
Intel® Internet Exchange
Architecture
Portability Framework
Reference Manual

November 2003

Document Number: 278663-005

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN
INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, life sustaining applications. Intel may make
changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The Intel® Internet Exchange Architecture Software Development Kit (Intel® IXA SDK) may contain design defects or errors known as errata which
may cause the product to deviate from published specifications. Current characterized errata are available on request.

This document and the software described in it are furnished under license and may only be used or copied in accordance with the terms of the
license. The information in this document is furnished for informational use only, is subject to change without notice, and should not be construed as a
commitment by Intel Corporation. Intel Corporation assumes no responsibility or liability for any errors or inaccuracies that may appear in this
document or any software that may be provided in association with this document. Except as permitted by such license, no part of this document may
be reproduced, stored in a retrieval system, or transmitted in any form or by any means without the express written consent of Intel Corporation.

This document contains information on products in the design phase of development. The information here is subject to change without notice. Do not
finalize a design with this information.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-
4725, or by visiting Intel’s web site at http://www.intel.com.

Copyright © Intel Corporation, 2003.

Intel is a registered trademark of Intel Corporation or its subsidiaries in the United States and other countries.

AlertVIEW, i960, AnyPoint, AppChoice, BoardWatch, BunnyPeople, CablePort, Celeron, Chips, Commerce Cart, CT Connect, CT Media, Dialogic,
DM3, EtherExpress, ETOX, FlashFile, GatherRound, i386, i486, iCat, iCOMP, Insight960, InstantIP, Intel, Intel logo, Intel386, Intel486, Intel740,
IntelDX2, IntelDX4, IntelSX2, Intel ChatPad, Intel Create&Share, Intel Dot.Station, Intel GigaBlade, Intel InBusiness, Intel Inside, Intel Inside logo, Intel
NetBurst, Intel NetStructure, Intel Play, Intel Play logo, Intel Pocket Concert, Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel TeamStation,
Intel WebOutfitter, Intel Xeon, Intel XScale, Itanium, JobAnalyst, LANDesk, LanRover, MCS, MMX, MMX logo, NetPort, NetportExpress, Optimizer
logo, OverDrive, Paragon, PC Dads, PC Parents, Pentium, Pentium II Xeon, Pentium III Xeon, Performance at Your Command, ProShare,
RemoteExpress, Screamline, Shiva, SmartDie, Solutions960, Sound Mark, StorageExpress, The Computer Inside, The Journey Inside, This Way In,
TokenExpress, Trillium, Vivonic, and VTune are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and
other countries.

*Other brands and names may be claimed as the property of others.

Contents
1 Introduction ...15

1.1 About this Document ..15
1.2 Audience...15
1.3 IXA Portability Framework Overview ..15
1.4 In This Manual ..16
1.5 Other Sources of Information..16

2 Dispatch Loop...19

2.1 Dispatch Loop Variables...19
2.1.1 Microengine Assembler Dispatch Variables ..19
2.1.2 Microengine C Loop Data Structure ..21

2.2 Dispatch Loop Interface..23
2.2.1 Dispatch Loop API Functions for Meta Data..26

2.2.1.1 dl_buf_init[] ...26
2.2.1.2 dl_buf_alloc[] ..26
2.2.1.3 dl_buf_free[] ...27
2.2.1.4 dl_buf_get_desc[]27
2.2.1.5 dl_buf_get_data[]28
2.2.1.6 dl_buf_get_data_from_meta[]28
2.2.1.7 dl_meta_init_cache[]29
2.2.1.8 dl_meta_flush_cache[]30
2.2.1.9 dl_meta_get_hw_next[]31
2.2.1.10dl_meta_set_hw_next[]31
2.2.1.11dl_meta_load_cache[]31
2.2.1.12dl_meta_get_buffer_next[]32
2.2.1.13dl_meta_set_buffer_next[]33
2.2.1.14dl_meta_get_offset[]33
2.2.1.15dl_meta_set_offset[]34
2.2.1.16dl_meta_get_free_list[]34
2.2.1.17dl_meta_set_free_list[]35
2.2.1.18dl_meta_get_rx_stat[]35
2.2.1.19dl_meta_set_rx_stat[]36
2.2.1.20dl_meta_get_buffer_size[]36
2.2.1.21dl_meta_set_buffer_size[]37
2.2.1.22dl_meta_get_input_port[]37
2.2.1.23dl_meta_set_input_port[]38
2.2.1.24dl_meta_get_packet_size[]38
2.2.1.25dl_meta_set_packet_size[]39
2.2.1.26dl_meta_get_nexthop_id[]39
2.2.1.27dl_meta_set_nexthop_id[]40
2.2.1.28dl_meta_get_output_port[]40
2.2.1.29dl_meta_set_output_port[]41
2.2.1.30dl_meta_get_fabric_port[]41
2.2.1.31dl_meta_set_fabric_port[]42
2.2.1.32dl_meta_get_flow_id[]42
2.2.1.33dl_meta_set_flow_id[]43
2.2.1.34dl_meta_get_class_id[]43
2.2.1.35dl_meta_set_class_id[]44
2.2.1.36dl_buf_set_SOP[] ..44
Portability Framework Reference Manual 3

2.2.1.37dl_buf_set_EOP[] 45
2.2.1.38dl_buf_get_cell_count[] 45
2.2.1.39dl_buf_set_cell_count[] 45
2.2.1.40dl_set_exception[] 46
2.2.1.41dl_meta_get_nexthop_id_type[] 46
2.2.1.42dl_meta_set_nexthop_id_type[] 47

2.2.2 Dispatch Loop API Functions for Extended Meta Data ... 47
2.2.2.1 dl_meta_parent_get_ref_cnt[] 48
2.2.2.2 dl_meta_child_get_child_offset[] 48
2.2.2.3 dl_meta_child_set_child_offset[] 49
2.2.2.4 dl_meta_child_get_child_buffer_size[] 49
2.2.2.5 dl_meta_child_set_child_buffer_size[] 49
2.2.2.6 dl_meta_child_get_child_freelist_id[] 50
2.2.2.7 dl_meta_child_set_child_freelist_id[] 50
2.2.2.8 dl_meta_child_get_parent_offset[] 51
2.2.2.9 dl_meta_child_set_parent_offset[] 51
2.2.2.10dl_meta_child_get_parent_buffer_size[] 52
2.2.2.11dl_meta_child_set_parent_buffer_size[] 52
2.2.2.12dl_meta_child_get_header_type[] 53
2.2.2.13dl_meta_child_set_header_type[] 53
2.2.2.14dl_meta_child_get_parent_free_list[] 54
2.2.2.15dl_meta_child_set_parent_free_list[] 54
2.2.2.16dl_meta_child_get_rx_stat[] 55
2.2.2.17dl_meta_child_set_rx_stat[] 55
2.2.2.18dl_meta_child_get_packet_size[] 56
2.2.2.19dl_meta_child_set_packet_size[] 56
2.2.2.20dl_meta_child_get_output_port[] 57
2.2.2.21dl_meta_child_set_output_port[] 57
2.2.2.22dl_meta_child_get_input_port[] 57
2.2.2.23dl_meta_child_set_input_port[] 58
2.2.2.24dl_meta_child_get_nexthop_id[] 58
2.2.2.25dl_meta_child_set_nexthop_id[] 59
2.2.2.26dl_meta_child_get_fabric_port[] 59
2.2.2.27dl_meta_child_set_fabric_port[] 60
2.2.2.28dl_meta_child_get_nexthop_id_type[] 60
2.2.2.29dl_meta_child_set_nexthop_id_type[] 61
2.2.2.30dl_meta_child_get_flow_id[] 61
2.2.2.31dl_meta_child_set_flow_id[] 61
2.2.2.32dl_meta_child_get_color[] 62
2.2.2.33dl_meta_child_set_color[] 62
2.2.2.34dl_meta_child_get_class_id[] 63
2.2.2.35dl_meta_child_set_class_id[] 63
2.2.2.36dl_meta_child_get_parent_buffer_id[] 64
2.2.2.37dl_meta_child_set_parent_buffer_id[] 64
2.2.2.38dl_meta_child_get_buffer_next[] 65
2.2.2.39dl_meta_child_set_buffer_next[] 65
2.2.2.40dl_meta_child_get_packet_next[] 65
2.2.2.41dl_meta_child_set_packet_next[] 66

3 Resource Manager ... 67

3.1 Defined Types, Enumerations, and Data Structures .. 69
3.2 System API... 70

3.2.1 Defined Types, Enumerations, and Data Structures ... 71
3.2.1.1 ix_rm_error_code 71
4 Portability Framework Reference Manual

3.2.1.2 ix_phy_type ...76
3.2.1.3 ix_port_type ..78
3.2.1.4 ix_port ...79
3.2.1.5 ix_subsystem_type79
3.2.1.6 ix_sys_config ...80
3.2.1.7 ix_memory_reserved_area82

3.2.2 API Functions ..82
3.2.2.1 ix_rm_init() ..82
3.2.2.2 ix_rm_term() ..83
3.2.2.3 ix_rm_error_get_string()84
3.2.2.4 ix_rm_sys_config_get()84
3.2.2.5 ix_rm_version_get_string()84
3.2.2.6 ix_rm_sys_config_set()85

3.3 Microengine API ...86
3.3.1 Defined Types, Enumerations, and Data Structures ...86

3.3.1.1 ix_imported_symbol86
3.3.2 API Functions ..87

3.3.2.1 ix_rm_ueng_set_ucode()87
3.3.2.2 ix_rm_ueng_map_ucode()88
3.3.2.3 ix_rm_ueng_reset_all()88
3.3.2.4 ix_rm_ueng_patch_symbols()89
3.3.2.5 ix_rm_ueng_load()90
3.3.2.6 ix_rm_ueng_start()90
3.3.2.7 ix_rm_ueng_stop()91
3.3.2.8 ix_rm_ueng_reset()92
3.3.2.9 ix_rm_ueng_enable()92
3.3.2.10ix_rm_ueng_disable()93

3.4 Hardware Resource Management API ...94
3.4.1 SRAM Queues...94

3.4.1.1 Defined Types, Enumerations, and Data Structures ..96
3.4.1.1.1 ix_hw_queue_handle96
3.4.1.1.2 ix_hw_ring_handle97

3.4.1.2 API Functions ...98
3.4.1.2.1 ix_rm_hw_queue_create()98
3.4.1.2.2 ix_rm_hw_queue_delete()100
3.4.1.2.3 ix_rm_hw_queue_array_get_base_address()100
3.4.1.2.4 ix_rm_hw_enqueue()101
3.4.1.2.5 ix_rm_hw_dequeue()102

3.4.2 SRAM and Scratch Rings ..103
3.4.2.1 Defined Types, Enumerations, and Data Structures104

3.4.2.1.1 Handles ..104
3.4.2.1.2 ix_sram_ring_size104
3.4.2.1.3 ix_scratch_ring_size105

3.4.2.2 API Functions ...106
3.4.2.2.1 Bit-Field Macros ...106
3.4.2.2.2 Memory Type Macros ..106
3.4.2.2.3 Ring Index Macros ...106
3.4.2.2.4 ix_rm_hw_sram_ring_create()107
3.4.2.2.5 ix_rm_hw_scratch_ring_create()108
3.4.2.2.6 ix_rm_hw_ring_delete()109
3.4.2.2.7 ix_rm_hw_ring_put()110
3.4.2.2.8 ix_rm_hw_ring_get()111

3.5 Buffer Management API ...112
Portability Framework Reference Manual 5

3.5.1 Generic Buffers.. 112
3.5.1.1 Defined Types, Enumerations, and Data Structures 114

3.5.1.1.1 ix_buffer_handle 114
3.5.1.1.2 ix_buffer_free_list_handle 115
3.5.1.1.3 ix_buffer_free_list_info 116
3.5.1.1.4 ix_buffer_type 117

3.5.1.2 API Functions ... 118
3.5.1.2.1 ix_rm_hw_buffer_free_list_create() 118
3.5.1.2.2 ix_rm_sw_buffer_free_list_create() 119
3.5.1.2.3 ix_rm_buffer_free_list_delete() 121
3.5.1.2.4 ix_rm_buffer_free_list_get_info() 121
3.5.1.2.5 ix_rm_buffer_alloc() 122
3.5.1.2.6 ix_rm_buffer_free() 122
3.5.1.2.7 ix_rm_buffer_free_chain() 123
3.5.1.2.8 ix_rm_buffer_get_meta() 123
3.5.1.2.9 ix_rm_buffer_get_data() 124
3.5.1.2.10 ix_rm_buffer_is_eop() 124
3.5.1.2.11 ix_rm_buffer_is_sop() 125
3.5.1.2.12 ix_rm_buffer_get_type() 126
3.5.1.2.13 ix_rm_buffer_get_next() 126
3.5.1.2.14 ix_rm_buffer_link() 127
3.5.1.2.15 ix_rm_buffer_unlink() 128

3.5.2 Framework Buffer Structure .. 128
3.5.2.1 Packet Metadata Description.. 129

3.5.2.1.1 ix_hw_buffer_meta 129
3.5.2.1.2 Extending Packet Metadata ... 129
3.5.2.1.3 IX_DECLARE_HW_BUFFER_META_DATA for Common Meta Data....

130
3.5.2.2 Split Meta Data Configuration Details... 131

3.5.2.2.1 ix_hw_internal_buffer_meta 131
3.5.2.2.2 IX_DECLARE_HW_BUFFER_META_DATA for Split Meta Data 131

3.5.2.3 Packed Field Macros .. 133
3.6 Communication API.. 134

3.6.1 Defined Types, Enumerations, and Data Structures ... 138
3.6.1.1 ix_comm_data_handler 138
3.6.1.2 ix_communication_id 138

3.6.1.2.1 ix_comm_select_action_set 139
3.6.1.2.2 ix_comm_id_mode 140

3.6.2 API Functions .. 140
3.6.2.1 Helper Macros .. 140

3.6.2.1.1 IX_RM_COMM_ID_GET_LOCAL_ID() 140
3.6.2.1.2 IX_RM_COMM_ID_GET_SYSTEM_TYPE() 141
3.6.2.1.3 IX_RM_COMM_ID_GET_BLADE_ID() 141
3.6.2.1.4 IX_RM_COMM_MAKE_ID() 141
3.6.2.1.5 IX_RM_COMM_MAKE_LOCAL_ID() 141

3.6.2.2 ix_rm_packet_set_receive_mode() 141
3.6.2.3 ix_rm_message_set_receive_mode() 143
3.6.2.4 ix_rm_packet_set_consumer_mode() 143
3.6.2.5 ix_rm_message_set_consumer_mode() 144
3.6.2.6 ix_rm_packet_set_producer_mode() 145
3.6.2.7 ix_rm_message_set_producer_mode() 145
3.6.2.8 ix_rm_packet_handler_register() 146
3.6.2.9 ix_rm_packet_handler_unregister() 147
3.6.2.10ix_rm_message_handler_register() 147
6 Portability Framework Reference Manual

3.6.2.11ix_rm_message_handler_unregister()148
3.6.2.12ix_rm_packet_send()149
3.6.2.13ix_rm_packet_send_wait()150
3.6.2.14ix_rm_message_send()151
3.6.2.15ix_rm_message_send_wait()151
3.6.2.16ix_rm_packet_peek()152
3.6.2.17ix_rm_packet_get()153
3.6.2.18ix_rm_packet_get_wait()153
3.6.2.19ix_rm_message_peek()154
3.6.2.20ix_rm_message_get()155
3.6.2.21ix_rm_message_get_wait()155
3.6.2.22ix_rm_comm_select()157
3.6.2.23ix_rm_ublock_packet_comm_init()158
3.6.2.24ix_rm_ublock_message_comm_init()159

3.7 Remote Communication Extension API..160
3.7.1 Defined Types, Enumerations, and Data Structures ...161

3.7.1.1 ix_remote_comm_service161
3.7.2 Callback Function Prototypes ..162

3.7.2.1 ix_remote_comm_data_handler162
3.7.2.2 ix_remote_comm_service_initializer163
3.7.2.3 ix_remote_comm_service_finalizer163

3.7.3 API Functions ..164
3.7.3.1 ix_rm_remote_comm_service_register()164
3.7.3.2 ix_rm_remote_comm_service_unregister()164
3.7.3.3 ix_rm_init_pci_remote_communication()165
3.7.3.4 ix_rm_register_pci_communication_hw_free_list()165
3.7.3.5 ix_rm_unregister_pci_communication_hw_free_list()166

3.8 Memory Management API ..167
3.8.1 Defined Types, Enumerations, and Data Structures ...168

3.8.1.1 ix_memory_type ...168
3.8.1.2 ix_memory_info ...169
3.8.1.3 ix_memory_alignment_type170

3.8.2 API Functions ..171
3.8.2.1 ix_rm_mem_alloc()171
3.8.2.2 ix_rm_mem_alloc_aligned()172
3.8.2.3 ix_rm_mem_reserve()173
3.8.2.4 ix_rm_mem_reserve_aligned()174
3.8.2.5 ix_rm_mem_free()175
3.8.2.6 ix_rm_mem_info()176
3.8.2.7 ix_rm_mem_local_alloc()177
3.8.2.8 ix_rm_mem_local_reserve()178
3.8.2.9 ix_rm_mem_local_free()179
3.8.2.10ix_rm_mem_local_info()180
3.8.2.11ix_rm_get_phys_offset()180
3.8.2.12ix_rm_get_virtual_address()181
3.8.2.13Read/Write Macros ...182

3.8.2.13.1 IX_RM_MEM_UINT8_READ182
3.8.2.13.2 IX_RM_MEM_UINT16_READ182
3.8.2.13.3 IX_RM_MEM_UINT32_READ184
3.8.2.13.4 IX_RM_MEM_UINT64_READ184
3.8.2.13.5 IX_RM_MEM_UINT8_WRITE185
3.8.2.13.6 IX_RM_MEM_UINT16_WRITE185
3.8.2.13.7 IX_RM_MEM_UINT32_WRITE186
Portability Framework Reference Manual 7

3.8.2.13.8 IX_RM_MEM_UINT64_WRITE 186
3.9 System Repository API... 187

3.9.1 Defined Types, Enumerations, and Data Structures ... 188
3.9.1.1 ix_configuration_property_handle 188
3.9.1.2 ix_cp_property_info 188

3.9.2 API Functions .. 189
3.9.2.1 ix_rm_cp_property_create() 189
3.9.2.2 ix_rm_cp_property_delete() 190
3.9.2.3 ix_rm_cp_property_open() 191
3.9.2.4 ix_rm_cp_property_close() 192
3.9.2.5 ix_rm_cp_property_attach() 193
3.9.2.6 ix_rm_cp_property_detach() 194
3.9.2.7 ix_rm_cp_property_set_value() 195
3.9.2.8 ix_rm_cp_property_get_value() 196
3.9.2.9 ix_rm_cp_property_set_value_uint32() 197
3.9.2.10ix_rm_cp_property_get_value_uint32() 198
3.9.2.11ix_rm_cp_property_delete_value() 199
3.9.2.12ix_rm_cp_property_get_info() 199
3.9.2.13ix_rm_cp_property_get_subproperty() 200

3.10 64-Bit Counters API.. 200
3.10.1 Defined Types, Enumerations, and Data Structures ... 201

3.10.1.1ix_counter_64bit_handle() 201
3.10.2 API Functions .. 201

3.10.2.1ix_rm_counter_64bit_new() 201
3.10.2.2ix_rm_counter_64bit_delete() 203
3.10.2.3ix_rm_counter_64bit_get_internal_overflow_time() 203
3.10.2.4ix_rm_counter_64bit_set_internal_overflow_time() 204
3.10.2.5ix_rm_counter_64bit_get_value() 204
3.10.2.6ix_rm_counter_64bit_set_value() 205

3.11 Services API ... 206
3.11.1 API Functions .. 207

3.11.1.1ix_rm_atomic_sram_swap() 207
3.11.1.2ix_rm_atomic_sram_add() 207
3.11.1.3ix_rm_atomic_sram_test_and_add() 208
3.11.1.4ix_rm_atomic_sram_subtract() 209
3.11.1.5ix_rm_atomic_sram_test_and_subtract() 209
3.11.1.6ix_rm_atomic_sram_bit_set() 210
3.11.1.7ix_rm_atomic_sram_bit_test_and_set() 210
3.11.1.8ix_rm_atomic_sram_bit_clear() 211
3.11.1.9ix_rm_atomic_sram_bit_test_and_clear() 212
3.11.1.10ix_rm_atomic_scratch_swap()........................... 212
3.11.1.11ix_rm_atomic_scratch_add()............................ 213
3.11.1.12ix_rm_atomic_scratch_test_and_add()................... 213
3.11.1.13ix_rm_atomic_scratch_subtract()....................... 214
3.11.1.14ix_rm_atomic_scratch_test_and_subtract().............. 215
3.11.1.15ix_rm_atomic_scratch_bit_set()........................ 215
3.11.1.16ix_rm_atomic_scratch_bit_test_and_set()............... 216
3.11.1.17ix_rm_atomic_scratch_bit_clear()...................... 217
3.11.1.18ix_rm_atomic_scratch_bit_test_and_clear()............. 217
3.11.1.19ix_rm_managed_to_os_memory_copy()..................... 218
3.11.1.20ix_rm_os_to_managed_memory_copy()..................... 219
3.11.1.21ix_rm_managed_to_managed_memory_copy()................ 219

3.12 Hash API .. 220
8 Portability Framework Reference Manual

3.12.1 Defined Types, Enumerations, and Data Structures ...221
3.12.1.1ix_hash_48 ...221
3.12.1.2ix_hash_64 ...221
3.12.1.3ix_hash_128 ..222
3.12.1.4ix_hash_multiplier_48222
3.12.1.5ix_hash_multiplier_64223
3.12.1.6ix_hash_multiplier_128223

3.12.2 API Functions ..223
3.12.2.1ix_rm_hash_48_hash()223
3.12.2.2ix_rm_hash_48_multiplier_set()224
3.12.2.3ix_rm_hash_48_multiplier_get()224
3.12.2.4ix_rm_hash_64_hash()224
3.12.2.5ix_rm_hash_64_multiplier_set()225
3.12.2.6ix_rm_hash_64_multiplier_get()225
3.12.2.7ix_rm_hash_128_hash()226
3.12.2.8ix_rm_hash_128_multiplier_set()226
3.12.2.9ix_rm_hash_128_multiplier_get()227

3.13 Microengine Services API...227
3.13.1 Defined Types, Enumerations, and Data Structures ...228

3.13.1.1ix_me_xscale_lock_handle228
3.13.1.2ix_me_xscale_lock_status229
3.13.1.3ix_me_xscale_lock_owner229
3.13.1.4ix_me_xscale_lock_info229
3.13.1.5ix_me_transfer_register_type230

3.13.2 API Functions ..230
3.13.2.1ix_rm_me_xscale_lock_new()230
3.13.2.2ix_rm_me_xscale_lock_delete()231
3.13.2.3ix_rm_me_xscale_lock_acquire()231
3.13.2.4ix_rm_me_xscale_lock_release()232
3.13.2.5ix_rm_me_xscale_lock_get_info()232
3.13.2.6ix_rm_me_transfer_register_read()233
3.13.2.7ix_rm_me_transfer_register_write()234
3.13.2.8ix_rm_me_signal()234

3.14 Debug Support API...235
3.14.1 API Functions ..236

3.14.1.1ix_rm_mem_status_print()236
3.14.1.2ix_rm_scratch_ring_print_info()237
3.14.1.3ix_rm_scratch_ring_print_data()237
3.14.1.4ix_rm_sram_ring_print_info()237
3.14.1.5ix_rm_sram_ring_print_data()238
3.14.1.6ix_rm_free_list_print_available_buffers()238
3.14.1.7ix_rm_free_list_print_buffers_info()239
3.14.1.8ix_rm_free_list_print_info()239
3.14.1.9ix_rm_buffer_print_meta()240
3.14.1.10ix_rm_buffer_print_data()240
3.14.1.11ix_rm_buffer_print_debug_info()240

4 Core Component Infrastructure ..243

4.1 API Functions ...244
4.1.1 ix_cci_cc_add_event_handler()244
4.1.2 ix_event_func() ..245
4.1.3 ix_cci_cc_add_event_handler_ex()246
4.1.4 ix_cci_change_event() ..247
Portability Framework Reference Manual 9

4.1.5 ix_cci_cc_add_message_handler() 248
4.1.5.1 ix_msg_handler() 250

4.1.6 ix_cci_cc_add_packet_handler() 251
4.1.6.1 ix_pkt_handler() 252

4.1.7 ix_cci_cc_create() .. 253
4.1.7.1 ix_cc_init() .. 254
4.1.7.2 ix_cc_fini() .. 254

4.1.8 ix_cci_cc_destroy() ... 255
4.1.9 ix_cci_cc_remove_event_handler() 256
4.1.10 ix_cci_cc_remove_message_handler() 257
4.1.11 ix_cci_cc_remove_packet_handler() 258
4.1.12 ix_cci_exe_add_policy() 258
4.1.13 ix_cci_exe_get_info() 259
4.1.14 ix_cci_exe_run() .. 260

4.1.14.1ix_exe_init() ... 262
4.1.14.2ix_exe_fini() ... 263

4.1.15 ix_cci_exe_set_default() 264
4.1.16 ix_cci_exe_shutdown() 265
4.1.17 ix_cci_init() ... 266
4.1.18 ix_cci_fini() ... 266
4.1.19 ix_cci_policy_add_branch() 267
4.1.20 ix_cci_policy_add_leaf() 268
4.1.21 ix_cci_policy_create() 269
4.1.22 ix_cci_policy_destroy() 270
4.1.23 ix_cci_register_fatal_error_handler() 271

4.1.23.1ix_ferror_func() 272
4.1.24 ix_cci_send_message() 273
4.1.25 ix_cci_send_packet() .. 274

4.2 Symbolic Constants—Tuning Behavior and Memory Footprint .. 275

5 TCAM Lookup Libraries.. 279

5.1 Defined Types, Enumerations, and Data Structures .. 280
5.1.1 Constants .. 280
5.1.2 ix_lkup ... 280
5.1.3 ix_lkup_table ... 281
5.1.4 ix_lkup_table_type .. 281
5.1.5 ix_lkup_tcam_params ... 282
5.1.6 ix_lkup_table_conf .. 282
5.1.7 ix_lkup_cookie .. 283

5.2 Lookup Management Library.. 283
5.2.1 Initialization APIs ... 283

5.2.1.1 ix_lkup_sw_init() 283
5.2.1.2 ix_lkup_tcam_init() 284

5.2.2 Table Macros... 285
5.2.2.1 IX_LKUP_CREATE_TABLE() ... 285
5.2.2.2 IX_LKUP_DESTROY_TABLE() 286
5.2.2.3 IX_LKUP_FINI() .. 287
5.2.2.4 IX_LKUP_ADD_ENTRY() 288
5.2.2.5 IX_LKUP_REMOVE_ENTRY() 289
5.2.2.6 IX_LKUP_UPDATE_ENTRY() 290
5.2.2.7 IX_LKUP_SEARCH_TABLE() 291
10 Portability Framework Reference Manual

5.2.2.8 IX_LKUP_FIND_ENTRY()292
5.2.2.9 IX_LKUP_READ_FIRST_ENTRY()293
5.2.2.10IX_LKUP_READ_NEXT_ENTRY()294
5.2.2.11IX_LKUP_RESET_TABLE()295
5.2.2.12IX_LKUP_SET_PROPERTY()296
5.2.2.13IX_LKUP_GET_PROPERTY()297
5.2.2.14IX_LKUP_GET_TABLE_INFO()298

5.3 Microengine Hardware Lookup...299
5.3.1 TCAM Lookup APIs ...299

5.3.1.1 ix_tcam_lkup_build_handle()299
5.3.1.2 ix_tcam_lkup_start()300
5.3.1.3 ix_tcam_lkup_complete()301
5.3.1.4 ix_tcam_lkup_get_data()302

5.4 Microengine Software Lookup ..303
5.4.1 Longest Prefix Match APIs ..303

5.4.1.1 ix_sw_lkup_lpm_build_handle()304
5.4.1.2 ix_sw_lkup_lpm_search()304

5.4.2 Exact Match APIs ..305
5.4.2.1 ix_sw_lkup_exact_build_handle()305
5.4.2.2 ix_sw_lkup_exact_search()306

5.4.3 Range Match APIs...307
5.4.3.1 ix_sw_lkup_range_build_handle()307
5.4.3.2 ix_sw_lkup_range_search()308

5.5 Implementation Considerations ..309
5.5.1 ix_s_lkup ..309
5.5.2 ix_s_lkup_table ..310

6 Operating System Services Layer (OSSL) Support..311

7 Intel XScale® Core Support ..313

8 Optimized Data Plane Libraries Support ..315

9 Metadata Configuration Tool ..317

9.1 Introduction ...317
9.2 Metadata Configuration Tool Process ..317

9.2.1 Creating an Application Configuration File ..317
9.2.1.1 Naming Conventions ..317
9.2.1.2 Application Configuration File Contents..318

9.2.2 Creating a Dispatch Loop Configuration File ...318
9.2.2.1 Naming Conventions ..318
9.2.2.2 Dispatch Loop Configuration File Contents ..318

9.2.3 Creating a Microblock Configuration File...319
9.2.3.1 Naming Conventions ..319
9.2.3.2 Microblock Configuration File Contents ..319

9.3 List File Overview ...321
9.4 dl_meta.uc and buffer.h File Overview ..321

9.4.1 dl_meta.uc File Description ...321
9.4.1.1 Accessor Macros ..321
9.4.1.2 Block Macros ..322
9.4.1.3 Dispatch Loop Constants..322
9.4.1.4 dl_meta.uc Example ...322

9.4.2 buffer.h File Description..324
Portability Framework Reference Manual 11

9.5 Using the Metadata Configuration Tool .. 325
9.5.1 System and Software Requirements ... 325
9.5.2 File Locations .. 325
9.5.3 Invoking the Tool ... 326

A Glossary ... 327

Figures

3-1 Hardware Queue Handle Encoding.. 96
3-2 Ring Handle Encoding.. 97
3-3 Hardware Buffer Bit-Field Mapping .. 114
3-4 Software Buffer Bit-Field Mapping.. 115

Tables

2-1 Microengine Assembler Dispatch Loop Variables .. 19
2-2 Dispatch Loop API Functions for Meta Data .. 23
2-3 Dispatch Loop API Functions for Extended Meta Data .. 24
3-1 Resource Manager API Functional Groups.. 68
3-2 Basic Types Supported by the Resource Manager .. 69
3-3 Resource Manager System API ... 70
3-4 Error Codes for the Resource Manager ... 71
3-5 Resource Manager Microengine API.. 86
3-6 Resource Manager Hardware API.. 94
3-7 Resource Manager Buffer Management API.. 113
3-8 Resource Manager Packet Metadata Definitions ... 130
3-9 Resource Manager Packet Metadata Definitions for Split Meta Data 132
3-10 Second 32-bit Word For Resource Manager Communication Signaling to the Core 135
3-11 Resource Manager Communication API .. 136
3-12 Bit Field Mapping for ix_communication_id .. 139
3-13 Resource Manager Remote Communication Extension API .. 160
3-14 Resource Manager Memory Management API .. 168
3-15 Resource Manager Memory Management Macros .. 182
3-16 Resource Manager System Repository API ... 187
3-17 Resource Manager 64-Bit Counter API .. 201
3-18 Resource Manager Services API ... 206
3-19 Resource Manager Hash API... 220
3-20 Resource Manager Microengine Services API... 228
3-21 Resource Manager Debug Support API ... 236
4-1 cci API .. 243
5-1 TCAM Lookup Library... 279
9-1 Field Name Values ... 320
12 Portability Framework Reference Manual

Revision History

Date Revision Description

May 2002 001 SDK 3.0 Pre-Release 3

August 2002 002 SDK 3.0 Release 4

October 2002 003 SDK 3.0 Release 5

February 2003 004 SDK 3.0 Release 6 Field Trial

April 2003 005

SDK 3.0 Release 6 FCS

Removed chapters describing the Optimized Data Plane Libraries
(HAL for microengines, Utilities, and Protocols) and added a pointer
to the Optimized Data Plane Libraries Reference Manual (part of the
IXA SDK Tools Release).

Removed chapter describing the OSSL Libraries and added a
pointer to the Software Reference Manual (part of the IXA SDK
Tools Release).

July 2003 006
SDK 3.1 Release

Added new chapter for TCAM Lookup Libraries.

November 2003 007

SDK 3.5 Release

In Dispatch Loop chapter:
• Added new APIs for handling extended meta data.

In Resource Manager chapter:

• Added new APIs for Microengine Services and Debug Support.

• Significantly modified Services API to include 12 new APIs.

• Added support for hardware free list queue on all channels.

• Added description of split meta data configuration.

• Added Resource Manager Error Codes table.

Added new chapter for Metadata Configuration Tool.

Throughout manual: Changed multiple mentions of “Intel XScale™
core” to “Intel XScale® core” due to trademark registration.
Portability Framework Reference Manual 13

14 Portability Framework Reference Manual

Introduction 1

1.1 About this Document

This Reference Manual introduces you to the Intel Exchange Architecture (IXA) Portability
Framework, which is a part of the IXA Software Development Kit (SDK). This software enables
you to develop and deliver network applications that utilize the Intel® IXP2400 and IXP2800
Network Processors.

This manual provides details on functions, data structures, and parameters contained in the
Portability Framework libraries. This manual is a companion guide to the Intel® Internet Exchange
Architecture Portability Framework Developer’s Manual which provides guidelines for using the
Portability Framework to develop applications.

The IXA Portability Framework is a network application framework and infrastructure for writing
modular and portable code, which:

• Saves time by providing robust infrastructure software and APIs

• Saves time by providing re-configurable building blocks

• Permits portability across IXA network processors

• Provides an ideal structure for third-party plug-in application modules

1.2 Audience

This guide is intended for software developers who will design, develop, and deliver network
applications that must process packets at high speed. It assumes that you are familiar with the
following:

• C or Assembler Programming

• Realtime network applications

1.3 IXA Portability Framework Overview

The IXA Portability Framework consists of microengine microblocks, flow-of-control among
microblocks through dispatch loops, the coordination of microengine and Intel XScale® core
resources through the Resource Manager, as well as Intel XScale® core common components.

Network processing in Intel IXA is essentially a series of tasks that are applied to a constant stream
of packet or cell data. With the multi-processor/multi-threaded architecture of the IXP 2400 and
IXP 2800 network processors, these tasks are distributed over several microengines, each of which
is programmed to perform specific tasks. When a microengine completes its tasks, it passes the
context to the next microengine so that it can continue processing the data.
Portability Framework Reference Manual 15

Introduction
The IXA Portability Framework is implemented using a layered architecture on both the MEv2
microengines and the Intel XScale® core. When developing an IXA Application using this layered
architecture, application code can use the entire IXA Portability Framework or can use only part of
the framework up to a specific level. For example, you can choose to write microblocks on the
microengines but use only the Resource Manager API on the Intel XScale® core.

For a complete introduction to the IXA Portability Framework, see Intel® Internet Exchange
Architecture Portability Framework Developer’s Manual.

1.4 In This Manual

This manual includes the following chapters:

• Chapter 1, “Introduction,” (this chapter) presents the organization of this manual and provides
an overview of the IXA Portability Framework.

• Chapter 2, “Dispatch Loop,” describes support for application-specific microengine flow of
control as well as various utilities.

• Chapter 3, “Resource Manager,” describes the programming interface between Intel XScale®
core applications and the microcode running on the microengines for the Intel® IXP2400 and
IXP2800 Network Processors.

• Chapter 4, “Core Component Infrastructure,” describes the core component infrastructure
interface which provides framework support for core components running in their own
execution engines and for prioritizing message and packet data paths.

• Chapter 5, “TCAM Lookup Libraries,” describes a common API used for managing and
searching tables on the Intel XScale® core and on the microengines for Intel® IXP2400 and
IXP2800 Network Processors

• Chapter 6, “Operating System Services Layer (OSSL) Support,” briefly describes APIs that
provide portability across the operating systems and provides a cross-reference to further
documentation.

• Chapter 7, “Intel XScale® Core Support,” briefly describes APIs that provide additional
support for Intel XScale® core applications and provides a cross-reference to further
documentation.

• Chapter 8, “Optimized Data Plane Libraries Support,” briefly describes the optimized data
plane libraries and provides a cross-reference to further documentation.

• Chapter 9, “Metadata Configuration Tool,” contains full details on a utility that takes metadata
configuration files as input and creates an output file containing metadata fields, block macros,
and accessor macros for get and set operations.

1.5 Other Sources of Information

This manual is part of the Intel® Internet Exchange Architecture Software Development Kit (Intel®
IXA SDK) documentation set. The following documents are located on the IXA SDK Software
Framework CD:

• Intel® Internet Exchange Architecture Software Development Kit Software Framework Getting
Started Guide

• Intel® Internet Exchange Architecture Portability Framework Developer’s Manual
16 Portability Framework Reference Manual

Introduction
• Intel® Internet Exchange Architecture Software Building Blocks Developer’s Manual

• Intel® Internet Exchange Architecture Software Building Blocks Reference Manual

• Intel® Internet Exchange Architecture Software Building Blocks Applications Design Guide

The following documents are also relevant when using the IXA SDK. They are located on the IXA
SDK Tools CD:

• Intel® Internet Exchange Architecture (IXA) Software Reference Manual

• Intel® Internet Exchange Architecture Optimized Data Plane Libraries Reference Manual

• IXP2400/IXP2800 Development Tools User’s Guide

• Help Topics: Developer Workbench

• Intel® IXP2400/IXP2800 Network Processor Microengine C Compiler Language Support
Reference

• Intel® IXP2400/IXP2800 Network Processor Microengine C Compiler LIBC Reference

• Intel® IXP2400/IXP2800 Network Processor Programmer’s Reference Manual

• Intel® IXP2800 Network Processor Hardware Reference Manual

• Intel® IXP2400 Network Processor Hardware Reference Manual

The following documents are available from the Internet.

• Intel® IXP2400 Network Processor Datasheet

• Intel® IXP2800 Network Processor Datasheet

They can be retrieved at: http://fdbl.intel.com.
Portability Framework Reference Manual 17

//fdbl.intel.com
http://fdbl.intel.com

Introduction
18 Portability Framework Reference Manual

Dispatch Loop 2

The dispatch loop combines microblocks on a microengine and implements the data flow between
them. The dispatch loop also caches commonly used variables in registers or local memory. These
variables can be accessed by microblocks using a set of helper macros or Microengine C functions.
The dispatch loop also provides source and sink blocks to send and receive packets to the Intel
XScale® core and to send packets to a different microblock group. Each of these is described in this
chapter.

Note: A dispatch loop is application-specific. Microblocks should be as reusable as possible. But the
dispatch loop and the internal implementation of its associated helper macros or functions
may, and often must, be optimized for a specific application.

For a more detailed description of Dispatch Loop concepts, see Intel® Internet Exchange
Architecture Portability Framework Developer’s Manual.

This chapter describes dispatch loop related programming interfaces.

2.1 Dispatch Loop Variables

The dispatch loop maintains some global state cached in registers or local memory. For
Microengine C, this state is maintained in a global C structure. The compiler decides whether this
structure can be cached in registers or if some data structure elements are cached in local memory.

2.1.1 Microengine Assembler Dispatch Variables

Table 2-1 lists variables that may be cached by a dispatch loop—the actual variables cached
depend on the nature of the application and can be customized for a specific application.

Table 2-1. Microengine Assembler Dispatch Loop Variables1

Field Name Size Use

exception_id 8 bits This is used by microblocks when sending packets to the
Intel XScale® core. The microblock must set the
exception_id to the microblock ID when indicating an
exception.

exception_code 8 bits The microblock sets an 8-bit exception code when a
buffer is sent to the Intel XScale® core component. This
exception code is treated as opaque data by the Dispatch
Loop and Resource Manager.

dl_next_block 8 bits Identifies the next logical block to process after the
current block. The current block sets this value after it is
done processing.

dl_buf_handle 32 bits The buffer handle containing the start of the packet.
Portability Framework Reference Manual 19

Dispatch Loop
Apart from the above, other variables specific to POS, Ethernet, or ATM may be cached in an
extension to this structure.

dl_eop_buf_handle 32 bits The buffer handle containing the end of the packet.
buffer_size 16 bits This is the length of the buffer containing the start of the

current packet. This is the total length of the buffer
including all of the headers. If the buffer is not complete,
this is the amount of data currently in the buffer.

packet_size 16 bits This is the total length of the packet across multiple
buffers.

buffer_offset 16 bits This is the offset from the start of the buffer to the buffer
data. Transform blocks that pack or unpack the buffer
must change this offset.

input_port 16 bits This contains the logical port number on which the
packet was received. Port numbers should be in the
range of zero to 255.

rx_stat 4 bits These are receive status flags for a buffer. Supported
flags are IX_RXSTAT_UCAST, IX_RXSTAT_BCAST,
IX_RXSTAT_MCAST, and IX_RXSTAT_PROMISC.

output_port_egress 24 bits This is the number of the port interface on which the
packet is to be transmitted in a given blade.

output_port_fabric 8 bits When multiple blades are connected to the fabric this is
the blade ID.

output_port_type 4 bits The type of interface on which the packet is to be
transmitted—for example, POS, ATM, Ethernet, and so
on.

cache_flags 4 bits This is used for caching packet headers. Each bit
represents 32 bytes of the packet header—the cache line.
2 bits are used to detect if a cache line is in local
memory. 2 bits are used to check if a cache line is dirty
and needs to be written out.

next_hop_id 32 bits The next hop IP ID.
flow_id (QoS only) 32 bits The flow identifier that is used for metering and other

QoS functions.
queue_id (QoS only) 16 bits The output queue identifier. This is set when classifying

packets for quality of service processing.

1. These variables may be cached.

Table 2-1. Microengine Assembler Dispatch Loop Variables1 (Continued)

Field Name Size Use
20 Portability Framework Reference Manual

Dispatch Loop
2.1.2 Microengine C Loop Data Structure

For microblocks written in Microengine C, the variables described in Section 2.1.1 and the packet
headers are stored in global data structures. This section describes the data structure used to store
this data. Microblocks written in Microengine C access data in this structure by directly referencing
its member fields. Consequently there are no get or set functions for this data structure.

Microengine C Syntax
typedef __declspec(packed) union {

struct {
dl_buf_handle_t buffer_next;
uint16_t buffer_size;
uint16_t offset;
uint32_t packet_size : 16;
uint32_t free_list_id : 4;
uint32_t rx_stat : 4;
uint32_t header_type : 8;
uint16_t input_port;
uint16_t output_port;
uint32_t next_hop_id : 16;
uint32_t fabric_port : 8;
uint32_t reserved : 4;
uint32_t nhid_type : 4;
uint32_t flow_id;
uint32_t class_id;
uint32_t reserved_2;
uint32_t packet_next;

}; // end of struct
//

uint32_t value[8];/* aggregate for the above fields */
//
} dl_meta_t;

Data Members

buffer_next The next buffer in the chain.

buffer_size The amount of data currently in the buffer.

offset The offset in DRAM where the data begins.

packet_size The amount of data in the buffer chain.

free_list_id The free list to which this buffer belongs.

rx_stat The receive status.

header_type The header type—IPv4, IPv6, and so on.

input_port The input port on which this packet was received.

output_port The output port on which this packet is to be transmitted.
Portability Framework Reference Manual 21

Dispatch Loop
next_hop_id The next hop ID.

fabric_port The blade port.

reserved Reserved for future use.

nhid_type The next hop ID type.

flow_id The flow ID.

class_id The class ID.

reserved_2 Reserved for future use.

packet_next The next packet in the chain—used only in Hierarchical Queuing.

Data Members (Continued)
22 Portability Framework Reference Manual

Dispatch Loop
2.2 Dispatch Loop Interface

Of the variables described in Section 2.1, “Dispatch Loop Variables,” the buffer handles and the
next block are stored in global variables (dl_buf_handle, dl_eop_buf_handle, and
dl_next_block). The remaining variables are packed into registers.

The IXA SDK provides macros for buffer allocation, buffer freeing, the return or modification of
various IP header fields, and so on. There are two categories of helper macros that support
Dispatch Loops. The following sections provide full details on these macros:

• Section 2.2.1, “Dispatch Loop API Functions for Meta Data” on page 26

• Section 2.2.2, “Dispatch Loop API Functions for Extended Meta Data” on page 47

Table 2-2 summarizes the Dispatch Loop macros supporting meta data and Table 2-3 summarizes
the macros that support extended meta data.

Table 2-2. Dispatch Loop API Functions for Meta Data

Name Description

dl_buf_init[] Initialize the Buffer API.

dl_buf_alloc[] Allocates a buffer.

dl_buf_free[] Frees a buffer.

dl_buf_get_desc[] Returns the SRAM pointer to the meta data given a buffer
handle.

dl_buf_get_data[] Returns the DRAM pointer to the buffer data given a buffer
handle.

dl_buf_get_data_from_meta[] Returns the DRAM pointer using the SRAM base as input.

dl_meta_init_cache[] Populates a meta data cache.

dl_meta_flush_cache[] Flushes meta data to SRAM.

dl_meta_load_cache[] Loads meta data from SRAM into registers.

dl_meta_get_buffer_next[] Returns the handle of next buffer in the buffer chain—for large
packets.

dl_meta_set_buffer_next[] Sets the handle of next buffer in the buffer chain—for large
packets.

dl_meta_get_hw_next[] Gets the hardware next field in the handle

dl_meta_set_hw_next[] Sets the hardware next field in the handle

dl_meta_get_offset[] Returns the offset at which data begins within a buffer.

dl_meta_set_offset[] Sets the offset at which data begins within a buffer.

dl_meta_get_free_list[]

Returns the free list from which the current buffer—that is, the
buffer pointed to by dl_buf_handle—was allocated. There
may be multiple free lists—that is, buffer pools—but only one is
in use at any point in time.

dl_meta_set_free_list[]
Sets the free list to which the current buffer belongs. There may
be multiple free lists—that is, buffer pools—but only one is
currently used.

dl_meta_get_rx_stat[] Returns the receive status.

dl_meta_set_rx_stat[] Sets the receive status.

dl_meta_get_buffer_size[] Returns the buffer size of the current buffer in the packet.
Portability Framework Reference Manual 23

Dispatch Loop
.

dl_meta_set_buffer_size[] Sets the buffer size of the current buffer in the packet.

dl_meta_get_input_port[] Returns the input port over which the packet came in.

dl_meta_set_input_port[] Sets the input port.

dl_meta_get_packet_size[] Returns the total packet size.

dl_meta_set_packet_size[] Sets the total packet size.

dl_meta_get_nexthop_id[] Returns the ID for the next hop.

dl_meta_set_nexthop_id[] Sets the ID for the next hop.

dl_meta_get_output_port[] Returns the output port. This is the port on the egress IXP2400
out of which the packet is transmitted.

dl_meta_set_output_port[] Sets the output port. This is the port on the egress IXP2400 out
of which the packet is transmitted.

dl_meta_get_fabric_port[] Returns the output blade (when multiple blades are connected
to the fabric) from which the packet is transmitted.

dl_meta_set_fabric_port[] Sets the output blade (when multiple blades are connected to
the fabric) from which the packet is transmitted out.

dl_meta_get_flow_id[] Returns the flow ID.

dl_meta_set_flow_id[] Sets the flow ID.

dl_meta_get_class_id[] Returns the class ID.

dl_meta_set_class_id[] Sets the class ID.

dl_buf_set_SOP[] Sets the SOP bit in the buffer handle. This indicates that the
buffer contains the start-of-packet.

dl_buf_set_EOP[] Sets the EOP bit in the buffer handle. This indicates that the
buffer contains the end-of-packet.

dl_buf_get_cell_count[] Gets cell count from the buffer handle.

dl_buf_set_cell_count[] Sets the cell count in the buffer handle.

dl_set_exception[] Sets the exception code.

dl_meta_get_nexthop_id_type[] Returns the next hop ID type—IPv4, IPv6, and so on.

dl_meta_set_nexthop_id_type[] Sets the next hop ID type—IPv4, IPv6, and so on.

Table 2-3. Dispatch Loop API Functions for Extended Meta Data

Name Description

dl_meta_parent_get_ref_cnt[] Obtains the reference count value.

dl_meta_child_get_child_offset[] Obtains the child buffer data offset in bytes.

dl_meta_child_set_child_offset[] Sets the child buffer data offset in bytes.

dl_meta_child_get_child_buffer_size[] Obtains the child buffer data size in bytes.

dl_meta_child_set_child_buffer_size[] Sets the child buffer data size in bytes.

dl_meta_child_get_child_freelist_id[] Obtains the freelist ID of the child buffer.

dl_meta_child_set_child_freelist_id[] Sets the freelist ID of the child buffer.

dl_meta_child_get_parent_offset[] Obtains the data offset of the parent buffer.

Table 2-2. Dispatch Loop API Functions for Meta Data (Continued)

Name Description
24 Portability Framework Reference Manual

Dispatch Loop
dl_meta_child_set_parent_offset[] Sets the data offset of the parent buffer.

dl_meta_child_get_parent_buffer_size[] Obtains the data size of the parent buffer.

dl_meta_child_set_parent_buffer_size[] Sets the data size of the parent buffer.

dl_meta_child_get_header_type[] Obtains the header type of the packet.

dl_meta_child_set_header_type[] Sets the header type of the packet.

dl_meta_child_get_parent_free_list[] Obtains the free list ID of the parent buffer.

dl_meta_child_set_parent_free_list[] Sets the free list ID of the parent buffer.

dl_meta_child_get_rx_stat[] Obtains the receive status of the packet.

dl_meta_child_set_rx_stat[] Sets the receive status of the packet.

dl_meta_child_get_packet_size[] Obtains the size of the packet across all buffers.

dl_meta_child_set_packet_size[] Sets the size of the packet across all buffers.

dl_meta_child_get_output_port[] Obtains the output port number for this packet.

dl_meta_child_set_output_port[] Sets the output port number for this packet.

dl_meta_child_get_input_port[] Obtains the input port number for this packet.

dl_meta_child_set_input_port[] Sets the input port number for this packet.

dl_meta_child_get_nexthop_id[] Obtains the next hop ID for this packet.

dl_meta_child_set_nexthop_id[] Sets the next hop ID for this packet.

dl_meta_child_get_fabric_port[] Obtains the fabric port number for this packet.

dl_meta_child_set_fabric_port[] Sets the fabric port number for this packet.

dl_meta_child_get_nexthop_id_type[] Obtains the nexthop ID type for this packet.

dl_meta_child_set_nexthop_id_type[] Sets the nexthop ID type for this packet.

dl_meta_child_get_flow_id[] Obtains the flow ID for this packet.

dl_meta_child_set_flow_id[] Sets the flow ID for this packet.

dl_meta_child_get_color[] Obtains the color of this packet.

dl_meta_child_set_color[] Sets the color of this packet.

dl_meta_child_get_class_id[] Obtains the class ID of this packet.

dl_meta_child_set_class_id[] Sets the class ID of this packet.

dl_meta_child_get_parent_buffer_id[] Obtains the parent buffer ID to which this child
buffer is linked.

dl_meta_child_set_parent_buffer_id[] Sets the parent buffer ID to which this child buffer is
linked.

dl_meta_child_get_buffer_next[] Obtains the next buffer handle for this child buffer.

dl_meta_child_set_buffer_next[] Sets the next buffer handle for this child buffer.

dl_meta_child_get_packet_next[] Obtains the next packet handle for this child buffer.

dl_meta_child_set_packet_next[] Sets the next packet handle for this child buffer.

Table 2-3. Dispatch Loop API Functions for Extended Meta Data (Continued)

Name Description
Portability Framework Reference Manual 25

Dispatch Loop
2.2.1 Dispatch Loop API Functions for Meta Data

This section describes the dispatch loop Microengine Assembler macros in detail.

2.2.1.1 dl_buf_init[]

Initializes the buffering mechanism. This macro should be called once before any of the other
dl_buffer macros can be called. Typically this macro creates the freelist of buffers.

Microengine Assembler Syntax
#macro dl_buf_init[]

Estimated Size
N/A

2.2.1.2 dl_buf_alloc[]

Allocates a free packet buffer. If no buffer is available this function returns zero in
buffer_handle. There may be multiple pools of buffers in which case the caller specifies the
pool from which this buffer needs to be allocated.

Microengine Assembler Syntax
#macro dl_buf_alloc[buf_handle, free_list, req_sig, sig_action]

Estimated Size
N/A

Input

free_list Specifies the pool from which the buffer is to be allocated.

req_sig Signal to use in the I/O operation.

sig_action The flag that determines how this operation responds to the I/O operation.
• If this argument contains a signal expression, wait for one or more specified signals

• If this argument contains SIG_NONE, do not wait—simply return from this call

For details, see the Intel® Internet Exchange Architecture Optimized Data
Plane Libraries Reference Manual located on the IXA SDK Tools CD.

Output

buf_handle The handle of the newly allocated buffer. The SOP and count fields are set to
zero. The EOP Field is set to one. buf_handle must be an SRAM transfer
register.
26 Portability Framework Reference Manual

Dispatch Loop
2.2.1.3 dl_buf_free[]

Frees the buffer that was previously allocated using dl_buf_alloc[]. Only one buffer can be
freed at a time by this macro. Chained buffers—used to represent large packets—are not supported
by this macro. EOP, SOP and cell count in the buffer handle are all reset to zero by this macro—the
application need not set them to zero before calling this function.

Microengine Assembler Syntax
#macro dl_buf_free[buf_handle, free_list]

Estimated Size
N/A

2.2.1.4 dl_buf_get_desc[]

Given an opaque buffer handle, this macro returns the SRAM address where the meta data—called
the buffer descriptor—specified by buf_handle is present. The lower 24 bits of the handle
correspond to the SRAM address. No additional arithmetic is required. The address returned is an
absolute address and not an offset from a base address.

Microengine Assembler Syntax
#macro dl_buf_get_desc[sram_offset, buf_handle]

Estimated Size
Two or three instructions.

Input

buf_handle The buffer handle.

free_list Specifies the pool to which this buffer is to be released.

Input

buf_handle The buffer handle.

Output

sram_offset The SRAM byte address where the meta data for this buffer is present.
Portability Framework Reference Manual 27

Dispatch Loop
2.2.1.5 dl_buf_get_data[]

Given an opaque buffer handle pointing to a buffer, this macro returns the SDRAM address where
packet data for that buffer is present. The lower 24 bits of the buffer handle correspond to the
SRAM offset for meta data. From this we calculate the DRAM offset as follows:
meta=buf_handle & 0xffffff;
index=(meta - sram_base) / sizeof (meta_data)
data =sdram_base + index * size_of_packet_buffer_in_dram

However the above calculation is optimized as follows (grouping all constants together):
DL_DS_RATIO = Sizeof (Packet buffer) / Sizeof (Meta data)
DL_REL_BASE = BUF_SDRAM_BASE-(BUF_SRAM_BASE*DL_DS_RATIO)
Data = DL_REL_BASE + (HANDLE & 0xFFFFFF) * DL_DS_RATIO

DL_DS_RATIO and DL_REL_BASE are constants which can be defined at compile or load time so
that the assignment of Data can be coded in two instructions.

Microengine Assembler Syntax
#macro dl_buf_get_data[sdram_offset, buf_handle]

Estimated Size
Two to four instructions.

2.2.1.6 dl_buf_get_data_from_meta[]

This macro returns the SDRAM offset for a given SRAM offset.

This macro can be used in place of dl_buf_get_data[] in repetitive calls where both SRAM
offset and SDRAM offset are used. Instead of taking a buffer handle as an input parameter, it takes
the SRAM offset where the buffer meta data is present. Calling dl_buf_get_desc[] with
buf_handle as an argument returns the SRAM offset and saves two instructions.

See dl_buf_get_data[] for further details.

Microengine Assembler Syntax
#macro dl_buf_get_data_from_meta[sdram_offset, sram_offset]

Input

buf_handle The buffer handle.

Output

sdram_offset The SDRAM address offset from buf_handle to the packet buffer.
28 Portability Framework Reference Manual

Dispatch Loop
Estimated Size
One to two instructions.

2.2.1.7 dl_meta_init_cache[]

Initializes the meta data cache with the given values.

Microengine Assembler Syntax
#macro dl_meta_init_cache[d0, d1, d2, d3, d4, d5, d6, d7]

Estimated Size
One to seven instructions.

Input

sram_offset The SRAM offset where the meta data for this buffer is present.

Output

sdram_offset The SDRAM address where the packet buffer for this buffer is present.

Input

d0

or
d7

The values in registers for LW0 to LW7 of the meta data. When a given field
is to be ignored, pass a constant value of zero for the argument
corresponding to that field.
Portability Framework Reference Manual 29

Dispatch Loop
2.2.1.8 dl_meta_flush_cache[]

Flushes the cache of meta data in a general-purpose register to SRAM.

Microengine Assembler Syntax
#macro dl_meta_flush_cache[wxfer_prefix, buf_handle, req_sig, \

sig_action, START_LW, NUM_LW]

Estimated Size
Three to twelve instructions.

Input

wxfer_prefix The write transfer register prefix for use by the XBUF macros. (For details,
see the Intel® Internet Exchange Architecture Optimized Data Plane
Libraries Reference Manual located on the IXA SDK Tools CD.) At least
NUM_LW write transfer registers must be allocated prior to invoking this
macro.

buf_handle The buffer handle.

req_sig The signal to be used in the I/O operation.

sig_action The flag that determines how this operation responds to the I/O operation.
• If this argument contains a signal expression, wait for the specified signal(s)

• If this argument contains SIG_NONE, do not wait—simply return from this call

For details, see the Intel® Internet Exchange Architecture Optimized Data
Plane Libraries Reference Manual located on the IXA SDK Tools CD.

START_LW The start word—a constant.

NUM_LW The number of longwords to flush—a constant.
30 Portability Framework Reference Manual

Dispatch Loop
2.2.1.9 dl_meta_get_hw_next[]

Gets the next pointer in the meta data. In the case of chained (linked list) buffer, this next pointer
indicates the next buffer in the chain. The format of this pointer (eop, sop, cellcount (6 bits), offset
(24 bits)) is such that it can be directly used by the SRAM Q-Array to queue this buffer.

Microengine Assembler Syntax
#macro dl_meta_get_hw_next[hw_next]

2.2.1.10 dl_meta_set_hw_next[]

Sets the next pointer in the meta data. In the case of chained (linked list) buffer, this next pointer
indicates the next buffer in the chain. The format of this pointer (eop, sop, cellcount (6 bits), offset
(24 bits)) is such that it can be directly used by the SRAM Q-Array to queue this buffer.

Microengine Assembler Syntax
#macro dl_meta_set_hw_next[hw_next]

2.2.1.11 dl_meta_load_cache[]

Loads the meta data from SRAM and caches it in registers.

Microengine Assembler Syntax
#macro dl_meta_load_cache[buffer_handle, dl_meta, signal_number, \

START_LW, NUM_LW]

Output

hw_next The next pointer (32 bits). The format of this pointer should be as specified
above.

Output

hw_next The next pointer (32 bits). The format of this pointer should be as specified
above.
Portability Framework Reference Manual 31

Dispatch Loop
Estimated Size

At most two instructions.

2.2.1.12 dl_meta_get_buffer_next[]

Returns the next pointer in the meta data. In case of a chained (linked list) buffer this next pointer
indicates the next buffer in the chain. The format of this pointer is such that it can be directly used
by the SRAM Q-array to queue this buffer.

Microengine Assembler Syntax
#macro dl_meta_get_buffer_next[hw_next]

Input

buffer_handle The buffer handle specifying the buffer containing the metadata to load
into a read transfer register.

signal_number The signal number to use in I/O.

START_LW The starting longword within the buffer specifying the metadata to load.

NUM_LW The number of longwords of metadata to load.

Output

dl_meta Read transfer register where meta data is loaded.

Output

hw_next The next pointer—32 bits in length. The format of this pointer should be:
• SRAM Offset—24 bits

• Cellcount—6 bits

• SOP bit

• EOP bit

E
O
P

S
O
P

Cell Count SRAM Offset

3
1

3
0

2
9

2
4

2
3 0
32 Portability Framework Reference Manual

Dispatch Loop
Estimated Size
N/A

2.2.1.13 dl_meta_set_buffer_next[]

Sets the next pointer in the meta data. In the case of a chained (linked list) buffer, this next pointer
indicates the next buffer in the chain. The format of this pointer is such that it can be directly used
by the SRAM Q-array to queue this buffer.

Microengine Assembler Syntax
#macro dl_meta_set_buffer_next[hw_next]

Estimated Size
N/A

2.2.1.14 dl_meta_get_offset[]

Returns the offset within the buffer where the packet data begins. Typically the data is not at an
offset of zero relative to the start of the buffer. There is some headroom at the beginning of these
buffers so that headers can be easily prepended.

Microengine Assembler Syntax
#macro dl_meta_get_offset[offset]

Estimated Size
One instruction.

Input

hw_next The next pointer—32 bits total length.The format of this pointer is:
• EOP bit

• SOP bit

• Cellcount—6 bits

• Offset—24 bits

Output

offset The offset from the start of the buffer to the element where the packet data
begins.
Portability Framework Reference Manual 33

Dispatch Loop
2.2.1.15 dl_meta_set_offset[]

Sets the offset within the buffer where the packet data begins. Typically the data is not at an offset
of zero relative to the start of the buffer. There is some headroom at the beginning of these buffers
so that headers can be easily prepended.

Microengine Assembler Syntax
#macro dl_meta_set_offset[offset]

Estimated Size
One instruction.

2.2.1.16 dl_meta_get_free_list[]

Returns the free list—buffer pool—from which the buffer pointed to by dl_buf_handle was
allocated.

Microengine Assembler Syntax
#macro dl_meta_get_free_list[free_list]

Estimated Size
One instruction.

Input

offset The offset from the start of the buffer where the packet data begins.

Output

free_list The free list ID—a 4-bit value.
34 Portability Framework Reference Manual

Dispatch Loop
2.2.1.17 dl_meta_set_free_list[]

Sets the free list (buffer pool) from which this buffer was allocated.

Microengine Assembler Syntax
#macro dl_meta_set_free_list[free_list]

Estimated Size
Two instructions.

2.2.1.18 dl_meta_get_rx_stat[]

Returns the receive status for this buffer.

Microengine Assembler Syntax
#macro dl_meta_get_rx_stat[rx_stat]

Estimated Size
One instruction.

Input

free_list The free list ID—a 4-bit quantity.

Output

rx_stat Receive status—a 4-bit value.
Portability Framework Reference Manual 35

Dispatch Loop
2.2.1.19 dl_meta_set_rx_stat[]

Sets the receive status (meta data) for this buffer.

Microengine Assembler Syntax
#macro dl_meta_set_rx_stat[rx_stat]

Estimated Size
Two instructions.

2.2.1.20 dl_meta_get_buffer_size[]

Returns the buffer size. Buffer size refers to the length of the data present in this buffer and only in
this buffer.

Microengine Assembler Syntax
#macro dl_meta_get_buffer_size[buf_len]

Estimated Size
One instruction.

Input

rx_stat Receive status—a 4-bit value.

Output

buf_len Length of the data in the buffer—a 16-bit value.
36 Portability Framework Reference Manual

Dispatch Loop
2.2.1.21 dl_meta_set_buffer_size[]

Sets the buffer size. Buffer size refers to the length of the data present in this buffer and only in this
buffer.

Microengine Assembler Syntax
#macro dl_meta_set_buffer_size[buf_len]

Estimated Size
One instruction.

2.2.1.22 dl_meta_get_input_port[]

Returns the input port through which this packet was received.

Microengine Assembler Syntax
#macro dl_meta_get_input_port[input_port]

Estimated Size
One instruction.

Input

buf_len The length of the data in the buffer—a 16-bit value.

Output

input_port The input port number—a 16-bit value.
Portability Framework Reference Manual 37

Dispatch Loop
2.2.1.23 dl_meta_set_input_port[]

Sets the input port through which packets are received.

Microengine Assembler Syntax
#macro dl_meta_set_input_port[input_port]

Estimated Size
Two instructions.

2.2.1.24 dl_meta_get_packet_size[]

Returns the packet size. Packet size refers to the total length of the data present across a chain of
buffers. A large packet is split across multiple buffers with each buffer linked to the next. If the
packet is small enough to be present in a single buffer, then this value is the same as
dl_get_buf_size.

Microengine Assembler Syntax
#macro dl_meta_get_packet_size[pkt_len]

Estimated Size
One instruction.

Input

input_port The input port number—a 16-bit value.

Output

pkt_len Total length of the data in the packet—a 16-bit value.
38 Portability Framework Reference Manual

Dispatch Loop
2.2.1.25 dl_meta_set_packet_size[]

Sets the packet size. Packet size refers to the total length of data present across a chain of buffers. A
large packet is split across multiple buffers with each buffer linked to the next. If the packet is small
enough to be present in a single buffer, then this value is the same as the buffer size.

Microengine Assembler Syntax
#macro dl_meta_set_packet_size[pkt_len]

Estimated Size
One instruction.

2.2.1.26 dl_meta_get_nexthop_id[]

Returns the next hop ID.

Microengine Assembler Syntax
#macro dl_meta_get_nexthop_id[nexthop]

Estimated Size
One instruction.

Input

pkt_len Total length of the data in the packet—a 16-bit value.

Output

nexthop The ID of the next hop—a 16-bit value.
Portability Framework Reference Manual 39

Dispatch Loop
2.2.1.27 dl_meta_set_nexthop_id[]

Sets the next hop ID.

Microengine Assembler Syntax
#macro dl_meta_set_nexthop_id[nexthop]

Estimated Size
One instruction.

2.2.1.28 dl_meta_get_output_port[]

Returns the output port destination. For a two-chip configuration, this is the destination port on the
egress processor.

Microengine Assembler Syntax
#macro dl_meta_get_output_port[oport]

Estimated Size
One instruction.

Input

nexthop The ID of the next hop—a 16-bit value.

Output

oport Output port for egress—a 16-bit value.
40 Portability Framework Reference Manual

Dispatch Loop
2.2.1.29 dl_meta_set_output_port[]

Sets the output port number for egress.

Microengine Assembler Syntax
#macro dl_meta_set_output_port[oport_egress]

Estimated Size
Two instructions.

2.2.1.30 dl_meta_get_fabric_port[]

Returns the output port for the switch fabric. This is also called the blade ID—when multiple line
cards/blades are connected through a switch fabric this ID refers to the blade ID.

Microengine Assembler Syntax
#macro dl_meta_get_fabric_port[oport_fabric]

Estimated Size
One instruction.

Input

oport Output port—a 16-bit value.

Output

oport_fabric The output port for the switch fabric—an 8-bit value.
Portability Framework Reference Manual 41

Dispatch Loop
2.2.1.31 dl_meta_set_fabric_port[]

Sets the output port for the switch fabric. This is also called the blade ID.

Microengine Assembler Syntax
#macro dl_meta_set_fabric_port[oport_fabric]

Estimated Size
One instruction.

2.2.1.32 dl_meta_get_flow_id[]

Returns the flow ID.

Microengine Assembler Syntax
#macro dl_meta_get_flow_id[flow_id]

Estimated Size
One instruction.

Input

oport_fabric The output port for the switch fabric—an 8-bit value.

Output

flow_id The flow ID—a 32-bit value.
42 Portability Framework Reference Manual

Dispatch Loop
2.2.1.33 dl_meta_set_flow_id[]

Sets the flow ID.

Microengine Assembler Syntax
#macro dl_meta_set_flow_id[flow_id]

Estimated Size
One instruction

2.2.1.34 dl_meta_get_class_id[]

Returns the class ID.

Microengine Assembler Syntax
#macro dl_meta_get_class_id[class_id]

Estimated Size
One instruction.

Input

flow_id The flow ID—a 32-bit value.

Output

class_id The class ID—a 16-bit value.
Portability Framework Reference Manual 43

Dispatch Loop
2.2.1.35 dl_meta_set_class_id[]

Sets the class ID.

Microengine Assembler Syntax
#macro dl_meta_set_class_id[class_id]

Estimated Size
One instruction.

2.2.1.36 dl_buf_set_SOP[]

Sets the Start-of-Packet (SOP) bit in buf_handle indicating that this buffer contains the SOP.

Microengine Assembler Syntax
#macro dl_buf_set_SOP[]

Estimated Size
One instruction.

Input

class_id The class ID—a 16-bit value.

Output

buf_handle The buffer handle.
44 Portability Framework Reference Manual

Dispatch Loop
2.2.1.37 dl_buf_set_EOP[]

Sets the End-of-Packet (EOP) bit in the buf_handle indicating that this buffer contains the EOP.

Microengine Assembler Syntax
#macro dl_buf_set_EOP[buf_handle]

Estimated Size
One instruction.

2.2.1.38 dl_buf_get_cell_count[]

Get the cellcount in buf_handle indicating how many cells are in this buffer.

Microengine Assembler Syntax
#macro dl_buf_get_cell_count[buf_handle, cell_count]

Estimated Size
Two instructions.

2.2.1.39 dl_buf_set_cell_count[]

Sets the cellcount in buf_handle indicating how many cells are in this buffer.

Input

buf_handle The buffer handle.

Input

buf_handle The buffer handle.

Output

cell_count Cell Count. (0 -> 1 cell, 1->2 cells, etc.) The max imum cell count is 64.
Portability Framework Reference Manual 45

Dispatch Loop
Note: Application code can safely assume that bits 29 through 24 in buf_handle are already zero, as
guaranteed by dl_buf_alloc[], and so an application can save one instruction by not clearing
these bits to zero before setting them to cell count.

Microengine Assembler Syntax
#macro dl_buf_set_cell_count[buf_handle, cell_count]

Estimated Size
Two instructions.

2.2.1.40 dl_set_exception[]

Sets the exception code.

Microengine Assembler Syntax
#macro dl_set_exception[block_id, exception_code]

Estimated Size
N/A

2.2.1.41 dl_meta_get_nexthop_id_type[]

Returns the next hop ID type which specifies the appropriate lookup table to use to lookup the next
hop ID.

Microengine Assembler Syntax
#macro dl_meta_get_nexthop_id_type[nhid_type]

Input

buf_handle The buffer handle.

cell_count The cell count to set in the buffer handle.

Input

block_id The ID of the calling microblock.

exception_code The exception code.
46 Portability Framework Reference Manual

Dispatch Loop
Estimated Size

One instruction.

2.2.1.42 dl_meta_set_nexthop_id_type[]

Sets the next hop ID type which specifies the appropriate lookup table to use to lookup the next hop
ID.

Microengine Assembler Syntax
#macro dl_meta_set_nexthop_id_type[nhid_type]

Estimated Size

At most two instructions.

2.2.2 Dispatch Loop API Functions for Extended Meta Data

This section describes the API functions available to access extended meta data.

The following sets of macros operate on extended meta data which includes the child and parent
buffer formats. All the macros take the format type value as an argument. Valid values for format
type are:

• META_TYPE_IGNORE – This value is specified when accessing certain fields in extended
meta data layout whose layout is the same.

• META_PARENT_PACKET_MODE – When this value is specified, the underlying meta data
is assumed to be parent meta data in PACKET mode.

• META_PARENT_CELL_MODE - When this value is specified, the underlying meta data is
assumed to be parent meta data in CELL mode.

• META_CHILD_PACKET_MODE - When this value is specified, the underlying meta data is
assumed to be child meta data in PACKET mode.

• META_CHILD_CELL_MODE - When this value is specified, the underlying meta data is
assumed to be child meta data in CELL mode.

Input

nhid_type The next hop ID type—a 4-bit value.

Output

nhid_type The next hop ID type—a 4-bit value.
Portability Framework Reference Manual 47

Dispatch Loop
The macros also perform a validity check on the type value passed when applicable. It is assumed
that the caller has enough knowledge about the type of meta data being operated on. As a result, the
macros are invoked by specifying the appropriate format type.

2.2.2.1 dl_meta_parent_get_ref_cnt[]

Obtains the reference count value from the parent meta data.

Microengine Assembler Syntax
#macro dl_meta_parent_get_ref_cnt[MODE, cnt]

Estimated Size

One instruction.

2.2.2.2 dl_meta_child_get_child_offset[]

Obtains the offset in bytes of the start of data in the child buffer. All copy specific data is stored in
child buffers.

Microengine Assembler Syntax
#macro dl_meta_child_get_child_offset[MODE, child_offset]

Input

MODE This argument is ignored. The caller can specify META_TYPE_IGNORE.

Output

cnt The reference count.

Input

MODE Either META_CHILD_CELL_MODE or META_CHILD_PACKET_MODE.

Output

child_offset The offset in bytes.
48 Portability Framework Reference Manual

Dispatch Loop
Estimated Size

One instruction.

2.2.2.3 dl_meta_child_set_child_offset[]

Sets the offset in bytes of the start of the data in the child buffer.

Microengine Assembler Syntax
#macro dl_meta_child_set_child_offset[MODE, child_offset]

Estimated Size

Three instructions.

2.2.2.4 dl_meta_child_get_child_buffer_size[]

Obtains the size of data in child buffer in bytes. This can be viewed as the size of copy specific data
added to the packet.

Microengine Assembler Syntax
#macro dl_meta_child_get_child_buffer_size[MODE, buf_size]

Estimated Size

One instruction.

2.2.2.5 dl_meta_child_set_child_buffer_size[]

Sets the size of the data in the child buffer in bytes.

Input

MODE Either META_CHILD_CELL_MODE or META_CHILD_PACKET_MODE.

child_offset The start of data in the child buffer, in bytes.

Input

MODE Either META_CHILD_CELL_MODE or META_CHILD_PACKET_MODE.

Output

buf_size The start of data in the child buffer, in bytes.
Portability Framework Reference Manual 49

Dispatch Loop
Microengine Assembler Syntax
#macro dl_meta_child_set_child_buffer_size(MODE, buf_size)

Estimated Size

Three instructions.

2.2.2.6 dl_meta_child_get_child_freelist_id[]

Obtains the freelist ID of the child buffer.

Microengine Assembler Syntax
#macro dl_meta_child_get_child_freelist_id[MODE, freelist_id]

Estimated Size

One instruction.

2.2.2.7 dl_meta_child_set_child_freelist_id[]

Sets the freelist ID of the child buffer in the meta data.

Microengine Assembler Syntax
#macro dl_meta_child_set_child_freelist_id[MODE, freelist_id]

Input

MODE Either META_CHILD_CELL_MODE or META_CHILD_PACKET_MODE.

buf_size The size of data in the child buffer, in bytes.

Input

MODE Either META_CHILD_CELL_MODE or META_CHILD_PACKET_MODE.

Output

freelist_id The freelist ID of the child buffer.
50 Portability Framework Reference Manual

Dispatch Loop
Estimated Size

Three instructions.

2.2.2.8 dl_meta_child_get_parent_offset[]

Obtains the offset in bytes of the start of data in the parent buffer pointed by the child buffer. This
buffer contains the original packet data.

Microengine Assembler Syntax
#macro dl_meta_child_get_parent_offset [MODE, parent_offset]

Estimated Size

One instruction.

2.2.2.9 dl_meta_child_set_parent_offset[]

Sets the offset in bytes of the start of data in the parent buffer pointed by the child buffer.

Microengine Assembler Syntax
#macro dl_meta_child_set_parent_offset [MODE, parent_offset]

Input

MODE Either META_CHILD_CELL_MODE or
META_CHILD_PACKET_MODE.

freelist_id The freelist ID of the child buffer.

Input

MODE This argument is ignored. The caller can specify META_TYPE_IGNORE.

Output

parent_offset The start of data in the parent buffer, in bytes.
Portability Framework Reference Manual 51

Dispatch Loop
Estimated Size

One instruction.

2.2.2.10 dl_meta_child_get_parent_buffer_size[]

Obtains the size in bytes of the data in the parent buffer pointed by the child buffer. This buffer
contains the original packet data.

Microengine Assembler Syntax
#macro dl_meta_child_get_parent_buffer_size [MODE, buf_size]

Estimated Size

One instruction.

2.2.2.11 dl_meta_child_set_parent_buffer_size[]

Sets the size in bytes of the data in the parent buffer pointed by the child buffer.

Microengine Assembler Syntax
#macro dl_meta_child_set_parent_buffer_size [MODE, buf_size]

Input

MODE This argument is ignored. The caller can specify META_TYPE_IGNORE.

parent_offset The start of data in the parent buffer, in bytes.

Input

MODE This argument is ignored. The caller can specify META_TYPE_IGNORE.

Output

buf_size The size of the parent buffer, in bytes.
52 Portability Framework Reference Manual

Dispatch Loop
Estimated Size

One instruction.

2.2.2.12 dl_meta_child_get_header_type[]

Obtains the header type of the packet.

Microengine Assembler Syntax
#macro dl_meta_child_get_header_type [MODE, header_type]

Estimated Size

One instruction.

2.2.2.13 dl_meta_child_set_header_type[]

Sets the header type of the packet.

Microengine Assembler Syntax
#macro dl_meta_child_set_header_type [MODE, header_type]

Input

MODE This argument is ignored. The caller can specify META_TYPE_IGNORE.

buf_size The size of the parent buffer, in bytes.

Input

MODE This argument is ignored. The caller can specify META_TYPE_IGNORE.

Output

header_type The packet header type. If child buffer data exists, this is the child buffer
header type. Otherwise, this is the parent buffer header type.
Portability Framework Reference Manual 53

Dispatch Loop
Estimated Size

One instruction.

2.2.2.14 dl_meta_child_get_parent_free_list[]

Obtains the free list ID of the parent buffer pointed by the child buffer.

Microengine Assembler Syntax
#macro dl_meta_child_get_parent_free_list [MODE, free_list]

Estimated Size

One instruction.

2.2.2.15 dl_meta_child_set_parent_free_list[]

Sets the free list ID of the parent buffer pointed by the child buffer.

Microengine Assembler Syntax
#macro dl_meta_child_set_parent_free_list [MODE, free_list]

Input

MODE This argument is ignored. The caller can specify META_TYPE_IGNORE.

header_type The packet header type. If child buffer data exists, this is the child buffer
header type. Otherwise, this is the parent buffer header type.

Input

MODE This argument is ignored. The caller can specify META_TYPE_IGNORE.

Output

free_list The freelist ID of the parent buffer.
54 Portability Framework Reference Manual

Dispatch Loop
Estimated Size

One instruction.

2.2.2.16 dl_meta_child_get_rx_stat[]

Obtains the receive status of the packet.

Microengine Assembler Syntax
#macro dl_meta_child_get_rx_stat [MODE, rx_stat]

Estimated Size

One instruction.

2.2.2.17 dl_meta_child_set_rx_stat[]

Sets the receive status of the packet.

Microengine Assembler Syntax
#macro dl_meta_child_set_rx_stat [MODE, rx_stat]

Input

MODE This argument is ignored. The caller can specify META_TYPE_IGNORE.

free_list The freelist ID of the parent buffer.

Input

MODE This argument is ignored. The caller can specify META_TYPE_IGNORE.

Output

rx_stat The packet receive status. This field also includes the receive status of the
original packet.
Portability Framework Reference Manual 55

Dispatch Loop
Estimated Size

One instruction.

2.2.2.18 dl_meta_child_get_packet_size[]

Obtains the size in bytes of the packet across all buffers, including the child buffer.

Microengine Assembler Syntax
#macro dl_meta_child_get_packet_size [MODE, pkt_size]

Estimated Size

One instruction.

2.2.2.19 dl_meta_child_set_packet_size[]

Sets the size in bytes of the packet across all buffers, including the child buffer.

Microengine Assembler Syntax
#macro dl_meta_child_set_packet_size [MODE, pkt_size]

Input

MODE This argument is ignored. The caller can specify META_TYPE_IGNORE.

rx_stat The packet receive status.

Input

MODE This argument is ignored. The caller can specify META_TYPE_IGNORE.

Output

pkt_size The size of the packet, in bytes.

Input

MODE This argument is ignored. The caller can specify META_TYPE_IGNORE.

pkt_size The size of the packet, in bytes.
56 Portability Framework Reference Manual

Dispatch Loop
Estimated Size

One instruction.

2.2.2.20 dl_meta_child_get_output_port[]

Obtains the output port number for this packet.

Microengine Assembler Syntax
#macro dl_meta_child_get_output_port [MODE, out_port]

Estimated Size

One instruction.

2.2.2.21 dl_meta_child_set_output_port[]

Sets the output port number for this packet.

Microengine Assembler Syntax
#macro dl_meta_child_set_output_port [MODE, out_port]

Estimated Size

One instruction.

2.2.2.22 dl_meta_child_get_input_port[]

Obtains the input port number for this packet.

Input

MODE This argument is ignored. The caller can specify META_TYPE_IGNORE.

Output

out_port The output port number.

Input

MODE This argument is ignored. The caller can specify META_TYPE_IGNORE.

out_port The output port number.
Portability Framework Reference Manual 57

Dispatch Loop
Microengine Assembler Syntax
#macro dl_meta_child_get_input_port [MODE, in_port]

Estimated Size

One instruction.

2.2.2.23 dl_meta_child_set_input_port[]

Sets the input port number for this packet.

Microengine Assembler Syntax
#macro dl_meta_child_set_input_port [MODE, in_port]

Estimated Size

One instruction.

2.2.2.24 dl_meta_child_get_nexthop_id[]

Obtains the next hop ID for this packet.

Microengine Assembler Syntax
#macro dl_meta_child_get_nexthop_id [MODE, nhid]

Input

MODE This argument is ignored. The caller can specify META_TYPE_IGNORE.

Output

in_port The input port number.

Input

MODE This argument is ignored. The caller can specify META_TYPE_IGNORE.

in_port The input port number.
58 Portability Framework Reference Manual

Dispatch Loop
Estimated Size

One instruction.

2.2.2.25 dl_meta_child_set_nexthop_id[]

Sets the next hop ID for this packet.

Microengine Assembler Syntax
#macro dl_meta_child_set_nexthop_id [MODE, nhid]

Estimated Size

One instruction.

2.2.2.26 dl_meta_child_get_fabric_port[]

Obtains the fabric port number for this packet.

Microengine Assembler Syntax
#macro dl_meta_child_get_fabric_port [MODE, fabric_port]

Input

MODE This argument is ignored. The caller can specify META_TYPE_IGNORE.

Output

nhid The next hop ID.

Input

MODE This argument is ignored. The caller can specify META_TYPE_IGNORE.

nhid The next hop ID.

Input

MODE This argument is ignored. The caller can specify META_TYPE_IGNORE.
Portability Framework Reference Manual 59

Dispatch Loop
Estimated Size

One instruction.

2.2.2.27 dl_meta_child_set_fabric_port[]

Sets the fabric port number for this packet.

Microengine Assembler Syntax
#macro dl_meta_child_set_fabric_port [MODE, fabric_port]

Estimated Size

One instruction.

2.2.2.28 dl_meta_child_get_nexthop_id_type[]

Obtains the nexthop ID type for this packet. This type indicates how the next hop ID field has to be
interpreted.

Microengine Assembler Syntax
#macro dl_meta_child_get_nexthop_id_type [MODE, nhid_type]

Output

fabric_port The fabric port number.

Input

MODE This argument is ignored. The caller can specify META_TYPE_IGNORE.

fabric_port The fabric port number.

Input

MODE This argument is ignored. The caller can specify META_TYPE_IGNORE.

Output

nhid_type The next hop ID type.
60 Portability Framework Reference Manual

Dispatch Loop
Estimated Size

One instruction.

2.2.2.29 dl_meta_child_set_nexthop_id_type[]

Sets the next hop ID type for this packet.

Microengine Assembler Syntax
#macro dl_meta_child_set_nexthop_id_type [MODE, nhid_type]

Estimated Size

One instruction.

2.2.2.30 dl_meta_child_get_flow_id[]

Obtains the flow ID for this packet. This is typically obtained after packet classification and is
stored in meta data.

Microengine Assembler Syntax
#macro dl_meta_child_get_flow_id [MODE, flow_id]

Estimated Size

One instruction.

2.2.2.31 dl_meta_child_set_flow_id[]

Sets the flow ID for this packet.

Input

MODE This argument is ignored. The caller can specify META_TYPE_IGNORE.

nhid_type The next hop ID type.

Input

MODE This argument is ignored. The caller can specify META_TYPE_IGNORE.

Output

flow_id The flow identifier.
Portability Framework Reference Manual 61

Dispatch Loop
Microengine Assembler Syntax
#macro dl_meta_child_set_flow_id [MODE, flow_id]

Estimated Size

One instruction.

2.2.2.32 dl_meta_child_get_color[]

Obtains the color of this packet. This is typically obtained after the packet is flow metered and is
stored in meta data.

Microengine Assembler Syntax
#macro dl_meta_child_get_color [MODE, color]

Estimated Size

One instruction.

2.2.2.33 dl_meta_child_set_color[]

Sets the color of this packet.

Microengine Assembler Syntax
#macro dl_meta_child_set_color [MODE, color]

Input

MODE This argument is ignored. The caller can specify META_TYPE_IGNORE.

flow_id The flow identifier.

Input

MODE This argument is ignored. The caller can specify META_TYPE_IGNORE.

Output

color The color of the packet.
62 Portability Framework Reference Manual

Dispatch Loop
Estimated Size

One instruction.

2.2.2.34 dl_meta_child_get_class_id[]

Obtains the class ID of this packet. This is typically obtained after the packet classification and is
stored in meta data.

Microengine Assembler Syntax
#macro dl_meta_child_get_class_id [MODE, class_id]

Estimated Size

One instruction.

2.2.2.35 dl_meta_child_set_class_id[]

Sets the class ID of this packet.

Microengine Assembler Syntax
#macro dl_meta_child_set_class_id [MODE, class_id]

Input

MODE This argument is ignored. The caller can specify META_TYPE_IGNORE.

color The color of the packet.

Input

MODE This argument is ignored. The caller can specify META_TYPE_IGNORE.

Output

class_id The class identifier.
Portability Framework Reference Manual 63

Dispatch Loop
Estimated Size

One instruction.

2.2.2.36 dl_meta_child_get_parent_buffer_id[]

Obtains the parent buffer ID to which this child buffer is linked.

Microengine Assembler Syntax
#macro dl_meta_child_get_parent_buffer_id [MODE, buf_id]

Estimated Size

One instruction.

2.2.2.37 dl_meta_child_set_parent_buffer_id[]

Sets the parent buffer ID to which this child buffer is linked.

Microengine Assembler Syntax
#macro dl_meta_child_set_parent_buffer_id [MODE, buf_id]

Input

MODE This argument is ignored. The caller can specify META_TYPE_IGNORE.

class_id The class identifier.

Input

MODE This argument is ignored. The caller can specify META_TYPE_IGNORE.

Output

buf_id The parent buffer identifier.

Input

MODE This argument is ignored. The caller can specify META_TYPE_IGNORE.

buf_id The parent buffer identifier.
64 Portability Framework Reference Manual

Dispatch Loop
Estimated Size

Four instructions (maximum).

2.2.2.38 dl_meta_child_get_buffer_next[]

Obtains the next buffer handle for this child buffer.

Microengine Assembler Syntax
#macro dl_meta_child_get_buffer_next [MODE, buf_next]

Estimated Size

One instruction.

2.2.2.39 dl_meta_child_set_buffer_next[]

Sets the next buffer handle for this child buffer.

Microengine Assembler Syntax
#macro dl_meta_child_set_buffer_next [MODE, buf_next]

Estimated Size

One instruction.

2.2.2.40 dl_meta_child_get_packet_next[]

Obtains the next packet handle for this child buffer. This is not required to be processed by
software as the Q-array hardware manipulates this field.

Input

MODE Must be META_CHILD_CELL_MODE.

Output

buf_next The next buffer in the chain.

Input

MODE Must be META_CHILD_CELL_MODE.

buf_next The next buffer in the chain.
Portability Framework Reference Manual 65

Dispatch Loop
Microengine Assembler Syntax
#macro dl_meta_child_get_packet_next [MODE, pkt_next]

Estimated Size

One instruction.

2.2.2.41 dl_meta_child_set_packet_next[]

Sets the next packet handle for this child buffer.

Microengine Assembler Syntax
#macro dl_meta_child_set_packet_next [MODE, pkt_next]

Estimated Size

One instruction.

Input

MODE Must be META_CHILD_PACKET_MODE.

Output

pkt_next The next packet handle, in hierarchical queueing.

Input

MODE Must be META_CHILD_PACKET_MODE.

pkt_next The next packet handle, in hierarchical queueing.
66 Portability Framework Reference Manual

Resource Manager 3

The Resource Manager is used as a programming interface between Intel XScale® core
applications and microcode running on the microengines of the Intel® IXP2400 and IXP2800
Network Processors.

The Resource Manager functionality includes:

• Hardware resource allocation, initialization and configuration for

— Memory—SRAM, DRAM, Scratch, and Local Memory

— Hardware Queues and Rings

• Microengine Management including

— Loading

— Patching symbols

— Enable

— Disable

• Buffer Management

• Communication with Microblocks

Note: This API is not backward compatible with the API supported by the IXA SDK 2.0 Resource
Manager. In part, this is due to a number of feature changes between the Intel® IXP1200 Network
Processor and the Intel® IXP2400 and IXP2800 Network Processors. Also, with the
modularization of the SDK infrastructure, the scope and requirements for the IXA SDK Resource
Manager API have changed.

The IXA SDK Resource Manager API may be functionally grouped as shown in Table 3-1.
Portability Framework Reference Manual 67

Resource Manager
Resource Manager Error Codes are listed in Table 3-4.

Table 3-1. Resource Manager API Functional Groups

Resource Manager API Group Description

“System API” on page 70 Functions to initialize and terminate the API, get and set the system
hardware configuration, and so on.

“Microengine API” on page 86 Functions for microengine management.

“Hardware Resource Management API” on page 94 Functions to manage hardware rings and queues.

“Buffer Management API” on page 112 Functions for managing buffer freelists and for accessing packet
descriptors and data.

“Communication API” on page 134 Functions to communicate with the microengines, other core components
in the system, and the peer subsystem in a dual ingress/egress system.

“Remote Communication Extension API” on
page 160 Functions to communicate with remote systems.

“Memory Management API” on page 167 Functions to manage non operating system memory.

“System Repository API” on page 187 Functions to centrally manage configuration properties.

“64-Bit Counters API” on page 200 Functions to manage 64-bit provisioning counters.

“Services API” on page 206 Functions for software services including atomic operations, fast memory
copy operations, and so on.

“Hash API” on page 220 Functions to support 48-, 64-, and 128-bit hash operations.

“Microengine Services API” on page 227 Functions that coordinate operations between the Intel XScale® core and
microengines.

“Debug Support API” on page 235 Functions that provide debugging capabilities.
68 Portability Framework Reference Manual

Resource Manager
3.1 Defined Types, Enumerations, and Data Structures

The Resource Manager defines a set of basic types used across the entire SDK. These types are
defined to ease portability of the API across different operating systems, compilers and so on.
These types are listed in Table 3-2.

Table 3-2. Basic Types Supported by the Resource Manager

Basic Types Description

ix_int8 An 8-bit signed integer.

ix_uint8 An 8-bit unsigned integer.

ix_int16 A 16-bit signed integer.

ix_uint16 A 16-bit unsigned integer.

ix_int32 A 32-bit signed integer.

ix_uint32 A 32-bit unsigned integer.

ix_int64 A 64-bit signed integer.

ix_uint64 A 64-bit unsigned integer.

ix_uint128 A 128-bit unsigned integer. This type does not support full arithmetic operations.
However a set of macros has been provided to support this type.

ix_bit_mask8 An 8-bit bit mask.

ix_bit_mask16 A 16-bit bit mask.

ix_bit_mask32 A 32-bit bit mask.

ix_bit_mask64 A 64-bit bit mask.

ix_handle Generic handle type used throughout the framework API. All handle types are
aliases of this handle type.

ix_error Error token used through out the IX SDK 3.0. All IXA SDK 3.0 functions return this
type. This is a 32-bit unsigned integer that has packed a 16-bit error code, an 8-bit
error group and an 8-bit error level. Macros are provided for creating an error token
and for accessing the different fields.

_IX_OS_TYPE_ Preprocessor symbol that indicates for which operating system the SDK is currently
compiled. At the moment just four values are defined, but others may be added later:

• _IX_OS_VXWORKS_

• _IX_OS_LINUX_KERNEL_

• _IX_OS_LINUX_USER_

• _IX_OS_WIN32_

NOTE: _IX_OS_WIN32_ is used for debug with foreign model or for Win32
simulation.
Portability Framework Reference Manual 69

Resource Manager
3.2 System API

The Resource Manager System API provides functions to initialize and terminate the Resource
Manager, to get and set the hardware configuration, and so on. Table 3-3 lists the data types and
functions in this API.

Table 3-3. Resource Manager System API

Name Description

ix_rm_error_code The enumerated type listing error numbers specific to the Resource Manager.

ix_phy_type The enumerated type specifying the values for physical layer interfaces that could be
present on the board.

ix_port_type The enumerated type specifying the different types of physical interface.

ix_port The structure specifying a type and number for a physical interface.

ix_subsystem_type For a system composed of an ingress and egress subsystem, this enumerated type
defines the subsystem type.

ix_sys_config The structure specifying system configuration.

ix_memory_reserved_area Describes a microengine memory area to reserve at initialization time.

ix_rm_init() Initializes the Resource Manager API.

ix_rm_term() Terminates the Resource Manager API.

ix_rm_version_get_string() This function returns the Resource Manager library version information string.

ix_rm_sys_config_get() Returns the board-specific configuration.

ix_rm_error_get_string() Returns the error string corresponding to an ix_rm_error_code.

ix_rm_sys_config_set() Sets the system configuration.
70 Portability Framework Reference Manual

Resource Manager

e
e
3.2.1 Defined Types, Enumerations, and Data Structures

3.2.1.1 ix_rm_error_code

This enumerated data type lists Resource Manager specific error codes. An error code is obtained
from an ix_error token by calling the IX_ERROR_GET_CODE()macro. See the Intel® Internet
Exchange Architecture (IXA) Software Reference Manual for details on this macro.

The error code can be passed to the ix_rm_error_get_string()function to get an associated
error string. Table 3-4 lists error codes that could be returned by the Resource Manager library.

Table 3-4. Error Codes for the Resource Manager (Sheet 1 of 6)

Error Code Description

IX_RM_ERROR_SUCCESS Not an error code; this value indicates success.

IX_RM_ERROR_ASSERTION Assertion error code

Memory Manager error codes

IX_RM_ERROR_MEMORY_INIT_FAILED Memory API initialization operation failed.

IX_RM_ERROR_MEMORY_FINI_FAILED Memory API termination operation failed.

IX_RM_ERROR_BAD_MEMORY_TYPE Invalid memory type was passed.

IX_RM_ERROR_CANNOT_CREATE_CELL Internal memory block information structure couldn’t be
allocated.

IX_RM_ERROR_DATA_ALREADY_RELEASED Memory was already released.

IX_RM_ERROR_BAD_MEMORY_ADDRESS Invalid memory address was passed (not in range)

IX_RM_ERROR_MEMORY_IN_USE Passed memory address is already used by another entity in
the system.

IX_RM_ERROR_NULL_MEMORY_ADDRESS Passed memory address is a null value.

IX_RM_ERROR_CANNOT_ALLOCATE_SIZE Requested size can’t be allocated.

IX_RM_ERROR_CANNOT_RESERVE_MEMORY
Requested amount of memory cannot be reserved due to th
fact that part of the requested memory is already in use or th
requested size is too large.

IX_RM_ERROR_CELL_SPLIT_FAILED Internal memory block split operation failed.

IX_RM_ERROR_MEMORY_BAD_OFFSET Invalid memory offset was passed.

General Library error codes

IX_RM_ERROR_LIB_INIT_FAILED Resource Manager library initialization operation didn’t
complete successfully.

IX_RM_ERROR_LIB_FINI_FAILED Resource Manager library termination operation didn’t
complete successfully.

Communication API error codes

IX_RM_ERROR_PKT_DISP_ENG_INIT_FAILED Initialization operation for packet dispatch engine failed.

IX_RM_ERROR_MSG_DISP_ENG_INIT_FAILED Initialization operation for message dispatch engine failed.

IX_RM_ERROR_PKT_DISP_ENG_FINI_FAILED Termination operation for packet dispatch engine failed.

IX_RM_ERROR_MSG_DISP_ENG_FINI_FAILED Termination operation for message dispatch engine failed.

IX_RM_ERROR_PKT_DISP_ENG_START_FAILED Packet dispatch engine start operation failed.

IX_RM_ERROR_MSG_DISP_ENG_START_FAILED Message dispatch engine start operation failed.
Portability Framework Reference Manual 71

Resource Manager

nt

.

ed.
IX_RM_ERROR_PKT_DISP_ENG_STOP_FAILED Packet dispatch engine stop operation failed.

IX_RM_ERROR_MSG_DISP_ENG_STOP_FAILED Message dispatch engine stop operation failed.

IX_RM_ERROR_COMM_API_INIT_FAILED Communication API initialization operation didn’t complete
successfully.

IX_RM_ERROR_COMM_API_FINI_FAILED Communication API termination operation didn’t complete
successfully.

IX_RM_ERROR_COMM_QUEUE_FULL Communication ID internal queue is full.

IX_RM_ERROR_COMM_QUEUE_EMPTY Communication ID internal queue is empty.

IX_RM_ERROR_COMM_NOTIFICATION_ELEM_ALLOCATION_
FAILED

Allocation operation for communication ID notification eleme
failed.

IX_RM_ERROR_COMM_SEM_POOL_INIT_FAILED Communication API semaphore pool initialization operation
failed.

IX_RM_ERROR_COMM_SEM_NODE_ALLOCATION_FAILED Semaphore pool node allocation operation failed.

IX_RM_ERROR_COMM_SEM_GET_FAILED Notification semaphore retrieve operation failed.

IX_RM_ERROR_COMM_ISR_SETUP_FAILED Interrupt service routine (ISR) setup operation failed.

IX_RM_ERROR_COMM_DISPATCH_TH_INIT_FAILED Dispatch thread engine initialization operation failed.

IX_RM_ERROR_COMM_EP_DATA_ALLOCATION_FAILED Internal communication ID queue allocation operation failed

IX_RM_ERROR_COMM_EP_SEMA_CREATION_FAILED End point synchronization semaphore creation operation fail

IX_RM_ERROR_COMM_EP_MGR_INIT_FAILED End point manager initialization operation failed.

IX_RM_ERROR_COMM_EP_MGR_FINI_FAILED End point manager termination operation failed.

IX_RM_ERROR_COMM_EP_PCI_PROXIES_INIT_FAILED PCI end point proxies initialization operation failed.

IX_RM_ERROR_COMM_EP_PCI_PROXIES_FINI_FAILED PCI end point proxies termination operation failed.

IX_RM_ERROR_COMM_EP_REMOTE Communication ID is remote.

IX_RM_ERROR_COMM_EP_UBLOCK Communication ID corresponds to a microblock.

IX_RM_ERROR_COMM_EP_CC Communication ID corresponds to a core component.

IX_RM_ERROR_COMM_EP_RECV_CALLBACK Communication ID is in callback receive mode.

IX_RM_ERROR_COMM_EP_RECV_GET_SELECT Communication ID is in get/select receive mode.

IX_RM_ERROR_COMM_EP_MULTIPLE_CONSUMER Communication ID is in multiple consumer mode.

IX_RM_ERROR_COMM_EP_CC_MODE_ENABLED Communication ID has core component mode enabled.

IX_RM_ERROR_COMM_EP_CC_MODE_DISABLED Communication ID has core component mode disabled.

IX_RM_ERROR_REMOTE_COMM_API_INIT_FAILED Remote communication API initialization operation didn’t
complete successfully.

IX_RM_ERROR_REMOTE_COMM_API_FINI_FAILED Remote communication API termination operation didn’t
complete successfully.

IX_RM_ERROR_REMOTE_COMM_SERVICE_ACTIVE Another remote communication service is active.

IX_RM_ERROR_COMM_PCI_INIT_FAILED PCI initialization operation didn’t complete successfully.

IX_RM_ERROR_COMM_PCI_FINI_FAILED PCI termination operation didn’t complete successfully.

IX_RM_ERROR_COMM_PCI_GET_REMOTE_DEV_FAILED PCI remote device retrieve operation failed.

IX_RM_ERROR_COMM_PCI_TX_INIT_FAILED PCI transmit engine initialization operation didn’t complete
successfully.

Table 3-4. Error Codes for the Resource Manager (Sheet 2 of 6)

Error Code Description
72 Portability Framework Reference Manual

Resource Manager

lly.

.

y
IX_RM_ERROR_COMM_PCI_RX_INIT_FAILED PCI receive engine initialization operation didn’t complete
successfully.

IX_RM_ERROR_COMM_PCI_TX_START_FAILED PCI transmit engine start didn’t complete successfully.

IX_RM_ERROR_COMM_PCI_RX_START_FAILED PCI receive engine start didn’t complete successfully.

IX_RM_ERROR_COMM_PCI_TX_STOP_FAILED PCI transmit engine stop didn’t complete successfully.

IX_RM_ERROR_COMM_PCI_RX_STOP_FAILED PCI receive engine stop didn’t complete successfully.

IX_RM_ERROR_COMM_PCI_RX_FINI_FAILED PCI receive termination operation didn’t complete successfu

IX_RM_ERROR_COMM_PCI_TX_FINI_FAILED PCI transmit termination operation didn’t complete
successfully.

IX_RM_ERROR_COMM_PCI_INT_CONNECT_FAILED PCI communication interrupt ISR registration failed.

IX_RM_ERROR_COMM_PCI_INT_ENABLE_FAILED PCI communication interrupt ISR enable failed.

IX_RM_ERROR_COMM_PCI_INT_DISABLE_FAILED PCI communication interrupt ISR disable failed.

IX_RM_ERROR_COMM_PCI_RX_TH_INIT_FAILED PCI receive thread initialization operation failed.

IX_RM_ERROR_COMM_PCI_TX_TH_INIT_FAILED PCI transmit thread initialization operation failed.

IX_RM_ERROR_COMM_PCI_RX_SEMA_CREATION_FAILED PCI receive semaphore creation operation failed.

IX_RM_ERROR_COMM_PCI_TX_SEMA_CREATION_FAILED PCI transmit semaphore creation operation failed.

IX_RM_ERROR_COMM_PCI_TX_CTRL_INFO_ALLOC_FAILED PCI transmit control information allocation operation failed.

IX_RM_ERROR_COMM_PCI_TX_CTRL_INFO_GET_PHYS_
OFFSET_FAILED Retrieve operation for PCI transmit control info offset failed.

IX_RM_ERROR_COMM_PCI_RX_HW_FL_CREATE_FAILED PCI receive hardware free list create operation failed.

IX_RM_ERROR_COMM_PCI_RX_SW_FL_CREATE_FAILED PCI receive software free list create operation failed.

IX_RM_ERROR_COMM_PCI_TX_CTRL_INFO_FREE_FAILED PCI transmit control information deallocation operation failed

IX_RM_ERROR_COMM_PCI_TX_SEMA_FINI_FAILED PCI transmit semaphore termination operation failed.

IX_RM_ERROR_COMM_PCI_RX_SW_FL_DELETE_FAILED PCI receive software free list delete operation failed.

IX_RM_ERROR_COMM_PCI_RX_HW_FL_DELETE_FAILED PCI receive hardware free list delete operation failed.

IX_RM_ERROR_COMM_PCI_RX_SEMA_FINI_FAILED PCI receive semaphore termination operation failed.

IX_RM_ERROR_COMM_PCI_UNSUPPORTED_MEMORY_TYPE Unsupported memory type was passed for the PCI
communication received buffer.

Hardware API error codes

IX_RM_ERROR_HW_API_INIT_FAILED Hardware API initialization operation didn’t complete
successfully.

IX_RM_ERROR_HW_API_FINI_FAILED Hardware API termination operation didn’t complete
successfully.

IX_RM_ERROR_HW_QARRAY_MGR_ALLOC_FAILED QArray manager allocation operation failed, therefore QArra
manager is not initialized.

IX_RM_ERROR_HW_QARRAY_MGR_DEALLOC_FAILED QArray manager deallocation operation failed.

IX_RM_ERROR_HW_QUEUE_CREATE_FAILED Hardware queue create operation failed.

IX_RM_ERROR_HW_RING_CREATE_FAILED Hardware scratch ring create operation failed.

IX_RM_ERROR_HW_RING_DELETE_FAILED Hardware scratch ring delete operation failed.

IX_RM_ERROR_HW_SRAM_RING_PUT_FAILED SRAM ring put operation failed.

Table 3-4. Error Codes for the Resource Manager (Sheet 3 of 6)

Error Code Description
Portability Framework Reference Manual 73

Resource Manager

ly.

y.

lly.

dy

e.
IX_RM_ERROR_HW_SCRATCH_RING_PUT_FAILED Scratch ring put operation failed.

IX_RM_ERROR_HW_SRAM_RING_GET_FAILED SRAM ring retrieve operation failed.

IX_RM_ERROR_HW_SCRATCH_RING_GET_FAILED Scratch ring retrieve operation failed.

Buffer API error codes

IX_RM_ERROR_BUF_API_INIT_FAILED Buffer API initialization operation didn’t complete successful

IX_RM_ERROR_BUF_API_FINI_FAILED Buffer API termination operation didn’t complete successfull

IX_RM_ERROR_BUF_QUEUES_ALLOC_FAILED Allocation of hardware queues for buffer free lists failed.

IX_RM_ERROR_BUF_HANDLE_INVALID Invalid handle was passed.

IX_RM_ERROR_BUF_FREE_LIST_INVALID Invalid free list handle was passed.

IX_RM_ERROR_BUF_FREE_LIST_ID_INVALID Invalid free list identifier was passed.

IX_RM_ERROR_BUF_FREE_LIST_BAD_SIZE Invalid size of free list was passed.

IX_RM_ERROR_BUF_FREE_LIST_SIZE_TOO_LARGE Passed value for free list size is larger than legal value.

IX_RM_ERROR_BUF_FREE_LIST_BAD_META_SIZE Passed value for free list meta data is invalid.

IX_RM_ERROR_BUF_FREE_LIST_ALL_IN_USE Free list can’t be created because all free lists are already in
use.

IX_RM_ERROR_BUF_FREE_LIST_META_ALLOCATION_FAILED Allocation operation for meta data didn’t complete successfu

IX_RM_ERROR_BUF_FREE_LIST_INTERNAL_META_
ALLOCATION_FAILED

Allocation operation for free list internal meta memory block
didn’t complete successfully.

This error is returned only if IX_RM_SPLIT_META_DATA is
defined.

IX_RM_ERROR_BUF_FREE_LIST_DEBUG_INFO_ALLOCATION
_FAILED

Allocation for free list debugging information memory block
didn’t complete successfully.

This error is returned only if _IX_RM_BUFFER_DEBUG_ is
defined.

IX_RM_ERROR_BUF_FREE_LIST_DATA_ALLOCATION_FAILED Free list data memory block allocation operation failed.

IX_RM_ERROR_BUF_FREE_LIST_FINI_FAILED Free list termination operation failed.

IX_RM_ERROR_BUF_FREE_LIST_CREATION_FAILED Free list creation operation failed.

IX_RM_ERROR_BUF_NO_FREE_BUFFERS Operation didn’t complete because no buffers are available.

IX_RM_ERROR_BUF_ALREADY_LINKED Link operation failed because the first buffer parameter alrea
has a link.

System Repository API error codes

IX_RM_ERROR_CP_API_INIT_FAILED System repository API initialization operation didn’t complete
successfully.

IX_RM_ERROR_CP_API_FINI_FAILED System repository API termination operation didn’t complete
successfully.

IX_RM_ERROR_CP_HANDLE_NULL Passed configuration propery handle is null.

IX_RM_ERROR_CP_NAME_TOO_LONG Passed configuration propery name is longer than legal valu

IX_RM_ERROR_CP_NAME_NULL Passed configuration propery name is null.

IX_RM_ERROR_CP_BAD_NAME Passed configuration propery name is invalid.

IX_RM_ERROR_CP_ALREADY_EXISTS Configuration property cannot be created because the
requested name already exists at the same node level.

Table 3-4. Error Codes for the Resource Manager (Sheet 4 of 6)

Error Code Description
74 Portability Framework Reference Manual

Resource Manager

s.

e.
IX_RM_ERROR_CP_CREATION_FAILED Configuration property creation operation failed.

IX_RM_ERROR_CP_FAILED_TO_ACCESS_ATTRIBUTES Configuration property attributes can’t be accessed.

IX_RM_ERROR_CP_CONSTANT_DELETE Constant configuration property can’t be deleted.

IX_RM_ERROR_CP_CONSTANT_SET_VALUE Value for constant configuration property can’t be set.

IX_RM_ERROR_CP_FAILED_TO_LINK Configuration property can’t be linked.

IX_RM_ERROR_CP_DATA_UINT32 Data type of configuration property can’t be changed directly
from 32 bit to opaque.

IX_RM_ERROR_CP_DATA_OPAQUE Data type of configuration property can’t be changed directly
from opaque to 32 bit.

IX_RM_ERROR_CP_BUFFER_GET_NEXT_FAILED Retrieval of next configuration property failed.

IX_RM_ERROR_CP_BUFFER_TOO_SMALL Configuration property internal buffer size is smaller than the
passed data.

IX_RM_ERROR_CP_FAILED_TO_ALLOCATE_NOTIFICATION_
TOKEN Configuration property notification token wasn’t allocated.

IX_RM_ERROR_CP_NOTIFICATION_ACTIVE Operation can’t be performed while notification is in progres

IX_RM_ERROR_CP_PROPERTY_NOT_FOUND Requested configuration property is not in the database.

64-Bit Counter API error codes

IX_RM_ERROR_64BIT_COUNTER_INIT_FAILED 64-bit counter API initialization operation didn’t complete
successfully.

IX_RM_ERROR_64BIT_COUNTER_FINI_FAILED 64-bit counter API termination operation didn’t complete
successfully.

IX_RM_ERROR_64BIT_COUNTER_MEMORY_INIT_FAILED Memory initialization for 64-bit counter didn’t complete
successfully.

IX_RM_ERROR_64BIT_COUNTER_BLOCK_INIT_FAILED Block initialization for 64-bit counter didn’t complete
successfully.

IX_RM_ERROR_64BIT_COUNTER_ALL_BLOCKS_IN_USE Block can’t be created because all blocks are currently in us

IX_RM_ERROR_64BIT_COUNTER_INACTIVE 64-bit counter is inactive.

IX_RM_ERROR_64BIT_COUNTER_HANDLE_INVALID Passed handle is invalid.

IX_RM_ERROR_64BIT_COUNTER_UPDATE_TH_INIT_FAILED Initialization of 64-bit counter update thread failed.

IX_RM_ERROR_64BIT_COUNTER_UPDATE_SEM_INIT_FAILED Initialization of 64-bit counter update semaphore failed.

IX_RM_ERROR_64BIT_COUNTER_BAD_OVERFLOW_TIME Passed value for overflow time is invalid.

IX_RM_ERROR_64BIT_COUNTER_BAD_INTERNAL_MEMORY Passed value for type of internal memory is invalid.

IX_RM_ERROR_64BIT_COUNTER_NOT_ENOUGH_COUNTERS Operation failed because too few counters are available.

IX_RM_ERROR_64BIT_COUNTER_SWAP_MEM_ALLOC_FAILED 64-bit counter atomic memory swap operation failed.

Microengine API error codes

IX_RM_ERROR_ME_API_INIT_FAILED Microengine API initialization operation didn’t complete
successfully.

IX_RM_ERROR_ME_API_FINI_FAILED Microengine API termination operation didn’t complete
successfully.

IX_RM_ERROR_ME_MAP_UCODE_FAILED Microcode mapping of UOF code to memory failed.

Table 3-4. Error Codes for the Resource Manager (Sheet 5 of 6)

Error Code Description
Portability Framework Reference Manual 75

Resource Manager

y.

.

e
3.2.1.2 ix_phy_type

This enumerated type lists the physical layer interfaces recognized by the board.

C Syntax
typedef enum ix_e_phy_type {

IX_PHY_TYPE_FIRST = 0,
IX_PHY_TYPE_OTHER = IX_PHY_TYPE_FIRST,
IX_PHY_TYPE_IX_BUS,
IX_PHY_TYPE_UTOPIA_3,
IX_PHY_TYPE_SPI_4,
IX_PHY_TYPE_LAST

} ix_phy_type;

IX_RM_ERROR_ME_LOAD_UCODE_FAILED Microcode loading of UOF code to memory failed.

IX_RM_ERROR_ME_LOAD_TO_USTORE_FAILED Microcode loading of UOF code to microstore failed.

IX_RM_ERROR_ME_LOAD_UCODE_FROM_WB_FAILED Microcode loading of UOF code from workbench failed.

IX_RM_ERROR_ME_START_FAILED Microengine start operation failed.

IX_RM_ERROR_ME_STOP_FAILED Microengine stop operation failed.

IX_RM_ERROR_ME_RESET_FAILED Microengine reset operation failed.

IX_RM_ERROR_ME_ENABLE_CTX_FAILED Enable operation for microengine contexts failed.

IX_RM_ERROR_ME_DISABLE_CTX_FAILED Disable operation for microengine contexts failed.

IX_RM_ERROR_ME_REGISTER_INTERNAL_SYMBOLS_FAILED Internal symbol registration operation failed.

IX_RM_ERROR_ME_PATCH_SYMBOLS_FAILED Symbol patch to microcode failed.

Hash API error codes

IX_RM_ERROR_HASH_API_INIT_FAILED Hash API initialization operation didn’t complete successfull

IX_RM_ERROR_HASH_API_FINI_FAILED Hash API termination operation didn’t complete successfully

Microengine Services API error codes

IX_RM_ERROR_ME_XSCALE_LOCK_INIT_FAILED ME to XScale lock API initialization operation didn’t complet
successfully.

IX_RM_ERROR_ME_XSCALE_LOCK_FINI_FAILED ME to XScale lock API API termination operation didn’t
complete successfully.

IX_RM_ERROR_ME_XSCALE_LOCK_MEM_ALLOC_FAILED Scratch memory allocation for locks failed.

IX_RM_ERROR_ME_XSCALE_LOCK_OUT_OF_LOCKS Operation failed because no more locks are available.

IX_RM_ERROR_ME_XSCALE_LOCK_NOT_ACTIVE Operation failed because passed lock can’t be used.

IX_RM_ERROR_ME_XSCALE_LOCK_IS_LOCKED Operation failed because lock is already enabled.

IX_RM_ERROR_ME_XSCALE_LOCK_BAD_MEMORY Passed scratch memory value is invalid.

IX_RM_ERROR_ME_XSCALE_LOCK_IS_LOCKED_BY_ME Operation failed because lock is enabled by microengine.

IX_RM_ERROR_UNKNOWN Error has no text message associated with it.

Table 3-4. Error Codes for the Resource Manager (Sheet 6 of 6)

Error Code Description
76 Portability Framework Reference Manual

Resource Manager
Defined Values

IX_PHY_TYPE_OTHER These values specify types for various physical layer
interfaces recognized by the Intel® IXP2400 and IXP2800
Network Processors.IX_PHY_TYPE_IX_BUS

IX_PHY_TYPE_UTOPIA_3

IX_PHY_TYPE_SPI_4
Portability Framework Reference Manual 77

Resource Manager
3.2.1.3 ix_port_type

This enumerated type lists the link layer interfaces present on the board.

C Syntax
typedef enum ix_e_port_type {
 IX_PORT_TYPE_OTHER = 0,
 IX_PORT_TYPE_FAST_ETHERNET,
 IX_PORT_TYPE_GIGABIT_ETHERNET,
 IX_PORT_TYPE_ATM,
 IX_PORT_TYPE_POS,
 IX_PORT_TYPE_FRAME_RELAY,
 IX_PORT_TYPE_CSIX_FABRIC,
 IX_PORT_TYPE_SOFTWARE_LOOPBACK
 IX_PORT_TYPE_LAST
} ix_port_type;

Defined Values

IX_PORT_TYPE_OTHER These values specify types for various link layer
interfaces supported by the Intel® IXP2400 and IXP2800
Network Processors.IX_PORT_TYPE_FAST_ETHERNET

IX_PORT_TYPE_GIGABIT_ETHERNET

IX_PORT_TYPE_ATM

IX_PORT_TYPE_POS

IX_PORT_TYPE_FRAME_RELAY

IX_PORT_TYPE_CSIX_FABRIC

IX_PORT_TYPE_SOFTWARE_LOOPBACK
78 Portability Framework Reference Manual

Resource Manager
3.2.1.4 ix_port

This structure represents a link layer interface to the Intel® IXP2400 and IXP2800 Network
Processors.

Microengine C Syntax
typedef struct ix_s_port
{

ix_uint32 m_Number;
ix_port_type m_vLinkType;
ix_phy_type m_vPhyType;
ix_port_speed m_PortSpeed;

} ix_port;

3.2.1.5 ix_subsystem_type

This enumerated type lists the supported subsystem types.

C Syntax
typedef enum ix_e_comm_subsystem_type {
 IX_SUBSYSTEM_TYPE_FIRST = 0,
 IX_SUBSYSTEM_TYPE_INGRESS = IX_SUBSYSTEM_TYPE_FIRST,
 IX_SUBSYSTEM_TYPE_EGRESS,
 IX_SUBSYSTEM_TYPE_LAST
} ix_subsystem_type;

Data Members

m_vNumber The port number.

m_vLinkType The link-layer type. See Section 3.2.1.3,
“ix_port_type.”

m_vPhyType The physical-layer type. See Section 3.2.1.2,
“ix_phy_type.”

m_PortSpeed The port speed.

Defined Values

IX_SUBSYSTEM_TYPE_INGRESS Specifies an ingress processor.

IX_SUBSYSTEM_TYPE_EGRESS Specifies an egress processor.
Portability Framework Reference Manual 79

Resource Manager
3.2.1.6 ix_sys_config

This structure describes the current system—that is, board—configuration containing the number
of ports physically present on the system as well as the number of microengines, amount of SRAM,
and number of SRAM channels.

C Syntax
typedef struct ix_s_sys_config {
/* This section is constant and can not be modified once initialized */

ix_uint32 m_SystemId;
ix_subsystem_type m_SubsystemType;
ix_uint32 m_NumberOfMicroengines;
ix_uint32 m_NumberOfSramChannels;
ix_uint32 m_NumberOfDramChannels;
ix_uint32 m_ChipId;
ix_uint32 m_NumberOfPorts;
ix_port m_aPorts[IX_MAX_NUM_PORTS];

//
/* This is the section that can be modified after initialization */

ix_uint32 m_Endianess; /* 0 for big and 1 little. */
} ix_sys_config;
80 Portability Framework Reference Manual

Resource Manager
Data Members

m_SystemId The system identifier for a multi-system configuration—a
32-bit unsigned integer.

m_SubsystemType The subsystem type. See Section 3.2.1.5,
“ix_subsystem_type.”

m_NumberOfMicroengines The number of microengines in the system—a 32-bit
unsigned integer.

m_NumberOfSramChannels The number of SRAM memory channels—a 32-bit
unsigned integer.

m_NumberOfDramChannels The number of DRAM memory channels—a 32-bit
unsigned integer.

m_ChipId The chip identifier—a 32-bit unsigned integer.

m_NumberOfPorts The number of ports physically present in this system—a
32-bit unsigned integer.

m_aPorts[IX_MAX_NUM_PORTS] The array of physical ports. See Section 3.2.1.4,
“ix_port.”

m_Endianess The byte ordering for multibyte words—a 32-bit unsigned
integer.

• 0—big-endian ordering

• 1—little-endian ordering

NOTE: This element may be changed after initialization.
Portability Framework Reference Manual 81

Resource Manager
3.2.1.7 ix_memory_reserved_area

This structure describes a microengine memory area to reserve at initialization time. This allows
the Resource Manager to respect this memory used by microcode such that there is no requirement
that microcode have any knowledge of the existence of the Resource Manager.

Microengine C Syntax
typedef struct ix_s_memory_reserved_area {

ix_memory_type m_Type;
ix_uint32 m_Channel;
ix_uint32 m_StartOffset;
ix_uint32 m_Size;

} ix_memory_reserved_area;

3.2.2 API Functions

3.2.2.1 ix_rm_init()

This function initializes the Resource Manager. The calling application must call this function
before making any other Resource Manager call. Applications must call this function before
utilizing any of the Resource Manager services.

The arg_pReservedAreas parameter is the beginning of an array listing memory areas that need
to be reserved. The end of the array is signaled by an entry of size zero. If this parameter is NULL
then it signals that there is no memory area that needs to be reserved.

The main reason for the arg_pReservedAreas parameter is that Microengine C generated
microcode might need some areas of the memory controlled by the Resource Manager for creating
variables. As there is no coordination between the Microengine C compiler, the loader, and the
Resource Manager two logical modules may access the same memory location with different logic.
At the time the microcode is loaded in memory, the Resource Manager checks if any memory areas
are needed by the microcode, and if there are such areas, the Resource Manager checks if these
areas have been reserved at initialization time.

If areas needed by microcode are not reserved at initialization time an error is signaled and the
areas that must be reserved for microcode use are displayed. To correct this condition the calling
program must create an array of reserved areas and pass this array to the initialization function.

Data Members

m_Type The type of memory to reserve.

m_Channel The channel of the memory to reserve.

m_StartOffset The offset to the base address for the memory area to reserve—in bytes.

m_Size The size of the memory area to reserve—in bytes.
82 Portability Framework Reference Manual

Resource Manager
The first time this function is called in a system, the Resource Manager performs internal
initialization. Any other subsequent call to the ix_rm_init() function results in an increment of
an internal counter with no initialization done. In this case the passed parameter is disregarded. A
number of ix_rm_init() calls must be followed by the same number of ix_rm_term() calls in
order to bring the system to its initial state.

Note: If any other Resource Manager call is made prior to this one, the result is unpredictable.

C Syntax
ix_error ix_rm_init(const ix_memory_reserved_area* arg_pReservedAreas);

3.2.2.2 ix_rm_term()

This operation should be called when the Resource Manager services are no longer needed. It
provides all necessary cleanup. Applications must call this function when services from the
Resource Manager are no longer used.

Note: The calling application must not call any Resource Manager functions after this call returns.

C Syntax
ix_error ix_rm_term(void);

Input

arg_pReservedAreas A pointer to the beginning of an array of memory areas to be reserved
at initialization time.

Output/Returns

Return Value Returns IX_SUCCESS if successful and a valid ix_error otherwise.

Output

Return Value Returns IX_SUCCESS if successful and a valid ix_error otherwise.
Portability Framework Reference Manual 83

Resource Manager
3.2.2.3 ix_rm_error_get_string()

This is a support function that retrieves a string representation of error codes specific to the
Resource Manager and specified by ix_rm_error_code. Resource Manager specific error codes
are passed within the ix_error return value for all interface functions. This function can be used
to get a string representation of the value of that error code.

C Syntax
const char* ix_rm_error_get_string (

ix_rm_error_code arg_vRmError);

3.2.2.4 ix_rm_sys_config_get()

Returns the board-specific configuration. The calling application is responsible for allocating the
arg_pSysConfig structure and passing a pointer to it into the function.

C Syntax
ix_error ix_rm_sys_config_get(

ix_sys_config* arg_pSysConfig);

3.2.2.5 ix_rm_version_get_string()

This function returns the library version description—a string.

C Syntax
const char* ix_rm_version_get_string(void);

Input

ix_rm_error_code The Resource Manager-specific error code whose string representation
is to be returned.

Output

Return Value The string representation corresponding to the error code.

Output/Returns

Return Value Returns IX_SUCCESS if the operation is successful and a valid
ix_error value otherwise.

arg_pSysConfig The location where the system configuration is written.
84 Portability Framework Reference Manual

Resource Manager
3.2.2.6 ix_rm_sys_config_set()

Sets the system configuration. Only certain parameters of the system configuration can be set, the
others are ignored.

C Syntax
ix_error ix_rm_sys_config_set(const ix_sys_config* arg_pSysConfig);

Output/Returns

Return Value Returns the product version description—a string.

Input

arg_pSysConfig The location of the system configuration structure specifying system
parameter values to set.

Output/Returns

Return Value IX_SUCCESS if successful or a valid ix_error token for failure.
Portability Framework Reference Manual 85

Resource Manager
3.3 Microengine API

Table 3-5 lists the functions and data structures in the microengine API.

3.3.1 Defined Types, Enumerations, and Data Structures

3.3.1.1 ix_imported_symbol

This data structure represents a microcode symbol as used in the Resource Manager. This structure
defines a name-value pair where the name is the imported symbol’s name and the value is the value
to patch into microcode.

C Syntax
typedef struct ix_imported_symbol {

ix_uint32 m_Value;
char* m_Name;

} ix_imported_symbol;

Table 3-5. Resource Manager Microengine API

Name Description

ix_imported_symbol The structure represents a microcode symbol.

ix_rm_ueng_set_ucode() Sets the microcode image for microengines from a file.

ix_rm_ueng_map_ucode() Sets the microcode image for microengines from a buffer.

ix_rm_ueng_reset_all() Stops and resets all active microengines.

ix_rm_ueng_patch_symbols() Patches symbols.

ix_rm_ueng_load() Loads the microcode into the microstore of the microengines.

ix_rm_ueng_start() Starts the specified microengines.

ix_rm_ueng_stop() Stops the specified microengines.

ix_rm_ueng_reset() Resets the specified microengines.

ix_rm_ueng_enable() Enables the specified microengines.

ix_rm_ueng_disable() Disables the specified microengines.

Data Members

m_Value The name for a name-value pair.

m_Name The value for a name-value pair.
86 Portability Framework Reference Manual

Resource Manager
3.3.2 API Functions

3.3.2.1 ix_rm_ueng_set_ucode()

This function sets the microcode image for microengines from a file. The arg_pImageName
represents the image name containing the microcode in UOF format. The images are not loaded
into the microengines’ microstore because symbols still need to be patched using the function
ix_rm_ueng_patch_symbols(). The images are loaded at the time of the call to
ix_rm_ueng_load().

C Syntax
ix_error ix_rm_ueng_set_ucode(

const char* arg_pImageName);

Input

arg_pImageName The name the image containing the microcode in UOF format.

Output/Returns

Return Value Returns IX_SUCCESS if successful and a valid ix_error value otherwise.
Portability Framework Reference Manual 87

Resource Manager
3.3.2.2 ix_rm_ueng_map_ucode()

Sets the microcode image for microengines from a buffer. The image is taken from a buffer
containing the microcode in UOF format. The images are not loaded with this call so that the
calling application can first patch symbols using a call to ix_rm_ueng_patch_symbols(). The
microstore is loaded with an image at the time of the call to ix_rm_ueng_load(). The content of
the buffer might be modified during this call—arg_pUOFImage should point to a writeable
memory location rather than a read-only memory location. The buffer pointed to by
arg_pUOFImage should be valid as long as this microcode is in use. The buffer can be released
after a call to ix_rm_ueng_reset_all() or ix_rm_term()or after any other buffer or
microcode file becomes the active image.

C Syntax
ix_error ix_rm_ueng_map_ucode(

void* arg_pUOFImage,
ix_int32 arg_Size);

3.3.2.3 ix_rm_ueng_reset_all()

This function stops and resets all active microengines. It removes the active UOF image from
memory and brings the microengine system into initial state. This call is useful when the calling
application must change the microcode image run by the microengines at runtime.

C Syntax
ix_error ix_rm_ueng_reset_all();

Input

arg_pUOFImage A pointer to the image buffer containing the microcode to map.

arg_Size The size of the image buffer.

Output/Returns

Return Value Returns IX_SUCCESS if successful and a valid ix_error value
otherwise.

Output/Returns

Return Value Returns IX_SUCCESS if successful and a valid ix_error value otherwise.
88 Portability Framework Reference Manual

Resource Manager
3.3.2.4 ix_rm_ueng_patch_symbols()

This function patches imported symbols into the microcode. Applications can use this call to
specify which imported variables should be patched and with what value. The call also specifies
the microengine number so that values may be different for different microengines.

Note: Patching should only be done between the time the microcode image has been loaded into memory
using the ix_rm_ueng_set_ucode()or ix_rm_ueng_map_ucode() calls, until the time the
microcode is loaded into the microstore using the ix_rm_ueng_load() call. Symbols to be
patched are stored in memory until they are actually bound to microcode through the call to
ix_rm_ueng_load().

C Syntax
ix_error ix_rm_ueng_patch_symbols (

ix_uint32 arg_UengNumber,
ix_uint32 arg_SymbolsNumber,
ix_imported_symbol arg_aSymbols[]);

Input

arg_UengNumber The microengine number identifying the microengine whose
microcode is to be patched.
Allowed values for the microengine number are 0x00 through 0x03
and 0x10 through 0x13 for the Intel® IXP2400 Network Processor
and 0x00 through 0x07 and 0x10 through 0x17 for the Intel®
IXP2800 Network Processor. The validity of the microengine number
is checked only in debug mode.

arg_SymbolsNumber The number of symbols in the arg_Symbols array.

arg_Symbols The array of symbols to patch into the microcode.

Output/Returns

Return Value Returns IX_SUCCESS if successful and a valid ix_error value otherwise.
Portability Framework Reference Manual 89

Resource Manager
3.3.2.5 ix_rm_ueng_load()

Load the microcode into the microengine store. This function loads microcode for all
microengines. Call ix_rm_ueng_set_ucode()or ix_rm_ueng_map_ucode() before calling
this function.

C Syntax
ix_error ix_rm_ueng_load(void);

3.3.2.6 ix_rm_ueng_start()

This function starts the specified microengine and enables the selected contexts.

C Syntax
ix_error ix_rm_ueng_start(

ix_uint32 arg_MENumber,
ix_bit_mask32 arg_EnableContextMask);

Output/Returns

Return Value Returns IX_SUCCESS if successful and a valid ix_error value
otherwise.

Input

arg_MENumber The microengine’s number for it to be started.

Allowed values for the microengine number are 0x00 through
0x03 and 0x10 through 0x13 for the Intel® IXP2400 Network
Processor and 0x00 through 0x07 and 0x10 through 0x17 for the
Intel® IXP2800 Network Processor. The validity of the
microengine number is checked only in debug mode.

arg_EnableContextMask Mask specifying the microengine contexts to be enabled at start
time.

Output/Returns

Return Value Returns IX_SUCCESS if successful and a valid ix_error value
otherwise.
90 Portability Framework Reference Manual

Resource Manager
3.3.2.7 ix_rm_ueng_stop()

This function stops the specified microengine with all active contexts.

C Syntax
ix_error ix_rm_ueng_stop(

ix_uint32 arg_MENumber);

Input

arg_MENumber The microengine’s number for the microengine to be stopped.

Allowed values for the microengine number are 0x00 through 0x03 and
0x10 through 0x13 for the Intel® IXP2400 Network Processor and 0x00
through 0x07 and 0x10 through 0x17 for the Intel® IXP2800 Network
Processor. The validity of the microengine number is checked only in
debug mode.

Output/Returns

Return Value Returns IX_SUCCESS if successful and a valid ix_error value otherwise.
Portability Framework Reference Manual 91

Resource Manager
3.3.2.8 ix_rm_ueng_reset()

This function resets the specified microengine. If the arg_ClearRegisters is non-zero then all
the microengine registers are cleared and the microengine is in the same state as at startup.

C Syntax
ix_error ix_rm_ueng_reset(

ix_uint32 arg_MENumber,
ix_uint32 arg_ClearRegisters)

3.3.2.9 ix_rm_ueng_enable()

This function enables the contexts specified by the arg_EnableContextMask parameter. A
context represents a thread in the microengine. Only the enabled threads run for the specified
microengine. The microengine should be started in order for this call to succeed.

C Syntax
ix_error ix_rm_ueng_enable(

ix_uint32 arg_MENumber,
ix_bit_mask32 arg_EnableContextMask);

Input

arg_MENumber The number specifying the microengine to be reset.

Allowed values for the microengine number are 0x00 through 0x03
and 0x10 through 0x13 for the Intel® IXP2400 Network Processor
and 0x00 through 0x07 and 0x10 through 0x17 for the Intel®
IXP2800 Network Processor. The validity of the microengine
number is checked only in debug mode.

arg_ClearRegisters Flag specifying whether all registers should be cleared on reset.

Output/Returns

Return Value Returns IX_SUCCESS if successful and a valid ix_error value
otherwise.
92 Portability Framework Reference Manual

Resource Manager
3.3.2.10 ix_rm_ueng_disable()

This function disables one or more contexts of the specified microengine. The
arg_DisableContextMask parameter specifies which contexts should be disabled. The
microengine should be started in order for this call to succeed.

C Syntax
ix_error ix_rm_ueng_disable(

ix_uint32 arg_MENumber,
ix_bit_mask32 arg_DisableContextMask);

Input

arg_MENumber The microengine’s number for context to be enabled.

Allowed values for the microengine number are 0x00 through 0x03
and 0x10 through 0x13 for the Intel® IXP2400 Network Processor
and 0x00 through 0x07 and 0x10 through 0x17 for the Intel®
IXP2800 Network Processor. The validity of the microengine
number is checked only in debug mode.

arg_EnableContextMask Mask specifying the microengine context to be enabled.

Output/Returns

Return Value Returns IX_SUCCESS if successful and a valid ix_error value
otherwise.

Input

arg_MENumber The microengine’s number for context to be disabled.
Allowed values for the microengine number are 0x00
through 0x03 and 0x10 through 0x13 for the Intel® IXP2400
Network Processor and 0x00 through 0x07 and 0x10 through
0x17 for the Intel® IXP2800 Network Processor. The validity
of the microengine number is checked only in debug mode.

arg_DisableContextMask Mask specifying the microengine context to be disabled.

Output/Returns

Return Value Returns IX_SUCCESS if successful and a valid ix_error
value otherwise.
Portability Framework Reference Manual 93

Resource Manager
3.4 Hardware Resource Management API

This section discusses API calls to manage MEv2 hardware features including SRAM queues,
rings, scratch rings, and so on. This API may be extended in the future to support reservation of
RBUFs, TBUFs, and other hardware features.

Table 3-6 lists the functions and data structures in the Hardware API.

3.4.1 SRAM Queues

The SRAM controllers for the IXP2400 and IXP2800 processor series support a data structure
called Q-array, which provides hardware-supported basic queue management. These hardware-
supported queues enable faster turn-around time for packets in the fast path. See Intel® IXP2400
Network Processor Hardware Reference Manual or Intel® IXP2800 Network Processor Hardware
Reference Manual.

Each element in the Q-array is a queue descriptor used to point to a queue—a singly linked list,
ring, or a journal. The Q-array supports up to 64 on-chip queue descriptors on each SRAM
controller.

There are two ways of using entries in the queue array. For designs requiring a large number of
packet queues, 16 entries of the Q-array are used as a cache. In this case, the entire queue structure
resides in SRAM—including the queue descriptor and queue elements—and the hardware Q-array
is used as a cache for the queue descriptors. Looking up a particular queue requires CAM support,
which can handle up to 16 entries. This implies that the maximum number of queue descriptors
which can be cached is 16. The number of queues in SRAM is only limited by the size of the
SRAM available.

Table 3-6. Resource Manager Hardware API

Name Description

ix_hw_queue_handle A generic queue handle for hardware queues.

ix_hw_ring_handle A generic handle for hardware rings.

ix_sram_ring_size Enumerated type specifying the supported hardware SRAM ring
sizes.

ix_scratch_ring_size Enumerated type specifying the supported hardware scratch ring
sizes.

ix_rm_hw_queue_create() Creates a hardware queue.

ix_rm_hw_queue_delete() Deletes a hardware queue.

ix_rm_hw_queue_array_get_base_address() Returns the virtual base address for an SRAM Q-array allocated for
a specific channel.

ix_rm_hw_enqueue() Enqueues an element to a hardware queue.

ix_rm_hw_dequeue() Dequeues an element from a hardware queue.

ix_rm_hw_sram_ring_create() Creates a hardware ring in SRAM memory.

ix_rm_hw_scratch_ring_create() Creates a hardware ring in scratch memory.

ix_rm_hw_ring_delete() Deletes a hardware ring.

ix_rm_hw_ring_put() Puts and element into a hardware ring.

ix_rm_hw_ring_get() Returns an element from a hardware ring.
94 Portability Framework Reference Manual

Resource Manager
The other way of using entries in the Q-array—more appropriate for buffer free lists, and so on—is
to allocate an entry to be solely owned by a single queue or ring. In this case, the total number of
queues or rings supported cannot exceed 64.

The Resource Manager reserves entries in the Q-array for queues and rings. For rings, the Resource
Manager allocates memory for the entries in the ring. Apart from applications, the Queue Manager
building block described in Intel® Internet Exchange Architecture Software Building Blocks
Developer’s Manual uses the Resource Manager API to reserve up to 16 entries in the Q-array. The
Resource Manager Buffer API uses this API to allocate buffer free lists and reserve up to 48 entries
in the Q-array.

Note: The allocation of queue descriptors for the packet queues in SRAM is done by the Queue Manager.

When a queue or ring is created, the Resource Manager returns a handle. Subsequently, this handle
should be used to access the entity from the Intel XScale® core. Encoded in the handle is an index
into the Q-array. This index may be passed onto the microblock—either through an imported
variable or through the control block. If the application requests more than one queue the returned
handle indicates the base of a newly created array. For example, if the base handle returned is 0x5
for a ten queue array, then the queues are accessed with handles 0x5 for the first queue in the array,
0x6 for the second queue, 0x7 for the third queue, and so on.

The handle is an alias of the generic ix_handle type, and is encoded as described in
Section 3.4.1.1.1, “ix_hw_queue_handle.”
Portability Framework Reference Manual 95

Resource Manager
3.4.1.1 Defined Types, Enumerations, and Data Structures

3.4.1.1.1 ix_hw_queue_handle

A generic type providing a handle to a hardware supported queue. Two parameters, Channel
number and Queue index, are encoded in the handle.

The handle encoding is shown in Figure 3-1.

Figure 3-1. Hardware Queue Handle Encoding

C Syntax
typedef ix_handle ix_hw_queue_handle;

Handle Parameters

Channel number The SRAM channel number.
• For IXP2400—0 or 1
• For IXP2800—0 to 3

Represented by bits 30 and 31.

Queue index Points to an entry in the Q-array and can have values between 0 and 63.
Represented by bits 0..5.

Bits 6 to 29 are reserved and are set to 0.

Chnl
ID Reserved Queue Index

3
1

3
0 5 4 3 2 1 0
96 Portability Framework Reference Manual

Resource Manager
3.4.1.1.2 ix_hw_ring_handle

A generic ring handle.

The handle is encoded is shown in Figure 3-2.

Figure 3-2. Ring Handle Encoding

C Syntax
typedef ix_handle ix_ring_handle;

Data Members

Channel number The SRAM channel number.
• For the IXP2400—0 or 1

• For the IXP2800—0 to 3

• For scratch memory on either processor—0x0

Size Size is the size of the ring expressed as an enumerated value of
ix_sram_ring_size and ix_scratch_ring_size types based on the value
of Memory Type, either SRAM or SCRATCH.

Memory Type This type is either IX_MEMORY_TYPE_SRAM or IX_MEMORY_TYPE_SCRATCH.

Ring index Points to a ring element. The range of values is:
• For SRAM—0 to 63

• For scratch memory— 0 to 15

Channel Size Memory Type Ring Index

3
1

2
4

2
3

1
6

1
5 8 7 0
Portability Framework Reference Manual 97

Resource Manager
3.4.1.2 API Functions

3.4.1.2.1 ix_rm_hw_queue_create()

This function reserves arg_vQueuesNumber entries in the Q-array of the SRAM controller on the
specified channel. arv_pQueueHandleBase has the handle of the first queue upon return. A
macro is provided to get the nth handle, when required.

This function reserves entries in the Q-array of the SRAM controller on the specified channel.

Note: No queue descriptors are actually allocated by this call. The real allocation is done by the Queue
Manager microcode at startup. All queue descriptors must be reserved before the microcode is
loaded into the microstore.

A handle identifies each queue created. The handle is used on the Intel XScale® core for enqueue
and dequeue operations. If more than one queue is to be created a contiguous area of memory is
allocated and the first base handle is returned. If queues are not available contiguously, an error is
returned.

Macros are provided (see below) to get the Q-array index from a handle and to get a specific handle
from a base.

C Syntax
ix_error ix_rm_queue_create (

ix_uint32 arg_Channel,
ix_uint32 arg_QueuesNumber,
ix_uint32 arg_Flags,
ix_queue_handle* arv_pQueueHandleBase);

Input

arg_Channel The channel of the SRAM controller in question.

arg_QueuesNumber The number of queues to be allocated.

arg_Flags The flags modifying the request.

Output/Returns

Return Value Returns IX_SUCCESS if successful and a valid ix_error value
otherwise.

arg_pQueueHandleBase The address where the first queue handle is stored.
98 Portability Framework Reference Manual

Resource Manager
Macros

The following macros are provided for hardware queue support and provide increased portability.

IX_RM_HW_QUEUE_GET_NEXT_N_HANDLE()

Returns a specific handle from a base.
#define IX_RM_HW_QUEUE_GET_NEXT_N_HANDLE(arv_hHwQueueBase, arg_Index)

IX_RM_HW_QUEUE_GET_INDEX()

#define IX_RM_HW_QUEUE_GET_INDEX(arg_hHwQueue)

IX_RM_HW_QUEUE_SET_INDEX()

#define IX_RM_HW_QUEUE_SET_INDEX(arg_hHwQueue, arg_QueueIndex)

IX_RM_HW_QUEUE_GET_CHANNEL()

#define IX_RM_HW_QUEUE_GET_CHANNEL(arg_hHwQueue)

IX_RM_HW_QUEUE_SET_CHANNEL()

#define IX_RM_HW_QUEUE_SET_CHANNEL(arg_hHwQueue, arg_QueueChannel)

IX_RM_HW_QUEUE_CREATE_HANDLE()

#define IX_RM_HW_QUEUE_CREATE_HANDLE(arv_QueueChannel, arv_QueueIndex)
Portability Framework Reference Manual 99

Resource Manager
3.4.1.2.2 ix_rm_hw_queue_delete()

This function deletes the specified queue. The Q-array entry is freed.

C Syntax
ix_error ix_rm_hw_queue_delete(

ix_hw_queue_handle arg_hHwQueue);

3.4.1.2.3 ix_rm_hw_queue_array_get_base_address()

This function returns the virtual base address of the core-allocated Q-array descriptor array for
each SRAM memory channel. Using this address the user can get the physical offset for the queue
descriptor array by a call to ix_rm_get_phys_offset()call. This value has to be patched into
the microcode that performs the other half of the Q-array initialization on each SRAM channel.
The physical offset corresponding to this address is used by the Queue Manager microcode to
finish the initialization of the SRAM Q-arrays.

C Syntax
ix_error ix_rm_hw_queue_array_get_base_address(

ix_uint32 arg_Channel,
ix_uint32** arg_pQArrayBaseAddress);

Input

arg_hHwQueue The queue handle pointing to the queue to be deleted.

Output/Returns

Return Value Returns IX_SUCCESS if successful and a valid ix_error value otherwise.

Input

arg_Channel Represents the SRAM channel of interest.

arg_pQArrayBaseAddress Represents the address where the queue descriptor array base
address is stored upon return.

Output/Returns

Return Value IX_SUCCESS if successful or a valid ix_error token for failure.
100 Portability Framework Reference Manual

Resource Manager
3.4.1.2.4 ix_rm_hw_enqueue()

This function enqueues an SRAM entry into the specified queue. The first 4 bytes of each entry is
reserved for hardware use. The calling application needs to set these entries in the format specified
in Intel® IXP2400 Network Processor Hardware Reference Manual or Intel® IXP2800 Network
Processor Hardware Reference Manual, as appropriate. The least significant 24 bits are used as a
next address—that is, as a channel longword offset—and the eight most significant bits are used as
a cell count, EOP, and SOP flags. By default these are set to 0xff. For details see the Buffer
Management API.

Note: It is important to note that the Intel XScale® core can only enqueue to a queue if the queue has a
static entry in the Q-array. If the queue is a cached queue, managed by the Queue Manager, then
this call should not be used.

Note: The hardware uses the first 4 bytes of buffer as explained in the Buffer Management API chapter.

C Syntax
ix_error ix_rm_hw_enqueue(

ix_hw_queue_handle arg_hHwQueue,
ix_buffer_handle arg_hHwBuffer)

Input

arg_hHwQueue The queue handle.

arg_hHwBuffer The entry to be enqueued of type ix_buffer_handle. Only
hardware buffer handles can be interpreted by the hardware to
support enqueue and dequeue operations.

Output/Returns

Return Value Returns IX_SUCCESS if successful and a valid ix_error value
otherwise.
Portability Framework Reference Manual 101

Resource Manager
3.4.1.2.5 ix_rm_hw_dequeue()

This function dequeues an SRAM entry from the specified queue. The arg_pHwBufferHandle
points to the dequeued entry—though only frame mode dequeues are supported in this release of
the API. If there is nothing to dequeue, NULL is returned in the buffer.

C Syntax
ix_error ix_rm_hw_dequeue(

ix_hw_queue_handle arg_hHwQueue,
ix_buffer_handle* arg_pHwBufferHandle);

Input

arg_hHwQueue The queue handle specifying the queue from which to dequeue the
SRAM entry.

Output/Returns

Return Value Returns IX_SUCCESS if successful and a valid ix_error value
otherwise.

arg_pHwBufferHandle The location to which the SRAM entry should be returned. For
queues the dequeued value is a 32-bit integer with a predefined
packing which is modeled by the hardware ix_buffer_handle
type.
102 Portability Framework Reference Manual

Resource Manager
3.4.2 SRAM and Scratch Rings

The scratch pad memory in the Intel® IXP2400 and Intel® IXP2800 Network Processors support
rings of various sizes. During scratch ring creation, the Resource Manager initializes the ring
registers with appropriate base address and size fields. The scratch memory needed for this ring is
also allocated. Once the ring is created, the applications can call Resource Manager functions to
put and get data stored in these rings. These rings are accessible from the microengines also. A
total of 16 rings are supported by the hardware with ring numbers of zero through fifteen.

The scratchpad memory is 16KB and the scratchpad can be accessed in longwords only. This
implies that many combinations of rings are not possible. For example, the total scratchpad
memory allocated to support the required rings cannot exceed 4K longwords. If applications need
to access scratchpad memory by means other than rings, the space available for rings is further
reduced. Access to the ring data are purely under the control of software, and the hardware doesn’t
prevent accesses to other regions of scratchpad memory. Hence the applications on the Intel
XScale® core are required to use Resource Manager functions to at least reserve their requirements
for scratch memory.

SRAM rings are supported by the Q-array as described in Section 3.4.1, “SRAM Queues.” The
number of rings supported is restricted only by the entries free in the Q-array.

When a ring is created, the Resource Manager returns a handle. Subsequently, this handle should
be used to access the ring from the Intel XScale® core. Encoded in the ring handle is an index into
the SRAM Q-array which can be passed to microblocks.
Portability Framework Reference Manual 103

Resource Manager
3.4.2.1 Defined Types, Enumerations, and Data Structures

3.4.2.1.1 Handles

The handle is a 32-bit longword and is encoded as described for ix_hw_ring_handle. Both
SRAM and scratch rings are represented by the same handle type, ix_hw_ring_handle.

3.4.2.1.2 ix_sram_ring_size

This enumerated type describes the allowed sizes for an SRAM ring.

C Syntax
typedef enum ix_e_sram_ring_size {
 IX_SRAM_RING_SIZE_FIRST = 0,
 IX_SRAM_RING_SIZE_512 = IX_SRAM_RING_SIZE_FIRST,
 IX_SRAM_RING_SIZE_1K,
 IX_SRAM_RING_SIZE_2K,
 IX_SRAM_RING_SIZE_4K,
 IX_SRAM_RING_SIZE_8K,
 IX_SRAM_RING_SIZE_16K,
 IX_SRAM_RING_SIZE_32K,
 IX_SRAM_RING_SIZE_64K,
 IX_SRAM_RING_SIZE_LAST
} ix_sram_ring_size;

Defined Values

IX_SRAM_RING_SIZE_512 The system-defined SRAM-ring sizes.

IX_SRAM_RING_SIZE_1K

IX_SRAM_RING_SIZE_2K

IX_SRAM_RING_SIZE_4K

IX_SRAM_RING_SIZE_8K

IX_SRAM_RING_SIZE_16K

IX_SRAM_RING_SIZE_32K

IX_SRAM_RING_SIZE_64K
104 Portability Framework Reference Manual

Resource Manager
3.4.2.1.3 ix_scratch_ring_size

This enumerated type describes the allowed sizes for a scratch ring

C Syntax
typedef enum ix_e_scratch_ring_size {
 IX_SCRATCH_RING_SIZE_FIRST = 0,
 IX_SCRATCH_RING_SIZE_128 = IX_SCRATCH_RING_SIZE_FIRST,
 IX_SCRATCH_RING_SIZE_256,
 IX_SCRATCH_RING_SIZE_512,
 IX_SCRATCH_RING_SIZE_1K,
 IX_SCRATCH_RING_SIZE_LAST
} ix_scratch_ring_size;

Defined Values

IX_SCRATCH_RING_SIZE_128 The system-defined scratch-ring sizes.

IX_SCRATCH_RING_SIZE_256

IX_SCRATCH_RING_SIZE_512

IX_SCRATCH_RING_SIZE_1K
Portability Framework Reference Manual 105

Resource Manager
3.4.2.2 API Functions

3.4.2.2.1 Bit-Field Macros

The following macros are used for accessing the corresponding bit fields into the handle:
#define IX_RM_HW_RING_GET_CHANNEL(arg_hHwRing)
#define IX_RM_HW_RING_SET_CHANNEL(arg_hHwRing, arg_HwRingChannel)
#define IX_RM_HW_RING_GET_SIZE(arg_hHwRing)
#define IX_RM_HW_RING_SET_SIZE(arg_hHwRing, arg_HwRingSize)

The ring size returned is one of the enumerated values for ix_sram_ring_size or
ix_scratch_ring_size types, based on the type of the ring. The same applies to the
arg_HwRingSize parameter for the IX_RM_HW_RING_SET_SIZE macro.

3.4.2.2.2 Memory Type Macros
#define IX_RM_HW_RING_GET_MEMORY_TYPE(arg_hHwRing)
#define IX_RM_HW_RING_SET_MEMORY_TYPE(arg_hHwRing, arg_HwRingMemoryType)

The memory type for the above macros could be one of the enumerated values
IX_MEMORY_TYPE_SRAM or IX_MEMORY_TYPE_SCRATCH.

3.4.2.2.3 Ring Index Macros
#define IX_RM_HW_RING_GET_INDEX(arg_hHwRing)
#define IX_RM_HW_RING_SET_INDEX(arg_hHwRing, arg_HwRingIndex)
106 Portability Framework Reference Manual

Resource Manager
3.4.2.2.4 ix_rm_hw_sram_ring_create()

Creates a ring in SRAM memory on a specified channel. The ring size is limited to the values
defined in the enumerated types ix_sram_ring_size. The Resource Manager allocates memory
to hold the ring data in SRAM. The handle returned can be used on the Intel XScale® core to
consume and produce data within this ring.

For SRAM rings, the handle returned can be used to obtain an index into the SRAM Q-array. This
index can be passed to the microengines to access the same ring.

C Syntax
ix_error ix_rm_hw_sram_ring_create(

ix_uint32 arg_Channel,
ix_sram_ring_size arg_RingSize,
ix_hw_ring_handle* arg_pHwRingHandle);

Helper Macro
#define IX_RM_GET_RING_INDEX(arg_vRingHandle)

Input

arg_Channel The channel for the memory.

arg_RingSize The ring element size whose value must be one of those specified
by ix_sram_ring_size.

arg_pHwRingHandle Represents the address where the created ring handle should be
stored.

Output/Returns

Return Value Returns IX_SUCCESS if successful and a valid ix_error value
otherwise.

arg_pHwRingHandle Contains the created ring handle.
Portability Framework Reference Manual 107

Resource Manager
3.4.2.2.5 ix_rm_hw_scratch_ring_create()

Creates a scratch ring on the specified channel. The ring size is limited to several values as
specified by the ix_scratch_ring_size enumerated type. The Resource Manager allocates
scratch memory needed to hold the ring data. The returned handle can be used on the core to
consume and produce data on this ring. Unlike SRAM rings, the scratch ring ID is passed in as an
parameter whose value is zero to fifteen. This ID value can passed to the microengines to access
the same ring. If the ring ID passed in by the calling application is in-use the function fails—this is
due to the microengine instruction limitation which requires that the ring ID is a compile time
constant.

The function allocates all the required memory to hold the ring data in scratch memory. The
memory is allocated on the requested channel but, as of now, their is only one scratch memory
channel and its logical channel ID is zero.

C Syntax
ix_error ix_rm_hw_scratch_ring_create(

ix_uint32 arg_Channel,
ix_scratch_ring_size arg_RingSize,
ix_uint32 arg_RingInternalId,
ix_hw_ring_handle* arg_pHwRingHandle);

Macros

Returns the ring index.
#define IX_RM_GET_RING_INDEX(arg_hHwRing)

Input

arg_Channel Specifies the memory channel—this is zero at all times.

arg_RingSize Represents the ring element size as specified by the
ix_scratch_ring_size enumerated type.

arg_RingInternalId Specifies the internal scratch ring ID to be associated with the ring. If
the ID specified is in-use then the call fails—this is due to the
microengine instruction limitation which requires that the ring ID is a
compile time constant.

Output/Returns

arg_pHwRingHandle A pointer used to return the address of the newly created ring handle.

Return Value Returns IX_SUCCESS if successful and a valid ix_error value
otherwise.
108 Portability Framework Reference Manual

Resource Manager
3.4.2.2.6 ix_rm_hw_ring_delete()

Deletes the specified ring. The ring handle and associated Q-array entry is freed—if the ring is in
SRAM and the Resource Manager reclaims allocated memory—either SRAM or SCRATCH.

C Syntax
ix_error ix_rm_ring_delete (ix_ring_handle arg_hHwRing);

Input

arg_hHwRing Represents the ring to be deleted.

Output/Returns

Return Value Returns IX_SUCCESS if successful and a valid ix_error value otherwise.
Portability Framework Reference Manual 109

Resource Manager
3.4.2.2.7 ix_rm_hw_ring_put()

Produces *arg_pDataSize 32-bit words located at arg_pData in the specified ring. On return
the value of *arg_pDataSize specifies the number of 32-bit words that have been put on the ring.
If the ring cannot accommodate the entirety of the data, then the function returns an error.

C Syntax
ix_error ix_rm_hw_ring_put(

ix_hw_ring_handle arg_hHwRing,
const ix_uint32* arg_pData,
ix_uint32* arg_pDataSize);

Input

arg_hHwRing The ring handle where the data are to be stored.

arg_pData The location of the data to be stored on the ring.

Input/Output

arg_pDataSize The number of 32-bit words to be written on the ring. On return this
argument stores the actual number of 32-bit words produced.

Output/Returns

Return Value Returns IX_SUCCESS if successful and a valid ix_error value otherwise. If
the ring does not accommodate the entire data, then the function succeeds
but the actual produced size is less than the requested data size.
110 Portability Framework Reference Manual

Resource Manager
3.4.2.2.8 ix_rm_hw_ring_get()

This function consumes from the ring *arg_pDataSize 32-bit words and store them at the
location specified by arg_pData. On return the location referred by arg_pDataSize stores the
actual number of 32-bit words consumed. If there is not enough data, then arg_vDataSize is less
than the actual size requested.

C Syntax
ix_error ix_rm_hw_ring_get(

ix_hw_ring_handle arg_hHwRing,
ix_uint32* arg_pDataSize,
ix_uint32* arg_pData);

Input

arg_hHwRing The ring handle specifying from where to consume the data.

Input/Output

arg_pDataSize On input this parameter specifies the data size in 32-bit words. On output
this parameter returns the number of 32-words consumed.

Output/Returns

Return Value Returns IX_SUCCESS if successful and a valid ix_error value otherwise.
If not enough data are to be consumed then the call is successful but the
consumed size is less than the requested one.

arg_pData The location where the data should be stored.
NOTE: The memory buffer must be large enough to hold all requested data.
Portability Framework Reference Manual 111

Resource Manager
3.5 Buffer Management API

The buffer API has two parts:

• An API that is used to create buffer free lists of varying sizes
This API is generic and independent of the packet descriptor layout defined by the microblock
infrastructure.

• An API that is used to access fields in the packet descriptor—the packet metadata
This API is specific to the layout and fields of the packet descriptor.

3.5.1 Generic Buffers

The buffer API supports both hardware and software buffers. Both hardware and software buffers
have similar structure but they are different in the way they are managed: the hardware buffers are
handled with direct hardware support, whereas the software buffers are handled entirely by
software. The other major difference is that at this time only hardware buffers can be accessed by
both the microengine and Intel XScale® core side. In consequence these are the only ones that
should be used in core to microengine communication. The software and hardware buffers are both
composed of meta and payload data but they differ in the way the information in the buffer handles
is packed and in how the required metadata are laid out. This API is generic and independent of
packet descriptor layout defined by the microblock infrastructure or by the software.

The type of a buffer is decided by the free list type that allocates the buffer. The free lists can be
hardware or software and different creation functions exist for both types. All other API functions
encapsulate the hardware and software details—so only one set of functions is required. However
for Intel XScale® core to microengine communication only hardware buffers can be used. The
maximum number of hardware freelists that can be created on each SRAM channel is defined by
the IX_BUF_MAX_HW_FL_NUMBER symbol. In the case that multiple channel hardware free lists are
used, then the total number of hardware free lists will be multiplied by the number of channels. The
total number of free lists that can be created—hardware and software—is defined by the
IX_BUF_MAX_FL_NUMBER symbol.

The Resource Manager library can be built in two modes with the respect to hardware free lists.
The first mode allows creation of hardware free lists on just one SRAM channel. This mode is less
flexible but provides simplicity, as there will be no complication to retrieve the meta data for a
buffer, based on the buffer handle. The handle contains an SRAM offset for the corresponding meta
data. For the case when hardware free lists are supported on a single channel, then the meta data
will be uniquely determined. This mode has been extended to support hardware free lists on any of
the existing SRAM channels, rather than on only SRAM channel 0 only.

By default, the SRAM channel 0 is chosen, but using the preprocessor symbol
IX_HW_FL_META_CHANNEL that configuration can be changed at compile time. The channel
must be specified as a compile-time symbol definition as follows: -D
IX_HW_FL_META_CHANNEL=1 (or the desired channel number). In this single channel mode,
the corresponding microcode has to be adjusted to use the same SRAM channel for hardware free
list as the Resource Manager library.

The second mode allows hardware free lists to be created on all channels. This mode imposes a
minimum size of 32 bytes for the meta data, and consequently uses bits 1 and 2 of the buffer handle
to specify the channel number of the owning hardware free list. In order to compile the Resource
Manager library in this mode, the _IX_RM_MULTIPLE_CHANNEL_HW_FREE_LIST_
preprocessor symbol must be defined in the compilation.
112 Portability Framework Reference Manual

Resource Manager
This section describes the generic buffer API independent of the microblock packet descriptor
layout. Table 3-7 lists the functions and data structures in the Buffer Management API.

Note: These functions are for use in the Intel XScale® core. In the microengines, the XBUF macros are
used to allocate and access buffers. (For details, see the Intel® Internet Exchange Architecture
Optimized Data Plane Libraries Reference Manual located on the IXA SDK Tools CD.)

Table 3-7. Resource Manager Buffer Management API

Name Description

ix_buffer_handle A buffer handle.

ix_buffer_free_list_handle A buffer free list handle.

ix_buffer_free_list_info Buffer free list data structure.

ix_buffer_type Enumerated type specifying the type of the buffer—
hardware or software.

ix_rm_hw_buffer_free_list_create() Creates a hardware buffer free list.

ix_rm_sw_buffer_free_list_create() Creates a software buffer free list.

ix_rm_buffer_free_list_delete() Deletes a buffer free list.

ix_rm_buffer_free_list_get_info() Retrieves information about a free list.

ix_rm_buffer_alloc() Allocates a buffer.

ix_rm_buffer_free() Frees a buffer.

ix_rm_buffer_free_chain() Frees and returns a buffer in a chain to the correct
buffer free list.

ix_rm_buffer_get_meta() Returns the metadata for a buffer.

ix_rm_buffer_get_data() Returns the data associated with a buffer.

ix_rm_buffer_is_eop() Determines if the buffer is the last one in a chain.

ix_rm_buffer_is_sop() Determines if the buffer is the first one in a chain.

ix_rm_buffer_get_type() Determines the type of a buffer—either hardware or
software.

ix_rm_buffer_get_next() Returns the next buffer in a chain.

ix_rm_buffer_link() Links two buffers into a chain.

ix_rm_buffer_unlink() Breaks a linked list chain.
Portability Framework Reference Manual 113

Resource Manager
3.5.1.1 Defined Types, Enumerations, and Data Structures

3.5.1.1.1 ix_buffer_handle

A generic type for buffer handles.

To support hardware free lists on multiple SRAM channels, the structure of the hardware buffer
handle is slightly modified. In this case, the meta data for the buffers in this case is assumed to be at
least 32 bytes long. That way, all meta addresses will be 32 bytes aligned and the long word (LW)
offset address that exists in the handle will always have the last 3 bits set to 0. While the least
significant bit must be 0 at all times, as it is used to distinguish between hardware and software
buffers, bits 1 and 2 are used to store the SRAM channel number where the meta data resides for
the current buffer. The idea is that any time a buffer is allocated, the SRAM channel information is
stored into the handle, and when a buffer is released, the channel information is retrieved and
masked from the handle.

C Syntax
typedef ix_handle ix_buffer_handle;

The following is the mapping of buffer handles for hardware and software buffers. The hardware
buffer handle mapping is imposed by the hardware design. Both hardware and software buffer
handle designs are subject to change and presented here for reference.

Figure 3-3. Hardware Buffer Bit-Field Mapping

Predefined Value

IX_NULL_BUFFER_HANDLE This symbol defines a null buffer handle.

E
O
P

S
O
P

Cell Count Address

3
1

3
0

2
9

2
4

2
3 0

Hardware Buffer Bit Fields

EOP The EOP flag indicates end-of-packet. This is a 1-bit field.

SOP The SOP flag indicates start-of-packet. This is a 1-bit field.

Cell Count The cell count for the buffer. This is a 6-bit field.

Address The address in SRAM of the buffer descriptor expressed as a
longword index offset into SRAM channel 0. This is a 24-bit field.
114 Portability Framework Reference Manual

Resource Manager
Figure 3-4. Software Buffer Bit-Field Mapping

3.5.1.1.2 ix_buffer_free_list_handle

A generic type for a buffer free list handle.

C Syntax
typedef ix_handle ix_buffer_free_list_handle;

E
O
P

S
O
P

FL Index Cell Index C
T

3
1

3
0

2
9

2
2

2
1 1 0

Software Buffer Bit Fields

EOP The EOP flag indicates end-of-packet. This is a 1-bit field.

SOP The SOP flag indicates start-of-packet. This is a 1-bit field.

FL Index The free list index that owns this buffer. This is an 8-bit field.

Cell Index The cell index inside specified freelist. This is an 21-bit field.

C T The cell type. This bit is one at all times to differentiate this buffer
from a hardware buffer whose handle has the last bit set to zero at all
times—that is, 8-bit meta alignment. This is a 1-bit field.
Portability Framework Reference Manual 115

Resource Manager
3.5.1.1.3 ix_buffer_free_list_info

This structure contains all the information associated with a buffer free list. Information about start
addresses of the controlled meta and data memory and buffer element sizes for both meta and data
are included. This structure is used to return useful information about a buffer free list.

C Syntax
typedef struct ix_s_buffer_free_list_info {

ix_uint32 m_FreeListType;

#if defined(_IX_RM_SPLIT_META_DATA_)
ix_uint32* m_pInternalMetaBaseAddress;
ix_memory_type m_InternalMetaMemoryType;
ix_uint32 m_InternalMetaMemoryChannel;
ix_uint32 m_InternalMetaElementSize;

#endif /* defined(_IX_RM_SPLIT_META_DATA_) */

ix_uint32* m_pMetaStart;
ix_memory_type m_MetaMemoryType;
ix_uint32 m_MetaMemoryChannel;
ix_uint32 m_MetaElementSize;
ix_uint32* m_pDataStart;
ix_memory_type m_DataMemoryType;
ix_uint32 m_DataMemoryChannel;
ix_uint32 m_DataElementSize;
ix_uint32 m_NumElements;
ix_uint32 m_FreeListInfo;
ix_uint32 m_FreeListInfo1;

} ix_buffer_free_list_info;

Data Members

m_FreeListType Specifies if the free list is software or hardware based.

m_pInternalMetaBaseAddress Specifies the start of the internal controlled meta memory.

m_InternalMetaMemoryType Specifies internal meta block memory type.

m_InternalMetaMemoryChannel Specifies internal meta block memory channel.

m_InternalMetaElementSize Specifies the buffer internal meta element size.

m_pMetaStart A pointer to the start of the controlled meta memory.

m_MetaMemoryType The meta-block memory type.

m_MetaMemoryChannel The meta-block memory channel.

m_MetaElementSize Specifies the buffer meta-element size.

m_pDataStart Specifies the start of the controlled data memory.
116 Portability Framework Reference Manual

Resource Manager
3.5.1.1.4 ix_buffer_type

This enumerated type differentiate between software and hardware buffers. The hardware ones
have hardware support for managing them and can be used by both microcode and core API. The
software buffers are managed totally in software and must be used just by the core applications.

C Syntax
typedef enum ix_e_buffer_type {
 IX_BUFFER_TYPE_FIRST = 0,
 IX_BUFFER_TYPE_HARDWARE = IX_BUFFER_TYPE_FIRST,
 IX_BUFFER_TYPE_SOFTWARE,
 IX_BUFFER_TYPE_LAST
} ix_buffer_type;

m_DataMemoryType The data-block memory type.

m_DataMemoryChannel The meta-block memory channel.

m_DataElementSize Specifies the buffer data-element size.

m_NumElements Specifies the number of buffer elements in the list.

m_FreeListInfo Specifies the SRAM controller Q-array index for the corresponding
hardware free list and the free list index for the software free list.

m_FreeListInfo1 Specifies the free list ID for hardware free lists.

Data Members (Continued)
Portability Framework Reference Manual 117

Resource Manager
3.5.1.2 API Functions

3.5.1.2.1 ix_rm_hw_buffer_free_list_create()

Creates a hardware buffer free list with arg_ElementsNumber entries. Memory is allocated in
SRAM and DRAM. A handle to the new created free list is returned. A combination of an
arg_SRAMSize of zero and an arg_DRAMSize of zero is not accepted and the function returns an
error. The data and meta element size is always rounded to the next power of two—it is better to
pass in these preferred sizes. A maximum of IX_BUF_MAX_HW_FL_NUMBER hardware free lists can
be created. The minimum accepted size for hardware buffer meta element is the size of the
ix_hw_buffer_meta structure.

Note: This function should be called before calling ix_rm_ueng_load(). In part this is because part of
the hardware free list initialization is done by the microcode—Intel XScale® core can not write Q-
array descriptors into the SRAM. Allocate hardware buffers after the ix_rm_ueng_load() call as
well—allowing some time for the microengines to perform the initialization of the Q-array
descriptors through the SRAM controller.

In the case of single SRAM channel hardware free list support, the arg_SRAMChannel parameter
should be the same as the value of IX_HW_FL_META_CHANNEL preprocessor symbol.

In the case of split meta data configuration, the first part of the meta data will be created on the
IX_HW_FL_META_CHANNEL SRAM channel and the second part of the meta data will be
created on the SRAM channel specified by the arg_SRAMChannel argument.

C Syntax
ix_error ix_rm_hw_buffer_free_list_create(

ix_uint32 arg_ElementsNumber,
ix_uint32 arg_SRAMSize,
ix_uint32 arg_DRAMSize,
ix_uint32 arg_SRAMChannel,
ix_uint32 arg_DRAMChannel,
ix_buffer_free_list_handle* arg_pFreeListHandle);

Input

arg_ElementsNumber The number of free list entries to allocate.

arg_SRAMSize The size of SRAM to allocate for each entry.

arg_DRAMSize The size of DRAM to allocate for each entry.

arg_SRAMChannel The SRAM channel where the memory is allocated.

arg_DRAMChannel The DRAM channel where the memory is allocated.
118 Portability Framework Reference Manual

Resource Manager
3.5.1.2.2 ix_rm_sw_buffer_free_list_create()

Creates a software buffer free list that allocates and manages arg_NumElements elements. The
caller has to specify the sizes of the meta and data parts of the buffer. The sizes are always rounded
to the next power of two—preferred sizes should be passed in.

The meta and data blocks can be allocated in a flexible way in different types of memory, but
SRAM and especially scratch memory should be used only if badly needed. Memory is allocated
by the Resource Manager as requested.

The sizes of the metadata and data can not both be zero. A maximum of
IX_BUF_MAX_SW_FL_NUMBER software free lists can be created. A handle to the free list is
returned.

C Syntax
ix_error ix_rm_sw_buffer_free_list_create(

ix_uint32 arg_MetaElementSize,
ix_memory_type arg_MetaMemoryType,
ix_uint32 arg_DataElementSize,
ix_memory_type arg_DataMemoryType,
ix_uint32 arg_NumElements,
ix_buffer_free_list_handle* arg_pPoolManagerHandle);

Output/Returns

arg_pFreeListHandle The pointer to the address used to return the handle to the newly
created free list.

Return Value Returns IX_SUCCESS if successful and a valid ix_error value
otherwise. If not enough data are to be consumed then the call is
successful but the consumed size is less than the requested one.

Input

arg_MetaElementSize The size of a meta element. The size is rounded to the next power
of two.

arg_MetaMemoryType The type of the meta memory. This value is one of {SRAM, DRAM,
or SCRATCH}.
NOTE: SRAM and especially SCRATCH should be used with great care.
Portability Framework Reference Manual 119

Resource Manager
arg_DataElementSize The size of a data element. The size is rounded to the next power
of two.

arg_DataMemoryType The type of the data memory. This value is one of {SRAM, DRAM, or
SCRATCH}.
NOTE: SRAM and especially SCRATCH should be used with great care.

arg_NumElements The number of memory-buffer elements that this manager is to
allocate and manage.

Output/Returns

Return Value Returns IX_SUCCESS if successful or a valid ix_error token for
failure.

arg_pPoolManagerHandle Upon return, the address where the handle of the new created pool
manager is stored.

Input
120 Portability Framework Reference Manual

Resource Manager
3.5.1.2.3 ix_rm_buffer_free_list_delete()

Deletes the specified buffer free list. All associated memory is freed by and available from the
Resource Manager.

C Syntax
ix_error
ix_rm_buffer_free_list_delete(

ix_buffer_free_list_handle arg_hFreeList);

3.5.1.2.4 ix_rm_buffer_free_list_get_info()

This function retrieves buffer free list information. Once a buffer free list is created the caller has
no control over where the required memory is allocated.

This function retrieves information specific to a buffer free list. For example, the calling
application might later need the start addresses for a buffer free list to pass these to a microengine.

C Syntax
ix_error ix_rm_buffer_free_list_get_info(

ix_buffer_free_list_handle arg_hFreeList,
ix_buffer_free_list_info* arg_pFreeListInfo);

Input

arg_hFreeList The handle of the free list to be deleted.

Returns

Return Value Returns IX_SUCCESS if successful and a valid ix_error value otherwise.

Input

arg_hFreeList Specifies the free list handle about which to retrieve information.

Output/Returns

Return Value Returns IX_SUCCESS if successful or a valid ix_error for failure.

arg_pFreeListInfo A pointer to a structure where the function has stored the returned free
list information.
Portability Framework Reference Manual 121

Resource Manager
3.5.1.2.5 ix_rm_buffer_alloc()

Allocate a buffer from the specified buffer free list. The buffer handle is returned in a
arg_pBufferHandle. This buffer handle can be used to get a pointer to the meta information and
data area for the buffer. Based on the type of free list used a hardware or software buffer is created.

C Syntax
ix_error ix_rm_buffer_alloc(

ix_buffer_free_list_handle arg_hFreeList,
ix_buffer_handle* arg_pBufferHandle);

3.5.1.2.6 ix_rm_buffer_free()

This function frees the buffer specified by arg_hBuffer. The buffer is returned to the correct
buffer free list which is encoded in the handle itself. When the buffer is part of a chain only the
buffer passed in through arg_hBuffer is freed and the chain becomes inconsistent.

C Syntax
ix_error ix_rm_buffer_free(

ix_buffer_handle arg_hBuffer);

Input

arg_hFreeList The free list handle.

Output/Returns

Return Value Returns IX_SUCCESS if successful and a valid ix_error value
otherwise.

arg_pBufferHandle The newly allocated buffer handle.

Input

arg_hBuffer The handle of the buffer to be freed.

Returns

Return Value Returns IX_SUCCESS if successful and a valid ix_error value
otherwise.
122 Portability Framework Reference Manual

Resource Manager
3.5.1.2.7 ix_rm_buffer_free_chain()

This function frees the buffer chain starting from arg_hBuffer. The buffers are returned to
appropriate freelists. If the buffer is the head of a buffer chain then the entire chain is freed and the
SOP flag is set. If this buffer is in the middle of a chain then the end of the chain is freed starting
from this buffer. The chain has to be unlinked at this buffer boundary in order to avoid chain
inconsistency.

C Syntax
ix_error ix_rm_buffer_free_chain(

ix_buffer_handle arg_hBuffer);

3.5.1.2.8 ix_rm_buffer_get_meta()

Returns the memory base location of metadata for the buffer specified by arg_hBuffer.

In the case of split meta data, the address to the real buffer meta data structure is returned, so the
field m_HwNext will not be accessible.

C Syntax
ix_error ix_rm_buffer_get_meta(

ix_buffer_handle arg_hBuffer,
void** arg_pMetaData);

Input

arg_hBuffer The handle of the buffer head of chain to be.

Output/Returns

Return Value Returns IX_SUCCESS if successful and a valid ix_error value
otherwise.

Input

arg_hBuffer The handle of the buffer for which the metadata are requested.

Output/Returns

Return Value Returns IX_SUCCESS if successful and a valid ix_error value
otherwise.

arg_pMetaData The location where the metadata address is written.
Portability Framework Reference Manual 123

Resource Manager
3.5.1.2.9 ix_rm_buffer_get_data()

Returns the base of the packet data portion of the buffer specified by arg_pData.

C Syntax
ix_error ix_rm_buffer_get_data (

ix_buffer_handle arg_hBuffer,
void** arg_pData);

3.5.1.2.10 ix_rm_buffer_is_eop()

This function returns, in the argument *arg_pIsEOP, non-zero if this buffer is the last in a list of
concatenated memory buffers and zero otherwise. This is the equivalent of the end-of-packet
property of a buffer. Usually only the first buffer from a packet is passed for processing, so the
processing entity has to process all buffers in the chain. This flag signals that we reached the end of
the chain. Single buffers have this flag and the SOP—start-of-packet—flag set and the next buffer
is set to IX_NULL_BUFFER_HANDLE.

C Syntax
ix_error ix_rm_buffer_is_eop(

ix_buffer_handle arg_hBuffer,
ix_uint32* arg_pIsEOP);

Input

arg_hBuffer The handle of the buffer.

Output/Returns

arg_pData The location where the data address is written.

Return Value Returns IX_SUCCESS if successful and a valid ix_error value
otherwise.

Input

arg_hBuffer The handle to a buffer whose EOP property is of interest.
124 Portability Framework Reference Manual

Resource Manager
3.5.1.2.11 ix_rm_buffer_is_sop()

This function returns—in the argument *arg_pIsSOP—non-zero if this buffer is the first in a list
of concatenated memory buffers and zero otherwise. This is the equivalent of the start-of-packet
property of a buffer. This function determines if the buffer is the first buffer in a chain.

C Syntax
ix_error ix_rm_buffer_is_sop(

ix_buffer_handle arg_hBuffer,
ix_uint32* arg_pIsSOP);

Output/Returns

Return Value Returns IX_SUCCESS if successful or a valid ix_error token for failure.

arg_pIsEOP The address where the EOP property of the buffer is stored.
On return *arg_pIsEOP is zero if the buffer is not the last in a chain or non-
zero otherwise.

Input

arg_hBuffer The handle to a buffer whose SOP property is of interest.

Output/Returns

Return Value Returns IX_SUCCESS if successful or a valid ix_error token for failure.

arg_pIsSOP The address where the SOP property of the buffer is stored.
On return *arg_pIsSOP is zero if the buffer is not the first in a chain or non-
zero otherwise.
Portability Framework Reference Manual 125

Resource Manager
3.5.1.2.12 ix_rm_buffer_get_type()

This function retrieves the type of the buffer for the handle passed as the first parameter. This
function determines if a buffer is a software or a hardware buffer.

C Syntax
ix_error ix_rm_buffer_get_type(

ix_buffer_handle arg_hBuffer,
ix_buffer_type* arg_pBufferType);

3.5.1.2.13 ix_rm_buffer_get_next()

This function returns the next link for this buffer. If there are no buffers linked to this one the
arg_pNextBufferHandle location is set to IX_NULL_BUFFER_HANDLE. This function retrieves
the next buffer handle relative to our base buffer. If this buffer is the last in the chain then
IX_NULL_BUFFER_HANDLE is returned.

C Syntax
ix_error ix_rm_buffer_get_next(

ix_buffer_handle arg_hBuffer,
ix_buffer_handle* arg_pNextBufferHandle);

Input

arg_hBuffer The handle of the buffer whose type we want to
retrieve.

Output/Returns

Return Value Returns IX_SUCCESS if successful or a valid ix_error token for failure.
On return the arg_pBufferType variable contains the type of the buffer.

arg_pBufferType The address where the buffer type is stored on return.

Input

arg_hBuffer The handle of the buffer for which the next link is needed.

Output/Returns

Return Value Returns IX_SUCCESS if successful or a valid ix_error token for
failure.

arg_pNextBufferHandle The location where the next link for this buffer is stored.
126 Portability Framework Reference Manual

Resource Manager
3.5.1.2.14 ix_rm_buffer_link()

This function links the buffer specified by arg_pNextBufferHandle to the buffer specified by
arg_pBufferHandle. The buffers form two links in a linked list data structure. If the current
buffer, specified by arg_pBufferHandle, already has a link—that is, if it already is part of a
linked list—then this function returns an error. On return the handles of the two buffers are
modified to specify the new EOP and SOP state.

Note: If the buffer specified by the argument arg_pBufferHandle is not an EOP buffer, then the call
returns an error.

Note: On return, EOP and SOP flags are appropriately set for both buffer handles.

C Syntax
ix_error ix_rm_buffer_link(

ix_buffer_handle* arg_pBufferHandle,
ix_buffer_handle* arg_pNextBufferHandle);

Input

arg_pBufferHandle The reference to the handle of the buffer to which to link.

arg_pNextBufferHandle The reference to the handle of the buffer to be added to the
linked list.

Output/Returns

Return Value Returns IX_SUCCESS if successful or a valid ix_error token
for failure. If the current buffer specified by
arg_pBufferHandle already has a link—that is, if it is not
EOP—then the function returns an error.
Portability Framework Reference Manual 127

Resource Manager
3.5.1.2.15 ix_rm_buffer_unlink()

This function unlinks the buffer specified by arg_pBufferHandle. If the buffer has a link that
link is set to IX_NULL_BUFFER_HANDLE and the unlinked buffer handle is returned at the location
specified by arg_pUnlinkedBufferHandle. For this function to work arg_pBufferHandle
should have the SOP flag set, meaning that only the beginning of a chain can be unlinked.

Note: If the buffer specified by the first argument is not an SOP buffer this call fails.

Note: On return the handles of the two buffers are modified to specify the new EOP and SOP states.

C Syntax
ix_error ix_rm_buffer_unlink(

ix_buffer_handle* arg_pBufferHandle,
ix_buffer_handle* arg_pUnlinkedBufferHandle);

3.5.2 Framework Buffer Structure

For hardware free lists, a typical DRAM buffer size is 2048 bytes and the default SRAM buffer
descriptor (meta data) size is 32 bytes, which is the size of ix_hw_buffer_meta structure. For
software buffers, there is a minimum size of the buffer descriptor of 16 bytes imposed by the size
of ix_sw_buffer_meta structure. The developer may change these values at compile time or run
time. The SRAM and DRAM base addresses and size values for the hardware free list are patched
into the microcode for use in the dispatch loop macros. The dispatch loop macros use these
imported variables in calling the IXP buffer macros. For POS and ATM—where packets may be
greater than 2048 bytes—packets are stored in multiple buffers chained together.

In order to improve the performance of the system, the way the hardware buffers are created have
been extended to allow split meta data. The split meta data configuration for hardware buffers can
be selected by compiling the Resource Manager library with the _IX_RM_SPLIT_META_DATA_
preprocessor symbol defined.

The 32 byte SRAM buffer descriptor pre-defined by the Resource Manager is described in
Table 3-8, “Resource Manager Packet Metadata Definitions.” Some of these fields are common to
all applications while others of these fields are specific to particular categories of applications.

Input

arg_pBufferHandle The reference to the handle of the buffer that is to change
from a linked to an unlinked state.

Output/Returns

Return Value Returns IX_SUCCESS if successful or a valid ix_error token
for failure.

arg_pUnlinkedBufferHandle The location where the handle of the newly unlinked buffer is
stored.
128 Portability Framework Reference Manual

Resource Manager
Calling applications may add—or trim—fields to customize the metadata to their application
category with the exception of the first member, m_HwNext, that is required by the hardware and
m_BufferInfo that is used by software to determine the Q-array descriptor index corresponding
to the free list that owns the buffer. The position in the structure of m_HwNext should not change at
any time. The position of m_BufferInfo can change, but it needs to contain the free_list_id
bit field in the same position and there should be agreement between microcode and Intel XScale®
core code.

The IXA Software Framework is dependent on this pre-defined 32 byte SRAM buffer descriptor.
Section 3.5.2.1, “Packet Metadata Description,” discusses application use of this metadata.
Table 3-8 lists these packet metadata fields. If a calling application changes this layout, then the
associated dispatch loop macros and the Resource Manager library must also be updated by the
application developer. Section 3.5.2.1.2, “Extending Packet Metadata,” describes how applications
can extend this core data structure so that the dispatch loop macros and the Resource Manager
library do not need to be updated by the application developer.

3.5.2.1 Packet Metadata Description

The structure, ix_hw_buffer_meta, can be extended, but the Resource Manager code expects the
first 32 bytes of SRAM buffer descriptor to conform to the field layout described in
Section 3.5.2.1.3, “IX_DECLARE_HW_BUFFER_META_DATA for Common Meta Data.”

Section 3.5.2.1.1, “ix_hw_buffer_meta” describes the use of the base 32-byte SRAM buffer
descriptor as-is. Section 3.5.2.1.2, “Extending Packet Metadata,” describes application-specific
extensions of this common core.

3.5.2.1.1 ix_hw_buffer_meta

This structure defines the information and the layout of the common core of buffer metadata using
a macro—see Section 3.5.2.1.3, “IX_DECLARE_HW_BUFFER_META_DATA for Common Meta
Data.” Use the data structure declaration shown in this section if application code can use the pre-
defined 32-byte SRAM buffer descriptor as-is. To add—or trim—application-specific fields see
Section 3.5.2.1.2, “Extending Packet Metadata.”

C Syntax
typedef struct ix_s_hw_buffer_meta {

IX_DECLARE_HW_BUFFER_META_DATA
} ix_hw_buffer_meta;

3.5.2.1.2 Extending Packet Metadata

Calling applications requiring extra fields can do so in the following manner without the expense
of an extra indirection.

C Syntax
typedef struct ix_s_atm_buffer_meta {

IX_DECLARE_HW_BUFFER_META_DATA
ix_uint32 m_CellHeader;

} ix_atm_buffer_meta;
Portability Framework Reference Manual 129

Resource Manager
3.5.2.1.3 IX_DECLARE_HW_BUFFER_META_DATA for Common Meta Data

The symbol IX_DECLARE_HW_BUFFER_META_DATA declares all the fields and the layout of the
common part of the buffer meta data. These fields are described in Table 3-8.

C Syntax
#define IX_DECLARE_HW_BUFFER_META_DATA \

/* longword 0 */ \
ix_uint32 m_HwNext; \

/* longword 1 */ \
ix_uint16 m_BufferSize; \
ix_uint16 m_Offset; \

/* longword 2 */ \
ix_uint16 m_PacketSize;

\
/** \
 * The following represents packed buffer information. \
 * 15:12 4 bits free_list_id Free list ID for the buffer
 * 11:8 4 bits rx_stat Receive status flag

Table 3-8. Resource Manager Packet Metadata Definitions

LW Bits Size Data Member Field Description

0 31:00 32 m_HwNext The buffer handle of the next buffer in the
chain.

1 31:16 16 m_BufferSize The buffer size—in bytes.

15:00 16 m_Offset The offset of the start of data in the buffer—in
bytes.

2 31:28 16 m_PacketSize The size of the entire packet across buffers—
in bytes.

15:12 4 m_BufferInfo1 free_list_id1 The free list ID for the buffer.

11:08 4 rx_stat1 The receive status flag.

07:00 8 header_type1 The type of header at m_Offset bytes into
the packet.

3 31:16 16 m_InputPort The input port on the ingress processor.

15:00 16 m_OutputPort The output port on the egress processor.

4 31:16 16 m_NextHopID The next hop ID.

15:08 8 m_FabricPort The output port for the switch fabric indicating
the destination blade.

07:00 8 m_Reserved1 Reserved.

5 31:00 32 m_FlowID The flow ID—a QoS flow ID or an MPLS label
or flow ID.

6 31:16 16 m_ClassID The class ID.

15:00 16 m_Reserved2 Reserved.

7 31:00 32 m_PacketNext A pointer to next the packet—unused in cell
mode.

1. The data member, m_BufferInfo, is a packed buffer containing the bit fields free_list_id, rx_stat, and header_type. The macros in
Section 3.5.2.3 should be used to extract these bit fields from the packed buffer.
130 Portability Framework Reference Manual

Resource Manager
 * 7:0 8 bits header_type Type of header at "offset" bytes
 * into the packet
 */ \

ix_uint16 m_BufferInfo; \
/* longword 3 */ \

ix_uint16 m_InputPort; \
ix_uint16 m_OutputPort; \

/* longword 4 */ \
ix_uint16 m_NextHopID; \
ix_uint8 m_FabricPort; \
ix_uint8 m_Reserved1; \

/* longword 5 */ \
ix_uint32 m_FlowID; \

/* longword 6 */ \
ix_uint16 m_ClassID; \
ix_uint16 m_Reserved2; \

/* longword 7 */ \
ix_uint32 m_PacketNext; \

3.5.2.2 Split Meta Data Configuration Details

When a split meta data configuration is used, then the meta data is allocated in two parts: one part
contains the m_HwNext field plus the Intel XScale® core address to the second part of the meta
data, and the second part which is similar to the original meta data with the exception that the field
in the position of m_HwNext field is reserved.

3.5.2.2.1 ix_hw_internal_buffer_meta

This is the internal HW meta data structure when split meta data is used. This portion should be
accessible only by the resource manager, because the other applications should not care about the
m_HwNext field.

C Syntax
typedef struct ix_s_hw_internal_buffer_meta
{

/* long word 0 */
ix_uint32 m_HwNext; /* reserved hardware link to the next data */
/* long word 1 */
ix_hw_buffer_meta* m_pMeta; /* address of the proper meta data */

} ix_hw_internal_buffer_meta;

3.5.2.2.2 IX_DECLARE_HW_BUFFER_META_DATA for Split Meta Data

The symbol IX_DECLARE_HW_BUFFER_META_DATA declares the fields and the layout of the
buffer meta data when the split meta data configuration is used, as described in Table 3-9.

In this case, the Intel XScale® core will have to patch into the microcode more information for the
microcode to be able to access both types of meta data. When the common meta data is used, the
microcode accesses the meta data based on the address offset contained in the buffer handle. In the
split meta data case, that offset points to the internal meta data that contains the m_HwNext field
and the Intel XScale® core address to the real buffer meta data. The same strategy used to find the
data portion corresponding to the buffer can be used to retrieve the meta data portion as well.
Portability Framework Reference Manual 131

Resource Manager
In the case that the support for hardware free lists on multiple channels is enabled, then the first
part of the meta data will have an allocated size of 32 bytes to accommodate the alignment
requirements.

C Syntax
#define IX_DECLARE_HW_BUFFER_META_DATA \

/* long word 0 */ \
ix_uint32 m_Reserved0; \
/* long word 1 */ \
ix_uint16 m_BufferSize; \
ix_uint16 m_Offset; \
/* long word 2 */ \
ix_uint16 m_PacketSize;
\
\
/** \
* The following represents packed buffer information. \

 * +--------------+-------------+---------------+ \
 * | Free List ID | RxStat | Header type | \
 * | 15:12 4 bit | 11:8 4 bit | 7:0 8 bit | \

Table 3-9. Resource Manager Packet Metadata Definitions for Split Meta Data

LW Bits Size Data Member Field Description

0 31:00 32 m_Reserved0 Reserved hardware link to the next data.

1 31:16 16 m_BufferSize The buffer size—in bytes.

15:00 16 m_Offset The offset of the start of data in the buffer—in
bytes.

2 31:28 16 m_PacketSize The size of the entire packet across buffers—
in bytes.

15:12 4 m_BufferInfo1 free_list_id1 The free list ID for the buffer.

11:08 4 rx_stat1 The receive status flag.

07:00 8 header_type1 The type of header at m_Offset bytes into
the packet.

3 31:16 16 m_InputPort The input port on the ingress processor.

15:00 16 m_OutputPort The output port on the egress processor.

4 31:16 16 m_NextHopID The next hop ID.

15:08 8 m_FabricPort The output port for the switch fabric indicating
the destination blade.

07:00 8 m_Reserved1 Reserved.

5 31:00 32 m_FlowID The flow ID—a QoS flow ID or an MPLS label
or flow ID.

6 31:16 16 m_ClassID The class ID.

15:00 16 m_Reserved2 Reserved.

7 31:00 32 m_PacketNext A pointer to next the packet—unused in cell
mode.

1. The data member, m_BufferInfo, is a packed buffer containing the bit fields free_list_id, rx_stat, and header_type. The macros in
Section 3.5.2.3 should be used to extract these bit fields from the packed buffer.
132 Portability Framework Reference Manual

Resource Manager
 * +--------------+-------------+---------------+ \
 * 15:12 4 bits free_list_id Free list ID for the buffer
 * 11:8 4 bits rx_stat Receive status flag
 * 7:0 8 bits header_type Type of header at "offset" bytes
 * into the packet

*/ \
ix_uint16 m_BufferInfo; \
/* long word 3 */ \
ix_uint16 m_InputPort; \
ix_uint16 m_OutputPort;\
/* long word 4 */ \
ix_uint16 m_NextHopID; \
ix_uint8 m_FabricPort; \
ix_uint8 m_Reserved1; \
/* long word 5 */ \
ix_uint32 m_FlowID; \
/* long word 6 */ \
ix_uint16 m_ClassID; \
ix_uint16 m_Reserved2; \
/* long word 7 */ \
ix_uint32 m_PacketNext; \

3.5.2.3 Packed Field Macros

The following macros should be used for accessing and modifying the packet metadata packed
fields—free_list_id, header_type, and rx_stat.

IX_RM_HW_META_GET_FREE_LIST_ID

Returns the free_list_id bit field value. arg_BufferInfo should be a 16-bit value.
#define IX_RM_HW_META_GET_FREE_LIST_ID(arg_BufferInfo)

IX_RM_HW_META_SET_FREE_LIST_ID

Sets the free_list_id bit field value. arg_BufferInfo should be a 16-bit value.
#define IX_RM_HW_META_SET_FREE_LIST_ID(arg_BufferInfo, arg_FreeListID)

IX_RM_HW_META_GET_HEADER_TYPE

Returns the header_type bit field value. arg_BufferInfo should be a 16-bit value.
#define IX_RM_HW_META_GET_HEADER_TYPE(arg_BufferInfo)

IX_RM_HW_META_SET_HEADER_TYPE

Sets the header_type bit field value. arg_BufferInfo should be a 16-bit value.
#define IX_RM_HW_META_SET_HEADER_TYPE(arg_BufferInfo, arg_HeaderType)

IX_RM_HW_META_GET_RX_STAT

Returns the rx_stat bit field value. arg_BufferInfo should be a 16-bit value.
#define IX_RM_HW_META_GET_RX_STAT(arg_BufferInfo)
Portability Framework Reference Manual 133

Resource Manager
IX_RM_HW_META_SET_RX_STAT

Sets the rx_stat bit field value. arg_BufferInfo should be a 16-bit value.
#define IX_RM_HW_META_SET_RX_STAT(arg_BufferInfo, arg_RxStat)

3.6 Communication API

The Resource Manager Communication API implements the mechanism to transport packets and
control messages between the core components or core components and microblocks through an
abstraction called a communication ID. A communication ID represents a destination where
messages and packets can be sent. On a local system there is a limited—this limit is compile-time
configurable—number of communication IDs expressed by the IX_COMM_LOCAL_ID_NUMBER
symbol. Out of this number of communication IDs IX_COMM_UBLOCK_ID_NUMBER IDs are
reserved for communication with the microblocks, and the remaining ones are dedicated to inter
core component communication. For the core communication ID core components can choose to
listen for incoming messages and packets through several mechanisms.

• The calling application polls a communication ID for messages or packets

• The calling application retrieves messages and packets from a communication ID using a
synchronous function that blocks until a message or a packet arrives or the call times out

• The calling application specifies interest in several communication IDs and the call returns
only when one of the specified IDs receives data

• The calling application registers a callback function that is called whenever new data arrives
on a communication ID

All of these options apply only to the core communication IDs. These communication IDs can be
regarded as gateways. For the corresponding microblock IDs, one side of this gateway is in the
microcode but this microcode has no visibility into the core application.

These communication IDs are represented by a generic type ix_communication_id that is an
unsigned 32-bit handle defining a destination. The communication ID mechanism allows for local
communication as well as remote communication with other systems. If the destination is not
intended for the local system then the messages and packets are forwarded to a proxy that routes
the data through PCI or another communication path to the remote system. A portion of the
communication ID specifies if the destination is on the current subsystem or—in the case of a dual
ingress/egress network processor system—on the peer subsystem.

A zero value for this bit field at the time of creation of the communication ID specifies a
destination on the local subsystem. A non-zero value at the time of creation specifies a destination
on the peer subsystem. Each system that works in a group should have an unique identifier.

The communication between microblocks and core is handled in the following way. The microcode
queues data onto a common hardware ring and signals the Intel XScale® core that data has been
sent. For packet communication, the scratch ring with the ID of zero is used to queue data, and the
core is signaled through Thread_Interrupt_A_#. (For details, see the Intel XScale® core
Gasket section in the Intel® IXP2400 Network Processor Hardware Reference Manual or the
Intel® IXP2800 Network Processor Hardware Reference Manual.)

For message communication, the scratch ring with ID of one is used to queue data, and the Intel
XScale® core is signaled through Thread_Interrupt_B_#. On the core side, the registered ISRs
awaken the corresponding dispatch threads that dequeue the data and send it to the requested
destination. The message dispatch thread has higher priority than the packet dispatch thread.
134 Portability Framework Reference Manual

Resource Manager
Currently, the microcode queues two 32-bit words for each packet or message sent to the core. The
first 32-bit word is a hardware buffer handle. The second 32-bit word represents several pieces of
information as shown in Table 3-10.

Bit 31 of this second word must be always set to one. The bits zero through nine—a total of 10
bits—represent the destination local identifier. This is the same as the value used to create a
communication ID. If this value is less than IX_COMM_UBLOCK_ID_NUMBER then the data is routed
back to the microcode as these corresponding communications IDs are reserved for core to
microblock communication. The bits 10 through 30—a total of 21 bits—are used to communicate
an exception code.

Both of these 32-bit words must be non-zero. The dispatch thread extracts the destination and
exception code, and send the buffer handle and the exception code as user data to the specified
destination communication ID. If that communication ID has a callback registered for processing,
then that function is invoked in the context of the dispatch thread. The programmer should take
care about data consistency in this case. If that communication ID is in the get-select mode, then
the dispatch thread queues the data into an internal queue, awakens all threads waiting for data on
that communication ID and resumes data processing immediately. In this case, the processing of
the message or packet is done in a different thread than the dispatch thread.

To send data from the core to the microblocks application code creates—using the provided
macros—a communication ID for the destination microblock. There is a one-to-one
correspondence between microblock IDs and the local communication IDs. Part of the
initialization of core to microblock communication is left as an application responsibility. This
spares system resources and provides extended flexibility.

There are two ways to setup a microblock communication ID for core to microcode
communication.

In the first approach the calling application creates a hardware scratch ring—or an SRAM ring, but
this option is slower—and assigns it as the communication ring dedicated to communication with a
particular microblock using the ix_rm_ublock_packet_comm_init() or
ix_rm_ublock_message_comm_init() functions. At this point a specific data handler is
registered with the communication ID. When data is sent to the communication ID using the
regular send functions—ix_rm_packet_send(), ix_rm_packet_send_wait(),
ix_rm_message_send(), or ix_rm_message_send_wait(), the registered data handler is
invoked storing the passed buffer handle and user data onto the associated ring.

Packet and message communication to the microblocks must be done through different rings—the
same ring cannot be used for both packet and message communication. However, all
communication IDs can perform packet or message communication—but not message and packet
communication—through the same hardware ring. Before the microcode is loaded into the
microstore, the ring ID must be patched into the microcode. If a specific core to microblock
communication is not properly initialized, then calls to the send functions result in the sent buffers
being returned to the free lists from which they originated.

Table 3-10. Second 32-bit Word For Resource Manager Communication Signaling to the Core

R1 Exception Code Destination Local Identifier

3
1

3
0

1
0 9 0

1. This bit is reserved and is always set to one.
Portability Framework Reference Manual 135

Resource Manager
The second method requires application code to register a custom packet or message handler with
the microblock communication ID. Using this approach, for each packet or message, any amount
of data can be transferred to the microcode through any means available.

It is up to a product development team to decide what kind of data are put on the rings. Usually the
buffer handle from the head of a chain—representing a packet—suffices.

Table 3-11 lists the functions and data structures in the Communication API.

Table 3-11. Resource Manager Communication API

Name Description

ix_comm_data_handler Generic function type for data communication handler.

ix_communication_id Generic type used for the identification of a communication point.

ix_comm_select_action_set Array of core local communication ID masks that is passed to the select
function.

ix_comm_id_mode Enumerated type expressing a communication ID receive mode.

IX_RM_COMM_ID_GET_LOCAL_ID() Returns the local ID for a communication ID.

IX_RM_COMM_ID_GET_SYSTEM_TYPE() Returns the subsystem type for a communication ID.

IX_RM_COMM_ID_GET_BLADE_ID() Returns the blade ID for a communication ID.

IX_RM_COMM_MAKE_ID() Creates a communication ID.

IX_RM_COMM_MAKE_LOCAL_ID() Creates a local subsystem communication ID.

ix_rm_packet_set_receive_mode() This function sets the packet receive mode for the communication ID.

ix_rm_message_set_receive_mode() This function sets the message receive mode for the communication ID.

ix_rm_packet_set_consumer_mode() This function sets the packet consumer mode for the communication ID.

ix_rm_message_set_consumer_mode() This function sets the message consumer mode for the communication
ID.

ix_rm_packet_set_producer_mode() This function sets the packet producer mode for the communication ID.

ix_rm_message_set_producer_mode() This function sets the message producer mode for the communication
ID.

ix_rm_packet_handler_register() Registers a packet handler with a core communication ID.

ix_rm_message_handler_register() Registers a message handler with a core communication ID.

ix_rm_packet_handler_unregister() Puts the packet processing for the communication ID in default mode—it
drops packets.

ix_rm_message_handler_unregister() Puts the message processing for the communication ID in default
mode—it drops packets.

ix_rm_packet_send() Sends a packet to a destination.

ix_rm_packet_send_wait() Sends a packet to a destination in a blocking mode.

ix_rm_message_send() Sends a message to a destination.

ix_rm_message_send_wait() Sends a message to a destination in a blocking mode.

ix_rm_packet_peek() This function retrieves the number of packets stored in the internal
queue for the specified communication ID.

ix_rm_packet_get() Retrieves a packet from a communication ID in a non-blocking mode.

ix_rm_packet_get_wait() Retrieves a packet from a communication ID in a blocking mode.

ix_rm_message_peek() This function retrieves the number of messages stored in the internal
queue for the specified communication ID.
136 Portability Framework Reference Manual

Resource Manager
For the communication between core components there are two mutually exclusive ways to receive
packets and messages:

• Through callbacks

• By waiting for data then retrieving data from the communication IDs

The second case is at all times buffered—that is, the data are temporarily stored in an internal
queue. On the other hand, callbacks may be buffered or unbuffered based on the implementation.

At the creation time, the core communication IDs are in the callback receive mode—
IX_COMM_ID_MODE_CALLBACK—and drops the packets and messages received. From this default
state, they can be put in either callback mode—IX_COMM_ID_MODE_CALLBACK—or get-select
mode—IX_COMM_ID_MODE_GET_SELECT—by calls to ix_rm_packet_set_receive_mode()
and ix_rm_message_set_receive_mode() functions. Usually there is no need to go from one
mode to another but if that is required it can be done.

If a communication ID is in get-select mode and it is switched to callback mode, all buffers in the
internal queue are dropped and all waiting tasks are awakened and the communication ID is set to
the callback mode. A separate call to ix_rm_packet_handler_register() or
ix_rm_message_handler_register() should be made in order to install the desired callback
function.

When the communication ID is switched from the callback mode to the get-select mode, all data
from that point on is queued in the internal queue associated with the communication ID. Once in
the get-select mode, calls to ix_rm_packet_get(), ix_rm_packet_get_wait(),
ix_rm_message_get(), ix_rm_message_get_wait(), ix_rm_packet_peek(),
ix_rm_message_peek(), and ix_rm_comm_select() functions are allowed.

In get-select receiving mode, a communication ID can be in different consumer/producer modes.
At the time a communication ID is put in get-select receiving mode the producer/consumer mode is
automatically set to multiproducer/multiconsummer.

Note: When in the get-select mode, the Resource Manager assures data consistency where multiple
threads send to one communication ID at the same time and where multiple threads consume from
one communication ID at the same time. The get-select mode has speed penalties due to the need to
lock access to the internal queue for all put and get operations.

Through calls to ix_rm_packet_set_consumer_mode(),
ix_rm_packet_set_producer_mode(), ix_rm_message_set_consumer_mode(), and
ix_rm_message_set_producer_mode() functions, the default producer/consumer mode can
be changed.

ix_rm_message_get() Retrieves a message from a communication ID in a non-blocking mode.

ix_rm_message_get_wait() Retrieves a message from a communication ID in a blocking mode.

ix_rm_comm_select() Waits on a set of communication IDs for data to be available.

ix_rm_ublock_packet_comm_init() Initializes the packet communication to a microblock.

ix_rm_ublock_message_comm_init() Initializes the message communication to a microblock.

Table 3-11. Resource Manager Communication API (Continued)

Name Description
Portability Framework Reference Manual 137

Resource Manager
Note: A communication ID can be in one mode for packet communication and another for message
communication.

The communication modes are strictly related to the receive side of a communication ID but they
affect the send-side behavior.

3.6.1 Defined Types, Enumerations, and Data Structures

This section defines the data types and structures used in the Communication API.

3.6.1.1 ix_comm_data_handler

This is the prototype for the generic data handler function pointer. The data handler function takes
as parameters a buffer handle—which in general refers to a packet or message handle, a 32-bit
unsigned integer where extra user data are passed to the handler, and a context pointer that is
passed to Resource Manager at the time the data handler is registered with a particular
communication ID and that is passed as an argument to the data handler upon each invocation.

When data are sent to a communication ID through send_packet or send_message functions,
on the receiving side, the registered handler is invoked. The send_packet and send_message
have an arg_UserData parameter that is passed as the arg_UserData argument to the registered
handler for the packet or message communication ID. This type can be used as a parameter for all
registration functions but in the actual implementation of the handler the first parameter can be
specialized to alias ix_handle types in order to avoid any confusion for the programmer. This
type describes the data handler function type that can be registered as a callback with a
communication ID.

C Syntax
typedef ix_error (*ix_comm_data_handler)(

ix_buffer_handle arg_hBuffer,
ix_uint32 arg_UserData,
void* arg_pContext);

3.6.1.2 ix_communication_id

This type describes a communication ID. The communication ID includes three bit fields—a local
communication ID, a system type and the blade ID. Macros are be provided for constructing
communication IDs and for accessing different bit fields.

The local communication IDs are used in the following manner: the IDs ranging from zero to
IX_COMM_LAST_UBLOCK_ID, inclusive, are reserved for communication with the microblocks. A
packet or message whose destination is an ID in this range is sent to the microblock corresponding
to the ID number.

Internally this is a 32-bit unsigned integer that has three bit fields packed within it—the local
identifier, the subsystem identifier, and the blade identifier (also known as the system identifier).

The ID range from IX_COMM_LAST_UBLOCK_ID plus one to IX_COMM_LOCAL_ID_NUMBER,
inclusive, are used for communication with core components. Microcode sends the exception
packets and messages to one of these IDs on which core components listens.
138 Portability Framework Reference Manual

Resource Manager
Note: A blade ID of zero always identifies the current system so it should not be used in identifying a
particular system.

C Syntax
typedef ix_uint32 ix_communication_id;

Field Mapping

Table 3-12 shows the mapping of the bit fields contained within ix_communication_id.

3.6.1.2.1 ix_comm_select_action_set

This type represents an array of core local communication ID masks that is passed to the select
function—ix_rm_comm_select(). The index zero in the array corresponds to the first core
communication ID—select does not work on the reserved microblock communication IDs. If the
caller to ix_rm_comm_select() wants to be notified on the arrival of packets or messages on a
communication ID then the corresponding mask should be set with the appropriate flags, described
in this section. On return from the ix_rm_comm_select() function for each communication ID
the action set is cleared and the flags in the set of masks are set only if data are available on that
communication ID or when an error occurs on that ID.

C Syntax
typedef ix_bit_mask32 ix_comm_select_action_set[IX_COMM_CORE_ID_NUMBER];

IX_COMM_SELECT_PACKET_MASK

#define IX_COMM_SELECT_PACKET_MASK 0x1

This flag specifies interest in packet processing for a specific communication ID. If this flag is set
in an ix_comm_select_action_set mask at the index corresponding to a communication ID
then the function returns if packets have been received on that communication ID. On return the
flag is set only if packets have been received on the specified communication ID.

Table 3-12. Bit Field Mapping for ix_communication_id

Field Description
Bit Range1

Least Significant Byte Most Significant Byte

Local ID
The local
communication
identifier.

IX_COMM_ID_LOCAL_ID_LSB IX_COMM_ID_LOCAL_ID_MSB

Subsystem Type

The subsystem
type used mainly
for remote
communication.

IX_COMM_ID_SUBSYSTEM_TYPE_LSB IX_COMM_ID_SUBSYSTEM_TYPE_MSB

Blade ID

The blade identifier
used mainly for
remote
communication.

IX_COMM_ID_BLADE_ID_LSB IX_COMM_ID_BLADE_ID_MSB

1. The size of the bit field can be computed using the formula: Most_Significant_Bit + 1 - Least_Significant_Bit.
Portability Framework Reference Manual 139

Resource Manager
IX_COMM_SELECT_MESSAGE_MASK

#define IX_COMM_SELECT_MESSAGE_MASK 0x2

This flag specifies interest in message processing for a specific communication ID. If this flag is set
in an ix_comm_select_action_set mask at the index corresponding to a communication ID
then the function returns if messages have been received on the communication ID. On return the
flag is set only if messages have been received on the communication ID.

IX_COMM_SELECT_ERROR_MASK

#define IX_COMM_SELECT_ERROR_MASK 0x4

On return from the ix_rm_comm_select() call this flag specifies that an error occurred for the
specified communication ID.

3.6.1.2.2 ix_comm_id_mode

This enumerated type describes communication ID receive modes. In the get-select mode the sent
data is stored in an internal queue to be retrieved at a later time by the receiving side. In the
callback mode the data is passed directly to a callback registered by the receiving side.

At initialization time all the communication IDs are in callback mode. Once the calling program
registers a callback with the communication ID the callback is invoked for each buffer sent to that
destination.

The get-select mode automatically registers an internal callback with the communication ID—this
callback stores the sent buffer and application data using an internal queue and returns
immediately. The data associated with that communication ID can be retrieved using
ix_rm_packet_get(), ix_rm_message_get(), ix_rm_comm_select(),
ix_rm_packet_peek(), and ix_rm_message_peek()calls referencing that communication ID.

C Syntax
typedef enum ix_e_comm_id_mode {
 IX_COMM_ID_MODE_FIRST = 0,
 IX_COMM_ID_MODE_CALLBACK = IX_COMM_ID_MODE_FIRST,
 IX_COMM_ID_MODE_GET_SELECT,
 IX_COMM_ID_MODE_LAST
} ix_comm_id_mode;

3.6.2 API Functions

3.6.2.1 Helper Macros

The macros in this section are provided for creating communication IDs and for accessing the
different bit fields.

3.6.2.1.1 IX_RM_COMM_ID_GET_LOCAL_ID()

This macro returns the local ID for a communication ID.
140 Portability Framework Reference Manual

Resource Manager
C Syntax
#define IX_RM_COMM_ID_GET_LOCAL_ID(arg_CommID)

3.6.2.1.2 IX_RM_COMM_ID_GET_SYSTEM_TYPE()

This macro returns the subsystem type for a communication ID.

C Syntax
#define IX_RM_COMM_ID_GET_SYSTEM_TYPE(arg_CommID)

3.6.2.1.3 IX_RM_COMM_ID_GET_BLADE_ID()

This macro returns the blade ID for a communication ID.

C Syntax
#define IX_RM_COMM_ID_GET_BLADE_ID(arg_CommID)

3.6.2.1.4 IX_RM_COMM_MAKE_ID()

This macro creates a communication ID. The caller specifies the local ID, subsystem type, and
blade ID for the target of the communication.

Note: A blade ID of zero always identifies the current system so it should not be used in identifying a
certain system.

C Syntax
#define IX_RM_COMM_MAKE_ID(arg_LocalID, arg_SubsystemType, arg_BladeID)

3.6.2.1.5 IX_RM_COMM_MAKE_LOCAL_ID()

This macro creates a local subsystem communication ID.

C Syntax
#define IX_RM_COMM_MAKE_LOCAL_ID(arg_LocalID)

3.6.2.2 ix_rm_packet_set_receive_mode()

This function sets the packet receive mode for the communication ID—either
IX_COMM_ID_MODE_CALLBACK or IX_COMM_ID_MODE_GET_SELECT. The change from one
mode to the other should be done explicitly. If this communication ID is in get-select mode, all
buffers in the internal queue are dropped and all waiting tasks are awakened.

C Syntax
ix_error ix_rm_packet_set_receive_mode(

ix_communication_id arg_CommunicationId,
ix_comm_id_mode arg_ReceiveMode);
Portability Framework Reference Manual 141

Resource Manager
Input

arg_CommunicationId The communication ID whose packet receive mode is to be set.

arg_ReceiveMode The packet receive mode. The valid values are:
• IX_COMM_ID_MODE_CALLBACK—callback mode

• IX_COMM_ID_MODE_GET_SELECT—get-select mode

Output/Returns

Return Value IX_SUCCESS if successful or a valid ix_error token for failure.
142 Portability Framework Reference Manual

Resource Manager
3.6.2.3 ix_rm_message_set_receive_mode()

This function sets the message receive mode for the communication ID—either
IX_COMM_ID_MODE_CALLBACK or IX_COMM_ID_MODE_GET_SELECT. The change from one
mode to the other should be done explicitly. If this communication ID is in get-select mode, all
buffers in the internal queue are dropped and all waiting tasks are awakened.

C Syntax
ix_error ix_rm_message_set_receive_mode(

ix_communication_id arg_CommunicationId,
ix_comm_id_mode arg_ReceiveMode);

3.6.2.4 ix_rm_packet_set_consumer_mode()

This function sets the packet consumer mode for the communication ID. If arg_ConsumerMode is
zero then the communication ID is set to single consumer mode. Otherwise the multiple consumer
mode is set. If the communication ID is in callback receive mode then the function returns an error
because this mode applies just to the get-select receive mode.

C Syntax
ix_error ix_rm_packet_set_consumer_mode(

ix_communication_id arg_CommunicationId,
ix_uint32 arg_ConsumerMode);

Input

arg_CommunicationId The communication ID for which we are setting the message receive
mode.

arg_ReceiveMode The message receive mode. Valid values are:
• IX_COMM_ID_MODE_CALLBACK—callback mode

• IX_COMM_ID_MODE_GET_SELECT—get-select mode

Output/Returns

Return Value IX_SUCCESS if successful or a valid ix_error token for failure.
Portability Framework Reference Manual 143

Resource Manager
3.6.2.5 ix_rm_message_set_consumer_mode()

This function sets the message consumer mode for the communication ID. If arg_ConsumerMode
is zero then the communication ID is set to single consumer mode. Otherwise the multiple
consumer mode is set. If the communication ID is in callback receive mode then the function
returns an error because this mode applies just to the get-select receive mode.

C Syntax
ix_error ix_rm_message_set_consumer_mode(

ix_communication_id arg_CommunicationId,
ix_uint32 arg_ConsumerMode);

Input

arg_CommunicationId The communication ID for which we are setting the packet consumer
mode.

arg_ConsumerMode The consumer mode for the communication ID. Valid values are:
• zero—single consumer

• non-zero—multiple consumer

Output/Returns

Return Value IX_SUCCESS if successful or a valid ix_error token for failure.

Input

arg_CommunicationId The communication ID for which we are setting the message consumer
mode.

arg_ConsumerMode The consumer mode for the communication ID. Valid values are:
• zero—single consumer

• non-zero—multiple consumer

Output/Returns

Return Value IX_SUCCESS if successful or a valid ix_error token for failure.
144 Portability Framework Reference Manual

Resource Manager
3.6.2.6 ix_rm_packet_set_producer_mode()

This function sets the packet producer mode for the communication ID. If arg_ConsumerMode is
zero then the communication ID is set to single-producer mode. Otherwise the multiple-producer
mode is set. If the communication ID is in callback receive mode then the function returns an error
because this mode only applies to the get-select receive mode.

C Syntax
ix_error ix_rm_packet_set_producer_mode(

ix_communication_id arg_CommunicationId,
ix_uint32 arg_ProducerMode);

3.6.2.7 ix_rm_message_set_producer_mode()

This function sets the message producer mode for the communication ID. If arg_ConsumerMode
is zero then the communication ID is set to single-producer mode. Otherwise the multiple-producer
mode is set. If the communication ID is in callback receive mode then the function returns an error
because this mode only applies to the get-select receive mode.

C Syntax
ix_error ix_rm_message_set_producer_mode(

ix_communication_id arg_CommunicationId,
ix_uint32 arg_ProducerMode);

Input

arg_CommunicationId The communication ID for which we are setting the packet producer
mode.

arg_ProducerMode The producer mode for the communication ID. Valid values are:
• zero—single producer

• non-zero—multiple producer

Output/Returns

Return Value IX_SUCCESS if successful or a valid ix_error token for failure.

Input

arg_CommunicationId The communication ID for which the message producer mode is set.

arg_ProducerMode The producer mode for the communication ID. Valid values are:
• zero—single-producer mode

• non-zero—multiple-producer mode
Portability Framework Reference Manual 145

Resource Manager
3.6.2.8 ix_rm_packet_handler_register()

This function registers a packet handler for an Intel XScale® core communication ID. From this
point on, the newly registered handler is used for processing packets sent to this destination.

The calling application passes a data handler and an application-defined context pointer. If the call
has been successful all packets sent to the specific communication ID are received by the registered
callback function. The registered handler is invoked with the registered context as a parameter. The
processing should be done as fast as possible due to the fact that this function might be executed
from a context of the sender or of a processing engine. For more extensive processing, the packet
should be queued for further handling in a separate task.

C Syntax
ix_error ix_rm_packet_handler_register(

ix_communication_id arg_CommunicationId,
ix_comm_data_handler arg_PacketHandler,
void* arg_pContext);

Output/Returns

Return Value IX_SUCCESS if successful or a valid ix_error token for failure.

Input

arg_CommunicationId The communication ID for which to register the packet handler.

arg_PacketHandler The packet handler to register.

arg_pContext The context data to pass to the packet handler each time this function
is invoked. The calling application must ensure that the context data
are valid as long the packet handler is registered. The context is
application-defined.

Output/Returns

Return Value Returns IX_SUCCESS if successful or a valid ix_error for failure.
146 Portability Framework Reference Manual

Resource Manager
3.6.2.9 ix_rm_packet_handler_unregister()

This function unregisters the current packet handler for the specified communication ID and
installs the Resource Manager default handler. From this point on, the packets sent to this
communication ID undergo the default processing—at this time the default is to drop the packet.
The composing buffers are returned to the free list from which they were allocated.

C Syntax
ix_error ix_rm_packet_handler_unregister(

ix_communication_id arg_CommunicationId);

3.6.2.10 ix_rm_message_handler_register()

This function registers a message handler for a Intel XScale® core communication ID. The
application passes a data handler and an application-defined context pointer. From this point on,
the new registered handler is used for processing messages sent to this destination.

If this communication ID is in get-select mode then an error is returned. The receive mode for the
communication Id should be changed explicitly.

If a call to this function has been successful all messages sent to the corresponding communication
ID are received by the registered callback function. The registered handler is invoked with the
registered context as a parameter. The processing should be done as fast as possible due to the fact
that this function might be executed from a context of the sender or of a processing engine. For
more extensive processing, the message should be queued for further handling in a separate task.

C Syntax
ix_error ix_rm_message_handler_register(

ix_communication_id arg_CommunicationId,
ix_comm_data_handler arg_MessageHandler,
void* arg_pContext);

Input

arg_CommunicationId The communication ID for which we unregister the packet handler.

Output/Returns

Return Value Returns IX_SUCCESS if successful or a valid ix_error for failure.
Portability Framework Reference Manual 147

Resource Manager
3.6.2.11 ix_rm_message_handler_unregister()

This function unregisters the current message handler for the specified communication ID and
installs the Resource Manager default handler. From this point on, the messages sent to this
communication ID undergo the default processing which at this time is to drop the message. The
composing buffers are returned to the free list from which they were allocated.

C Syntax
ix_error ix_rm_message_handler_unregister(

ix_communication_id arg_CommunicationId);

Input

arg_CommunicationId The communication ID for which the message handler is registered.

arg_MessageHandler The message handler to register.

arg_pContext The context data that is passed to the message handler on each
invocation. The application must ensure that the context data are
valid as long the message handler is registered.

Output/Returns

Return Value Returns IX_SUCCESS if successful or a valid ix_error for failure.

Input

arg_CommunicationId The communication ID from which to unregister the message
handler.

Output/Returns

Return Value Returns IX_SUCCESS if successful or a valid ix_error for failure.
148 Portability Framework Reference Manual

Resource Manager
3.6.2.12 ix_rm_packet_send()

This function sends a packet to the destination communication ID in a non-blocking mode. If the
communication ID is in get-select mode and the internal package queue is full an error is returned
specifying that the internal queue is full.

C Syntax
ix_error ix_rm_packet_send(

ix_communication_id arg_CommunicationId,
ix_buffer_handle arg_MessageBuffer,
ix_uint32 arg_UserData);

Input

arg_CommunicationId The destination communication ID.

arg_MessageBuffer The first buffer handle from the message that is sent to the specified
communication ID.

arg_UserData The custom user data that is passed to the packet handler registered
with the specified communication ID. This argument can be used to
pass extra information to the destination.

Output/Returns

Return Value Returns IX_SUCCESS if successful or a valid ix_error for failure.
Portability Framework Reference Manual 149

Resource Manager
3.6.2.13 ix_rm_packet_send_wait()

This function sends a packet to the specified communication ID—the destination communication
ID in a blocking mode. If the communication ID is in get-select mode and the internal packet queue
is full then the send function waits for the specified timeout for the internal queue to become
available before returning an error.

C Syntax
ix_error ix_rm_packet_send_wait(

ix_communication_id arg_CommunicationId,
ix_buffer_handle arg_PacketBuffer,
ix_uint32 arg_UserData,
ix_uint32 arg_Timeout);

Input

arg_CommunicationId The destination communication ID.

arg_PacketBuffer The first buffer handle from the packet that is sent to the specified
communication ID.

arg_UserData The custom user data that is passed to the packet handler registered
with the specified communication ID. This argument can be used to
pass extra information to the destination.

arg_Timeout The timeout specifying how long to wait from the time the
communication ID goes into buffered mode until the time the
internal data queue becomes available—expressed in milliseconds.

Output/Returns

Return Value Returns IX_SUCCESS if successful or a valid ix_error for failure.
150 Portability Framework Reference Manual

Resource Manager
3.6.2.14 ix_rm_message_send()

This function sends a message to the destination communication ID in a non-blocking mode. If the
communication ID is in get-select mode and the internal message queue is full then an error is
returned specifying that the internal queue is full.

C Syntax
ix_error ix_rm_message_send(

ix_communication_id arg_CommunicationId,
ix_buffer_handle arg_MessageBuffer,
ix_uint32 arg_UserData);

3.6.2.15 ix_rm_message_send_wait()

This function sends a message to the specified communication ID in a blocking mode. If the
communication ID is in get-select mode and the internal message queue is full then the send
function waits for the specified timeout—expressed in milliseconds—for the internal queue to
become available before returning an error.

C Syntax
ix_error ix_rm_message_send_wait(

ix_communication_id arg_CommunicationId,
ix_buffer_handle arg_MessageBuffer,
ix_uint32 arg_UserData,
ix_uint32 arg_Timeout);

Input

arg_CommunicationId The destination communication ID.

arg_MessageBuffer The first buffer handle from the message that is sent to the specified
communication ID.

arg_UserData The custom user data that is passed to the message handler registered
with the specified communication ID. This argument can be used to
pass extra information to the destination.

Output/Returns

Return Value Returns IX_SUCCESS if successful or a valid ix_error for failure.
Portability Framework Reference Manual 151

Resource Manager
3.6.2.16 ix_rm_packet_peek()

This function retrieves the number of packets stored in the internal queue for the specified
communication ID. The number might not be the same after the function returns. If the
communication ID is in callback receive mode, then an error is returned.

C Syntax

ix_error ix_rm_packet_peek(
ix_communication_id arg_CommunicationId,
ix_uint32* arg_pAvailablePackets);

Input

arg_CommunicationId The destination communication ID.

arg_MessageBuffer The first buffer handle from the message that is sent to the specified
communication ID.

arg_UserData The custom user data that is passed to the message handler registered
with the specified communication ID. This argument can be used to
pass extra information to the destination.

arg_Timeout The timeout specifying how long to wait from the time the
communication ID goes into get-select mode until the time the
internal data queue becomes available—expressed in milliseconds.

Output/Returns

Return Value Returns IX_SUCCESS if successful or a valid ix_error for failure.

Input

arg_CommunicationId The local communication ID from which we want to get
information.

Output/Returns

arg_pAvailablePackets A pointer to the number of available packets.

Return Value Returns IX_SUCCESS if successful or a valid ix_error for failure.
152 Portability Framework Reference Manual

Resource Manager
3.6.2.17 ix_rm_packet_get()

This function retrieves the next packet and associated user data from a communication ID in a non-
blocking, get-select mode. If the communication ID is in callback mode, the function returns an
error. If the internal packet queue is empty then an error is returned immediately.

C Syntax
ix_error ix_rm_packet_get(

ix_communication_id arg_CommunicationId,
ix_buffer_handle* arg_pPacketBuffer,
ix_uint32* arg_UserData);

3.6.2.18 ix_rm_packet_get_wait()

This function retrieves the next packet and associated user data from a get-select communication
ID in blocking mode. If the communication ID is in callback receive mode then an error is
returned. If the internal packet queue is empty then the function waits for the specified timeout—
expressed in milliseconds—for the data to become available before returning an error.

This function can be called from different contexts for the same communication ID. When the data
token becomes available only one of the instances returns and all the others remain blocked until
enough data are available or they timeout. This behavior can be useful for the pool of threads
processing design.

C Syntax
ix_error ix_rm_packet_get_wait(

ix_communication_id arg_CommunicationId,
ix_buffer_handle* arg_pPacketBuffer,
ix_uint32* arg_UserData,
ix_uint32 arg_Timeout);

Input

arg_CommunicationId The local communication ID specifying the packet source.

arg_pPacketBuffer A pointer to the packet buffer handle. The head of the internal queue is
extracted and stored at this location.

arg_pUserData A pointer specifying where to return the associated user data.

Output/Returns

Return Value Returns IX_SUCCESS if successful or a valid ix_error token for
failure.
Portability Framework Reference Manual 153

Resource Manager
3.6.2.19 ix_rm_message_peek()

This function retrieves the number of messages stored in the internal queue for the specified
communication ID. The number might not be the same after the function returns. If the
communication ID is in callback receive mode an error is returned.

C Syntax
ix_error ix_rm_message_peek(

ix_communication_id arg_CommunicationId,
ix_uint32* arg_pAvailableMessages);

Input

arg_CommunicationId The local communication ID from which we want to get data.

arg_pPacketBuffer A pointer to the packet buffer handle. The head of the internal
queue is extracted and stored at this location.

arg_pUserData A pointer specifying where to return the associated user data.

arg_Timeout The timeout specifying how long to wait—when the
communication ID is in get-select mode—for data to become
available. This value is expressed in milliseconds.

Output/Returns

Return Value Returns IX_SUCCESS if successful or a valid ix_error token for
failure.

Input

arg_CommunicationId The local communication ID from which to get data.

Output/Returns

arg_pAvailableMessages A pointer to the number of available messages.

Return Value Returns IX_SUCCESS if successful or a valid ix_error token for
failure.
154 Portability Framework Reference Manual

Resource Manager
3.6.2.20 ix_rm_message_get()

This function retrieves the next message and associated user data from a get-select communication
ID in non-blocking mode. If the communication ID is not already in the get-select mode, the
application must explicitly switch the communication ID to the get-select mode before calling this
function.

If this function is called when the internal message queue is empty then an error is returned
immediately. If this function is called when the communication ID is in callback receive mode then
the this function is called when an error is returned.

C Syntax
ix_error ix_rm_message_get(

ix_communication_id arg_CommunicationId,
ix_buffer_handle* arg_pMessageBuffer,
ix_uint32* arg_UserData);

3.6.2.21 ix_rm_message_get_wait()

This function retrieves the next message and associated user data from a get-select communication
ID in blocking mode. If this function is called when the internal message queue is empty then the
function waits for the specified timeout—expressed in milliseconds—for the data to become
available before returning an error. If this function is called when the communication ID is in
callback mode, the function returns an error.

This function can be called from different contexts for the same communication ID. When a data
token becomes available only one of the instances returns and all the others remain blocked until
enough data are available or they timeout. This behavior can be useful for the pool of threads
processing design.

C Syntax
ix_error ix_rm_message_get_wait(

ix_communication_id arg_CommunicationId,

Input

arg_CommunicationId The local communication ID from which to get data.

arg_pMessageBuffer A pointer to the message buffer handle. The head of the internal
queue is extracted and stored at this location.

arg_pUserData A pointer specifying where to return the associated user data.

Output/Returns

Return Value Returns IX_SUCCESS if successful or a valid ix_error token for
failure.
Portability Framework Reference Manual 155

Resource Manager
ix_buffer_handle* arg_pMessageBuffer,
ix_uint32* arg_UserData,
ix_uint32 arg_Timeout);

Input

arg_CommunicationId The local communication ID from which to get data.

arg_pMessageBuffer The address where the first buffer handle from the message from the
head of the internal queue is extracted.

arg_pUserData The address where the associated user data are stored.

arg_Timeout The timeout specifying how long to wait—when the communication
ID is in get-select mode—for data to become available. This value is
expressed in milliseconds.

Output/Returns

Return Value Returns IX_SUCCESS if successful or a valid ix_error token for
failure.
156 Portability Framework Reference Manual

Resource Manager
3.6.2.22 ix_rm_comm_select()

This function waits on a local set of core component communication IDs for messages or packets
to become available. The arg_SelectActionSet parameter is an array of 32-bit flags specifying
what kind of data each of the specified communication IDs is waiting for. If one of the selected
communication IDs has the type of data for which interest has been shown in the passed action set,
the function returns immediately. If the caller wants to be notified on the arrival of packets or
messages on a communication ID then the corresponding mask should be set with the appropriate
flags.

The first element of the array corresponds to the first core communication ID—this function does
not work with microblock communication IDs. The function waits for data for a maximum time
specified by the arg_Timeout parameter. If after this time has elapsed no data are available the
function returns an error. On return, the whole select action set is flushed and each mask is updated
to specify if data are available or an error has occurred on that communication ID.

This function can be invoked from several contexts at the same time for the same set of
communication IDs. All contexts awaken but the following non-blocking get functions succeed as
long data are available on the specific communication ID.

C Syntax
ix_error ix_rm_comm_select(

ix_comm_select_action_set arg_SelectActionSet,
ix_uint32 arg_Timeout);

Input

arg_Timeout The timeout specifying how long to wait for data to become available.
This value is expressed in milliseconds.

Input/Output

arg_SelectActionSet The array of 32-bit flags specifying what kind of data each of the
specified communication IDs is waiting for. On return, the flags are
cleared and specify only the data type that has been received on each
local core component communication ID.

Output/Returns

Return Value Returns IX_SUCCESS if successful or a valid ix_error token for
failure.
Portability Framework Reference Manual 157

Resource Manager
3.6.2.23 ix_rm_ublock_packet_comm_init()

This function initializes the packet communication from the Intel XScale® core to the microblock
corresponding to the passed communication ID. The function accomplishes this by associating a
hardware ring with a communication ID corresponding to the target microblock. The registered
ring has to be passed to the microcode.

This function must be called before packet communication to the specific microblock is started.
The passed hardware ring is associated with the communication ID and from this point on all
packets sent on this ID are queued into the specified ring.

Packet communication to all microblocks can be done on the same hardware ring, in which case
extra information about the destination has to be passed to the microcode along with the data. For
each packet sent to the communication ID the buffer handle and user data passed into the function
call is stored onto the associated ring.

If the microblock communication IDs have no ring associated with them and no data handler has
been previously registered, then the buffers are dropped.

C Syntax
ix_error ix_rm_ublock_packet_comm_init(

ix_communication_id arg_CommunicationId,
ix_hw_ring_handle arg_hHwRing);

Input

arg_CommunicationId The microblock communication ID of interest.

arg_hHwRing The hardware ring through which packet communication from the
core to microblock is performed.

Output/Returns

Return Value Returns IX_SUCCESS if successful or a valid ix_error token for
failure.
158 Portability Framework Reference Manual

Resource Manager
3.6.2.24 ix_rm_ublock_message_comm_init()

This function initializes the message communication from the Intel XScale® core to the
microblock corresponding to the communication ID passed in as an argument. This function must
be called before message communication to the specific microblock is started. The passed
hardware ring is associated with the communication ID and, from this point on, all messages sent
on this ID are queued into the specified ring. The registered ring has to be passed to the microcode.

Message communication to all microblocks can be done on the same hardware ring, in which case
extra information about the destination must be passed along with the data to the microcode. For
each message sent to the communication ID the passed buffer handle and user data are stored onto
the associated ring.

If the microblock communication IDs have no ring associated with them and no data handler has
been previously registered, then the buffers are dropped.

C Syntax
ix_error ix_rm_ublock_message_comm_init(

ix_communication_id arg_CommunicationId,
ix_hw_ring_handle arg_hHwRing);

Input

arg_CommunicationId The microblock communication ID of interest.

arg_hHwRing The hardware ring through which message communication between
the Intel XScale® core and a microblock is performed.

Output/Returns

Return Value Returns IX_SUCCESS if successful or a valid ix_error token for
failure.
Portability Framework Reference Manual 159

Resource Manager
3.7 Remote Communication Extension API

As stated earlier the communication ID mechanism allows for local communication, as well as
remote communication with other systems. If the destination is not intended for the local system
then the messages and packets will be forwarded to the active remote communication service that
routes the data through PCI or another communication pathway to the remote system.

A region of the communication ID identifies the remote system using a blade identifier. Each
system that works in a group should have a unique blade ID. A value of zero for the blade ID field
in the communication ID always specifies the local system—though it could be a dual ingress/
egress system since a portion of the communication ID specifies the destination subsystem in the
case of a dual ingress/egress system.

When the blade ID is zero—specifying the local system—then a subsystem type value of zero at
the time of communication ID creation refers to the local subsystem, whereas a value of one refers
to the peer subsystem.

When the blade ID specifies a remote system—that is, it has a value other than zero—then a value
of zero for the subsystem type specifies the ingress subsystem whereas a value of one specifies the
egress subsystem.

When data is sent to a communication ID that does not belong to the local subsystem—remote
communication ID—then the data is forwarded to the active remote communication service. At the
startup, the installed remote communication service is just dropping all packets and messages
received. Once a remote communication service is installed, then all data is passed to the registered
data handlers for the remote communication service. These handlers will receive the same
information as any local data handlers—a buffer plus user data—plus the destination
communication ID. From this point is the responsibility of the implementer of the service to handle
the remote communication. For a single dual system, there is a predefined service that will
facilitate the communication between ingress and egress through PCI bus. The API call
ix_rm_init_pci_remote_communication() has been provided to easily register this remote
communication service.

Table 3-13 summarizes the remote communication extension API.

Table 3-13. Resource Manager Remote Communication Extension API

Name Description

ix_remote_comm_service This structure defines a remote communication
service.

ix_remote_comm_data_handler This callback function prototype represents a generic
remote data handler.

ix_remote_comm_service_initializer Defines the generic remote communication service
initializer.

ix_remote_comm_service_finalizer Defines the generic remote communication service
finalizer.

ix_rm_remote_comm_service_register() Registers a remote communication service.

ix_rm_remote_comm_service_unregister() Unregisters the active remote communication service.
160 Portability Framework Reference Manual

Resource Manager
3.7.1 Defined Types, Enumerations, and Data Structures

3.7.1.1 ix_remote_comm_service

This structure defines a remote communication service. The implementer of a remote
communication service must provide one of these structures to the registration function,
ix_rm_remote_comm_service_register(). The Resource Manager supports just one remote
communication service at a time. However, the programmer can install one handler that can
dispatch data to different destinations. The contexts must be valid for as long as this service is
registered with the Resource Manager.

Members of this structure hold pointers to the service initializer and the service finalizer and a
context shared by both, the service packet handler and its context, and the service message handler
and its context.

All the functions describing the service should be properly defined. If these functions are not
properly defined the behavior of the system is unpredictable.

C Syntax
typedef struct ix_s_remote_comm_service {

ix_remote_comm_service_initializer m_ServiceInitializer;
ix_remote_comm_service_finalizer m_ServiceFinalizer;
void* m_pServiceContext;
ix_remote_comm_data_handler m_PacketHandler;
void* m_pPacketHandlerContext;
ix_remote_comm_data_handler m_MessageHandler;
void* m_pMessageHandlerContext;

} ix_remote_comm_service;

ix_rm_init_pci_remote_communication()
Installs the PCI remote communication service
between the ingress and egress network processors
for a single ingress/egress system.

ix_rm_register_pci_communication_hw_free_list()
Registers a hardware free list of choice to be used by
the predefined dual single system PCI remote
communication service.

ix_rm_unregister_pci_communication_hw_free_list()
Reverts to the default hardware free list to be used by
the predefined dual single system PCI remote
communication service.

Table 3-13. Resource Manager Remote Communication Extension API (Continued)

Name Description
Portability Framework Reference Manual 161

Resource Manager
3.7.2 Callback Function Prototypes

3.7.2.1 ix_remote_comm_data_handler

This callback function prototype represents a generic remote data handler.

When data is sent to a remote communication ID through ix_rm_packet_send(),
ix_rm_packet_send_wait(), ix_rm_message_send(), and
ix_rm_message_send_wait() functions, the registered remote handler is invoked. These
functions have an arg_UserData parameter that is passed to the handler as the arg_UserData
argument.

The implementer of a remote communication service must define two functions of this type—one
to handle packet traffic and the other to handle message traffic. Any send function to a remote
communication ID end up invoking the message or packet handler, as appropriate, registered with
the active remote communication service.

If different processing is required for different destinations then the handler is responsible for the
destination-sensitive behavior. Thought the simplicity, a complex handling system can be created.

C Syntax
typedef ix_error (*ix_remote_comm_data_handler) (

ix_buffer_handle arg_hBuffer,
ix_uint32 arg_UserData,
void* arg_pContext,
ix_communication_id arg_CommId

Data Members

m_ServiceInitializer A pointer to the function called to initialize the service. This
function must be provided by the calling application and
provides all required initialization for the service.

m_ServiceFinalizer A pointer to the function called to finalize the service. This
function must be provided by the calling application and
provides all required cleanup for the service.

m_pServiceContext A pointer to the context passed to the service initialization
and finalization functions.

m_PacketHandler A pointer to the handler invoked for each packet sent to a
remote target.

m_pPacketHandlerContext A pointer to the context passed to the packet handler at each
invocation.

m_MessageHandler A pointer to the handler invoked for each message sent to a
remote target.

m_pMessageHandlerContext A pointer to the context passed to the message handler at each
invocation
162 Portability Framework Reference Manual

Resource Manager
);

3.7.2.2 ix_remote_comm_service_initializer

Defines the generic remote communication service initializer. The implementer of a remote
communication service must provide this function. This function must perform all required
initialization for the remote communication service. At the time of the registration of the service—
that is, when ix_rm_remote_comm_service_register() is invoked—this function is invoked
with a new service context—the service context passed to Resource Manager at the time of the
remote communication set-up. If this call succeeds, then this new remote communication service
becomes active.

C Syntax
typedef ix_error (*ix_remote_comm_service_initializer)(void* arg_pContext);

3.7.2.3 ix_remote_comm_service_finalizer

Defines the generic remote communication service finalizer. The implementer of a remote
communication service must provide this function. This function must perform all required cleanup
for the remote communication service. At the time the service is unregistered—that is, when
ix_rm_remote_comm_service_unregister() is invoked—this function is invoked with a
service context—the service context passed to Resource Manager at the time of the remote
communication set-up.

C Syntax
typedef ix_error (*ix_remote_comm_service_finalizer)(void* arg_pContext);

Input

arg_hBuffer Typically a handle to a packet or message buffer.

arg_UserData An integer used to pass additional application data to the handler.

arg_pContext The context pointer passed to Resource Manager at the time of remote
communication set-up.

arg_CommId A remote communication ID.

Input

arg_pContext A pointer to the context passed to the Resource Manager at the time the
remote communication was set up.
Portability Framework Reference Manual 163

Resource Manager
3.7.3 API Functions

3.7.3.1 ix_rm_remote_comm_service_register()

This function registers a remote communication service if no other is already installed. If a service
is already in place it must first be unregistered using
ix_rm_remote_comm_service_unregister() and only then can the application register a
new service. If the registration is possible then the initializer of the new service is invoked and, if
that call is successful, the registration is completed.

At system initialization, a default service is registered that drops remote packets and messages. An
error is returned if, at the time of this call, any other service is active other than the default service.
The system must be brought to the initial state by unregistering the active service.

From the time this function returns, the new service handles all the remote traffic. The contexts
passed for the service must be valid for as long as the service is active.

C Syntax
ix_error ix_rm_remote_comm_service_register (

const ix_remote_comm_service* arg_pRemoteCommService);

3.7.3.2 ix_rm_remote_comm_service_unregister()

This function unregisters the active remote communication service. Upon return from this function
the system is in the initial state. Before the service is unregistered, the finalizer of the service is
invoked.

C Syntax
ix_error ix_rm_remote_comm_service_unregister(void);

Input

arg_pContext A pointer to the context passed to the Resource Manager at the time the
remote communication was set up.

Input

arg_pRemoteCommService The new remote comm service to be installed.

Output/Returns

Return Value Returns IX_SUCCESS if successful or a valid ix_error token to
signal a failure.
164 Portability Framework Reference Manual

Resource Manager
3.7.3.3 ix_rm_init_pci_remote_communication()

This function installs the PCI remote communication service between the ingress and egress
network processors for a single ingress/egress system. Upon return from this call all
communication to the peer subsystem is handled by the PCI remote communictation service.

Note: This service works only for a single dual ingress/egress system.

C Syntax
ix_error ix_rm_init_pci_remote_communication(void);

3.7.3.4 ix_rm_register_pci_communication_hw_free_list()

This function registers a hardware free list to be used by the receive side of the PCI remote
communication driver instead of the default hardware free list. The PCI driver automatically
creates an internal free list that is used for copying the buffers from the remote subsystem. This free
list can be replaced by a free list of choice.

C Syntax
ix_error ix_rm_register_pci_communication_hw_free_list(

ix_buffer_free_list_handle arg_hFreeList);

Output/Returns

Return Value Returns IX_SUCCESS if successful or a valid ix_error token to
signal a failure.

Output/Returns

Return Value Returns IX_SUCCESS if successful or a valid ix_error token to signal a
failure.

Input

arg_hFreeList The hardware free list to be used by the PCI remote
communication driver.

Output/Returns

Return Value Returns IX_SUCCESS if successful or a valid ix_error token to signal a
failure.
Portability Framework Reference Manual 165

Resource Manager
3.7.3.5 ix_rm_unregister_pci_communication_hw_free_list()

This function unregisters the previously registered user hardware free list for the PCI remote
communication driver. From this point on, the default hardware free list (PCI driver internal list) is
used to allocate the required buffers. The function returns the previously active user free list
handle.

C Syntax
ix_error ix_rm_unregister_pci_communication_hw_free_list(

ix_buffer_free_list_handle* arg_pFreeListHandle);

Output/Returns

arg_pFreeListHandle If successful, the previously registered user hardware free list
handle is returned to the caller at the passed address.

Return Value Returns IX_SUCCESS if successful or a valid ix_error token to
signal a failure.
166 Portability Framework Reference Manual

Resource Manager
3.8 Memory Management API

The Resource Manager manages SRAM, DRAM, scratch and local memory for the IXP2400 and
Intel® IXP2800 Network Processors. It exports an interface to allocate, access and free memory
chunks. The Resource Manager owns SRAM and scratch memory completely and DRAM
partially. The DRAM is partly owned by the operating system.

The memory managed by the Resource Manager is used to support system-wide data structures
such as the buffer free pools, control blocks for building blocks, route table, trie table, and so on.
The difference between this memory and memory allocated from the operating system is that this
memory has no MMU protection and is always addressed at the same memory location by all
processes. This has meaning only in Linux*. In VxWorks*, the memory model is a flat memory
space shared by every task. Since this memory is shared with the microengines it is typically
uncached.

All applications including the building block infrastructure must use this API to allocate memory
in order to work in conjunction with the microengines. The operating system memory is not
accessible from microcode.

Note: The Resource Manager memory management is designed to handle one-time memory allocation
primarily to partition memory among the applications. In other words we are not attempting to re-
implement malloc(). Applications that require handling large number of allocation and free
operations dynamically need to obtain enough memory from the Resource Manager and manage it
themselves.

The Resource Manager allocates memory such that DRAM is always returned aligned at an 8-byte
boundary and any request is rounded off to an 8-byte boundary. For SRAM and scratch the
alignment is always at a 4-byte boundary and all requests are rounded off to a 4-byte boundary.

Functions are provided to calculate the physical offset into the specific channel and physical
address of the chunk allocated from the virtual address and vice versa. The microengines can only
access memory using these offset values into a specific channel. The physical memory is
contiguous—on a specific channel—for the IXP2400 and Intel® IXP2800 Network Processors.

Handling SRAM allocation requires supporting multiple channels. The memory management API
takes the channel number as one of the inputs. For the Intel® IXP2400 Network Processor, the
valid channel numbers are zero and one. For the Intel® IXP2800 Network Processor, the valid
channel numbers are zero through three, inclusive.

For the Intel® IXP2800 Network Processor, the number of DRAM channels is three, while Intel®
IXP2400 Network Processor supports only one DRAM channel.

The Resource Manager—at the time of initialization—can reserve space in SRAM, SCRATCH,
SDRAM and local memory to support Microengine C. The linker (UCLD) requires a base address
for these blocks of memory, but no provision exists to limit the size of these memory chunks. The
Resource Manager gets information from the UCLO (loader) library about the memory required by
the loaded microcode image and checks if that memory has been reserved at Resource Manager
initialization. If any of the required areas have not been reserved, then an error is returned along
with the memory areas that must be reserved for microcode usage. More details can be found in
Section 3.2.1.7, “ix_memory_reserved_area.”

Table 3-14 lists the structures and functions in the Memory Management API.
Portability Framework Reference Manual 167

Resource Manager
3.8.1 Defined Types, Enumerations, and Data Structures

This section describes data structures used in Memory Management API. See also Section 3.2.1.7,
“ix_memory_reserved_area.”

3.8.1.1 ix_memory_type

This data type represents available memory types in the system under the control, in whole or in
part, of the Resource Manager.

C Syntax
typedef enum ix_e_memory_type {
 IX_MEMORY_TYPE_FIRST = 0,
 IX_MEMORY_TYPE_DRAM = IX_MEMORY_TYPE_FIRST,
 IX_MEMORY_TYPE_SRAM,
 IX_MEMORY_TYPE_SCRATCH,
 IX_MEMORY_TYPE_LOCAL,
 IX_MEMORY_TYPE_LAST
}ix_memory_type;

Table 3-14. Resource Manager Memory Management API

Name Description

ix_memory_type An enumerated type listing the types of memory supported by
the Resource Manager.

ix_memory_info Memory information data structure.

ix_memory_alignment_type Alignment types for the aligned memory allocation and
reservation calls.

ix_rm_mem_alloc() Allocates memory—SRAM, DRAM, and scratch.

ix_rm_mem_alloc_aligned() Allocates memory with alignment—SRAM, DRAM, and scratch.

ix_rm_mem_reserve() Reserves memory.

ix_rm_mem_reserve_aligned() Reserves memory with alignment.

ix_rm_mem_free() Frees memory.

ix_rm_mem_info() Retrieves memory information for the specified memory type and
specified channel.

ix_rm_mem_local_alloc() Allocates local memory.

ix_rm_mem_local_reserve() Reserves local memory

ix_rm_mem_local_free() Frees local memory.

ix_rm_mem_local_info() Retrieves local memory information.

ix_rm_get_phys_offset() Returns the physical offset of a memory block.

ix_rm_get_virtual_address() Returns the virtual address of a memory block.

Read/Write Macros Macros to read and write memory locations. See
Section 3.8.2.13.
168 Portability Framework Reference Manual

Resource Manager
3.8.1.2 ix_memory_info

This structure is used to retrieve memory information from the Resource Manager including the
type of memory and the particular channel of memory that is managed by the Resource Manager.

C Syntax
typedef struct ix_s_memory_info {

ix_uint32* m_pStartAddress;
ix_uint32 m_TotalSize;
ix_uint32 m_FreeSize;
ix_uint32 m_DefaultAlignmentShift;
ix_uint32 m_ChannelPhysicalOffset;
void* m_pChannelPhysicalAddress;

} ix_memory_info;

Data Members

m_pStartAddress A pointer to the start of the memory block.

m_TotalSize The total memory size.

m_FreeSize The size of the free memory area.

m_DefaultAlignmentShift The default alignment expressed as a power of two.

m_ChannelPhysicalOffset The physical offset of the start of the memory block inside the
memory channel.

m_pChannelPhysicalAddress A pointer to the physical address of the start of the current
memory channel.
Portability Framework Reference Manual 169

Resource Manager
3.8.1.3 ix_memory_alignment_type

This enumerated type describes the possible requests for allocating or reserving memory with
alignment constraints. IX_MEMORY_ALIGNMENT_TYPE_VIRTUAL allocates memory providing
alignment for the virtual memory. The physical offset and/or physical address might not be aligned
with the same alignment requirements. IX_MEMORY_ALIGNMENT_TYPE_PHYSICAL allocates
memory providing alignment for the physical memory. The physical offset and/or virtual address
might not be aligned with the same alignment requirements.
IX_MEMORY_ALIGNMENT_TYPE_PHYSICAL_OFFSET allocates memory providing alignment for
the physical memory offset for the channel. The virtual address and/or physical address might not
be aligned with the same alignment requirements.

For large alignment the physical address, physical offset and virtual address might not satisfy the
same alignment at the same time.

C Syntax
typedef enum ix_e_memory_alignment_type {
 IX_MEMORY_ALIGNMENT_TYPE_FIRST = 0,
 IX_MEMORY_ALIGNMENT_TYPE_VIRTUAL = IX_MEMORY_ALIGNMENT_TYPE_FIRST,
 IX_MEMORY_ALIGNMENT_TYPE_PHYSICAL,
 IX_MEMORY_ALIGNMENT_TYPE_PHYSICAL_OFFSET,
 IX_MEMORY_ALIGNMENT_TYPE_LAST
} ix_memory_alignment_type;
170 Portability Framework Reference Manual

Resource Manager
3.8.2 API Functions

3.8.2.1 ix_rm_mem_alloc()

This function allocates common microengine and Intel XScale® core memory on behalf of the
calling application. On return, if the allocation fails the pointer arg_pMemoryAddr is set to NULL
and if the allocation succeeds arg_pMemoryAddr returns a virtual memory pointer to the allocated
memory block address. The returned address is aligned according to the default alignment for the
type of memory. If the size does not comply with memory alignment then the actual allocated size
is rounded up to insure that alignment is satisfied for further allocations.

The Resource Manager allocates memory so that:

• DRAM alignment is always at an 8-byte boundary and any request is rounded off to an 8-byte
boundary

• SRAM and scratch memory is always returned aligned at a 4-byte boundary and any request is
rounded off to a 4-byte boundary

C Syntax
ix_error ix_rm_mem_alloc(

ix_memory_type arg_MemType,
ix_uint32 arg_MemChannel,
ix_uint32 arg_Size,
void** arg_pMemoryAddr);

Input

arg_MemType The type of memory requested.

arg_MemChannel The channel from which memory is requested.

arg_Size The size in bytes of the requested memory block.

Output/Returns

Return Value Returns IX_SUCCESS if successful and a valid ix_error value
otherwise.

arg_pMemoryAddr The pointer to the address of the newly allocated memory. The value of
this pointer is NULL if the allocation fails and the address of the allocated
memory block if successful.
Portability Framework Reference Manual 171

Resource Manager
3.8.2.2 ix_rm_mem_alloc_aligned()

The calling application uses this function to allocate memory common to microengines and the
Intel XScale® core. On return, if the allocation fails the pointer arg_pMemoryAddr is set to NULL
and if the allocation succeeds the pointer is set to the allocated memory block address.

The Resource Manager provides default alignment for different types of memory, but some
applications might require a higher alignment than the default one. The alignment can requested
relative to the virtual address, the physical address or the physical offset. For example hardware
rings require certain physical offset alignment for the controlled memory.

The returned address is aligned according to the arg_AlignmentSfift parameter and
arg_AlignmentType alignment type. If arg_AlignmentSfift parameter is less than default
alignment then the return memory is aligned according to the default alignment. If the alignment
type is not IX_MEMORY_ALIGNMENT_TYPE_VIRTUAL then the resulting virtual address might not
be aligned according to the arg_AlignmentShift—instead, the physical offset or physical
address is aligned properly. When changes in alignment are required, the actual allocated size is
rounded up to accommodate the required alignment.

C Syntax
ix_error ix_rm_mem_alloc_aligned(

ix_memory_type arg_MemType,
ix_uint32 arg_MemChannel,
ix_uint32 arg_Size,
ix_memory_alignment_type arg_AlignmentType,
ix_uint32 arg_AlignmentShift,
void** arg_pMemoryAddr);

Input

arg_MemType Represents the type of memory requested.

arg_MemChannel Represents the channel from which memory is requested.

arg_Size Represents the size in bytes of the block requested.

arg_AlignmentType Specifies the type of alignment required as explained in the
Section 3.8.1.3, “ix_memory_alignment_type.”

arg_AlignmentShift This value specifies the required memory block alignment as a
power of two of the alignment. If the specified alignment is less than
the default alignment for the corresponding memory then the default
alignment is used.
172 Portability Framework Reference Manual

Resource Manager
3.8.2.3 ix_rm_mem_reserve()

This function reserves a region of memory of the specified type at the specified offset. If memory
of that type and at that offset has already been allocated an error is returned. This call is used to
reserve SRAM, DRAM, or scratch memory for Microengine C. To reduce the chances of failure,
call this function before any memory allocations are made.

The Resource Manager reserves memory such that:

• DRAM alignment is always at an 8-byte boundary and any request is rounded off to a 8-byte
boundary

• SRAM and scratch memory is always returned aligned at a 4-byte boundary and any request is
rounded off to a 4-byte boundary

C Syntax
ix_error ix_rm_mem_reserve(

ix_memory_type arg_MemType,
ix_uint32 arg_MemChannel,
ix_uint32 arg_Size,
ix_uint32* arg_pByteOffset);

Output/Returns

Return Value Returns IX_SUCCESS if successful or a valid ix_error for failure.

arg_pMemoryAddr A pointer to the allocated memory address. The pointer
arg_pMemoryAddr is set to NULL if the allocation fails, or to the
allocated memory block address if the allocation succeeds.

Input

arg_MemType The type of memory to reserve.

arg_MemChannel The memory channel.

arg_Size The size in bytes of the memory block to reserve.

Input/Output

arg_pByteOffset The byte offset of the memory block requested for reservation. On return
this value is adjusted to accommodate the memory type default
alignment.
Portability Framework Reference Manual 173

Resource Manager
3.8.2.4 ix_rm_mem_reserve_aligned()

This function reserves an area of memory at the specified memory channel byte offset and of
specified size. The function is provided as support for the Microengine C compiler and linker. This
call should be made before any memory allocation has been made in order to reduce the chance of
failure.

This function reserves memory with specified alignment for SRAM, DRAM and scratch memory.

If the byte offset is not be aligned according to alignment type and arg_AlignmentShift. If
arg_AlignmentShift is less than the default alignment then the default alignment is used and
more data than was requested might be reserved. If the alignment type is not
IX_MEMORY_ALIGNMENT_TYPE_VIRTUAL then the resulting virtual address might not be aligned
according to the arg_AlignmentShift—instead, the physical offset or physical address is
properly aligned. In general the byte offset and size should comply with the memory alignment,
otherwise more memory is reserved to insure the right alignment. On return *arg_pByteOffset
might be modified to reflect alignment requirements.

C Syntax
ix_error ix_rm_mem_reserve_aligned(

ix_memory_type arg_MemType,
ix_uint32 arg_MemChannel,
ix_uint32 arg_Size,
ix_memory_alignment_type arg_AlignmentType,
ix_uint32 arg_AlignmentShift,
ix_uint32* arg_pByteOffset);

Output/Returns

Return Value Returns IX_SUCCESS if successful and a valid ix_error value
otherwise. If any portion of the memory requested for reservation has
been already allocated this call fails.

Input

arg_MemType The type of memory to be reserved.

arg_MemChannel The channel from which memory is to be reserved.

arg_Size The size in bytes of the memory block to be reserved.

arg_AlignmentType The type of alignment required as explained at
ix_memory_alignment_type type description

arg_AlignmentShift The required memory block alignment as the power of two of the
alignment. If the specified alignment is less than the default alignment
for the corresponding memory then the default alignment is used.
174 Portability Framework Reference Manual

Resource Manager
3.8.2.5 ix_rm_mem_free()

This function frees memory of a particular type previously allocated or reserved through a call to
ix_rm_mem_alloc(). If the memory was not previously allocated by a call to
ix_rm_mem_alloc() the results of this call are unpredictable. Passing an address that has not
been allocated or that has already been freed results in an error. Passing NULL results in a no op.
Attempting to accessing a memory location within the block after that memory block has been
freed results in unpredictable behavior.

C Syntax
ix_error ix_rm_mem_free(

void* arg_pMemory);

Input/Output

arg_pByteOffset Represents the address of byte offset of the memory block requested
for reservation. On return this value is adjusted to accommodate the
memory type default alignment.

Output/Returns

Return Value Returns IX_SUCCESS if successful or a valid ix_error for failure. If
any portion of the memory requested for reservation has been already
allocated then the call fails.

Input

arg_pMemory The address of the memory block to free.

Output/Returns

Return Value Returns IX_SUCCESS if successful and a valid ix_error value
otherwise. Passing an address that has not been allocated or that has
already been freed results in an error. Passing NULL results in a no op.
Portability Framework Reference Manual 175

Resource Manager
3.8.2.6 ix_rm_mem_info()

This function retrieves memory information for the specified memory type and specified channel.
The structure pointed to by arg_pMemoryInfo is returned with the requested memory
information.

C Syntax
ix_error ix_rm_mem_info(

ix_memory_type arg_MemType,
ix_uint32 arg_MemChannel,
ix_memory_info* arg_pMemoryInfo);

Input

arg_MemType The type of memory for which we want to get the info.

arg_MemChannel The channel for which to get information.

Output/Returns

Return Value Returns IX_SUCCESS if successful or a valid ix_error for failure.

arg_pMemoryInfo On return points to the structure containing memory information
176 Portability Framework Reference Manual

Resource Manager
3.8.2.7 ix_rm_mem_local_alloc()

This function is used to allocate local memory for a specific microengine. The memory allocated
cannot be used on the Intel XScale® core. This call returns an offset into the local memory of the
microengine. This offset is patched into the microcode by the Intel XScale® core.

The Resource Manager allocates local memory such that the offset is always returned aligned at a
4-byte boundary and any request is rounded off to a 4-byte boundary.

The pointer, arg_pByteOffset, is set to (ix_uint32) (-1) if the allocation fails or to the
allocated memory block offset if the allocation succeeds. The local memory is not accessible to
Intel XScale® core applications. The applications retrieve the offset and patch it into the microcode
for the specific microengine. The returned offset is 4-byte aligned. If the size does not comply with
memory alignment then the actual allocated size is rounded up to a 4-byte boundary.

C Syntax
ix_error ix_rm_mem_local_alloc(

ix_uint32 arg_MeNumber,
ix_uint32 arg_Size,
ix_uint32* arg_pByteOffset);

Input

arg_MeNumber The microengine number for which local memory should be allocated.
Allowed values for the microengine number are 0x00 through 0x03
and 0x10 through 0x13 for the Intel® IXP2400 Network Processor and
0x00 through 0x07 and 0x10 through 0x17 for the Intel® IXP2800
Network Processor. The validity of the microengine number is
checked only in debug mode.

arg_Size The size in bytes of the requested memory block.

Output/Returns

Return Value Returns IX_SUCCESS if successful and a valid ix_error value
otherwise.

arg_pByteOffset The pointer used to return the allocated memory offset in bytes.
arg_pByteOffset is set to (ix_uint32) (-1) if the allocation fails
or to the allocated memory block offset if the allocation succeeds.
Portability Framework Reference Manual 177

Resource Manager
3.8.2.8 ix_rm_mem_local_reserve()

This function reserves a region of local memory at the specified offset. If that memory has already
been allocated then an error is returned. This call is used to reserve local memory for Microengine
C. To reduce the chances of failure, call this function before any memory allocations are made.

The Resource Manager reserves memory such that local memory is always returned aligned at a 4-
byte boundary and any request is rounded off to a 4-byte boundary.

C Syntax
ix_error ix_rm_mem_local_reserve(

ix_uint32 arg_MeNumber,
ix_uint32 arg_Size,
ix_uint32* arg_pByteOffset);

Input

arg_MeNumber The microengine number for which local memory is reserved.
Allowed values for the microengine number are 0x00 through 0x03 and
0x10 through 0x13 for the Intel® IXP2400 Network Processor and 0x00
through 0x07 and 0x10 through 0x17 for the Intel® IXP2800 Network
Processor. The validity of the microengine number is checked only in
debug mode.

arg_Size The size in bytes of the requested memory block to be reserved.

Input/Output

arg_pByteOffset On input, a pointer to the byte offset of the memory block to be reserved.
On return this value is adjusted to reflect the default alignment for the
memory block.

Output/Returns

Return Value Returns IX_SUCCESS if successful or a valid ix_error for failure. If any
portion of the memory requested for reservation has been already
allocated then the call fails.
178 Portability Framework Reference Manual

Resource Manager
3.8.2.9 ix_rm_mem_local_free()

This function frees memory previously allocated or reserved. Passing an address that has not been
allocated or that has already been freed results in an error. Passing NULL results in a no op.
Accessing the memory location after the block has been freed results in unpredictable behavior.

C Syntax
ix_error ix_rm_mem_local_free(

ix_uint32 arg_MeNumber,
ix_uint32 arg_MemoryOffset);

Input

arg_vMeNumber The microengine number for which local memory should be freed.
Allowed values for the microengine number are 0x00 through 0x03 and
0x10 through 0x13 for the Intel® IXP2400 Network Processor and 0x00
through 0x07 and 0x10 through 0x17 for the Intel® IXP2800 Network
Processor. The validity of the microengine number is checked only in
debug mode.

arg_MemoryOffset The offset of the memory block to be freed.

Output/Returns

Return Value Returns IX_SUCCESS if successful or a valid ix_error for failure.
Passing an address that has not been allocated or that has already been
freed results in an error. Passing NULL results in a no op.
Portability Framework Reference Manual 179

Resource Manager
3.8.2.10 ix_rm_mem_local_info()

This function retrieves memory information for the specified memory type and specified channel.
On return the structure pointed to by arg_pMemoryInfo contains the requested memory
information. This function retrieves local memory information for each microengine.

C Syntax
ix_error ix_rm_mem_local_info(

ix_memory_type arg_MeNumber,
ix_memory_info* arg_pMemoryInfo);

3.8.2.11 ix_rm_get_phys_offset()

Returns the physical offset in bytes for memory allocated by the Resource Manager.

This routine takes in as input a virtual memory pointer used to access the memory on the Intel
XScale® core. It returns the physical offset into the channel in bytes, the physical address, the
memory type, and the channel for this memory area.

If any of the Out parameters are NULL then the corresponding piece of data is not returned.

C Syntax
ix_error ix_rm_get_phys_offset(

const void* arg_pMemory,
ix_memory_type* arg_pMemType,
ix_uint32* arg_pMemChannel,
ix_uint32* arg_pOffset,
void** arg_pPhysicalAddress);

Input

arg_MeNumber Represents the microengine number for which to get memory information.
Allowed values for the microengine number are 0x00 through 0x03 and
0x10 through 0x13 for the Intel® IXP2400 Network Processor and 0x00
through 0x07 and 0x10 through 0x17 for the Intel® IXP2800 Network
Processor. The validity of the microengine number is checked only in
debug mode.

Output/Returns

Return Value Returns IX_SUCCESS if successful or a valid ix_error for failure.

arg_pMemoryInfo On return points to the memory information data structure.
180 Portability Framework Reference Manual

Resource Manager
3.8.2.12 ix_rm_get_virtual_address()

Returns the virtual pointer into memory given a physical offset into the memory buffer, specified in
bytes.

The virtual pointer returned can be used to access this memory on the Intel XScale® core.

C Syntax
ix_error ix_rm_get_virtual_address(

ix_memory_type arg_MemType,
ix_uint32 arg_MemChannel,
ix_uint32 arg_Offset,
ix_uint8** arg_pMemoryAddr);

Input

arg_pMemory The pointer to the memory block to query.

Output/Returns

Return Value Returns IX_SUCCESS if successful and a valid ix_error value
otherwise.

arg_pMemType A pointer to the type of memory at the location in question.

arg_pMemChannel A pointer to the memory channel for the location in question.

arg_pOffset A pointer to the offset for the memory location in question.

arg_pPhysicalAddress The pointer to the physical address.

Input

arg_MemType The type for the physical memory location.

arg_MemChannel The channel for the physical memory location.

arg_Offset The physical offset in bytes for the physical memory location.

Output/Returns

Return Value Returns IX_SUCCESS if successful and a valid ix_error value
otherwise.

arg_pMemoryAddr A virtual pointer to the given physical address.
Portability Framework Reference Manual 181

Resource Manager
3.8.2.13 Read/Write Macros

To provide portability between code running on hardware and code running under a foreign model,
the following macros are provided. Use of these macros makes it easier to write code that runs both
under the foreign model and real hardware. In general for access to memory that is used by both the
Intel XScale® core and the microengines, these macros should be used instead of direct dereference
of the addresses. These macros support code running on microengines in big-endian mode and on
the Intel XScale® core in little-endian mode without any change to the code. Using these macros
facilitates writing code that runs both under the foreign model and real hardware.

Table 3-15 lists the macros provided.

3.8.2.13.1 IX_RM_MEM_UINT8_READ

A macro used to read an 8-bit value from memory.

C Syntax
#define IX_RM_MEM_UINT8_READ(arg_pMemoryAddr)

3.8.2.13.2 IX_RM_MEM_UINT16_READ

A macro used to read a 16-bit value from memory.

Table 3-15. Resource Manager Memory Management Macros

Macro Name Description

IX_RM_MEM_UINT8_READ Returns an ix_uint8 representing the value at the specified location.

IX_RM_MEM_UINT16_READ Returns an ix_uint16 representing the value at the specified location.

IX_RM_MEM_UINT32_READ Returns an ix_uint32 representing the value at the specified location.

IX_RM_MEM_UINT64_READ Returns an ix_uint64 representing the value at the specified location.

IX_RM_MEM_UINT8_WRITE Writes an ix_uint8 value to the specified location.

IX_RM_MEM_UINT16_WRITE Writes an ix_uint16 value to the specified location.

IX_RM_MEM_UINT32_WRITE Writes an ix_uint32 value to the specified location.

IX_RM_MEM_UINT64_WRITE Writes an ix_uint64 value to the specified location.

Input

arg_pMemoryAddr The pointer to the address of the memory location to be read. The value
at this location should be of the type ix_uint8*.

Output/Returns

Return Value An ix_uint8 representing the value at the specified location.
182 Portability Framework Reference Manual

Resource Manager
C Syntax
#define IX_RM_MEM_UINT16_READ(arg_pMemoryAddr)

Input

arg_pMemoryAddr A pointer to the address of the memory location to be read. The value at
this location should be of the type ix_uint16* and aligned on a 16-bit
boundary.

Output/Returns

Return Value An ix_uint16 representing the value at the specified location.
Portability Framework Reference Manual 183

Resource Manager
3.8.2.13.3 IX_RM_MEM_UINT32_READ

A macro used to read a 32-bit value from memory.

C Syntax
#define IX_RM_MEM_UINT32_READ(arg_pMemoryAddr)

3.8.2.13.4 IX_RM_MEM_UINT64_READ

A macro used to read a 64-bit value from memory.

C Syntax
#define IX_RM_MEM_UINT64_READ(arg_pMemoryAddr)

Input

arg_pMemoryAddr A pointer to the address of the memory location to be read. The value at
this location should be of the type ix_uint32* and aligned on a 32-bit
boundary.

Output/Returns

Return Value An ix_uint32 representing the value at the specified location.

Input

arg_pMemoryAddr The pointer to the address of the memory location to be read. The value
at this location should be of the type ix_uint64* and aligned on a 64-bit
boundary.

Output/Returns

Return Value An ix_uint64 representing the value at the specified location.
184 Portability Framework Reference Manual

Resource Manager
3.8.2.13.5 IX_RM_MEM_UINT8_WRITE

Writes an 8-bit value to memory.

C Syntax
#define IX_RM_MEM_UINT8_WRITE(arg_pMemoryAddr, arg_Value)

3.8.2.13.6 IX_RM_MEM_UINT16_WRITE

Writes a 16-bit value to memory.

C Syntax
#define IX_RM_MEM_UINT16_WRITE(arg_pMemoryAddr, arg_Value)

Input

arg_pMemoryAddr The address of the memory location to be written. The value at this
location should be of the type ix_uint8*. The address need not be
aligned.

arg_vValue The value to be written to the specified location. The value should be of
the type ix_uint8.

Output/Returns

Return Value An ix_uint8 representing the value written at the specified location.

Input

arg_pMemoryAddr The address of the memory location to be written. The value at this
location should be of the type ix_uint16*. The address should be 16-bit
aligned.

arg_vValue The value to be written to the specified location. The value should be of
the type ix_uint16.

Output/Returns

Return Value An ix_uint16 representing the value written at the specified location.
Portability Framework Reference Manual 185

Resource Manager
3.8.2.13.7 IX_RM_MEM_UINT32_WRITE

Writes a 32-bit value to memory.

C Syntax
#define IX_RM_MEM_UINT32_WRITE(arg_pMemoryAddr, arg_Value)

3.8.2.13.8 IX_RM_MEM_UINT64_WRITE

Writes a 64-bit value to memory.

C Syntax
#define IX_RM_MEM_UINT64_WRITE(arg_pMemoryAddr, arg_Value)

Input

arg_pMemoryAddr The address of the memory location to be written. The value at this
location should be of the type ix_uint32*. The address should be 32-bit
aligned.

arg_vValue The value to be written to the specified location. The value should be of
the type ix_uint32.

Output/Returns

Return Value An ix_uint32 representing the value written at the specified location.

Input

arg_pMemoryAddr The address of the memory location to be written. The value at this
location should be of the type ix_uint64*. The address should be 64-bit
aligned.

arg_vValue The value to be written to the specified location. The value should be of
the type ix_uint64.

Output/Returns

Return Value An ix_uint64 representing the value written at the specified location.
186 Portability Framework Reference Manual

Resource Manager
3.9 System Repository API

The system repository is designed as a collection of tree constructs that store system properties.
The structure of these tree constructs is similar to a file system structure, and the navigation is also
similar.

Properties represent name-value entities that can be set and accessed throughout the system in a
consistent manner. Configuration properties are defined by property handles that link together the
name and value pair. There is a limit on the number of properties that can be created in the system.
Each property has a set of attributes associated with it. There could be properties that can act just as
nodes in the hierarchy and that have no value associated with them. Once a property has been
created the calling application can register with the property to receive notifications if the property
changes. Every application in the system can create properties at a certain node level, and retrieve
and modify them.

For now we have identified just one property tree—the core software property tree—that stores all
the properties of the applications residing on the core side. The configuration property handle
corresponding to the root of this tree is IX_CP_CORE_PROPERTY_ROOT.

The system repository API is shown in Table 3-16.

Table 3-16. Resource Manager System Repository API

Name Description

ix_configuration_property_handle Generic handle type for configuration properties.

ix_cp_property_info Configuration property information structure.

ix_rm_cp_property_create() Creates a new configuration property at a certain
node level.

ix_rm_cp_property_delete() Deletes a configuration property.

ix_rm_cp_property_open() Retrieves a configuration property based on a base
node and a name.

ix_rm_cp_property_close() Invalidates a configuration property handle.

ix_rm_cp_property_attach() A communication ID is registered with the property
to receive change notifications.

ix_rm_cp_property_detach() A communication ID is unregistered from the
property notification list.

ix_rm_cp_property_set_value() A value is associated with a configuration property
or the previous value is replaced with the new one.

ix_rm_cp_property_get_value() Retrieves a property value.

ix_rm_cp_property_set_value_uint32()
A 32-bit unsigned value is associated with a
configuration property or the previous value is
replaced with the new one.

ix_rm_cp_property_get_value_uint32() Retrieves a 32-bit unsigned property value.

ix_rm_cp_property_delete_value() Deletes the value associated with a property.

ix_rm_cp_property_get_info() Gets information pertaining to a configuration
property.

ix_rm_cp_property_get_subproperty() Navigates a subtree of a configuration property.
Portability Framework Reference Manual 187

Resource Manager
3.9.1 Defined Types, Enumerations, and Data Structures

3.9.1.1 ix_configuration_property_handle

This type represents a generic configuration property handle. A handle is used to access any
configuration property in the system. Two handles are reserved as the roots of the two
configuration property trees in the system: IX_CP_CORE_PROPERTY_ROOT.

C Syntax
typedef ix_handle ix_configuration_property_handle;

IX_NULL_CONFIGURATION_PROPERTY_HANDLE
Defines a NULL configuration property handle.

C Syntax
#define IX_NULL_CONFIGURATION_PROPERTY_HANDLE
((ix_configuration_property_handle)0)

IX_CP_MAX_PROPERTY_NAME_LENGTH

This symbol defines the maximum length for a property name.

C Syntax
#define IX_CP_MAX_PROPERTY_NAME_LENGTH 32UL

3.9.1.2 ix_cp_property_info

This structure represents property attributes information—and is used in functions in this API to
retrieve property information. Each property has a link to its parent and links to the previous and
next properties in a sibling list. It contains a subproperty list. The name is the name relative to the
parent property.

C Syntax
typedef struct ix_s_cp_property_info {

ix_uint32 m_Options;
ix_uint32 m_DataSize;
ix_uint32 m_DataType;
ix_configuration_property_handle m_hParentProperty;
ix_configuration_property_handle m_hPropertyNext;
ix_configuration_property_handle m_hPropertyPrev;
ix_configuration_property_handle m_hChildrenPropertiesList;
char m_aName[IX_CP_MAX_PROPERTY_NAME_LENGTH];

} ix_cp_property_info;
188 Portability Framework Reference Manual

Resource Manager
3.9.2 API Functions

3.9.2.1 ix_rm_cp_property_create()

This function creates a new configuration property relative to a parent property. At the parent level
the property name should be unique. When a new property is created it has an internal reference
count of one.

C Syntax
ix_error ix_rm_cp_property_create(

ix_configuration_property_handle arg_hParentProperty,
const char* arg_pPropertyName,
ix_uint32 arg_PropertyOptions,
ix_configuration_property_handle* arg_pProperty);

Input

arg_hParentProperty Represents the property that is to contain the newly created property.
If this value is IX_CP_CORE_PROPERTY_ROOT the new property is
created at the top level of the registry.

arg_pPropertyName The name of the new property to be created at this level. The name
must be unique at the parent property level or an error is returned.

arg_PropertyOptions The options to be applied to the newly created property.

Output/Returns

Return Value Returns IX_SUCCESS if successful or a valid ix_error token for
failure. If the parent property is invalid then an error is returned. If a
property with the same name exists at the specified location, an error
is returned.

arg_pProperty Represents the location where the handle of the newly created
property is stored. In the case of failure this value is set to
IX_NULL_CONFIGURATION_PROPERTY_HANDLE upon return.
Portability Framework Reference Manual 189

Resource Manager
3.9.2.2 ix_rm_cp_property_delete()

This function deletes the specified property from the registry. If the property has a notification list,
all registered communication IDs are notified about the deletion. After deletion the property is no
longer available in the system. The property is deleted regardless of the internal reference count
value for the property.

C Syntax
ix_error ix_rm_cp_property_delete(
 ix_configuration_property_handle arg_hProperty);

Input

arg_hProperty The property to delete from the registry.

Output/Returns

Return Value Returns IX_SUCCESS if successful or a valid ix_error token for
failure.
190 Portability Framework Reference Manual

Resource Manager
3.9.2.3 ix_rm_cp_property_open()

This function retrieves the handle of the property named arg_pPropertyName at the level of
arg_hParentProperty. After a successful call to this function the returned handle is a valid
property handle that can be used for further work.

Names can be specified as a path as in:
level1_name/level2_name/name

The / separator is used between levels in the path. In the example above, the property is three
levels down in the subtree relative to the parent property.

A call to ix_rm_cp_property_open() results in an increment of the internal reference count for
the property.

C Syntax
ix_error ix_rm_cp_property_open(

ix_configuration_property_handle arg_hParentProperty,
const char* arg_pPropertyName,
ix_configuration_property_handle* arg_pProperty);

Input

arg_hParentProperty The name of the property specifying the level to search for the property
named arg_pPropertyName.

arg_pPropertyName The name of the property to search for. The name can be a full path
name in which case the search in the tree structure takes place relative
to the arg_hParentProperty level.

Output/Returns

Return Value Returns IX_SUCCESS if successful or a valid ix_error token for
failure.

arg_pProperty Represents the location where the required property handle is stored. If
the property does not exist at the specified level this value is set to
IX_NULL_CONFIGURATION_PROPERTY_HANDLE upon return.
Portability Framework Reference Manual 191

Resource Manager
3.9.2.4 ix_rm_cp_property_close()

This function invalidates the property handle. From this point on the use of this handle in any
operation returns an error—this handle can not be used to access a property. A call to
ix_rm_cp_property_close()decrements the internal reference count for the property. Once
the reference count reaches zero calls to ix_rm_cp_property_close() have the same effect as
calls to ix_rm_cp_property_delete()—the property is deleted. That is why it is important to
match each call to ix_rm_cp_property_open() with one and only one call to
ix_rm_cp_property_close().

C Syntax
ix_error ix_rm_cp_property_close(

ix_configuration_property_handle arg_hProperty);

Input

arg_hProperty The handle of the property to delete.

Output/Returns

Return Value Returns IX_SUCCESS if successful or a valid ix_error token for
failure.
192 Portability Framework Reference Manual

Resource Manager
3.9.2.5 ix_rm_cp_property_attach()

This function registers a communication ID with a property—specified by the handle,
arg_hProperty—in order to receive message notifications when the property changes. When this
property changes, a message is sent to the registered communication ID with the handle of the
property that has changed. When the message is processed is dependant on the communication ID
receive mode. A message is sent before the property is deleted.

C Syntax
ix_error ix_rm_cp_property_attach(

ix_configuration_property_handle arg_hProperty,
ix_communication_id arg_hNotificationCommId);

Input

arg_hProperty The handle of the property whose changes we are interested in.

arg_hNotificationCommId The communication ID requesting notification events.

Output/Returns

Return Value Returns IX_SUCCESS if successful or a valid ix_error token
for failure. If the communication ID is already registered to
receive notification messages then an error is returned.
Portability Framework Reference Manual 193

Resource Manager
3.9.2.6 ix_rm_cp_property_detach()

This function unregisters the communication ID from the notification list of a specified
configuration property. From this point on, notification messages are no longer sent to the detached
communication ID from the specified configuration property.

C Syntax
ix_error ix_rm_cp_property_detach(

ix_configuration_property_handle arg_hProperty,
ix_communication_id arg_hNotificationCommId);

Input

arg_hProperty The handle of the property of interest.

arg_hNotificationCommId The communication ID that we want to unregister from the
property notification list.

Output/Returns

Return Value Returns IX_SUCCESS if successful or a valid ix_error token
for failure. If the given communication ID is not registered for
notification with the specified property, then an error is
returned.
194 Portability Framework Reference Manual

Resource Manager
3.9.2.7 ix_rm_cp_property_set_value()

This function associates a value with a property or replaces an existing value.

When a property is created no value is associated with that property. It acts just as a node in the
System Repository structure.

There are two types of value that can be associated with a property: a general opaque value that
should have meaning just for entities interested in that property, and a unsigned 32-bit value that
can be used by every entity as long it understands its meaning. Once a type of value is in place,
trying to retrieve it as the other type results in an error.

C Syntax
ix_error ix_rm_cp_property_set_value(

ix_configuration_property_handle arg_hProperty,
ix_uint32 arg_DataSize,
const void* arg_pData);

Input

arg_hProperty The handle of the property whose value we want to set.

arg_DataSize The size of the data value—in bytes.

arg_pData A pointer to the property value to set.

Output/Returns

Return Value Returns IX_SUCCESS if successful or a valid ix_error token
for failure.
Portability Framework Reference Manual 195

Resource Manager
3.9.2.8 ix_rm_cp_property_get_value()

This function retrieves the generic opaque value associated with this property. If the property has
no value associated with it or if the property is an unsigned 32-bit property an error is returned.

C Syntax
ix_error ix_rm_cp_property_get_value(

ix_configuration_property_handle arg_hProperty,
ix_uint32 arg_DataSize,
void* arg_pData);

Input

arg_hProperty The handle specifying the property whose value is to be returned.

arg_DataSize The size of the data to be copied from the value to the location
specified by arg_pData.

Output/Returns

Return Value Returns IX_SUCCESS if successful or a valid ix_error token for
failure.

arg_pData A pointer to the opaque property value.
196 Portability Framework Reference Manual

Resource Manager
3.9.2.9 ix_rm_cp_property_set_value_uint32()

This function associates an unsigned 32-bit value with a property or replaces the existing value.

Note: This function is the only one used for the microcode system repository tree.

C Syntax
ix_error ix_rm_cp_property_set_value_uint32(

ix_configuration_property_handle arg_hProperty,
ix_uint32 arg_Value);

Input

arg_hProperty A handle specifying a property.

arg_Value The new value for the specified property.

Output/Returns

Return Value Returns IX_SUCCESS if successful or a valid ix_error token for
failure.
Portability Framework Reference Manual 197

Resource Manager
3.9.2.10 ix_rm_cp_property_get_value_uint32()

This function retrieves the unsigned 32-bit value associated with a property. If no value exists or
the value is not the appropriate type, then an error is returned.

C Syntax
ix_error ix_rm_cp_property_get_value_uint32(

ix_configuration_property_handle arg_hProperty,
ix_uint32* arg_pValue);

Input

arg_hProperty A handle of the property whose value is to be retrieved.

Output/Returns

Return Value Returns IX_SUCCESS if successful or a valid ix_error token for
failure.

arg_pValue A pointer to the location for the returned uint32 property value.
198 Portability Framework Reference Manual

Resource Manager
3.9.2.11 ix_rm_cp_property_delete_value()

This function deletes the value of the specified property. From this point on, this property has no
value associated with it—trying to retrieve the value for this property results in an error.

C Syntax
ix_error ix_rm_cp_property_delete_value(

ix_configuration_property_handle arg_hProperty);

3.9.2.12 ix_rm_cp_property_get_info()

This function returns the information associated with the property. This function can be used for
navigation of the property subtree or for enumerating all subproperties of a specified property.

C Syntax
ix_error ix_rm_cp_property_get_info(

ix_configuration_property_handle arg_hProperty,
ix_cp_property_info* arg_pInfo);

Input

arg_hProperty The handle of the property whose value is to be deleted.

Output/Returns

Return Value Returns IX_SUCCESS if successful or a valid ix_error token for
failure.

Input

arg_hProperty A handle to the property whose attributes are to be retrieved.

Output/Returns

Return Value Returns IX_SUCCESS if successful or a valid ix_error token for
failure.

arg_pInfo A pointer to the property information.
Portability Framework Reference Manual 199

Resource Manager
3.9.2.13 ix_rm_cp_property_get_subproperty()

This function returns the handle of the property with the arg_SubpropertyIndex index. The
subproperties indexes start from zero. This function can be used for property subtree navigation or
for enumerating all subproperties of a certain property.

C Syntax
ix_error ix_rm_cp_property_get_subproperty(

ix_configuration_property_handle arg_hProperty,
ix_uint32 arg_SubpropertyIndex,
ix_configuration_property_handle* arg_pSubproperty);

3.10 64-Bit Counters API

The 64-bit counter API is provided as statistics support for the Intel XScale® core applications.
RFC2863 states that 64-bit counters must be supported for interfaces that operate at data rates
greater than 650Mbps.

The design of these counters is such that for each 64-bit counter there is a corresponding 32-bit
counter residing in SRAM or SCRATCH that can be updated atomically by the microengines. Each
counter has an associated overflow time for the internal 32-bit counter. The API has a background
thread that monitors all the overflow times for the internal 32-bit counters and do an atomic read/
set to 0 operation (atomic swap) for the internal 32-bit counters, and then update the 64-bit
counterparts accordingly. The memory necessary for the internal counters is allocated by the callers
as they need to know what values need to be patched into the microcode.

Input

arg_hProperty A handle specifying the property whose subproperty is to be returned.

arg_SubpropertyIndex The index of the subproperty to retrieve.

Output/Returns

Return Value Returns IX_SUCCESS if successful or a valid ix_error token for
failure.

arg_pSubproperty A pointer to the retrieved subproperty handle.
200 Portability Framework Reference Manual

Resource Manager
Table 3-17 shows the relevant data structures and functions.

3.10.1 Defined Types, Enumerations, and Data Structures

3.10.1.1 ix_counter_64bit_handle()

This is a generic type for a 64-bit counter handle.

C Syntax
typedef ix_handle ix_counter_64bit_handle;

NULL Counter Handle

Defines a null 64-bit counter handle.

C Syntax
#define IX_NULL_COUNTER_64BIT_HANDLE ((ix_counter_64bit_handle)0)

3.10.2 API Functions

3.10.2.1 ix_rm_counter_64bit_new()

This function allocates an array of new 64-bit counters returning an array of counter handles with
the handles of the newly created counters. The calling application specifies the number of counters
to create.

C Syntax
ix_error ix_rm_counter_64bit_new(

ix_uint32 arg_CounterNumber,
ix_uint32* arg_InternalCounterMemoryBlock,
ix_uint32 arg_InternalOverflowTime,
ix_counter_64bit_handle* arg_pCounterHandle);

Table 3-17. Resource Manager 64-Bit Counter API

Name Description

ix_counter_64bit_handle() Generic type for a 64-bit counter handle.

ix_rm_counter_64bit_new() Allocates an array of 64-bit counters.

ix_rm_counter_64bit_delete() Deletes a 64-bit counter.

ix_rm_counter_64bit_get_internal_overflow_time() Retrieves the overflow time for the internal 32-bit
counter of the specified 64-bit counter.

ix_rm_counter_64bit_set_internal_overflow_time() Sets the overflow time for the internal 32-bit counter
of the specified 64-bit counter.

ix_rm_counter_64bit_get_value() Returns the 64-bit core value of the counter.

ix_rm_counter_64bit_set_value() Sets the 64-bit core value of the counter.
Portability Framework Reference Manual 201

Resource Manager
Input

arg_CounterNumber The number of counters to create.

arg_InternalCounterMemoryBlock The virtual address of the memory block to use for the
internal 32-bit counters corresponding to each 64-bit
counter. The block of memory should be an array of
32-bit integers with at least arg_CounterNumber
elements. The first element of this array is used as the
internal 32-bit counter of the first 64-bit counter
created, and so on. The calling application can simply
patch into the microcode the offset of the start of this
block.

This memory block should be common memory
allocated by the calling application through a call to the
ix_rm_mem_alloc() function.

arg_InternalOverflowTime The overflow time for the internal 32-bit microengine
counter, expressed in milliseconds.
The internal 32-bit timer is guaranteed to be read and
reset more often than this specified overflow time—in
this way the internal timer is guaranteed not to
overflow.

Output/Returns

Return Value Returns IX_SUCCESS if successful or a valid ix_error
token for failure.

arg_pCounterHandle A pointer to the first element of a 64-bit counter handle
array used to return the handles of the newly created
counters. The calling application must allocate this
handle array before calling this function.
202 Portability Framework Reference Manual

Resource Manager
3.10.2.2 ix_rm_counter_64bit_delete()

This function deletes the specified 64-bit counter. The memory corresponding to the internal 32-bit
counter is not freed. From this point on the handle is invalid and should not be used. All resources
related to the counter are released.

C Syntax
ix_error ix_rm_counter_64bit_delete(

ix_counter_64bit_handle arg_hCounter);

3.10.2.3 ix_rm_counter_64bit_get_internal_overflow_time()

This function returns the overflow time for the internal 32-bit counter specified by a counter
handle. The overflow time is expressed in milliseconds.

C Syntax
ix_error ix_rm_counter_64bit_get_internal_overflow_time(

ix_counter_64bit_handle arg_hCounter,
ix_uint32* arg_pInternalOverflowTime);

Input

arg_hCounter The handle of the counter to be deleted.

Output/Returns

Return Value Returns IX_SUCCESS if successful or a valid ix_error token
for failure.

Input

arg_hCounter A handle to the counter of interest.

arg_pInternalOverflowTime A pointer used to return the current internal counter overflow
time.

Output/Returns

Return Value Returns IX_SUCCESS if successful or a valid ix_error token
for failure.
Portability Framework Reference Manual 203

Resource Manager
3.10.2.4 ix_rm_counter_64bit_set_internal_overflow_time()

This function sets a new overflow time for the specified internal 32-bit microengine counter. The
overflow time is expressed in milliseconds.

Note: This operation might result in a read of all currently registered counters.

C Syntax
ix_error ix_rm_counter_64bit_set_internal_overflow_time(

ix_counter_64bit_handle arg_hCounter,
ix_uint32 arg_InternalOverflowTime);

3.10.2.5 ix_rm_counter_64bit_get_value()

This function returns the 64-bit core value of the counter. Internally the function reads the
microengine counter and resets it to zero then increments the core counter with the microengine
counter value.

C Syntax
ix_error ix_rm_counter_64bit_get_value(

ix_counter_64bit_handle arg_hCounter,
ix_uint64* arg_pCounterValue);

Input

arg_hCounter A handle to the counter of interest.

arg_InternalOverflowTime The new overflow time for the internal 32-bit microengine
counter.

Output/Returns

Return Value Returns IX_SUCCESS if successful or a valid ix_error token for
failure.

Input

arg_hCounter A handle to the counter of interest.
204 Portability Framework Reference Manual

Resource Manager
3.10.2.6 ix_rm_counter_64bit_set_value()

This function sets the value of the core counter to the specified value.

C Syntax
ix_error ix_rm_counter_64bit_set_value(

ix_counter_64bit_handle arg_hCounter,
ix_uint64 arg_CounterValue);

Output/Returns

Return Value Returns IX_SUCCESS if successful or a valid ix_error token for
failure.

arg_pCounterValue A pointer to use to return the value of the counter.

Input

arg_hCounter A handle to the counter of interest.

arg_CounterValue The new value for the core counter.

Output/Returns

Return Value Returns IX_SUCCESS if successful or a valid ix_error token for
failure.
Portability Framework Reference Manual 205

Resource Manager
3.11 Services API

The Services API provides a set of functions that allows core applications to take advantage of
certain hardware features. The API provides a set of atomic operations and fast memory
operations. Table 3-18 lists data structures and functions included in this API.

Table 3-18. Resource Manager Services API

Functions Description

ix_rm_atomic_sram_swap() Performs an atomic swap between an SRAM memory
location and one arbitrary memory location.

ix_rm_atomic_sram_add() Performs an atomic add to an SRAM memory location.

ix_rm_atomic_sram_test_and_add()
Performs an atomic add to an SRAM memory location and
returns the value stored at the memory location before add
operation.

ix_rm_atomic_sram_subtract() Performs an atomic subtract to an SRAM memory location.

ix_rm_atomic_sram_test_and_subtract()
Performs an atomic subtract to an SRAM memory location
and returns the value stored at the memory location before
the subtract operation.

ix_rm_atomic_sram_bit_set() Performs an atomic bit set operation to an SRAM memory
location.

ix_rm_atomic_sram_bit_test_and_set()
Performs an atomic bit set operation to an SRAM memory
location and returns the value stored at the memory location
before the bit set operation.

ix_rm_atomic_sram_bit_clear() Performs an atomic bit clear operation to an SRAM memory
location.

ix_rm_atomic_sram_bit_test_and_clear()
Performs an atomic bit clear operation to an SRAM memory
location and returns the value stored at the memory location
before the bit clear operation.

ix_rm_atomic_scratch_swap() Performs an atomic swap between a SCRATCH memory
location and one arbitrary memory location.

ix_rm_atomic_scratch_add() Performs an atomic add to a SCRATCH memory location.

ix_rm_atomic_scratch_test_and_add()
Performs an atomic add to a SCRATCH memory location
and returns the value stored at the memory location before
the add operation.

ix_rm_atomic_scratch_subtract() Performs an atomic subtract to a SCRATCH memory
location.

ix_rm_atomic_scratch_test_and_subtract()
Performs an atomic subtract to a SCRATCH memory
location and returns the value stored at the memory location
before the subtract operation.

ix_rm_atomic_scratch_bit_set() Performs an atomic bit set operation to a SCRATCH memory
location.

ix_rm_atomic_scratch_bit_test_and_set()
Performs an atomic bit set operation to a SCRATCH memory
location and returns the value stored at the memory location
before the bit set operation.

ix_rm_atomic_scratch_bit_clear() Performs an atomic bit clear operation to a SCRATCH
memory location.

ix_rm_atomic_scratch_bit_test_and_clear()
Performs an atomic bit clear operation to a SCRATCH
memory location and returns the value stored at the memory
location before the bit clear operation.
206 Portability Framework Reference Manual

Resource Manager
3.11.1 API Functions

3.11.1.1 ix_rm_atomic_sram_swap()

This function will perform an SRAM memory atomic swap. The value referred by arg_pValue1
will be swapped with the value referred by arg_pValue2. On return *arg_pValue1 will be
changed to the previous arg_pValue2 and vice-versa. The operation is atomic relative to the
second argument of the swap operation, as long as *arg_pValue2 points to an SRAM memory
location.

C Syntax
void ix_rm_atomic_sram_swap(
 ix_uint32* arg_pValue1,
 ix_uint32* arg_pValue2
);

3.11.1.2 ix_rm_atomic_sram_add()

This function increments the arg_pSramValue address contents by arg_IncrementValue. The
arg_pSramValue address should be an SRAM address, as it will not be checked. The value at
arg_pSramValue saturates at 0. If you add a negative number that is larger in absolute value than
the value at arg_pSramValue, then the result at the arg_pSramValue location will be 0.

C Syntax
void ix_rm_atomic_sram_add(
 ix_int32 arg_IncrementValue,
 ix_uint32* arg_pSramValue
);

ix_rm_managed_to_os_memory_copy() Performs a fast memory copy from a managed memory
location to an OS memory location.

ix_rm_os_to_managed_memory_copy() Performs a fast memory copy from an OS memory location
to a managed memory location.

ix_rm_managed_to_managed_memory_copy() Performs a fast memory copy from a managed memory
location to another managed memory location.

Table 3-18. Resource Manager Services API (Continued)

Input/Output

arg_pValue1 The address of the first operand of the swap operation in SRAM memory.

arg_pValue2 The address of the second operand of the swap operation. Must be stored in
SRAM memory for the operation to be atomic.
Portability Framework Reference Manual 207

Resource Manager
3.11.1.3 ix_rm_atomic_sram_test_and_add()

This function increments the arg_pSramValue address contents by arg_IncrementValue. The
function also returns the value at arg_pSramValue location before the increment operation
completes. The arg_pSramValue address should be an SRAM address, as it will not be checked.
The value at arg_pSramValue saturates at 0. If you add a negative number that is larger in
absolute value than the value at arg_pSramValue, then the result at the arg_pSramValue
location will be 0.

C Syntax
ix_uint32 ix_rm_atomic_sram_test_and_add(
 ix_int32 arg_IncrementValue,
 ix_uint32* arg_pSramValue
);

Input

arg_IncrementValue Value to be added to the memory location addressed by
arg_pSramValue.

Input/Output

arg_pSramValue On input, location of the value to be incremented by
arg_IncrementValue.
Upon return, the incremented value.

Input

arg_IncrementValue Value to be added to the memory location addressed by
arg_pSramValue.

Input/Output

arg_pSramValue On input, location of the value to be incremented by
arg_IncrementValue.
Upon return, the incremented value.

Return

Return Value Returns the arg_pSramValue value before the atomic add has been
performed.
208 Portability Framework Reference Manual

Resource Manager
3.11.1.4 ix_rm_atomic_sram_subtract()

This function decrements the arg_pSramValue address contents by arg_DecrementValue. The
arg_pSramValue address should be an SRAM address, as it will not be checked. The value at
arg_pSramValue saturates at 0. If you subtract a positive number that is larger in absolute value
than the value at arg_pSramValue, then the result at the arg_pSramValue location will be 0.

C Syntax
void ix_rm_atomic_sram_subtract(
 ix_int32 arg_DecrementValue,
 ix_uint32* arg_pSramValue
);

3.11.1.5 ix_rm_atomic_sram_test_and_subtract()

This function decrements the arg_pSramValue address contents by arg_DecrementValue. The
function also returns the value at arg_pSramValue location before the decrement operation
completes. The arg_pSramValue address should be an SRAM address, as it will not be checked.
The value at arg_pSramValue saturates at 0. If you subtract a positive number that is larger in
absolute value than the value at arg_pSramValue, then the result at the arg_pSramValue
location will be 0.

C Syntax
ix_uint32 ix_rm_atomic_sram_test_and_subtract(
 ix_int32 arg_DecrementValue,
 ix_uint32* arg_pSramValue
);

Input

arg_DecrementValue Value to be subtracted to the memory location addressed by
arg_pSramValue.

Input/Output

arg_pSramValue On input, value at this location will be decremented by
arg_DecrementValue.
Upon return, the decremented value.

Input

arg_DecrementValue Value to be subtracted to the memory location addressed by
arg_pSramValue.
Portability Framework Reference Manual 209

Resource Manager
3.11.1.6 ix_rm_atomic_sram_bit_set()

This function atomically sets the bits of the arg_pSramValue address contents corresponding to
the bits set to 1 in the arg_SetValue argument. In order for the operation to complete
successfully, the arg_pSramValue address must be an SRAM address, as it will not be checked.

C Syntax
void ix_rm_atomic_sram_bit_set(
 ix_uint32 arg_SetValue,
 ix_uint32* arg_pSramValue
);

3.11.1.7 ix_rm_atomic_sram_bit_test_and_set()

This function atomically sets the bits of the arg_pSramValue address contents corresponding to
the bits set to 1 in the arg_SetValue argument. Upon return, the function returns the value at
arg_pSramValue location before the bit set operation. In order for the operation to complete
successfully, the arg_pSramValue address must be an SRAM address, as it will not be checked.

Input/Output

arg_pSramValue On input, value at this location will be decremented by
arg_DecrementValue.
Upon return, the decremented value.

Return

Return Value Returns the arg_pSramValue value before the atomic subtract was
performed.

Input

arg_SetValue Value specifying which bits of the memory location addressed by
arg_pSramValue should be set.

Input/Output

arg_pSramValue On input, specifies the value whose bits will be set.
Upon return, value at this location will have the bits specified by
arg_SetValue argument set.
210 Portability Framework Reference Manual

Resource Manager
C Syntax
ix_uint32 ix_rm_atomic_sram_bit_test_and_set(
 ix_uint32 arg_SetValue,
 ix_uint32* arg_pSramValue
);

3.11.1.8 ix_rm_atomic_sram_bit_clear()

This function atomically clears the bits of the arg_pSramValue address contents corresponding to
the bits set to 1 in the arg_ClearValue argument. In order for the operation to complete
successfully, the arg_pSramValue address must be an SRAM address, as it will not be checked.

C Syntax
void ix_rm_atomic_sram_bit_clear(
 ix_uint32 arg_ClearValue,
 ix_uint32* arg_pSramValue
);

Input

arg_SetValue Value specifying which bits of the memory location addressed by
arg_pSramValue should be set.

Input/Output

arg_pSramValue On input, specifies the value whose bits will be set.
Upon return, value at this location will have the bits specified by
arg_SetValue argument set.

Return

Return Value Returns the arg_pSramValue value before the bit set operation
was performed.

Input

arg_ClearValue Value specifying which bits of the memory location addressed by
arg_pSramValue should be cleared.
Portability Framework Reference Manual 211

Resource Manager
3.11.1.9 ix_rm_atomic_sram_bit_test_and_clear()

This function atomically clears the bits of the arg_pSramValue address contents corresponding to
the bits set to 1 in the arg_ClearValue argument. Upon return, the function returns the value at
arg_pSramValue location before the bit clear operation. In order for the operation to complete
successfully, the arg_pSramValue address must be an SRAM address, as it will not be checked.

C Syntax
ix_uint32 ix_rm_atomic_sram_bit_test_and_clear(
 ix_uint32 arg_ClearValue,
 ix_uint32* arg_pSramValue
);

3.11.1.10 ix_rm_atomic_scratch_swap()

This function performs a scratch memory atomic swap. The value referred by arg_pValue1 is
swapped with the value referred by arg_pValue2. On return *arg_pValue1 will be changed to
previous arg_pValue2 and vice-versa. The operation is atomic only relative to the second
argument of the swap operation (*arg_pValue2) and that only if that points to a SCRATCH
memory location.

Input/Output

arg_pSramValue On input, specifies the value whose bits will be cleared.
Upon return, value at this location will have the bits specified by
arg_SetValue argument cleared.

Input

arg_ClearValue Value specifying which bits of the memory location addressed by
arg_pSramValue should be cleared.

Input/Output

arg_pSramValue On input, specifies the value whose bits will be cleared.
Upon return, value at this location will have the bits specified by
arg_ClearValue argument cleared.

Return

Return Value Returns the arg_pSramValue value before the bit clear operation
was performed.
212 Portability Framework Reference Manual

Resource Manager
C Syntax
void ix_rm_atomic_scratch_swap(
 ix_uint32* arg_pValue1,
 ix_uint32* arg_pValue2
);

3.11.1.11 ix_rm_atomic_scratch_add()

This function increments the arg_pScratchValue address contents by arg_IncrementValue.
The arg_pScratchValue address should be a SCRATCH address, as it will not be checked.

C Syntax
void ix_rm_atomic_scratch_add(
 ix_uint32 arg_IncrementValue,
 ix_uint32* arg_pScratchValue
);

3.11.1.12 ix_rm_atomic_scratch_test_and_add()

This function increments the arg_pScratchValue address contents by arg_IncrementValue.
The function also returns the value at arg_pScratchValue location before the increment
operation completes. The arg_pScratchValue address should be an scratch address, as it will
not be checked.

Input/Output

arg_pValue1 The address of the first operand of the swap operation—stored in
scratch memory.

arg_pValue2 The address of the second operand of the swap operation—stored in
scratch memory.

Input

arg_IncrementValue Value to be added to the memory location addressed by
arg_pScratchValue.

Input/Output

arg_pScratchValue On input, location of the value to be incremented by
arg_IncrementValue.
Upon return, the incremented value.
Portability Framework Reference Manual 213

Resource Manager
C Syntax
ix_uint32 ix_rm_atomic_scratch_test_and_add(
 ix_uint32 arg_IncrementValue,
 ix_uint32* arg_pScratchValue
);

3.11.1.13 ix_rm_atomic_scratch_subtract()

This function decrements the arg_pScratchValue address contents by arg_DecrementValue.
The arg_pScratchValue address should be a scratch address, as it will not be checked. The
value at arg_pScratchValue saturates at 0. If you subtract a number that is larger in absolute
value than the value at arg_pScratchValue, then the result at the arg_pScratchValue
location will be 0.

C Syntax
void ix_rm_atomic_scratch_subtract(
 ix_uint32 arg_DecrementValue,
 ix_uint32* arg_pScratchValue
);

Input

arg_IncrementValue Value to be added to the memory location addressed by
arg_pScratchValue.

Input/Output

arg_pScratchValue On input, value at this location will be incremented by
arg_IncrementValue.
Upon return, the incremented value.

Return

Return Value Returns the arg_pScratchValue value before the atomic add has
been performed.

Input

arg_DecrementValue Value to be subtracted to the memory location addressed by
arg_pScratchValue.
214 Portability Framework Reference Manual

Resource Manager
3.11.1.14 ix_rm_atomic_scratch_test_and_subtract()

This function decrements the arg_pScratchValue address contents by arg_DecrementValue.
The function also returns the value at arg_pScratchValue location before the decrement
operation completes. The arg_pScratchValue address should be a scratch address, as it will not
be checked. The value at arg_pScratchValue saturates at 0. If you subtract a positive number
that is larger in absolute value than the value at arg_pScratchValue, then the result at the
arg_pSramValue location will be 0.

C Syntax
ix_uint32 ix_rm_atomic_scratch_test_and_subtract(
 ix_uint32 arg_DecrementValue,
 ix_uint32* arg_pScratchValue
);

3.11.1.15 ix_rm_atomic_scratch_bit_set()

This function atomically sets the bits of the arg_pScratchValue address contents corresponding
to the bits set to 1 in the arg_SetValue argument. In order for the operation to complete
successfully, the arg_pScratchValue address must be a scratch address, as it will not be
checked.

Input/Output

arg_pScratchValue On input, value at this location will be decremented by
arg_DecrementValue.
Upon return, the decremented value.

Input

arg_DecrementValue Value to be subtracted to the memory location addressed by
arg_pScratchValue.

Input/Output

arg_pScratchValue On input, value at this location will be decremented by
arg_DecrementValue.
Upon return, the decremented value.

Return

Return Value Returns the arg_pScratchValue value before the atomic
subtract was performed.
Portability Framework Reference Manual 215

Resource Manager
C Syntax
void ix_rm_atomic_scratch_bit_set(
 ix_uint32 arg_SetValue,
 ix_uint32* arg_pScratchValue
);

3.11.1.16 ix_rm_atomic_scratch_bit_test_and_set()

This function atomically sets the bits of the arg_pScratchValue address contents corresponding
to the bits set to 1 in the arg_SetValue argument. Upon return, the function returns the value at
arg_pScratchValue location before the bit set operation. In order for the operation to complete
successfully, the arg_pScratchValue address must be a scratch address, as it will not be
checked.

C Syntax
ix_uint32 ix_rm_atomic_scratch_bit_test_and_set(
 ix_uint32 arg_SetValue,
 ix_uint32* arg_pScratchValue
);

Input

arg_SetValue Value specifying which bits of the memory location addressed by
arg_pScratchValue should be set.

Input/Output

arg_pScratchValue On input, specifies the value whose bits will be set.
Upon return, value at this location will have the bits specified by
arg_SetValue argument set.

Input

arg_SetValue Value specifying which bits of the memory location addressed by
arg_pScratchValue should be set.

Input/Output

arg_pScratchValue On input, specifies the value whose bits will be set.
Upon return, value at this location will have the bits specified by
arg_SetValue argument set.
216 Portability Framework Reference Manual

Resource Manager
3.11.1.17 ix_rm_atomic_scratch_bit_clear()

This function atomically clears the bits of the arg_pScratchValue address contents
corresponding to the bits set to 1 in the arg_ClearValue argument. In order for the operation to
complete successfully, the arg_pScratchValue address must be a scratch address, as it will not
be checked.

C Syntax
void ix_rm_atomic_scratch_bit_clear(
 ix_uint32 arg_ClearValue,
 ix_uint32* arg_pScratchValue
);

3.11.1.18 ix_rm_atomic_scratch_bit_test_and_clear()

This function atomically clears the bits of the arg_pScratchValue address contents
corresponding to the bits set to 1 in the arg_ClearValue argument. Upon return, the function
returns the value at arg_pScratchValue location before the bit clear operation. In order for the
operation to complete successfully, the arg_pScratchValue address must be a scratch address,
as it will not be checked.

C Syntax
ix_uint32 ix_rm_atomic_scratch_bit_test_and_clear(
 ix_uint32 arg_ClearValue,
 ix_uint32* arg_pScratchValue
);

Return

Return Value Returns the arg_pScratchValue value before the bit set
operation was performed.

Input

arg_ClearValue Value specifying which bits of the memory location addressed by
arg_pScratchValue should be cleared.

Input/Output

arg_pScratchValue On input, specifies the value whose bits will be cleared.
Upon return, value at this location will have the bits specified by
arg_SetValue argument cleared.
Portability Framework Reference Manual 217

Resource Manager
3.11.1.19 ix_rm_managed_to_os_memory_copy()

This function copies a managed memory area into operating system memory. This function uses
only the CPU fast instructions if data are 4-byte aligned. If data are not 4-byte aligned, a regular
memory copy is performed.

Note: The semantics of this call are patterned after the standard C function, memcpy().

C Syntax
void* ix_rm_managed_to_os_memory_copy(

void* arg_pDest,
const void* arg_pSrc,
ix_uint32 arg_Count);

Input

arg_ClearValue Value specifying which bits of the memory location addressed by
arg_pScratchValue should be cleared.

Input/Output

arg_pScratchValue On input, specifies the value whose bits will be cleared.
Upon return, value at this location will have the bits specified by
arg_ClearValue argument cleared.

Return

Return Value Returns the arg_pScratchValue value before the bit clear operation
was performed.

Inputs

arg_pSrc A pointer to the managed memory location which is the source of the
data to copy.

arg_Count The amount of data to copy.
218 Portability Framework Reference Manual

Resource Manager
3.11.1.20 ix_rm_os_to_managed_memory_copy()

This function copies an operating system memory area into managed memory. This function uses
only the CPU fast instructions if data are 4-byte aligned. If data are not 4-byte aligned, a regular
memory copy is performed.

Note: The semantics of this call are patterned after the standard C function, memcpy().

C Syntax
void* ix_rm_os_to_managed_memory_copy(

void* arg_pDest,
const void* arg_pSrc,
ix_uint32 arg_Count);

3.11.1.21 ix_rm_managed_to_managed_memory_copy()

This function copies one managed memory block into another managed memory block. This
function uses only the CPU fast instructions if data are 4-byte aligned. If data are not 4-byte
aligned, a regular memory copy is performed.

Note: The semantics of this call are patterned after the standard C function, memcpy().
void* ix_rm_managed_to_managed_memory_copy(

Output/Return

arg_pDest A pointer to the destination operating system buffer the data are
copied to.

Return Value Returns a pointer to the destination operating system buffer. This
pointer is identical to arg_pDest.

Inputs

arg_pSrc A pointer to the operating system buffer which is the source of the
data to copy.

arg_Count The amount of data to copy.

Output/Return

arg_pDest A pointer to the destination operating system memory location the
data are copied to.

Return Value Returns a pointer to the destination buffer. This pointer is identical to
arg_pDest.
Portability Framework Reference Manual 219

Resource Manager
void* arg_pDest,
const void* arg_pSrc,
ix_uint32 arg_Count);

3.12 Hash API

The Hash API provides hash operations for Intel XScale® core applications. In the current
implementation, the programmer can choose to perform the hash operations with hardware support
from the chip’s hash unit or in software. By default the resource manager uses hardware support
from the hash unit. In order to change this behavior, the _IX_RM_IMPL_SOFTWARE_HASH_ symbol
must be defined on the command line at the time the Resource Manager is compiled.

The Hash API provides 48-bit, 64-bit, and 128-bit hash operations based on application-provided
48-bit, 64-bit, and 128-bit multipliers. The Hash API should be used to achieve a uniform
distribution of 48-bit, 64-bit, or 128-bit numbers. If the distribution is not satisfactory, then the
hash multipliers can be changed.

The hash algorithm is explained in great detail in the Intel® IXP2400/IXP2800 Network Processor
Programmer’s Reference Manual on the IXA SDK Tools CD.

Table 3-19 summarizes the hash API.

Inputs

arg_pSrc A pointer to the managed memory location the data are copied from.

arg_Count The amount of data to be copied.

Output/Return

arg_pDest A pointer to the destination managed memory location the data are
copied to.

Return Value Returns a pointer to the destination buffer. This pointer is identical to
arg_pDest.

Table 3-19. Resource Manager Hash API

Name Description

ix_hash_48 This type represents a 48-bit hash data type.

ix_hash_64 This type represents a 64-bit hash data type.

ix_hash_128 This type defines the 128-bit hash data type.

ix_hash_multiplier_48 This type defines the 48-bit multiplier data type.

ix_hash_multiplier_64 This type defines the 64-bit multiplier data type.

ix_hash_multiplier_128 This type defines the 128-bit multiplier data type.

ix_rm_hash_48_hash() This function performs a 48-bit hash operation.
220 Portability Framework Reference Manual

Resource Manager
3.12.1 Defined Types, Enumerations, and Data Structures

3.12.1.1 ix_hash_48

This type represents a 48-bit hash data type. A reference to a variable of this type is passed to the
hash operation containing the value to be hashed. On return the variable contains the hashed value
coresponding to the value input. The member m_LW0 represents longword zero of the 48-bit value
of interest. The member m_LW1 represents longword one. For m_LW1, only the least significant 16
bits are considered for the hash operation.

C Syntax
typedef struct ix_s_hash_48 {

ix_uint32 m_LW0;
ix_uint32 m_LW1;

} ix_hash_48;

3.12.1.2 ix_hash_64

This type represents a 64-bit hash data type. A reference to a variable of this type is passed to the
hash operation containing the value to be hashed. On return the variable contains the hashed value
coresponding to the input value. The member m_LW0 represents longword zero of the 64-bit value
of interest. The member m_LW1 represents longword one.

ix_rm_hash_48_multiplier_set() This function sets a new multiplier value for the 48-bit hash operations.

ix_rm_hash_48_multiplier_get() The function retrieves the current multiplier value for 48-bit hash operations.

ix_rm_hash_64_hash() This function performs a 64-bit hash operation.

ix_rm_hash_64_multiplier_set() This function sets a new multiplier value for the 64-bit hash operations.

ix_rm_hash_64_multiplier_get() The function retrieves the current multiplier value for 64-bit hash operations.

ix_rm_hash_128_hash() This function performs a 128-bit hash operation.

ix_rm_hash_128_multiplier_set() This function sets a new multiplier value for the 128-bit hash operations.

ix_rm_hash_128_multiplier_get() The function retrieves the current multiplier value for 128-bit hash operations.

Table 3-19. Resource Manager Hash API (Continued)

Name Description

Members

m_LW0 The first longword—that is, the first 32 bits—of the 48-bit value of
interest.

m_LW1 The second longword—representing the upper 16 bits—of the 48-bit value
of interest.
NOTE: Only the first 16 bits of this longword are considered.
Portability Framework Reference Manual 221

Resource Manager
C Syntax
typedef struct ix_s_hash_64 {
 ix_uint32 m_LW0;
 ix_uint32 m_LW1;
} ix_hash_64;

3.12.1.3 ix_hash_128

This type defines the 128-bit hash data type. A reference to a variable of this type is passed to the
hash operation containing the value to be hashed. On return the variable contains the hashed value
coresponding to the input value. The member m_LW0 represents longword zero of the 128-bit value
of interest, member m_LW1 represents longword one, member m_LW2 represents longword two, and
member m_LW3 represents longword three.

C Syntax
typedef struct ix_s_hash_128 {
 ix_uint32 m_LW0;
 ix_uint32 m_LW1;
 ix_uint32 m_LW2;
 ix_uint32 m_LW3;
} ix_hash_128;

3.12.1.4 ix_hash_multiplier_48

This type defines the 48-bit multiplier data type. The multiplier is used to perform a 48-bit hash
operation, and different values of the multiplier yield different hashed values and different number
distributions.

Members

m_LW0 The first longword—that is, the first 32 bits—of the 64-bit value of
interest.

m_LW1 The second longword—that is, the upper 32 bits—of the 64-bit value of
interest.

Members

m_LW0 The first longword of the 128-bit hash value.

m_LW1 The second longword of the 128-bit hash value.

m_LW2 The third longword of the 128-bit hash value.

m_LW3 The fourth longword of the 128-bit hash value.
222 Portability Framework Reference Manual

Resource Manager
C Syntax
typedef ix_hash_48 ix_hash_multiplier_48;

3.12.1.5 ix_hash_multiplier_64

This type defines the 64-bit multiplier data type. The multiplier is used to perform a 64-bit hash
operation, and different values of the multiplier will yield different hashed values and different
number distributions.

C Syntax
typedef ix_hash_64 ix_hash_multiplier_64;

3.12.1.6 ix_hash_multiplier_128

This type defines the 128-bit multiplier data type. The multiplier is used to perform a 128-bit hash
operation, and different values of the multiplier will yield different hashed values and different
number distributions.

C Syntax
typedef ix_hash_128 ix_hash_multiplier_128;

3.12.2 API Functions

3.12.2.1 ix_rm_hash_48_hash()

This function performs a 48-bit hash operation. The argument is a reference to the value to be
hashed on input, and a reference to the hashed value on output.

Before performing this operation the 48-bit hash multiplier must be properly set. At power up the
multiplier is initialized to zero.

C Syntax
ix_error ix_rm_hash_48_hash(ix_hash_48* arg_pHash48);

Input/Output

arg_pHash48 On input this argument is a reference to the data to be hashed and on output
it is a reference to the hashed value.

Output/Returns

Return Value Returns IX_SUCCESS if successful or a valid ix_error token for failure.
Portability Framework Reference Manual 223

Resource Manager
3.12.2.2 ix_rm_hash_48_multiplier_set()

This function sets a new multiplier value for the 48-bit hash operations.

C Syntax
ix_error ix_rm_hash_48_multiplier_set(

const ix_hash_multiplier_48* arg_pHashMultiplier48);

3.12.2.3 ix_rm_hash_48_multiplier_get()

The function retrieves the current multiplier value for 48-bit hash operations.

C Syntax
ix_error ix_rm_hash_48_multiplier_get(

ix_hash_multiplier_48* arg_pHashMultiplier48);

3.12.2.4 ix_rm_hash_64_hash()

This function performs a 64-bit hash operation. The argument is a reference to the value to be
hashed on input, and a reference to the hashed value on output.

Before performing this operation the 64-bit hash multiplier must be properly set. At power up the
multiplier is initialized to zero.

C Syntax
ix_error ix_rm_hash_64_hash(ix_hash_64* arg_pHash64);

Input

arg_pHashMultiplier48 The new 48-bit hash multiplier value.

Output/Returns

Return Value Returns IX_SUCCESS if successful or a valid ix_error token for
failure.

Output/Returns

arg_pHashMultiplier48 The location where, when the call successfully returns, the 48-bit
hash multiplier will be stored.

Return Value Returns IX_SUCCESS if successful or a valid ix_error token for
failure.
224 Portability Framework Reference Manual

Resource Manager
3.12.2.5 ix_rm_hash_64_multiplier_set()

This function sets a new multiplier value for the 64-bit hash operations.

C Syntax
ix_error ix_rm_hash_64_multiplier_set(

const ix_hash_multiplier_64* arg_pHashMultiplier64);

3.12.2.6 ix_rm_hash_64_multiplier_get()

The function retrieves the current multiplier value for 64-bit hash operations.

C Syntax
ix_error ix_rm_hash_64_multiplier_get(

ix_hash_multiplier_64* arg_pHashMultiplier64);

Input/Output

arg_pHash64 On input this argument is a reference to the data to be hashed and
on output it is a reference to the hashed value.

Output/Returns

Return Value Returns IX_SUCCESS if successful or a valid ix_error token for
failure.

Input

arg_pHashMultiplier64 The new 64-bit hash multiplier value.

Output/Returns

Return Value Returns IX_SUCCESS if successful or a valid ix_error token for
failure.
Portability Framework Reference Manual 225

Resource Manager
3.12.2.7 ix_rm_hash_128_hash()

This function performs a 128-bit hash operation. The argument is a reference to the value to be
hashed on input, and a reference to the hashed value on output.

Before performing this operation the 128-bit hash multiplier must be properly set. At power up the
multiplier is initialized to zero.

C Syntax
ix_error ix_rm_hash_128_hash(ix_hash_128* arg_pHash128);

3.12.2.8 ix_rm_hash_128_multiplier_set()

This function sets a new multiplier value for the 128-bit hash operations.

C Syntax
ix_error ix_rm_hash_128_multiplier_set(

const ix_hash_multiplier_128* arg_pHashMultiplier128);

Output/Returns

arg_pHashMultiplier64 The location where, when the call successfully returns, the 64-bit
hash multiplier will be stored.

Return Value Returns IX_SUCCESS if successful or a valid ix_error token for
failure.

Input/Output

arg_pHash128 On input this argument is a reference to the data to be hashed and
on output it is a reference to the hashed value.

Output/Returns

Return Value Returns IX_SUCCESS if successful or a valid ix_error token for
failure.

Input

arg_pHashMultiplier128 The new 128-bit hash multiplier value.
226 Portability Framework Reference Manual

Resource Manager
3.12.2.9 ix_rm_hash_128_multiplier_get()

The function retrieves the current multiplier value for 128-bit hash operations.

C Syntax
ix_error ix_rm_hash_128_multiplier_get(

ix_hash_multiplier_128* arg_pHashMultiplier128);

3.13 Microengine Services API

The Microengine Services API provides several sets of APIs, which are used to coordinate
operations between the Intel XScale® core and the microengines. The following operations are
supported:

• Locking and unlocking mechanisms

• Reading and writing of microengine transfer registers

• Sending a notification signal to a microengine

Note: In some places in this document, microengine is abbreviated as ME.

Locks between the microengines and the Intel XScale® core are used to synchronize data access
operations. These locks are based on the SCRATCH memory atomic operations. On the Intel
XScale® core side, the API suffices to do lock/unlock operations. For a particular lock object, the
Intel XScale® core-based application must retrieve the SCRATCH byte offset of the underlying
SCRATCH memory location used for atomic set and test and clear and the bit position of the lock
into that memory location, and patch these values into the microcode (or pass it through any other
means).

On the microengine side, in order for microengines to acquire the lock, they must perform a bit test
and clear for the passed SCRATCH offset on the bit position passed from the Intel XScale® core.
The returned value is masked for the Intel XScale® core passed bit position of the lock. If the

Output/Returns

Return Value Returns IX_SUCCESS if successful or a valid ix_error token for
failure.

Output/Returns

arg_pHashMultiplier128 The location where, when the call successfully returns, the 128-bit
hash multiplier will be stored.

Return Value Returns IX_SUCCESS if successful or a valid ix_error token for
failure.
Portability Framework Reference Manual 227

Resource Manager
resulting value from the operation is nonzero, then there was a successful locking, otherwise it
means that the lock is held by somebody else. In order to release a held lock, the microengines
must perform a bit set operation for the SCRATCH offset and bit position of the lock.

On the Intel XScale® core side, the API guarantees if the microengine acquired the lock, then the
lock will not be released by the Intel XScale® core. On the microengine side, it is the responsibility
of the programmers to insure this behavior (the same microengine context that acquired the lock
will be the one that will release it). In this release, 64 locks for microengine - Intel XScale® core
operations are supported by the system, but that value can be changed as required.

The microengine services API also allows the Intel XScale® core applications to read and write
microengine transfer registers and to signal microengines. The signaling is achieved by writing the
SAME_ME_REGISTER for the desired microengine. There is a 3 cycles latency from the write
CSR command until the CSR is actually written, and 8 cycles until the microengine is signaled
after the CSR write. That should be considered when issuing many signals to the same
microengine. During the call, the code checks if the microengine is in the 4 contexts mode or 8
contexts mode. In the first case, the valid context numbers are 0, 2, 4, and 6. In the second case,
they are in the range 0-7.

Table 3-20 lists data structures and functions included in this API.

3.13.1 Defined Types, Enumerations, and Data Structures

3.13.1.1 ix_me_xscale_lock_handle

This type defines a generic microengine-to-Intel XScale® core lock handle. On the Intel XScale®
core side, the locks are identified by one of these handles.

C Syntax
typedef ix_handle ix_me_xscale_lock_handle;

Table 3-20. Resource Manager Microengine Services API

Functions and Data Structures Description

ix_me_xscale_lock_handle A microengine-to-Intel XScale® core lock handle

ix_me_xscale_lock_status Type describing all possible states of a microengine-to-Intel XScale® core lock.

ix_me_xscale_lock_owner Type describing all possible owners of a microengine-to-Intel XScale® core lock.

ix_me_xscale_lock_info Structure providing information about a microengine-to-Intel XScale® core lock.

ix_me_transfer_register_type Enumerated type describing all types of ME transfer registers.

ix_rm_me_xscale_lock_new() Creates a new microengine-to-Intel XScale® core lock object.

ix_rm_me_xscale_lock_delete() Deletes the specified microengine-to-Intel XScale® core lock object.

ix_rm_me_xscale_lock_acquire() Acquires the specified microengine-to-Intel XScale® core lock.

ix_rm_me_xscale_lock_release() Releases the specified microengine-to-Intel XScale® core lock.

ix_rm_me_xscale_lock_get_info() Returns useful information about a microengine-to-Intel XScale® core lock.

ix_rm_me_transfer_register_read() Reads the value of a ME transfer register.

ix_rm_me_transfer_register_write() Writes the value of a ME transfer register.

ix_rm_me_signal() Sends a specified signal to a ME.
228 Portability Framework Reference Manual

Resource Manager
3.13.1.2 ix_me_xscale_lock_status

This enumerated type defines all possible states for microengine-to-Intel XScale® core locks.

C Syntax
typedef enum ix_e_me_xscale_lock_status
{
 IX_ME_XSCALE_LOCK_STATUS_FIRST = 0,
 IX_ME_XSCALE_LOCK_STATUS_AVAILABLE = IX_ME_XSCALE_LOCK_STATUS_FIRST,
 IX_ME_XSCALE_LOCK_STATUS_UNAVAILABLE,
 IX_ME_XSCALE_LOCK_STATUS_LAST
} ix_me_xscale_lock_status;

3.13.1.3 ix_me_xscale_lock_owner

This enumerated type describes all possible owners of a microengine-to-Intel XScale® core lock.

C Syntax
typedef enum ix_e_me_xscale_lock_owner
{
 IX_ME_XSCALE_LOCK_OWNER_FIRST = 0,
 IX_ME_XSCALE_LOCK_OWNER_NONE = IX_ME_XSCALE_LOCK_OWNER_FIRST,
 IX_ME_XSCALE_LOCK_OWNER_XSCALE,
 IX_ME_XSCALE_LOCK_OWNER_ME,
 IX_ME_XSCALE_LOCK_OWNER_LAST
} ix_me_xscale_lock_owner;

3.13.1.4 ix_me_xscale_lock_info

This structure describes the information associated with a microengine-to-Intel XScale® core lock.

C Syntax
typedef struct ix_s_me_xscale_lock_info
{

ix_uint32 m_ScratchOffset;
ix_uint32 m_BitPosition;
ix_me_xscale_lock_status m_Status;
ix_me_xscale_lock_owner m_Owner;

} ix_me_xscale_lock_info;
Portability Framework Reference Manual 229

Resource Manager
3.13.1.5 ix_me_transfer_register_type

This enumerated type describes all microengine transfer register types. The Intel XScale® core can
read the SRAM write transfer registers of a microengine and can write the SRAM or DRAM read
transfer registers of a microengine.

C Syntax
typedef enum ix_e_me_transfer_register_type
{
 IX_ME_TRANSFER_REGISTER_TYPE_FIRST = 0,
 IX_ME_TRANSFER_REGISTER_TYPE_SRAM = IX_ME_TRANSFER_REGISTER_TYPE_FIRST,
 IX_ME_TRANSFER_REGISTER_TYPE_DRAM,
 IX_ME_TRANSFER_REGISTER_TYPE_LAST
} ix_me_transfer_register_type;

3.13.2 API Functions

3.13.2.1 ix_rm_me_xscale_lock_new()

This function creates a new microengine-to-Intel XScale® core lock object and returns a handle to
the newly created lock. The returned handle must be used for all subsequent operations on the lock.
The maximum number of microengine-to-Intel XScale® core locks is set to 64 but is configurable
at compile-time.

C Syntax
ix_error ix_rm_me_xscale_lock_new(

ix_me_xscale_lock_handle* arg_pMeXScaleLockHandle
);

Data Members

m_ScratchOffset Byte offset of the underlying SCRATCH memory
location of the lock.

m_BitPosition Bit position of the lock into the underlying
SCRATCH memory location.

ix_me_xscale_lock_status m_Status Status of the lock.

ix_me_xscale_lock_owner m_Owner Owner of the lock.
230 Portability Framework Reference Manual

Resource Manager
3.13.2.2 ix_rm_me_xscale_lock_delete()

This function deletes the specified microengine-to-Intel XScale® core lock object and releases all
resources associated with it. Once deleted, a lock cannot be accessed by the Intel XScale® core,
although the microengines can still access the lock. This approach is not recommended.

C Syntax
ix_error ix_rm_me_xscale_lock_delete(

ix_me_xscale_lock_handle arg_hMeXScaleLock
);

3.13.2.3 ix_rm_me_xscale_lock_acquire()

This function retrieves the specified microengine-to-Intel XScale® core lock on behalf of the
calling Intel XScale® core application. If the lock is already taken, then an error is returned.

C Syntax
ix_error ix_rm_me_xscale_lock_acquire(

ix_me_xscale_lock_handle arg_hMeXScaleLock
);

Output/Return

arg_pMeXScaleLockHandle Location where a handle to the newly created microengine-to-
Intel XScale® core lock will be stored upon return.

Return Value IX_SUCCESS if successful or a valid ix_error token for failure.

Input

arg_hMeXScaleLock Handle of the microengine-to-Intel XScale® core lock to be
deleted.

Return

Return Value IX_SUCCESS if successful or a valid ix_error token for failure.

Input

arg_hMeXScaleLock Handle of the lock to acquire.
Portability Framework Reference Manual 231

Resource Manager
3.13.2.4 ix_rm_me_xscale_lock_release()

This function releases the specified microengine-to-Intel XScale® core lock. If the lock has been
acquired by the microengines, an error is returned.

If the lock is in the IX_ME_XSCALE_LOCK_STATUS_AVAILABLE state, then the action will
result in no-op. A microengine-to-Intel XScale® core lock can be released by another thread of
control than the one that acquired it.

C Syntax
ix_error ix_rm_me_xscale_lock_release(

ix_me_xscale_lock_handle arg_hMeXScaleLock
);

3.13.2.5 ix_rm_me_xscale_lock_get_info()

This function returns useful information associated with the passed microengine-to-Intel XScale®
core lock. This function should be called to retrieve the SCRATCH memory offset and bit position
associated with the lock before passing this information to microengines.

C Syntax
ix_error ix_rm_me_xscale_lock_get_info(

ix_me_xscale_lock_handle arg_hMeXScaleLock,
ix_me_xscale_lock_info* arg_pMeXScaleLockInfo

);

Return

Return Value IX_SUCCESS if successful or a valid ix_error token for failure.

Input

arg_hMeXScaleLock Handle of the lock to release.

Return

Return Value IX_SUCCESS if successful or a valid ix_error token for failure.

Input

arg_hMeXScaleLock Lock handle for the information.
232 Portability Framework Reference Manual

Resource Manager
3.13.2.6 ix_rm_me_transfer_register_read()

This function reads the value of a microengine transfer register for the specified microengine,
context, and register type. Only the IX_ME_TRANSFER_REGISTER_TYPE_SRAM registers
can be read.

During the call, the code checks if the microengine is in the 4 context mode or 8 context mode. In
the first case, the valid context numbers are 0, 2, 4, 6; for the second case, they are in the range 0-7.
For 4 context mode, the value of the index is in the range 0-31; for 8 context mode, the index value
range is 0-15.

C Syntax
ix_error ix_rm_me_transfer_register_read(

ix_uint32 arg_MENumber,
ix_uint32 arg_ContextNumber,
ix_me_transfer_register_type arg_RegisterType,
ix_uint32 arg_RegisterIndex,
ix_uint32* arg_pRegisterValue

);

Output/Return

arg_pMeXScaleLockInfo Address of structure were the lock information will be stored upon
return.

Return Value IX_SUCCESS if successful or a valid ix_error token for failure.

Inputs

arg_MENumber Microengine whose transfer register is to be read.

arg_ContextNumber Microengine context number whose transfer register is to be read.

arg_RegisterType Type of the transfer register to read. For read operations, only the
IX_ME_TRANSFER_REGISTER_TYPE_SRAM type is supported.

arg_RegisterIndex Index of the ME transfer register to be read. The value of the index is
in the range 0-31 if the microengine is in 4 contexts mode. The index
value is in the range 0-15 for 8 contexts mode.

Output/Return

arg_pRegisterValue Address where the value of the microengine transfer register will be
stored upon return.

Return Value IX_SUCCESS if successful or a valid ix_error token for failure.
Portability Framework Reference Manual 233

Resource Manager
3.13.2.7 ix_rm_me_transfer_register_write()

This function writes the value of a microengine transfer register for the specified microengine,
context and register type. During the call, the code checks if the microengine is in the 4 context
mode or 8 context mode. In the first case, the valid context numbers are 0, 2, 4, 6; in the second
case, they are in the range 0-7. For 4 context mode, the value of the index is in the range 0-31; for 8
context mode, the index value range is 0-15.

C Syntax
ix_error ix_rm_me_transfer_register_write(

ix_uint32 arg_MENumber,
ix_uint32 arg_ContextNumber,
ix_me_transfer_register_type arg_RegisterType,
ix_uint32 arg_RegisterIndex,
ix_uint32 arg_RegisterValue

);

3.13.2.8 ix_rm_me_signal()

This function sends a specified signal to the specified microengine and context. The signaling is
achieved by writing the SAME_ME_REGISTER for the desired microengine and context. There is
a 3 cycle latency from the write CSR command until the CSR is actually written, and 8 cycles until
the microengine will signaled after the CSR write. That should be considered when issuing many
signals to the same microengine.

During the call, the code checks if the microengine is in the 4 context mode or 8 context mode. In
the first case, the valid context numbers are 0, 2, 4, and 6; in the second case, they are in the range
0-7.

C Syntax
ix_error ix_rm_me_signal(

Inputs

arg_MENumber Microengine whose transfer register is to be written.

arg_ContextNumber Microengine context number whose transfer register is to be written.

arg_RegisterType Type of the transfer register to write.

arg_RegisterIndex Index of the ME transfer register to be written. The value of the index
is in the range 0-31 if the microengine is in 4 context mode. The index
value is in the range 0-15 for 8 context mode.

Return

Return Value IX_SUCCESS if successful or a valid ix_error token for failure.
234 Portability Framework Reference Manual

Resource Manager
ix_uint32 arg_MENumber,
ix_uint32 arg_ContextNumber,
ix_uint32 arg_SignalNumber

);

3.14 Debug Support API

The Debug Support API provides a series of functions that provide debugging features to the
programmers. In order for debug features to be turned on, the resource manager library must be
compiled with the _IX_RM_DEBUG_ preprocessor symbol defined. For the debug builds, this
particular symbol is automatically defined. This symbol can be turned off if debug functions are
not needed.

Some debugging functionality specific to buffers is compiled in only if the
_IX_RM_BUFFER_DEBUG_ preprocessor symbol is defined. This symbol is automatically
defined when the _IX_RM_DEBUG_ symbol is defined, but it can be turned off independently of
_IX_RM_DEBUG_. By including the debugging support, the performance of the system is
affected because extra processing is done, especially when _IX_RM_BUFFER_DEBUG_ symbol
is defined in the area of buffer processing.

For the VxWorks operating system, the debugging functions can be called exactly as they are
described from the shell. In the case of Linux, the resource manager creates an entry in /proc file
system called rm_debug.

To see how to invoke the described functions, type more /proc/rm_debug at the command shell,
and information on how to issue the commands is printed. The way a certain function should be
called is as follows: echo “ function_name [param1] [param2]” > /proc/rm_debug where
[param1] [param2] means that some of the functions need no parameter, some need one parameter,
and some need two parameters.

Note: The debugging functions can be called only after the resource manager has been initialized, so just
inserting the resource manager module in the kernel won’t be enough. One other module should

Inputs

arg_MENumber Microengine to be signaled.

arg_ContextNumber Context number of the microengine to be signaled.

arg_SignalNumber Signal number to be sent to the specified microengine context. Valid
values are in the range 1-15.

Return

Return Value IX_SUCCESS if successful or a valid ix_error token for failure.
Portability Framework Reference Manual 235

Resource Manager
call ix_rm_init()before the functions can be called. This statement is valid for both VxWorks
and Linux operating systems.

Table 3-21 lists functions included in this API.

3.14.1 API Functions

3.14.1.1 ix_rm_mem_status_print()

This function prints a snapshot of a memory manager associated with the passed memory type and
channel. All allocated and free memory cells will be listed.

C Syntax
ix_error ix_rm_mem_status_print(

ix_memory_type arg_MemType,
ix_uint32 arg_MemChannel

);

Table 3-21. Resource Manager Debug Support API

Functions Description

ix_rm_mem_status_print() Prints information about a memory manager associated with a
certain memory type and channel.

ix_rm_scratch_ring_print_info() Prints information about a SCRATCH ring.

ix_rm_scratch_ring_print_data() Prints the data belonging to a SCRATCH ring.

ix_rm_sram_ring_print_info() Prints information about an SRAM ring.

ix_rm_sram_ring_print_data() Prints the data belonging to an SRAM ring.

ix_rm_free_list_print_available_buffers() Prints the number of available buffers in a certain free list.

ix_rm_free_list_print_buffers_info() Prints the allocation information for the buffers belonging to a certain
hardware free list.

ix_rm_free_list_print_info() Prints information related to certain free list.

ix_rm_buffer_print_meta() Prints the buffer meta information for the passed handle.

ix_rm_buffer_print_data() Prints the buffer data for the passed handle.

ix_rm_buffer_print_debug_info() Prints the buffer debug information for the passed handle.

Inputs

arg_MemType Memory type whose status is to be displayed. Values include:
• 0 = DRAM

• 1 = SRAM

• 2 = SCRATCH

arg_MemChannel Channel whose status information is to be printed.
236 Portability Framework Reference Manual

Resource Manager
3.14.1.2 ix_rm_scratch_ring_print_info()

This function prints information about the requested SCRATCH ring number. The SCRATCH rings
numbers are in the range 0-15.

C Syntax
void ix_rm_scratch_ring_print_info(

ix_uint32 arg_RingNumber
);

3.14.1.3 ix_rm_scratch_ring_print_data()

This function prints data belonging to the requested SCRATCH ring number. The SCRATCH rings
numbers are in the range 0-15.

C Syntax
void ix_rm_scratch_ring_print_data(

ix_uint32 arg_RingNumber
);

3.14.1.4 ix_rm_sram_ring_print_info()

This function prints information about the requested SRAM ring number on the specified channel.
The SRAM ring numbers are in the range 0-63, and they correspond to QArray descriptor entries in
the SRAM controller.

An SRAM ring is initialized only after some microcode copies the QArray descriptors from SRAM
into the SRAM controller. After this operation is completed, even if the core creates a new SRAM
ring, the ring will not be valid as the information has not been copied into the controller. Some of
the QArray descriptor entries can be used for queues or journals; in that case, an appropriate error
message will be printed.

Return

Return Value IX_SUCCESS if successful or a valid ix_error token for failure.

Input

arg_RingNumber Scratch ring number whose info is to be displayed.

Input

arg_RingNumber Scratch ring number whose info is to be displayed.
Portability Framework Reference Manual 237

Resource Manager
C Syntax
void ix_rm_sram_ring_print_info(

ix_uint32 arg_ChannelNumber,
ix_uint32 arg_RingNumber

);

3.14.1.5 ix_rm_sram_ring_print_data()

This function prints the data belonging to the requested SRAM ring number on the specified
channel. The SRAM rings numbers are in the range 0-63, and they correspond to QArray
descriptors entries in the SRAM controller.

An SRAM ring is initialized only after some microcode copies the QArray descriptors from SRAM
into the SRAM controller. After this operation is completed, even if the core creates a new SRAM
ring, the ring will not be valid as the information has not been copied into the controller. Some of
the QArray descriptor entries can be used for queues or journals; in that case, an appropriate error
message will be printed.

C Syntax
void ix_rm_sram_ring_print_data(
 ix_uint32 arg_ChannelNumber,
 ix_uint32 arg_RingNumber
);

3.14.1.6 ix_rm_free_list_print_available_buffers()

This function prints the number of available buffers in a certain free list. On each channel, the
hardware free list numbers are in the range 0 through 15. For software free lists, the numbers are in
the range 0 through [255 - (SRAM_Channels * 16)].

If hardware free lists are allowed on all channels and there are a maximum of 16 hardware free lists
on each channel, use the following equation to retrieve information about a hardware free list on
channel n: arg_FreeListNumber = n*16 + the_free_list_number on that channel.

Inputs

arg_ChannelNumber Channel number of the SRAM ring whose info is to be displayed.

arg_RingNumber SRAM ring identifier whose info is to be displayed.

Inputs

arg_ChannelNumber Channel number of the SRAM ring whose data is to be displayed.

arg_RingNumber SRAM ring identifier whose data is to be displayed.
238 Portability Framework Reference Manual

Resource Manager
C Syntax
void ix_rm_free_list_print_available_buffers(

ix_uint32 arg_FreeListType,
ix_uint32 arg_FreeListNumber

);

3.14.1.7 ix_rm_free_list_print_buffers_info()

This function prints allocation information for the buffers owned by the specified hardware free
list.

If hardware free lists are allowed on all channels and there are a maximum of 16 hardware free lists
on each channel, use the following equation to retrieve information about a hardware free list on
channel n: arg_FreeListNumber = n*16 + the_free_list_number on that channel.

C Syntax
void ix_rm_free_list_print_buffers_info(

ix_uint32 arg_FreeListNumber
);

3.14.1.8 ix_rm_free_list_print_info()

This function prints detailed free list information about the requested free list. On each channel, the
hardware free list numbers are in the range 0 through 15. For software free lists, the numbers are in
the range 0 through [255 - (SRAM_Channels * 16)].

If hardware free lists are allowed on all channels and there are a maximum of 16 hardware free lists
on each channel, use the following equation to retrieve information about a hardware free list on
channel n: arg_FreeListNumber = n*16 + the_free_list_number on that channel.

C Syntax
void ix_rm_free_list_print_info(

ix_uint32 arg_FreeListType,

Inputs

arg_FreeListType Indicates the type of free list whose info is to be displayed. Values
are:

• 0 = hardware

• 1 = software

arg_FreeListNumber Free list identifier whose info is to be displayed.

Input

arg_FreeListNumber Free list identifier whose buffer allocation info is to be displayed.
Portability Framework Reference Manual 239

Resource Manager
ix_uint32 arg_FreeListNumber
);

3.14.1.9 ix_rm_buffer_print_meta()

This function prints buffer metadata for the passed buffer handle.

C Syntax
void ix_rm_buffer_print_meta(

ix_buffer_handle arg_hBuffer
);

3.14.1.10 ix_rm_buffer_print_data()

This function prints buffer data for the passed buffer handle.

C Syntax
void ix_rm_buffer_print_data(

ix_buffer_handle arg_hBuffer
);

3.14.1.11 ix_rm_buffer_print_debug_info()

This function prints buffer debug information for the passed buffer.

Inputs

arg_FreeListType Indicates the type of free list whose info is to be displayed. Values
are:

• 0 = hardware

• 1 = software

arg_FreeListNumber Free list identifier whose info is to be displayed.

Input

arg_hBuffer Buffer handle whose metadata is to be displayed.

Input

arg_hBuffer Buffer handle whose data is to be displayed.
240 Portability Framework Reference Manual

Resource Manager
C Syntax
void ix_rm_buffer_print_debug_info(

ix_buffer_handle arg_hBuffer
);

Input

arg_hBuffer Buffer handle whose debug information is to be displayed.
Portability Framework Reference Manual 241

Resource Manager
242 Portability Framework Reference Manual

Core Component Infrastructure
Core Component Infrastructure 4

This chapter describes the core component infrastructure interface providing framework support
for:

• Running core components in their own execution engines—where each execution engine
encapsulates a calling application thread of control

• Prioritizing message and packet data paths

Table 4-1 summarizes the core-component infrastructure API.

Table 4-1. cci API

Name Description

ix_cci_cc_add_event_handler() Adds an event handler using the handle of the component.

ix_event_func() The function prototype specifying the signature for an event-handler
function provided by the calling application.

ix_cci_cc_add_event_handler_ex()
Similar to ix_cci_cc_add_event_handler()but instead of
specifying the core component or engine context this function allows
the calling application to specify the event context.

ix_cci_change_event() Changes the period of a periodic event.

ix_cci_cc_add_message_handler() Adds a message handler to a core component and associates it with an
input ID.

ix_msg_handler() The function prototype for message-handler callback functions.

ix_cci_cc_add_packet_handler() Adds a packet handler to a core component and associates it with an
input ID.

ix_pkt_handler() The function prototype for packet-handler callback functions.

ix_cci_cc_create() Creates a core component and returns a component handle.

ix_cc_init() The function prototype for a core component initialization function.

ix_cc_fini() The function prototype for a core component termination function.

ix_cci_cc_destroy() Destroys a core component specified by a handle to the component.

ix_cci_cc_remove_event_handler()
Removes an event created using
ix_cci_cc_add_event_handler()or
ix_cci_cc_add_event_handler_ex().

ix_cci_cc_remove_message_handler() Deletes a message handler.

ix_cci_cc_remove_packet_handler() Deletes a packet handler.

ix_cci_exe_add_policy() Adds a policy or policy tree to an execution engine.

ix_cci_exe_get_info()
Returns the execution-engine handle, engine number, and a context
pointer associated with the execution engine from which the operation
was invoked.

ix_cci_exe_run() Runs the execution engine in a spawned task, thread, or process.

ix_exe_init() The function prototype for the application-defined initialization function
used when an execution engine is started.

ix_exe_fini() The function prototype for the application-defined termination function
used when an execution engine is shut down.
Portability Framework Reference Manual 243

Core Component Infrastructure
4.1 API Functions

4.1.1 ix_cci_cc_add_event_handler()

Adds an event handler to a core component. This function should be called within application core-
component code.

Note: The execution engine only checks for events between the handling of messages and packets.
Therefore, if a handler takes a long time to process a packet or message, the event triggers
considerably later or less often than requested in the arg_ms parameter. The event function is
called in the thread context of the execution engine. Event functions take strict priority over
message and packet handlers.

C Syntax
ix_error ix_cci_cc_add_event_handler(

ix_cc_handle arg_hComponent,
ix_uint32 arg_ms,
ix_event_func* arg_EventFunc,
ix_event_type arg_EventType,
ix_uint32 arg_Priority,
ix_event_handle* arg_phEvent);

ix_cci_exe_set_default()
Sets an execution engine as the default engine whose information is
returned by ix_cci_exe_get_info()when that function is called
from a non-engine thread.

ix_cci_exe_shutdown() Shuts down the execution engine identified by a handle, terminating its
task, thread, or process.

ix_cci_init() Initializes the framework for use by the core-component infrastructure.

ix_cci_fini() Terminates the framework.

ix_cci_policy_add_branch() Adds a branch—another policy or policy tree—to a scheduling policy.
This operation supports construction of a hierarchical scheduling policy.

ix_cci_policy_add_leaf() Adds a leaf node or input ID to a scheduling policy or execution engine.

ix_cci_policy_create() Allocates a scheduling policy specifying the policy type—type is one of
round robin, weighted round robin, or priority.

ix_cci_policy_destroy() Frees the scheduling policy. Deallocates all resources associated with a
tree.

ix_cci_register_fatal_error_handler() Allows a control application to register a fatal-error handler.

ix_ferror_func() This is the function prototype for the fatal-error handler callback
provided by the calling application.

ix_cci_send_message() Sends a message to a specific input of a core component.

ix_cci_send_packet() Sends a packet to a specific input of a core component or to a
microblock identified by microblock ID.

Table 4-1. cci API (Continued)

Name Description
244 Portability Framework Reference Manual

Core Component Infrastructure
4.1.2 ix_event_func()

The function prototype specifying the signature for an event-handler function provided by the
calling application.

C Syntax
ix_error (* ix_event_func)(void * arg_pContext);

Input

arg_hComponent A handle specifying the core component or execution engine to which to
add an event handler.

arg_ms The minimum number of milliseconds from the time the operation is
invoked to the time at which the event will be triggered. Also the inter-
event interval when arg_EventType is IX_EVENT_TYPE_PERIODIC.

arg_EventFunc An event handler with the function signature specifying Section 4.1.2,
“ix_event_func().”

arg_EventType Specifies the type of event. This value is one of:
• IX_EVENT_TYPE_PERIODIC—for periodic, recurring events

• IX_EVENT_TYPE_ONESHOT—for one-shot events

arg_Priority The priority value the event scheduler uses to sequence events if two or
more events are scheduled to occur at the same time.

Output/Returns

Return Value Returns IX_SUCCESS if successful or an ix_error token encapsulating
one of the following error codes:

• IX_CCI_ERR_OS_MEM_ALLOC—not enough memory for internal event
structure

• IX_CCI_ERR_CC_ADD_HANDLER_INVALID_HANDLE—invalid handle
passed in first argument

• IX_CCI_ERR_EVENT_HANDLER_GET_TIME—error getting system time
• IX_CCI_ASSERTION—invalid function parameter—debug compilations only

arg_phEvent A pointer to an event handle for the newly added event handler—used for
removing event handlers.

Input

arg_pContext The core-component context created by the calling-application
implementation of the ix_cc_init() function passed to the core
component creation function, ix_cci_cc_create().
Portability Framework Reference Manual 245

Core Component Infrastructure
4.1.3 ix_cci_cc_add_event_handler_ex()

Similar to ix_cci_cc_add_event_handler()but instead of specifying the core component or
engine context this function allows the calling application to specify the event context.

Note: The execution engine only checks for events between the handling of messages and packets.
Therefore, if a handler takes a long time to process a packet or message, the event will be triggered
considerably later (or less often) than requested in the arg_ms parameter. The event function is
called in the thread context of the execution engine. Event functions take strict priority over
message and packet handlers.

C Syntax
ix_error ix_cci_cc_add_event_handler(

ix_cc_handle arg_hComponent,
ix_uint32 arg_ms,
ix_event_func* arg_EventFunc,
ix_event_type arg_EventType,
ix_uint32 arg_Priority,
void* arg_EventContext,
ix_event_handle* arg_phEvent);

Input

arg_hComponent A handle to the core component.

arg_ms The minimum number of milliseconds from the time the operation is
invoked to the time at which the event will be triggered. Also the inter-
event interval when arg_EventType is IX_EVENT_TYPE_PERIODIC.

arg_EventFunc An event handler with function signature specified in Section 4.1.2,
“ix_event_func().”

arg_EventType Specifies the type of event. This value is one of:
• IX_EVENT_TYPE_PERIODIC—for periodic, recurring events

• IX_EVENT_TYPE_ONESHOT—for one-shot events

arg_Priority The priority value the event scheduler uses to sequence events if two or
more events are scheduled to occur at the same time.

arg_EventContext Context to be passed to the event handler specified by arg_EventFunc
when the event occurs.
246 Portability Framework Reference Manual

Core Component Infrastructure
4.1.4 ix_cci_change_event()

Changes the period of a periodic event.

C Syntax
ix_error ix_cci_change_event(

ix_event_handle arg_hEvent, ix_uint32 arg_ms);

Output/Returns

arg_phEvent A pointer to the event handle, used for removing event handlers.

Return Value Returns IX_SUCCESS if successful or an ix_error token encapsulating one
of the following error codes:

• IX_CCI_ERR_OS_MEM_ALLOC—there was not enough memory for the internal
event structure

• IX_CCI_ERR_CC_ADD_HANDLER_INVALID_HANDLE—an invalid handle
was passed in as the first argument

• IX_CCI_ERR_EVENT_HANDLER_GET_TIME—there was an error getting the
system time

• IX_CCI_ASSERTION—an invalid function parameter was specified—applies to
debug compilations only

Input

arg_hEvent A handle to the periodic event whose period is to be changed.

arg_ms The new event period for the event specified by arg_hEvent.

Output/Returns

Return Value Returns IX_SUCCESS if successful or an ix_error token encapsulating the
following error code:

• IX_CCI_ERROR_ASSERTION—an invalid handle was passed in as the first
argument or the event is not periodic—applies to debug compilations only
Portability Framework Reference Manual 247

Core Component Infrastructure
4.1.5 ix_cci_cc_add_message_handler()

Adds a message handler to a core component and associates it with an input ID. This function
should be called in the ix_exe_init() function of the core component’s execution engine.
Attempting to associate a handler to an ID that already is associated with a handler returns an error.

Note: This function should be called in the ix_cci_init()function for the core component or the
ix_exe_init()function for the core component’s execution engine.

C Syntax
ix_error ix_cci_cc_add_message_handler(

ix_cc_handle arg_hComponent,
ix_uint32 arg_InputID,
ix_msg_handler* arg_Handler,
ix_input_type arg_SourceType);

Input

arg_hComponent A handle to the execution engine or a core component—used to gain access
to the execution engine’s default policy. If the execution engine is using its
default policy tree, the message handler is automatically added to this
policy tree. Otherwise, if a custom policy tree has been connected to the
execution engine—using ix_cci_exe_add_policy()—it is the
responsibility of the calling application to add the handler to the
appropriate policy using the function ix_cci_policy_add_leaf().

arg_InputID Input ID to be associated with the handler.

arg_Handler A pointer to a message handler provided by the calling application. The
callback function prototype is specified in Section 4.1.5.1,
“ix_msg_handler().”

arg_SourceType Indicates whether the input receives messages from one source or multiple
sources. Valid values are:

• IX_INPUT_TYPE_SINGLE_SRC—messages are received from a single source

• IX_INPUT_TYPE_MULTI_SRC—messages are received from multiple sources

NOTE: The framework uses this type value to determine whether or not to employ
locking when writing data into the queue corresponding to the input ID
associated with this handler.
248 Portability Framework Reference Manual

Core Component Infrastructure
Output

Return Value Returns IX_SUCCESS if successful or an ix_error token encapsulating one
of the following error codes:

• IX_CCI_ERR_OS_MEM_ALLOC—could not allocate enough memory for internal
handler structure

• IX_CCI_TOKEN_PROCESSOR_CONTAINER_FULL—attempted to add the
handler to a full policy that cannot grow

• IX_CCI_ERR_TKP_CONTAINER_MEM_ALLOC—a memory allocation error
occurred when attempting to add the handler to a full policy

• IX_CCI_ERR_MSG_SET_MODE—an error was reported by the Resource
Manager when setting the handler’s mode of operation

• IX_CCI_ASSERTION—invalid function parameter—debug compilations only
Portability Framework Reference Manual 249

Core Component Infrastructure
4.1.5.1 ix_msg_handler()

The function prototype for message-handler callback functions provided by the calling application.

C Syntax
ix_error (* ix_msg_handler) (

ix_buffer_handle arg_hDataToken,
ix_uint32 arg_UserData,
void* arg_pComponentContext);

Input

arg_hDataToken Calling application specific data.

arg_UserData Calling application specific data.

arg_pComponentContext The core component context created by the application-defined
core component ix_cc_init()function passed to the core
component’s creation function, ix_cci_cc_create().

Output/Returns

Return Value Returns IX_SUCCESS or a valid ix_error.
250 Portability Framework Reference Manual

Core Component Infrastructure
4.1.6 ix_cci_cc_add_packet_handler()

Adds a packet handler to a core component and associates it with an input ID. This function should
be called in the ix_exe_init() function of the core component’s execution engine. Attempting
to associate a handler to an ID that is already associated with a handler returns an error.

Note: This function should be called in the ix_cci_init()for the core component or the
ix_exe_init()function of the core component’s execution engine.

C Syntax
ix_error ix_cci_cc_add_packet_handler(

ix_cc_handle arg_hComponent,
ix_uint32 arg_InputID,
ix_pkt_handler arg_Handler,
ix_input_type arg_SourceType);

Input

arg_hComponent A handle to the execution engine or a core component—used to gain
access to the execution engine’s default policy. If the execution engine is
using its default policy tree, the packet handler is automatically added to
this policy tree. Otherwise, if a custom policy tree has been connected to
the execution engine using ix_cci_exe_add_policy()it is the
responsibility of the calling application to add the handler to the
appropriate policy using the function ix_cci_policy_add_leaf().

arg_Handler Pointer to the packet handler with the signature specified in
Section 4.1.6.1, “ix_pkt_handler().”

arg_InputID The input ID to be associated with the handler.

arg_SourceType Indicates whether the input receives messages from one source or multiple
sources. Valid values are: IX_INPUT_TYPE_SINGLE_SRC and
IX_INPUT_TYPE_MULTI_SRC.
NOTE: The framework uses this type value to determine whether or not to employ

locking when writing data into the queue corresponding to the input ID
associated with this handler.
Portability Framework Reference Manual 251

Core Component Infrastructure
4.1.6.1 ix_pkt_handler()

The function prototype for packet handler callback functions provided by the calling application.

C Syntax
ix_error (* ix_pkt_handler) (

ix_buffer_handle arg_hDataToken,
ix_uint32 arg_ExceptionCode,
void* arg_pComponentContext);

Output

Return Value Returns IX_SUCCESS if successful or an ix_error token encapsulating
one of the following error codes:

• IX_CCI_ERR_OS_MEM_ALLOC—could not allocate enough memory for the
internal handler structure

• IX_CCI_TOKEN_PROCESSOR_CONTAINER_FULL—attempted to add a
handler to a full policy that cannot grow

• IX_CCI_ERR_TKP_CONTAINER_MEM_ALLOC—there was a memory
allocation error when attempting to add handler to a full policy

• IX_CCI_ERR_MSG_SET_MODE—there was an error reported by the
Resource Manager when setting the handler’s mode of operation

• IX_CCI_ASSERTION—an invalid function parameter was passed in—
applies to debug compilations only

Input

arg_hDataToken A handler to calling-application defined data.

arg_ExceptionCode A calling-application defined exception code.

arg_pComponentContext The core component context created by the application-defined core
component ix_cc_init()function passed to the core component’s
creation function, ix_cci_cc_create().

Output/Returns

Return Value Returns IX_SUCCESS or a valid ix_error.
252 Portability Framework Reference Manual

Core Component Infrastructure
4.1.7 ix_cci_cc_create()

Creates a core component. This function should be called from the application-defined
ix_exe_init()function in the core component’s execution engine.

C Syntax
ix_error ix_cci_cc_create(

ix_exe_handle arg_EngHandle,
ix_cc_init arg_InitFunc,
ix_cc_fini arg_FiniFunc,
void* arg_pContextIn,
ix_cc_handle* arg_phComponent);

Input

arg_EngHandle A handle to the execution engine where the core component code is to be
run.

arg_InitFunc A pointer to the core component initialization function. Application code
may use this function to create resources shared between the core and any
microblocks with which the component interacts. It may also patch
symbols to those microblocks.
Implementation of this function is an application responsibility. The
function signature is described in Section 4.1.7.1, “ix_cc_init().”
The ppContext parameter points to an input/output context. The context
pointer is stored in the component and passed to the function specified by
arg_FiniFunc when the component is destroyed. The context is also
passed to any events, message handlers, or packet handlers added to the
core component.

arg_FiniFunc A pointer to the component termination function.
The function signature is shown in Section 4.1.7.2, “ix_cc_fini().”

arg_pContextIn A pointer to a context that is passed into arg_InitFunc.

Output

Return Value Returns IX_SUCCESS if successful or an ix_error token encapsulating one
of the following error codes:

• IX_CCI_ERR_OS_MEM_ALLOC—there was not enough memory to complete
the operation

• IX_CCI_ASSERTION—an invalid function parameter was passed in—applies to
debug compilations only

• Any errors returned by the ix_cc_init()callback function

arg_phComponent A pointer to the location for return of the core-component handle.
Portability Framework Reference Manual 253

Core Component Infrastructure
4.1.7.1 ix_cc_init()

This is the function prototype for a component initialization function.

C Syntax
ix_error (*ix_cc_init)(void** ppContext);

4.1.7.2 ix_cc_fini()

This is the function prototype for a component termination function.

C Syntax
ix_error (*ix_cc_fini)(void* pContext);

Input/Output

ppContext A pointer to any context convenient for use by the core component. As an
input, it may be some global context; as an output it may be a pointer to
resources allocated within the initialization function.

Output/Returns

Return Value Returns IX_SUCCESS if successful or an ix_error token.

Input

pContext The context output by core-component initialization function—see
Section 4.1.7.1, “ix_cc_init().”

Output/Returns

Return Value Returns IX_SUCCESS if successful or an ix_error token.
254 Portability Framework Reference Manual

Core Component Infrastructure
4.1.8 ix_cci_cc_destroy()

Destroys the component. The function performs internal cleanup and invokes the application-
defined ix_cc_fini() function associated with the component. This function should be called
from the application-defined ix_exe_fini()function for the core component’s execution engine.

C Syntax
ix_error ix_cci_cc_destroy(ix_cc_handle arg_hComponent);

Input

arg_hComponent A handle to the core component originally initialized using
ix_cci_cc_create().

Output

Return Value Returns IX_SUCCESS if successful or an ix_error token encapsulating one
of the following error codes:

• Any errors returned by the ix_cc_fini()callback function

• IX_CCI_ASSERTION—invalid function parameter—debug compilations only
Portability Framework Reference Manual 255

Core Component Infrastructure
4.1.9 ix_cci_cc_remove_event_handler()

Removes an event handler from a core component. This function should be called within
application core-component code and is only required for removing periodic events and unexpired
one-shot events.

Note: It is not necessary to remove a one-shot event handler after it has expired. Although this function
checks that the input parameters are valid, attempting to remove an expired event does not return
an error.

C Syntax
ix_error ix_cci_cc_remove_event_handler(ix_event_handle arg_hEvent);

Input

arg_hEvent A handle to the event to be removed.

Output

Return Value Returns IX_SUCCESS if successful or an ix_error token encapsulating one
of the following error codes:

• IX_CCI_ASSERTION—an invalid function parameter was specified—applies to
debug compilations only

• IX_CCI_ERR_EVENT_NOT_FOUND—no trace of event found, even on expired-
event list—debug compilations only
256 Portability Framework Reference Manual

Core Component Infrastructure
4.1.10 ix_cci_cc_remove_message_handler()

Removes a message handler previously added using ix_cci_cc_add_message_handler().
This function may be called from the application-defined termination function of the core
component’s execution engine, or from the core component’s own termination function.

C Syntax
ix_error ix_cci_cc_remove_message_handler(ix_uint32 arg_InputID);

Input

arg_InputID The input ID associated with the message handler to be removed. After
calling this function, any messages arriving on this input ID are dropped.

Output

Return Value Returns IX_SUCCESS if successful or an ix_error token encapsulating one
of the following error codes:

• IX_CCI_ERR_DISABLE_MSG_HANDLER—error disabling message handler in
Resource Manager

• IX_CCI_ASSERTION—invalid function parameter—debug compilations only
Portability Framework Reference Manual 257

Core Component Infrastructure
4.1.11 ix_cci_cc_remove_packet_handler()

Removes a packet handler previously added using ix_cci_cc_add_packet_handler(). This
function may be called from the application-defined termination function of the core component’s
execution engine, or from the core component’s own termination function.

C Syntax
ix_error ix_cci_cc_remove_packet_handler(ix_uint32 arg_InputID);

4.1.12 ix_cci_exe_add_policy()

Adds a branch node—a scheduling policy—to an execution engine. This function should be called
from the application-defined ix_exe_init()function for the execution engine in order to replace
the execution engine’s default policy tree with a different scheduling policy or policy tree.

Note: This function, in conjunction with ix_cci_policy_add_branch()and
ix_cci_policy_add_leaf(), should only be called to replace the default policy tree with a
different policy or policy tree. All message and packet handlers must be added to the execution
engine’s core components before calling this function. Failure to do so results in an error being
returned from the add-handler function. Care should be taken that all IDs are added to the new
policy tree using ix_cci_policy_add_leaf()—otherwise the handlers do not run when
packets or messages arrive on those IDs.

C Syntax
ix_error ix_cci_exe_add_policy(

ix_exe_handle arg_hParent,
ix_policy_handle arg_hChild,
ix_uint32 arg_NumCredits);

Input

arg_InputID The input ID where packet handler is to be removed. After calling this
function, any packets arriving on this input ID are dropped.

Output/Returns

Return Value Returns IX_SUCCESS if successful or an ix_error token encapsulating one
of the following error codes:

• IX_CCI_ERR_DISABLE_MSG_HANDLER—error disabling message handler in
Resource Manager

• IX_CCI_ASSERTION—invalid function parameter—debug compilations only
258 Portability Framework Reference Manual

Core Component Infrastructure
4.1.13 ix_cci_exe_get_info()

Returns the execution-engine handle, engine number, and a context pointer associated with the
execution engine in which the caller is running. If this function is called from a non-engine thread,
it returns information about the default engine. The default engine is set by the function
ix_cci_exe_set_default()—if this function has not been called, the default engine is engine
zero.

C Syntax
ix_error ix_cci_get_info(

ix_exe_handle* arg_pExeHandle,
ix_uint32* arg_pEngineNumber,
void* arg_ppContext);

Input

arg_hParent The execution engine to which to add the policy.

arg_hChild A handle to the policy to add.

arg_NumCredits The number of times a handler is called before another handler is selected
by the policy tree—this assumes the handler’s queue has enough entries and
that no new messages or packets are received with a higher priority.

Output

Return Value Returns IX_SUCCESS if successful or an ix_error token encapsulating the
following error code:

• IX_CCI_ASSERTION—invalid function parameter—debug compilations only

Output/Returns

arg_pExeHandle A handle to the engine running this thread.

arg_pEngineNumber A unique engine number. The first engine created is engine number
zero, the next is engine number one, and so on.

arg_ppContext A pointer to the engine context initialized by the application-defined
ix_cc_init() function passed into ix_cci_exe_run()when the
engine is created.

Return Value Returns IX_SUCCESS if successful or an ix_error token encapsulating
the following error code:

• IX_CCI_ERR_ENG_THREAD_ID—error getting current thread ID or
default engine no longer exists
Portability Framework Reference Manual 259

Core Component Infrastructure
4.1.14 ix_cci_exe_run()

Creates and runs an execution engine—that is, a thread of control. This function should be called
from application code after ix_cci_init()has been called to initialize the core framework.

Note: This function calls the application-defined ix_exe_init()function associated with this engine
and stores the output context internally so that it can be passed to the application-defined
ix_exe_fini()function for this engine when ix_cci_exe_shutdown()is called.

C Syntax
ix_error ix_cci_exe_run(

const char* arg_FileName,
ix_exe_init_func arg_InitFunc,
ix_exe_fini_func arg_FiniFunc,
const char* arg_Name,
ix_exe_handle* arg_pHandle);

Input

arg_FileName If the operating environment is process-based and is required to spawn a
new process for each execution engine, this parameter specifies the
filename where the execution engine’s process entry point is defined.
Otherwise, the parameter should be set to NULL.

arg_InitFunc Specifies a application-defined initialization function that is called by
ix_cci_exe_run(). This function is responsible for creating the
execution-control tree and setting up the message and packet handlers. If
the operating environment is process-based and is required to spawn a new
process for each execution engine, this parameter should be set to NULL,
and the initialization should be performed by the process’ entry function.
The function signature is specified in Section 4.1.14.1,
“ix_exe_init().”
The memory for the context passed as an argument into
ix_exe_init()must be dynamically allocated by the initialization
function. The initialization function must return this context pointer using
the same argument so that this pointer can be stored by the execution
engine. This context pointer is passed to the execution engine’s
ix_exe_fini()function at shutdown. The ix_exe_fini() function uses
this context to gain access to any core components and policies that the
execution engine must delete.

arg_FiniFunc Specifies a application-defined cleanup function that is called in
ix_cci_exe_run() as a result of ix_cci_exe_shutdown() being
called in a control thread. After the cleanup function has returned the
ix_cci_exe_run() function terminates. If the operating environment is
process-based and is required to spawn a new process for each execution
engine, this parameter should be set to NULL, and the engine’s
ix_exe_fini() pointer should be initialized by the process’ entry
function.
The function signature is specified in Section 4.1.14.2,
“ix_exe_fini().”
260 Portability Framework Reference Manual

Core Component Infrastructure
arg_Name Name to be associated with the current execution engine.

Output

Return Value Returns IX_SUCCESS if successful or an ix_error token encapsulating one
of the following error codes:

• IX_CCI_ERR_ENG_INIT_SEMA_PROP_READ—could not read registry
properties for the global synchronization semaphore

• IX_CCI_ERR_ENG_PROP_CLOSE—there was an error closing the property for
global semaphore

• IX_CCI_ERR_ENG_INIT_ENGINE_PROP_READ—could not read properties
for shared-memory integers used by all execution engines

• IX_CCI_ERR_ENG_PROP_CLOSE—there was an error closing the property for
shared-memory integers

• IX_CCI_ERR_ENG_THREAD_SPAWN—there was an error spawning the engine
thread

• IX_CCI_ERR_OS_MEM_ALLOC—there was a memory allocation error

• IX_CCI_ERR_TKP_CONTAINER_MEM_ALLOC—there was a memory
allocation error

• IX_CCI_ERR_ENG_THREAD_ID—could not read the current thread ID

• IX_CCI_ERR_SHARED_MEM_ALLOC—there was a shared-memory allocation
error

• IX_CCI_ERR_ENG_INIT_SEMA_INIT—could not initialize this engine’s
semaphore

• IX_CCI_NO_SELECTED_CHILD—no event/message/packet handler was
added—either directly or via one of its core components—to the engine

• IX_CCI_ASSERTION—invalid function parameter was passed in—applies to
debug compilations only

• Errors returned from ix_cci_policy_create(),
ix_cci_policy_add_branch(), and ix_cci_exe_add_policy()
while trying to create the default policy tree

• Errors returned from the callback function whose prototype is ix_cc_init()

arg_pHandle A pointer to the new execution engine’s handle.

Input (Continued)
Portability Framework Reference Manual 261

Core Component Infrastructure
4.1.14.1 ix_exe_init()

The function prototype for the application-defined initialization function used when an execution
engine is started.

C Syntax
ix_error (*ix_exe_init)(

ix_exe_handle ExeHandle,
void** ppContext);

Input

ExeHandle A handle assigned to this execution engine. If this handle is saved in the
execution engine’s context, then when the engine is running, information
about the engine can be retrieved using the function
ix_cci_exe_get_info().

ppContext The memory for the context pointed to by this argument must be
dynamically allocated by the initialization function. The initialization
function must return this context pointer using ppContext so that this
pointer can be stored by the execution engine.

Output/Returns

Return Value Returns IX_SUCCESS if successful or an ix_error token.
262 Portability Framework Reference Manual

Core Component Infrastructure
4.1.14.2 ix_exe_fini()

The function prototype for the application-defined finalization function used when an execution
engine is shut down.

C Syntax
ix_error (*ix_exe_fini)(

ix_exe_handle ExeHandle,
void* pContext);

Input

ExeHandle Handle assigned to this execution engine. If this handle is saved in the
execution engine’s context, then when the engine is running, information
about the engine can be retrieved using the function
ix_cci_exe_get_info().

pContext A pointer to the context created by and passed back from the matching
ix_exe_init()function. This context provides access to any core
components and policies that the execution engine must delete.

Output/Returns

Return Value Returns IX_SUCCESS if successful or an ix_error token.
Portability Framework Reference Manual 263

Core Component Infrastructure
4.1.15 ix_cci_exe_set_default()

Sets an engine as the default engine whose information is returned by ix_cci_exe_get_info()
when that function is called from a non-engine thread. If this function is never called, the default
engine is the first engine created after ix_cci_init().

C Syntax
ix_error ix_cci_exe_set_default(ix_exe_handle arg_Handle);

Input

arg_Handle A handle to the execution engine to set as the default.

Output/Returns

Return Value Returns IX_SUCCESS if successful or an ix_error token encapsulating the
following error code:

• IX_CCI_ASSERTION—invalid function parameter—debug compilations only
264 Portability Framework Reference Manual

Core Component Infrastructure
4.1.16 ix_cci_exe_shutdown()

Sets a flag in the execution engine, telling it to shut down. Each execution engine contains a
semaphore that the engine unlocks when it has finished processing and has executed the execution
engine application-defined function specified by the ix_cc_fini()function prototype. This
shutdown function blocks until the execution engine indicates shutdown is complete. All
applications should call this function to shut down the application.

C Syntax
ix_error ix_cci_exe_shutdown(ix_exe_handle arg_Handle);

Input

arg_Handle Handle to execution engine originally initialized by ix_cci_exe_run().

Output

Return Value Returns IX_SUCCESS if successful or an ix_error token encapsulating one
of the following error codes:

• IX_CCI_ASSERTION—invalid function parameter—debug compilations only

• Fatal errors returned by event, message, or packet handlers

• Errors returned by callback functions with an ix_cc_fini()function prototype
Portability Framework Reference Manual 265

Core Component Infrastructure
4.1.17 ix_cci_init()

Initializes the core component infrastructure. This function should be called from application code
before calling any other functions in the core-component infrastructure.

Note: The function ix_rm_init()must be called before calling this function.

C Syntax
ix_error ix_cci_init(void);

4.1.18 ix_cci_fini()

Terminates the core component infrastructure. This function should be called in application code
after all execution engines have been shut down and destroyed.

Note: The function ix_cci_fini() should be called before calling ix_rm_term().

C Syntax
ix_error ix_cci_fini(void);

Output

Return Value Returns IX_SUCCESS if successful or an ix_error token encapsulating one
of the following error codes:

• IX_CCI_ERR_INIT_ERR_LOG—unable to initialize error-message log

• IX_CCI_ERR_SHARED_MEM_ALLOC—unable to allocate shared memory
needed by the Core Component Infrastructure

• IX_CCI_ERR_GLOB_SEMA_INIT—unable to initialize the global Core
Component Infrastructure semaphore

• IX_CCI_ERR_PROPERTY_CREATE—error creating Resource Manager
properties

• IX_CCI_ERR_PROPERTY_SET—error setting a property

Output

Return Value Returns IX_SUCCESS if successful or a an ix_error token returned from
the Resource Manager or Operating System Services Layer when trying to
free a resource.
266 Portability Framework Reference Manual

Core Component Infrastructure
4.1.19 ix_cci_policy_add_branch()

Adds a branch node—a scheduling policy—to another scheduling policy. Up to 32 nodes, that is,
branches and leaves, can be added to an individual policy. This function should be called from the
application-defined ix_exe_init()function of an execution engine on an existing policy created
using ix_cci_policy_create().

C Syntax
ix_error ix_cci_policy_add_branch(

ix_policy_handle arg_hPolicy,
ix_policy_handle arg_hChild,
ix_uint32 arg_WeightOrPriority);

Input

arg_hPolicy A handle to the scheduling policy to which the branch is added.

arg_hChild A handle to the branch—or policy—to add.

arg_WeightOrPriority Weight if the parent is a weighted round robin policy or priority if
the parent is a strict priority policy. This parameter is ignored if
the parent is a round robin policy.

Output

Return Value Returns IX_SUCCESS if successful or an ix_error token
encapsulating one of the following error codes:

• IX_CCI_TOKEN_PROCESSOR_CONTAINER_FULL—the parent
policy is full and was initialized to be fixed in size

• IX_CCI_ERR_TKP_CONTAINER_MEM_ALLOC—there was a
memory allocation error

• IX_CCI_ASSERTION—an invalid function parameter was passed
in—applies to debug compilations only
Portability Framework Reference Manual 267

Core Component Infrastructure
4.1.20 ix_cci_policy_add_leaf()

Adds a leaf node—packet or message input node—to a scheduling policy. Up to 32 nodes—
branches and leaves—can be added to an individual policy. This function should be called from the
application-defined ix_exe_init()function of an execution engine on an existing policy, created
using ix_cci_policy_create().

C Syntax
ix_error ix_cci_policy_add_leaf(

ix_policy_handle arg_hPolicy,
ix_uint32 arg_InputId,
ix_uint32 arg_IsPacketId,
ix_uint32 arg_WeightOrPriority);

Input

arg_hPolicy A handle to the scheduling policy to which to add a leaf.

arg_InputId The packet or message input ID.

arg_IsPacketId Indicates if the leaf is a packet input node. Used as a boolean:
• 1—for packet-input ID

• 0—for not a packet-input ID—that is, the node is a message-input ID

arg_WeightOrPriority A weight if parent is a weighted round robin policy or a priority if
parent is a strict priority policy. This parameter is ignored if the
parent is a round robin policy.

Output

Return Value Returns IX_SUCCESS if successful or an ix_error token
encapsulating one of the following error codes:

• IX_CCI_TOKEN_PROCESSOR_CONTAINER_FULL—the parent
policy is full and was initialized to be fixed in size

• IX_CCI_ERR_TKP_CONTAINER_MEM_ALLOC—there was a
memory allocation error

• IX_CCI_ASSERTION—an invalid function parameter was passed
in—applies to debug compilations only
268 Portability Framework Reference Manual

Core Component Infrastructure
4.1.21 ix_cci_policy_create()

Creates a scheduling policy. This function should be called in the application-defined
ix_exe_init()function of an execution engine.

C Syntax
ix_error ix_cci_policy_create(

ix_policy_type argPolicyType,
ix_policy_handle* arg_pHandle);

Input

argPolicyType The policy type—valid values defined by the infrastructure include:
• IX_POLICY_TYPE_RR

• IX_POLICY_TYPE_WRR

• IX_POLICY_TYPE_SP

Output

Return Value Returns IX_SUCCESS if successful or an ix_error token
encapsulating one of the following error codes:

• IX_CCI_ERR_POLICY_CREATE—there was a memory allocation
error

• IX_CCI_ASSERTION—an invalid function parameter was passed in—
applies to debug compilations only

arg_pHandle A pointer to a handle to the new policy.
Portability Framework Reference Manual 269

Core Component Infrastructure
4.1.22 ix_cci_policy_destroy()

Destroys a scheduling policy. This function should be called from the application-defined
ix_exe_fini()function of an execution engine.

Note: This function does not destroy any subtree policies. The application code is responsible for
destroying all policies that have been created. The core component infrastructure ensures that
notifications are dropped gracefully from a tree that is in the process of being dismantled.

C Syntax
ix_error ix_cci_policy_destroy(ix_policy_handle arg_Handle);

Input

arg_Handle A handle to the policy to destroy—the policy is invalid after this function
returns.

Output

Return Value Returns IX_SUCCESS if successful or an ix_error token encapsulating the
following error code:

• IX_CCI_ASSERTION—an invalid function parameter was passed in—applies to
debug compilations only
270 Portability Framework Reference Manual

Core Component Infrastructure
4.1.23 ix_cci_register_fatal_error_handler()

Allows a control application to register a fatal-error handler. The Core Component Infrastructure
calls this handler if an event, message, or packet handler returns a fatal error. This allows the
control application to disable any microcode associated with this engine and shut the engine or
whole Core Component Infrastructure system down. This function is optional. If used, it must be
invoked after ix_cci_init().

C Syntax
ix_error ix_cci_register_fatal_error_handler(

ix_ferror_func arg_Handler,
void* arg_pContext);

Input

arg_Handler A fatal error handler that is invoked whenever a fatal error occurs in the
Core Component Infrastructure.
The function signature is:
void (* ix_ferror_func)(

ix_error arg_FatalException,
ix_exe_handle arg_hEngine,
void* arg_pContext);

The arg_FatalException argument reports the fatal error detected by the
Core Component Infrastructure.The arg_hEngine argument specifies the
execution engine where the error occurred. The arg_pContext argument
is the context registered by ix_cci_register_fatal_error_handler.

arg_pContext The context to return when the handler is invoked.

Output/Returns

Return Value Returns IX_SUCCESS if successful or an ix_error token encapsulating
one of the following error codes:

• IX_CCI_ERR_ENG_INIT_ENGINE_PROP_READ—error reading shared-
memory property

• IX_CCI_ASSERTION—invalid function parameter—debug compilations only
Portability Framework Reference Manual 271

Core Component Infrastructure
4.1.23.1 ix_ferror_func()

This is the function prototype for the fatal-error handler callback provided by the calling
application.

C Syntax
void (* ix_ferror_func)(

ix_error arg_FatalException,
ix_exe_handle arg_hEngine,
void* arg_pContext);

Input

arg_FatalExcepti
on

Reports the fatal error detected by the Core Component Infrastructure.

arg_hEngine Specifies the execution engine where the error occurred.

arg_pContext The context registered by ix_cci_register_fatal_error_handler().

Output/Returns

Return Value Returns IX_SUCCESS if successful or an ix_error token.
272 Portability Framework Reference Manual

Core Component Infrastructure
4.1.24 ix_cci_send_message()

Sends a message from a core component’s packet or message handler to another core component.
The application may call this function at any time after the core framework has been initialized, but
it is typically called from within a core component’s packet or message handler to send a message
to another core component or to itself. The infrastructure also calls this function, or an internal
equivalent, when a microblock sends a message to a core component. If this function is called to
send a message to an ID that does not have a handler attached, then there is a call to a default
message handler which simply drops the message and frees the message’s shared-memory
resources.

Note: This function encapsulates ix_rm_message_send() with an exception code of zero. Messages
can be sent to core components and microblocks using either API.

C Syntax
ix_error ix_cci_send_message(

ix_uint32 arg_OutputId,
ix_buffer_handle arg_Handle,
ix_uint32 arg_UserData);

Input

arg_OutputId The output ID identifying the message destination.

arg_Handle A handle to the message to be sent.

arg_UserData Application-defined content that can be used by the receiving message
handler for any purpose—for example, identifying the message type.

Output

Return Value Returns IX_SUCCESS if successful or a valid ix_error token retrieved
from ix_rm_message_send().
Portability Framework Reference Manual 273

Core Component Infrastructure
4.1.25 ix_cci_send_packet()

Sends a packet from a core component’s packet/message handler to another core component or
microblock. The calling application may invoke this function at any time after the core framework
has been initialized. Typically this operation is called from within a core component’s packet
handler to forward a packet to another core component or even to itself. The infrastructure also
calls this function—or an internal equivalent—when a microblock sends a packet to a core
component. If this function is called to send a packet to an ID that does not have a handler attached,
then there is a call to a default packet handler which simply drops the packet and frees the packet’s
shared-memory resources.

Note: This function encapsulates ix_rm_packet_send() with an exception code of zero. Packets can
be sent to core components and microblocks using either API.

C Syntax
ix_error ix_cci_send_packet(

ix_uint32 arg_OutputId,
ix_buffer_handle arg_Handle);

Input

arg_OutputId The output ID—the packet destination.

arg_Handle A handle to the packet to be sent.

Output

Return Value Returns IX_SUCCESS if successful or a valid ix_error type retrieved from
ix_rm_packet_send().
274 Portability Framework Reference Manual

Core Component Infrastructure
4.2 Symbolic Constants—Tuning Behavior and Memory
Footprint

The symbolic constants defined in this section allow the system designer to tune the behavior and
memory footprint of the Core Component Infrastructure.

IX_CCI_EVENT_CHECK_INTERVAL

The default frequency at which execution engines check for events and shutdown flag. The check
interval is in units of milliseconds. If an event is set that is of shorter duration than this interval, the
engine semaphore’s timeout uses the event timeout instead. Therefore, events can be handled even
if this value is set to wait forever. However, if the value is set to wait forever, it might not be
possible to shut down the execution engines.

Note: Do not set this value to zero.

C Syntax and Default
#define IX_CCI_EVENT_CHECK_INTERVAL 1000

IX_CCI_MEMORY_CHANNEL

The channel number for Core Component Infrastructure memory.

C Syntax and Default
#define IX_CCI_MEMORY_CHANNEL IX_DRAM_CHANNELS_NUMBER - 1

IX_CCI_SHARED_MEMORY_TYPE

The type of memory used for Core Component Infrastructure shared memory.

C Syntax and Default
#define IX_CCI_SHARED_MEMORY_TYPE IX_MEMORY_TYPE_DRAM

IX_CCI_MAX_INPUT_IDS

Defines the maximum number of input IDs.

C Syntax and Default
#define IX_CCI_MAX_INPUT_IDS IX_COMM_LOCAL_ID_NUMBER - \
 IX_COMM_LAST_UBLOCK_ID - 1
Portability Framework Reference Manual 275

Core Component Infrastructure
IX_CCI_MAX_ENGINES

The maximum number of engines on an ingress or egress board. This value does not need to be a
power of two. It should not be greater than 64 in the current implementation.

C Syntax and Default
#define IX_CCI_MAX_ENGINES 64

IX_CCI_MAX_POLICIES

The maximum number of policies on an ingress or egress board. This value does not need to be a
power of two. It should not be greater than 512 in the current implementation.

C Syntax and Default
#define IX_CCI_MAX_POLICIES 256

IX_CCI_MAX_CCS

The maximum number of core components in an engine. This value does not need to be a power of
two. It should not be greater than 256 in the current implementation.

C Syntax and Default
#define IX_CCI_MAX_CCS 64

IX_CCI_MAX_EVENTS

The maximum number of events in an engine. This value does not need to be a power of two. It
should not be greater than 2,000,000 in the current implementation.

C Syntax and Default
#define IX_CCI_MAX_EVENTS 256

IX_CCI_NUM_DEFAULT_ENGINES

The number of default engines associated with non-engine threads. The code presently only allows
for one default engine.

C Syntax and Default
#define IX_CCI_NUM_DEFAULT_ENGINES 1
276 Portability Framework Reference Manual

Core Component Infrastructure
IX_CCI_EXE_RUN_GRANULARITY

The number of handlers the executable engine runs before passing control to the next execution
engine.

C Syntax and Default
#if !defined(IX_CCI_EXE_RUN_GRANULARITY)
#define IX_CCI_EXE_RUN_GRANULARITY 4
#endif

Policy Container Capacity Constants

The following constants determines the initial capacity of the policy container. Policy containers
can be grown in size, so if most execution engines have few handlers associated with them, this
number can be set to a low value to save memory usage.

C Syntax and Default
#define IX_CCI_INIT_WRR_POLICY_SIZE 1
#define IX_CCI_INIT_RR_POLICY_SIZE 1
#define IX_CCI_INIT_SP_POLICY_SIZE 2
#define IX_CCI_WRR_POLICY_GROW_INCR 1
#define IX_CCI_RR_POLICY_GROW_INCR 1
#define IX_CCI_SP_POLICY_GROW_INCR 1
Portability Framework Reference Manual 277

Core Component Infrastructure
278 Portability Framework Reference Manual

TCAM Lookup Libraries
TCAM Lookup Libraries 5

This chapter describes a common API used for managing and searching tables on the Intel XScale®
core and on the microengines for Intel® IXP2400 and IXP2800 Network Processors.

The lookup library provides a way of managing different search and lookup tables that can be used
for many different networking applications. The goal of the search table is to hide the details of
both the data structures and the underlying hardware implementation from the application designer.
This abstraction allows the application to remain unchanged, while different data structures are
added or hardware assisted search devices are used, such as TCAM (Ternary Content Addressable
Memory)..

Table 5-1. TCAM Lookup Library

Name Description

ix_lkup Handle that is returned when the application first initializes and gets a handle to
the lookup library.

ix_lkup_table Handle that is returned when a new table is created by calling
IX_LKUP_CREATE_TABLE () on a valid ix_lkup.

ix_lkup_table_type Defines the different table types and the associated search methods for that
table.

ix_lkup_tcam_params Data structure that is passed when initializing the TCAM version of the library
by calling ix_lkup_tcam_init().

ix_lkup_table_conf Data structure used to pass the configuration parameters when a new table is
created.

ix_lkup_cookie Opaque cookie that is passed between some of the API calls, primarily calls
that are used for enumerating the contents of a table.

ix_lkup_sw_init() Initializes the software lookup management library and gets a handle to the
library for subsequent operations.

ix_lkup_tcam_init() Initializes the TCAM lookup management library and returns a handle to the
library for subsequent operations.

IX_LKUP_CREATE_TABLE() Creates a new instance of a search table.

IX_LKUP_DESTROY_TABLE() Destroys a table that was created earlier with IX_LKUP_CREATE_TABLE.

IX_LKUP_FINI() Destroys a previously obtained ix_lkup handle.

IX_LKUP_ADD_ENTRY() Adds an entry to a table.

IX_LKUP_REMOVE_ENTRY() Removes an entry from a table.

IX_LKUP_UPDATE_ENTRY() Updates the data associated with an element already in the table.

IX_LKUP_SEARCH_TABLE() Searches a specific table and returns the associated data if a match is found.

IX_LKUP_FIND_ENTRY() Searches a table for an entry that matches the exact key and mask, weight
combination.

IX_LKUP_READ_FIRST_ENTRY() Retrieves the first item stored in the table.

IX_LKUP_READ_NEXT_ENTRY() Retrieves successive items stored in the table.

IX_LKUP_RESET_TABLE() Clears all the items in the table and resets it to its initial state.

IX_LKUP_SET_PROPERTY() Allows the caller to set special attributes of the table.

IX_LKUP_GET_PROPERTY() Allows the caller to get special attributes of the table.
Portability Framework Reference Manual 279

TCAM Lookup Libraries
5.1 Defined Types, Enumerations, and Data Structures

5.1.1 Constants

The following constants are used for the data structures listed below:
#define IX_LKUP_MEM_SRAM 1
#define IX_LKUP_MEM_DRAM 2
#define IX_LKUP_MEM_TCAM 3

5.1.2 ix_lkup

ix_lkup is a handle that is returned when the application first initializes and gets a handle to the
lookup library. To users of this library, the ix_lkup handle is opaque. To the implementer of the
library, the details of the data structure are detailed in Section 5.5.1, “ix_s_lkup” on page 309.

The declaration for the handle is as follows:
typedef struct ix_s_lkup * ix_lkup;

The users of the API access a set of functions provided by this handle through a set of macro calls.
The calls that are supported on this handle are:

IX_LKUP_CREATE_TABLE()

IX_LKUP_DESTROY_TABLE()

IX_LKUP_GET_TABLE_INFO() Returns table identifier and data information.

ix_tcam_lkup_build_handle() Builds the handle that must be passed to the search functions.

ix_tcam_lkup_start() Starts a search using the in_key to launch the search request.

ix_tcam_lkup_complete() Completes a search that was started and returns the results.

ix_tcam_lkup_get_data() Returns the data associated with a successful search.

ix_sw_lkup_lpm_build_handle() Builds the handle that must be passed to the search functions for longest prefix
match searching.

ix_sw_lkup_lpm_search() Searches a longest prefix match table and returns the results.

ix_sw_lkup_exact_build_handle() Builds the handle that must be passed to the search functions for exact match
searching.

ix_sw_lkup_exact_search() Searches an exact match table and returns the results.

ix_sw_lkup_range_build_handle() Builds the handle that must be passed to the search functions for range match
searching.

ix_sw_lkup_range_search() Searches a range match table and returns the results.

ix_s_lkup Data structure that all implementations need to fill out and return when the
library is initialized.

ix_s_lkup_table Data structure that all implementations need to fill out and return when a table
is created.

Table 5-1. TCAM Lookup Library (Continued)

Name Description
280 Portability Framework Reference Manual

TCAM Lookup Libraries
IX_LKUP_FINI()

The behavior of these calls and their arguments are documented in section Section 5.2.2, “Table
Macros” .

5.1.3 ix_lkup_table

ix_lkup_table is a handle that is returned when a new table is created by calling
IX_LKUP_CREATE_TABLE () on a valid ix_lkup handle. As with the ix_lkup handle, the
contents of this structure are opaque to the application. To the implementer of the library, the
details of the data structure are detailed in Section 5.5.1, “ix_s_lkup” on page 309.

The declaration for the handle is as follows:
typedef struct ix_s_lkup_table * ix_lkup_table;

The user of the API access a set of functions provided by this handle through a set of macro calls.
The calls that are supported on this handle are:

IX_LKUP_ADD_ENTRY()

IX_LKUP_UPDATE_ENTRY()

IX_LKUP_REMOVE_ENTRY()

IX_LKUP_SEARCH_TABLE()

IX_LKUP_FIND_ENTRY()

IX_LKUP_READ_FIRST_ENTRY()

IX_LKUP_READ_NEXT_ENTRY()

IX_LKUP_RESET_TABLE ()

IX_LKUP_SET_PROPERTY ()

IX_LKUP_GET_PROPERTY()

IX_LKUP_GET_TABLE_INFO ()

The behavior of these calls and their arguments are documented in Section 5.5.2,
“ix_s_lkup_table” on page 310.

5.1.4 ix_lkup_table_type

This enumeration defines the different table types and the associated search methods for that table.
typedef enum {

IX_LKUP_TABLE_LPM, /* longest prefix match table */
IX_LKUP_TABLE_EXACT, /* exact match on the key data */
IX_LKUP_TABLE_RANGE /* allows range searches, etc */
IX_LKUP_TABLE_LAST /* last entry */

} ix_lkup_table_type;
Portability Framework Reference Manual 281

TCAM Lookup Libraries
5.1.5 ix_lkup_tcam_params

This is a data structure that is passed when initializing the TCAM version of the library by calling
ix_lkup_tcam_init(). This contains state that is specific to the TCAM implementation.
typedef struct ix_lkup_s_tcam_params {

int qdrChannel;
int qdrDeviceSelect;

} ix_lkup_tcam_params;

5.1.6 ix_lkup_table_conf

The following structure is used to pass the configuration parameters when a new table is created.
typedef struct ix_lkup_s_table_conf {

ix_lkup_table_type tableType;
int keySize;
int maxWeight;
int sizeHint;
int dataSize;
int dataLocation;
int dataChannel;

} ix_lkup_table_conf;

Data Members

qdrChannel Indicates which of the Quad Data Rate (QDR) SRAM channels the TCAM
is attached to.

qdrDeviceSelect Indicates which device select is used to select the TCAM device on the
QDR SRAM interface. This value is specific to the implementation of the
board.

Data Members

tableType Type of table to create. This defines the search method and the data
structures used for the table.

keySize Size of the key and mask data in bits. Note: An implementation may round
this up to a larger size for implementation efficiency. For example, if the
caller specifies the key size is 29 bits, the implementation can round up to
32 bits for the storage if it makes it more convienent.

maxWeight Specifies the acceptable range of the weights. For example if maxWeight is
n, then the valid range of weights is 1 to n. A value of 0 for weight is
invalid weight.

sizeHint A hint provided to the library on the expected number of elements in the
table. The library can use this to size the data structures appropriately. In
the case of a hardware-assisted lookup this is used as the number of
elements to reserve.
282 Portability Framework Reference Manual

TCAM Lookup Libraries
5.1.7 ix_lkup_cookie

This is an opaque cookie that is passed between some of the API calls, primarily calls that are used
for enumerating the contents of a table. The cookie is an opaque entity that is passed by the caller
without interpretation.

The typedef is as follows:
typedef void * ix_lkup_cookie;

5.2 Lookup Management Library

5.2.1 Initialization APIs

There are two different initialization APIs, one for initializing an ix_lkup handle for a software
lookup management library and another for supporting a TCAM based lookup management library.
Having two entry points allow both libraries to co-exist within the same code space. Subsequent
accesses to the library functions are provided through indirect function calls defined in the
structures.

5.2.1.1 ix_lkup_sw_init()

This function is used to initialize the software lookup management library and get a handle to the
library for subsequent operations.

C Syntax
ix_error ix_lkup_sw_init(

int arg_LibVersion,
ix_lkup *arg_phLkup

);

dataSize Size of associated data that should be stored with the keys. This is the
number of bits of data.

dataLocation Tells the library where it should store the associated data. Possible values
are:

• IX_LKUP_MEM_SRAM indicates data is stored in SRAM.

• IX_LKUP_MEM_DRAM indicates data is stored in DRAM.

• IX_LKUP_MEM_TCAM indicates data is stored internal to the hardware device.

dataChannel Indicates which of the memory channels specified with the dataLocation
should be used.

Data Members (Continued)
Portability Framework Reference Manual 283

TCAM Lookup Libraries
5.2.1.2 ix_lkup_tcam_init()

This function is used to initialize the TCAM lookup management library and returns a handle to the
library for subsequent operations. When the call returns, the TCAM should be initialized and ready
to accept new table creation operations. This API may be called once for each TCAM search
machine being established in the system.

C Syntax
ix_error ix_lkup_tcam_init(
int arg_LibVersion,
ix_lkup_tcam_params *arg_pTcamParams,
void * arg_pVendorParams,
ix_lkup *arg_phLkup
);

Input

arg_LibVersion The API version the caller is expecting to use. For the current
implementation this must be 1. In the future, the version number is used for
backwards compatibility.

arg_phLkup A pointer to a lookup handle. If the call is successful, the lookup library
allocates a lookup handle with the initialized values.

Output/Returns

Return Value Returns IX_SUCCESS if successful or an ix_error token encapsulating
one of the following error codes:

• IX_SUCCESS The library was successfully initialized.

• IX_LKUP_ERROR_UNSUPPORTED The version of the library that was
requested is not supported.

• IX_LKUP_ERROR_RESOURCES Not enough resources are available to
complete the request.
284 Portability Framework Reference Manual

TCAM Lookup Libraries
5.2.2 Table Macros

This section covers the main table functions as well as table management functions. The main
macros are performed using an ix_lkup handle returned from the ix_lkup_sw_init()
function. These functions are all accessed through macro calls using the ix_lkup handle. For each
call, the macro call is documented, as well as the typdef for the function that is invoked.

The table management functions that are performed using an ix_lkup_table handle returned from a
successful call to IX_LKUP_CREATE_TABLE(). These functions are all accessed through
macro calls using the ix_lkup_table handle. For each call, the macro call is documented, as well as
the typdef for the function that is invoked.

5.2.2.1 IX_LKUP_CREATE_TABLE()

This function is used to create a new instance of a search table. If the call is successful, then a
handle to the new table is returned that can be used for operations on the table.

Input

arg_LibVersion The API version the caller is expecting to use. For the current
implementation this must be 1. In the future the version number is used
for backwards compatibility.

arg_pTcamParams This parameter contains a pointer to a caller supplied parameter block
common to all TCAM implemenations.

arg_pVendorParams This is a pointer to a vendor-specific paramater block that supports
vendor-specific extensions. If the vendor-specific features are not being
used, the caller should pass NULL pointer for this argument. All
implementations should accept NULL as a valid value for this
argument.

arg_phLkup This is a pointer to a lookup handle. If the call is successful, the lookup
library updates this location with the handle.

Output/Returns

Return Value Returns IX_SUCCESS if successful or an ix_error token encapsulating
one of the following error codes:

• IX_SUCCESS The library was successfully initialized.

• IX_LKUP_ERROR_UNSUPPORTED The version of the library that was
requested is not supported.

• IX_LKUP_ERROR_INVALID Some of the parameters passed are invalid.

• IX_LKUP_ERROR_RESOURCES Not enough resources are available to
complete the request.
Portability Framework Reference Manual 285

TCAM Lookup Libraries
Macro Access

This is the macro used to access the table creation function. When called, the macro invokes the
function below with the defined arguments.
IX_LKUP_CREATE_TABLE(arg_hLkup, arg_pTableConf, arg_VndrConf, arg_phTable);

C Syntax
typedef ix_error (*ix_lkup_create_table) (

ix_lkup arg_hLkup,
ix_lkup_table_conf *arg_pTableConf,
void * arg_VndrConf,
ix_lkup_table *arg_phTable

);

5.2.2.2 IX_LKUP_DESTROY_TABLE()

This function is called to destroy a table that was created earlier with
IX_LKUP_CREATE_TABLE(). The application should remove all entries from the table before
it is destroyed because the implementation may not be able to free these entries.

Input

arg_hLkup The ix_lkup handle that was returned when the init operation completed.

arg_pTableConf The table configuration state. This defines the type of table to create as well
as the size, search methods etc. The details of the this data structure are
defined in ix_lkup_table_conf.

arg_VndrConf This is a pointer to vendor-specific table configuration information. This is
intended to allow vendors to expose additional features of their devices. If
the vendor-specific features are not being used, the caller should pass
NULL pointer for this argument. All implementations should accept NULL
as a valid value for this argument.

arg_phTable This is a pointer to an ix_lkup_table that is filled if the operation completes
successfully. If the call is successful, the lookup library allocates a table
handle with the initialized values. The storage for the handle is managed by
the library.

Output/Returns

Return Value Returns IX_SUCCESS if successful or an ix_error token encapsulating
one of the following error codes:

• IX_SUCCESS The table was successfully created.

• IX_LKUP_ERROR_INVALID The handle was invalid, or some of the table
configuration information was invalid or not supported.

• IX_LKUP_ERROR_RESOURCES Not enough resources were available to
create the requested table.
286 Portability Framework Reference Manual

TCAM Lookup Libraries
Macro Access

This macro is used to call the ix_lkup_destroy_table() function associated with the ix_lkup handle.
When called, the macro invokes a function with the typedef defined below. Once the table is
destroyed, the handle is de-allocated by the library; subsequently any further operations on the
handle are illegal.
IX_LKUP_DESTROY_TABLE(arg_hLkup, arg_hTable);

C Syntax
typedef ix_error (*ix_lkup_destroy_table) (

ix_lkuparg_hLkup,
ix_lkup_tablearg_hTable

);

5.2.2.3 IX_LKUP_FINI()

This function destroys a previous obtained ix_lkup handle. This function is typically called when
the application is shutting down and is cleaning up. After successful completion of this call, the
handle becomes invalid and subsequent calls to this handle cannot be made. Further, the tables
created using this handle should not be used anymore and should be destroyed before this function
is called.

Macro Access

This is the macro used to access the destroy function. When called, the macro invokes the function
defined below.
IX_LKUP_FINI(arg_hLkup);

C Syntax
typedef ix_error (*ix_lkup_fini)

ix_lkup arg_hLkup
);

Input

arg_hLkup The handle that was obtained through a successful call to
ix_lkup_sw_init() or ix_lkup_tcam_init().

arg_hTable The handle for the table to be destroyed.

Output/Returns

Return Value Returns IX_SUCCESS if successful or an ix_error token encapsulating
one of the following error codes:

• IX_SUCCESS The table was successfully destroyed.

• IX_LKUP_ERROR_INVALID One of the handles was invalid.
Portability Framework Reference Manual 287

TCAM Lookup Libraries
5.2.2.4 IX_LKUP_ADD_ENTRY()

This function adds an entry to a table that was previously created by calling
IX_LKUP_CREATE_TABLE(). The lookup management library implementation may return an
error if it detects a duplicate but the function is not required to make this validation.

Macro Access

This is the macro used to access the add entry function for the table indicated by the table handle.
When called, the macro invokes the function defined below.
IX_LKUP_ADD_ENTRY(arg_hTable, arg_pKey, arg_pMask, arg_Weight, arg_pData);

C Syntax
typedef ix_error (*ix_lkup_add_entry) (

ix_lkup_table arg_hTable,
ix_uint8 * arg_pKey,
ix_uint8 * arg_pMask,
int arg_Weight,
ix_uint8 * arg_pData

);

Input

arg_hLkup The handle to destroy. This handle was obtained through a successful call
to ix_lkup_sw_init() or ix_lkup_tcam_init().

Output/Returns

Return Value Returns IX_SUCCESS if successful or an ix_error token encapsulating
one of the following error codes:

• IX_SUCCESS The handle was successfully destroyed.

• IX_LKUP_ERROR_INUSE The handle has active tables in use.

• IX_LKUP_ERROR_INVALID The handle was invalid

Input

arg_hTable Handle of the table to update.

arg_pKey A pointer to the key data. The length of the key was defined when the table
was created.
288 Portability Framework Reference Manual

TCAM Lookup Libraries
5.2.2.5 IX_LKUP_REMOVE_ENTRY()

This function removes an entry that was previously added to the table. The entry is identified by the
values used to add the entry.

Macro Access

This is the macro used to remove an entry from the existing table. When called, the macro invokes
a function with the typedef defined below.
IX_LKUP_REMOVE_ENTRY (arg_hTable, arg_pKey, arg_pMask, arg_Weight);

C Syntax
typedef ix_error (*ix_lkup_remove_entry) (

ix_lkup_table arg_hTable,
ix_uint8 * arg_pKey,
ix_uint8 * arg_pMask,
int arg_Weight

);

arg_pMask A pointer to the mask data for this entry. The length of the mask was
defined when the table was created.

arg_Weight The weight for this entry. For EXACT match tables this must be 0. For
weighted tables, this should be in the range defined when creating the
table. For longest prefix match (LPM), the weight is used to differentiate
between entries. Lower values have higher precedence than higher values
of weight.

arg_pData This is a pointer to the data to be associated with the key. This data is
opaque to the lookup library and is only interpreted by the higher level
applications.

Output/Returns

Return Value Returns IX_SUCCESS if successful or an ix_error token encapsulating
one of the following error codes:

• IX_SUCCESS The entry was added to the table.

• IX_LKUP_ERROR_INVALID Some of the parameters passed are not valid.

• IX_LKUP_ERROR_EXISTS An entry with the same key, mask, weight, and data
is already in the table.

• IX_LKUP_ERROR_CONFLICT An entry with the same key, mask, weight but
different data is in the table.

• IX_LKUP_ERROR_RESOURCES Not enough resources are available to
compelete the operation. Either the maximum table size has been exceeded or
other resources could not be allocated.

Input (Continued)
Portability Framework Reference Manual 289

TCAM Lookup Libraries
5.2.2.6 IX_LKUP_UPDATE_ENTRY()

This function updates the data associated with an element already in the table.

Macro Access

This is the macro used to call the IX_LKUP_UPDATE_ENTRY function associated with the table
handle. The function definition is given below.
IX_LKUP_UPDATE_ENTRY(arg_hTable, arg_pKey, arg_pMask, arg_pWeight,

arg_pNewData);

C Syntax
typedef ix_error (*ix_lkup_update_entry)(

ix_lkup_table arg_hTable,
ix_uint8 * arg_pKey,
ix_uint8 * arg_pMask,
int arg_Weight,
ix_uint8 * arg_pNewData

);

Input

arg_hTable Handle of the table to update.

arg_pKey A pointer to the key data of the item to removed. The length of the data was
defined when the table was created.

arg_pMask A pointer to the mask data of the entry to be removed. The length of the
mask data was defined when the table was created.

arg_Weight The weight for this entry to be removed. For EXACT match tables this
must be 0. For weighted tables, this should be in the range defined when
creating the table. For longest prefix match (LPM), the weight is used to
differentiate between entries.

Output/Returns

Return Value Returns IX_SUCCESS if successful or an ix_error token encapsulating
one of the following error codes:

• IX_SUCCESS The entry was removed to the table.

• IX_LKUP_ERROR_INVALID The table handle was not valid.

• IX_LKUP_ERROR_NOTFOUND A matching entry was not found.
290 Portability Framework Reference Manual

TCAM Lookup Libraries
5.2.2.7 IX_LKUP_SEARCH_TABLE()

Calls to IX_LKUP_SEARCH_TABLE search a specific table and return the associated data if a
match is found. As described in previous APIs, the search key is compared with the entries and
masks. If multiple entries match, then the one with the lowest weight is returned.

Macro Access

This is the macro used to access IX_LKUP_SEARCH_TABLE function for the specified table
entry. The function is defined below.
IX_LKUP_SEARCH_TABLE(arg_hTable, arg_pKey, arg_pData);

C Syntax
typedef ix_error (*ix_lkup_search_table) (

ix_lkup_table arg_hTable,
ix_uint8 * arg_pKey,
ix_uint8 * arg_pData

);

Input

arg_hTable Handle of the table to update.

arg_pKey A pointer to the key data of the item to update. The length of the data was
defined when the table was created.

arg_pMask A pointer to the mask data of the entry to be updated. The length of the
mask data was defined when the table was created.

arg_Weight The weight for this entry to be updated. For EXACT match tables this must
be 0. For weighted tables, this should be in the range defined when creating
the table. For longest prefix match (LPM), the weight is used to
differentiate between entries.

arg_pNewData A pointer to the new data to associate with the specific key. The size of the
data was specified when the table was created.

Output/Returns

Return Value Returns IX_SUCCESS if successful or an ix_error token encapsulating
one of the following error codes:

• IX_SUCCESS The entry associated data was updated.

• IX_LKUP_ERROR_INVALID The table handle was not valid.

• IX_LKUP_ERROR_NOTFOUND A matching entry was not found so the update
was not performed.
Portability Framework Reference Manual 291

TCAM Lookup Libraries
5.2.2.8 IX_LKUP_FIND_ENTRY()

This function is used to search a table for an entry that matches the exact key and mask, weight
combination. This is used to locate a specific entry for search types where multiple entries may
match a specific search.

Macro Access

This is the macro used to access ix_lkup_find_entry function associated with the table handle. The
function declaration is given below.
IX_LKUP_FIND_ENTRY(arg_hTable, arg_pKey, arg_pMask, arg_Weight, arg_pData);

C Syntax
typedef ix_error (*ix_lkup_find_entry)(

ix_lkup_table arg_hTable,
ix_uint8 * arg_pKey,
ix_uint8 * arg_pMask,
int arg_Weight,
ix_uint8 * arg_pData

);

Input

arg_hTable Handle of the table to search.

arg_pKey A pointer to the key data used for the search. The length of the key should
correspond to the key size specified when the table was created.

arg_pData This is a pointer to a location where the associated data is stored if the
search was successful.

Output/Returns

Return Value Returns IX_SUCCESS if successful or an ix_error token encapsulating
one of the following error codes:

• IX_SUCCESS The search was successful and a result was returned.

• IX_LKUP_ERROR_NOTFOUND There was no entry that matched this search
request.

• IX_LKUP_ERROR_INVALID The handle was invalid.
292 Portability Framework Reference Manual

TCAM Lookup Libraries
5.2.2.9 IX_LKUP_READ_FIRST_ENTRY()

This is a debug function that is used to read the items that are stored in the table. This function gets
the first item in the table. To continue iterating through all the entries, the programmer calls this
function once, and then repeatedly calls IX_LKUP_READ_NEXT_ENTRY() until all the entries
have been enumerated.

Macro Access

This is the macro used to access ix_lkup_read_first_entry() function in the table handle. When
called, the macro invokes the function defined below.
IX_LKUP_READ_FIRST_ENTRY(arg_hTable, arg_pKey, arg_pMask, arg_pWeight,

arg_pData, arg_pCookie);

C Syntax
typedef ix_error (*ix_lkup_read_first_entry)(

ix_lkup_table arg_hTable,
ix_uint8 * arg_pKey,
ix_uint8 * arg_pMask,
int * arg_pWeight,
ix_uint8 * arg_pData,
ix_lkup_cookie *arg_pCookie

);

Input

arg_hTable Handle for the table to search.

arg_pKey A pointer to the key data used for the search. The length of the data was
defined when the table was created.

arg_pMask A pointer to the mask data to use for the search.

arg_Weight This is the associated weight with the entry to find.

arg_pData Points to a location where the associated data is stored if the search was
successful. It is assumed that the caller allocated sufficient space data
associated with the call.

Output/Returns

Return Value Returns IX_SUCCESS if successful or an ix_error token encapsulating
one of the following error codes:

• IX_SUCCESS The search was successful and a result was returned.

• IX_LKUP_ERROR_NOTFOUND There was no entry that matched this search
request.

• IX_LKUP_ERROR_INVALID The handle was invalid.
Portability Framework Reference Manual 293

TCAM Lookup Libraries
5.2.2.10 IX_LKUP_READ_NEXT_ENTRY()

This is a debug function that is used to read the items that are stored in the table. This function is
repeatedly called after IX_LKUP_READ_FIRST_ENTRY() to enumerate the contexts of the
table. Each call returns a cookie that is passed to the next call.

Macro Access

This is the macro used to access ix_lkup_read_next_entry function in the table handle. When
called, the macro invokes the function defined below for the specified table.
IX_LKUP_READ_NEXT_ENTRY(arg_hTable, arg_OldCookie, arg_pKey, arg_pMask,

arg_pWeight, arg_pData, arg_pNewCookie);

C Syntax
typedef ix_error (*ix_lkup_read_next_entry)(

ix_lkup_table arg_hTable,
ix_lkup_cookie arg_OldCookie,
ix_uint8 * arg_pKey,

Input

arg_hTable The handle to the table to read.

arg_pKey A pointer where the key data is stored if the call is successful. The caller
should make sure there is sufficient storage for the key size of the table.

arg_pMask A pointer where the mask data is stored. The caller should ensure that this
structure is of sufficient size to store the mask.

arg_pWeight A pointer where the weight data should be stored.

arg_pData A pointer to the location where the associated data is stored if the call is
successful.

arg_pCookie A pointer to an ix_lkup_cookie where the cookie is stored. The cookie is
passed to a subsequent call to IX_LKUP_READ_NEXT_ENTRY().

Output/Returns

Return Value Returns IX_SUCCESS if successful or an ix_error token encapsulating
one of the following error codes:

• IX_SUCCESS The call was successful and the data structures have been
populated.

• IX_LKUP_ERROR_INVALID Some of the parameters passed are not valid.

• IX_LKUP_ERROR_NOTFOUND This is returned when there are no entries in
the table. In this case none of the data structres to be filled in have valid data.
294 Portability Framework Reference Manual

TCAM Lookup Libraries
ix_uint8 * arg_pMask,
int * arg_pWeight,
ix_uint8 * arg_pData,
ix_lkup_cookie * arg_pNewCookie

);

5.2.2.11 IX_LKUP_RESET_TABLE()

This function clears all the items in the table and resets it to its initial state. Note that the
implementation tries to recover all the states, but it may not be possible in all implementations. The
callers should try remove all known entries from the table before calling this function.

Macro Access

This is the macro used to access the ix_lkup_reset_table function associated with the table handle.
When called, the macro invokes the function with the typedef defined below.
IX_LKUP_RESET_TABLE (arg_hTable);

Input

arg_hTable The handle to the table to read.

arg_OldCookie Cookie returned by the last successful call to
IX_LKUP_READ_FIRST_ENTRY() or
IX_LKUP_READ_NEXT_ENTRY().

arg_pKey A pointer where the key data is stored if the call is successful. The caller
should make sure there is sufficient storage for the key size of the table.

arg_pMask A pointer where the mask data is stored. The caller should ensure that this
structure is of sufficient size to store the mask.

arg_pWeight A pointer where the weight data should be stored.

arg_pData A pointer to the location where the associated data is stored if the call is
successful.

arg_pNewCookie A pointer to an ix_lkup_cookie where the cookie is stored. The cookie is
passed to a subsequent call to IX_LKUP_READ_NEXT_ENTRY().

Output/Returns

Return Value Returns IX_SUCCESS if successful or an ix_error token encapsulating
one of the following error codes:

• IX_SUCCESS The call was successful and the data structures have been
populated.

• IX_LKUP_ERROR_INVALID Some of the parameters passed are not valid.

• IX_LKUP_ERROR_NOTFOUND This is returned when there are no more entries
in the table.
Portability Framework Reference Manual 295

TCAM Lookup Libraries
C Syntax
typedef ix_error (*ix_lkup_reset_table)(

ix_lkup_table * arg_hTable
);

5.2.2.12 IX_LKUP_SET_PROPERTY()

This function allows the caller to set special attributes of the table. No attributes are currently
defined but this function may be used by vendors to export special features of their devices such as
timeout abilities, etc.

Macro Access

This is the macro used to access ix_lkup_set_property function associated with the table. When
called, the macro invokes the function with the typedef defined below.
IX_LKUP_SET_PROPERTY (arg_hTable, arg_Property, arg_pValue);

C Syntax
typedef ix_error (*ix_lkup_set_property)(

ix_lkup_table arg_hTable,
int arg_Property,
void * arg_pValue

);

Input

arg_hTable The handle of the table to update.

Output/Returns

Return Value Returns IX_SUCCESS if successful or an ix_error token encapsulating
one of the following error codes:

• IX_SUCCESS The table was reset properly.

• IX_LKUP_ERROR_INVALID The table handle was not valid.

Input

arg_hTable The handle of the table to update.

arg_Property The value of the property to set. This is defined by the specific
implementation.

arg_pValue A pointer data associated with the property.
296 Portability Framework Reference Manual

TCAM Lookup Libraries
5.2.2.13 IX_LKUP_GET_PROPERTY()

This function allows the caller to get special attributes of the table. No attributes are currently
defined, but this function may be used by vendors to export special features of their devices such as
timeout abilities, etc.

Macro Access

This is the macro used to access ix_lkup_get_property function associated with the table. When
called, the macro invokes the function with the typedef defined below.
IX_LKUP_GET_PROPERTY (arg_hTable, arg_Property, arg_pValue);

C Syntax
typedef ix_error (*ix_lkup_set_property)(

ix_lkup_table arg_hTable,
int arg_Property,
void *arg_pValue

);

Output/Returns

Return Value Returns IX_SUCCESS if successful or an ix_error token encapsulating
one of the following error codes:

• IX_SUCCESS The property was set.

• IX_LKUP_ERROR_INVALID The table handle was invalid.

• IX_LKUP_ERROR_UNSUPPORTED The defined property was not supported.

Input

arg_hTable The handle of the table to update.

arg_Property The value of the property to get. These are defined by the specific
implementation.

arg_pValue A pointer where the associated data is returned with a successful call.

Output/Returns

Return Value Returns IX_SUCCESS if successful or an ix_error token encapsulating
one of the following error codes:

• IX_SUCCESS The property was successfully returned.

• IX_LKUP_ERROR_INVALID The table handle was invalid.

• IX_LKUP_ERROR_UNSUPPORTED The defined property was not supported.
Portability Framework Reference Manual 297

TCAM Lookup Libraries
5.2.2.14 IX_LKUP_GET_TABLE_INFO()

This function returns values that need to be used by the microengines:

Table Identifier – This identifier encodes the information needed by the microengines to perform
the lookup. The contents and format of the ID are implementation-specific. It is the responsibility
of the application using this API to get this value to the microengines that are calling the search
APIs.

Table Data 1 and Table Data 2 – The table data that is going to be used by the microengine to find
the associated data with an element. These values need to be passed to some of the microengine
calls. The contents and format of the data are implementation-specific. It is the responsibility of the
application using this API to get these values to the microengine.

Macro Access

This is the macro used to access ix_lkup_get_table_info function associated with the table handle.
When called, the macro invokes the function defined below.
IX_LKUP_GET_TABLE_INFO (arg_hTable, arg_pTableId, arg_pTableData1,

arg_pTableData2);

C Syntax
typedef ix_error (*ix_lkup_get_table_info) {

ix_lkup_table arg_hTable,
ix_uint32 * arg_pTableId,
ix_uint32 * arg_pTableData1,
ix_uint32 * arg_pTableData2

);

Input

arg_hTable The handle of the table to update.

arg_pTableId A pointer to the location where the table ID is stored.

arg_pTableData1 A pointer to the location where the data1 information is stored.

arg_pTableData2 A pointer to the location where the data2 information is stored.

Output/Returns

Return Value Returns IX_SUCCESS if successful or an ix_error token encapsulating
one of the following error codes:

• IX_SUCCESS The table information was returned.

• IX_LKUP_ERROR_INVALID The table handle was not valid.
298 Portability Framework Reference Manual

TCAM Lookup Libraries
5.3 Microengine Hardware Lookup

This section describes the APIs available to microengine programmers for hardware managed
tables. The design of this API assumes that all table management (creation, adds, deletes, etc.) is
performed on the Intel XScale® microarchitecture. The microengines only have APIs to search the
tables.

Because of the nature of the hardware devices, there is only a single set of APIs to search all the
different table types. This differs from the software lookup APIs described in Section 5.4,
“Microengine Software Lookup” on page 303.

Since the tables are managed and created on the Intel XScale® microarchitecture, a certain amount
of state must be passed to the microengines so that the tables can be searched. This state
information is the tableid and the data1 and data2 implementation-specific information
constants. The programmer must get this state after the table is created and pass the information to
the microengines. One typical way of passing the data is to use import variables and patch the
values after the tables have been initialized.

The API consists of 4 calls. The first is to build a handle to use when searching the table. The
second call initiates the search, the third call completes the search, and the fourth call gets the
associated data.

5.3.1 TCAM Lookup APIs

These APIs are used for all hardware managed tables.

5.3.1.1 ix_tcam_lkup_build_handle()

This function builds the handle that must be passed to the search functions. This handle is an
implementation-specific value that encodes the table location as well as thread-specific
information to keep track of multiple search contexts (if using a hardware search mechanism).

Microengine Assembler Syntax
ix_tcam_lkup_build_handle(out_handle, in_table_id, in_context, in_other);

Microengine C Syntax
void ix_tcam_lkup_build_handle(

void * out_handle,
ix_uint32 in_table_id,
void * in_context,
void * in_other);
Portability Framework Reference Manual 299

TCAM Lookup Libraries
5.3.1.2 ix_tcam_lkup_start()

This function starts a search using the in_key to launch the search request. A separate call to
ix_tcam_lkup_complete() is used to pick up the results

The caller should be aware that this call may perform a context swap allowing other threads to run
before the call completes.

The programmer is responsible for making sure the ix_tcam_lkup_complete() call is not
called too soon, so that the results are not ready yet. The definition of “too soon” is vendor-specific
and is documented by them.

Microengine Assembler Syntax
ix_tcam_lkup_start(in_key, in_length, in_handle);

Microengine C Syntax
void ix_tcam_lkup_start(

uint32 * in_key,
int in_length,
void * in_handle);

Input

in_table_id This is the table ID that was obtained on the Intel XScale® core by calling
IX_LKUP_GET_TABLE_INFO(). This value was passed to the
microcode. This encodes some implementation-specific data such as the
table number, how the table is organized, etc.

in_context This is a unique context value for each of the threads that call the search
routines. In a TCAM implementation this is used to correlate the original
request and the results. The format of this parameter is vendor-defined.

in_other This is other application-specific information that may be passed in. For
example, this may be a mask register ID for a TCAM implementation. A
value of 0 should be passed if there is no other data to pass in. The format
of this parameter is vendor-defined.

Output/Returns

out_handle The handle that is passed to the ix_tcam_lkup_start() and
ix_tcam_lkup_complete() calls. The caller can choose to build the
handle before each reference or do this call at initialization time and save
the result.
300 Portability Framework Reference Manual

TCAM Lookup Libraries
Output/Returns

None.

5.3.1.3 ix_tcam_lkup_complete()

This call completes a search that was started and returns the results.

The programmer needs to tune the code to make sure that this call is not called too early. If it is
called too early, the implementation may need to perform several memory reads while polling to
see if the operation has completed. The implementer should get information from the TCAM
vendor on typical times to finish the request.

The caller should be aware that this call may perform a context swap allowing other threads to run
before the call completes.

Microengine Assembler Syntax
ix_tcam_lkup_complete(out_hit, out_cookie, in_cookie_size, in_handle);

Microengine C Syntax
void ix_tcam_lkup_complete(

int out_hit,
uint32 * out_cookie,
int in_cookie_size,
voidin_handle);

Input

in_key An array of registers that holds the key information. This can either be
write transfer or general purpose registers.

in_length This number of registers that is used to hold the key. The exact key length
was set up when the table was configured. This argument must be a
constant.

in_handle This is the table handle that was created by calling the
ix_tcam_lkup_build_handle() API.

Input

in_cookie_size This is the size of the cookie given in number of registers.

in_handle The handle for the search built with
ix_tcam_lkup_build_handle(). This must be the same handle
that was passed to ix_tcam_lkup_start().
Portability Framework Reference Manual 301

TCAM Lookup Libraries
5.3.1.4 ix_tcam_lkup_get_data()

This macro returns the data associated with a successful search. The cost of calling this may vary
depending on how data is stored. In some applications, the associated data may actually be
obtained from the previous call and this macro just copies it if needed. In other implementations,
this call may need to access memory to get its state and as such the thread may yield during
execution of this call.

Microengine Assembler Syntax
ix_tcam_lkup_lpm_get_data(out_data, in_data_size, in_cookie, in_cookie_size,

in_handle, in_mem_type, in_data1, in_data2);

Microengine C Syntax
void ix_tcam_lkup_lpm_get_data(

uint32 * out_data,
int in_data_size,
uint32 * in_cookie,
int in_cookie_size,
void * in_handle,
int in_mem_type,
void * in_data1,
void * in_data2);

Output/Returns

out_hit The out_hit contains a boolean value that indicates whether the search was
successful. The value is set to 1 if there is an entry that matches and 0 if
there is no entry that matches.

out_cookie This may contain temporary state that is passed to
ix_tcam_lkup_get_data(). This is an register array of input
transfer registers.

Input

in_data_size This is the size of the data that is needed given in registers. This must be a
constant.

in_cookie This is the cookie that was returned by ix_tcam_lkup_complete().

in_cookie_size This is the size of the cookie given in number of registers. This must be a
constant.

in_handle The handle for the search built with
ix_tcam_lkup_build_handle(). This must be the same handle
that was passed to ix_tcam_lkup_complete().
302 Portability Framework Reference Manual

TCAM Lookup Libraries
5.4 Microengine Software Lookup

This section describes the APIs that are used to search software tables. These APIs are provided as
microcode macros and as micro-C libraries.

The APIs are divided into three parts, one set of APIs for each defined table type:

• The longest prefix match calls are used for searching tables created with type
IX_LKUP_TABLE_LPM as the table type.

• The exact match calls are used for searching tables created with type
IX_LKUP_TABLE_EXACT as the table type.

• The range match calls are used for searching tables created with type
IX_LKUP_TABLE_RANGE as the table type.

All of the searches take a key and a table ID as input. The key is constructed by a higher-level
application. The table ID is one of the fields in the table_handle_t structure. This structure is not
user-accessible, it is used by the libraries to encode the location of the table to search.

5.4.1 Longest Prefix Match APIs

The longest prefix match calls are used for searching tables created with type
IX_LKUP_TABLE_LPM as the table type.

in_memtype This is the type of memory associated with data. The value passed must be
a constant from one of the following values:

• IX_LKUP_MEM_TCAM indicates locally attached memory.

• IX_LKUP_MEM_SRAM indicates SRAM.

• IX_LKUP_MEM_DRAM indicates DRAM.

in_data1 This is one of the pieces of data information that was passed from the Intel
XScale® core after the table was initialized. This value was obtained by
calling IX_LKUP_GET_TABLE_INFO().

in_data2 This is one of the pieces of data information that was passed from the Intel
XScale® core after the table was initialized. This value was obtained by
calling IX_LKUP_GET_TABLE_INFO().

Output/Returns

out_data This is an array of read/write transfer registers or general purpose registers
that holds the resulting data.

Input (Continued)
Portability Framework Reference Manual 303

TCAM Lookup Libraries
5.4.1.1 ix_sw_lkup_lpm_build_handle()

This function builds the handle that must be passed to the search functions. This handle is an
implementation-specific value that encodes the table location as well as thread-specific
information to keep track of multiple search contexts (if using a hardware search mechanism).

Microengine Assembler Syntax
ix_sw_lkup_lpm_build_handle(out_handle, in_table_id);

Microengine C Syntax
void ix_sw_lkup_lpm_build_handle(

_void * out_handle,
uint32 in_table_id);

5.4.1.2 ix_sw_lkup_lpm_search()

This function searches a longest prefix match table and returns the results. The caller should
assume that this macro swaps out one or more times during the execution of the macro.

Microengine Assembler Syntax
ix_sw_lkup_lpm_search(out_hit, out_data, in_key, in_length, in_handle,

in_data_size, in_data1, in_data2);

Microengine C Syntax
void ix_sw_lkup_lpm_search(

int out_hit,
uint32 * out_data,
uint32 * in_key,
int in_length,
void * in_handle,
int in_data_size,

Input

in_table_id This is the table ID that was obtained on the Intel XScale® core by calling
IX_LKUP_GET_TABLE_INFO(). This value was passed to the
microcode. This encodes some implementation-specific data such as the
table number, how the table is organized, etc.

Output/Returns

out_handle The handle that is passed to the ix_sw_lkup_lpm_search() call.
The caller can choose to build the handle before each reference or do this
call at initialization time and save the result.
304 Portability Framework Reference Manual

TCAM Lookup Libraries
void * in_data1,
void * in_data2);

5.4.2 Exact Match APIs

The exact match calls are used for searching tables created with type IX_LKUP_TABLE_EXACT
as the table type.

5.4.2.1 ix_sw_lkup_exact_build_handle()

This function builds the handle that must be passed to the search functions. This handle is an
implementation-specific value that encodes the table location as well as thread-specific
information to keep track of multiple search contexts (if using a hardware search mechanism).

Microengine Assembler Syntax
ix_sw_lkup_exact_build_handle(out_handle, in_table_id);

Input

in_key This is an array of general purpose registers that holds the key. It is
assumed that the array is large enough to hold the appropriate number of
byte specified below.

in_length The length or the key data in bytes. This argument must be a constant.

in_handle This is the table handle that was created by calling the
ix_sw_lkup_lpm_build_handle() call.

in_data_size The amount of data to read from the result. This is given in bytes. This
must be a constant.

in_data1 This is one of the pieces of data information that was passed from the Intel
XScale® core after the table was initialized. This value was obtained by
calling IX_LKUP_GET_TABLE_INFO().

in_data2 This is one of the pieces of data information that was passed from the Intel
XScale® core after the table was initialized. This value was obtained by
calling IX_LKUP_GET_TABLE_INFO().

Output/Returns

out_hit The out_hit contains a boolean that indicates if the search was successful
or not. If the search was successful, then this is set to 1 (true), otherwise it
is set to 0 (false).

out_data This is an array of read transfer registers that is used to store the resulting
data associated with the call. The results are only written here if the results
are successful. The contents of out_data are undefined if the search fails.
Portability Framework Reference Manual 305

TCAM Lookup Libraries
Microengine C Syntax
void ix_sw_lkup_exact_build_handle(

_void * out_handle,
uint32 in_table_id);

5.4.2.2 ix_sw_lkup_exact_search()

This function searches the exact match table and returns the results. The caller should assume that
this macro swaps out one or more times during the execution of the macro.

Microengine Assembler Syntax
ix_sw_lkup_exact_search(out_hit, out_data, in_key, in_length, in_handle,

in_data_size, in_data1, in_data2);

Microengine C Syntax
void ix_sw_lkup_exact_search (

int out_hit,
uint32 * out_data,
uint32 * in_key,
int in_length,
void * in_handle,
int in_data_size,
void * in_data1,
void * in_data2);

Input

in_table_id This is the table ID that was obtained on the Intel XScale® core by calling
IX_LKUP_GET_TABLE_INFO(). This is typically passed to the
application through an import variable.

Output/Returns

out_handle The handle that is passed to the ix_sw_lkup_exact_search() calls.
The caller can choose to build the handle before each reference or do this
call at initialization time and save the result.
306 Portability Framework Reference Manual

TCAM Lookup Libraries
5.4.3 Range Match APIs

The range match calls are used for searching tables created with type IX_LKUP_TABLE_RANGE
as the table type.

5.4.3.1 ix_sw_lkup_range_build_handle()

This function builds the handle that must be passed to the search functions. This handle is an
implementation-specific value that encodes the table location as well as thread-specific
information to keep track of multiple search contexts (if using a hardware search mechanism).

Microengine Assembler Syntax
ix_sw_lkup_range_build_handle(out_handle, in_table_id);

Input

in_key This is an array of general purpose registers that holds the key. It is
assumed that the array is large enough to hold the appropriate number of
byte specified below.

in_length The length or the key data in bytes. This argument must be a constant.

in_handle This is the table handle that was created by calling the
ix_sw_lkup_exact_build_handle() call.

in_data_size The amount of data to read from the result. This is given in bytes. This
must be a constant.

in_data1 This is one of the pieces of data information that was passed from the Intel
XScale® core after the table was initialized. This value was obtained by
calling IX_LKUP_GET_TABLE_INFO().

in_data2 This is one of the pieces of data information that was passed from the Intel
XScale® core after the table was initialized. This value was obtained by
calling IX_LKUP_GET_TABLE_INFO().

Output/Returns

out_hit The out_hit contains a boolean that indicates if the search was successful
or not. If the search was successful, then this is set to 1 (true), otherwise it
is set to 0 (false).

out_data This is the set of registers that is used to store the resulting data associated
with the call. The results are only written here if the results are successful.
The contents of out_data are undefined if the search fails.
Portability Framework Reference Manual 307

TCAM Lookup Libraries
Microengine C Syntax
void ix_sw_lkup_range_build_handle(

_void * out_handle,
uint32 in_table_id);

5.4.3.2 ix_sw_lkup_range_search()

This function searches the range matching table and returns the results. The caller should assume
that this macro swaps out one or more times during the execution of the macro.

Microengine Assembler Syntax
ix_sw_lkup_range_search(out_hit, out_data, in_key, in_length, in_handle,

in_data_size, in_data1, in_data2);

Microengine C Syntax
void ix_sw_lkup_range_search (

int out_hit,
uint32 * out_data,
uint32 * in_key,
int in_length,
void * in_handle,
int in_data_size,
void * in_data1,
void * in_data2);

Input

in_table_id This is the table ID that was obtained on the Intel XScale® core by calling
IX_LKUP_GET_TABLE_INFO(). This is typically passed to the
application through an import variable.

Output/Returns

out_handle The handle that is passed to the ix_sw_lkup_range_search() calls.
The caller can choose to build the handle before each reference or do this
call at initialization time and save the result.
308 Portability Framework Reference Manual

TCAM Lookup Libraries
5.5 Implementation Considerations

When implementing the library there are two common structures that all implementations need to
export. It is expected that most implementations also need additional state in the handle that is not
in the base data structure. The implementation can support this by defining their own data
structures, which includes the base data structure at the beginning of the data structure.

Also, it is likely that TCAM vendors will provide additional functions that are not included in this
set. The vendor can do this by adding additional function pointers to their own data structures and
providing macros that de-reference them.

5.5.1 ix_s_lkup

This is the data structure that all implementations need to fill out and return when the library is
initialized. Only the implementation should ever care about this data structure. The data structure
contains all the function pointers for the operations that can be performed on an ix_lkup handle.

Input

in_key This is an array of general purpose registers that holds the key. It is
assumed that the array is large enough to hold the appropriate number of
byte specified below.

in_length The length or the key data in bytes. This argument must be a constant.

in_handle This is the table handle that was created by calling the
ix_sw_lkup_range_build_handle() call.

in_data_size The amount of data to read from the result. This is given in bytes. This
must be a constant.

in_data1 This is one of the pieces of data information that was passed from the Intel
XScale® core after the table was initialized. This value was obtained by
calling IX_LKUP_GET_TABLE_INFO().

in_data2 This is one of the pieces of data information that was passed from the Intel
XScale® core after the table was initialized. This value was obtained by
calling IX_LKUP_GET_TABLE_INFO().

Output/Returns

out_hit The out_hit contains a boolean that indicates if the search was successful
or not. If the search was successful, then this is set to 1 (true), otherwise it
is set to 0 (false).

out_data This is the set of registers that is used to store the resulting data associated
with the call. The results are only written here if the results are successful.
The contents of out_data are undefined if the search fails.
Portability Framework Reference Manual 309

TCAM Lookup Libraries
The definition of the structure is as follows. All of the functions were defined in previous sections.
typedef struct ix_s_lkup {

ix_lkup_create_table ldataCreateTable;
ix_lkup_destroy_tableldataDestroyTable;
ix_lkup_fini ldataFini;

} ix_s_lkup;

5.5.2 ix_s_lkup_table

This is the data structure that all implementations need to fill out and return when a table is created.
Only the implementation should ever care about this data structure. The data structure contains
function pointers for the operations that can be performed on an ix_lkup_table.

The definition of the structure is as follows. All of the functions were defined in previous sections.
typedef struct ix_s_lkup_table {

ix_lkup_add_entry ltabAddEntry;
ix_lkup_remove_entry ltabRemoveEntry;
ix_lkup_update_entry ltabUpateEntry;
ix_lkup_search_table ltabSearchTable;
ix_lkup_find_entry ltabFindEntry;
ix_lkup_read_first_entry ltabReadFirstEntry;
ix_lkup_read_next_entry ltabReadNextEntry;
ix_lkup_reset_table ltabResetTable;
ix_lkup_set_property ltabSetProperty;
ix_lkup_get_property ltabGetProperty;
ix_lkup_get_table_info ltabGetTableInfo;

} ix_s_lkup_table;
310 Portability Framework Reference Manual

Operating System Services Layer
(OSSL) Support 6

The IXA SDK Tools CD provides additional library support for the Operating System Services
Layer (OSSL). Applications based on the IXA SDK use the OSSL library’s operating system
independent APIs and data types for system services such as threads, semaphores, and memory
management, etc.

For details concerning the use of these libraries and the specific APIs they support, see the Intel®
Internet Exchange Architecture (IXA) Software Reference Manual located on the IXA SDK Tools
CD.
Portability Framework Reference Manual 311

Operating System Services Layer (OSSL) Support
312 Portability Framework Reference Manual

Intel XScale® Core Support 7

The IXA SDK Tools CD provides additional library support for Intel XScale® core applications.
This includes Intel XScale® core support for:

• Microengine Loader, which is used to load microcode images, created by the microcode linker
ucld, to the appropriate microengines.

• Hardware Abstraction Layer (HAL), which generates code that interfaces to the Intel XScale®
core hardware or the Transactor. An Intel XScale® core application that uses HAL can run in
hardware mode or simulation mode, for increased code portability.

• Tools libraries, which contain additional APIs that provide support for debugging and remote
debugging of microengine code from the Intel XScale® core.

For details concerning the use of these libraries and the specific APIs they support, see the Intel®
Internet Exchange Architecture (IXA) Software Reference Manual located on the IXA SDK Tools
CD.
Portability Framework Reference Manual 313

Intel XScale® Core Support
314 Portability Framework Reference Manual

Optimized Data Plane Libraries
Support 8

The IXA SDK Tools CD provides additional library support for the optimized data plane libraries.
These libraries consist of generic microengine software building blocks used to construct an
application’s microengine modules, called microblocks. The optimized data plane macro libraries
are reusable software functions optimized for high performance and minimal executable code size.

For details concerning the use of these libraries and the specific APIs they support, see the Intel®
Internet Exchange Architecture Optimized Data Plane Libraries Reference Manual located on the
IXA SDK Tools CD.
Portability Framework Reference Manual 315

Optimized Data Plane Libraries Support
316 Portability Framework Reference Manual

Metadata Configuration Tool 9

9.1 Introduction

The Intel® IXA SDK contains a metadata configuration tool, which enhances the flexibility of the
existing metadata structures defined within the IXA Portability Framework. This utility takes
metadata configuration files as input and parses them, making decisions such as the total metadata
length required, the ordering of metadata fields, etc.

The output of the metadata configuration tool is a standard dl_meta.uc file with all metadata
fields assigned an offset, mask, and shift value. The outputted dl_meta.uc file also contains a
group of accessor macros for all microblocks to get and set each field of the metadata independent
of the other metadata fields. In addition, the tool generates block macros to initialize the entire
block, load and flush cache to and from transfer registers. The tool also generates a buffer.h file
which contains Intel XScale® core data structures.

9.2 Metadata Configuration Tool Process

Using the metadata configuration tool is a two-step process:

1. The application configuration file is given as input to the tool. The tool parses the application,
dispatch loop, and microblock configuration files and generates an intermediate file called a
list file. The list file contains the entire name of each field and each field’s attributes.

2. The user can modify the list file and add hints for additional processing. For example, the user
can specify the longword and offset information for a field or change its priority. This list file
is provided as input to the tool and the tool generates two files as output:

— dl_meta.uc file with accessor macros

— buffer.h with Intel XScale® core data structures

Note: The two steps in the process are tightly coupled. In Step 2, you cannot change the field name or the
results will be unexpected. If changes to the field name are required, you should modify the
microblock configuration file and repeat Step 1.

9.2.1 Creating an Application Configuration File

You must create an application configuration file to use as input to the metadata configuration tool.

The application configuration file contains a list of dispatch loop configuration files (see
Section 9.2.2.2).

9.2.1.1 Naming Conventions

There are no restrictions on the name of the application configuration file, however it is
recommended that an abbreviated version of the application functionality is used.

The extension for the application configuration file must be .cfg.
Portability Framework Reference Manual 317

Metadata Configuration Tool
9.2.1.2 Application Configuration File Contents

The application configuration files consists of a list of dispatch loop configuration files. You may
add hints in these configuration files about the priority for the dispatch loop and size of the
metadata fields. These hints will help the tool to decide the memory type for the metadata field.

Note: For IXA SDK Release 3.5, only the SRAM memory type is supported.

Example
ipv4_fwdr_oc48pos_rx_qm.cfg

Hint:
ipv4_fwdr_oc48pos_rx_qm
Priority: 2

9.2.2 Creating a Dispatch Loop Configuration File

You must create at least one dispatch loop file to use as input to the metadata configuration tool.
Multiple dispatch loop files are allowed. The dispatch loop configuration file contains a list of
microblock configuration files (see Section 9.2.3.2).

Note: The dispatch loop configuration file is not given directly to the tool as input; it is referenced in the
application configuration file.

9.2.2.1 Naming Conventions

The file name should describe the application and microblocks which are used. For example, in the
case of the IPv4 forwarder OC-48 POS pipeline ingress application, the dispatch loop
configuration file name might look like: ipv4_fwdr_oc48pos_rx_qm.cfg

The extension for the dispatch loop configuration file must be .cfg.

9.2.2.2 Dispatch Loop Configuration File Contents

The dispatch loop configuration file contains the list of microblock configuration files that is used
in the pipeline. You may add hints in the configuration files about the priority for the microblocks
and size of the metadata fields. These hints will help the tool to decide the memory type for the
metadata field.

Example
qm_cell_config.cfg
qm_core_config.cfg
qm_2800_config.cfg

Hint:
qm_cell_config
Priority: 2

Hint:
318 Portability Framework Reference Manual

Metadata Configuration Tool
qm_2800_config
Priority: 1

9.2.3 Creating a Microblock Configuration File

You must create at least one microblock configuration file to use as input to the metadata
configuration tool. Multiple files are allowed.

Note: The microblock configuration file is not given directly to the tool as input; it is referenced in the
dispatch loop configuration file.

9.2.3.1 Naming Conventions

The microblock configuration file name should start with <microblock name>_config. For
example, for the queue manager qm_cell microblock, the microblock configuration file name is
qm_cell_config.cfg.

The extension for the configuration file must be .cfg.

9.2.3.2 Microblock Configuration File Contents

The microblock configuration files contain the metadata registration information for each
microblock. The metadata field property information is defined as follows:

• Field name
A string of ASCII characters which uniquely identifies the metadata field being referenced.
Legal values for field name are listed in Table 9-1. Note that there are additional approved
metadata field values; the table lists a subset of the allowed values.

• Priority
Priority 0 indicates that the field is frequently used in the critical path. Priority 1 indicates that
the field is less frequently used in the critical path. The priority attribute helps the tool decide
on the memory location of the field.

• Field access
This attribute describes whether the field is read only (R) or written by the microblock (W).

• Size
Size of the field, specified in bits.

Each group of properties for a given field is called a record. A record must begin with the field
name property. The other properties may be listed in any order after the field name.
Portability Framework Reference Manual 319

Metadata Configuration Tool
Note: Table 9-1 lists a subset of the allowed values for metadata fields.

Example
Name: buffer_size
Priority: 1
FieldAccess: W
Size: 32

Name: fabric_port
Priority: 1
FieldAccess: W
Size: 8

Name: input_port
Priority: 1
FieldAccess: R
Size: 16

Hint:
buffer_size
longword_offset: 0 0

hint:
input_port
longword_offset: 1 8

Table 9-1. Field Name Values

Field Name Description

Offset Offset to start of the data

buffer_size Length of data in the current buffer

header_Type Type of header at offset bytes into the buffer

free_list Freelist identifier

rx_stat Receive status flag

packet_size Total packet size across multiple buffers

output_port Output port on the egress processor

input_port Input port on the ingress processor

nexthop_id Next hop IP ID

fabric_port Output port for fabric indicating the blade ID

flow_id QOS flow id or MPLS label/flow id

class_id Class ID

sw_next Pointer to next packet

packet_next Pointer to next packet
320 Portability Framework Reference Manual

Metadata Configuration Tool
9.3 List File Overview

The list file is an intermediate file generated by the metadata configuration tool. It specifies
information like field name, size, and priority based on the configuration files given as input. You
can modify the list file to change field attributes and also add hints about priority, longword, and
offset in bits for a field. Once complete, this list file is again given as input to the metadata
configuration tool to generate the final dl_meta.uc and buffer.h files.

Note: You cannot change any field names in the list file or the results will be unexpected. If changes to
the field name are required, you must modify the microblock configuration file and re-run the tool.

9.4 dl_meta.uc and buffer.h File Overview

When the metadata tool is run using a list file as input, the tool generates microcode source files
called dl_meta.uc and buffer.h. The dl_meta.uc file consists of get and set macros for each
of the metadata fields specified in the microblock configuration files, block macros for dispatch
loops, and constants for dispatch loops. The buffer.h header file is generated for Intel XScale®
core applications. This file consists of a data structure of the newly formed metadata block based
on the microblock configuration files.

9.4.1 dl_meta.uc File Description

The dl_meta.uc file defines a minimal set of metadata fields that satisfies the requirements of the
microblock registration defined in the metadata configuration files. All metadata field names, field
offsets, and accessor macros are fully defined within dl_meta.uc, and are consistent for all
microblocks. dl_meta.uc also defines block macros, which are generated to read and write large
portions of metadata into transfer registers.

The dl_meta.uc file is a Workbench source file, which contains all of the metadata field accessor
macros. Each metadata field defined in the metadata configuration files contains a corresponding
get_() and set_() macro for accessing the metadata field. Each microblock requiring access to the
system metadata must #include the dl_meta.uc file.

9.4.1.1 Accessor Macros

The accessor macros allow a user to read and write individual fields of the metadata without
requiring any knowledge of the field structure or storage location. Each get or set macro reads or
writes one field of the metadata structure.

All get macros have a similar structure:
#macro dl_meta_get_<fieldname>(xfer or gpr or local)
.begin

.end
#endm

All set macros have a similar structure:
#macro dl_meta_set_<fieldname>(xfer or gpr or local)
.begin
Portability Framework Reference Manual 321

Metadata Configuration Tool
.end
#endm

9.4.1.2 Block Macros

The dl_meta.uc file also contains block macros for allocating transfer registers, and reading/
writing multiple-field blocks of metadata at once. The block macros exercise on an entire block.
#macro dl_meta_flush_cache
(wxfer_prefix, buf_handle, req_sig, sig_action, START_LW, NUM_LW)

#macro dl_meta_init_cache
(d0, d1, d2, d3, d4, d5, d6, d7)

#macro dl_meta_load_cache (buffer_handle, dl_meta, signal_number, START_LW,
NUM_LW)

9.4.1.3 Dispatch Loop Constants

The dl_meta.uc file also contains the following dispatch loop constants:

<dispatch loop>_START_LW - indicates the starting longword location

<dispatch_loop>_NUM_LW - indicates the number of longwords for each dispatch loop

9.4.1.4 dl_meta.uc Example

The following code fragment shows a portion of a sample dl_meta.uc file.
#ifndef __DL_METADATA_UC__
define __DL_METADATA_UC__

#include <stdmac.uc>
#include <xbuf.uc>
#include <buf.uc>
// Define the number of LW of the metadata to be cached
#ifndef META_CACHE_SIZE
#define META_CACHE_SIZE 4

#endif
// Use SRAM xfer registers for metadata
#define dl_meta_sram $dl_meta

// Use DRAM xfer registers for metadata
#define dl_meta_dram $$dl_meta

// Use GPR for metadata
.reg dl_meta_gpr[META_CACHE_SIZE]

#ifdef USE_DL_THREAD_ID
.reg dl_exception
#endif
322 Portability Framework Reference Manual

Metadata Configuration Tool
#define buffer_size_SRAM_OFFSET 0
#define buffer_size_SIZE 32
#define header_type_SRAM_OFFSET 32
#define header_type_SIZE 8
#define port_SRAM_OFFSET 40
#define port_SIZE 4
#define fabric_port_SRAM_OFFSET 44
#define fabric_port_SIZE 8
#define input_port_SRAM_OFFSET 52
#define input_port_SIZE 16

xbuf_alloc($dl_meta, 3, read_write)
/***
* dl_meta_get_buffer_size:
* Description:
* Outputs: Value of buffer_size
* Inputs: None
*
* Size:
* 1 instruction
**/
#macro dl_meta_get_buffer_size[buffer_size]
.begin
 xbuf_extract[buffer_size, dl_meta_sram, 0, buffer_size_SRAM_OFFSET,
buffer_size_SIZE]
.end
#endm

/***
* dl_meta_set_buffer_size:
* Description:
* Outputs: Value of buffer_size
* Inputs: None
*
* Size:
* 1 instruction
**/
#macro dl_meta_set_buffer_size[buffer_size]
.begin
 xbuf_insert[dl_meta_sram, buffer_size, 0, buffer_size_SRAM_OFFSET,
buffer_size_SIZE]
.end
#endm
.
.
.

Portability Framework Reference Manual 323

Metadata Configuration Tool
9.4.2 buffer.h File Description

The buffer.h header file is generated for Intel XScale® core applications. This file consists of a
data structure of the newly formed metadata block based on the microblock configuration files.

buffer.h Example

#if !defined(__BUFFER_H__)
#define __BUFFER_H__
#if defined(__cplusplus)
extern "C"
{
#endif /* end defined(__cplusplus) */
/**
* DESCRIPTION: This symbol will declare all the fields and the layout of the
common
* part of the buffer meta data. Applications that need extra fields
can do
* so in the following manner without the expense of an extra
indirection.
* typedef struct ix_s_atm_buffer_meta
* {
* IX_DECLARE_HW_BUFFER_META_DATA
* ix_uint32 m_CellHeader;
* } ix_atm_buffer_meta;
*
*/
#define IX_DECLARE_HW_BUFFER_META_DATA \
{
 /* Longword 0 */
 ix_uint32 m_buffer_next /* 32 bits*/
 /* Longword 1 */
 ix_uint16 m_offset /* 16 bits*/
 ix_uint16 m_buffer_size /* 16 bits*/
 /* Longword 2 */
 ix_uint8 m_header_Type /* 8 bits*/
 ix_uint8 m_rx_stat /* 4 bits*/
 ix_uint8 m_free_list /* 4 bits*/
 ix_uint16 m_packet_size /* 16 bits*/
 /* Longword 3 */
 ix_uint16 m_output_port /* 16 bits*/
 ix_uint16 m_input_port /* 16 bits*/
 /* Longword 4 */
 ix_uint8 m_nexthop_id_type /* 4 bits*/
 ix_uint8 m_fabric_port /* 8 bits*/
 ix_uint16 m_nexthop_id /* 16 bits*/
 /* Longword 5 */
 ix_uint8 m_color /* 8 bits*/
 ix_uint32 m_flow_id /* 24 bits*/
 /* Longword 6 */
 ix_uint16 m_class_id /* 16 bits*/
324 Portability Framework Reference Manual

Metadata Configuration Tool
 /* Longword 7 */
 ix_uint32 m_packet_next /* 32 bits*/
}

/**
* TYPENAME: ix_hw_buffer_meta
*
* DESCRIPTION: This structure defines the information and the layout of the
common
* buffer meta data. If applications will need to add extra fields then
they
* can do so.
*
*/
typedef struct ix_s_hw_buffer_meta
{
 IX_DECLARE_HW_BUFFER_META_DATA
} ix_hw_buffer_meta;
#if defined(__cplusplus)
}
#endif /* end defined(__cplusplus) */
#endif /* end !defined(__BUFFER_H__) */

9.5 Using the Metadata Configuration Tool

9.5.1 System and Software Requirements

• System: Machine with Intel® P3 processor or higher

• Operating system: Windows 2000*, Windows XP*, or Linux*

• Cygwin package should be installed.

• Perl that comes with cygwin should be installed.
Note: This tool may not work with active perl.

• The environment variable PATH should be updated with the path to perl.exe

9.5.2 File Locations

The files that the metadata configuration tool uses and generates have the following characteristics:

• Each configuration file should list the exact full path to the configuration files it uses.

• The tool is located in <IXA SDK>/src/utilities, where <IXA SDK> indicates the
installation location of the IXA SDK files.

• The metadata tool output files, dl_meta.uc and buffer.h, are generated and stored in the
current location from where the tool is executed.
Portability Framework Reference Manual 325

Metadata Configuration Tool
9.5.3 Invoking the Tool

To run the metadata configuration tool, perform the following steps:

1. Open cygwin bash shell.

2. Go to the directory where the tool is located, typically this is: <IXA SDK>/src/utilities,
where <IXA SDK> indicates the installation location of the IXA SDK files.

3. Issue the following command:
./metadatatool.pl –a <ApplicationConfigFile>.cfg

4. The command in the step above generates an outputted list file with the following name: <
ApplicationConfigFile>_list.lst

5. You have the option of modifying the list file at this time.

Note: You cannot change any field names in the list file or the results will be unexpected. If changes to
the field name are required, you must modify the microblock configuration file and re-run the tool.

6. Issue the following command:
metadatatool.pl –l < ApplicationConfigFile >_list.lst

7. The command in the step above outputs the buffer.h and dl_meta.uc files.
326 Portability Framework Reference Manual

Glossary A

A
AAL ATM Adaptation Layer—the ATM standards layer that allows multiple

applications to have data converted to and from an ATM cell. A protocol
used that translates higher layer services into the size and format of an
ATM cell.

AAL5 ATM Adaptation Layer 5—AAL functionality to support variable bit
rate, delay-tolerant connection-oriented data traffic.

ACE Acronym for Active Computing Element.

active computing
element (ACE) A logical entity that represents a specific packet-processing

activity in the IXA SDK 2.0. IXP1200 applications use ACEs to process
packets. The ACE Programming Framework in the IXA SDK 2.0 is now
replaced by microblocks and core components in the IXA SDK 3.0

API Acronym for application programming interface.

application programming
interface (API) A set of routines, classes, methods, structures, and/or functions

used to write applications.

ATM Asynchronous Transfer Mode—a transfer mode in which information is
organized into cells. It is asynchronous in the sense that the recurrence
of cells containing information from an individual user is not necessarily
periodic.

B
big endian A compiler term specifying that, for multibyte values, the most

significant byte is first. See also little endian, network byte order.

byte order The way a system stores numeric data, with the most or least significant
byte first. Most significant byte first, or big endian byte order, is also
known as network byte order. See also endianness.

C
CBR Constant Bit Rate—an ATM service class.

CBS Committed Burst Size—an IP QoS traffic contract parameter/metric.

CIR Committed Information Rate—an IP QoS traffic contract parameter/
metric.

CLP Cell Loss Priority—an ATM QoS traffic contract parameter/metric.
Portability Framework Reference Manual 327

Glossary
content addressable
memory (CAM) This is a hardware feature where a content match is performed to

get an index to associated information.

context pipeline A software pipeline where in different functions are performed on
different microengines as time progresses and the packet context is
passed between the functions or microengines. Each microengine
constitutes a context pipe-stage and cascading two or more context pipe-
stages constitutes a context pipeline. The context pipeline get it’s name
from the fact that it is the context that moves through the pipeline.

control plane The abstraction for a functional area of an application that controls and
configures the data plane and handles exception packets, distinguished
from the data processing plane. Control plane activities are typically
performed by code modules within the IXA application. Compare
management plane, whose activities are usually outside the IXA
application, in a host application.

core component A packet-processing entity that configures its microblock, initializes and
maintains common data structures that may be updated by other
applications, and provides exception as well as control message handlers
to process packets/messages sent by the microblock.

core component
infrastructure The core component infrastructure includes a number of APIs to support

the creation and setup of core components.

CRC Cyclic Redundancy Check—a mathematically computed numerical
value transmitted with packet data to ensure the integrity of packet data
transmitted between endpoints.

critical section A critical section is section of code in which only one microengine
thread has exclusive modification privileges for a global resource (such
as a memory location) at any one time. The IXP2400 uses inter-thread
signaling to implement critical sections across microEngines.

CSR Acronym for control status register.

D
Decap Decapsulation—removing one or more protocol headers from a packet.

DiffServ Differentiated Service. A means of classifying IP packets into “classes”,
based on the DiffServ codepoint (DSCP) in the packet’s IP header.

Dispatch Loop A Dispatch Loop combines microblocks running on a microengine
thread and implements the data flow between them.

DRR Deficit Round Robin. A QoS queue-scheduling algorithm.

DSCP DiffServ Control Point. A 6-bit field in the IPv4 header.

E
EE Acronym for execution engine.

Encap Encapsulation—adding one ore more protocol headers to a packet.
328 Portability Framework Reference Manual

Glossary
endian, endianness A compiler term for the byte order of multibyte values. See big endian
and little endian.

Ethernet A local area network (LAN) technology designed for interconnecting
networking nodes over a shared medium, as specified in standard IEEE
802.3. Also typically used to refer to the Layer 2 networking protocol as
specified in standard IEEE 802.2.

F
Fast Path The data path where in the packet is completely processed on the MEv2

microengines without any intervention from the Intel XScale® core.

Folding A software technique used by threads running on the same microengine,
to optimize read/modify/writes in a critical section. The technique uses
the CAM and strict thread ordering enforced via inter-thread signaling to
fold the read/modify/write into a single read, multiple modifies and one
or more writes depending on the cache eviction policy.

Functional Pipeline A software pipeline where in the context remains with an microengine
while different functions are performed on the packet as time progresses.
The microengine execution time is divided into “n” pipe-stages and each
pipe-stage performs a different functions. The Functional pipeline get
it’s name from the fact that it is the function that moves through the
pipeline.

G
GFR Guaranteed Frame Rate—an ATM service class.

H
Head of Line Blocking A term used to describe a situation where the transmit operation on a

group of ports is blocked by a single port at the head of the transmit
queue. This scenario typically occurs when the port at the head of the
transmit queue is blocked because of flow control issues and the
remaining ports on the queue have data pending but need to wait for this
port to finish its transmit operation.

HEC Header Error Check—an 8-bit field within an ATM header that is
generated by a sender, and checked by a receiver, to determine the
validity of an ATM header.

I
Intel® Internet Exchange
Architecture (IXA) A new approach to designing networking and telecommunications

equipment based on reprogrammable silicon and open interfaces.
Manufacturers of networking and communications equipment can use
components from the IX-based product portfolio for designing new,
more intelligent network systems.
Portability Framework Reference Manual 329

Glossary
intrinsic A C function-like interface that implements a chip-specific hardware
feature, not otherwise supported by the C language. Direct use of
intrinsics results in non-portable code.

IP An acronym for internet protocol, a standard network protocol. See also
TCP/IP.

IPv4 Internet Protocol Version 4.

IPv6 Internet Protocol Version 6.

IXP Acronym for Intel® Internet Exchange Processor, and a current instance
of this processor.

IXP2400, IXP 2800 Internet eXchange network processors. The IXP2400 has 8
microengines targeted at OC-48 POS line rates and the IXP2800 has 16
microengine targeted at OC-192 POS line rates.

J

K

L
L2 Layer 2.

L3 Layer 3.

LLCSNAP Logical Link Control/Sub Network Access Protocol—data link layer
packet encapsulation headers that identify a protocol, as well as client
and control information. Refer to IEEE standards 802.3 with 802.2.

LPM Longest Prefix Match—algorithm IP routers apply to an IP packet
destination address to determine the packet’s egress port, and hence
forward the packet out the egress port.

little endian A compiler term specifying that, for multibyte values, the least
significant byte is first. See also big endian.

longword A 32-bit word; 4-bytes long.

M
MAC Medium Access Control—a protocol layer responsible for providing

access to a shared communications medium. Also Medium Access
Controller—the device used to interface with the physical layer medium.

ME An acronym for microengine.

MEv2 A microengine specific to the IXP2xxx network processor family.

Microblock A discrete unit of IXP2xxx code written in microcode or MicroC that is
written to the guidelines specified in the IXA Software Framework.
Microblocks conform to one of three different types: source, transform
or sink. Typically, a microblock has an Intel XScale® core component
that is used to configure and manage the microblock.
330 Portability Framework Reference Manual

Glossary
Microblock Group One or more microblocks that have been combined into a thread
executable on a microengine. Typically all threads on the microengine
will execute the same microblock group, but it is not required.
Furthermore, a typical use instantiates the same microblock group on
several microengines.

Microengine One of many (8 for IXP2400, 16 for IXP2800) programmable,
specialized processors.

Mixed Pipeline A software pipeline where some microengines run a single function
(context pipe-stage) and others run multiple functions (functional
pipeline)

MPKT M Packet—an IXP2xxx media bus interface data transfer unit that can be
configured to be 64-, 128-, or 256-bytes in length.

MEv2 Microengine version 2, which are the microengines used for the
IXP2400 and IXP2800 network processors.

microcode Hardware-specific machine code. A code module written in microcode
can run only on the processor it is written for.

mutual exclusion, mutex Mutual exclusion is used to guard the critical sections accessed by
threads.

N
nrtVBR Non-Real Time Variable Bit Rate—an ATM service class.
network byte order The system of storing numeric data with the most significant byte first.

See also big endian, endianness.

network services
application General descriptive term for the kind of application you build with the

IXA SDK.

O
OAM Operations Administration and Maintenance—a group of network

management functions that provide network fault indication,
performance information, and data and diagnosis functions within an
ATM network. Also the type of ATM cell payload used to carry such
information.

OC-12, OC-48c Optical Carrier (SONET)—Level (e.g. Level = 3, 12, 48, 192). Often
used to specify data rates; the base level rate is 51.84 Mbps (OC-1); each
level thereafter operates at a multiple of the base level rate (thus, OC-3
runs at 155.52 Mbps, OC-12 runs at 622.08 Mbps, and so on).

operating system Acronym for operating system.

OSSL Acronym for operating system services library.

Operating System
Services Library (OSSL) An operating system abstraction API used within the IXA SDK

to achieve portability.
Portability Framework Reference Manual 331

Glossary
optimized data plane
libraries A library of low-level macros and functions for microEngine program

development. The purpose of this library is to provide a layer of
portability, so programmers can write code that will run on IXP1200,
IXP2400, IXP2800 and future IXP chips. (For details, see the Intel®
Internet Exchange Architecture Optimized Data Plane Libraries
Reference Manual located on the IXA SDK Tools CD.)

P
payload The part of a packet that carries data, as opposed to those parts that carry

information about the packet.

Q
quadword A 64-bit word; 8 bytes long.

QoS Acronym for quality of service.

quality of service A networking term that specifies a guaranteed throughput level. (QoS)

R
RBUF A receive buffer.

Resource Manager A programming interface between Intel XScale® core applications and
the microcode running on the microengines for the IXP2400 and
IXP2800 network processors.

RR Round Robin. A scheduling algorithm in which entities/queues are
services/scheduled in a consistent serial manner.

rtVBR Real Time Variable Bit Rate—an ATM service class.

Rx Receive.

S
SAR Segmentation And Reassembly—The process of transforming frames-

to-cells and cells-to-frames.

SDE Acronym for software development environment.

SDK Acronym for software development kit.

semaphore Semaphores are the primary means for providing thread
synchronization.

sink microblock A function or macro that disposes of a packet, that is, either enqueues it
within the IXP or sends it to an external interface.

slow path The execution path of the packets that require exceptional handling. This
may be error packets or packets that need to be handled differently than
the normal case. In this case, it will take longer to process because they
332 Portability Framework Reference Manual

Glossary
will be handled by a general-purpose processor (Intel XScale® core in
our case). See also Fast Path.

software pipeline The MEv2 employs a software pipeline model in the fast path processing
of packets. There are three different types of pipelines—Context
Pipeline, Functional Pipeline, and Mixed Pipeline.

source microblock A function or macro that obtains a packet, that is, either dequeues it
within the IXP or gets it from an external interface.

SP Acronym for scheduling policy.

stdmac Acronym for standard macros. Assembly macros that are microengine-
specific, for instruction simplification.

T
TBUF A transmit buffer.

TCP An acronym for transmission control protocol, a standard network
protocol in which transmission status can be confirmed. Establishes a
point-to-point connection, in contrast to UDP which is connectionless.
See also TCP/IP.

TCP/IP A standard network protocol, using TCP over IP. See TCP and IP.

TM4.1 Traffic Management version 4.1—an ATM specification for managing
and controlling traffic congestion within an ATM network by the actions
of buffering, adjusting transmission rates, and policing VCs.

TOS Type of Service. Refers to an 8-bit field in the IPv4 header.

Tx Transmit.

thread A thread is an independent task, which can be processed in parallel with
other tasks.

transform microblock A function or macro that parses, analyzes, classifies, or modifies a
packet.

U
UBR Unspecified Bit Rate—an ATM service class.

UPC Usage Parameter Control—VC traffic contract characteristics, that
permit ATM network nodes to monitor, control, and police the traffic
within the ATM network.

V
VBR Variable Bit Rate—an ATM service class.

VC Virtual Connection or Virtual Channel—a communications channel
between ATM systems nodes that provides for the sequential transport of
ATM cells.
Portability Framework Reference Manual 333

Glossary
VCI Virtual Connection Identifier—a 16-bit numerical tag within an ATM
cell header that identifies a virtual channel over which the cell is to travel.

VPI Virtual Path Identifier—an 8-bit numerical tag within an ATM cell
header that indicates the virtual path over which the cell should be
routed.

VPN Virtual Private Network.

VPORT Virtual Port—a field accompanying a MPKT that identifies the port (and
possibly line card) to/from which the MPKT payload is sent/received.

W
WAN Wide Area Network—a network that spans a large geographical area

relative to a LAN (Local Area Network). A WAN typically experiences
greater traffic delays (due to distance between nodes and greater network
congestion) and packet loss (due to switches dropping packets).

WRR Acronym for weighted round robin.

X
XBUF A transfer buffer. In this manual an XBUF can use a transfer register,

general-purpose register, and so on.

Intel XScale® core The ARM architecture core processor in the IXP2400 and IXP2800
network processors.

Y

Z

334 Portability Framework Reference Manual

	Intel® Internet Exchange Architecture Portability Framework
	Introduction 1
	1.1 About this Document
	1.2 Audience
	1.3 IXA Portability Framework Overview
	1.4 In This Manual
	1.5 Other Sources of Information

	Dispatch Loop 2
	2.1 Dispatch Loop Variables
	2.1.1 Microengine Assembler Dispatch Variables
	2.1.2 Microengine C Loop Data Structure

	2.2 Dispatch Loop Interface
	2.2.1 Dispatch Loop API Functions for Meta Data
	2.2.1.1 dl_buf_init[]
	2.2.1.2 dl_buf_alloc[]
	2.2.1.3 dl_buf_free[]
	2.2.1.4 dl_buf_get_desc[]
	2.2.1.5 dl_buf_get_data[]
	2.2.1.6 dl_buf_get_data_from_meta[]
	2.2.1.7 dl_meta_init_cache[]
	2.2.1.8 dl_meta_flush_cache[]
	2.2.1.9 dl_meta_get_hw_next[]
	2.2.1.10 dl_meta_set_hw_next[]
	2.2.1.11 dl_meta_load_cache[]
	2.2.1.12 dl_meta_get_buffer_next[]
	2.2.1.13 dl_meta_set_buffer_next[]
	2.2.1.14 dl_meta_get_offset[]
	2.2.1.15 dl_meta_set_offset[]
	2.2.1.16 dl_meta_get_free_list[]
	2.2.1.17 dl_meta_set_free_list[]
	2.2.1.18 dl_meta_get_rx_stat[]
	2.2.1.19 dl_meta_set_rx_stat[]
	2.2.1.20 dl_meta_get_buffer_size[]
	2.2.1.21 dl_meta_set_buffer_size[]
	2.2.1.22 dl_meta_get_input_port[]
	2.2.1.23 dl_meta_set_input_port[]
	2.2.1.24 dl_meta_get_packet_size[]
	2.2.1.25 dl_meta_set_packet_size[]
	2.2.1.26 dl_meta_get_nexthop_id[]
	2.2.1.27 dl_meta_set_nexthop_id[]
	2.2.1.28 dl_meta_get_output_port[]
	2.2.1.29 dl_meta_set_output_port[]
	2.2.1.30 dl_meta_get_fabric_port[]
	2.2.1.31 dl_meta_set_fabric_port[]
	2.2.1.32 dl_meta_get_flow_id[]
	2.2.1.33 dl_meta_set_flow_id[]
	2.2.1.34 dl_meta_get_class_id[]
	2.2.1.35 dl_meta_set_class_id[]
	2.2.1.36 dl_buf_set_SOP[]
	2.2.1.37 dl_buf_set_EOP[]
	2.2.1.38 dl_buf_get_cell_count[]
	2.2.1.39 dl_buf_set_cell_count[]
	2.2.1.40 dl_set_exception[]
	2.2.1.41 dl_meta_get_nexthop_id_type[]
	2.2.1.42 dl_meta_set_nexthop_id_type[]

	2.2.2 Dispatch Loop API Functions for Extended Meta Data
	2.2.2.1 dl_meta_parent_get_ref_cnt[]
	2.2.2.2 dl_meta_child_get_child_offset[]
	2.2.2.3 dl_meta_child_set_child_offset[]
	2.2.2.4 dl_meta_child_get_child_buffer_size[]
	2.2.2.5 dl_meta_child_set_child_buffer_size[]
	2.2.2.6 dl_meta_child_get_child_freelist_id[]
	2.2.2.7 dl_meta_child_set_child_freelist_id[]
	2.2.2.8 dl_meta_child_get_parent_offset[]
	2.2.2.9 dl_meta_child_set_parent_offset[]
	2.2.2.10 dl_meta_child_get_parent_buffer_size[]
	2.2.2.11 dl_meta_child_set_parent_buffer_size[]
	2.2.2.12 dl_meta_child_get_header_type[]
	2.2.2.13 dl_meta_child_set_header_type[]
	2.2.2.14 dl_meta_child_get_parent_free_list[]
	2.2.2.15 dl_meta_child_set_parent_free_list[]
	2.2.2.16 dl_meta_child_get_rx_stat[]
	2.2.2.17 dl_meta_child_set_rx_stat[]
	2.2.2.18 dl_meta_child_get_packet_size[]
	2.2.2.19 dl_meta_child_set_packet_size[]
	2.2.2.20 dl_meta_child_get_output_port[]
	2.2.2.21 dl_meta_child_set_output_port[]
	2.2.2.22 dl_meta_child_get_input_port[]
	2.2.2.23 dl_meta_child_set_input_port[]
	2.2.2.24 dl_meta_child_get_nexthop_id[]
	2.2.2.25 dl_meta_child_set_nexthop_id[]
	2.2.2.26 dl_meta_child_get_fabric_port[]
	2.2.2.27 dl_meta_child_set_fabric_port[]
	2.2.2.28 dl_meta_child_get_nexthop_id_type[]
	2.2.2.29 dl_meta_child_set_nexthop_id_type[]
	2.2.2.30 dl_meta_child_get_flow_id[]
	2.2.2.31 dl_meta_child_set_flow_id[]
	2.2.2.32 dl_meta_child_get_color[]
	2.2.2.33 dl_meta_child_set_color[]
	2.2.2.34 dl_meta_child_get_class_id[]
	2.2.2.35 dl_meta_child_set_class_id[]
	2.2.2.36 dl_meta_child_get_parent_buffer_id[]
	2.2.2.37 dl_meta_child_set_parent_buffer_id[]
	2.2.2.38 dl_meta_child_get_buffer_next[]
	2.2.2.39 dl_meta_child_set_buffer_next[]
	2.2.2.40 dl_meta_child_get_packet_next[]
	2.2.2.41 dl_meta_child_set_packet_next[]

	Resource Manager 3
	3.1 Defined Types, Enumerations, and Data Structures
	3.2 System API
	3.2.1 Defined Types, Enumerations, and Data Structures
	3.2.1.1 ix_rm_error_code
	3.2.1.2 ix_phy_type
	3.2.1.3 ix_port_type
	3.2.1.4 ix_port
	3.2.1.5 ix_subsystem_type
	3.2.1.6 ix_sys_config
	3.2.1.7 ix_memory_reserved_area

	3.2.2 API Functions
	3.2.2.1 ix_rm_init()
	3.2.2.2 ix_rm_term()
	3.2.2.3 ix_rm_error_get_string()
	3.2.2.4 ix_rm_sys_config_get()
	3.2.2.5 ix_rm_version_get_string()
	3.2.2.6 ix_rm_sys_config_set()

	3.3 Microengine API
	3.3.1 Defined Types, Enumerations, and Data Structures
	3.3.1.1 ix_imported_symbol

	3.3.2 API Functions
	3.3.2.1 ix_rm_ueng_set_ucode()
	3.3.2.2 ix_rm_ueng_map_ucode()
	3.3.2.3 ix_rm_ueng_reset_all()
	3.3.2.4 ix_rm_ueng_patch_symbols()
	3.3.2.5 ix_rm_ueng_load()
	3.3.2.6 ix_rm_ueng_start()
	3.3.2.7 ix_rm_ueng_stop()
	3.3.2.8 ix_rm_ueng_reset()
	3.3.2.9 ix_rm_ueng_enable()
	3.3.2.10 ix_rm_ueng_disable()

	3.4 Hardware Resource Management API
	3.4.1 SRAM Queues
	3.4.1.1 Defined Types, Enumerations, and Data Structures
	3.4.1.2 API Functions

	3.4.2 SRAM and Scratch Rings
	3.4.2.1 Defined Types, Enumerations, and Data Structures
	3.4.2.2 API Functions

	3.5 Buffer Management API
	3.5.1 Generic Buffers
	3.5.1.1 Defined Types, Enumerations, and Data Structures
	3.5.1.2 API Functions

	3.5.2 Framework Buffer Structure
	3.5.2.1 Packet Metadata Description
	3.5.2.2 Split Meta Data Configuration Details
	3.5.2.3 Packed Field Macros

	3.6 Communication API
	3.6.1 Defined Types, Enumerations, and Data Structures
	3.6.1.1 ix_comm_data_handler
	3.6.1.2 ix_communication_id

	3.6.2 API Functions
	3.6.2.1 Helper Macros
	3.6.2.2 ix_rm_packet_set_receive_mode()
	3.6.2.3 ix_rm_message_set_receive_mode()
	3.6.2.4 ix_rm_packet_set_consumer_mode()
	3.6.2.5 ix_rm_message_set_consumer_mode()
	3.6.2.6 ix_rm_packet_set_producer_mode()
	3.6.2.7 ix_rm_message_set_producer_mode()
	3.6.2.8 ix_rm_packet_handler_register()
	3.6.2.9 ix_rm_packet_handler_unregister()
	3.6.2.10 ix_rm_message_handler_register()
	3.6.2.11 ix_rm_message_handler_unregister()
	3.6.2.12 ix_rm_packet_send()
	3.6.2.13 ix_rm_packet_send_wait()
	3.6.2.14 ix_rm_message_send()
	3.6.2.15 ix_rm_message_send_wait()
	3.6.2.16 ix_rm_packet_peek()
	3.6.2.17 ix_rm_packet_get()
	3.6.2.18 ix_rm_packet_get_wait()
	3.6.2.19 ix_rm_message_peek()
	3.6.2.20 ix_rm_message_get()
	3.6.2.21 ix_rm_message_get_wait()
	3.6.2.22 ix_rm_comm_select()
	3.6.2.23 ix_rm_ublock_packet_comm_init()
	3.6.2.24 ix_rm_ublock_message_comm_init()

	3.7 Remote Communication Extension API
	3.7.1 Defined Types, Enumerations, and Data Structures
	3.7.1.1 ix_remote_comm_service

	3.7.2 Callback Function Prototypes
	3.7.2.1 ix_remote_comm_data_handler
	3.7.2.2 ix_remote_comm_service_initializer
	3.7.2.3 ix_remote_comm_service_finalizer

	3.7.3 API Functions
	3.7.3.1 ix_rm_remote_comm_service_register()
	3.7.3.2 ix_rm_remote_comm_service_unregister()
	3.7.3.3 ix_rm_init_pci_remote_communication()
	3.7.3.4 ix_rm_register_pci_communication_hw_free_list()
	3.7.3.5 ix_rm_unregister_pci_communication_hw_free_list()

	3.8 Memory Management API
	3.8.1 Defined Types, Enumerations, and Data Structures
	3.8.1.1 ix_memory_type
	3.8.1.2 ix_memory_info
	3.8.1.3 ix_memory_alignment_type

	3.8.2 API Functions
	3.8.2.1 ix_rm_mem_alloc()
	3.8.2.2 ix_rm_mem_alloc_aligned()
	3.8.2.3 ix_rm_mem_reserve()
	3.8.2.4 ix_rm_mem_reserve_aligned()
	3.8.2.5 ix_rm_mem_free()
	3.8.2.6 ix_rm_mem_info()
	3.8.2.7 ix_rm_mem_local_alloc()
	3.8.2.8 ix_rm_mem_local_reserve()
	3.8.2.9 ix_rm_mem_local_free()
	3.8.2.10 ix_rm_mem_local_info()
	3.8.2.11 ix_rm_get_phys_offset()
	3.8.2.12 ix_rm_get_virtual_address()
	3.8.2.13 Read/Write Macros

	3.9 System Repository API
	3.9.1 Defined Types, Enumerations, and Data Structures
	3.9.1.1 ix_configuration_property_handle
	3.9.1.2 ix_cp_property_info

	3.9.2 API Functions
	3.9.2.1 ix_rm_cp_property_create()
	3.9.2.2 ix_rm_cp_property_delete()
	3.9.2.3 ix_rm_cp_property_open()
	3.9.2.4 ix_rm_cp_property_close()
	3.9.2.5 ix_rm_cp_property_attach()
	3.9.2.6 ix_rm_cp_property_detach()
	3.9.2.7 ix_rm_cp_property_set_value()
	3.9.2.8 ix_rm_cp_property_get_value()
	3.9.2.9 ix_rm_cp_property_set_value_uint32()
	3.9.2.10 ix_rm_cp_property_get_value_uint32()
	3.9.2.11 ix_rm_cp_property_delete_value()
	3.9.2.12 ix_rm_cp_property_get_info()
	3.9.2.13 ix_rm_cp_property_get_subproperty()

	3.10 64-Bit Counters API
	3.10.1 Defined Types, Enumerations, and Data Structures
	3.10.1.1 ix_counter_64bit_handle()

	3.10.2 API Functions
	3.10.2.1 ix_rm_counter_64bit_new()
	3.10.2.2 ix_rm_counter_64bit_delete()
	3.10.2.3 ix_rm_counter_64bit_get_internal_overflow_time()
	3.10.2.4 ix_rm_counter_64bit_set_internal_overflow_time()
	3.10.2.5 ix_rm_counter_64bit_get_value()
	3.10.2.6 ix_rm_counter_64bit_set_value()

	3.11 Services API
	3.11.1 API Functions
	3.11.1.1 ix_rm_atomic_sram_swap()
	3.11.1.2 ix_rm_atomic_sram_add()
	3.11.1.3 ix_rm_atomic_sram_test_and_add()
	3.11.1.4 ix_rm_atomic_sram_subtract()
	3.11.1.5 ix_rm_atomic_sram_test_and_subtract()
	3.11.1.6 ix_rm_atomic_sram_bit_set()
	3.11.1.7 ix_rm_atomic_sram_bit_test_and_set()
	3.11.1.8 ix_rm_atomic_sram_bit_clear()
	3.11.1.9 ix_rm_atomic_sram_bit_test_and_clear()
	3.11.1.10 ix_rm_atomic_scratch_swap()
	3.11.1.11 ix_rm_atomic_scratch_add()
	3.11.1.12 ix_rm_atomic_scratch_test_and_add()
	3.11.1.13 ix_rm_atomic_scratch_subtract()
	3.11.1.14 ix_rm_atomic_scratch_test_and_subtract()
	3.11.1.15 ix_rm_atomic_scratch_bit_set()
	3.11.1.16 ix_rm_atomic_scratch_bit_test_and_set()
	3.11.1.17 ix_rm_atomic_scratch_bit_clear()
	3.11.1.18 ix_rm_atomic_scratch_bit_test_and_clear()
	3.11.1.19 ix_rm_managed_to_os_memory_copy()
	3.11.1.20 ix_rm_os_to_managed_memory_copy()
	3.11.1.21 ix_rm_managed_to_managed_memory_copy()

	3.12 Hash API
	3.12.1 Defined Types, Enumerations, and Data Structures
	3.12.1.1 ix_hash_48
	3.12.1.2 ix_hash_64
	3.12.1.3 ix_hash_128
	3.12.1.4 ix_hash_multiplier_48
	3.12.1.5 ix_hash_multiplier_64
	3.12.1.6 ix_hash_multiplier_128

	3.12.2 API Functions
	3.12.2.1 ix_rm_hash_48_hash()
	3.12.2.2 ix_rm_hash_48_multiplier_set()
	3.12.2.3 ix_rm_hash_48_multiplier_get()
	3.12.2.4 ix_rm_hash_64_hash()
	3.12.2.5 ix_rm_hash_64_multiplier_set()
	3.12.2.6 ix_rm_hash_64_multiplier_get()
	3.12.2.7 ix_rm_hash_128_hash()
	3.12.2.8 ix_rm_hash_128_multiplier_set()
	3.12.2.9 ix_rm_hash_128_multiplier_get()

	3.13 Microengine Services API
	3.13.1 Defined Types, Enumerations, and Data Structures
	3.13.1.1 ix_me_xscale_lock_handle
	3.13.1.2 ix_me_xscale_lock_status
	3.13.1.3 ix_me_xscale_lock_owner
	3.13.1.4 ix_me_xscale_lock_info
	3.13.1.5 ix_me_transfer_register_type

	3.13.2 API Functions
	3.13.2.1 ix_rm_me_xscale_lock_new()
	3.13.2.2 ix_rm_me_xscale_lock_delete()
	3.13.2.3 ix_rm_me_xscale_lock_acquire()
	3.13.2.4 ix_rm_me_xscale_lock_release()
	3.13.2.5 ix_rm_me_xscale_lock_get_info()
	3.13.2.6 ix_rm_me_transfer_register_read()
	3.13.2.7 ix_rm_me_transfer_register_write()
	3.13.2.8 ix_rm_me_signal()

	3.14 Debug Support API
	3.14.1 API Functions
	3.14.1.1 ix_rm_mem_status_print()
	3.14.1.2 ix_rm_scratch_ring_print_info()
	3.14.1.3 ix_rm_scratch_ring_print_data()
	3.14.1.4 ix_rm_sram_ring_print_info()
	3.14.1.5 ix_rm_sram_ring_print_data()
	3.14.1.6 ix_rm_free_list_print_available_buffers()
	3.14.1.7 ix_rm_free_list_print_buffers_info()
	3.14.1.8 ix_rm_free_list_print_info()
	3.14.1.9 ix_rm_buffer_print_meta()
	3.14.1.10 ix_rm_buffer_print_data()
	3.14.1.11 ix_rm_buffer_print_debug_info()

	Core Component Infrastructure 4
	4.1 API Functions
	4.1.1 ix_cci_cc_add_event_handler()
	4.1.2 ix_event_func()
	4.1.3 ix_cci_cc_add_event_handler_ex()
	4.1.4 ix_cci_change_event()
	4.1.5 ix_cci_cc_add_message_handler()
	4.1.5.1 ix_msg_handler()

	4.1.6 ix_cci_cc_add_packet_handler()
	4.1.6.1 ix_pkt_handler()

	4.1.7 ix_cci_cc_create()
	4.1.7.1 ix_cc_init()
	4.1.7.2 ix_cc_fini()

	4.1.8 ix_cci_cc_destroy()
	4.1.9 ix_cci_cc_remove_event_handler()
	4.1.10 ix_cci_cc_remove_message_handler()
	4.1.11 ix_cci_cc_remove_packet_handler()
	4.1.12 ix_cci_exe_add_policy()
	4.1.13 ix_cci_exe_get_info()
	4.1.14 ix_cci_exe_run()
	4.1.14.1 ix_exe_init()
	4.1.14.2 ix_exe_fini()

	4.1.15 ix_cci_exe_set_default()
	4.1.16 ix_cci_exe_shutdown()
	4.1.17 ix_cci_init()
	4.1.18 ix_cci_fini()
	4.1.19 ix_cci_policy_add_branch()
	4.1.20 ix_cci_policy_add_leaf()
	4.1.21 ix_cci_policy_create()
	4.1.22 ix_cci_policy_destroy()
	4.1.23 ix_cci_register_fatal_error_handler()
	4.1.23.1 ix_ferror_func()

	4.1.24 ix_cci_send_message()
	4.1.25 ix_cci_send_packet()

	4.2 Symbolic Constants—Tuning Behavior and Memory Footprint

	TCAM Lookup Libraries 5
	5.1 Defined Types, Enumerations, and Data Structures
	5.1.1 Constants
	5.1.2 ix_lkup
	5.1.3 ix_lkup_table
	5.1.4 ix_lkup_table_type
	5.1.5 ix_lkup_tcam_params
	5.1.6 ix_lkup_table_conf
	5.1.7 ix_lkup_cookie

	5.2 Lookup Management Library
	5.2.1 Initialization APIs
	5.2.1.1 ix_lkup_sw_init()
	5.2.1.2 ix_lkup_tcam_init()

	5.2.2 Table Macros
	5.2.2.1 IX_LKUP_CREATE_TABLE()
	5.2.2.2 IX_LKUP_DESTROY_TABLE()
	5.2.2.3 IX_LKUP_FINI()
	5.2.2.4 IX_LKUP_ADD_ENTRY()
	5.2.2.5 IX_LKUP_REMOVE_ENTRY()
	5.2.2.6 IX_LKUP_UPDATE_ENTRY()
	5.2.2.7 IX_LKUP_SEARCH_TABLE()
	5.2.2.8 IX_LKUP_FIND_ENTRY()
	5.2.2.9 IX_LKUP_READ_FIRST_ENTRY()
	5.2.2.10 IX_LKUP_READ_NEXT_ENTRY()
	5.2.2.11 IX_LKUP_RESET_TABLE()
	5.2.2.12 IX_LKUP_SET_PROPERTY()
	5.2.2.13 IX_LKUP_GET_PROPERTY()
	5.2.2.14 IX_LKUP_GET_TABLE_INFO()

	5.3 Microengine Hardware Lookup
	5.3.1 TCAM Lookup APIs
	5.3.1.1 ix_tcam_lkup_build_handle()
	5.3.1.2 ix_tcam_lkup_start()
	5.3.1.3 ix_tcam_lkup_complete()
	5.3.1.4 ix_tcam_lkup_get_data()

	5.4 Microengine Software Lookup
	5.4.1 Longest Prefix Match APIs
	5.4.1.1 ix_sw_lkup_lpm_build_handle()
	5.4.1.2 ix_sw_lkup_lpm_search()

	5.4.2 Exact Match APIs
	5.4.2.1 ix_sw_lkup_exact_build_handle()
	5.4.2.2 ix_sw_lkup_exact_search()

	5.4.3 Range Match APIs
	5.4.3.1 ix_sw_lkup_range_build_handle()
	5.4.3.2 ix_sw_lkup_range_search()

	5.5 Implementation Considerations
	5.5.1 ix_s_lkup
	5.5.2 ix_s_lkup_table

	Operating System Services Layer (OSSL) Support 6
	Intel XScale® Core Support 7
	Optimized Data Plane Libraries Support 8
	Metadata Configuration Tool 9
	9.1 Introduction
	9.2 Metadata Configuration Tool Process
	9.2.1 Creating an Application Configuration File
	9.2.1.1 Naming Conventions
	9.2.1.2 Application Configuration File Contents

	9.2.2 Creating a Dispatch Loop Configuration File
	9.2.2.1 Naming Conventions
	9.2.2.2 Dispatch Loop Configuration File Contents

	9.2.3 Creating a Microblock Configuration File
	9.2.3.1 Naming Conventions
	9.2.3.2 Microblock Configuration File Contents

	9.3 List File Overview
	9.4 dl_meta.uc and buffer.h File Overview
	9.4.1 dl_meta.uc File Description
	9.4.1.1 Accessor Macros
	9.4.1.2 Block Macros
	9.4.1.3 Dispatch Loop Constants
	9.4.1.4 dl_meta.uc Example

	9.4.2 buffer.h File Description

	9.5 Using the Metadata Configuration Tool
	9.5.1 System and Software Requirements
	9.5.2 File Locations
	9.5.3 Invoking the Tool

	Glossary A

