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Abstract—All known real-time proportional fair scheduling mechanisms either have high scheduling overheads (Oðlg nÞ per time-slot)

or do not efficiently handle dynamic task sets. This paper presents Frame-Based Proportional Round-Robin (FBPRR), a real-time fair

scheduler providing high and bounded proportional fairness accuracy and Oð1Þ scheduling overhead with the ability to efficiently

handle a set of dynamic tasks. FBPRR achieves this by applying the benefits of Virtual-Time Round-Robin (VTRR) scheduling

mechanism within a frame-based scheduling approach. Simulation results show that the algorithm gains a speedup of 5 to 20 times

(over Oðlg nÞ complexity schedulers) with fairly high fairness.

Index Terms—Proportional fairness, ERfair, virtual time, real time, Oð1Þ scheduling, round-robin.
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1 INTRODUCTION

FAIRNESS has been a desirable criterion of a schedule ever
since concurrent execution of independently authored

applications became possible in time shared systems.
Various algorithms, primarily different flavors of round-
robin, such as simple round-robin, weighted round-robin,
and prioritized round-robin, have been developed. Fairness
has gained even more importance in meeting today’s
scheduling requirements of coexisting, independently writ-
ten, possibly misbehaving (those which attempt to use more
CPU time than that which is allocated to it) real-time
applications with different timeliness constraints. An
interesting example of such applications is provided by
multimedia systems because they manage continuous
media (audio and video streams), characterized by implicit
temporal semantics, for implementing video conference,
telepresence, video on demand, and other similar services.

Systems running such applications not only demand

meeting deadlines, but also proportionate progress of all the

running tasks with time, leading to the development of a

proportional fair class of schedulers. Consider a set of tasks

fT1; T2; . . . ; Tng, with each task Ti having a computation

requirement of ei time units, required to be completed

within a period of pi time units from the start of the task.

Proportional fair schedulers need to manage their task

allocation and preemption in such a way that not only are

all task deadlines met, but also each task is executed at a

consistent rate proportional to its task weight ei
pi

. More

formally, let the start time of a task Ti be si. Then,

proportional fairness guarantees the following for every

task Ti: At the end of any time slot t, si � t � si þ pi, at least
ei
pi
� ðt� siÞ of the total execution requirement of ei must be

completed. Obviously, for such a criterion to be guaranteed,

we must have

Xn
i¼1

ei
pi
� 1: ð1Þ

Also, since we usually consider discrete timelines, appro-
priate integral values must be considered while examining
fairness.

This sort of equitable resource management has attracted
considerable interest among the research community in the
last two decades [6], [7], [11], [12]. Typically, these
algorithms divide the tasks into equal-sized subtasks. At
every time slot, an appropriate subtask from the set of
runnable tasks is scheduled to ensure fairness. Research has
progressed in two parallel streams primarily differing in
their definition of weight. The first stream of work which
includes schedulers such as Weighted Fair Queuing (WFQ)
(1990) [5], Lottery Scheduler (1995) [14], Earliest Eligible
Virtual Deadline First (EEVDF) (1996) [13], Virtual-Time
Round-Robin (VTRR) (2001) [8], Stratified Round Robin
(2003) [10], Group Ratio Round Robin (2004) [9], etc., define
the weight wi of a task Ti as:

wi ¼
shiP
Tj2A shj

;

where shi denotes the relative share of the resource that Ti
should receive and A denotes the set of all the active tasks
in the system. Although this stream has produced even
Oð1Þ (amortized) time algorithms like V TRR, Stratified
Round-Robin, etc., their general drawback is that the share
of each task needs to be adjusted whenever the total
summation of shares of the active tasks in the system
change. This goes together with the problem of ascertaining
that the new share satisfies the task’s timing constraints. For
example, if the summation of shares in the system increases
(e.g., because new tasks are created), then a real-time task’s
share must increase by a proportional amount. The second
stream includes three Proportionate-fair (Pfair) scheduling
mechanisms (PF (1993) [3], PD (1995) [4], and PD2 (2004)
[2]) and their work-conserving variant Early Release Fair
(ERfair) (2000) [1]. They define the weight of a task Ti as:
wi ¼ ei

pi
, as mentioned earlier. Typically, these algorithms

determine the scheduling bandwidth (earliest and latest
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slots) of the next subtask for each task in the system. At
every time slot, an appropriate subtask from the set of
runnable tasks is chosen. In almost all cases, priority queues
are used to select the next subtask, leading to Oðlg nÞ
overheads per time-slot. This turns out to be a reasonably
expensive overhead for ensuring fairness, especially in real-
time systems where time is at a premium. Several variants
have been proposed to reduce scheduling complexity [15].
However, in general, in both the streams of work, obtaining
an algorithm faster than Oðlg nÞ providing optimum
achievable fairness has remained elusive.

Thus, the primary objective of this work is the develop-
ment of an Oð1Þ highly accurate proportional fair real-time
scheduler that efficiently handles dynamic task sets.

In this paper, we present a scheme called Frame-Based
Proportional Round-Robin (FBPRR) that meets all these
objectives. The idea is to define a frame/window of a
certain specific size (consisting of a certain number of time
slots) and to allocate shares (of time slots) to each task in
proportion to their weights ei

pi
within the frame. These shares

are executed in VTRR [8] fashion within the frame, thus
providing high proportional fairness accuracy within the
frame. After execution inside a frame, each task is put in an
appropriate future frame such that the ERfairness [1] of the
system remains preserved at frame boundaries. Here, we
have assumed that the smallest weight that a task can have
is bounded. For example, it is hardly possible in practice to
find tasks having weight less than say about 0:001, but still
having real-time requirements. Experimental results using
this scheme show that a speedup of 5 to 20 times can be
obtained (over Oðlg nÞ complexity schedulers) with high
fairness accuracy.

The paper is organized as follows: In the next section, we
introduce some terminology and definitions that will be
required in the later sections. We present the FBPRR
algorithm along with the fundamental results on fairness
and complexity in Section 3. Experimental results are
presented in Section 4. We conclude in Section 5.

2 TERMINOLOGY AND DEFINITIONS

2.1 Notations

. t: Time; represents the tth time slot.

. n: Total number of tasks.

. T : The set of tasks. Symbolically,

T ¼ fT1; T2; T3; . . . ; Tng;

where Ti is the ith task.
. Tji : jth subtask of Ti.
. si: Starting time of Ti. This is equivalent to its arrival

time.
. ei: Execution requirement of Ti (in number of time

slots).
. pi: Period within which the execution of Ti must

complete.
. rei: Currently remaining execution requirement of

Ti.
. rpi: Currently remaining period of Ti; the number of

time slots remaining within which Ti must execute
so that its deadline is not violated.

. G: Frame size (in number of time slots). The size of a
frame is a design parameter and is appropriately
chosen.

. ctu: Summation of weights of all the currently active
tasks in the system. Its value is updated whenever a
new task arrives or an existing task departs.

. fi: Denotes the ith frame since the start of the
schedule.

. sum shri: The sum of the shares of all tasks running
in the ith frame.

. nafi: Next allotted frame for task Ti.

. nasi: Next allotted share for task Ti.

. counti: The remaining unexecuted shares (execution
requirement) of task Ti in the current frame.

. ift: Intraframe time; the number of time slots that
have passed in the current frame.

. fst: Starting time of the current frame.

. FL: An array (of size G) of linked lists (buckets).

. FA: A sequence; each element in the sequence points
to a distinct array of type FL.

. Li: A sorted queue of tasks that are to be executed in
frame i.

2.2 Definitions

lagðTi; tÞ: The difference between the amount of time

actually allocated to a task and the amount of time that

would be allocated to it in an ideal system with a

scheduling quantum approaching zero. Formally, the lag

is defined as follows:

lagðTi; tÞ ¼
ei
pi
� ðt� siÞ � ðei � reiÞ: ð2Þ

Early-Release Fairness (ERfairness): A schedule is early-

release fair (ERfair) iff:

ð8Ti; t :: lagðTi; tÞ < 1Þ: ð3Þ

That is, the amount of underallocation associated with each

task must always be less than one quantum.
nafi: The next allotted frame for task Ti. nafi is

calculated when Ti completes execution in a frame and

has to be allotted a future frame in which it will execute

next. It gives the number of frames that Ti can skip

execution but still avoid underallocation. Thus,

nafi ¼
rpi � ctu
rei �G

� �
: ð4Þ

nasi: The next alloted share for task Ti. nasi is calculated

when Ti completes execution in a frame and determines the

share of Ti in the next frame in which it will execute. This is

given by the difference between the number of time slots of

execution which Ti must complete by the end of its next

alloted frame and the number of time slots of execution

which Ti has already completed. Thus,

nasi ¼
ei
pi
ððnafi þ 2ÞGþ ðfst� siÞÞ

� �
� ðei � reiÞ: ð5Þ

vti: The virtual time of a task Ti inside a frame is a
measure of the degree to which it has currently received its
proportional allocation relative to other tasks inside a
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frame. The virtual time of the ith task in a given frame
frame is defined as:

vti ¼
nasi � counti

nasi
: ð6Þ

vfti: The virtual finish time is defined as the virtual time a
task would have after executing for one time slot. At the
beginning of a frame:

vfti ¼
1

nasi
: ð7Þ

Each time after Ti executes in a time slot, its vft is

incremented by 1
nasi

.
qvti: The queue virtual time is a measure of what a task’s

vft should be if it has received exactly its proportional share

allocation. At the beginning of the ith frame:

qvti ¼
1

G
: ð8Þ

After each time slot within a frame, qvt is incremented by 1
G.

3 THE FBPRR STRATEGY

The FBPRR scheduling strategy may be conceptualized by

the following three steps:

1. Initialization: Given a set of tasks, the FBPRR
algorithm starts by defining a frame of a certain
size, G, and finding the share (the number of time
slots that will be allotted in a frame) of each task
within the frame.

2. Intraframe Virtual-Time Round-Robin (VTRR)-based
scheduling: Within a frame, each task is executed in
VTRR fashion. At the beginning of each frame, a
sorted list of the tasks that are to be run in the frame
is formed. The scheduler schedules each task
starting from the beginning of this list for one time
quantum in round-robin manner. The next task (Ti)
encountered in the sorted list in round-robin
sequence is selected for execution only if at least
one of the following two conditions are satisfied:

a. The current remaining share of Ti is greater than
the current remaining share the task being
served presently.

b. Execution of Ti will not result in its over-
allocation by more than 1 time-slot. This condi-
tion is verified by the inequality

vfti � qvt <
1

nasi
;

where vfti is the current virtual finish time of Ti,

qvt is the current queue virtual time in the

frame, and nasi is the share allotted to Ti in this

frame.

If none of these conditions is satisfied, the remaining
tasks in the list are skipped and scheduling gets
reinitiated again from the beginning of the list.

3. Handling frame transition and new task arrival: After a
task completes execution within a frame, it is
rescheduled for execution in an appropriate future

frame (using (4)) with a proper share (calculated
using (5)) so that the ERfairness of the system is
maintained. When a new task arrives, its execution
frame and share value are determined based on its
weight (eipi) and inserted in an appropriate frame.

3.1 Detailed Algorithm

3.1.1 Data Structures

The algorithm primarily uses two data structures, namely,
an array of tasks and an array FA of arrays FL of linked
lists. The array of tasks stores information (such as ei, pi,
etc.) about each task Ti. The array of arrays, FA, manages
all the runnable tasks. Each array FL in FA corresponds to
a frame. Each linked list FLi forms the bucket of tasks with
share value G� i. The nodes corresponding to each task in
FLi contain information including rei, rpi, counti, and vfti.

3.1.2 Size of Array FA

The size FSZ of array FA is determined by the maximum
number of frames that may ever be required to be accessed
simultaneously. This number is obtained from the lower
bound (1=k) of the weights of tasks in the system. FSZ is
defined as: FSZ ¼ dkGe þ 1. FSZ thus defines the sliding
window of the maximum number of frames that may be
accessed simultaneously. To maintain this sliding window,
FQ has been implemented as a circular array. Fig. 1 gives a
pictorial representation of the principal data structure used
in the algorithm.

The FBPRR algorithm consists of three functions. The
main function, Algorithm FBPRR, which carries out the
overall scheduling calls two other functions, namely,
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Fig. 1. The principal data structure: FA forms the array of arrays FL of
linked lists. Each array FL in FA corresponds to a frame. Each linked
list FLi forms the bucket of tasks with share value G� i. FSZ, the size
of FA, defines the sliding window of the maximum number of frames
that may be accessed simultaneously. To maintain this sliding window,
FA has been implemented as a circular array.



Function Initialize (FA) which initializes various parameters

of the scheduler at the start of scheduling, and Function

Schedule (Li) which is called at the beginning of each frame

to schedule the tasks within the frame in VTRR fashion.

Algorithm 1 Algorithm FBPRR

Initialize (FA). {Defined in Algorithm 2}

Label1: Select the next nonempty frame FAi.

if all frames are empty then

exit.

end if

Form sorted list Li of tasks in FAi.

Schedule (Li). {Defined in Algorithm 3}

goto Label1.

Algorithm 2 Function Initialize (FA)

{For each task Ti, calculate nafi, and nasi. Initialize rei,

rpi,

counti and vfti. Create a new list node for Ti and insert it

at the tail of list FLnasi in frame FAnafi .}

ctu 0.

for each active task Tj in T do

ctu ctuþ ej
pj

.

end for

for each active task Ti in T do

Calculate nafi. {Using (4)}

rei  ei; rpi  pi.

nasi  ei
pi
ðnafi þ 1ÞG.

counti  nasi.

vfti  1
nasi

.

sum shrnafi  sum shrnafi þ nasi.
end for

Create a new list node �i for Ti.

Insert �i at FLG�nafi in FAnafiþ1.

Algorithm 3 Function Schedule (Li)

Point j to the beginning of queue Li
qvti  1

G .
while Li is not empty do

Execute task pointed to by j. {Let this task be Tk}

Decrement countk.

Decrement rek.

Increment qvti by 1
G and vftk by 1

nask
.

if rek ¼ 0 {Task Tk has completed execution} then

ctu ctu� ek
pk

.

Remove �k from Li.
end if

if countk ¼ 0 {The share of Tk has exhausted} then

Remove �k from Li.

rpk  sk þ pk � fst� ift.
Calculate nafk and nask {Using (4) and (5),

respectively}.

countk  nask and vftk  1
nask

.

sum shrnafk  sum shrnafk þ nask.
Insert �k at the tail of FLnask in the frame

FAiþnafkþ1.

end if

if a new task Tm has arrived then

ctu ctuþ em
pm

.

Create a new list node �m.
Calculate nafm, nasm, countm, and vftm.

Insert �m at an appropriate frame based on its naf

value.

end if

if (countk < countkþ1) or (vftk � qvti < 1
nask

) {j points

to Tk} then

Point j to next element of queue. {j now points to

Tkþ1}
else

Point j to the beginning of the queue. {j now points

to T1}

end if

end while

3.2 Sorting

To execute in VTRR fashion, the tasks need to be sorted (in
nonincreasing order of share values) when a frame starts. As
the share values of a task can range between 1 and G, we use a
counting sort technique to order the tasks in OðGÞ or OðnÞ
(since the size ofG is proportional to the task set size n) time.

In each frame, there is a bucket corresponding to each
share value between 1 and G. Initially, and after a task
finishes execution within a frame, its naf and nas values
(along with other attributes) are calculated to find the next
frame and share value. A task is always placed in the
appropriate bucket based on its share in the frame. A
counter max shr corresponding to the nafth frame keeps
track of the maximum share value encountered until now.
max shr is updated if the current nas value is higher. At the
beginning of a frame, a linear scan of the buckets starting
from FLG�max shr to FLG�1 sorts the tasks into one sorted
queue. As, on an average, max shr << G, the actual
scanning overhead is low.

3.3 Frame Size Adjustment

Due to the use of integral values (using floor/ceiling
functions) in the definitions of nas and naf , the sum of shares
(sum shr) of all tasks in a frame can possibly become higher
than G (thus making the working frame size larger than G).
This happens more when the system is heavily loaded. In
such a situation, algorithm FBPRR selects sum shr�G
tasks starting from the task having the highest share value
and reduces their share by 1. However, this reduction in share
value does not cause the ERfairness criterion to be violated at
frame boundaries as the lags of all tasks still remain less than 1
at the frame boundary. Similarly, when the system is lightly
loaded, sum shr can be less thanG. Then, the algorithm keeps
executing tasks in the frame (even if their allotted shares have
been exhausted) until the sum of the shares executed in the
frame becomes G. The system still remains ERfair because
overallocation does not affect ERfairness and frame size is
never increased beyond G.

3.4 Examples

3.4.1 Example 1

We consider four tasks, T1, T2, T3, T4, having weights 3=5,
1=5, 3=25, 2=25. Let the execution time required by each task
be 18 time slots. So, e1 ¼ e2 ¼ e3 ¼ e4 ¼ 18. Hence, p1 ¼ 30,
p2 ¼ 90, p3 ¼ 150, p4 ¼ 225. Let the frame size G be 10 and
ctu ¼ 1:0. The initial naf and nas values of the tasks T1, T2,
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T3, and T4 are 0, 0, 0, 1 and 6, 2, 2, 1, respectively. Therefore,
tasks T1, T2, and T3 get scheduled to execute in the first
frame, while T4 gets scheduled in the second frame. After
execution in the first frame, re1 ¼ 12, rp1 ¼ 20, re2 ¼ 16,
rp2 ¼ 80, re3 ¼ 16, and rp3 ¼ 140. The naf values of T1, T2,
and T3 will be 0. The corresponding nas values will be 6, 2,
and 2. sum shr2 becomes 11. So, T1 will execute for one less
time slot due to the frame size adjustment policy described
above. Fig. 2 depicts this scenario. The sequence of
executions within the frames as obtained in Fig. 2 is due
to the VTRR scheduling mechanism used for scheduling
tasks inside the frames.

Next, we take another example to illustrate FBPRR’s
intraframe scheduling policy.

3.4.2 Example 2

Consider three tasks, T1, T2, and T3. These tasks have been
considered to execute in a particular frame and have initial
nas values 6; 6; 2. Let the frame size be 14. So, their initial
vfts are 1

6,
1
6,

1
2 and initial qvt is 1

14. Fig. 3 shows the sequence
of executions of the subtasks in this frame. T1, the first
member of the sorted list, gets scheduled in the first time
slot. T2, the next member get executed in the second time
slot because its current count value (6) is greater than that of
T1 (5). In the third time slot, T3 gets scheduled because it
satisfies the condition:

vft� qvt < 1

nas

1

2
� 3

14
<

1

2

� �
:

T1 and T2 again get scheduled in the fourth and fifth time
slots. In the sixth time slot, T1 gets scheduled instead of T3

since it cannot satisfy the condition:

vft3 � qvt <
1

nas3
1� 6

14
<>

1

2

� �
:

The rest of the execution sequence is obvious and can be
easily interpreted from the above discussion.

3.5 Analysis of the Algorithm

Lemma 1. A task Ti of weight ei
pi

currently having remaining

execution requirement rei time slots and remaining period

rpi time slots will not suffer underallocation at the end of

its next frame of execution provided it executes next in the

ðnafi þ 1Þth frame after the current frame with a share nasi

and ctu is less than or equal to 1 (that is, the system is not

overloaded).

Proof. (By step-by-step deduction):

1. Ti will not be underallocated after the execution
of its next subtask if it gets scheduled at or before
the next brpirei

c time slots.

2. Thus, considering a frame size of 1, if Ti gets
scheduled within the next brpirei

c frames, it will not
get underallocated after executing in its next frame.

3. Now, considering any frame size G, Ti will avoid
underallocation after execution in its next frame if
it gets scheduled within the next b rpi

rei�Gc frames.

4. Because b rpi
rei�Gc is always greater than or equal to

brpi�cturei�G c (as ctu � 1), Ti cannot become under-

allocated if it gets scheduled within the next nafi
(¼ brpi�cturei�G c) frames.

Now, we show that, if Ti executes in the

ðnafi þ 1Þth frame after the current frame, its

correct share should be nasi.
5. Let us assume that Ti has completed execution of

its share within a frame after ift time slots have
passed within the frame.

6. Hence, the number of time slots that have elapsed
since its arrival is given by: fstþ ift� si.

7. The number of time slots after which the frame
will end is G� ift.

8. If Ti executes next in the ðnafi þ 1Þth frame, the
number of time slots that will elapse between the
end of the current frame and the end of the
ðnafi þ 1Þth frame is ðnafi þ 1ÞG.

9. Therefore, the number of time slots between the
arrival of Ti and the ðnafi þ 1Þth frame’s comple-
tion is given by:

ðfstþ ift� siÞ þ ðG� iftÞ þ ðnafi þ 1ÞG
¼ ðnafi þ 1ÞGþGþ ðfst� siÞ
¼ ðnafi þ 2ÞGþ ðfst� siÞ:

10. Hence, to avoid underallocation after executing in
the ðnafi þ 1Þth frame, Ti must complete execu-
tion of: deipi ððnafi þ 2ÞGþ ðfst� siÞÞe time slots of
its total execution requirement of ei time slots.

11. Ti has actually already completed ei � rei time
slots of execution.

12. Therefore, to avoid underallocation after execut-
ing in the ðnafi þ 1Þth frame, Ti must execute
with a share:

nasi ¼
ei
pi
ððnafi þ 2ÞGþ ðfst� siÞÞ

� �
� ðei � reiÞ:
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Fig. 2. Example 1: A partial FBPRR schedule.

Fig. 3. Example 2: FBPRR’s execution sequence within a frame.



Hence, if Ti executes in the ðnafi þ 1Þth frame after the
current frame with a share nasi and ctu < 1, then Ti will
not get underallocated after execution in the frame. tu

Theorem 1. Algorithm FBPRR satisfies ERfairness at frame

boundaries.

Proof. (By induction):

1. At t ¼ 0, all tasks have a lag of 0; the hypothesis is
trivially true.

At each frame boundary, the naf and
nas values for all tasks which executed in the
previous frame are calculated giving the appro-
priate frame and share values for the tasks such
that they do not get underallocated.

2. We assume the truth of the hypothesis after the
ith frame, that is, at t ¼ iG, where i is an integer.

3. We have to establish the truth of the hypothesis at
t ¼ ðiþ 1ÞG. All tasks scheduled to execute in the
ðiþ 1Þth frame may have either come from the
ith frame or from some earlier frame according to
the naf value that was calculated initially (if it is
executing for the first time) or after the exhaustion
of its share in the frame where it last executed.
Now, by Lemma 1, no task (whether it executes in
the ðiþ 1Þth frame or gets scheduled for execu-
tion in a later frame) executing with its corre-
sponding share of nas can get underallocated at
the ðiþ 1Þth frame’s completion.

Thus, FBPRR is ERfair at frame boundaries. So, FBPRR

satisfies bounded fairness property. tu
Theorem 1 establishes that FBPRR is ERfair at frame

boundaries. While it is not possible to guarantee that FBPRR
is fair at each time slot within a frame, we present a theorem
that limits the overallocation of tasks. While limits to
overallocation do not guarantee fairness, it helps control the
underallocation in many cases.

Theorem 2. Within a fully loaded frame, no task Tj will ever be
overallocated by more than one time-slot unless Tj is the
currently heaviest task, that is, the task with the highest
remaining execution requirement within the frame.

Proof.

1. Let TS ¼ fts1; ts2; . . . ; tskg be the subset of tasks
that are to be run in the current frame.

2. Let nas1; nas2; . . . ; nask be their corresponding
share values.

3. Now,
Pk

j¼1 nasj ¼ G, where G is the frame size.
4. So, each task tsj must execute for nasj time-slots

within a period of G time-slots.
5. Thus, the initial weight of each task tsj ¼ nasj

G .
6. At any instant, ðift� 1Þ within the frame tsj has

executed for ðtj � 1Þ time-slots.
7. Hence, to ensure that tsj will not be overallocated

by more than one time-slot due to its execution in
the next time-slot, the following must hold:

tj �
nasj
G
� ift < 1:

8. Dividing the above expression bynasj throughout,

tj
nasj

� ift
G

<
1

nasj
:

9. Now, by definition,
tj
nasj
¼ vftj and ift

G ¼ qvtj.
Hence,

vftj � qvtj <
1

nasj
:

10. By the algorithm, the next task in the sorted
queue is executed only when the above expres-
sion is true. If it is false, the tasks in the remaining
portion of the queue are skipped (because, for all
these tasks, the above expression will implicitly
be false) and we start scheduling from the
beginning of the queue again, thus executing the
currently heaviest task. tu

Theorem 3. Algorithm FBPRR has a scheduling complexity

of Oð1Þ.
Proof. Let us analyze the complexity of each step of

algorithm FBPRR.

1. The first line contains function Initialize(). Initi-
alization takes OðnÞ time, but is done only once, at
the beginning of scheduling. So, scheduling
complexity is not affected by this function.

2. Selection of the next nonempty FL list before the
start of each frame can be done within a constant
number of steps in the worst case because the size
of FA is fixed.

3. Sorting takes OðnÞ time in the worst case (we have
used a counting sort technique. In most cases,
however, as max shr << G, the actual sorting
overhead becomes very low). This is done at the
start of each frame. As each frame is of OðnÞ size,
the effective overhead of sorting on the schedul-
ing complexity at each time-slot is Oð1Þ.

4. Function Schedule() is called to schedule the
subtasks within a frame. Let us analyze the while
loop at the third step of this function. Due to the
VTRR strategy, a task can be selected for execu-
tion in Oð1Þ time. Putting a task in a future frame
after its execution in the current frame and task
removal can also be done in constant time.
Insertion of a new task into an appropriate frame
can be done in amortized constant time. Hence,
the function Schedule() can schedule a frame of
size G in OðGÞ time. So, the scheduling overhead
at each time-slot is Oð1Þ.

Hence, the algorithm has a scheduling complexity of

Oð1Þ. tu

4 EXPERIMENTS AND RESULTS

In this section, we experimentally evaluate the performance

of algorithm FBPRR and compare it against the ERfair

algorithm. For the purpose of comparison, we have
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implemented the fastest form of the ERfair scheduler by
avoiding the implementation of the tie-breaking rules. The
evaluation methodology is based on simulation experi-
ments using randomly generated task sets.

4.1 Experimental Setup

The experimentation framework used is as follows: The
data sets consist of randomly generated hypothetical
periodic tasks whose execution periods (pi) and weights
(eipi) have been taken from normal distributions. The task
weights in a data set may either be generated from a single
distribution or can be generated from two separate
distributions in which a certain percentage of the tasks is
generated from one distribution and the rest is generated
from another distribution. The latter simulates cases where
the task weights of the system are skewed in nature. For
example, there may be situations in practice where the
system consists of a few heavy tasks along with many
lightweight tasks.

Given the total number of tasks to be generated (n) and
the summation of weights of the n tasks (U), two different
types of task weight distributions have been considered for
the evaluation of the FBPRR algorithm, as listed below:

. Task weight distribution type 1: All tasks are generated
from a single distribution with standard deviation
ð�Þ ¼ 0:1 and mean ð�Þ ¼ U

2 .
. Task weight distribution type 2: Tasks are generated

from two separate distributions; 10 percent of the
tasks cumulatively weighing h (values of h consid-
ered were 0:1, 0:2, 0:3, 0:4, 0:5, 0:6, and 0:7) are
generated from a distribution with � ¼ 0:1 and
� ¼ h=2; the remaining 90 percent of the tasks
cumulatively weighing U � h are generated from a
distribution with � ¼ 0:1 and � ¼ U�h

2 .

The summation of weights of the tasks in each of the
generated task distributions is not constant. Making the
summation of weights constant helps in the evaluation and
comparison of the algorithms. Therefore, the weights have
been scaled uniformly to make the cumulative weight of
each distribution constant and equal to U .

All the task periods have also been generated from a
normal distribution having � ¼ 3; 500 and � ¼ 4; 000. For
each of these distribution types, different types of data sets
have been generated by setting different values for the
following parameters:

1. Task set size n: Sizes considered were 5, 10, 25, 50,
and 100 tasks.

2. Workload: Three different workloads were consid-
ered; we have considered cases when the processor
is 90 percent, 95 percent, or 100 percent loaded.
Results for lower workloads on the processor have
not been included here because we found that the
scheduler always shows higher fairness and similar
speedups under lightly loaded conditions. The
performance results under heavy loads are more
important for the evaluation and comparison the
algorithm’s characteristics.

3. Frame size G: For each combination of the above
parameters, measurements have been taken for six

different frame sizes (values n, 2n, 5n, 10n, 15n, 20n).
Each value is a multiple of the task set size n.

During experimentation, no slack has been provided
between the periods of two consecutive instances of a task.
This has been done to keep the total load on the system
constant throughout the schedule. The schedule length has
been taken to be 500; 000 time slots.

4.2 Results

Time Measurements. For each of the developed schedulers,
we have measured the average execution times for both the
new and the existing (ERfair) algorithms running them on
50 different instances of each data set type. Using these
average execution times, the speedup achieved by the new
algorithm over ERfair has been calculated. Fig. 4a shows the
“speedup” plots obtained for task weight distribution
type 1. Fig. 4b shows the ”speedup” plots for h ¼ 0:5 for
task weight distribution type 2 when U ¼ 1:0.

Fairness Measurements. Any quantum-based fair sche-
duling algorithm (such as PF [3], PD [4], PD2 [2], etc.)
approximates the ideal fluid schedule, which requires that
there should be no underallocation or overallocation of any
task within a task set at any instant of time. This stringent
requirement gets relaxed when the early-release criterion is
followed as we are no longer bothered about overallocation
of each task at each time instant.
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In order to determine the degree of fairness achieved, we
have defined a measure called average miss. It is based on
the lag of each task at each instant of time. We define a term
called miss as follows:

miss ¼ lag if lag > 0
0 otherwise:

�
ð9Þ

Thus, if, at a given time slot, a task has lag ¼ 3, it is
considered to have suffered three misses at that time slot.
We determine the miss values for each task at each
quantum of time. Using these miss values, the
average miss over the entire schedule length is found out.
This is given by:

avg miss ¼
P
miss

tot tslot � n : ð10Þ

Here, tot tslot represents the total number of time slots in
the schedule and n represents the task set size.

The value of theavg missgives a measure of the number of
misses per time slot per task. Thus, if the avg miss value of a
schedule is 0:0016, it means that there will be 0:0016 misses
per time slot per task or 16 misses every 10; 000 time slots.
Since ERfair is an optimal algorithm, it suffers no miss at
any time slot. Due to this optimal behavior, its fairness
value (avg miss) is 0 for all the different types of data sets
mentioned earlier. Table 1 summarizes the fairness results
of the FBPRR algorithm for task distribution type 1 for task
set sizes 25, 50, and 100 and various frame sizes. Table 2
shows the fairness results for the same set of parameters for
h ¼ 0:5 of task weight distribution type 2. In Fig. 5, we
present the speedup and fairness plots corresponding to
various values of h for task weight distribution type 2 for
three different task set sizes (25, 50, and 100) and frame
size 10n (where n stands for the task set size) in a fully
loaded system. The nature of the distribution is similar for
other values of G.

It may be interesting to note here that, although pure
round-robin and VTRR (as adopted by us) schedulers
provide higher speedups compared to ERfair, their fairness

distortions are also high. Experiments have revealed that

applying a pure VTRR scheduler provides a speedup of

28 times over ERfair with a fairness value (avg_miss) of 1:9

for a data set from distribution type 2 (h ¼ 0:5) consisting of

100 tasks in a fully loaded processor. The speedup of a pure
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TABLE 1
Fairness of FBPRR (Distribution Type 1)

TABLE 2
Fairness of FBPRR (Distribution Type 2; h ¼ 0:5)

Fig. 5. (a) Speedup and (b) fairness values for task weight distribution

type 2 for various values of h. Plots correspond to task set sizes 25, 50,

and 100 and frame size 10n, where n is the task set size when U ¼ 1:0.



round-robin scheduler for the same set of parameters is

even higher, being 31 times that of ERfair, although

(expectedly) it provides a very poor fairness value of 5:8.

This compares with speedups in the range of 10 to 18 and

fairness values in the range of 0.09 to 0.27 when frame sizes

are between 2n and 10n.

4.3 Discussion

From the results obtained in the previous subsection, we

can make the following important observations and

inferences:
G ¼ n is not a good choice of frame size since its speedup

and fairness are dominated by G ¼ 2n. Frame sizes in the

range of 2n to 5n provide fairness close to ERfair with

speedups in the range of 5 to 10 times that of ERfair at

100 percent workload. At lower workloads (90 percent and

95 percent loaded processor), the value of G may be

increased to 20n to obtain higher speedups (in the range of

17 to 24 times) while still obtaining good values. From Fig.

5, it may be observed that FBPRR provides consistently

stable speedups for various values of h in task distribution

type 2. In fact, there is a slight increase in the speedups with

increasing h values. This is due to the presence of larger

sized tasks for higher values of h, which causes scheduling

in a frame and sorting at frame boundaries to become faster.

However, the higher skewness of tasks for larger h values

results in a slight reduction in fairness.

5 CONCLUSIONS

In this paper, we presented a novel proportional fair

scheduling algorithm. We proved that FBPRR has high

and bounded proportional fairness accuracy, it guarantees

Oð1Þ scheduling overhead, and it is able to work for a

dynamic set of tasks. We have designed, implemented, and

evaluated the FBPRR algorithm. The simulation results are

promising.
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