called to decapsulate that array. The code
generator produces not only encapsulation and decapsulation functions for all types, but functions to
encapsulate and decapsulate entire arrays for all types.
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