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Abstract— Ternary Content-Addressable Memory (TCAM) has
been widely used for high-performance multi-dimensional packet
classification. High power consumption limits the use of TCAM
for large filter sets. TCAM power consumption is proportional to
the number of TCAM entries enabled for search. Dividing TCAM
into many blocks and enabling only a few blocks for search has
been proposed to reduce the power consumption dramatically.
However, it is quite challenging to design efficient algorithms
to partition a set of multi-dimensional filters into many subsets
(a subset is placed in one TCAM block). The efficiency of the
algorithm is evaluated in three aspects: the maximum number
of TCAM blocks that need to be enabled for a single search,
the storage utilization of TCAM blocks, and the time and space
complexity of the partition algorithm. In this paper, we developed
a simple but efficient partition algorithm based on the Hilbert
curve. The algorithm reduces TCAM power consumption by a
factor of ten on average. The TCAM storage utilization is over
99%. The algorithm takes O(n log n) time and O(n) space.

Keywords: packet classification, TCAM, power efficient,
Hilbert curve, firewall.

I. INTRODUCTION

Packet classification is an essential module in firewall and
access control. For each incoming packet, the packet classifica-
tion module takes several fields from IP header and TCP/UDP
header and then matches against the filter set. The packet
header fields used for classification include source IP address,
destination IP address, source port number, destination port
number, protocol, etc. Each filter is a pair of the form (rule,
action). The action part specifies what to do if the rule part
matches the incoming packet, for example, forward the packet
to a specific output port, drop the packet, mark the packet for
express forwarding, etc. The rule part specifies the possible
values for each header field in the format of range or prefix.
Figure 1 shows a set of six filters. It assumes that the length of
IP address is three bits, that is, IP address is between 0 and 7
(between 000 and 111 when specified in binary format). The
possible values of source/destination IP addresses are specified
in prefix format. “x” is “don’t care” bit. It matches both bit
“0” and bit “1”. Hence, prefix “0xx” matches the following
IP addresses: 000, 001, 010, and 011 (in binary format).
The possible values of source/destination port numbers are
specified in range format. For example, [0, 5] matches port
numbers between 0 and 5. A dash matches any port number.
The protocol part is either fully specified or a dash which
matches any protocol. For instance, the first filter can only
match packets carrying TCP segments. The sixth filter can
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action 

1. 0xx 101 TCP [0, 1] [0, 5] fwd0 
2. 01x 11x TCP [1, 2] [1, 7] fwd3 
3. 0xx 111 UDP [3, 4] [2, 4] fwd2 
4. 01x 10x UDP - [4, 6] fwd2 
5. 100 1xx UDP [1, 3] - fwd4 
6. 11x 01x - - - drop 

Fig. 1. A set of six filters. The rule part consists of possible values for
source IP address, destination IP address, protocol, source port number, and
destination port number. “x” is “don’t care” bit. A dash is a wildcard which
matches any value.

match any protocol. As a convention we use binary number for
prefixes and IP addresses, and decimal number for ranges and
port numbers. If the header fields chosen from the incoming
packet are (011, 110, TCP, 2, 5), the second filter is the
matching filter. When there are multiple matching filters, the
commonly used tie breaker is the first matching rule in which
the filter set is considered as a linear list and the first filter
matching the incoming packet will be used.

Packet classification is a hard problem due to its multi-
dimensional nature and high performance requirement. High-
end systems need to perform tens of millions of classification
per second on a large filter set. Currently, the size of the largest
filter set is about a few thousands of filters, but is expected to
grow substantially.

Ternary Content-Addressible Memories (TCAM) use paral-
lelism to finish classification in a single cycle. Each memory
cell of a TCAM may be set to one of three states 0, 1, and
“don’t care”. Each TCAM entry consists of a fixed number of
memory cells. When classification is performed, the header
fields chosen from the incoming packet are compared, in
parallel, against every TCAM entry. The matching entries are
sent to a specific logic module to decide which one to use
according to the tie breaker. However, native TCAM does not
support range matching. A simple way to deal with it is to
split a single range into a set of prefixes. For example, range
[0, 2] is split into ranges [0, 1] and [2, 2], each of which can
be represented by a single prefix (i.e., [0, 1] by prefix 00x
and [2, 2] by prefix 010). This approach expands one filter
into many filters and results in low TCAM storage utilization.
Spitznagel et al. [15] propose extended TCAM that can handle
range matching naturally.

Data structures for non-TCAM-based multi-dimensional
packet classification are developed in [1], [3]–[6], [9], [12],
[16], [17]. These data structures have the advantage of lower
power consumption and often lower cost. However, the per-
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Fig. 2. A set of 10 filters is partitioned into 3 subsets on the right side. Each
subset is represented by an index filter stored at the index block on the left
side. For simplicity, the action part is omitted and the rule part consists of
only two fields: destination port range and source IP address prefix.

formances of these non-TCAM-based data structure are often
inferior to that of TCAM-based schemes. The use of TCAM is
limited by its high power consumption, which is proportional
to the number of TCAM entries enabled for classification.
To reduce the power consumption, it is necessary to reduce
the number of TCAM entries enabled for classification, which
can be achieved because there are only a very small number
of filters that match an incoming packet. If these filters are
placed together, we only need to enable the blocks containing
these filters. This idea has been used for TCAM-based packet
forwarding (one-dimensional classification) [14]. Several parti-
tioning algorithms [11], [14], [19] for one-dimensional prefix
filters have been proposed. Spitznagel et al. [15] apply this
architecture to TCAM-based multi-dimensional packet classi-
fication. Figure 2 gives an example. Ten filters on the right
side are partitioned into three groups. The first two groups
have four filters each and the third group has two filters. Each
group is stored at one TCAM block on the right side. Each
group is represented by an index filter at the index TCAM
block on the left side. For example, ([0, 4], 0xx) is the index
filter for the first group. [0, 4] is the minimum bounding range
for ranges [0, 1], [1, 2], [3, 4] and [2, 4]. 0xx is the minimum
bounding prefix for prefixes 0xx, 010, 00x and 01x. Suppose
the chosen header fields of an incoming packet are (1, 011).
The index block is searched first. There is only one matching
filter, which is the first index filter. So the first TCAM block
is enabled for search. Suppose the chosen header fields of an
incoming packet is (4, 011). Searching index block returned
two matching index filters, the first and the third index filters.
So the first and the third TCAM blocks are enabled for search.
To complete the classification, the output of TCAM blocks that
were enabled for search is fed into a tie breaker module, which
is omitted in Figure 2.

Spitznagel et al. [15] propose a heuristic recursive cut
algorithm for partitioning a filter set. In this paper, we propose
a much simpler algorithm to partition a filter set. Our algorithm

Fig. 3. Hilbert Curve in two-dimensional space (4 × 4 grid)

achieves similar power reduction as that of [15], guarantees
near 100% TCAM block utilization (versus 95% in [15]),
and takes only O(n log n) time to run.

In Section II, we describe a heuristic filter grouping algo-
rithm based on the Hilbert curve. Experimental results are
presented in Section III. Our results are summarized in the
conclusion, Section IV.

II. FILTER GROUPING BASED ON HILBERT CURVE

Definition 1: (region). Each filter defines a region in a d-
dimensional space. For example, filter ([0, 1], 0xx) defines a
rectangle ([0, 1], [0, 3]) in two-dimensional space.

Definition 2: (cover). Filter f1 covers filter f2 if f1’s region
completely contains f2’s region. Similarly, let p be any point
in a d-dimensional space. We say that filter f1 covers p if p
is within f1’s region.

Definition 3: (overlap). Filter f1 overlaps filter f2 if their
regions share at least one point.

Definition 4: (overlap number). Let F be a set of n filters.
We define the overlap number of F as the maximum number
of filters that covers any common point.

Our goal is to divide a set of n filters into m subsets, where
m = �n/k� and k is the size of TCAM block, such that the
overlap number of the index filters of these subsets is as small
as possible.

Intuitively, the filters whose regions are close to each other
should be grouped together. However, unlike one-dimensional
case, there is no total ordering that preserves spatial locality in
multi-dimensional space. Commonly used ordering functions
are based on the z curve [13], the Gray-coded curve [2], or
the Hilbert curve. These functions map a multi-dimensional
point to a single integer value. Jagadish [7] shows that the
mapping based on the Hilbert curve outperforms the others in
preserving spatial locality under most circumstances. Figure 3
shows an example of Hilbert Curve for a 4 × 4 grid in two-
dimensional space. Hilbert Curve traverses every grid point
exactly once in some particular order. Correspondingly, each
grid point is labelled with a sequence number according to the
order traversed by the Hilbert curve.

Due to its superior clustering property, we use Hilbert
Curve to group the filters. We sort filters according to their
Hilbert values, and then group these filters in order by
their Hilbert values. However, the Hilbert mapping function
takes a point as the input, but our filters are regions in
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Fig. 4. Minimum bounding boxes are shown in dash lines. The original
filters are in sold lines

d-dimensional space. To solve this problem, we simply take
the smallest coordinates of the filter region in each dimension
to form a d-dimensional point. For example, if a filter f =
((sipl, siph), (dipl, diph), (sportl, sporth), (dportl, dporth)),
we use (sipl, dipl, sportl, dportl) as the input to the Hilbert
mapping function. Below is our filter grouping algorithm.

1) Use Hilbert Curve to map each d-dimensional filter to a
single integer value (Hilbert value).

2) Sort these filters according to their Hilbert values.
3) Group every k filters together, where k is the size

of a TCAM block. Each group is represented by the
minimum bounding box of the filters in this group.

4) For each minimum bounding box, replace the minimum
bounding ranges of source/destination IP addresses with
the corresponding minimum bounding prefixes. The
resulting bounding box is used as the index filter for
each group.

Note that Step 4 is unnecessary if the range matching
circuits proposed in [15] are used for source/destination IP
address range matching. Step 4 may increase overlap number
of the index filters since it may expand the minimum bounding
boxes. Figure 4 shows two minimum bounding boxes, F1

and F2. The filters are f11, f12, f21, and f22. Suppose
F2 = ([0, 5], [0, 2]). If we replace the second range with
the minimum bounding prefix, which is 0xx, the resulting
bounding box covers more area than the minimum bounding
box.

Mapping a d-dimensional point to its Hilbert value takes
O(d) time. Sorting takes O(n log n) time, where n is the
number of filters. Computing the minimum bounding box of
k filters takes O(kd) time. Therefore, the time complexity of
this algorithm is O(n log n + nd).

Note that we can also use the Hilbert values of eight-
dimensional points that incorporate the size of filter region,
say, (sipl, siph, dipl, diph, sportl, sporth, dportl, dporth), or
(sipl, dipl, sportl, dportl, siph − sipl, diph − dipl, sporth −
sportl, dporth − dportl). Our experiment shows that the
overlap number when these eight-dimensional points are used
is no better than that when (sipl, dipl, sportl, dportl) is used
and in some cases it is slightly worse. This result is consistent
with the result in [8], in which Hilbert curve is used to pack

R-tree on two-dimensional rectangles.
The algorithm above fills all the TCAM blocks except

the last one. Therefore, high TCAM storage utilization is
guaranteed.

III. EXPERIMENT

We used the code of [10] to compute the Hilbert value
of each filter. The minimum bounding ranges of source and
destination IP addresses are expanded to the minimum bound-
ing prefixes. The real-world classifiers that are available for
experiment are often very small (less than 1,000). We use
ClassBench [18] to generate large classifiers. ClassBench uses
the statistical properties of real-world classifiers to generate
random filters. We use two seed files, which contains statistical
properties of two real-world classifiers, acl1 and acl5. n is
the target size of the filter set generated. ClassBench also
takes a few parameters to adjust the property of the filter
set to be generated. The smoothness parameter adjusts the
distribution of new prefix lengths around the existing prefix
lengths. A bigger smoothness parameter introduces wider
distribution of new prefix lengths. The scope parameter adjusts
the specificness of prefixes and port range. Positive scope
values favor less specific address prefixes and port ranges. That
is, prefix or range generated matches a larger number of values.
For example, range [0, 1] or prefix 00x covers two values, 0
and 1, while range [0, 3] or prefix 0xx covers four values, 0,
1, 2, and 3. Negative scope values favor more specific address
prefixes and port ranges. That is, prefix or range generated
matches a smaller number of values.

The power fraction is equal to (λk + n/k)/n, where λ is
the overlap number of the index filters (this is the maximum
number of TCAM blocks that need to be enabled for search), k
is the size of TCAM block (i.e., the number of TCAM entries
per TCAM block), and n/k is the number of index filters
(index block is always enabled for search). When extended
TCAM [15] is used, one TCAM entry holds a filter. Thus,
k is also the number of filters per TCAM block. The smaller
power faction, the bigger the reduction of power consumption.

Since our algorithm always fills all TCAM blocks except
the last block, the storage efficiency is over 99%. Due to its
simplicity, the algorithm finishes in less than 100 millisecond
on a P4 2G processor. The low computational complexity is
important as periodical reconstruction becomes more frequent
when the number of flow-specific filters increases.

Table I shows the overlap number with and without step 4
of the algorithm. It is clear that step 4 increases the overlap
number. The overlap number with step 4 of the algorithm is
plotted in Figure 5. We can see that power fraction highly
depends on the size of TCAM block. On the one hand,
reducing k by half does not double the overlap number, thus
has the potential of achieving better power fraction. On the
other hand, reducing k increases the size of index block,
which is always enabled for lookup. The experiment shows
that k = 64, 128 result in the best power reduction. In the rest
experiment results, step 4 of the algorithm is applied.

Figure 6 shows the filter set size versus power fraction.
k = 128 for the sets with 50K and 32K filters, and k = 32
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k 16 32 64 128 256 512

index block size 3200 1600 800 400 200 100

without step 4 10 9 9 8 7 6
acl1 with step 4 12 12 11 9 8 7

without step 4 12 10 9 7 7 5
acl5 with step 4 16 13 11 10 9 7

TABLE I

THE OVERLAP NUMBER WITH AND WITHOUT STEP 4 OF THE ALGORITHM. n = 50K , SMOOTHNESS = 2, ADDRESS SCOPE PARAMETER = 0.5,

APPLICATION SCOPE PARAMETER = -0.1

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

16 32 64 128 256 512

block size (k)

p
o

w
er

 f
ra

ct
io

n

acl1_seed

acl5_seed

Fig. 5. TCAM block size versus power fraction. n = 50K, smoothness = 2, address scope parameter = 0.5, application scope parameter = -0.1
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Fig. 6. Filter set size versus power fraction. Smoothness = 2, address scope parameter = 0.5, application scope parameter = -0.1
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Fig. 7. Smoothness adjustment versus power fraction. n = 50K, address scope parameter = 0.5, application scope parameter = -0.1

for the rest sets. Power reduction is less effective when filter
set size gets smaller.

Figure 7 shows the smoothness adjustment versus power

fraction. A bigger smoothness parameter introduces wider
distribution of new prefix lengths, thus increases the possibility
of filter overlapping. Thus, power reduction is less effective
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Fig. 8. Scope adjustment versus power fraction. n = 50K, k = 128, smoothness = 16.

for large smoothness parameters.
Figure 8 shows the scope adjustment versus power fraction.

We set address scope parameter and application scope para-
meter to the same value in the range of [-1.0, 1.0). Figure 15
in [15] uses scope parameters between -64 and 16. The para-
meters we use here are normalized (the released ClassBench
software only supports normalized scope parameters). Positive
scope values favor less specific address prefixes and wider port
ranges, thus increase the possibility of filter overlapping. As
expected, larger scope parameter generally results in higher
power fraction (i.e., less power reduction). However, most
power fractions are below 8%.

Compared with the heuristic algorithm in [15], our algo-
rithm achieves comparable power reduction, higher TCAM
storage efficiency (99% vs 95% for [15]), and is much simpler.

IV. CONCLUSION

To reduce the power consumption of TCAM-based packet
classification, partition-based architecture divides the filter set
into many subsets. Each subset is stored at a TCAM block and
is represented by an index filter in the index TCAM block. The
index TCAM block is always searched first. The output of the
index block is used to enable the corresponding TCAM blocks
for search. Since only a fraction of TCAM blocks are enabled
per classification, the power consumption is greatly reduced.
However, how to design an efficient filter grouping algorithm
is quite challenging. The overlap number of the index filters
needs to be as small as possible, TCAM storage utilization
needs to be high, and the algorithm should have low time
and space complexities. We have evaluated the filter grouping
algorithm based on Hilbert curve. Our algorithm has over 99%
TCAM storage efficiency, reduces power consumption by a
factor of ten on average, and runs in O(n log n) time with
O(n) space complexity.
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