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Abstract—As one of the critical data path functions for many 
emerging networking applications, packet classification is 
gaining more and more concerns nowadays. It is commonly 
believed that conventional software-based classification 
algorithms are much more time-consuming than hardware-based 
solutions, i.e., the costly and power consuming TCAM-based 
mechanism, and incompetent for future high-end applications. In 
this paper, we propose an efficient optimization framework 
which can be applied to "gear up" most exiting software-based 
packet classification algorithms. Under this framework, the large 
rule set is pre-partitioned into several small subsets, according to 
some heuristics and dedicated methods. Then the conventional 
classification process can be significantly simplified and results 
in a distinct performance improvement by converging the 
classification power on only a small portion of the rule set. 
According to the results of our experiment, in which the 
framework is applied to one of the best algorithms EGT-PC [2], 
the memory accesses can even be reduced by up to 70%. This 
provides a much lower cost and more power-efficient alternative 
to TCAM-based solutions. Another advantage is that the 
framework requires no change to the hardware environment and 
little system cost overhead, making it especially suitable for the 
modern network processor based network solutions. 
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I. INTRODUCTION

The rapid growth of the Internet and fast emergence of the 
new network applications have brought great challenges and 
complex issues in deploying high-speed and Qos guaranteed 
network. Packet classification is one of the basic critical data 
path functions for many networking applications, such as 
ACL, Firewall, and Qos Control, etc. It is important, 
complicated, yet not well solved. 

Conventional software based solutions using binary trie or 
decision tree are said to be either time or storage consuming 
[1], and can not be easily scaled to support high-speed packet 
forwarding. On the contrary, some hardware based solutions, 
especially the ones using TCAM, are thought to be much 
more promising because of their deterministic and fast 
processing speed. The design of such schemes/mechanism is 
straightforward and easy to implement. All these phenomena 
seem to imply that there may not be alternatives to 
TCAM-based hardware solutions for high-end applications, 
despite many of their drawbacks, such as high cost to density 
ratio and very high power consumption. 

However, a currently emerging and popularity-gaining 
concept Network Processor (NP) is going to change our 
viewpoints step by step. The concept of NP is firstly 
developed for the reason that the emergence of new network 
applications are much faster than the speed we develop 
hardware devices. So there should be a kind of 
re-programmable and high speed solution to meet the needs of 
today's network rapidly progressing in both functions and 
performance. NPs are specialized and programmable engines 
that are optimized to perform communication functions. 

Equipped with abundant parallel processing resources, they 
can deliver hardware-level performance for software 
programmable systems. This powerful combination of 
performance and flexibility offers a revolutionary approach to 
the design of communication systems. It allows system 
designers to focus on higher-level services and ensures longer 
product lifecycles, rather than the conventional hardware 
solutions which simply meet the "speeds and feeds" of the 
moment. Since the widely adoption of NP, software based 
algorithms have again gained their popularity and become a 
hotspot in the literature. 

According to our study, we find that by utilizing the 
abundant parallel resources of NP and partitioning the original 
rule set based on certain principles and heuristics, 
conventional software-based solutions can be optimized to be 
suitable for high-end applications, achieving much better 
performance without distinct cost. In this paper, instead of 
proposing new algorithms, we develop a novel concept, 
Optimization Framework; we are not seeking a way to discard 
old algorithms/solutions, but to inherit the strengths from 
them and cooperate with them. Firstly, we analyze and 
classify most kinds of rule set cutting methods. Then, by 
studying the characteristics of most existing algorithms and 
various real-world rule databases, we develop an efficient 
optimization framework based on rule set pre-cutting 
methods. 

II. DEFINITIONS AND TERMS.
A. Definition: Rule, Key, Key Space, and (Hyper) Layer 

A rule table, or a policy filtering table, includes a set of 
rules. A Rule is composed of a match condition and the 
corresponding action. Here we consider the matching 
condition as a typical five-tuple including five packet header 
fields, which, in sequence, are DIP(1-32), SIP(1-32), 
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DPORT(1-16), SPORT(1-16), and PROT(1-8)i.
A Search Key is a 104-bitii string composed of the five IP 

packet header fields. 
Accordingly, in a geometrical view, the Key Space is 

actually a hyper-space with multi-dimensions; a specific 
search key represents one point in the hyper-space, while each 
rule represents a hyper-cube in the key space. 

In order to introduce the following concepts, we develop a 
related term (Hyper) Layer. Note that rules may overlap with 
each other on some dimensions. (Hyper) Layer is defined as a 
set of rules that does not overlap with each other on specific 
dimensions/field, as depicted in Fig.1.  Then the key space 
can be partitioned into several (hyper) layers. 

Fig.1 The concepts and relationships of Key Space, Key, Rules, and 
Layers in a 1-D case. 15 rules are included in the example. The figure 
shows one of the layer-partition schemes, which includes 6 layers. And 
there are 4 rules matching the given key, which are indicated by the solid 
points.

B. Definition: Rules Set Cutting and Key Space Partitioning 
Let R be a specific rule set. If a set of its subsets { jQ ,

j=1,…,N}, satisfies NjRQj ,...,1, =⊂∀ , and
Nn

n RQ
,...,1=

= ,

then we call{ jQ , j=1,…,N} an N-Cutting of rule set R.

Let S  be the key space, Skk ∈,  be one of the Keys 
within the key space. Given a function of the 
keys: },...,2,1{: MSF >− , which map the keys into M subsets, 
{ MiKi ,..,1, = }, where })(,|{ ikFSkkKi =∈= , and SK

Mi
i =

= ,...,1
.

Then we call { MiKi ,..,1, = } an M-Partition of the key space, 
and F the corresponding M-Partition function. (Note 
that jiji ≠∀ ,, , φ=ji KK )

C. Definition: Completeness
1. Completeness of a rule subset to a Key and Key partition 

We say a subset jQ of rule set R is complete to a key k,
if jQ contains all of the rules in R that matching k, which is 

denoted as 
j

R
Qk∈ ; Further, for a given key partition iK ,

if jQ satisfies, j

R

i QkKkk ∈∈∀ ,, , we say jQ is complete to iK
within rule set R, which is denoted as

j

R

i QK ⊂ .

i DIP, SIP, DPORT, SPORT, and PROT represent Destination IP prefix, 
Source IP prefix, Destination Port range, Source Port range, and PROTocol 
number, respectively.
ii 32+32+16+16+8=104.

The completeness of a subset jQ  indicates that to 
traverse jQ and find the matching rules of any given 
key iKk ∈ is a sufficient condition of finding the matching 
rules of k in the whole rule set R.

2. Completeness of Rule cutting 
Given an M-Partition function F of the key space S , S is 

partitioned into { MiKi ,..,1, = }. For a rule set R, if an 
N-Cutting of R, { jQ , j=1,…,N}, satisfies:

NjQMiK ji ,...,1,,,...,1, =∃=∀ ,
j

R

i QK ⊂ , then we call { jQ ,

j=1,…,N} is an complete (completeness-guaranteed) N-Cutting 
of R under key partitioning function F.

Completeness of a rule Cutting { jQ , j=1,…,N} ensures that 
for any given key, to traverse only one specific rule group is 
sufficient and correct. 

III. PACKET CLASSIFICATION OPTIMIZATION 
FRAMEWORK BASED ON RULE SET CUTTING

A. The Overall Idea of the Optimization Framework
Actually, in a general word, the packet classifier is a kind of 

filter. It filtrates the rules from the original rule set and finds 
out the ones matching the input key. Most existing 
well-known multi-fields classification algorithms, such as 
EGT-PC [2] (an extension of [8]), HiCuts [5], HyperCuts [6], 
Modular [7], etc., are very similar in their basic ideas. They 
usually include 2 steps: First, an efficient filtering algorithm 
(e.g., decision tree based algorithms) is adopted in certain 
fields to filtrate the rules and the target rules are then 
focalized in a reduced subset, called the Interim Set. Secondly, 
since the Interim Set is relatively much smaller, still adopting 
the complex filtering algorithm may, on the contrary, be less 
efficient. So usually a simple algorithm, e.g., linear search, is 
employed to match with the key within the Interim Set and 
find out the final matching result.

The idea of the proposed optimization framework is as 
shown in Fig.2. Since policy rules are usually "stable" and 
with much lower modification frequency, which indicates that 
it would neither cost much nor do harm to the overall 
performance if we employ some pre-processing of the rule set 
to optimize the search performance. Based on this observation, 
we try to cut the rules into several groups based on certain 
principles in advance. And then, according to the key, we may 
focalize the filtering algorithm within only one of the subsets 
via a simple hashing. Hence the classification workload will 
become much lighter and the size of the Interim Set will be 
further reduced as well, resulting in a distinctive improvement 
of the performance.

However, we also note that to divide the original rule set 
into several sub-sets/groups for classification optimization is 
NOT a trivial work. Since we should ensure not only the 
completeness of the sub-set to any input key, but also that no 
rules be duplicated and that the process to find the 
corresponding subset of the key be simple.
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B. Rule Set Cutting methods. 
Before presenting the details of the optimization framework, 

first let’s begin with the introduction of two kinds of rule set 
cutting methods. Fig. 3 depicts the examples of Complete and 
Incomplete rule cutting methods. 

1. Algorithms of V-Cuts 

Fig.3 V-Cuts: A complete cutting

Fig.3 shows a rule cutting scheme based on key 
ranges/intervals (the rules on the left side of the cut belong to 
one group while the ones on the right side belong to the other. 
The ones across the cut would be duplicated and belong to 
both groups). It is straightforward that this kind of cutting 
ensures completeness, since all rules that matching an 
arbitrary key are allocated in the same subset. Visually, we 
name such kind of rule cutting methods as Vertical Cuts, or 
V-Cuts. This kind of cutting method actually includes two 
sub-procedures: first, to cut the original rule set into groups; 
second, to provide a mapping function for the input key, so as 
to map it to its complete rule group. 

V-Cuts based on range intervals 
The V-Cuts method that appears in Fig.3 belongs to this 

kind. The rules are grouped based on range/prefix intervals on 
one specific field (within its matching condition). This 
method is easy to implement and can be applied to all kinds of 
packet fields (i.e., prefix, range, or exact matching fields). 

V-Cuts based on ID 
The concept of ID is firstly introduced in one of our 

previous work [9]. As far as a rule is concerned, its Rule-ID is 
defined as a P-bit ternary ('1','0', or '*') bit-string, each bit of 
which is extracted from certain bit position within the rule's 
matching condition. Accordingly, the term Key-ID is defined 
as the P binary bits (‘1’or ‘0’) extracted from the 
corresponding bit positions within a given key. For example, 
suppose P=2, and the 2 bit positions are SIP(16) and PROT(8). 
Then the Rule-ID of rule <1.1.*.*, 2.*.*.*, *, *, 6> is“*0”and 
the Key-ID of search key <1.1.1.1, 2.2.2.2, 1028, 34556, 11> 
is“01”.  

The rules can then be divided into several groups 
according to their Rule-IDs. For instance, the rules with 
Rule-ID (suppose P=2) '*0' belong to both Key-ID Group '10'
and Key-ID Group '00'. This method is also complete, since 
the rules matching one arbitrary key must match the same 
Key-ID, and therefore they must belong to the same Key-ID 
group. This method is only suitable for the packet fields 
which is in the form of prefix (i.e., DIP/SIP) or exact 
matching (i.e., PROT), since a port range may not be 
represented by a ternary bit string. 

2. Algorithms of H-Cuts 

Fig.4 H-Cuts: A complete cutting 

Fig.4 shows a rule cutting scheme based on layer-partition 
(the rules above the cut belong to one group and the ones 
below the cut form the other). And it is straightforward that 
this kind of cutting is not complete. Because the rules 

Fig. 2 The optimization idea based on rule cutting 
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matching a given key are separated into different groups; to 
traverse either of the groups may be insufficient for a given 
key. We denote such kind of rule cutting in a visual way as 
Horizontal Cuts, or H-Cuts. Compared with V-Cuts, H-Cuts 
are not complete, implying that multiple or even all rule 
groups generated by the H-Cuts may need to be traversed to 
ensure completeness.

H-Cuts based on (hyper-) layers 
The H-Cuts method mentioned in Fig.4 belongs to this kind. 

Firstly, the hyper-layer hierarchy is formed, and then all the 
rules are categorized into layers.

H-Cuts based on prefix level 
Firstly, we need to introduce the concept of Prefix Level,

which is originally introduced in one of our previous work 
[10]. As the example shown in Fig.5, for a given prefix node n,
there are multi paths from node n to its descendant leaf nodes. 
Among these paths, let Pmax be the path containing the most 
prefix nodes. The number of prefix nodes (excluding node n
itself) in Pmax is called the Prefix Level of node n. For instance, 
node g in Fig.5 is with Level 0, and node d is with Level 2, 
etc. And then we can further cut the ten prefixes into 3 groups 
according to their prefix Level, which is called Level Set, i.e., 
LevelSet(0)={b, c, g, f, h, i, j}, LevelSet(1)={a, e}, 
LevelSet(2)={d}. This kind of H-Cuts is efficient, however it 
is only suitable for the packet fields in prefix form. 

C. The Packet Classification Optimization Framework 

Fig 6 An example combining both V-Cuts and H-Cuts to group the rules 

According to the introduction of the cutting methods in the 
previous sub-section, simple H-Cuts can not ensure 

completeness while simple V-Cuts may incur huge storage 
redundancy. The only way to achieve the goal is to combine 
the two methods, adopting their strength points accordingly. 

As the example shown in Fig.6, after forming the (hyper) 
layer hierarchy, the cutting approach starts from an H-Cuts, it 
divides the rules into 2 groups according to their layers. This 
H-Cut eliminates/reduces the possibility of duplications 
caused by the V-Cuts. Without the H-Cut (i.e. each V-Cuts 
should be performed in all of the 6 layers), the V-Cuts would 
always cut through some rules and incur rule duplications in 
this example, no matter at which point/interval we launch 
them. 

Then 2 V-Cuts are performed within the upper sub-set 
while three within the lower one, without any rule duplication. 
Then the original rule set is divided into seven sub-sets 
{ 721 ,...,, PPP }. 

On the other hand, the five V-Cuts partition the key space 
into six partitions { 621 ,...,, KKK } (as shown in Fig. 6). By a 
simple combination, we can get a cutting scheme 
{ 411 PPQ = , 512 PPQ = , 523 PPQ = ,

624 PPQ = , 635 PPQ = , 736 PPQ = }, in which 
each rule group iQ  is complete to the corresponding key 
partition iK , 6,...,2,1=i . No rule duplication is required at 
all. 

The classification for any given key now can be done 
within only a group of subsets of the rule database. For 
instance, in the example shown in Fig.6, to classify the given 
key we only need to search rule group Q3, i.e., subset P2 and 
P5, which may be searched independently in serial or in 
parallel; namely, 11 rules out of 15 are already excluded for 
classification. Note that the cuttings are done in 
pre-computation, and the only processing overhead during the 
classification is one very simple hashing to map the input key 
to the corresponding rule group. 

The pseudo-code of the optimization framework is as the 
following: 

i. Select the appropriate H-Cuts method and packet fields to
perform rule set cutting, according to the target classification
algorithm.  

ii. Form the (hyper) layer hierarchy on the selected packet field(s),
according to the selected H-Cuts methods.  

iii. Perform H-Cuts and divide the (hyper) layers into several
groupsiii.

iv. Perform V-Cuts at the intervals where would not incur rule
duplication, respectively within each layer group. And then result
in a series of rule sub-sets. 

v. Group the partitioned subsets and get the complete rule groups
for each key partition. Then form the hash table. 

vi. Apply the target classification algorithm to each rule subset and
construct the corresponding data structures, respectively.

iii The selection of the number of layer-groups depends on the number of 
classifiers provided. Although partitioning more layer-groups (i.e., 
performing more H-Cuts) may result in fewer overlaps in each layer-group so 
that more V-Cuts may be performed to reduce the size of each subset; 
however, more layer-groups may also lead to more subsets be inspected in 
serial if the classifier is less than the layer-groups. 

Pr ef i x es
a  0*
b  01000*
c  011*
d 10*
e  100*
f  101*
g 1000*
h 1100*
i  1101*
j  1111*

a

b

0

0

0

0

0

1

1 1

1

j

0 1

ih
0 10

d

e
0

g

c
1

f
1

Fig.5 A prefix trie example 

Proceedings of the 11th IEEE Symposium on Computers and Communications (ISCC'06) 
0-7695-2588-1/06 $20.00 © 2006 IEEE 



   

IV. PERFORMANCE EVALUATION

A. Optimization performance evaluation 
According to the analysis in the previous sections, we 

notice that the performance of the proposed optimization 
framework is dependent on the target algorithm as well as the 
characteristics of the rule sets, which may vary largely case by 
case. Therefore it would be hard for us to provide very 
accurate theoretical analysis on the optimization performance. 
In the follows, we estimate the average-case performance of 
the optimization framework in term of the time and storage 
complexity. 

Given that we have h parallel classifiers and h-1 H-Cuts are 
performed within the target rule set, which contains N rules. 
The H-Cuts result in h H-Cuts groups. Further, v1, v2,…,vh
V-Cuts are performed within the h H-Cuts groups respectively. 
Assume that the number of each resulting subsets is similar 
with each other, so each subset contains approximately 

= hi
ivN

,...,1
/ rules. 
Suppose that the time and storage complexity of the target 

algorithm are )]([ rNTO and )]([ rNSO  respectively, where 
Nr is the number of rules. Tab.1 presents the comparison of 
the performance between different schemes. 

Scheme Time Storage 
Native Algorithm )]([ rNTO )]([ rNSO

Duplicating Rule Set ]/)([ hNTO r )]([ rNShO ×
+Optimization Framework )]/([

,...,1= hi
ir vNTO )]([ rNSO

Tab.1 Performance comparison between three schemes 

We see that for the native algorithm, though we have h
classifiers, since the completeness of each classification must 
be guaranteed, all rules should still be inspected in sequence, 
and no speedup is gained. 

For the case that the whole rule set are duplicated to h
memory chips, the rules can, therefore, be accessed by the h
classifiers in parallel, resulting in a speedup of approximately 
h; however, remember that this is at a cost of distinct storage 
overhead. 

In the case of employing the optimization frame work, no 
rule is duplicated, and to guarantee the completeness of 
classification, only h subsets out of 

= hi
iv

,...,1
should be queried, 

which can be accessed in parallel by the h classifiers. 
Therefore the classification latency is reduced to 
approximately that for single subset. Note that all these gains 
are contributed by the job done in pre-computation. 

B. Experiment results 
We use the packet classification algorithm evaluation 

tool-set “Class-Bench” (developed by Taylor etc. from 
Washington University [3]) and the source code of the 
EGT-PC algorithm (presented by the authors) to evaluate the 
performance of proposed framework. We focus our energy on 
the optimization caused by the framework. 

Tab.2 shows the experiment results. For the sake of 
checking the universality of the framework, we select all three 

kinds of rule sets, i.e., Access Control List (acl), Firewall (fw), 
and IP Chain (ipc). In these cases we use the SP and PRTO 
fields to perform rule set pre-cutting. Only one H-Cut is 
performed in all cases (supposing that only two classifiers are 
provided). Since memory access is commonly much slower 
than the processor and always the performance bottleneck of 
software-based packet classification, we assume that the 
overall performance is mainly determined by memory 
accesses. 

According to the experimental results, as shown in Tab.2, 
we find that with the optimization framework, the number of 
memory accesses is dramatically reduced. For instance, for 
the fw and acl sets, the number of memory accesses is reduced 
by more than 70% when C=2. Even without multiple parallel 
classifiers (i.e., when C=1), the performance can also be 
distinctively improved. 

All of the pre-cutting process and EGT-PC trie construction 
are done within a few seconds (<10s) using a 1.8GHz Intel 
Pentium IV-m laptop. This shows that the pre-computation 
work load is trivial, which does not cause substantial impact 
on the classifier(s) (e.g., co-processors of the NP). 

C. The updating issue 
First of all, for rule deletions, employing the framework 

will not cause the disability of incremental update so long as 
the target algorithm supports incremental update. 

For rule insertion, it may possibly introduce new ranges 
which cross the intervals where some V-Cuts are performed, 
and therefore incurs rules duplication. However, this case 
happens only when the new ranges cross V-Cuts in all of the 
layer groups. In this case, the V-Cuts which cross the new rule 
ranges will be cancelled and the associated subsets will be 
combined. And then the corresponding data structure of the 
target algorithm should also be re-constructed. 

Fortunately, since the rules are commonly modified 
infrequently, the update will not be a very critical problem 
even if incremental method is infeasible in some extreme 
cases. 

V. CONCLUSIONS

In this paper, we proposed an optimization framework for 
packet classification algorithms, which can be employed in 
most NP environments and cooperate with most existing 
algorithms. By developing two kinds of rule cutting methods 
(i.e. V-Cuts and H-Cuts), pre-partitioning the original rule set 
into a series of sub-sets according to some optimization 
principles/heuristics, and focalizing each classification within 
only a small portion of the rule set, the framework can 
dramatically improve the performance of most algorithms 
without rule duplication. The optimization framework does 
not impact the hardware environment of the classifier and can 
be easily implemented.  
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The future work of our team will focus on the detailed 
implementation of IPv6 scheme and the framework extension 
to support other pattern matching problems, such as IDS/IPS 
or other security associated issues. 

VI. RELATED WORKS

Due to its high complexity of the search and widely 
adoption as the critical data path function in IP packet 
forwarding, packet classification is often a performance 
bottleneck in network infrastructure and it has received much 
attention in the research community. Besides the Decision 
Tree based algorithms [2] [5-8] we mentioned in the previous 
sections, several other kinds of algorithms or hardware 
schemes are proposed, recently. 

One category is the ones via Decomposition [11-12]. The 
idea is to decompose the multiple field search into instances 
of single field searches, and perform independent searches on 
each packet field, then combine the results. The latest work on 
this category is the DCFL (Distributed Crossproducting of 
Field Labels) [11], which presents a combination of new and 
existing packet classification techniques that leverages 
observations of the structure of real filter sets and takes 
advantage of the capabilities of modern hardware technology. 
High performance is achieved at the cost of high 
implementation complexity. Another category is the hardware 
based ones [4] [9], in which TCAM is adopted. High 
performance is gained at the cost of high price and low power 
efficiency, supposing that the range matching problem of 
TCAM can be perfectly solved. However, the major problem 
of such algorithms/schemes is not their performance, but their 
flexibility for the NP environments, that they can hardly be 
transplanted smoothly from one system to the other, and is 
with much higher re-developing cost and longer 
time-to-market. These are the reasons why we based our work 
on the Decision Tree based software algorithms, as far as the 
NP environment is concerned. 
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Rule set features Rule Set 
R D.R. L S.S. T 

Scheme M.H Avg. N.A Avg. R.M Avg.
M.A.C* 

M.A.C
Reduced 

EGT-PC 0 24.8 24.9 74.5 -- 
+Framework C=1 4 15.7 5.5 30.7 58.8% acl 6982 227 13 55 209460 

+Framework 
C=2**

2 10.6 4.6 21.7 70.9% 

EGT-PC 0 21.4 96.7 214.8 -- 
+Framework C=1 4 21.9 23.1 72.2 66.4% fw 7881 43 6 39 236430 
+Framework C=2 2 17.1 21.5 62.1 71.1% 

EGT-PC 0 15.3 9.6 34.6 -- 
+Framework C=1 4 17.7 4.7 31.1 10.1% ipc 6753 53 7 37 202590 
+Framework C=2 2 12.1 4.6 23.3 32.7% 

Tab.2 Experiment results and comparison between adopting the proposed framework and not adopting 
R : number of Rules;  D.R.: number of Distinct Range in the source port field;  L : number of Layers;  S.S.: number of Sub-Sets divided. T : number 
of packet Trace used.  M.H : number of Memory accesses needed for range Hashing;  N.A : number of trie Node Accessed;  R.M. : number of Rules 
Matched with at the leaf nodes;  M.A.C : number of Memory Accessed Cycles;  C : number of Classifiers. 
*: Supposing that each N.A takes one memory access cycle while each R.M takes two, according to typical data structures. 
**: Note that for each classification, 2 EGT-PC tries should be accessed. In the case of C=2 (two classifiers work in parallel), the corresponding index 
are accumulated according to the classifier performing more memory accesses. While in the case of C=1, the indexes are accumulated by summing up 
the numbers of both the two classifiers. 

Proceedings of the 11th IEEE Symposium on Computers and Communications (ISCC'06) 
0-7695-2588-1/06 $20.00 © 2006 IEEE 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


