

PCI Interconnect for CP-PDK
Application Note

March 2004

R

Information in this document is provided in connection with Intel® products and services. No license, express or
implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in
Intel's Terms and Conditions of Sale for such products and services, Intel assumes no liability whatsoever, and Intel
disclaims any express or implied warranty, relating to sale and/or use of Intel® products and services including liability
or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or
other intellectual property right. Intel products and services are not intended for use in medical, life saving, or life
sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Copyright© 2004 Intel Corporation.

* Other brands and names are the property of their respective owners.

R

Intel Confidential

1 Overview ... 7
1.1 Acronyms... 7
2 CP-PDK Architecture Overview .. 11
3 PCI Interconnect Details .. 17
3.1 Flow of Control and Data Packets ... 18

3.1.1 FE Packet handler Flow.. 20
3.1.1.1 Incoming Packets..20
3.1.1.2 Outgoing Packets..20

3.1.2 CE Packet Handler (VxWorks).. 21
3.1.3 VIP Tunneling Module (Linux)... 21

Appendix A: PCI Datagram API ... 23
Appendix B: Network Driver Abstraction ... 27
Appendix C: Character Driver Abstraction... 29
Appendix D: IXDP2400 System Overview .. 31
Appendix E: PCI Driver Design Details... 35

Contents

Figures
Figure 1: Control Plane PDK Architecture Components ... 11
Figure 2: Transport Plug-in Architecture ... 12
Figure 3: Transport Plug-in Architecture with the PciDg drivers.............................. 17
Figure 4: High-level Overview of UI components.. 19
Figure 5: Transport Plug-in Architecture with the PciDg drivers.............................. 27
Figure 6: Interaction between the TCP/IP stack, PciDg Network driver and PciDg

driver... 28
Figure 7: Interaction between the User space program, PciDg Character driver and

PciDg driver .. 30
Figure 8: PCI Subsystem in Angel Island.. 32
Figure 9: Usage Scenario of the communication system.. 36

Tables
Table 1. Terms and Acronyms.. 7

iii PCI Interconnect for CP-PDK Application Note

 R

Revision History
Revision Description Date Author

2.11 Updated for Release 2.11 March 2004 P. L. Srinivas

2.1 Updated for Release 2.1 December 2003 P. L. Srinivas

iv
Intel Confidential

Part 1: Overview

R

1 Overview
This application note describes the high level design changes required in CP-PDK for supporting the bi-
directional PCI communication between the forwarding plane software running on IXP2xxx family of
network processors and control plane software running on IA-32/IXC processor. This document guides
the customers on how to plug-in the existing PCI driver to the interconnect layer of CP-PDK.

1.1 Acronyms
The following table lists the terms used in this document and provides definition for each term.

Table 1. Terms and Acronyms

Acronyms Description

AI Angel Island

CC Core Component

CE Control Element

CPCI Compact PCI

CP-PDK Control Plane Platform Development Kit

DG Datagram

FE Forwarding Element

ForCES Forwarding and Control Element Separation protocol

FPM Forwarding Plane Module

NPF Network Processing Forum

PCI Peripheral Component Interconnect

PMC PCI Mezzanine Card

PDK Platform Development Kit

VIDD Virtual Interface Device Driver

7
Control Plane PDK 2.11

PCI Interconnect for CP-PDK
Application Note

R

8
Intel Confidential

Part 2: CP-PDK Architecture
Overview

R

2 CP-PDK Architecture Overview
The architecture of the Control Plane PDK defines three main components as shown in Figure 1:

• Control plane module

• Transport plug-ins

• Forwarding plane module

Control Plane
Module

Transport Plugins

Forwarding
Element

Forwarding
Element

Figure 1: Control Plane PDK Architecture Components

The control plane and forwarding element(s) can have different communication mechanisms or
protocols to exchange information with each other. These protocols can either be IETF standard
protocols like ForCES or some proprietary implementation and so on. The planes can also be connected
using different types of interconnects. Some examples of such interconnects are InfiniBand, PCI,
various back-plane switching fabrics and so on.

The transport plug-in performs the following:

• Removes the type and details of the communication mechanisms from the rest of the PDK
implementation

• Providesthe functionality required for separation of the control plane and forwarding plane(s).

• Enables plug-and-play functionality for different communication mechanisms with the rest of
the PDK.

Thus, you can place different types of transport plug-ins between the planes to enable transparent
communication between the control and forwarding Planes. This section describes the architecture for
the transport plug-in.

The architecture of the transport plug-in is shown in Figure 2. The plug-in is composed of four distinct
parts:

• FP plug-in API Æ This is an abstraction API that hides the transport plug-in details and
presents a uniform API, which is invoked by the NPF API implementation modules on the
control plane.

• Backend API Æ This API is exposed by the transport plug-in on the forwarding plane, and the
the FP Module of the PDK uses it.

11
Control Plane PDK 2.11

PCI Interconnect for CP-PDK
Application Note

R

• Transport protocol Æ This is the standard or proprietary protocol such as IETF’s ForCES, used
to exchange information between the planes and it consists of two agents:

� Control plane agent Æ Part of the transport protocol that resides on the control plane and
communicates with the FP agent

� Forwarding Plane Agent Æ Part of the transport protocol that resides on the forwarding
plane and communicates with the CP agent

• Interconnect abstraction layer Æ This abstraction layer hides the interconnect details and is used
by the transport protocol to send and receive messages without knowing whether the
interconnect is PCI or Infiniband or Ethernet.

Tr
an

sp
or

t P
lu

gi
n

FP Plugin API

Control Plane AgentC
on

tro
l

Pl
an

e
Fo

rw
ar

di
ng

Pl
an

e

Interconnect Abs.

Interconnect Abs.

Forwarding Plane
Agent

Transport
Protocol

Plugin Backend API

Figure 2: Transport Plug-in Architecture

Refer to CP-PDK software architecture document for more details about the transport plug-in. The
interconnect layer, control plane agent and forwarding plane agent are not needed in co-located CP-
PDK configuration as both the control plane and forwarding plane software runs on the same processor.
Refer to co-located transport plug-in design document for details.

The interconnect layer mainly consists of two parts:

• Packet buffer management

• Datagram API

12
Intel Confidential

R
Overview

13
Control Plane PDK 2.11

If the interconnect is changed from Ethernet to PCI, the packet buffer management APIs remain the
same, while the datagram APIs must be mapped to the new interconnect layer.

PCI Interconnect for CP-PDK
Application Note

R

14
Intel Confidential

Part 3: PCI Interconnect Details

R

3 PCI Interconnect Details
This application note proposes to have two software drivers for the PCI interconnect implementation.
These two drivers must be installed on both the forwarding plane and control plane machines. Both the
drivers together form the bi-directional communication system between the control plane and the
forwarding plane. They both have the same design and perform the same functions but are on the
opposite sides/interfaces of the PCI-to-PCI bridge, for example, i21555 or i21154.

Some of the design goals for the PCI Datagram driver (PCI DG) are as follows:

• To exist as an independent PCI device driver in the Linux kernel instead of being the network or
character driver.

• To expose an abstract Datagram API, that can be used by other drivers such as network or
character drivers for bi-directional communication. These datagram APIs will remain same
irrespective of whether we use cPCI backplane interface or PrPMC module for PCI
communication. Refer to Appendix D for details on cPCI and PMC interfaces in IXDP2400.

The network driver model makes the design simpler and very few changes are needed in the existing
CP-PDK code base and the TCP/IP stack overhead follows this approach. Since the character driver
model does not have the overhead of traversing the TCP/IP stack in the Linux kernel, it is also
optimized.

Figure 3 shows how the PCI DG drivers fit in with the transport plug-in architecture. Another detailed
figure is shown in Appendix B.

Appendix B describes the network driver abstraction for the driver and Appendix C describes the
character driver abstraction.

FP Plugin API

Control Plane Agent

Interconnect Abs.

Interconnect Abs.

Forwarding Plane
Agent

Plugin Backend API

Host PciDg driver

IXP PciDg driver

user space
kernel

kernel
er space

C
on

tro
l

Pl
an

e
Fo

rw
ar

di
ng

Pl
an

e

us

Tr
an

sp
or

t P
lu

gi
n

PCI
Back-plane

Figure 3: Transport Plug-in Architecture with the PciDg drivers

17
Control Plane PDK 2.11

PCI Interconnect for CP-PDK
Application Note

R

3.1 Flow of Control and Data Packets

The packets that are destined for protocols/applications on control plane must be transported from the
forwarding plane. In the same way, the packets from the control plane that are transmitted to the virtual
interfaces and which should be sent to the corresponding physical interfaces on the forwarding plane
must be transported to the forwarding plane. Such packets are termed as data packets.

The packets that are transported to the forwarding plane through the transport plug-in and NPF API
invocations are termed as control packets as these are the request/response invocations that control the
underlying forwarding plane.

Figure 4 shows the path of data and control packets from CE to FE and vice versa. If the interconnect is
Ethernet, then the control packets are sent through the transport plug-in and the data packets are sent
using raw sockets (protocol id 105) from CE to FE and vice versa. This means there is a separate path
for data and control packets.

The data packets are sent using IP-in-IP tunneling. The IP-in-IP tunneling is the standard mechanism
used for tunneling IP packets. The IP-in-IP tunnel adds an additional IP header that identifies the new
destination of the packet. For instance the control plane becomes the destination if it is an incoming
packet being forwarded by the forwarding plane.). The corresponding ends of the tunnel compose or
interpret the headers.

If the interconnect is changed between CE and FE, then the part of VIDD implementation that provides
abstraction of the multiple forwarding plane interfaces as virtual interfaces to the control plane will not
undergo any changes.

18
Intel Confidential

R
PCI Interconnect Details

19
Control Plane PDK 2.11

Virtual Internet Protocol
(VIP)

User

Kernel

sockets

IP Layer

Transport
Protocol

(ForCES)

Tunnelled
data packets

Forwarding Plane Plug in API

Virtual Interface Controller

Transport Plug in

TCP UDP

VI-0 VI-1 VI-2 VI-3

virtual
interfaces

CE-FE interconnect
interface

create/manage virtual
interfaces

Local
TCP/IP
Stack

FP Module

Forwarding
Element Transport Plug in

Control Element

FE Packet Handler

NPF API Implementation

IXA SDK

Data
Packet

Path

Control
Packet
Path

Figure 4: Flow of Control and Data Packets for Ethernet Interconnect

The main modules that are affected with the interconnect change are:

• FE packet handler

• CE packet handler for VxWorks

• VIP tunneling module for Linux

• Datagram APIs of interconnect layer

The socket interface (stream sockets for control packets and raw sockets for data packets) is used in the
current implementation for Ethernet interconnect. Hence if the network driver approach is adopted you
do not have to make any changes in these modules for PCI interconnect as the network driver allows
opening the sockets over the PCI network driver.

The following sub-sections make reference to the PCI datagram APIs. Refer to the sample PCI
datagram APIs in Appendix A for details.

If you do not adopt the network driver approach you must make changes in all the above-mentioned
modules to map the datagram APIs of interconnect layer to the PCI DG API calls. Some of the

PCI Interconnect for CP-PDK
Application Note

R

following changes must be done in various modules if the network driver model approach is not
adopted:

• The IP-in-IP tunneling is not used for data packets.

• The original data packet along with the VIP header or meta data (portId, length) is sent over the
PCI.

• Do not encapsulate the data packet in another IP header.

• The VIP module should be changed so that the VIP tunnel IP header is not included prior (pre-
pended) to the IP packet. The VIP module tunnel transmit function internally uses the PCI
datagram send function.
The message type (param in pci_sendDatagram) distinguishes whether the message is a control
packet or a data packet. You need to make the required changes to CE packet handler also as the
IP-in-IP tunneling is not used.

• The portion of VIP module that handles the creation/deletion of virtual interfaces on the control
plane remains the same. There will be changes to FE packet handler on the forwarding plane
side.

3.1.1 FE Packet handler Flow
The packets entering the FE from the network and that are destined for the control plane enters the
packet handler through the FP module Core Component. The packet handler registers a callback with
the FPM CC in order to receive these packets by calling the function ix_cc_fpm_register_pkt_hdlr_cb.
The FE packet handler receives the packets coming from the control plane that are destined for network.

3.1.1.1 Incoming Packets

Incoming packets follow the following sequence of steps as they traverse through the FE:

1. The FPM CC receives a packet from mostly from the stack driver) and passes it to the
registered callback function. This callback function is passed bladeId, PortId, length and data
buffer.

2. The packet handler invokes the pci_sendMessage function call to send the data packet to
the CE. The VIP headers such as portId, length alone are added to the packet. The packet is not
encapsulated in another IP packet.

3.1.1.2 Outgoing Packets

 The outgoing packets are received from the control plane and passed to the FPM CC using the
following sequence of events:

1. The PCI DG network driver receives the incoming packet by the invocation of InMessage call.
The VIP header is stripped off of the packet.

2. The portId is determined from this VIP header.

3. The resulting packet is given to the FPM CC through the function
ix_cc_fpm_sync_send_packet along with the portId.

20
Intel Confidential

R
PCI Interconnect Details

21
Control Plane PDK 2.11

3.1.2 CE Packet Handler (VxWorks)
The CE packet handler registers the FE bind/unbind events with the FP Plug-in in case of Ethernet
interconnect, but it does not do so in case of PCI interconnect. When the PCI datagram driver receives
the data packet from the FE, it checks the message type. Refer to Appendix E for the format of the
message to be transported over the PCI interconnect of the packet. If it is in a data packet format, it is
sent to the CE packet handler.

The CE packet handler extracts the VIP header from the data packet and the packet is converted to the
MBLKs. The packet is then sent to the VIDD implementation of VxWorks by calling the function
pdk_vidd_receive_pkt(). There might be some requirement to maintain the mapping between
the PCI peerId and FE id in this case. The pdk_vidd_npt_send function is called for the outgoing
packets and from this function you need to call pciDg_sendMessage function instead of
ph_write_packet. The parameter message type in the pciDg_sendMessage API invocation
should indicate that this is a data packet.

3.1.3 VIP Tunneling Module (Linux)
The various IOCTL calls implemented by the VIP tunneling module to add the IP tunnel, delete IP
tunnel interface on the control plane remains same even if the interconnect is changed between the CE
and FE. The PCI DG driver on receiving packet with message type as data packet sends the packet to
VIP module.

The VIP module extracts the portId from the VIP header of the packet and sends the packet to the
networking stack for further processing. The VIP module’s packet transmit function calls the
pciDg_sendMessage function to send the data packet to the forwarding plane for outgoing packets.
This means the pciDG_sendMessage is called from multiple places for control and data packets.
Therefore, some synchronization mechanism must be built in the PCI DG driver itself so that no two
threads simultaneously call the pciDg_sendMessage function.

PCI Interconnect for CP-PDK
Application Note

R

22
Intel Confidential

R

Appendix A: PCI Datagram API
This appendix provides details of the sample PCI datagram APIs. The PCI Datagram API is used by
other modules or drivers in the Linux kernel or VxWorks* such as the network driver and character
driver (\Refer to appendix B and C for details. These drivers register as clients of the PciDg API and
use the facilities provided by the PciDg driver to read and write messages across the i21555/i21154.

1. Struct PciDg_Client used for callbacks in PCI Datagram API

Syntax
typedef struct {
void (*connReady)(void *context, int id);
void (*messageIn)(void *context, int srcId, int type, const char
*data,
 int dataLen);
void (*peerReady)(void *context, int id);
void (*peerGone)(void *context, int id);
void *context;
} PciDg_Client;

Description of fields

1. VOID (*CONNREADY)(VOID *CONTEXT, INT ID);

This function is called when the client of PCI DG driver layer that is the PCI network or character
device driver is ready to send and receive This is called before your first messageIn call. It is OK to
leave this null.

Parameters

context - A parameter specified at open time

id - Your own ID in this network

2. void (*messageIn)(void *context, int srcId, int type, const char
*data, int dataLen);

This function is called whenever a message is received from another node on the network. You must
declare your own callback function before you open the PCI Datagram interface. The PciDg driver
owns the data buffer in this call.

Parameters

context - A parameter specified at open time

srcId - The ID of the source processor

type - The message type. The type of message is not used in the PCI network driver model but it can be
used in some alternate design where the PCI DG user wants to put the message type as control or data
packet

23
Control Plane PDK 2.11

PCI Interconnect for CP-PDK
Application Note

R

data - A buffer holding the data. When you return from the callback, this buffer is re-used. So if you
want to keep the data, you must copy the data. This is 8-byte aligned.

dataLen - The length of the data in the buffer

3. void (*peerReady)(void *context, int id);

This function is called when a new system has shown up on the pciDg network. This function is called
before messageIn receives a message from the new node. It is OK to leave this null.

Note: This remote node need not have its client registered. The remote node is connected and has its
pciDg driver running.

Parameters

• context - A parameter specified at open time

• id - The ID of the node that is added to the system recently

4. void (*peerGone)(void *context, int id);

This function is called when a new system has left the pciDg network. You will not receive messageIn
calls after the receipt of this call. It is OK to leave this null.

Parameters

• context - A parameter specified at open time

• id - The ID of the node that was just removed from the system

5. void *context;

This argument is passed into all callbacks.

2. Registering Client for PCIDG API

Syntax

int pciDg_registerClient(const PciDg_Client *client);

Description of function

Opens the PCI Datagram interface. If you have received any messages before opening, then the callback
is called for each of these messages before the return of the open. If the pciDg network is already set up,
then calls to both client->connReady and client->peerReady arrives before you return from this
function.

Parameters

client - Your client state. This client state is copied into a buffer in the pciDg system and you can free
this after return.

Return Value

24
Intel Confidential

R
PCI Datagram API

0 – If success

EBUSY - If there is a client registered already.

3. De-registering Client for PCIDG API

Syntax

void pciDg_unregisterClient(void);

Description of function

Unregisters a client. Another module can register as a new client after calling this

4. Send Message Call

Syntax
int pciDg_sendMessage(int peer, int type, const char *data, int
dataLen, int waitOk);

Description of function

Sends a datagram to peer. If the peer’s ring buffer is full, then the datagram is not sent and it returns one
of the following errors:

• non-blocking call if waitOk is 0 ;

• Waits until the peer reads enough data from the buffer to fit the new message, if the waitOk is
nonzero (blocking call)

If you use this function from interrupt level you must set the waitOk to 0. The client of the PciDg
driver/caller owns the data buffer in this call and is responsible to free it.

Parameters

peer - The destination node

type - The message type

data - The data buffer

dataLen - The number of bytes in the data buffer

waitOk - If zero, do not wait for flow control. If one, wait if needed

Return Value

0 - Message sent successfully.

-EWOULDBLOCK - Recipient did not have enough buffer space for message and waitOk was 0

-ERESTARTSYS - Recipient did not have enough buffer space for message. waitOk was 1, but another
signal arrived before interrupt and the data could not be transferred.

-ENODEV - The peer indicated by dest is not ready to accept the data currently. It denotes that the
destination is yet to finish its booting.-ENOSPC - The message you are trying to send is bigger than the
MTU -EINVAL - If dest is your own ID

25
Control Plane PDK 2.11

PCI Interconnect for CP-PDK
Application Note

R

26
Intel Confidential

R

Appendix B: Network Driver Abstraction
This appendix describes the PciDgNet driver. The PciDgNet driver provides the network driver
abstraction for the PCI Datagram driver in the Linux kernel. It makes use of the module stacking
facility provided in the Linux kernel that allows drivers to communicate with each other using well-
defined APIs that are exported to the kernel. The PciDgNet driver uses the PCI Datagram API exported
by the PciDg driver to communicate with it.

The PciDg driver must be successfully installed in the kernel before the installation of the PciDgNet
driver. The PciDgNet driver provides an Ethernet driver abstraction for the PciDg driver to the Linux
kernel. Thus for the user space applications/tools, it looks like any other Ethernet device installed on the
system. The ifconfig command can be used to configure an IP address for the Ethernet device.

Figure 5 shows how the PciDgNet driver, PciDg driver, and the rest of the Linux kernel (TCP/IP stack)
fit in with the transport plug-in architecture defined by the CP-PDK software architecture specification
document. The PciDgNet driver is currently used for both the transport plug-in (since it does not require
any modification to the interconnect abstraction layer) and VIDD in the CP-PDK.

CP Agent

Interconnect Abs.

Host PciDg driver

IXP PciDg driver

user space

kernel

kernel

er space

PciDg Network driver

PciDg Network driver
TCP/IP stack

TCP/IP stack

Interconnect Abs.

FP Agent

C
on

tro
l

Pl
an

e
Fo

rw
ar

di
ng

Pl
an

eus

Tr
an

sp
or

t P
lu

gi
n

PCI
Back-plane

Figure 5: Transport Plug-in Architecture with the PciDg drivers

Design Overview

The PciDgNet driver uses the picDg_registerClient() call to register itself with the PciDg driver during
initialization. Then it uses an obsolete Ethernet vendor address (AA 00 00 00 00) as the first five octets
of the address for the device. The last octet of the address is uniquely assigned for each device and it is
based on the unique Id that is passed to the driver by the PciDg driver using the ConnReady() callback
function. Thus the driver uses the last octet of the Ethernet address to identify the peer to which the data
is to be sent. The driver also uses ARP just like any other Ethernet driver to resolve between IP and
MAC addresses.

27
Control Plane PDK 2.11

PCI Interconnect for CP-PDK
Application Note

R

The PciDgNet driver first identifies the peer based on the last octet in the Ethernet address for
transmitting a data packet. It then calls the pciDg_sendMessage() function of the PciDg driver which
takes care of sending the packet to the peer. The PciDg driver uses the MessageIn() callback function to
send the packet to the PciDgNet driver during the packet reception. The PciDgNet driver then allocates
the socket buffer and copies the packet to it before sending it to the TCP/IP stack in the kernel. The
driver maintains the net_device_stats structure to report the statistics for the driver.

The PCIDgNet and PCI DG are kernel loadable modules in case of Linux. Therefore, their
corresponding initialization routines are called at the time these modules are inserted into the kernel. In
case of VxWorks, their initialization routines are called from the CP-PDK initialization routines.

The interactions between the TCP/IP stack in the Linux kernel, PciDg Network driver and the PciDg
driver are illustrated in Figure 6.

TCP/IP stack PciDg Network
Driver

PciDg Driver PCI
back-plane

registerClient()

pciDg_net_tx()

send message

ConnReady()

sendMessage()

MessageIn()

pciDg_net_rx()

pciDg_net_init()

pciDg_net_release()

unregisterClient()

message received

Figure 6: Interaction between the TCP/IP stack, PciDg Network driver and PciDg driver

28
Intel Confidential

R

Appendix C: Character Driver Abstraction
This appendix describes the PciDgChar driver. The PciDgChar driver provides the character driver
abstraction for the PCI Datagram driver in the Linux kernel. It also makes use of the PCI Datagram API
exported by the PciDg driver to communicate with it.

The PciDgChar driver should be installed after the installation of PciDg driver in the kernel. The mknod
system call is used to create an entry in the /dev directory for the PciDgChar driver and associate a
name with the driver’s major and minor number.

The following file operations can be performed on the PciDgChar device by programs in the user space.
It supports both blocking and non-blocking I/O.
int open (const char *pathname, int flags);

int close (int fd);

ssize_t read (int fd, void *buf, size_t count);

ssize_t write (int fd, void *buf, size_t count);

int ioctl (int fd, int cmd, ….);

The ioctl operations supports three commands that are used to provide TCP/IP socket-like behavior by
the character driver and, which is required for the COPS portability layer (Interconnect abstraction layer
in the transport plug-in architecture). The ioctl commands are CONNECT, DISCONNECT and
ACCEPT and it is similar to the connect(), accept() socket calls.

Design Overview

During initialization, the PciDgChar driver uses the pciDg_registerClient() call to register itself with the
PciDg driver. The driver uses the minor number of the device to identify the peer with which it is
associated. It has an array of device specific structures that are used to maintain information about each
device (with different minor number) associated with the driver.

The driver first copies the user space buffer into an internal kernel buffer during a write operation.
Using the minor number of the device it then identifies the peer to which the buffer should be sent and
calls the pciDg_sendMessage() function of the PciDg driver which sends the buffer.

When the PciDg driver receives a buffer it uses the MessageIn() callback to send it to the PciDgChar
driver. The PciDgChar driver stores it in an internal read buffer for that particular peer. When a read
operation is performed on the driver, it copies the data from the internal read buffer for that device
(minor number) and passes it back to the user. Appropriate locking mechanisms are used to avoid race
conditions.

The interactions between the User space program, PciDg Character driver and the PciDg driver are
illustrated in Figure 7

29
Control Plane PDK 2.11

PCI Interconnect for CP-PDK
Application Note

R

User Space
Program

PciDg Character
Driver

PciDg Driver PCI
back-plane

registerClient()

pciDg_write()

send message

ConnReady()

sendMessage()

MessageIn()

pciDg_read()

init()

cleanup()

unregisterClient()

message received

Figure 7: Interaction between the User space program, PciDg Character driver and PciDg driver

30
Intel Confidential

R

Appendix D: IXDP2400 System Overview
The IXDP2400 development platform (Angel Island) is an evaluation development platform for
IXP2400. The IXMB2400 base card is the main board for IXDP2400. The IXMB2400 base card
consists of two IXP2400 units arranged in a pipelined ingress-egress fashion for optimum performance
of full duplex OC-48 data throughput rates. The IXMB2400 base card is housed in a chassis. The
chassis supports a single IXMB2400 base card with a media card and a switch fabric interface card.

PCI subsystem in Angel Island

The following diagram is the high level representation of PCI subsystem in an Angel Island
development platform. There are two options for connecting the control plane processor system
(running the control plane software) to the Angel Island system (running data plane software) through
the PCI interconnect:

• cPCI backplane interface

• PMC slot interface

In case the control plane processor system is connected through the cPCI backplane, the communication
between the Ingress side XSCALE processor (of Angel Island) and the control plane processor will be
through i21555 non-transparent PCI-PCI bridge.

Note: In case of CP-PDK, the control plane needs to directly communicate with the ingress side XSCALE
processor only through the PCI interconnect. The control plane processor will never communicate
directly to the egress side XSCALE processor. The communication between the ingress XSCALE and
egress side XSCALE processor occurs using the resource manager framework as provided in the IXA
SDK.

If the control plane processor system is connected through the PMC slot interface then the
communication between the Ingress side XSCALE (of Angel Island) and the control plane processor
system (that is PrPMC module) will be through the i21154 transparent PCI-PCI bridge. The low level
PCI device driver design will vary depending upon the type of PCI-to-PCI bridge that is used for
communication between the data plane and control plane processor.

31
Control Plane PDK 2.11

PCI Interconnect for CP-PDK
Application Note

R

Figure 8: PCI Subsystem in Angel Island

The PCI Datagram driver enables the bi-directional PCI communication between the Angel Island (AI)
platform running Linux/VxWorks and the Host PC through the i21555 non-transparent PCI-to-PCI
bridge or i21544 transparent PCI-to-PCI bridge. Both the Transport Plugin and the VIDD modules of
the NPF PDK use the PCI Datagram driver.

Intel 21555 Non-Transparent PCI-to-PCI Bridge

The i21555 is a non-transparent PCI bridge. It is termed as non-transparent bridge because of the
following reasons:

• Although the i21555 connects two PCI busses together, the two busses are not combined into a
single logical PCI bus (that is the CPU devices cannot be directly accessed on either bus by the
CPU). Instead, the i21555 requires a CPU on one bus to explicitly send bus requests through the
i21555 in order to access devices on the second bus.

The i21555 architecture consists of the following functional blocks:

• Data buffers

• Registers

• Control logic

32
Intel Confidential

R
IXDP2400 System Overview

The Registers is the main functional block that is used by the driver. The registers consist mainly of the
standard PCI configuration space registers and the memory or I/O mapped control and status registers
(CSR).

The x86 host processor is on the primary bus and the IXDP2400 is on the secondary bus on the Angel
Island system used by the PciDg implementation

Intel 21154 Transparent PCI-to-PCI Bridge

The i21154 is a second-generation PCI-PCI bridge and is fully compliant with the electrical and
protocol requirements of the PCI local bus specification revision 2.2, and the PCI-to-PCI bridge
architecture specification revision 1.0.

The i21555 functionally is similar to the i21154 transparent PCI-PCI bridge, as both provide a
connection path between the devices attached to two independent PCI buses.

The key difference in a i21154 while comparing with the i21555 is the presence of a transparent bridge
in the connection path between the host processor and a device, and the bridge is transparent to devices
and device drivers, while it is not so in the case of i21555. Since the i21555 is non transparent, the
device driver for the add-in card must be aware of the presence of the i21555 and manage its resources
appropriately.

The i21555 allows the entire subsystem to appear as a single virtual device to the host. This enables
configuration software to identify an appropriate driver for the subsystem. Once the transparent PCI-
PCI bridge is configured during system initialization, it operates without the aid of a device driver.

The transparent bridge does not require a device driver of its own, as it does not have any resources that
must be managed by the software during run-time. The driver need not know about the presence of the
bridge and manage its resources with a transparent bridge. The subsystem appears to the host system as
individual PCI devices on a secondary PCI bus and not as a single virtual device.

33
Control Plane PDK 2.11

PCI Interconnect for CP-PDK
Application Note

R

34
Intel Confidential

R

Appendix E: PCI Driver Design Details
Initialization

The initialization of the driver is different depending upon whether transparent or non-transparent PCI-
PCI bridge is used for communication.

Communication Overview

The PciDg driver creates a bi-directional, datagram-like communication system. The messages sent
from one CPU is delivered to the callback on the second CPU with perfect guaranteed delivery. If one
CPU is sending messages faster than the capacity of the recipient, then the sender may choose either to
wait for the recipient to catch up or have the message lost. This is handled using the waitOk parameter
as described in section 5.1.4.

The communication is built out of two unidirectional communication systems (one going in each
direction) thought they are bi-directional. It is easier to consider any one of these systems to explain the
design.

The communications system consists of a ring buffer, two counters, and a flag. This data structure is
called the CommWindow and the driver allocates it during initialization. The four parts of the structure
are:

• buffer: A ring buffer. Messages are written here by the sender and read by the receiver.

• dataStart: A counter. This is the index (in the buffer) of the next message that the receiver
should pick up. Every time the receiver picks up a message, the size of this message is added to
the current dataStart value. This is never written by the sender.

• dataEnd: A counter. This is the index (in the buffer) of the first unused byte after the last
message. Once the sender adds a message to the ring buffer, this is incremented. This is never
written by the receiver. When dataStart is equal to dataEnd, the buffer is empty. Note that
the pciDg code never fills the buffer totally as this would make dataStart and dataEnd be
equal and which can be confused to an empty buffer.

• waitingForRecv: A flag. This flag is set when the sender is waiting for the receiver to pick
up a message (thus freeing more space in the buffer). The receiver checks this flag after picking
up a message and updating the dataStart counter. An interrupt is delivered to the sender if
this flag is set.

Messages are put into the ring buffer with an 8-byte header prepended. The first four bytes are the size
of the message body in little endian; the second four bytes are the type of the message in little endian.
The type of the message is defined/passed by the client of the PciDg driver using the PciDg API,
described in Appendix A.

Once a message is placed in the buffer, dataEnd is adjusted to point to the first 4-byte boundary after
the end of the messages. Thus, messages have no restriction on alignment or length, but the header of
each message is always 4-byte aligned. For example 11 bytes message consume 20 bytes in the buffer
(4 bytes for length + 4 bytes for message type + 11 bytes of message + 1 byte of padding for alignment
of the next message).

The message length -1 is a special case. Messages are never put in the buffer wrapped. The message
length of -1 is written when the entire message cannot fit in the ring buffer without having to split the
message at the end of the buffer. This indicates that the next message will begin at byte 0 of the ring
buffer. The sender sets dataEnd to 0 after writing a -1 length to the ring buffer. The receiver sets

35
Control Plane PDK 2.11

PCI Interconnect for CP-PDK
Application Note

R

dataStart to 0 after reading a -1 length from the ring buffer. A usage scenario for the
communication system is shown in Figure 9.

start start

end

 start

 end

 end

Free buffer space

Size (4 bytes)

Type (4 bytes)

Data 10 bytes

Padding 2bytes

F b ff

Free buffer space

Free buffer space

F b ff

 1. An Empty Buffer 2. After writing 10 bytes 3. After reading 10 bytes

Figure 9: Usage Scenario of the communication system

The doorbell interrupts and mailbox registers can be used to synchronize the transfer of data between
the two processors. The doorbell register is used to interrupt the processor and inform that there is a
data to receive. The mailbox register is used to send the address of the data buffer from where the data
should be copied.

Race Conditions

Whenever there are two processors sharing a data structure, you must always consider race conditions.
The PciDg driver is no different. Follow the below-mentioned rules throughout the design to make the
race conditions solve easier:

• Each of the four elements of the communications structure (the ring buffer, the counters, and the
flag) is written by one processor only. This eliminates all problems involving write atomicity.

• The counters and the flag are all four bytes long and four bytes aligned. This means that a single
memory access across the PCI bus will always fully update the element, so that if one processor
reads and another processor writes, the reader is guaranteed to get the value before or after the
write, and never a value that is half-before and half-after the write.

• The dataStart and dataEnd counters control which parts of the ring buffer are accessible
by each processor. The sender will only be writing to the portion of the ring buffer after the
dataEnd counter and before the dataStart counter; the receiver will only be reading from
the portion of the ring buffer after dataStart and before dataEnd. Thus there will never be
a case of both processors accessing the same part of the ring buffer at the same time.

Performance Considerations

The basic principle used to optimize performance is to do local reads and remote writes. Each
communications system is split so that all writes are done to memory across the i21555 and all reads are
done from local memory. This gives the best performance, as reading from across the PCI bus often
requires the read to complete before the processor can continue. But writes to the PCI bus can often be
stored in a buffer on the processor, the bus controller, or the i21555 while the processor continues to
execute.

36
Intel Confidential

R
PCI Driver Design Details

Variable/Data Structure Nomenclature

Each processor’s driver has a pointer to two CommWindow structures. Each contains one half of the
elements necessary for bi-directional communication. These structures are called localWindow (for
the comm window that is in local memory) and peerWindow (for the comm window that is in the
other processor's memory). Each comm window contains:

• buffer: A ring buffer. You write to peerWindow's ring buffer to send, and to receive you
read from localWindow's ring buffer.

• peerDataStart: The dataStart field for the buffer in the other comm window – that is if
you are receiving you read from localWindow's buffer and then update peerWindow's
peerDataStart field.

• localDataEnd: The dataEnd field for the buffer in this comm window - if you are sending
you write data to peerWindow's buffer and then update peerWindow's localDataEnd
counter.

• flags: A field. The only flag defined currently is the flag which indicates that the processor
across the i21555/i21154 PCI-PCI bridge is waiting for a response to free up space in the comm
window.

This naming gives best performance by optimizing reads to be local (that is, not going across the PCI
busses) and writes to be remote. It is important to remember that the peer of a peer is local. So,
peerWindow->peerDataStart refers to first byte of the next message to receive in
localWindow->buffer.

Missing features

Thread Safety

Currently, it is assumed that only one sender is in action at a time. If two kernel threads were to call the
send function simultaneously, there would be many possible race conditions and problems, so modules
using the PciDg system must implement their own locks. It would be better to make the PciDg API
thread-safe.

Multiple Callbacks

The current design assumes to have one callback. This makes it impossible to have two modules using
PciDg simultaneously. It is desirable at some point to have multiple modules moving different types of
traffic over a single PciDg system at once, with the messages types differentiating the callbacks.

37
Control Plane PDK 2.11

R

38
Control Plane PDK 2.11

	Overview
	Acronyms

	CP-PDK Architecture Overview
	PCI Interconnect Details
	Flow of Control and Data Packets
	FE Packet handler Flow
	Incoming Packets
	Outgoing Packets

	CE Packet Handler (VxWorks)
	VIP Tunneling Module (Linux)

