
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 14, NO. 2, APRIL 2006 397

Longest Prefix Matching Using Bloom Filters
Sarang Dharmapurikar, Praveen Krishnamurthy, and David E. Taylor, Member, IEEE

Abstract—We introduce the first algorithm that we are aware of
to employ Bloom filters for longest prefix matching (LPM). The al-
gorithm performs parallel queries on Bloom filters, an efficient data
structure for membership queries, in order to determine address
prefix membership in sets of prefixes sorted by prefix length. We
show that use of this algorithm for Internet Protocol (IP) routing
lookups results in a search engine providing better performance and
scalability than TCAM-based approaches. The key feature of our
technique is that the performance, as determined by the number of
dependent memory accesses per lookup, can be held constant for
longer address lengths or additional unique address prefix lengths
in the forwarding table given that memory resources scale linearly
with the number of prefixes in the forwarding table. Our approach
is equally attractive for Internet Protocol Version 6 (IPv6) which
uses 128-bit destination addresses, four times longer than IPv4. We
present a basic version of our approach along with optimizations
leveraging previous advances in LPM algorithms. We also report
results of performance simulations of our system using snapshots of
IPv4 BGP tables and extend the results to IPv6. Using less than 2 Mb
of embedded RAM and a commodity SRAM device, our technique
achieves average performance of one hash probe per lookup and a
worst case of two hash probes and one array access per lookup.

Index Terms—Bloom filter, computer networking, IP lookup,
Longest Prefix Matching.

I. INTRODUCTION

LONGEST prefix matching (LPM) techniques have re-
ceived significant attention in the literature over the past

ten years. This is due to the fundamental role it plays in the
performance of Internet routers. Due to the explosive growth of
the Internet, classless inter-domain routing (CIDR) was widely
adopted to prolong the life of Internet Protocol Version 4 (IPv4)
[9]. CIDR requires Internet routers to search variable-length
address prefixes in order to find the longest matching prefix
of the IP destination address and retrieve the corresponding
forwarding information for each packet traversing the router.
This computationally intensive task, commonly referred to as
IP Lookup, is often the performance bottleneck in high-perfor-
mance Internet routers. While significant advances have been
made in algorithmic LPM techniques, most commercial router
designers have resolved to use ternary content addressable
memory (TCAM) devices in order to keep pace with optical
link speeds despite their larger size, cost, and power consump-
tion relative to static random access memory (SRAM). The
performance bottleneck in LPM algorithms employing RAM is
typically the number of dependent memory accesses required

Manuscript received December 9, 2003; revised April 17, 2005; approved by
IEEE/ACM TRANSACTIONS ON NETWORKING Editor B. Prabhakar.

The authors are with the Department of Computer Science and Engineering,
Washington University, St. Louis, MO 63130 USA (e-mail: sarang@arl.wustl.
edu).

Digital Object Identifier 10.1109/TNET.2006.872576

per lookup. Dependent memory accesses must be performed
sequentially, whereas independent memory accesses may
be performed in parallel. Some algorithms allow dependent
memory accesses to be masked via pipelining, with each stage
accessing an independent memory bank or port; however, this
quickly becomes an expensive option. We provide an overview
of the prominent LPM algorithmic developments and a com-
parison of TCAM and SRAM technologies in Section II.

In this paper, we introduce the first algorithm that we are
aware of to employ Bloom filters for LPM, as Bloom filters are
typically used for efficient exact match searches. A Bloom filter
is an efficient data structure for membership queries with tun-
able false positive errors [3]. The probability of a false posi-
tive is dependent upon the number of entries stored in a filter,
the size of the filter, and the number of hash functions used
to probe the filter. Background on Bloom filter theory is pre-
sented in Section III. Our approach begins by sorting the for-
warding table entries by prefix length, associating a Bloom filter
with each unique prefix length, and “programming” each Bloom
filter with prefixes of its associated length. A search begins by
performing parallel membership queries to the Bloom filters by
using the appropriate segments of the input IP address. The re-
sult of this step is a vector of matching prefix lengths, some
of which may be false matches. Hash tables corresponding to
each prefix length are probed in the order of longest match in
the vector to shortest match in the vector, terminating when a
match is found or all of the lengths represented in the vector
are searched. The key feature of our technique is that the per-
formance, as determined by the number of dependent memory
accesses per lookup, can be held constant for longer address
lengths or additional unique address prefix lengths in the for-
warding table given that memory resources scale linearly with
the number of prefixes in the forwarding table. An overview of
the basic technique as well as an analysis of the effects of false
positives is provided in Section IV.

In Section V, we introduce optimizations to achieve optimal
average case performance and limit the worst case, including
asymmetric Bloom filters which dimension filters according to
prefix length distribution. We show that with a modest amount
of embedded RAM for Bloom filters, the average number of
hash probes to tables stored in a separate memory device ap-
proaches one. We also show that by employing a direct lookup
array and properly configuring the Bloom filters, the worst case
can be held to two hash probes and one array access per lookup
while maintaining near optimal average performance of one
hash probe per lookup. We report simulation results for IPv4
using routing databases constructed from publicly available
BGP tables in Section VI.

It is important to note that our approach is equally attractive
for Internet Protocol Version 6 (IPv6) which uses 128-bit des-
tination addresses, four times longer than IPv4. Based on anal-

1063-6692/$20.00 © 2006 IEEE

398 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 14, NO. 2, APRIL 2006

ysis of publicly available IPv6 BGP tables and address alloca-
tion and assignment policies for IPv6 deployment, we provide
evidence for the suitability of our system for IPv6 route lookups
in Section VII. Finally, we discuss considerations for hardware
implementation in Section VIII. A system configured to sup-
port 250 000 IPv4 prefixes requires 2 Mb of embedded memory,
only 8 bits per prefix, to achieve near optimal average perfor-
mance while bounding the worst case. Implementation with cur-
rent technology is capable of average performance of over 300M
lookups per second and worst case performance of over 100M
lookups per second using a commodity SRAM device operating
at 333 MHz. We assert that this approach offers better perfor-
mance, scalability, and lower cost than TCAMs, given that com-
modity SRAM devices are denser, cheaper, and operate more
than three times faster than TCAM-based solutions.

II. RELATED WORK

Due to its essential role in Internet routers, IP lookup is a
well-researched topic. While a broad spectrum of algorithmic
approaches to the problem exist in the literature, most high-per-
formance routers employ TCAM devices in order to perform
lookups at optical link speeds. We examine both the prominent
algorithmic developments as well as the costs associated with a
pure hardware approach utilizing TCAMs.

A. Content Addressable Memories (CAMs)

Content addressable memories (CAMs) minimize the number
of memory accesses required to locate an entry. Given an input
key, the CAM device compares it against all memory words in
parallel; hence, a lookup effectively requires one clock cycle.
While binary CAMs perform well for exact match operations
and can be used for route lookups in strictly hierarchical ad-
dressing schemes [14], the wide use of address aggregation tech-
niques like CIDR requires storing and searching entries with ar-
bitrary prefix lengths. In response, TCAMs were developed with
the ability to store an additional “Don’t Care” state, thereby en-
abling them to retain single clock cycle lookups for arbitrary
prefix lengths. This high degree of parallelism comes at the cost
of storage density, access time, and power consumption. Since
the input key is compared against every memory word, each bit
of storage requires match logic to drive a match word line which
signals a match for the given key. The extra logic and capacitive
loading due to the massive parallelism lengthens access time
and increases power consumption.

We can make a first-order comparison between SRAM and
TCAM technology by observing that SRAM cells typically re-
quire six transistors to store a binary bit of information, con-
sume between 20 and 30 nW per bit of storage, and operate
with 3 ns clock periods (333 MHz). Current generation dual-
data-rate (DDR) SRAMs are capable of retrieving two words
per clock cycle; however, these devices often have a minimum
burst length of two words [15]. Hence, the DDR feature effec-
tively doubles the I/O bandwidth but retains the same random
access time. A typical TCAM cell requires additional six tran-
sistors to store the mask bit and four transistors for the match
logic, resulting in a total of 16 transistors and a cell 2.7 times
larger than a standard SRAM cell [17]. In addition to being less

dense than SRAM, current generation TCAMs achieve 100 mil-
lion lookups per second, resulting in access times over 3.3 times
longer than SRAM due to the capacitive loading induced by
the parallelism [18]. Additionally, power consumption per bit
of storage is on the order of 3 W per “bit” [16]. In summary,
TCAMs consume 150 times more power per bit than SRAM and
currently cost about 30 times more per bit of storage. Therefore,
a lookup technique that employs standard SRAM requires less
than four memory accesses per lookup and utilizes less than 11
bytes per entry for IPv4 and less than 44 bytes per entry for IPv6
not only matches TCAM performance and resource utilization,
but also provides a significant advantage in terms of cost and
power consumption.

B. Trie-Based Schemes

One of the first IP lookup techniques to employ tries was the
radix trie implementation in the BSD kernel. Optimizations re-
quiring contiguous masks bound the worst case lookup time to

where is the length of the address in bits [19]. In order
to speed up the lookup process, multi-bit trie schemes were de-
veloped which perform a search using multiple bits of the ad-
dress at a time. Srinivasan and Varghese introduced two impor-
tant techniques for multi-bit trie searches, controlled prefix ex-
pansion (CPE) and Leaf Pushing [20]. CPE restricts the set of
distinct prefixes by “expanding” prefixes shorter than the next
distinct length into multiple prefixes. This allows the lookup to
proceed as a direct index lookup into tables corresponding to the
distinct prefix lengths, or stride lengths, until the longest match
is found. The technique of Leaf Pushing reduces the amount of
information stored in each table entry by “pushing” best match
information to leaf nodes such that a table entry contains either
a pointer or information. While this technique reduces memory
usage, it also increases incremental update overhead. Variable
length stride lengths, optimal selection of stride lengths, and dy-
namic programming techniques are discussed as well. Gupta,
Lin, and McKeown simultaneously developed a special case of
CPE specifically targeted to hardware implementation [10]. Ar-
guing that DRAM is a plentiful and inexpensive resource, their
technique sacrifices large amounts of memory in order to bound
the number of off-chip memory accesses to two or three. Their
basic scheme is a two level “expanded” trie with an initial stride
length of 24 and second level tables of stride length eight. Given
that random accesses to DRAM may require up to eight clock
cycles and current DRAMs operate at less than half the speed of
SRAMs, this technique fails to outperform techniques utilizing
SRAM and requiring less than 10 memory accesses.

Other techniques such as Lulea [5] and Eatherton and Dittia’s
Tree Bitmap [7] employ multi-bit tries with compressed nodes.
The Lulea scheme essentially compresses an expanded, leaf-
pushed trie with stride lengths 16, 8, and 8. In the worst case, the
scheme requires 12 memory accesses; however, the data struc-
ture only requires a few bytes per entry. While extremely com-
pact, the Lulea scheme’s update performance suffers from its
implicit use of Leaf Pushing. The Tree Bitmap technique avoids
Leaf Pushing by maintaining compressed representations of the
prefixes stored in each multi-bit node. It also employs a clever
indexing scheme to reduce pointer storage to two pointers per
multi-bit node. Storage requirements for Tree Bitmap are on the

DHARMAPURIKAR et al.: LONGEST PREFIX MATCHING USING BLOOM FILTERS 399

order of 10 bytes per entry, worst case memory accesses can be
held to less than eight with optimizations, and updates require
modifications to a few memory words resulting in excellent in-
cremental update performance.

The fundamental issue with trie-based techniques is that
performance and scalability are fundamentally tied to address
length. As many in the Internet community are pushing to
widely adopt IPv6, it is unlikely that trie-based solutions will
be capable of meeting performance demands.

C. Other Algorithms

Several other algorithms exist with attractive properties that
are not based on tries. The Multiway and Multicolumn Search
techniques presented by Lampson, Srinivasan, and Varghese re-
quire time and memory [13]. Again, the
primary issue with this algorithm is its linear scaling relative to
address length.

Another computationally efficient algorithm that is most
closely related to our technique is Binary Search on Prefix
Lengths introduced by Waldvogel et al. [21]. This technique
bounds the number of memory accesses via significant precom-
putation of the database. First, the database is sorted into sets
based on prefix length, resulting in a maximum of sets to
examine for the best matching prefix. A hash table is built for
each set, and it is assumed that examination of a set requires
one hash probe. The basic scheme selects the sequence of sets
to probe using a binary search on the sets beginning with the
median length set. For example: for an IPv4 database with
prefixes of all lengths, the search begins by probing the set
with length 16 prefixes. Prefixes of longer lengths direct the
search to its set by placing “markers” in the shorter sets along
the binary search path. Going back to our example, a length 24
prefix would have a “marker” in the length 16 set. Therefore,
at each set the search selects the longer set on the binary search
path if there is a matching marker directing it lower. If there is
no matching prefix or marker, then the search continues at the
shorter set on the binary search path. Use of markers introduces
the problem of “backtracking”: having to search the upper half
of the trie because the search followed a marker for which there
is no matching prefix in a longer set for the given address. In
order to prevent this, the best-matching prefix for the marker
is computed and stored with the marker. If a search terminates
without finding a match, the best-matching prefix stored with
the most recent marker is used to make the routing decision. The
authors also propose methods of optimizing the data structure to
the statistical characteristics of the database. For all versions of
the algorithm, the worst case bounds are time and

space where is the number of unique
prefix lengths. Empirical measurements using an IPv4 database
resulted in memory requirement of about 42 bytes per entry.

Like the Binary Search on Prefix Lengths technique, our ap-
proach begins by sorting the database into sets based on prefix
length. We assert that our approach exhibits several advantages
over the previously mentioned technique. First and foremost,
we show that the number of dependent memory accesses re-
quired for a lookup can be held constant given that memory
resources scale linearly with the size of the forwarding table.
We show that our approach remains memory efficient for large

databases and provide evidence for its applicability to IPv6.
Second, by avoiding significant precomputation like “markers”
and “leaf pushing” our approach retains good incremental up-
date performance.

III. BLOOM FILTER THEORY

The Bloom filter is a data structure used for representing a
set of messages succinctly. A filter is first “programmed” with
each message in the set, then queried to determine the member-
ship of a particular message. It was formulated by B. H. Bloom
in 1970 [3] and is widely used for different purposes such as
web caching, intrusion detection, and content-based routing [4].
For the convenience of the reader, we explain the theory behind
Bloom filters in this section.

A. Bloom Filters

A Bloom filter is essentially a bit-vector (which we call Vector
in this paper) of length used to efficiently represent a set
of messages. Given a set of messages with members, the
Bloom filter is “programmed” as follows. For each message
in , hash functions, , are computed on pro-
ducing values each ranging from 1 to . Each of these values
addresses a single bit in the -bit vector and sets it to 1. Note
that if one of the hash values addresses a bit that is already
set to 1, that bit is not changed. The following pseudo-code de-
scribes adding a message to a Bloom filter.

BFAdd
1) for (to)
2) Vector

Querying the filter for set membership of a given message
is similar to the programming process. Given message , hash
values are generated using the same hash functions used to pro-
gram the filter. The bits in the -bit long vector at the locations
corresponding to the hash values are checked. If at least one of
the bits is 0, then the message is declared to be a nonmember of
the set. If all the bits are found to be 1, then the message is said
to belong to the set with a certain probability. If all the bits are
found to be 1 and is not a member of , then it is a false positive.
The following pseudo-code describes the query process.

BFQuery
1) for (to)
2) if Vector return false
3) return true

The ambiguity in membership comes from the fact that the
bits in the -bit vector can be set by any subset of the mem-
bers of . Thus, finding a bit set to 1 does not necessarily imply
that it was set by the particular message being queried. However,
finding a 0 bit certainly implies that the message does not be-
long to the set, since if it were a member, then all -bits would
have been set to 1 when the Bloom filter was programmed.

Now we look at the step-by-step derivation of the false posi-
tive probability (i.e., for a message that is not programmed, we
find that all bits that it hashes to are 1). The probability that
a random bit of the -bit vector is set to 1 by a hash function
is simply . The probability that it is not set is .

400 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 14, NO. 2, APRIL 2006

The probability that it is not set by any of the members of
is . Since each of the messages sets bits in the
vector, it becomes . Hence, the probability that
this bit is found to be 1 is . For a message to
be detected as a possible member of the set, all bit locations
generated by the hash functions need to be 1. The probability
that this happens, , is given by

(1)

For large values of , the above equation reduces to

(2)

Since this probability is independent of the input message, it is
termed the false positive probability. The false positive proba-
bility can be reduced by choosing appropriate values for and

for a given size of the member set, . It is clear that the size of
the bit-vector, , needs to be quite large compared to the size of
the message set, . For a given ratio of , the false positive
probabilitycanbereducedbyincreasing thenumberofhashfunc-
tions, . In the optimal case, when false positive probability is
minimized with respect to , we get the following relationship:

(3)

The false positive probability at this optimal point is given by

(4)

It should be noted that if the false positive probability is to be
fixed, then the size of the filter, , needs to scale linearly with
the size of the message set, .

B. Counting Bloom Filters

A property of Bloom filters is that it is not possible to delete a
message stored in the filter. Deleting a particular entry requires
that the corresponding hashed bits in the bit vector be set to zero.
This could disturb other messages programmed into the filter
which hash to any of these bits. In order to solve this problem,
the idea of the Counting Bloom Filters was proposed in [8]. A
counting Bloom Filter maintains a vector of counters (which
we call Counter in this paper) instead of a bit-vector. Whenever
a message is added to or deleted from the filter, the counters
corresponding to the hash values are incremented or decre-
mented, respectively. The following pseudo-codes, CBFAdd
and CBFDelete, describe the addition and deletion process,
respectively.

CBFAdd
1) for (to)
2) Counter

CBFDelete
1) for (to)
2) Counter

As will be clear later, we use a composite data structure con-
sisting of a counting Bloom filter and an ordinary Bloom filter
to support the incremental updates on the set of prefixes in our
LPM algorithm.

IV. OUR APPROACH

The performance bottleneck in algorithmic LPM techniques
is typically the number of dependent memory accesses required
per lookup. Due to the continued scaling of semiconductor
technology, logic resources are fast and plentiful. Current
application-specific integrated circuits (ASICs) operate at clock
frequencies over 500 MHz, are capable of massively parallel
computation, and support embedded SRAMs as large as 8 Mb.
While logic operations and accesses to embedded memory
are not “free,” we show that the amount of parallelism and
embedded memory employed by our system are well within
the capabilities of modern ASIC technology. Given that current
ASICs posses an order of magnitude speed advantage to com-
modity memory devices, approximately ten clock cycles are
available for logic operations and embedded memory accesses
per “off-chip” memory access. As previously mentioned,
commodity SRAM devices are capable of performing 333M
random accesses per second while state-of-the-art TCAMs are
capable of 100M lookups per second. While the performance
ratio may not remain constant, SRAMs will always provide
faster accesses than TCAMs which suffer from more capacitive
loading due to the massive parallelism inherent in TCAM
architecture.

Our approach seeks to leverage advances in modern hard-
ware technology along with the efficiency of Bloom filters
to perform longest prefix matching using a custom logic de-
vice with a modest amount of embedded SRAM and a com-
modity “off-chip” SRAM device. Note that a commodity dy-
namic random access memory (DRAM) device could also be
used, further reducing cost and power consumption but in-
creasing the “off-chip” memory access period. We show that by
properly dimensioning the amount and allocation of embedded
memory for Bloom filters, the average number of “off-chip”
memory accesses per lookup approaches one; hence, lookup
throughput scales directly with the memory device access pe-
riod. We also provide system configurations that limit worst
case lookup time.

A. Basic Configuration

A naive way to find the longest matching prefix is by using a
hash table. We can construct a hash table from all the prefixes
and with each prefix we can store the associated next hop
information. Given an IP address, we can query the hash table
with each of the possible prefixes for its presence, starting
from the longest prefix. We stop when the matching prefix
is found and retrieve the associated next hop information. The
problem of constructing hash tables to minimize collisions with
reasonable amounts of memory is well-studied. For the purpose
of our discussion, we assume that probing a hash table stored
in off-chip memory requires one memory access [21]. Clearly
this naive approach would require hash table lookups
(and hence as many off-chip memory accesses) in the worst

DHARMAPURIKAR et al.: LONGEST PREFIX MATCHING USING BLOOM FILTERS 401

Fig. 1. Basic configuration of longest prefix matching using bloom filters.

case. However, we can reduce the memory accesses to almost
a single access by using Bloom filters implemented in on-chip
memory. The basic configuration of our system is shown in
Fig. 1.

We group all the prefixes in our prefix set having the same
length and store this group in a Bloom filter. We maintain
parallel Bloom filters in the embedded memory each corre-
sponding to a unique prefix length. Note that we do not need
to maintain a Bloom filter corresponding to a prefix length for
which there are no prefixes in our set. Before we query the
hash table with a prefix, we query the corresponding Bloom
filter to check if the prefix is indeed present in the hash table.
Only if the Bloom filter shows a match, we proceed to query
the hash table. Remember that a Bloom filter can produce a
false positive match but never a false negative. If the match of
a Bloom filter was a false positive, then we would discover it
eventually after the hash table probe results in an unsuccessful
search. Thus, in case of a false positive, we simply waste a
memory access and proceed to check the next prefix showing a
match in the corresponding Bloom filter.

Due to the parallelism offered by embedded memories,
we can perform all the Bloom filter lookups concurrently. A
carefully designed Bloom filter can give a lookup result in a
single cycle of the system clock. We produce a MatchVector
with bits in which each bit is set by a Bloom filter if the cor-
responding prefix queried in it shows a match. Then, we use a
priority encoder which simply walks through the MatchVector
from longest to shortest prefix and executes the hash table

lookups for the matching prefixes. The following pseudo-code
formally describes the LPM on an IP address .

LPM
1) for (down to 1)
2) MatchVector BFQuery
3) for (down to 1)
4) if MatchVector true
5) prefix, NextHop HashTableLookup
6) if prefix return prefix, NextHop
7) return NULL, DefaultHop

In the pseudo-code above, denotes the bit prefix of and
BFQuery denotes the process of querying Bloom filter for this
prefix length. The loop in line 1–2 is executed in parallel as ex-
plained before. By designing Bloom filters to yield a very small
false positive probability (explained in Section IV-C) we can
make sure that only the HashTableLookup corresponding to the
longest matching prefix is performed with very high probability.

B. Supporting Incremental Updates

Now we explain how we support addition and deletion of
prefixes to the prefix table using our data structures. As we
mentioned before, only ordinary Bloom filters are not suffi-
cient to support deletion of prefixes. Hence, corresponding to
each Bloom filter we maintain a counting Bloom filter. Unfor-
tunately, a counting Bloom filter consumes more memory than
an ordinary Bloom filter and keeping it in the on-chip memory
is not cost-effective. At the same time we note that addition and
deletion of routes is relatively infrequent compared to the actual
lookup process and hence need not be performed at the same
rate. Therefore, we keep the counting Bloom filters in another
off-chip memory along with a control processor which is re-
sponsible for updates, as shown in Fig. 1.

When we want to add a prefix to the set, first we add it to
the counting Bloom filter corresponding to its length. During
this addition, if any counter of this filter changes value from
zero to one then we must set the corresponding bit of the asso-
ciated on-chip Bloom filter as well. When a modified counter
is already nonzero before addition, we will definitely have the
corresponding bit of the associated Bloom filter already set and
hence it need not be modified. After modifying Bloom filters, we
also need to add the prefix, NextHop pair to the hash table.

Likewise, when we want to delete an existing prefix from
the set, we first delete it from the counting Bloom filter (i.e.,
decrement the corresponding counters). If a counter changes its
value from one to zero, then the corresponding on-chip Bloom
filter must be updated by resetting the bit. Also, the prefix must
be deleted from the hash table as well which incurs another
memory access. The following pseudo-codes describe addition
and deletion of prefixes.

AddPrefix (, NextHop)
1) for (to)
2) Counter
3) if Counter Vector
4) InsertHashTable NextHop

402 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 14, NO. 2, APRIL 2006

DeletePrefix
1) for (to)
2) Counter
3) if Counter Vector
4) DeleteHashTable

Clearly, the complexity of an add/delete operation is simply
memory accesses to increment/decrement the counter and at

the most parallel memory accesses to update the associated
Bloom filter, plus one more memory accesses to insert/delete
the prefix in the hash table.

C. Effect of False Positives

We now show the relationship between false positive proba-
bility and its effect on the throughput of the system. We measure
the throughput of the system as a function of the average number
of hash probes per lookups, . The worst case performance
for the basic configuration of our system is hash probes
per lookup. We later show how the worst case can be limited to
two hash probes and one array access per lookup by trading off
some memory efficiency. Our goal is to optimize average perfor-
mance and bound the worst case such that our system provides
equal or better performance than TCAM based solutions under
all traffic conditions using commodity memory technology.

The number of hash probes required to determine the correct
prefix length for an IP address is determined by the number of
matching Bloom filters. For an address which matches a prefix
of length , we first examine any prefix lengths greater than
represented in the match vector. For the basic configuration of
the system, we assume that all Bloom filters share the same false
positive probability, . We later show how this can be achieved
by selecting appropriate values for for each filter. Let rep-
resent the number of Bloom filters for the prefixes of length
greater than . Hence, the average number of additional hash
probes required when matching a length prefix is

(5)

Let be the total number of Bloom filters in the system for
a given configuration. The worst case value of , which we
denote as , can be expressed as

(6)

This is the maximum number of additional hash probes per
lookup, independent of input address. Since these are the
average additional probes due to the false positives, the total
number of average hash probes per lookup for any input address
is upper bounded as

(7)

where the additional one probe accounts for the probe at the
matching prefix length. Note that there is the possibility that an

IP address creates false positive matches in all the filters in the
system. In this case, the number of required hash probes is

(8)

Thus, while (7) gives the average number of hash probes for a
longest prefix match, (8) provides the maximum number of hash
probes for a worst case lookup. Since both values depend on

, the number of filters in the system, reducing is important
for limiting the worst case. Note that for the basic configuration
the value of is simply . The remainder of this paper
addresses the issues of filter dimensioning, design trade-offs,
and bounding the worst case.

V. CONFIGURATION AND OPTIMIZATION

In this section, we seek to develop a system configuration
that provides high performance independent of prefix database
characteristics and input address patterns. The design goal is to
architect a search engine that achieves an average of one hash
probe per lookup, bounds the worst case search, and utilizes
a small amount of embedded memory. Several variables affect
system performance and resource utilization:

• , the target amount of prefixes supported by the system
• , the total amount of embedded memory available for

Bloom filters
• , the number of unique prefix lengths supported by

the system
• , the size of each Bloom filter
• , the number of hash functions computed in each Bloom

filter
• , the number of prefixes stored in each Bloom filter.
For clarity, we will use the case of IPv4 throughout the fol-

lowing sections. Implications for IPv6 will be discussed in Sec-
tion VII. IPv4 addresses are 32 bits long; therefore,
and depend on the characteristics of the database. Given
that current IPv4 BGP tables are in excess of 100 000 entries,
we use , unless otherwise noted, to illustrate the
viability of our approach for future use. For all of our analysis,
we set the number of hash functions per filter such that the false
positive probability is a minimum for a filter of length . The
feasibility of designing a system with selectable values of is
discussed in Section VIII.

We have established a basic intuition for system performance
assuming that each individualBloom filter has thesame false pos-
itive . We also note that as long as the false positive probability
is kept the same for all the Bloom filters, the system performance
is independent of the prefix distribution. Let be the false posi-
tive probability of the th Bloom filter. Given that the filter is al-
located bits of memory, stores prefixes, and performs

hash functions, the expression for becomes

(9)

This implies that

(10)

DHARMAPURIKAR et al.: LONGEST PREFIX MATCHING USING BLOOM FILTERS 403

Fig. 2. Average prefix length distribution for IPv4 BGP table snapshots.

Therefore, the false positive probability for a given filter
may be expressed as

(11)

Based on the preceding analysis, the average number of hash
probes per lookup depends only on the total amount of memory
resources, , and the total number of supported prefixes, .
It is important to note that this is independent of the number of
unique prefix lengths and the distribution of prefixes among the
prefix lengths.

A. Asymmetric Bloom Filters

The preceding analysis implies that memory be proportion-
ally allocated to each Bloom filter based on its share of the total
number of prefixes. Given a static, uniform distribution of pre-
fixes, each Bloom filter would simply be allocated
bits of memory. Examination of real IP forwarding tables re-
veals that the distribution of prefixes is not uniform over the set
of prefix lengths. Routing protocols also distribute periodic up-
dates; hence, forwarding tables are not static. We collected 15
snapshots of IPv4 BGP tables from [1] and gathered statistics
on prefix length distributions. As expected, the prefix distribu-
tions for the IPv4 tables demonstrated common trends such as
large numbers of 24-bit prefixes and few prefixes of length less
than 8 bits. An average prefix distribution for all of the tables
we collected is shown in Fig. 2.

If we use a static system configured for uniformly distributed
prefix lengths to search a database with nonuniform prefix
length distribution, some filters are over-allocated memory
while others are under-allocated; thus, the false positive prob-
abilities for the Bloom filters are no longer equal. Clearly,
we need to proportionally allocate the amount of embedded
memory per filter based on its current share of the total prefixes
while adjusting the number of hash functions to maintain min-
imal false positive probability. We refer to this configuration as
“asymmetric Bloom filters” and describe a device architecture
capable of supporting it in Section VIII. Using (7) for the case

Fig. 3. Average number of hash probes per lookup, E , versus total em-
bedded memory size,M , for various values of total prefixes, N , using a basic
configuration for IPv4 with 32 asymmetric Bloom filters.

of IPv4, the average number of hash probes per lookup, ,
may be expressed as

(12)

Given the feasibility of asymmetric Bloom filters, we plot the
average number of hash probes per lookup, , versus total
embedded memory size for various values of in Fig. 3.
With a modest 2-Mb embedded memory, the average number
of hash probes per lookup is less than two for 250 000 prefixes.
We assert that such a system is also memory efficient as it only
requires 8 bits of embedded memory per prefix. Doubling the
size of the embedded memory to 4 Mb provides near optimal
average performance of one hash probe per lookup. Using (8),
the worst case number of dependent memory accesses is simply
33. Note that the term for the access for the matching prefix may
be omitted, as the default route can be stored internally; hence,
the worst case number of dependent memory accesses is 32.

B. Direct Lookup Array

The preceding analysis showed how asymmetric Bloom
filters can achieve near optimal average performance for large
numbers of prefixes with a modest amount of embedded
memory. We now examine ways to bound the worst case
number of hash probes without significantly affecting average
performance. We observe from the distribution statistics that
sets associated with the first few prefix lengths are typically
empty and the first few nonempty sets hold few prefixes as
shown in Fig. 2. This suggests that utilizing a direct lookup
array for the first prefix lengths is an efficient way to represent
shorter prefixes while reducing the number of Bloom filters.
For every prefix length we represent in the direct lookup array,
the number of worst case hash probes is reduced by one. Use
of a direct lookup array also reduces the amount of embedded
memory required to achieve optimal average performance,
as the number of prefixes represented by Bloom filters is
decreased.

404 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 14, NO. 2, APRIL 2006

Fig. 4. Example of direct lookup array for the first three prefix lengths.

We now clarify what we mean by a direct lookup array. An
example of a direct lookup array for the first prefixes
is shown in Fig. 4. We begin by storing the prefixes of length

in a binary trie. We then perform CPE for a stride length
equal to [20]. The next hop associated with each leaf at level

is written to the array slot addressed by the bits labeling the
path from the root to the leaf. The structure is searched by using
the first bits of the IP destination address to index into the
array. For example, an address with initial bits 101 would re-
sult in a next hop of 4. Note that this data structure requires

bits of memory where is the number of bits
required to represent the next hop.

For the purpose of a realistic analysis, we select re-
sulting in a direct lookup array with 1M slots. For a 256-port
router where the next hop corresponds to the output port, 8 bits
are required to represent the next hop value and the direct lookup
array requires 1 MB of memory. Use of a direct lookup array
for the first 20 prefix lengths leaves prefix lengths 21, ,32 to
Bloom filters; hence, the expression for the average number of
hash probes per lookup becomes

(13)

where is the sum of the prefixes with lengths [1:20].
On average, the prefixes constituted 24.6% of the total

prefixes in the sample IPv4 BGP tables; therefore, 75.4% of the
total prefixes are represented in the Bloom filters. Given this
distribution of prefixes, the average number of hash probes per
lookup versus total embedded memory size for various values
of is shown in Fig. 5. The average number of hash probes
per lookup for databases containing 250 000 prefixes is less than
two when using a small 1-Mb embedded memory. Doubling the
size of the memory to 2 Mb reduces the average number of hash
probes per lookup to less than 1.1 for 250 000 prefix databases.
While the amount of memory required to achieve good average
performance has decreased to only 4 bits per prefix, the worst
case hash probes per lookup is still large. Using (8), the worst
case number of dependent memory accesses becomes

.
For an IPv4 database containing the maximum of 32 unique

prefix lengths, the worst case is 13 dependent memory accesses
per lookup. A high-performance implementation option is to
make the direct lookup array the final stage in a pipelined search

Fig. 5. Average number of hash probes per lookup, E , versus total em-
bedded memory size,M , for various values of total prefixes, N , using a direct
lookup array for prefix lengths 1,. . .,20 and 12 Bloom filters for prefix lengths
21,. . .,32

architecture. IP destination addresses which reach this stage
with a null next hop value would use the next hop retrieved from
the direct lookup array. A pipelined architecture does require a
dedicated memory bank or port for the direct lookup array. The
following section describes additional steps to further improve
the worst case.

C. Reducing the Number of Filters

We can reduce the number of remaining Bloom filters by lim-
iting the number of distinct prefix lengths via further use of CPE.
We would like to limit the worst case hash probes to as few as
possible without prohibitively large embedded memory require-
ments. Clearly, the appropriate choice of CPE strides depends
on the prefix distribution. As illustrated in the average distri-
bution of IPv4 prefixes shown in Fig. 2, we observe in all of
our sample databases that there is a significant concentration of
prefixes from lengths 21 to 24. On average, 75.2% of the pre-
fixes fall in the range of 21 to 24. Likewise, we observe in all
of our sample databases that prefixes in the 25 to 32 range are
extremely sparse. Specifically, 0.2% of the prefixes fall in the
range 25 to 32. (Remember that 24.6% of the prefixes fall in the
range of 1 to 20.)

Based on these observations, we chose to divide the prefixes
not covered by the direct lookup array into 2 groups, corre-
sponding to prefix lengths 21–24 and 25–32, respectively. Each
group is expanded out to the upper limit of the group so that
the first group contains only length 24 prefixes and the second
group contains only length 32 prefixes. Let be the orig-
inal number of prefixes of length 21 to 24 and let be the
original number of prefixes of length 25 to 32. Using CPE in-
creases the number of prefixes in each group by an “expansion
factor” factor and , respectively. We observed an
average value of 1.8 for in our sample databases, and an
average value of 49.9 for . Such a large value of is
tolerable due to the small number of prefixes of length 25 to 32.

Use of this technique results in two Bloom filters and a direct
lookup array, bounding the worst case lookup to two hash probes

DHARMAPURIKAR et al.: LONGEST PREFIX MATCHING USING BLOOM FILTERS 405

Fig. 6. Average number of hash probes per lookup, E , versus total em-
bedded memory size,M , for various values of total prefixes, N , using a direct
lookup array for prefix lengths 1,. . .,20 and two Bloom filters for prefix lengths
21,. . .,24 and 25,. . .,32

and an array lookup. The expression for the average number of
hash probes per lookup becomes

(14)

Using the observed average distribution of prefixes and ob-
served average values of and , the average
number of hash probes per lookup versus total embedded
memory for various values of is shown in Fig. 6. The
average number of hash probes per lookup for databases con-
taining 250 000 prefixes is less than 1.6 when using a small
1-Mb embedded memory. Doubling the size of the memory to
2 Mb reduces the average number of hash probes per lookup
to less than 1.2 for 250 000 prefix databases. The use of CPE
to reduce the number of Bloom filters provides for a maximum
of two hash probes and one array access per lookup while
maintaining near optimal average performance with modest use
of embedded memory resources.

VI. PERFORMANCE SIMULATIONS

In the discussion so far we have described three system con-
figurations, each offering an improvement over the earlier in
terms of worst case performance. In this section, we present
simulation results for each configuration using forwarding ta-
bles constructed from real IPv4 BGP tables. We will refer to
each configuration as follows.

• Scheme 1: This scheme is the basic configuration which
uses asymmetric Bloom filters for all prefix lengths as de-
scribed in Section V-A.

• Scheme 2: This scheme uses a direct lookup array for prefix
lengths [0, ,20] and asymmetric Bloom filters for prefix
lengths [21, ,32] as described in Section V-B.

• Scheme 3: This scheme uses a direct lookup array for
prefix lengths [0, ,20] and two asymmetric Bloom filters
for CPE prefix lengths 24 and 32 which represent prefix
lengths [21, ,24] and [25, ,32], respectively. This
configuration is described in Section V-C.

For all schemes we set and adjusted for
each asymmetric Bloom filter according to the distribution of
prefixes of the database under test. We collected 15 IPv4 BGP
tables from [1]. For each combination of database and system
configuration, we computed the theoretical value of using
(12)–(14).

A simulation was run for every combination of database and
system configuration. The ANSI C function was used to
generate hash values for the Bloom filters as well as the prefix
hash tables. The collisions in the prefix hash tables were around
0.8% which is negligibly small. In order to investigate the ef-
fects of input addresses on system performance, we used var-
ious traffic patterns varying from completely random addresses
to only addresses with a valid prefix in the database under test.
In the latter case, the IP addresses were generated in proportion
to the prefix distribution; thus, IP addresses corresponding to
a 24-bit prefix in the database dominated the input traffic. One
million IP addresses were applied for each test run. Input traffic
patterns with completely randomly generated IP addresses gen-
erated no false positives in any of our tests. The false positives
increased as the traffic pattern contained more IP addresses cor-
responding to the prefixes in the database. Maximum false pos-
itives were observed when the traffic pattern consisted of only
the IP addresses corresponding to the prefixes in the database;
hence, the following results correspond to this input traffic pat-
tern. The average number of hash probes per lookup from the
test runs with each of the databases on all three system config-
urations, along with the corresponding theoretical values, are
shown in Table I. The maximum number of memory accesses
(hash probes and direct lookup) per lookup was recorded for
each test run of all the schemes. While the theoretical worst case
memory accesses per lookup for Scheme 1 and Scheme 2 are 32
and 13, respectively, the worst observed lookups required less
than four memory accesses in all test runs. For scheme 3, in most
of test runs, the worst observed lookups required three memory
accesses.

Using Scheme 3, the average number of hash probes per
lookup over all test databases is found to be 1.003, which
corresponds to a lookup rate of about 332M lookups per second
with a commodity SRAM device operating at 333 MHz. This is
a speedup of 3.3X over state-of-the-art TCAM-based solutions.
At the same time, the scheme has a worst case performance of
two hash probes and one array access per lookup. Assuming
that the array is stored in the same memory device as the tables,
worst case performance is 110M lookups per second, which
exceeds current TCAM performance.

Note that the values of the average hash probes per lookup as
shown by the simulations generally agree with the values pre-
dicted by the equations. We now provide a direct comparison
between theoretical performance and observed performance. To
see the effect of total embedded memory resources, , for
Bloom filters, we simulated Scheme 3 with database 1 with

prefixes for various values of between 500 kb
and 4 Mb. Fig. 7 shows theoretical and observed values for the
average number of hash probes per lookup for each value of

. Simulation results show slightly better performance than the
corresponding theoretical values. This improvement in the per-
formance can be attributed to the fact that the distribution of

406 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 14, NO. 2, APRIL 2006

TABLE I
OBSERVED AVERAGE NUMBER OF HASH PROBES PER LOOKUP FOR 15 IPV4 BGP TABLES

ON VARIOUS SYSTEM CONFIGURATIONS DIMENSIONED WITH M = 2 Mb

Fig. 7. Average number of hash probes per lookup for Scheme 3 programmed
with database 1, N = 116, 819, for various embedded memory sizes,M .

input addresses has been matched to the distribution of prefixes
in the database under test. Since length 24 prefixes dominate real
databases, arriving packets are more likely to match the second
Bloom filter and less likely to require an array access.

VII. IPV6 PERFORMANCE

We have shown that the number of dependent memory ac-
cesses per lookup can be held constant given that memory re-
sources scale linearly with database size. Given this character-
istic of our algorithm and the memory efficiency demonstrated
for IPv4, we assert that our technique is suitable for high-speed
IPv6 route lookups. The primary issue for IPv6 scalability of
our technique is not lookup performance, but memory usage. In
order for our technique to easily scale to IPv6, the number of
unique prefix lengths in IPv6 databases must be manageable.

In order to assess the current state of IPv6 tables, we collected
five IPv6 BGP table snapshots from several sites [2]. Since the
tables are relatively small, we computed a combined distribution
of prefix lengths. Fig. 8 shows the combined distribution for a
total of 1550 entries. A significant result is that the total number

Fig. 8. Combined prefix length distribution for IPv6 BGP table snapshots.

of unique prefix lengths in the combined distribution is 14, less
than half of the number for the IPv4 tables we studied. We now
investigate IPv6 address architecture and deployment policies
to gain a sense of whether or not the number of unique prefix
lengths is expected to grow significantly.

A. Address Architecture

The addressing architecture for IPv6 is detailed in RFC 3513
[11]. In terms of the number of prefix lengths in forwarding ta-
bles, the important address type is the global unicast address
which may be aggregated. RFC 3513 states that IPv6 unicast
addresses may be aggregated with arbitrary prefix lengths like
IPv4 addresses under CIDR. While this provides extensive flex-
ibility, we do not foresee that this flexibility necessarily results
in an explosion of unique prefix lengths. The global unicast ad-
dress format has three fields: a global routing prefix, a subnet
ID, and an interface ID. All global unicast addresses, other than
those that begin with 000, must have a 64-bit interface ID in the
Modified EUI-64 format. These identifiers may be of global or
local scope; however, we are only interested in the structure they
impose on routing databases. In such cases, the global routing
prefix and subnet ID fields must consume a total of 64 bits.

DHARMAPURIKAR et al.: LONGEST PREFIX MATCHING USING BLOOM FILTERS 407

Global unicast addresses that begin with 000 do not have any
restrictions on interface ID size; however, these addresses are
intended for special purposes such as embedded IPv4 addresses.
Embedded IPv4 addresses provide a mechanism for tunneling
IPv6 packets over IPv4 routing infrastructure. We anticipate that
this special class of global unicast addresses will not contribute
many unique prefix lengths to IPv6 routing tables.

B. Address Allocation & Assignment

On June 26, 2002, in a memo titled, “IPv6 Address Alloca-
tion and Assignment Policy,” the Internet Assigned Numbers
Authority (IANA) announced initial policies governing the
distribution or “licensing” of IPv6 address space [12]. One of
its stated goals is to distribute address space in a hierarchical
manner so as to “permit the aggregation of routing information
by ISPs, and to limit the expansion of Internet routing tables.”
To that end, the distribution process is also hierarchical. IANA
has made initial distributions of /16 address blocks to existing
Regional Internet Registries (RIRs). The RIRs are responsible
for allocating address blocks to National Internet Registries
(NIRs) and Local Internet Registries (LIRs). The LIRs and
NIRs are responsible for assigning addresses and address
blocks to end users and Internet Service Providers (ISPs).

The minimum allocation of address space to Internet Reg-
istries is in units of /32 blocks. IRs must meet several criteria in
order to receive an address allocation, including a plan to pro-
vide IPv6 connectivity by assigning /48 address blocks. During
the assignment process, /64 blocks are assigned when only one
subnet ID is required and /128 addresses when only one device
interface is required. While it is not clear how much aggregation
will occur due to ISPs assigning multiple /48 blocks, the allo-
cation and assignment policy does provide significant structure.
If these policies are followed, we anticipate that IPv6 routing
tables will not contain significantly more unique prefix lengths
than current IPv4 tables.

We assert that our longest prefix matching approach is a vi-
able mechanism for IPv6 routing lookups. Due to the longer
“strides” between hierarchical boundaries of IPv6 addresses,
use of CPE to reduce the number of Bloom filters may not be
practical. In this case, a suitable pipelined architecture may be
employed to limit the worst case memory accesses.

VIII. IMPLEMENTATION CONSIDERATIONS

We now provide a brief discussion of relevant implementa-
tion issues when targeting our approach to hardware. The two
most important issues to address are supporting variable prefix
length distributions and supporting multiple hash probes to the
embedded memory.

A. Variable Prefix Length Distributions

From previous discussions, it is clear that Bloom filters which
are designed to suit a particular prefix length distribution tend to
perform better. However, an ASIC design optimized for a par-
ticular prefix length distribution, will have sub-optimal perfor-
mance if the distribution varies drastically. Note that this can
happen even if the new distribution requires the same aggre-
gate embedded memory resources as before. Thus, in spite of
the available embedded memory resources, this inflexibility in

Fig. 9. Mini-Bloom filters allow system to adapt to prefix distribution. Dashed
line shows programming path for a prefix of length 2. Solid line illustrates query
path for input IP address.

allocating resources to different Bloom filters can lead to poor
system performance. The ability to support a lookup table of
certain size, irrespective of the prefix length distribution is a de-
sirable feature of this system.

Instead of building distribution dependent memories of cus-
tomized size, we propose building a number of small fixed-size
Bloom filters called mini-Bloom filters. Let the dimensions of a
mini-Bloom filter be an -bit-long vector with a capacity of
prefixes. The false positive probability of the mini-Bloom filter is

(15)

Instead of allocating a fixed amount of memory to each of
the Bloom filters, we now proportionally allocate multiple mini-
Bloom filters according to the prefix distribution. In other words,
we allocate on-chip resources to individual Bloom filters in units
of mini-Bloom filters instead of bits. While building the data-
base, we uniformly distribute the prefixes of a particular length
across the set of mini-Bloom filters allocated to it, storing each
prefix in only one mini-Bloom filter. We achieve this uniform
random distribution of prefixes within a set of mini-Bloom fil-
ters by calculating a primary hash over the prefix. The prefix is
stored in the mini-Bloom filter pointed to by this primary hash
value, within the set, as illustrated by the dashed line in Fig. 9.

In the query process, a given IP address is dispatched to all
sets of mini-Bloom filters for distinct prefix lengths on a bus.
The same primary hash function is calculated on the IP address
to find out which one of the mini-Bloom filters within the cor-
responding set should be probed with the given prefix. This
mechanism ensures that an input IP address probes only one
mini-Bloom filter in the set associated with a particular prefix
length as shown by the solid lines in Fig. 9.

Now we analyze the implications of this modification. Since
the prefix is hashed or probed in only one of the mini-Bloom fil-

408 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 14, NO. 2, APRIL 2006

Fig. 10. (a) A bloom filter with single memory vector with k = 8. (b) Two
bloom filters of length m=2 with k = 4, combined to realize a m-bit-long
bloom filter with k = 8.

ters in each set, the aggregate false positive probability of a par-
ticular set is the same as the false positive probability of an indi-
vidual mini-Bloom filter. Hence, the false positive probability of
the new system remains unchanged if the average memory bits
per prefix in the mini-Bloom filter is the same as the average
memory bits per prefix in the original scheme. The importance
of this scheme is that the allocation of the mini-Bloom filters
for different prefix lengths can be changed unlike in the case of
hardwired memory. The tables which indicate the prefix length
set and its corresponding mini-Bloom filters can be maintained
on-chip with reasonable hardware resources. The resource dis-
tribution among different sets can be reconfigured by updating
these tables. This flexibility makes this design independent of
prefix length distribution.

B. Multi-Port Embedded Memories

The number of hash functions , is essentially the lookup ca-
pacity of the memory storing a Bloom filter. Thus, implies
that six random locations must be accessed in the time alloted
for a Bloom filter query. In the case of single cycle Bloom filter
queries, on-chip memories need to support at least reading
ports. We assert that fabrication of six to eight read ports for
an on-chip RAM is attainable with today’s embedded memory
technology [6].

For designs with values of higher than what can be real-
ized by technology, a single memory with the desired lookups
is realized by employing multiple smaller memories, with fewer
ports. For instance, if the technology limits the number of ports
on a single memory to four, then two such smaller memories
are required to achieve a lookup capacity of eight as shown in
Fig. 10(b). The basic Bloom filter allows any hash function to
map to any bit in the vector. It is possible that for some mem-
bers, more than four hash functions map to the same memory
segment, thereby exceeding the lookup capacity of the memory.
This problem can be solved by restricting the range of each hash

function to a given memory. This avoids collision among hash
functions across different memory segments.

In general, if is the maximum lookup capacity of a RAM
as limited by the technology, then such memories of size

can be combined to realize the desired capacity of
bits and hash functions. When only hash functions are

allowed to map to a single memory, the false positive probability
can be expressed as

(16)

Comparing (16) with (2), we see that restricting the number of
hash functions mapping to a particular memory does not affect
the false positive probability provided the memories are suffi-
ciently large.

IX. CONCLUSION

We have introduced a Longest Prefix Matching (LPM) al-
gorithm that employs Bloom filters to efficiently narrow the
scope of the search. In order to optimize average performance,
we introduce asymmetric Bloom filters which allocate memory
resources according to prefix distribution and provide viable
means for their implementation. We show that via the use of a di-
rect lookup array and use of Controlled Prefix Expansion (CPE),
worst case performance is limited to two hash probes and one
array access per lookup. Performance analysis and simulations
show that average performance approaches one hash probe per
lookup with modest embedded memory resources, less than 8
bits per prefix. We provided evidence for the future viability of
our approach for IPv6 route lookups.

If implemented in current semiconductor technology
and coupled with a commodity SRAM device operating at
333 MHz, our algorithm could achieve average performance of
over 300M lookups per second and worst case performance of
over 100M lookups per second. In comparison, state-of-the-art
TCAM-based solutions for LPM provide 100M lookups per
second, consume 150 times more power per bit of storage than
SRAM, and cost approximately 30 times as much per bit of
storage than SRAM. While the cost of TCAMs may decrease
and power-saving features may emerge, we assert that SRAM
technologies will always provide faster access times and lower
power consumption due to the massive parallelism inherent
in TCAM architectures. As a result, algorithms such as ours
that employ commodity RAM devices and achieve comparable
or better performance will continue to provide an attractive
alternative to TCAM-based solutions.

ACKNOWLEDGMENT

The authors would like to thank Dr. J. Lockwood, Dr.
J. Turner, and Dr. R. Chamberlain for their support, and
R. Janakiraman for insightful discussions on Bloom filters.
The authors would also like to thank the anonymous reviewers
and their SIGCOMM’03 shepherd, Dr. C. Partridge, for their
thoughtful suggestions.

DHARMAPURIKAR et al.: LONGEST PREFIX MATCHING USING BLOOM FILTERS 409

REFERENCES

[1] BGP Table Data. Feb. 2003 [Online]. Available: http://bgp.potaroo.net/
[2] IPv6 Operational Report. Feb. 2003 [Online]. Available: http://net-

stats.ipv6.tilab.com/bgp/bgp-table-snapshot.txt/
[3] B. H. Bloom, “Space/time trade-offs in hash coding with allowable

errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, Jul. 1970.
[4] A. Broder and M. Mitzenmacher, “Network applications of Bloom fil-

ters: a survey,” in Proc. 40th Annu. Allerton Conf., Oct. 2002.
[5] M. Degermark, A. Brodnik, S. Carlsson, and S. Pink, “Small for-

warding tables for fast routing lookups,” in Proc. ACM SIGCOMM,
1997, pp. 3–14.

[6] B. Dipert, “Special purpose SRAMs smooth the ride,” EDN, pp.
93–104, Jun. 1999.

[7] W. N. Eatherton, “Hardware-based Internet Protocol prefix lookups,”
M.S. thesis, Electr. Eng. Dept., Washington Univ., St. Louis, MO,
1998. [Online]. Available: http://www.arl.wustl.edu/

[8] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache: a scal-
able wide-area web cache sharing protocol,” IEEE/ACM Trans. Netw.,
vol. 8, no. 3, pp. 281–293, Jun. 2000.

[9] S. Fuller, T. Li, J. Yu, and K. Varadhan, Classless inter-domain routing
(CIDR): an address assignment and aggregation strategy. RFC 1519,
Sep. 1993.

[10] P. Gupta, S. Lin, and N. McKeown, “Routing Lookups in Hardware
at Memory Access Speeds,” in Proc. IEEE INFOCOM, 1998, pp.
1240–1247.

[11] R. Hinden and S. Deering, Internet Version 6 (IPv6) addressing archi-
tecture. RFC 3513, Apr. 2003.

[12] IANA, IPv6 Address Allocation and Assignment Policy, Jun. 2002.
[Online]. Available: http://www.iana.org/ipaddress/ipv6-allocation-
policy-26jun02

[13] B. Lampson, V. Srinivasan, and G. Varghese, “IP lookups using mul-
tiway and multicolumn search,” IEEE/ACM Trans. Netw., vol. 7, no. 3,
pp. 324–334, Jun. 1999.

[14] A. J. McAulay and P. Francis, “Fast routing table lookup using CAMs,”
in Proc. IEEE INFOCOM, 1993, pp. 1382–1391.

[15] Micron Technology Inc., 36 Mb DDR SIO SRAM 2-Word Burst.
Datasheet, Dec. 2002.

[16] Micron Technology Inc., Harmony TCAM 1Mb and 2Mb. Datasheet,
Jan. 2003.

[17] R. K. Montoye, “ Apparatus for storing "Don’t Care" in a content ad-
dressable memory cell,” U.S. Patent 5,319,590, Jun. 7, 1994.

[18] SiberCore Technologies Inc., SiberCAM Ultra-18M SCT1842.
Product Brief, 2002.

[19] K. Sklower, A tree-based routing table for Berkeley Unix Univ. Cali-
fornia, Berkeley, 1993, Technical report.

[20] V. Srinivasan and G. Varghese, “Faster IP lookups using controlled
prefix expansion,” in Proc. ACM SIGMETRICS, 1998, pp. 1–10.

[21] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner, “Scalable high
speed IP routing table lookups,” in Proc. ACM SIGCOMM, Sep. 1997,
pp. 25–36.

Sarang Dharmapurikar received the B.E. degree
in electrical and electronics engineering from Birla
Institute of Technology and Science (BITS), Pilani,
India, in 1999.

He worked for Wipro Global R&D, Bangalore,
India, from June 1999 to June 2000 as a VLSI Systems
Designer, where he was part of a team which designed
Gigabit router chips. He is currently pursuing the
Ph.D. degree in the Department of Computer Science
and Engineering, Washington University, St. Louis,
MO. He is a member of the Applied Research Labo-

ratory (ARL) where he is doing research on different aspects of very high-speed
networking devices. Particularly, his research interests include algorithm design
and hardware implementation of high-speed deep packet processing systems.

Praveen Krishnamurthy received the B.E. degree in
electronics and communication engineering from the
University of Madras, India, in 2000, and the M.S de-
gree in computer engineering from Washington Uni-
versity, St. Louis, MO, in 2002. He is currently pur-
suing the Ph.D. degree in the Department of Com-
puter Science and Engineering at Washington Uni-
versity, where he is also a member of the Computer
Communications Research Center (CCRC).

His research interests include modeling of com-
plex computer systems, micro-architecture design,

and design and analysis of resource-aware algorithms for pipelined multi-
processors.

David E. Taylor (M’04) received the B.S. degree
in electrical and computer engineering in December
1998, the M.S. degree in electrical and computer
engineering in May 2002, and the Doctor of Science
degree in computer engineering in August 2004
from Washington University, St. Louis, MO.

He is currently developing high-performance re-
configurable hardware systems at Exegy Inc. Prior to
joining Exegy, he was a Visiting Assistant Professor
in the Department of Computer Science and Engi-
neering and was actively involved in computer com-

munications research at the Applied Research Laboratory at Washington Uni-
versity, St. Louis. His research interests include the design and analysis of scal-
able searching algorithms and architectures, IP lookup and packet classification
algorithms, high-performance reconfigurable hardware systems, programmable
routers, and network processors. He held a Research Internship with the net-
work processor hardware group at the IBM Zurich Research Laboratory during
the summer of 2002.

Dr. Taylor has been a member of the ACM since 2004.

