
ReCPU: a Parallel and Pipelined Architecture
for Regular Expression Matching

Marco Paolieri, Ivano Bonesana
ALaRI, Faculty of Informatics

University of Lugano, Lugano, Switzerland
{paolierm, bonesani}@alari.ch

Marco D. Santambrogio
Dipartimento di Elettronica e Informazione

Politecnico di Milano, Milano, Italy
marco.santambrogio@polimi.it

ABSTRACT
Text pattern matching is one of the main and most compu-
tation intensive parts of systems such as Network Intrusion
Detection Systems and DNA Sequencing Matching. Soft-
ware solutions to this are available but often they do not
satisfy the requirements in terms of performance. This pa-
per presents a new hardware approach for regular expression
matching: ReCPU. The proposed solution is a parallel and
pipelined architecture able to deal with the common regular
expression semantics. This implementation based on sev-
eral parallel units achieves a throughput of more than one
character per clock cycle (maximum performance of current
proposed solution) requiring just O(n) memory locations
(where n is the length of the regular expression). Perfor-
mance has been evaluated synthesizing the VHDL descrip-
tion. Area and time constraints have been analyzed. Exper-
imental results are obtained simulating the architecture.

1. INTRODUCTION
Searching for a set of strings that match a given pattern is

a well known computation-intensive task, exploited in sev-
eral different application fields. Software solutions cannot
always meet the requirements in terms of speed. Nowadays
there is an increasing need of high performance computing
- as in the case of biological sciences. Matching a DNA pat-
tern among millions of sequences is a very common and com-
putationally expensive task in the Human Genome Project.
In Network Intrusion Detection Systems - where regular ex-
pressions are used to identify network attack patterns - soft-
ware solutions are not acceptable because they would slow
down the entire system. Such applications require a different
approach.

To move towards a full hardware implementation - over-
coming the performance achievable with software - it is rea-
sonable for these application domains.
Several research groups have been studying hardware ar-
chitectures for regular expressions matching: mostly based
on Non-deterministic Finite Automaton (NFA) as described
in [1] and [2].

In [1] an FPGA implementation is proposed. It requires
O(n2) memory space and processes a text character in O(1)
time (one clock cycle). The architecture is based on hard-
ware implementation of Non-deterministic Finite Automa-
ton (NFA); additional time and space are necessary to build
the NFA structure starting from the given regular expres-
sion. The time required is not constant, it can be linear in
best cases and exponential in worst ones. We do not face

with these limitations because we are able to store regu-
lar expressions using O(n) memory locations. We do not
require any additional time to start to process the regular
expressions (from now on RE). In [2] an architecture that
allows extracting and sharing common sub-regular expres-
sions, in order to reduce the area of the circuit, is presented.
It is necessary to re-generate the HDL description to change
the regular expression. It is clear that this approach gener-
ates an implementation dependent from the pattern. In [3]
a software that translates a RE into a circuit description has
been developed. A Non-deterministic Finite Automaton has
been utilized to dynamically create efficient circuits for pat-
tern matching (that have been specified with a standard rule
language).

The work proposed in [4] focuses on REs pattern match-
ing engines implemented with reconfigurable hardware. A
Non-deterministic Finite Automaton based implementation
is used, and a tool for automatic generation of the VHDL
description has been developed. All these approaches - [2],
[3], [4] - require a new generation of the HDL description
whenever a new regular expression needs to be processed.
In our solution we just require to update the instruction
memory with the new RE. In [5] a parallel FPGA implemen-
tation is described: multiple comparators allow to increase
the throughput for parallel matching of multiple patterns.

In [6] a DNA sequence matching processor using FPGA
and Java interface is presented. Parallel comparators are
used for the pattern matching. They do not implement the
regular expression semantics (i.e. complex operators) but
just simple text search based on exact string matching.

At the best of our knowledge this paper presents a dif-
ferent approach to the pattern matching problem: REs are
considered the programming language for a dedicated CPU.
We do not build either Deterministic or Non-deterministic
Finite Automaton of the RE, hence not requiring additional
setup time as in [1]. ReCPU - the proposed architecture - is
a processor able to fetch an RE from the instruction memory
and perform the matching with the text stored in the data
memory. The architecture is optimized to execute computa-
tions in a parallel and pipelined way. This approach involves
several advantages: on average it compares more than one
character per clock cycle as well as it requires less memory
occupation: for a given RE of size n the memory required is
just O(n). In our solution it is easily possible to change the
pattern at run-time just updating the content of the instruc-
tion memory without modifying the underlaying hardware.
Considering the CPU-like approach a small compiler is nec-
essary to obtain the machine code from the given RE (i.e.

specified with a high-level description).

In Section 2 a brief overview of Regular Expressions fo-
cusing on the semantics - that have been implemented in
hardware - is provided. The idea of considering regular ex-
pressions as a programming language is fully described in
Section 3. Section 4 describes in a top-down manner the
hardware architecture. Data Path is fully covered in 4.1
and Control Path in 4.2. Results of the synthesis process
in terms of critical path and area are discussed in Section
5: a comparison of the performance with other solutions is
proposed. Conclusions and future works are addressed in
Section 6.

2. REGULAR EXPRESSION OVERVIEW
A regular expression [7] (RE), often called a pattern, is an

expression that matches a set of strings. REs are used to
perform searches over text data, and are commonly present
in programming languages and text editors for text manip-
ulation. In an RE single characters are considered regular
expressions that match themselves and additionally several
operators are defined. Let us consider two REs: a and b,
the operators that have been implemented in our architec-
ture follow:

• a · b: it matches all the strings that match a and b;

• a|b: matches all strings that match either a or b ;

• a∗: matches all strings composed by zero or more oc-
currences of a;

• a+: matches all strings composed by one or more oc-
currences of a;

• (a): parentheses are used to define the scope and prece-
dence of the operators (e.g. to match zero or more
occurrences of a and b it is necessary to define the
following RE: (ab)∗).

3. PROPOSED APPROACH
The innovative idea we developed is to use REs as instruc-

tions for the ReCPU processor. ReCPU executes a program
stored in the instruction memory. The program is composed
by a set of instructions, each of those is part of the origi-
nal RE. The approach followed is the same used in general
purpose processors: a program is coded in a high-level lan-
guage (e.g. C) and compiled (e.g. using gcc) into low level
language (i.e. machine code). In our case an RE is defined
using the common high-level language - as described in [7]
or in [8] - it is compiled1 into machine code and executed by
ReCPU processor. Given a RE a compiler is used to gener-
ate the instructions sequence that are executed by the core of
the architecture on the text stored in the data memory. The
compiler program does not need to perform many optimiza-
tions due to the simplicity of the RE programming language.
The binary code produced by the compiler and composed of
opcode and operands instructs the execution unit using the
information about the number of parallel units of the ar-
chitecture. Our compiler uses the idea behind the VLIW

1We developed a compiler that translates the high level de-
scription of the RE to the ReCPU machine code. As ex-
plained the compiler takes advantage of some well known
VLIW techniques.

architecture design style: the parallel units are exposed to
the back-end (i.e. the compiler issues as many character
comparisons as the number of parallel comparators present
in the architecture).

Figure 1: Instruction Structure

Let us analyze some examples to clarify the mapping of
complex RE operators into the programming language: op-
erators like ∗ and + correspond to loop instructions. Such
operators find more occurrences of the same pattern (i.e.
looping on the same RE instruction). This technique guar-
antees the possibility to handle complex REs looping on
more than one instruction. The loop terminates whenever
the pattern matching fails. In case of + at least one valid it-
eration of the loop is required to validate the RE, while for ∗
there is no limitation on the minimum number of iterations.

Another feature of complex REs that can be perfectly
managed considering the RE as a programming language is
the use of nested parentheses (e.g. (((ab)∗(c|d))|(abc))). We
mapped this to the function call paradigm of all the common
programming languages. We treat an open parenthesis in
an RE as a function call and - as in common processors -
once the context (all the control path internal registers) is
saved in a stack data structure the execution can continue
normally. Whenever a close parenthesis is found a stack-pop
operation is performed and the validity of the RE is checked
combining the current operator, the current context and the
context popped from the stack. This way this architecture
can tackle very complex nested REs using a well and widely
known function paradigm approach.

ReCPU binary instructions generated by the compiler are
stored into the instruction memory. An instruction is com-
posed by opcode and operands (i.e. the characters present
in the pattern) as shown in Figure 1. The opcode is com-
posed by three different parts: the MSB represents the use
of a parenthesis (i.e. a function call), the next 2-bits repre-
sent the internal operands (i.e. and or or used to match the
characters present in the current instruction) and the last
bits select the external operand used to describe loops and
close parenthesis (i.e. a return after a function call). A RE
is completly matched whenever a NOP instruction is fetched
from the instruction memory. A complete list of opcodes is
shown in Table 12.

4. ARCHITECTURE DESCRIPTION
The ReCPU has been designed applying some well known

computer architectural paradigms to provide a high through-
put by limiting the number of stall conditions (that are the

2Please notice that don’t care values are expressed as “-”.

Table 1: Bitwise representation of the opcodes.

opcode RE
0 00 000 nop
1 -- --- (
0 01 --- and
0 10 --- or
0 -- 001)*
0 -- 010)+
0 -- 011)|
0 -- 1--)

largest waste of computation time during the execution).
This section overviews the structure of ReCPU - shown in
the block diagram of Figure 2 - focusing on the microar-
chitectural implementation. A more detailed description of
the two main blocks the Data Path and the Control Path, is
provided.

ReCPU has a Harvard based architecture that uses two
separate memory banks: one storing the text and the other
one the instructions (i.e. the RE). Both RAMs must be dual
port to allow parallel accesses. In the Data Path subsection
the use of parallel buffers is described.

The main idea proposed by this paper is the execution
of more than one character comparison per clock cycle. To
achieve this goal several parallel comparators - grouped in
units called Clusters - are placed in the Data Path. Each
comparator compares an input text character with a dif-
ferent one from the pattern. The number of elements of
the cluster is indicated as ClusterWidth and it represents
the number of characters that can be computed every clock
cycle whenever a sub-RE is matching. This figure is influ-
encing the throughput whenever a part of the pattern starts
matching the input text. The architecture is composed by
several Clusters - the total number is indicated as NCluster
- used to compare a sub-RE starting by shifted position of
the input text. This influences the throughput whenever the
pattern is not matching.

4.1 Data Path
In order to process more than one character per clock

cycle, we applied some architectural techniques to increase
the parallelism of ReCPU: pipelining, data and instructions
prefetching, and use of parallel memory ports.

The pipeline composed by two stages: Fetch/Decode and
Execute. The Control Path, as explained in the next section,
spends one cycle to precharge the pipeline and then it starts
performing the prefetching mechanism. In each stage we
introduced duplicated buffers to avoid stalls. This approach
was advantageous because the parts we replicated and the
corresponding control logic are not so complex, leading to
an acceptable increase in terms of area, while no overhead
in terms of time constraints is present since they work in
parallel. Hence, we have a reduction of the execution latency
with a consequent performance improvement.

Due to the regular instruction control flow a good predic-
tion technique with duplicated instruction fetching struc-
tures is able to avoid stalls. Indeed, considering the Fetch/

Decode stages, the two instruction buffers load two sequen-
tial instructions: when an RE starts matching, one buffer is
used to prefetch the next instruction and the other is used
as backup of the first one. In case that the matching pro-
cess fails (i.e. prefetching is useless) the first instruction (i.e.
the backup one) can be used without stalling the pipeline.
Similarly, the parallel data buffers reduce the latency of the
access to the data memory.

According to this design methodology in the Fetch/Decode
stage the decoder and the pipeline registers are duplicated.
By means of a multiplexer, just one set of pipeline regis-
ter values are forwarded to the Execution stage. As shown
in the diagram, the multiplexer is controlled by the Con-
trol Path. The decode process extracts from the instruction
the reference string (i.e. the characters of the pattern that
must be compared with the text), its length (indicated as
valid ref and necessary because the number of characters
composing the sub-RE can be lower than the width of the
cluster) and the operators used.

The second stage of the pipeline is the Execute. It is a fully
combinatorial circuit. The reference coming from the pre-
vious stage is compared with the data read from the RAM
and previously stored in one of the two parallel buffers. Like
in case of Fetch/Decode stage this technique (see Figure 2)
reduces the latency of the access to the memory avoiding the
need of a stall if a jump in the data memory is required3.

We implemented the comparison using a configurable num-
ber of arrays of comparators. This is shown in details in
Figure 3. Each cluster is shifted of one character from the
previous in order to cover a wider set of data in a single
clock cycle. The results of each comparator cluster are col-
lected and evaluated by the block called Engine. It produces
a match/not match signal going into the Control Path.

Our approach is based on a fully-configurable VHDL im-
plementation. It is possible to modify some architectural
parameters such as: number and dimensions of the paral-
lel comparator units (ClusterWidth and NCluster), width of
buffer registers and memory addresses. This way it is pos-
sible to define the best architecture according to the user
requirements, finding a good trade-off between timing, area
constraints and desired performance.

4.2 Control Path
We define an RE as a sequence of instructions that ac-

tually represent a set of conditions to be satisfied. If all
the instructions of an RE are matched, then the RE itself
is matched. The ReCPU Data Path fetches the instruction,
decodes it and verifies whether it matches the current part of
the text or not. But it cannot identify the result of the whole
RE. Moreover the Data Path does not have the possibility
to request data or instructions from the external memories.

To manage the execution of the RE we designed a Con-
trol Path block containing some specific hardware structures
that we are going to describe in the current section. The
core of the Control Path is the Finite State Machine (FSM)
shown in Figure 4. The execution of an RE requires two
input addresses: the RE start address and the text start

3A jump in the data memory is required whenever one or
more instructions are matching the text and then the match-
ing fails (because the current instruction is not satisfied). In
this case a jump in the data memory address restarts the
search from the address where the first match occurred.

Figure 2: Block diagram of ReCPU with 4 Clusters, each of those has a ClusterWidth of 4. The main blocks
are: Control Path and Data Path (composed by a Pipeline of Fetch/Decode and Execution stages).

Figure 3: Detail of comparator clusters.

address. The FSM is designed in such a way that after the
preload of the pipeline, two execution cases can occur. When
the first instruction of an RE does not match the text, the
FSM loops in the EX NM state, as soon as a match is detected
the FSM goes into the EX M state.

Not matching the text, the same instruction address is
fetched and the data address advances performing the com-
parison by means of the clusters inside of the Data Path.
If no match is detected the data memory address is incre-
mented by the number of clusters. This way several char-
acters are compared every single clock cycle leading to a
throughput i.e. clearly more than one character/cc.

When an RE starts matching, the FSM goes into EX M
state and the ReCPU switches to the matching mode by
using a single cluster comparator to perform the pattern
matching task on the data memory. As for the previous

Figure 4: Finite state machine of the Control Path.

case more than one character per clock cycle is checked by
the different comparators of a cluster. When the FSM is in
this state and one of the instructions composing the RE fails
the whole process has to be restarted from the point where
RE started to match.

In both cases (matching or not matching), whenever a NOP

instruction is detected the RE is considered complete, so the
FSM goes into the NOP state and the result is computed.
The ReCPU returns a signal that indicates the match of the
RE and the address of the memory location containing the
first character of the matched string.

A particular case is represented by loops (i.e. + or * op-
erators). We treat these operators with a call and return

paradigm. When an open parenthesis is detected a call is
performed: the Control Path saves the content of the status

register (i.e. the actual matching value, the current program
counter for instruction memory and the current internal op-
erator) in a stack. The RE is then computed normally until
a return operand is detected. A return is basically a closed
parenthesis followed by +, * or |. It restores the old con-
text and updates the value of the global matching. If a not
matching condition is verified while the FSM is processing
a call, the stack is erased and the whole RE is considered
not matching. The process is restarted as in the simple not
matching case.

Problems of overflow in the number of elements stored in
the stack are avoided by the compiler. It knows the stack-
size and computing the maximum level of nested parentheses
is able to determine if the architecture can execute the RE
or not.

5. EXPERIMENTAL RESULTS
ReCPU has been synthesized using Synopsys Design Com-

piler4 on the STMicroelectronics HCMOS8 ASIC technology
library featuring 0.18µm silicon process. Validation of the
proposed architecture has been exploited setting NCluster
and ClusterWidth equal to 4. The synthesis results are pre-
sented in Table 2:

Table 2: Synthesis results for the ReCPU architec-
ture with NCluster and ClusterWidth set to 4.

Critical Area Max Clock
Path (ns) (µm2) Frequency (MHz)

3.14 51082 318.47

Papers described in Section 1 show a maximum clock fre-
quency between 100MHz and 300MHz. The results of the
table show how our solution is competitive with the others
having the advantage of processing in average more than
one character per clock cycle (i.e. the case for all the other
solutions like [1] and [2]).

We analyze different scenarios to figure out the perfor-
mance of our implementation: whenever the input text is
not matching the current instruction and the opcode rep-
resents a · operator, the maximum level of parallelism is
exploited and the performance in terms of time required to
process a character are up to:

Tcnm =
Tcp

NCluster + ClusterWidth − 1
(1)

where the Tcnm, expressed in ns/char, depends on the
number of clusters, the width of the clusters and the critical
path delay Tcp. If the input text is not matching the current
instruction and the opcode is a | then the performance are
given by the following formula:

Tonm =
Tcp

NCluster
(2)

If the input text is matching the current instruction then
the performance depends on the width of one cluster (all the
other clusters are not used):

4www.synopsys.com

Tm =
Tcp

ClusterWidth
(3)

For each different scenarios, using the time per character
computed using the formulas (1), (2) and (3) it possible to
compute the corresponding bit-rate evaluating the achiev-
able performance. The bit-rate Bx represents the number
of bits5 processed in one second and can be computed as
follows:

Bx =
1

Tx
· 8 · 109 (4)

where Tx represents one of the quantities resulting from
(1), (2) and (3).

The numerical results for the implementation we have syn-
thesized are shown in Table 3:

Table 3: Time necessary to process one character
and corresponding bit-rate for the synthesized ar-
chitecture.

Tcnm Tonm Tm Bcnm Bonm Bm

ns/char ns/char ns/char GBit/s GBit/s GBit/s
0.44 0.78 0.78 18.18 10.19 10.19

The results summarized in Table 3 represent the through-
put achievable in different scenarios. Whenever there is a
function call (i.e. nested parentheses) one additional clock
cycle of latency is required. The throughput of the proposed
architecture really depends on the RE as well as on the input
text so it is not possible to compute a fixed throughput but
just provide the performance achievable in different cases.

In our experiments we compared ReCPU with the pop-
ular software grep6 using three different text files of 65K
characters each. For those files we chose a different content
trying to stress the behavior of ReCPU. We ran grep on a
Linux Fedora Core 4.0 PC with Intel Pentium 4@2.80GHz,
512MB RAM measuring the execution time with Linux time
command and taking as result the real value. The results
are presented in Table 4.

Table 4: Performance comparison between grep
software and ReCPU on a text file of 65K charac-
ters.

Pattern ReCPU grep Speedup
E|F |G|HAA 32.7 µs 19.1 ms 584.8

ABCD 32.8 µs 14.01 ms 426.65
(ABCD)+ 393.1 µs 26.2 ms 66.74

We notice that if loop operator are not present our solu-
tion performs equal either with more than one instruction
and OR operator or with a single AND instruction (see the
first two entries of the table). In these cases the speedup is
more than 400 times, achieving extremely good results with
respect to software solution. In case of loop operator it is

5It is computed considering that 1 char = 8 bits.
6www.gnu.org/software/grep

possible to notice a slow-down in the performance but still
achieving a speedup of more than 60.

To prove performance improvements of our approach with
respect to the other published solutions, we compare the
bit-rates as described in the Table 5. It was not possible to
compare the bit-rate for [6], [2] because this quantity was
not published in the papers.

Table 5: Bit-Rate comparison between literature so-
lutions and ReCPU.

Solution bit-rate ReCPU Speedup
published in GBit/s GBit/s factor (x)

[4] (2.0, 2.9) (10.19, 18.18) (5.09, 6.26)
[3] (1.53, 2.0) (10.19, 18.18) (6.66, 9.09)
[5] (5.47, 8.06) (10.19, 18.18) (1.82, 2.25)
[1] (0.45, 0.71) (10.19, 18.18) (22, 25)

In Table 5 the bit-rate range for different solutions is
shown. We compared it with the one of ReCPU comput-
ing a speedup factor that underlines the speedup of our ap-
proach. It is shown that the performance achievable with
our solution is n times faster than the other published re-
search works. Our solution guarantees several advantages
apart from the bit-rate improvement: O(n) memory loca-
tions are necessary to store the RE and it is possible to
modify the pattern at run-time just updating the program
memory. It is interesting to notice - analyzing the results in
the table - that in the worst case we are performing pattern
matching almost two times faster.

6. CONCLUSIONS AND FUTURE WORKS
Nowadays the need of high performance computing is grow-

ing up. An example of this is represented by biological sci-
ences (e.g. Humane Genome Project) where DNA sequence
matching is one of the main applications. To increase the
performance it is better to get advantage of hardware solu-
tions for the pattern matching problem. In this paper we
presented a novel approach for hardware implementation of
regular expression matching. Our contribution regards a
completely different approach of dealing with the regular ex-
pressions. REs are considered as a programming language
for a parallel and pipelined architecture. This guarantees
the possibility of changing the RE at run-time just modify-
ing the content of the instruction memory and it involves a
high improvement in terms of performance. Some features,
like the multiple characters checking, instructions prefetch-
ing and parallelism exposure to the compiler level are in-
spired to the VLIW design style.

The current state of the art guarantees a fixed perfor-
mance of one character per clock cycle. Our goal was to
figure out a way of extract some parallelism to achieve in
average much better performance. We proposed a solution
that has a bit-rate of at least 10.19 GBit/s with a peak of
18.18 GBit/s.

Future works are focused on the definition of a reconfig-
urable version of the proposed architecture based on FPGA-
devices. We could, this way, exploit the possibility to dy-
namically reconfigure the architecture at run-time. The
study of possible optimizations of the Data Path to reduce
the critical path and increase the maximum possible clock
frequency is an alternative. We would also like to explore
the possibility of adding some optimization in the compiler
side.

7. REFERENCES
[1] R. Sidhu and V. Prasanna, “Fast regular expression

matching using FPGAs,” in IEEE Symposium on
Field-Programmable Custom Computing Machines
(FCCM01), April 2001.

[2] C.-H. Lin, C.-T. Huang, C.-P. Jiang, and S.-C. Chang,
“Optimization of regular expression pattern matching
circuits on FPGA,” in DATE ’06: Proceedings of the
conference on Design, automation and test in Europe.
3001 Leuven, Belgium, Belgium: European Design and
Automation Association, 2006, pp. 12–17.

[3] Y. H. Cho and W. H. Mangione-Smith, “A pattern
matching coprocessor for network security,” in DAC
’05: Proceedings of the 42nd annual conference on
Design automation. New York, NY, USA: ACM Press,
2005, pp. 234–239.

[4] J. C. Bispo, I. Sourdis, J. M. Cardoso, and
S. Vassiliadis, “Regular expression matching for
reconfigurable packet inspection,” in IEEE
International Conference on Field Programmable
Technology (FPT), December 2006, pp. 119–126.

[5] I. Sourdis and D. Pnevmatikatos, “Fast, large-scale
string match for a 10gbps fpga-based network
intrusion,” in International Conference on Field
Programmable Logic and Applications, Lisbon,
Portugal, September 2003.

[6] B. O. Brown, M.-L. Yin, and Y. Cheng, “DNA
sequence matching processor using FPGA and JAVA
interface,” in Annual International Conference of the
IEEE EMBS, September 2004.

[7] J. Friedl, Mastering Regular Expressions, 3rd ed.
O’Reilly Media, August 2006.

[8] Grep Manual, GNU, USA, Jan 2002.

