
A Single-Cycle Multi-Match Packet Classification Engine Using TCAMs
Mehrdad Nourani and Miad Faezipour

Center for Integrated Circuits & Systems

The University of Texas at Dallas

Richardson, Texas 75083

{nourani, mxf042000}@utdallas.edu

Abstract— Most conventional packet classifiers find the highest
priority filter that matches the packet. However, new networking
applications such as network intrusion detection systems and load
balancers require all (or the first few) matching results in packet
classification. An efficient TCAM-based architecture for multi-
match search is introduced in this paper. We propose a novel par-
titioning scheme based on filters and their intersection properties.
An efficient contention resolver unit is designed to enhance perfor-
mance of the search by choosing only one partition. Our approach
finds all matches in exactly one conventional TCAM cycle while
reducing the power consumption by at least two orders of magni-
tude.

Keywords: Ternary content addressable memory, multi-
match, packet classification, maximum-intersection partition-
ing, minimum-intersection partitioning, contention resolver.

I. INTRODUCTION

A. Background

Packet classification in general refers to finding the best
matching filter containing multiple fields among the filter set
(also called rule set in the literature) set for a given packet. The
standard five-tuple fields include the source address, destination
address, protocol, source port and destination port [1]. Among
these fields, source and destination address fields are prefixes
and often require longest prefix match (LPM) methods. Proto-
col field can be wild cards or exact values. Source and desti-
nation port numbers are typically introduced as ranges. Packet
classification performs searching the table of filters to assign a
flow identifier for the highest priority filter which matches the
packet in all fields. The returning flow ID indicates the action
that is next applied to the packet.

Filter fields are combination of prefixes, wild cards and ex-
act values. Hence, Ternary Content Addressable Memories
(TCAMs) that have the ability to store don’t-care values in ad-
dition to 1’s and 0’s are often utilized to store filters and perform
the parallel search in packet classification. A traditional packet
classifier assigns one TCAM entry for each filter and finds the
index of the highest priority matching filter in the database (Fig-
ure 1). Range fields may require more than one TCAM entry
to save a filter. TCAM range matching solutions have been in-
troduced in [1], [2], [3] and [4]. Each filter fi (0 ≤ i ≤ n− 1)
contains multiple fields (e.g. in the standard five-tuple), and
also the filter database often may have up to hundred thousand
filters. Therefore, wide TCAM devices both in terms of bits and
entries are used for packet classification applications.

n-1ml

ml0

ml1

ml2

Search Key

Single Match Priority EncoderMatch

2

n-1

1

Filter fn-1

Filter f2

Filter f1

0 Filter f0

Words

Index

LinesTCAM

c
n
E

y
t
i
r
o
i
r
P

.

.

.

.

.

.

2
log n

o

.

.

.

r
e
d

Figure 1. TCAM structure as a single-match packet classifier

B. Motivation

New emerging networking applications such as Network In-
trusion Detection Systems (NIDS) and load balancers require
finding all or the first few matching filters in packet classifi-
cation. Malicious intrusions and denial-of-service attacks, that
are expected to grow rapidly, can be monitored and detected
by NIDS. Once all the matching filter headers are found, a de-
tection system such as Snort [5] scans the packet payload for
existing worms. The concept of multi-match classification for
NIDS is becoming a major stream of research, since there is a
great demand for network worm detections.

Packet level accounting, transparent monitoring and the Pro-
grammable Network Element (PNE) are other networking ap-
plications of multi-match classification. PNE is the general
platform for packet processing in layers 2-4 in the edge. Packets
entering PNEs are classified to identify the relevant functions.
Multi-matching classification can be utilized to support multi-
ple functions in PNEs [6].

Ideally, the single and multi-match problem in packet clas-
sification should be solved at wire speed to keep up with the
high data rate. Pure software solutions suffer from low speed,
since they often require several instructions and as a result sev-
eral memory accesses to find a single or multiple matches.
In the past few years researchers in industry and academia
employed architectural solutions to the classification problem.
This stream of research proposed the most widely used packet
classification device technology, TCAM [7]. TCAMs are well
suited for performing high speed parallel searches on database
with ternary entries, since they provide the match results with
deterministic throughput (i.e. one search per cycle) and deter-
ministic capacity. Hence, TCAM has become quite popular for
packet classification tasks [1], [3], [8], [9]. While TCAMs per-
form packet classification at high speed, there are some draw-
backs that do not make them suitable for specific classifica-
tion applications. TCAMs cannot directly report all possible

Proceedings of the 14th IEEE Symposium on High-Performance Interconnects (HOTI'06)
0-7695-2654-3/06 $20.00 © 2006

matches in a database. This is due to the native structure of
a TCAM cell design, which consists of a priority encoder, to
produce the highest priority match. Another major drawback is
the TCAM high power consumption due to searching all entries
in parallel. Power consumptions in a TCAM grows drastically
with the number of entries being searched, which leads to poor
scalability.

C. Main Contribution & Paper Organization

We propose a parallel architecture for multi-matching packet
classification by efficiently partitioning the entire packet fil-
ter set into disjoint subsets. Each subset is mapped to a rela-
tively small TCAM which produce a match in one cycle. Since
the TCAM entries remain unchanged in our design, our multi-
matching hardware can be easily adopted for IPv6 where the
bit width of the TCAM entries (filters) will be quite high [10],
[11]. Performance of conventional software-based and most
hardware-based classification techniques linearly degrades with
number of filters and the number of matches to be found. Our
system finds r matches in at most 1-cycle regardless of total
number of filters and matches. Such property significantly im-
proves the performance by achieving 1-2 order of magnitude
higher speedup. Our partitioning scheme can also be employed
as a low-power solution to the conventional single-match packet
classification in general and multi-match packet classification
in particular.

The rest of this paper is organized as follows. In Section II
we take a glance at prior work related to TCAM-based multi-
match packet classification. In Section III we describe our
novel maximum-minimum intersection partitioning scheme. In
Section IV the TCAM-based implementation for multi-match
packet classification tasks is introduced. We summarize our ex-
perimental results in Section V. Finally, concluding remarks
are in Section VI.

II. PRIOR WORK

Some recent work focused on multi-match packet classifica-
tion using TCAMs. Authors in [6] reorganize the TCAM entry
filters in a compatible order to report all matches. The authors
use a geometric intersection scheme to remove the overlaps and
negation among the intersecting filters placed in the TCAM.
Their multi-search mechanism is based on the TCAM search
along with a SRAM to store all matching indices. This scheme
has a high search throughput. However, an Access Control list
(ACL) may require very large number of TCAM entries. This
approach may not be suitable for such databases, since it cannot
be easily scaled to large tables.

The Set Splitting Algorithm (SSA) introduced in [12] splits
the filter set into two groups to remove at least half of the inter-
sections among filters. It then performs the search on multiple
groups in parallel. This method is based on minimum intersec-
tions among filters; however, it adds filters for partially over-
lapped filters in one set. In addition, it performs the search on
all sets generated, either in parallel or sequentially; hence, it
increases the search time and power consumption.

The authors in [2] address the problem of finding multiple
matches in a TCAM by proposing the multi-match using dis-
criminators (MUD) algorithm. In this algorithm, the extra bits

per TCAM entry are used for the required encoding. For get-
ting the next matching result from the TCAM after filter f j, the
search on all the entries after index j is performed. To accom-
plish this, the search key is expanded to prefixes that correspond
to the range greater than j. The authors use the idea that along
with each TCAM entry, a discriminator field that encodes the
index of that entry is stored. The MUD algorithm provides high
speed results for multiple matches. However, it deploys sophis-
ticated encoding on TCAM entry databases, making it difficult
to decode the data to their original values.

Entry-invalidation scheme, also discussed in [2], is one of the
earliest and simplest schemes. In this method, a valid bit in ad-
dition to the header fields is associated with each TCAM entry.
Initially, all entries have their valid bits set to ”1”. Searches
are performed multiple times to find all matching entries. Each
time a match is found, the valid bit is set to ”0” for that matching
entry. The same search key is applied again until all matches are
found. In the entry-invalidation scheme, the state of the filter
database is modified when the algorithm is applied. This char-
acteristic makes it impractical for multi-threaded packet proces-
sors that are used nowadays, in which multiple packet process-
ing threads to access to the TCAM devices at the same time is
required.

The BV-TCAM architecture introduced in [9] combines the
TCAM and the Bit Vector (BV) algorithm to address the prob-
lem of packet classification for network intrusion detection.
The authors use the tree-bitmap implementation of the BV ap-
proach for the source and destination port lookup, while using
a TCAM for the search of the other header fields. They use the
un-encoded TCAM to report the matching status of the corre-
sponding TCAM entry. The authors implement their classifica-
tion engine in an FPGA. This approach improves the search and
cost by compressing the data. However, the exact performance
and architecture are not reported.

III. INTERSECTION-DRIVEN PARTITIONING STRATEGY

Intersection among filters in the database mainly results in
multiple matches. Informally speaking, intersection is defined
as having filters that are subset of one another, such that some
filters completely overlap others. Therefore, partitioning the fil-
ter set based on filter intersections, and performing the TCAM
search on a partition, can significantly improve the perfor-
mance.

A. Maximum Intersection Partitioning Scheme

The Maximum Intersection Partitioning scheme or MXIP
which is explained in this section, partitions the filters in the
database such that each partition would hold the maximum
number of intersections among its filters. This way all possible
matches for a packet will be concentrated within one partition
only. In addition, partitions will be disjoint, i.e. any pair of
partitions do not have any overlap in the filters that they con-
tain. Since there would always be a number of filters that do
not have any intersection with any other filter, one last partition
is needed in which all these distinct filters can be placed.
• Partitioning Heuristic:
Let fi[w−1 : 0] and f j[w−1 : 0] denote two filters of bit-width
w. We define the term distance between the two filters as:

Proceedings of the 14th IEEE Symposium on High-Performance Interconnects (HOTI'06)
0-7695-2654-3/06 $20.00 © 2006

di, j =
w−1

∑
k=0

fi[k]⊗ f j[k] (1)

where, ⊗ in Equation 1 is a three-valued operation, defined us-
ing XOR operation, as follows:

a⊗b =
{

0 if at least one of a or b is a don’t-care
a⊕b otherwise

(2)
Suppose F refers to the set of all filters, and Pm denotes the

m-th partition. In every step the first element in F (i.e. f1) is the
seed of partition. The process grows the partition around the
seed based on the maximum intersection partitioning heuristic.
Np would be the total number of partitions generated based on
the MXIP scheme. nm is the total number of filters in parti-
tion Pm. Hence, Np partitions (P1,P2, · · · ,Pm, · · · ,PN p) will be
formed, from which the last partition (PN p) is a collection of all
distinct filters.

Figure 2 illustrates an example of a small filter set of 10 fil-
ters partitioned based on maximum intersections. Filters are
assumed to be 8-bits long for simplicity. Filters f1, f4, and f10

have zero distance, hence they can form one partition, i.e. P1.
Also, filters f8 and f9 have zero distance with filter f10, there-
fore they are also placed in P1. Filters f5 and f6 make a zero
distance with filter f2, and form partition P2. Finally, filters f3

and f7 that have no zero distance with any other filters, form
the distint filter collection, and are placed in a separate partition
(P3). In this example, if the search key ”11010010” arrives,
partition P1 would be chosen and the search is performed on a
relatively small set containing partition P1 only.

f7) 0111x010

Before Partitioning

Filters:

f1) 1101xx10
f2) 0xx01110
f3) 1011001x
f4) 11x1xxxx
f5) 00101xx0
f6) 0110x1x0
f7) 0111x010
f8) 100x1xx0
f9) 1001x110
f10)1x01xx10

f3) 1011001x

After Partitioning
Partition P1

Partition P2

Partition P3

f1) 1101xx10
f4) 11x1xxxx
f10)1x01xx10
f8) 100x1xx0
f9) 1001x110

f2) 0xx01110
f5) 00101xx0
f6) 0110x1x0

Figure 2. Example of Maximum Intersection Partitioning.

Maximum intersection partitioning would ensure that all pos-
sible matches for a given search key are located in one partition.
One possible architecture of a multi-match packet classifier us-
ing the MXIP approach is illustrated in Figure 3. All filters in
each partition are placed in one TCAM module. The single-
match priority encoder unit is replaced by a Multi-Match Prior-
itizer (MPZ) circuit along with an address encoder. The MPZ
unit is a customized prioritizer circuit that gives all the match
lines in a prioritized sequence. The MPZ and encoder circuit

TCAM

Search Key

Partition PNp

Partition P2

Partition P1

Index

Encoder

+
MPZTCAM

TCAM
Index

Encoder

+
MPZ

Encoder Index

Resolver

Contention

Figure 3. A classifier engine using MXIP approach.

connected to the TCAM provide the addresses of the r matches
in at most r cycles [13]. Note that the last partition (PN p) does
not need a MPZ unit since it would result in at most one match,
and therefore an address encoder is sufficient. Having a con-
tention resolver in this architecture is not required as all par-
titions can be searched in parallel. However, as we discuss in
Section IV.A, having such resolver can minimize power con-
sumption.

B. Maximum-Minimum Intersection Partitioning Scheme

By partitioning the database based on maximum number of
intersections among filters, multiple matching filters will be po-
sitioned within one partition. All filters in one partition are
placed into a single TCAM and the MPZ connected to the
TCAM match lines can provide all r matches in r cycles. How-
ever, this approach is costly since it involves additional hard-
ware circuitry.

By further partitioning the maximum intersected filters in-
telligently, all r matching addresses can be found in one cy-
cle. The second partitioning is based on minimum intersections
among the filters in each partition. This time, sub-partitions are
generated for as many number of completely overlapping fil-
ters. Filters in each sub-partition should have a distance greater
than zero among each other. This indicates that after minimum-
intersection partitioning there are no two filters that have a
hundred percent overlapping in each sub-partition, unlike the
maximum intersection partitioning where overlaps were con-
centrated in one partition.

Assume that Np is the number of partitions generated by the
maximum intersection partitioning method. Pm denotes the m-
th partition based on maximum intersection partitioning. This
procedure provides Pm,z that refers to the z-th partition in Pm

generated by the minimum intersection partitioning (MNIP)
method.

If all sub-partitions generated by the MNIP approach are
placed in separate TCAMs, minimum-intersection partioning
would result in finding all matches in one cycle. This is because
of the fact that if the entire filter set is partitioned in such a way
that each partition would result in at most one match for a given
packet, since all partitions are searched in parallel, all matching

Proceedings of the 14th IEEE Symposium on High-Performance Interconnects (HOTI'06)
0-7695-2654-3/06 $20.00 © 2006

Index

Index

Partition P1

TCAM

TCAM

P1,2

TCAM

TCAM

P2,1

TCAM PNp

Partition PNp

P1,s1

P2,s2

Index

TCAM

Contention
Resolver

Search Key

Index

Index

Partition P2

Encoder

Encoder

TCAM P1,1

Encoder

Encoder

Encoder

P2,2

Encoder Index

TCAM Encoder Index

Figure 4. A classifier engine using MX-MN-IP approach.

addresses are ensured to be provided in only one cycle. The
classifier architecture that employs the Maximum-Minimum-
Intersection-Partitioning (MX-MN-IP) scheme is shown in Fig-
ure 4. Matching indices can be stored in a SRAM and can be
further processed by other networking units.

Note carefully that in this method the conventional (off-the-
shelf) TCAM cell chips can be used to perform the parallel
search, which makes it very cost effective. Nowadays TCAM
vendors provide the ability to search one or several smaller
blocks in a single TCAM chip in parallel [12]. Partitions,
constructed by the MXIP scheme, are further partitioned into
smaller sets. The small sets (i.e. Pm,z) are placed into TCAM
blocks.

IV. HARDWARE OPTIMIZATION AND IMPLEMENTATION

In our system large partitions will not be required. Maximum
number of possible filters (that MXIP pushes into the same par-
tition) depends on number of fields considered. Using practical
filter sets, 2-field and 5-field classification produce around 150
and 8 matches, respectively [12]. Therefore, due to nature of
MXIP method, the expected (average) size of partitions will be
in the range of 8 to 150. The MX-MN-IP approach is highly
efficient since:

• It provides all matching addresses in at most 1-cycle.
• It does not add any extra filter to the whole set, unlike oth-

ers, e.g. the SSA scheme [12], that add new filters for
partially overlapping filters in each partition. This feature
makes the MX-MN-IP approach, much more memory ef-
ficient and scalable.

• By enabling the TCAM search on one partition and dis-
abling others, the power consumption is significantly re-
duced. Power consumption is directly proportional to the
number of entries being searched in parallel in a TCAM.
The MXIP method effectively partitions the database,

hence for each search key, only a small portion is being
searched, while all others remain idle.

A. Contention Resolver

To achieve the power savings mentioned by partioning, a
Contention Resolver Unit should be designed so that the search
mechanism would result in enabling the TCAM search on one
partition, while disabling others. An identification code for
each partition (a representative of the filters in that partition)
can be defined to facilitate choosing the right partition.

Let IDm[k] denote the bit position k for the ID code of a par-
ticular partition (i.e. Pm), where 0 ≤ k ≤ w− 1 and 1 ≤ m ≤
Np − 1 and nm (|Pm|) denotes the number of filters in the m-th
partition generated by MXIP. IDm[k] will be 0, 1 or x if fi[k]′s
are all 0s, all 1s or include xs, respectively. The ID code in-
dicates how the filters in one partition are intersected. Hence,
if for each partition a unique ID code is generated, when the
packet arrives, an initial search based on searching these ID
codes in parallel would result in one ID. All the ID codes can
be placed in a small TCAM, as shown in Figures 3 and 4. The
arriving packet is compared against these IDs, and the match
line of matching ID would enable the partition it represents.
Therefore, only one partition (TCAM) performs the search,
while others are remained idle. Since there is one partition (the
last one) containing distinct filters with no zero distance among
them, the ID encoding cannot be applied to this partition. In
other words, for this partition no unique ID can be defined. As
a result, this partition should be searched only if there is no
match found at other partitions.

To be more clear, Figure 5 shows the minimum-intersected
partitions for the example and how they are placed in TCAMs.
Figure 5 also shows the ID codes for the partitions generated
for the example. Note that partition P3 is the set of distinct
filters, and thus does not hold any unique ID. The ID codes
for partitions P1 and P2 are placed in a TCAM unit to perform
the initial search. As shown, ID codes are generated based on
the union of all maximum intersected filters in one partition.
If packet ”11010010” arrives, the initial TCAM (contention re-
solver TCAM) would enable the first maximum-intersected par-
tition, and the search key would be sent to all TCAMs generated
based on the second partitioning heuristic. This packet matches
filters f1, f4 and f10, and their addresses are provided in one
cycle.

B. Updating Filters

The partitioning approach based on maximum or minimum
intersections should provide valid partitioning results for multi-
ple matches, even after insertion of a new filter and deletion of
an existing one.

• Filter Deletion: Updating the packet classification
database may result in the same partitions when one filter
is deleted. However, if a filter that provided zero distance
with a few set of filters, is deleted, given that those set of
filters have at least one nonzero distance with each other,
that partition should be split into two separate partitions.
This is due to the fact that the filter that combined some
filters together, no longer exists. Hence, some set of filters

Proceedings of the 14th IEEE Symposium on High-Performance Interconnects (HOTI'06)
0-7695-2654-3/06 $20.00 © 2006

IndexEncoder

IndexEncoder

IndexEncoder

IndexEncoder

IndexEncoder

no match

Partition P3

Partition P2

Partition P1

f7) 0111x010
f3) 1011001x

ID2) 0xx0xxx0

Search Key ID1) 1xxxxxxx

Index

TCAM P2,2

TCAM P2,1

f2) 0xx01110

f6) 0110x1x0
f5) 00101xx0

TCAM P1,3

f10)1x01xx10

TCAM P1,2

f9) 1001x110
f4) 11x1xxxx

TCAM P1,1

f8) 100x1xx0
f1) 1101xx10

TCAM

 ResolverContention

Encoder

Figure 5. Classifier engine using the MX-MN-IP approach along with the
Contention Resolver.

do not have any zero distance with the other sets in that
partition. This leads to creating a new partition, where the
set of filters are separated. In our running example, if filter
f10 is deleted from the P1 set, filters f1 and f4 do not have
any intersection with filters f8 and f9 anymore. Therefore,
partition P1 would be divided into two partitions; one con-
taining filters f1 and f4, and the other containing filters f8

and f9.
• Filter Addition:

In most cases, adding a new filter does not change the par-
titions very much. This filter must be compared against
the filters of each partition, to see where a zero distance
is generated. The new filter should be added to the parti-
tion in which it makes a zero distance. However, in case
this filter has a zero distance with more than one partition,
filters in all those partitions are to be combined into one
partition.

• ID Update: Updating, may also alter the ID codes in the
contention resolver. The ID code for each partition can be
generated only after all filters in that partition are known.
Based on the ID encoding, the insertion or deletion of a
filter may cause a bit position in the ID code to change
from 0 or 1 to x or vice versa as reflected earlier in this
section.

C. Power Saving

Performing the TCAM search on only a small portion of the
entire database can significantly save power consumption due
to the frequently charging and discharging of the highly capac-
itive match line. Power consumption is directly proportional to
the number of entries being searched in parallel in a TCAM.
The MXIP method effectively partitions the database, hence
for each packet, only a small portion is being searched, while
all others remain idle. In addition, since each TCAM (parti-
tion) would result in at most one match, the priority encoder
unit would not be required anymore. This not only reduces the
cost, but also further improves the power saving. The priority
encoder unit, which is a power hungry unit in a conventional

TABLE I
PARTITIONING STATISTICS

rmax Δ% |P|max |P|avg Np |PN p|
12 30 12 9 88 4245
8 30 8 6 124 4225
4 30 4 3 263 4090
8 10 8 6 42 4742
8 20 8 6 81 4487
8 50 8 6 202 3705
8 70 8 6 289 3171

TCAM structure, would be removed. Instead, a conventional
address encoder can be used to provide the addresses of the
matching results.

The Maximum-Minimum-Intersection partitioning approach
can also be used in packet processors where the conventional
single-match packet classification is desired. Traditionally,
TCAMs perform the search and provide the index of the highest
priority match in one cycle. However, our approach performs
the TCAM search on a small fraction of the entire filter set, and
thus reduces the power consumption by at least one order of
magnitude.

V. EXPERIMENTAL RESULTS

A. Partitioning Implementations

We have applied our partitioning scheme to various randomly
generated filter sets that were designed to have the same char-
acteristics as real filters sets, e.g. numbers, sizes and structures
of filters. Table I shows the average statistics of the partitions
generated. The filter sets were assumed to have 5000 filters of
bit-width 150 each, which is typical for real databases. The sec-
ond column shows the percentage of filters that generate multi-

match results, i.e. Δ = ∑
Np−1
m=1 |Pm|

∑
Np
m=1 |Pm|

. The maximum size of parti-

tions is |P|max and |P|avg is the average size of partitions. Np is
the total number of partitions generated by the MXIP scheme.

As observed from the table, most partitions have very few
entries, and most filters are in the distinct filter collection.
This significantly reduces the power consumption by about 2-3
orders-of-magnitude as in multi-match applications the last big
partition is rarely awakened.

B. Speedup

The speed of our architecture is high compared to other con-
ventional hardware based designs. Delay time of a conventional
TCAM can be written as:

TTCAM ≈ Tword +TPE (3)

where Tword is the delay of the TCAM word and TPE is the de-
lay of the priority encoder. For large TCAMs: Tword ≈ TPE ≈
TTCAM/2 [14]. Our approach thoroughly removes the need of
the priority encoder unit, and hence TPE does not come into
picture. The delay of our design consists of the delay of the
contention resolver TCAM plus the MNIP search time along
with the regular address encoder circuit delay. Therefore:

Proceedings of the 14th IEEE Symposium on High-Performance Interconnects (HOTI'06)
0-7695-2654-3/06 $20.00 © 2006

TMX−MN−IP ≈ TCR +TPm +TEncoder +TPN p (4)

It can empirically be shown that the search delay of a small
TCAM (i.e. CR unit and TCAMs holding sub-partitions) is
around TTCAM/4 compared to large conventional TCAMs, and
that the encoder unit would also have a latency of approxi-
mately TTCAM/4. In the MX-MN-IP approach the worst case is
assumed to be searching one of the maximum intersected parti-
tions and searching the set of distinct filters afterwards. Hence:

TMX−MN−IP ≈ TTCAM/4+TTCAM/4+TTCAM/4+TTCAM/4
(5)

Thus, the MX-MN-IP performs the multi-match classifica-
tion in 1-cycle: TMX−MN−IP ≈ TTCAM .

The Maximum-Minimum-Intersection partitioning approach
can find all matches for a given packet and provide the match-
ing addresses in at most 1-cycle. Practically, the CR TCAM
would be very small and hence, the resolver unit does not add
significant delay. The priority encoder unit is removed from
all TCAMs in the design. These facts ensure the 1-cycle sys-
tem performance. A conventional multi-match TCAM based
approach would spend at least r · (7×TTCAM) cycles for find-
ing r matches [2]. Our approach finds r-matches in one con-
ventional TCAM cycle, which is far better than software and
hardware approaches. Hence, we obtain speedup of at least
S = r·(7×TTCAM)

TTCAM
= 7r for finding r matches, where r would be

the maximum number of possible matches in a filter set for a
given search key. For a maximum of 8 matches we achieve
speedup of 56 compared to the conventional approach, which
is more than an order-of-magnitude higher. Note that in our
architecture, performance does not degrade when the number
of matches increases. Scalability feature makes our design at-
tractive for high speed packet processing. For similar reasons
our design can be used in single-match packet classification for
high speed network processors.

C. Cost

The cost of a conventional TCAM can be defined as:
ATCAM ≈ Aword + APE . The area of our classifier engine can
be written as: AMX−MN ≈ Aword + AEncoder + ACR. The area of
the encoder and the small contention resolver unit is less than
a conventional priority encoder unit. Hence, the overall cost
(area) of our classifier is approximately the same as a conven-
tional (off-the-shelf) TCAM-based classifier.

VI. CONCLUSION

We proposed a TCAM-based architecture for multi-match
packet classification. All multiple matches can be found in
at most one conventional TCAM cycle. Our design uses the
concept of maximum and minimum intersection among filters
to efficiently partition the entire filter set. Using MX-MN-IP
scheme, we achieve speedup of 1-2 order of magnitude higher
compared to conventional TCAM based methods. Our ap-
proach is highly efficient for the future’s network processors
where performance of packet processors would become a bot-
tleneck. Power consumption was reduced by one order of mag-
nitude or more, due to performing the TCAM search on a small
portion of the packet filter set.

REFERENCES

[1] K. Zheng, H. Che, Z. Wang, and B. Liu, “TCAM-Based
Distributed Parallel Packet Classification Algorithm with
Range-Matching Solution,” INFOCOM’05, 2005.

[2] K. Lakshminarayanan, A. Rangarajan and S. Venkat-
achary, “Algorithms for Advanced Packet Classification
with Ternary CAMs,” ACM SIGCOMM’05, Aug. 2005.

[3] E. Spitznagel, D. Taylor and J. Turner, “Packet Classifi-
cation Using Extended TCAMs,” Proceedings of the 11th
IEEE International Conference on Network Protocols, pp.
120-131, Nov. 2003.

[4] H. Liu, “Efficient Mapping of Range Classifier into
Ternary-CAM,” Proceedings of the 10th Symposium on
High Performance Interconnects Hot Interconnects, HOTI
’02, Aug. 2002.

[5] SNORT Network Intrusion Detection System,
www.snort.org.

[6] F. Yu, R. H. Katz and T. V. Lakshman, “Efficient Mul-
timatch Packet Classification and Lookup with TCAM,”
IEEE Computer Society, Jan. 2005.

[7] D. E. Taylor and E. W. Spitznagel, “On Using Content
Addressable Memory for Packet Classification,” Technical
Report WUCSE-2005-9, March 2005.

[8] F. Yu, R. H. Katz and T. V. Lakshman, “Gigabit Rate
Packet Pattern-Matching Using TCAM,” Proceedings of
the 12th IEEE International Conference on Network Pro-
tocols, pp. 174-183, 2004.

[9] H. Song and J. W. Lockwood, “Efficient Packet Classifica-
tion for Network Intrusion Detection Using FPGA,” Pro-
ceedings of the 2005 ACM/SIGDA 13th International Sym-
posium on Field-Programmable Gate Arrays, Feb. 2005.

[10] N. F. Huang, W. E. Chen, J. Y. Luo and J. M. Chen, “De-
sign of Multi-field IPv6 Packet Classifiers Using Ternary
CAMs,” IEEE Conference on Global Telecommunications,
vol. 3, pp. 1877-1881, Nov. 2001.

[11] N. F. Huang, K. B. Chen and W. E. Chen, “Fast and Scal-
able Multi-TCAM Classification Engine for Wide Policy
Table Lookup,” 19th IEEE International Conference on
Advanced Information Networking and Applications, vol.
1, pp. 792-797, March 2005.

[12] F. Yu, T. V. Lakshman, M. A. Motoyama and R. H. Katz.,
“SSA: A Power and Memory Efficient Scheme to Multi-
Match Packet Classification,” ACM Proceedings of the
2005 Symposium on Architecture for Networking and Com-
munications Systems ANCS ’05, pp. 105-113, Oct. 2005.

[13] M. Faezipour and M. Nourani, “Design and Imple-
mentation of a TCAM-Based Architecture for Multi-
Match Packet Classification,” Technical Report, UTDEE-
12-2005, Dec. 2005.

[14] M. J. Akhbarizadeh, M. Nourani and C. D. Cantrell, “Seg-
regating the Encompassing Prefixes to Enhance the Per-
formance of Packet Forwarding Engines,” IEEE Global
Telecommunications Conference, GLOBECOM’04, pp.
1612-1616, Nov.-Dec. 2004.

Proceedings of the 14th IEEE Symposium on High-Performance Interconnects (HOTI'06)
0-7695-2654-3/06 $20.00 © 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

