
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 25, NO. 1, JANUARY 2007 179

GroCoca: Group-based Peer-to-Peer Cooperative
Caching in Mobile Environment

Chi-Yin Chow, Student Member, IEEE, Hong Va Leong, Member, IEEE Computer Society, IEEE Communications
Society and Alvin T. S. Chan, Member, IEEE

Abstract— In a mobile cooperative caching environment, we
observe the need for cooperating peers to cache useful data
items together, so as to improve cache hit from peers. This could
be achieved by capturing the data requirement of individual
peers in conjunction with their mobility pattern, for which
we realized via a GROup-based COoperative CAching scheme
(GroCoca). In GroCoca, we define a tightly-coupled group (TCG)
as a collection of peers that possess similar mobility pattern and
display similar data affinity. A family of algorithms is proposed to
discover and maintain all TCGs dynamically. Furthermore, two
cooperative cache management protocols, namely, cooperative
cache admission control and replacement, are designed to control
data replicas and improve data accessibility in TCGs. A cache
signature scheme is also adopted in GroCoca in order to provide
information for the mobile clients to determine whether their
TCG members are likely caching their desired data items and
to perform cooperative cache replacement. Experimental results
show that GroCoca outperforms the conventional caching scheme
and standard COoperative CAching scheme (COCA) in terms of
access latency and global cache hit ratio. However, GroCoca
generally incurs higher power consumption.

Index Terms— Mobile computing, peer-to-peer computing, mo-
bile data management, cooperative caching, cache signatures.

I. INTRODUCTION

W ITH RECENT widespread deployment of new peer-
to-peer wireless communication technologies, such as

IEEE 802.11 and Bluetooth, coupled with the fast improve-
ment in the computation processing power and storage ca-
pacity of most portable devices, a new information sharing
paradigm, known as peer-to-peer (referred to as P2P) infor-
mation access has rapidly taken shape. The mobile clients can
communicate among themselves to share information rather
than having to rely solely on the server. This paradigm of
sharing cached information among the mobile clients volun-
tarily is called mobile P2P cooperative caching.

Manuscript received December 15, 2005; revised June 31, 2006. This
work was presented in part at the 33rd International Conference on Parallel
Processing (ICPP), Montreal, Quebec, Canada, August 2004. This manuscript
contains the following new materials: cache signature scheme in Section IV.D,
cooperative cache management protocols in Section IV.E, cache consistency
in Section IV.F, and three new sets of experiments (effect of access pattern,
data update rate, and client disconnection) in Section VI.

This research is supported in part by the Hong Kong Research Grant
Council under grant number PolyU 5084/01E and The Hong Kong Polytechnic
University under grant number H-ZJ86.

C.-Y. Chow is with the Department of Computer Science and Engineer-
ing, University of Minnesota, Minneapolis, MN, email: cchow@cs.umn.edu.
H.V. Leong and A.T.S. Chan are with the Department of Computing,
The Hong Kong Polytechnic University, Hong Kong, email: {cshleong,
cstschan}@comp.polyu.edu.hk

Digital Object Identifier 10.1109/JSAC.2007.070118.

Conventionally, mobile systems are built based on
infrastructure-based and ad-hoc-based architecture. An
infrastructure-based mobile system is formed with a wireless
network connecting mobile hosts (MHs) and mobile support
stations (MSSs). The MHs are clients equipped with portable
devices, while MSSs are stationary servers supporting infor-
mation access for the MHs residing in their service areas. The
MHs can retrieve their desired information from the MSSs, by
requesting over shared point-to-point channels (pull-based data
dissemination model), downloading from scalable broadcast
channels (push-based data dissemination model), or utilizing
both types of channels (hybrid data dissemination model). For
ad-hoc-based mobile communication architecture (mobile ad
hoc network or MANET), the MHs can share information
among themselves without any help from the MSSs, being
referred to as a P2P data dissemination model. In this work,
we propose a novel communication architecture, in which P2P
data dissemination model is used in combination with a mobile
environment supporting pull-based dissemination.

In a pull-based mobile environment, MHs have to retrieve
their desired data items from an MSS when they encounter lo-
cal cache misses. Since a mobile environment is characterized
by limited bandwidth, the communication channel between the
MSS and the MHs could become a scalability bottleneck. Al-
though the push-based and hybrid data dissemination models
are scalable, the MHs adopting these models generally suffer
from longer access latency and higher power consumption, as
they need to tune in to the broadcast and wait for the broadcast
index or their desired items to appear.

MANET is practical to a mobile system with no fixed
infrastructure support, such as battlefield, rescue operations
and so on [1]. However, it is not as suitable for commercial
mobile applications. In MANETs, the MHs can rove freely and
disconnect themselves from the network at any instant. These
two characteristics lead to dynamic changes in the network
topology. As a result, the MHs could suffer from poor access
latency and access failure rate, when the peers holding the
desired data items are far way or unreachable (disconnected).

The inherent shortcomings of infrastructure-based architec-
ture and MANET render mobile applications adopting either
architecture alone not as appropriate in most real commercial
settings. In reality, poor access latency and access failure
rate could cause the abortion of valuable transactions or the
suspension of critical activities, reducing user satisfaction and
loyalty, and potentially bringing damages to the organization
involved. The drawbacks of existing mobile data dissemina-

0733-8716$20.00 c© 2007 IEEE

180 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 25, NO. 1, JANUARY 2007

tion models motivate us to develop a novel data accessing
scheme, based on an integrated communication structure, for
deploying mobile information access applications in reality.
In [2], [3], [4], [5], we have proposed a mobile COoperative
CAching scheme (COCA) that combines the conventional
infrastructure-based architecture with P2P communication
technology. The MHs adopting COCA can obtain their desired
data items only not from the MSS, but also from the cache of
their peers.

In a mobile environment, client mobility and data access
patterns are key factors in cache management. Major issues
in cooperative cache management include cache replacement
and admission control strategies to increase data accessibility,
with respect to individual MHs and their peers. The decision of
whom a cached data item should be forwarded to thus depends
on both access affinity on data items and the mobility pattern.

In this paper, we propose a GROup-based COoperative
CAching scheme (GroCoca) based on the concept of a tightly-
coupled group (TCG), which is a group of MHs that are
geographically and operationally close, i.e., sharing common
mobility and data access pattern. It is not difficult to define
whether two MHs are geographically close, based on their
locations. Two MHs are said to be operationally close, if they
perform similar operations and access similar set of data items.
In GroCoca, two cooperative cache management protocols,
cooperative cache admission control and cooperative cache
replacement, are designed for the MHs to manage their cache
space with respect to themselves and their TCG members.

The rest of this paper is organized as follows. Section II
gives a survey on some important work related to mobile
cooperative caching and group formation techniques in mobile
environment. Section III presents the system architecture and
communication protocol of COCA. Section IV delineates the
various aspects of GroCoca. Section V describes the simula-
tion model of GroCoca and its performance is evaluated in
Section VI. Finally, Section VII concludes the paper.

II. RELATED WORK

Recently, cooperative caching in mobile environment has
been drawing increasing attention. Several cooperative caching
schemes were proposed within recent years. These works
can be divided into two major categories: cooperative data
dissemination and cooperative cache management. Coopera-
tive data dissemination research mainly focuses on how to
search for desired data items and how to forward the data
items from the source MHs or the MSSs to the requesting
MHs [6], [7], [8], [9]. Cooperative cache management research
focuses on how MHs cooperatively manage their cache as an
aggregate cache to improve system performance along such
design dimensions as cooperative data replica allocation [10],
[11], [12], cooperative cache invalidation [13] and cooperative
cache admission control and replication [14].

In the past, several distributed clustering algorithms have
been proposed for mobile environment. The two simplest
distributed clustering algorithms are the lowest-ID [15] and
largest-connectivity (degree) [16] algorithms. To improve the
stability of clusters in MANETs, several mobility-based clus-
tering algorithms [17], [18], [10], [19], [20], [21] are proposed.

A bottom-up clustering algorithm considering the mobility
pattern of MHs is proposed [17]. The MHs record their own
mobility pattern in a mobility profile, which is periodically
exchanged with other peers. The clustering criterion is based
on the relative velocity between MHs. Inter-cluster merging
algorithm is then executed to combine clusters that are within
a certain hop distance.

A dynamic connectivity based group formation scheme is
proposed to group the MHs with highly stable connection
together [10]. A group of MHs possesses a high connec-
tion stability, as they form a biconnected component in the
network. An incremental clustering algorithm is proposed to
discover group mobility pattern, to alleviate network partition-
ing [21]. When the system detects that some network partitions
are likely to materialize, it replicates appropriate data items
among mobility groups to improve data accessibility. The
DRAM mobility-based clustering algorithm improves data
accessibility in the system, by considering not only the current
motion information of the MHs, but also their historical
motions [19]. When a cluster is constructed, the data replica
allocation algorithm is executed to place appropriate data items
in cluster members to improve data accessibility.

GBL is another distributed mobility-based clustering al-
gorithm for group-based location update in mobile environ-
ment [20]. The MH with the highest degree of affinity in
neighborhood is assigned as the cluster leader. The degree
of affinity is defined by the distance between an MH and its
peers, together with the similarity in their movement vectors.
Each cluster leader is responsible for updating the location
of its cluster members to location databases. Other than
using velocity or distance to determine the mobility pattern,
signal power detection is also adopted to calculate the relative
mobility metric for distributed clustering in MANETs [18].

Our work distinguishes itself from previous works in that we
propose a group formation algorithm which takes into account
the geographical vicinity property of communication groups,
as well as operational vicinity property of computation groups.
Two cooperative cache management protocols are proposed for
the MHs to control data replicas and improve data accessibility
within their TCGs.

III. COCA

In COCA, a neighbor discovery protocol (NDP) [22], [23]
is assumed to be available. NDP is a simple protocol in which
the neighbor connectivity is maintained through a periodic
beacon of “hello” message with other useful information,
e.g., the identifier or communication address of the sender.
Each MH broadcasts a “hello” message to its neighboring
peers for every beacon interval. If an MH has not received a
beacon message from a known peer for some beacon cycles,
it considers that there is a link failure with that peer. In
addition, there are two P2P communication paradigms: point-
to-point and broadcast. In P2P point-to-point communication,
there is only one destination MH for the message sent from
the source MH. In P2P broadcast communication, all MHs
residing in the transmission range of the source MH receive
the broadcast message. Before describing the system model,
we first examine the four possible outcomes of a client request.

CHOW et al.: GROCOCA: GROUP-BASED PEER-TO-PEER COOPERATIVE CACHING IN MOBILE ENVIRONMENT 181

m4

m6
m1

m2

m3

Service Area of the System

Transmission Range of an MH

P2P Communication
Channels

m5

MSS

Fig. 1. System architecture of COCA.

1) Local Cache Hit (LCH). If the required data item is
found in the MH’s local cache, it constitutes a local
cache hit; otherwise, it is a local cache miss.

2) Global Cache Hit (GCH). When the required data item
is not cached, the MH attempts to retrieve it from its
peers. If some peers can turn in the required item, that
constitutes a global cache hit.

3) Cache Miss (or Server Request). If the MH fails
to achieve a local cache hit or a global cache hit, it
encounters a cache miss, and has to make a contact with
the MSS to obtain the item.

4) Access Failure. If the MH encounters a cache miss,
and fails to access the item from the MSS, as it is
residing outside of the service area or the MSS is down
or overloaded, that is an access failure.

COCA is based on the system architecture in Figure 1. Each
MH and its peers work together to share their cached data
items cooperatively via P2P communication. For instance,
when an MH, m2, encounters a local cache miss, it broadcasts
a request to its peers, m1 and m3. If any peer turns in the
required item, a global cache hit is recorded; otherwise, it is
a global cache miss, and m2 has to enlist the MSS for help.

The communication protocol of COCA specifies that an MH
should first find its desired data item in its local cache for
each query. If it encounters a local cache miss, it broadcasts
a request message to its peers within the distance of a
prescribed maximum number of hops (HopDist), via P2P
broadcast communication. Any peer caching the required item
will send a reply message back to the requestor via P2P point-
to-point communication. When the MH receives the first reply
from a peer, that peer is selected as a target peer. The MH next
sends a retrieve message to the target peer via P2P point-to-
point communication. The peer receiving retrieve turns in the
required item through P2P point-to-point communication. If
no peer sends a reply back to the requestor upon timeout, the
item needs to be requested from the MSS.

The timeout period, τ , is adaptive to network congestion.
Initially, τ is set to a default value of the round-trip time of a
P2P transmission between two MHs at a distance of HopDist
scaled up by a congestion factor, ϕ, i.e., (|request|+|reply|)

BWP2P
×

HopDist × ϕ, where BWP2P is the bandwidth of the P2P

communication channel and |request| and |reply| are the size
of a request and reply message respectively. For each search
in the peers’ cache, an MH records the time duration, τ ′,
from the moment when the MH broadcasts a request to the
moment when a reply is received. Then, τ is set to the average
time duration, τ ′, plus another system parameter, ϕ′, times the
standard deviation of τ ′, στ ′ , i.e., τ = τ ′+ϕ′στ ′ . Both τ ′ and
στ ′ can be calculated incrementally [24].

IV. GROCOCA

GroCoca defines and makes use of the concept of a
tightly-coupled group (TCG), which is defined as a group of
MHs sharing common mobility pattern and data affinity. Two
cooperative cache management protocols, namely, cooperative
cache admission control and cooperative cache replacement
protocols, are proposed for an MH to manage its own cache
space with respect not only to itself, but also to its TCG
members. In GroCoca, an exponentially weighted moving
average (EWMA) measure [25] is used to discover common
mobility pattern, while the similarity in access pattern is
captured via a vector space model [26].

A. Similarity Measurement in Mobility Patterns

The mobility pattern is modeled by the weighted average
distance between any two MHs. The MHs need not explic-
itly update their locations, but they piggyback the location
information on the request sent to the MSS when they are
requesting data items. The location information represented
by a coordinate (x, y) is returned from a global positioning
system (GPS) or indoor sensor-based positioning system, like
MIT BAT or Cricket. For two MHs, mi and mj , the dis-
tance between them is calculated as their Euclidean distance,
|mimj |. EWMA is used to forecast the future distance of each
pair of MHs based on their historical mobility patterns. The
weighted average distance between two MHs, mi and mj ,
is denoted as ||mimj ||. After the MSS receives the location
information of both mi and mj for the first time, ||mimj || is
set to |mimj |. Then ||mimj || is updated when either mi or
mj sends its new location to the MSS:

‖mimj‖new = ω × |mimj | + (1 − ω) × ‖mimj‖old, (1)

where ω (0 ≤ ω ≤ 1) is a parameter to weight the importance
of the most recent distance. A pair of MHs are considered to
possess common mobility pattern, if their weighted average
distance is less than or equal to a prescribed threshold, ∆. The
weighted average distance of each pair of MHs is stored in a
two-dimensional weighted average distance matrix (WADM).

B. Similarity Measurement in Data Access Patterns

GroCoca considers also the similarity of MH accesses to
the data items. In the MSS, each data item is associated with
an identifier. The MSS maintains a counter vector of length
NData for each MH to store its data access pattern, where
NData is the number of data items at the server.

When an MH accesses a data item, the MSS increments the
corresponding counter for the MH. The similarity score of the

182 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 25, NO. 1, JANUARY 2007

Algorithm 1 TCG Discovery Algorithm: location update
1: procedure LocationUpdate(M, WADM, ASM, TCGi, ∆, δ, ω)

// M: the set of MHs in the system
// WADM and ASM: weighted average distance matrix and access similarity matrix
// TCGi: identifiers of MHs in the TCG of mi

// ∆, δ: prescribed weighted average distance and data access similarity thresholds
// ω: weight parameter for weighted average distance between two MHs

2: for all mj ∈ M do
3: if mi �= mj then
4: ||mimj ||new ← ω × |mimj | + (1− ω)× ||mimj ||old;
5: CheckTCGMembership(mi , mj , WADM, ASM, TCGi, ∆, δ);
6: end if

7: end for

access pattern of two MHs, mi and mj , is calculated by:

sim(mi, mj) =

PNData
d=1 Ai(d) × Aj(d)qPNData

d=1 Ai(d)2 ×
qPNData

d=1 Aj(d)2
, (2)

where Ai(d) is the frequency that mi accessed a data item, d,
and 0 ≤ sim(mi, mj) ≤ 1. If the measured similarity score
of two MHs is larger than or equal to a prescribed threshold,
δ, they are considered to possess a similar access pattern.
The similarity score of each pair of MHs is stored in a two-
dimensional access similarity matrix (ASM).

Since the uplink channel is scarce, a passive approach is
adopted for collecting the data access pattern. An MH does
not send any data access information actively to the MSS,
but the MSS learns this access pattern from the received
requests along with location information sent by the MH.
The collected information is just a sample of the mobility
and access pattern. To improve accuracy, the thresholds for
weighted average distance and data access similarity should
be made lower. When an MH has not sent any request to the
MSS for a period of time, τP , the MH explicitly reports its
location and a portion, ρP , of the data access history, i.e.,
items retrieved from other peers since last explicit update or
request.

C. Tightly-Coupled Group Discovery Algorithm

The Tightly-Coupled Group (TCG) discovery algorithm is
executed in the MSS. When the MSS receives a request
from an MH, it extracts the location information from the
request and then calculates its weighted average distance to
its every peer (Algorithm 1). Meanwhile, the MSS updates
the score on data access similarity between the MH and each
peer (Algorithm 2). A peer, mj , is considered to be a TCG
member of an MH, mi, if two conditions, ||mimj || ≤ ∆
and sim(mi, mj) ≥ δ, are satisfied (Algorithm 3). Since
||mimj || = ||mjmi|| and sim(mi, mj) = sim(mj , mi), the
TCG relation is symmetric. Thus, when the MSS adds mi

into mj’s TCG, it also adds mj into mi’s TCG.
The MSS postpones the announcement of changes in TCG

membership to the affected MHs until they send explicit
updates or requests to the MSS. In the former case, the
MSS only sends the changes in the TCG membership to the
MHs. In the latter case, the MSS processes the request and
sends the required data items along with the changes in the
TCG membership to the requesting MHs. In effect, we are
performing an asynchronous group view change [27] without
enforcing stringent consistency among group members.

Algorithm 2 TCG Discovery Algorithm: data access pattern
1: procedure ReceiveRequest(M, A, WADM, ASM, TCGi, ∆, δ)

// A: the set of vector A for each MH
2: for all mj ∈M do
3: if mi �= mj then

4: sim(mi, mj)←
PNData

d=1 Ai(d)×Aj (d)qPNData
d=1 Ai(d)2×

qPNData
d=1 Aj(d)2

;

5: CheckTCGMembership(mi , mj , WADM, ASM, TCGi, ∆, δ);
6: end if

7: end for

Algorithm 3 TCG Discovery Algorithm: membership checking
1: procedure CheckTCGMembership(mi , mj , WADM, ASM, TCGi, ∆, δ)
2: if ||mimj || ≤ ∆ and sim(mi, mj) ≥ δ then
3: if mj /∈ TCGi then
4: TCGi ← TCGi ∪ {mj}; TCGj ← TCGj ∪ {mi};
5: end if
6: else
7: if mj ∈ TCGi then
8: TCGi ← TCGi − {mj}; TCGj ← TCGj − {mi};
9: end if

10: end if

D. Cache Signature Scheme

Our cache signature is based on the bloom filter and is
compressed based on a variable-length-to-fixed-length (VLFL)
run-length encoding scheme. After a brief review of the
techniques adopted, we describe the use of cache signatures to
filter unnecessary search and the signature exchange protocol
and extend the protocol to cater for client disconnection.

1) Bloom Filter Data Structure: A bloom filter is used
to represent a set S = {s1, s2, . . . sn} of n data items. A
vector with σ bits, V = {vi|i ∈ [0, σ − 1]}, is initially set
to zero. There are k independent hash functions, {hi|i ∈
[1, k]}, each yielding a hash value between 0 and σ − 1. To
construct a bloom filter, an element s ∈ S is hashed by the
k hash functions to produce k hash values, hi(s). Then, the
corresponding bits in V at the position of the hash values
are set to one, i.e., ∀j ∈ [1, k], vhj(s) = 1. This procedure is
repeated for each element in S.

To check whether s′ is in V , s′ is first hashed by the k
hash functions. If all bits at positions indicated by the hash
functions are set in V , verified with a bitwise and operation,
i.e., ∀j ∈ [1, k], vhj(s′) = 1, s′ is probably in V . Otherwise,
∃j ∈ [1, k], vhj(s′) = 0 and s′ is definitely not in V .

Since each bit in V can be randomly set multiple times
by different elements, a bloom filter could result in a false
positive; this occurs when the existence of an element is
indicated, but the element is actually not stored in it. For
mathematical simplicity, it is commonly assumed that all bits
are independently set to zero or one [28]. After hashing all
elements in S into V , the probability that a particular bit still
remains zero is

(
1 − 1

σ

)nk
. The probability of the occurrence

of a false positive is
[
1 − (1 − 1

σ)nk
]k

. The optimal number
of hash functions, k, to minimize false positive probability is
k = (ln 2)

(
σ
n

)
[28].

2) Compressed Cache Signatures: When an MH merely
caches a small portion of data items, there are many “zeros” in
its cache signature. The transmission overhead can be reduced,
if the bloom filter is compressed before being transmitted to
other peers. A VLFL run-length encoding is used to compress
the cache signature because it is simple and yet practical for

CHOW et al.: GROCOCA: GROUP-BASED PEER-TO-PEER COOPERATIVE CACHING IN MOBILE ENVIRONMENT 183

Algorithm 4 Finding an optimal value of R.
1: procedure FindOptimalR (ε, σ, k)
2: φ←

“
1 − ` 1

σ

´εk
”

; min σ′ ← +∞; R← 1; bR ← 1; i← 1;

3: while i ≤ 1−φR

1−φ do

4: tmp σ′ ← σi(1−φ)
1−φR ;

5: if tmp σ′ < min σ′ then
6: min σ′ ← tmp σ′; bR← R;
7: else
8: break;
9: end if

10: i← i + 1; R← 2i − 1;
11: end while

12: return bR;

most mobile devices. The VLFL run-length encoding consists
of two steps. First, the sequence of bits is decomposed into
run-lengths terminated by two cases: there are R consecutive
“zeros”, where R = 2l − 1 for a positive integer l, and
there are L consecutive “zeros” followed by a single “one”,
where 0 ≤ L < R. Second, a fixed-length codeword, which
indicates the length of the run-length, is assigned to each run-
length. Assuming that all “zeros” are uniformly distributed,
the probability of the VLFL encoding process encountering a
“zero” in a signature is φ =

(
1 − 1

σ

)nk
. Thus, the probability

of different run-lengths, 0 ≤ L ≤ R would be P (L) =
φL(1 − φ) when 0 ≤ L < R and P (L) = φR when
L = R. Thus, the expected length of an intermediate symbol,
that is either a run-length with R consecutive “zeros” or
a run-length with L consecutive “zeros” and a terminator
“one”, is η =

∑R−1
i=0 (i + 1)P (i) + RP (R) = 1−φR

1−φ . The
expected length of a compressed cache signature, σ′, is σ′ =
σ
η log2(R + 1). Algorithm 4 is used to find an optimal value
of R. We take advantage of the VLFL run-length encoding
when log2(R + 1) < η. An MH makes a local decision on
whether to compress its cache signature before transmitting
it to other peers based on three factors: its cache size (ε)
in terms of number of data items that can be stored in the
cache, the bloom filter size (σ) and the number of independent
hash functions (k). A cache signature should be compressed,

if log2(R̂ + 1) < 1−φ
bR

1−φ , where R̂ = FindOptimalR(ε, σ, k);
otherwise, the MH simply sends its cache signature without
compression.

3) Filtering Mechanism: In the cache signature scheme,
there are four types of signatures, data signature, cache sig-
nature, peer signature and search signature. A data signature
for a data item is a bloom filter produced by hashing its
unique identifier, such as integral identifier, keywords, attribute
values, URL or content with k hash functions. A cache
signature is a bloom filter that summarizes a cache content
by superimposing all data signatures of the cached data items.
An MH produces a peer signature by superimposing all cache
signatures of its neighboring peers. When an MH encounters a
local cache miss, it generates a search signature for its desired
item by setting the bit at the appropriate positions for the item.
A bitwise and operation is applied on the search signature
and peer signature. If the result is the same as the search
signature, indicating that some peers are likely caching the
item, the MH searches the peers’ cache for it; otherwise, it
bypasses the peers’ cache, and obtains the item from the MSS
directly.

An MH has to regenerate the cache signature after a
cache insertion or eviction. To reduce processing overhead, a
proactive approach is used to generate cache signatures. Each
MH maintains a counter vector with σ counters, each counter
with πc bits. When a data item is inserted into (evicted from)
the local cache, a data signature is generated for the item, and
counters at the position of the bits set in the data signature
are incremented (decremented). The MH can construct a new
cache signature by simply setting the bits at the position of
counters with non-zero values in a bloom filter. The value of a
counter is bounded by its size, πc. Increment operations will
not be executed on counters with value 2πc − 1. Likewise,
if the value of a counter becomes zero, decrement operation
would be discarded, and the MH would reset and reconstruct
the counter vector to avoid false negative.

4) Cache Signature Exchange Protocol: In GroCoca, the
MHs adopt a counter vector structure with dynamic counter
size to store cache signatures from their peers. They only
exchange their signatures with those peers belonging to their
own TCGs to enhance the stability of the counter vector. Each
MH maintains a vector of σ peer counters, where σ is the
size of bloom filter, each counter with πp bits. If an MH
does not have any TCG member, πp is zero. Once the MH
discovers a newly joined member in its TCG, it creates a one-
bit counter vector and sends a SigRequest message to it. The
peer receiving SigRequest returns its full cache signature to
the requesting MH. Then, the MH updates the counter vector
by incrementing the counters at the position of the bits that
are set in the received cache signature. When the MH detects
a new TCG member, it sends SigRequest to the member, and
the member turns in its cache signature. After the MH receives
the cache signature, it updates the counter vector. When the
MH is going to increase a counter to 2πp , the counter size,
πp, will expand. Likewise, in case that all counter values fall
below 2πp−1, the counter size will contract.

After the MH synchronizes the TCG membership informa-
tion with the MSS, when it detects a TCG member departing,
it resets the counter vector, and then recollects all cache
signatures from its remaining TCG members. The MH broad-
casts SigRequest to its neighborhood with the membership
information. A peer receiving the request checks whether itself
is a member. If it is, it returns its cache signature; otherwise, it
simply drops the request. In case that the network is extremely
dynamic, the MH does not recollect all cache signatures
from its remaining TCG members. Instead, it recollects the
cache signatures only after a certain number of members have
departed the TCG. However, the extra delay on the recollection
could lead to higher false positives.

To reduce communication overhead on updating cache
signature, the MHs embed the signature update information
to request message broadcast to all their neighboring peers.
When an MH receives request from a peer, the MH checks
whether the peer belongs to its own TCG. If so, the MH
extracts the signature update information, and updates the
counter vector accordingly. The signature update information
is maintained in two lists: insertion list and eviction list.
The insertion list stores the bit position set, and the eviction
list stores the bit position reset, since the last time the MH
broadcasts request along with signature update information.

184 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 25, NO. 1, JANUARY 2007

If a bit position exists in both lists, the change is annihilated.
5) Client Disconnection Handling Protocol: Since client

disconnection is one of the most common phenomena in
mobile environment, GroCoca is extended to handle client
disconnection. After a disconnected MH reconnects to the
network, it synchronizes its TCG membership information
with the MSS. The MH resets the counter vector and sends
SigRequest along with its TCG membership information to
its peers. The peers finding their identifiers in the membership
information send their full cache signatures back to the MH.
Then, the MH reconstructs the counter vector based on the re-
ceived cache signatures. However, some members may discon-
nect from the network, when the MH is recollecting their cache
signatures. Each MH thus maintains a list, OutstandSigList, to
record members not yet turned in their cache signatures. After
the MH obtains the up-to-date membership information from
the MSS, it resets OutstandSigList and inserts all members
to the list. When an MH detects a peer in OutstandSigList
reconnecting to network, it sends SigRequest to the peer.
When the MH receives the cache signature from the peer, it
updates the counter vector and removes the peer from the list.

E. Cooperative Cache Management Protocols

In GroCoca, two cooperative cache management protocols:
cooperative cache admission control and cooperative cache
replacement, are designed for an MH to manage its own cache
space with respect to itself and its TCG members.

The cooperative cache admission control protocol provides
a means for the MHs to control data replicas in their TCGs.
When an MH encounters a local cache miss, it sends a request
to its peers. If some peers turn in the required item and the
local cache is not full, the MH caches the item, no matter it
is returned by a peer in the same TCG or not. However, if the
local cache is full, the MH does not cache the item when it
is supplied by a peer in the same TCG, on the belief that the
item can be readily available from the peer if needed. If the
cache is full but the data item comes from a peer outside of its
TCG, the MH would rather cache the item by removing the
least valuable data item, since the providing peer may move
far away in future. After a peer sends the required item to
the requesting MH, if they are belonging to the same TCG,
the peer updates the last access timestamp of the item, so that
the item can be retained longer in the global cache. If there
are more than one member caching the same item, the MH
selects the member caching the item with the longest time-to-
live (TTL) to update the last access timestamp of the item.

The cooperative cache replacement protocol allows the MH
to collaborate with its TCG members to replace the least
valuable item with respect to the MH and other TCG members.
It satisfies the three desirable properties for caching [4]. First,
the most valuable items are always retained in the local cache.
Second, in a local cache, an item which has not been accessed
for a long period, is replaced eventually. Third, in a global
cache, an item which “spawns” replica is first replaced to
increase the effective cache size.

To retain the most valuable data items in the local cache,
only a number of ReplaceCandidate least valuable items are
selected as the replacement candidates. Among the candidates,

the least valuable item is first chosen, and the MH generates a
data signature for it. The data signature is then compared with
the peer signature by a bitwise and operation. If the result is
the same as the data signature, the item is likely a replica
in the global cache, so it is replaced. Otherwise, the second
least valuable item is considered. If no candidate is probably
replicated in the TCG, the least valuable item is replaced.

There could be a wasting issue with the arrangement above:
a data item without any replica could always be retained in the
local cache, even though it will not be accessed again. If most
items cached belong to such type of item, the MH’s cache will
be populated with useless items, degrading the LCH ratio. To
solve this problem, a SingletTTL counter is associated with
each candidate. SingletTTL is initially set to ReplaceDelay.
When the least valuable item is not replaced because it does
not have any replica, its counter is decreased by one. Cache
replacement mechanism is skipped if the counter value of
the least valuable item becomes zero, and the MH simply
drops that item from the cache. The counter is reset to
ReplaceDelay, when the item is accessed by the MH or its
TCG members.

F. Cache Consistency

Since maintaining strong cache consistency in mobile envi-
ronment is very costly, an on-demand lazy cache consistency
strategy is more suitable than a strict one [25]. In COCA,
a timestamp-based on-demand cache consistency strategy is
adopted. When an MH retrieves a data item from the MSS, the
MSS assigns a TTL to the item, and then the MH records the
retrieve time, tr, for the item. When the MH accesses the item
in response to a request, it checks the validity of the item by
determining whether TTL has expired. The MH considers the
cached item to be valid, if its TTL has not expired. Otherwise,
it validates the item by consulting the MSS. If the item has
been updated in the MSS, i.e., tr < tl, where tl is its last
updated timestamp, the MSS returns the up-to-date copy of
the item; otherwise, the MSS just approves its validity, and
then the MH accesses the cached copy. The MSS records the
EWMA update interval for each item. Consider a data item,
x, with a last updated timestamp, txl , the data update interval,
ux, is re-calculated when x is updated at tc, as unew

x =
α(tc− txl)+(1−α)uold

x , where α is a parameter to weight the
importance of the most recent data update. After that, txl is set
to tc. To deal with items without any update for a long period,
the EWMA update rates of all items are examined periodically.
If an item, x, has not been updated for a time period longer
than ux, unew

x is updated to α(tc−txl)+(1−α)uold
x . When an

MH accesses x from the MSS, the MSS assigns a new TTL
to x as max(ux − (tc − txl), 0). When an MH encounters a
local cache miss, it searches the peers’ cache for its desired
item. The peer only turns in the required item to the MH, if
the TTL of the item has not expired. If no peer caches a valid
copy of the item, the MH has to enlist the MSS for help.

V. SIMULATION MODEL

The simulation model for GroCoca is implemented in C++
using CSIM. The simulated mobile environment is composed

CHOW et al.: GROCOCA: GROUP-BASED PEER-TO-PEER COOPERATIVE CACHING IN MOBILE ENVIRONMENT 185

TABLE I

POWER CONSUMPTION MEASUREMENT IN P2P COMMUNICATION.

Condition Pp2p power v f
m = S (vsend × b) + fsend 1.9 454
m = D (vrecv × b) + frecv 0.5 356

m ∈ SR ∧m ∈ DR (vsd disc × b) + fsd disc 0 70
m ∈ SR ∧m /∈ DR (vs disc × b) + fs disc 0 24
m /∈ SR ∧m ∈ DR (vd disc × b) + fd disc 0 56

Condition Pbc Power v f
m = S (vbsend × b) + fbsend 1.9 266
m ∈ SR (vbrecv × b) + fbrecv 0.5 56

of an MSS and NClient MHs in a space of 1000 × 1000 me-
ters. The total bandwidth of wireless communication between
the MSS and the MHs is BWserver . There is a half-duplex
wireless channel for an MH to communicate with its peers
with a total bandwidth of BWP2P and a transmission range of
TranRange.

A. Power Consumption Model

Each MH is equipped with two wireless network interface
cards (NICs), in which one is dedicated to communicate with
MSS, while the other is devoted to communicate with other
peers. For P2P communication, all MHs are assumed to
be equipped with the same type of wireless NICs with an
omnidirectional antenna so that all MHs within the transmis-
sion range of a transmitting MH can receive its transmission.
Furthermore, the wireless NIC of the non-destination MH is
operated in an idle mode during the transmission. The power
consumption measurement model uses a set of linear formulas
to measure the power consumption of the source MH, S, the
destination MH, D, and other remaining MHs residing in the
transmission range of the source MH, SR, and the destination
MH, DR [29], The power consumption of P2P point-to-point
and broadcast are measured as in Table I, where f (µW ·s) is
the fixed setup cost for a transmission, and v (µW ·s/byte) is
the variable power consumption on message size in bytes (b).

B. Client Model

The MHs are divided into several motion groups, each with
GroupSize MHs. The mobility of the MHs is based on the
reference point group mobility model [30], a random mobility
model for a group of MHs. The movement of each group is
based on the random waypoint mobility model [31], with a uni-
formly distributed moving speed from vmin to vmax, and one-
second pause time. The MHs of the same motion group share
a common access range on data items, generating accesses
following a Zipf distribution with a skewness parameter θ. The
interarrival time between data accesses from an MH follows
an exponential distribution with a mean of one second. An MH
disconnects from the network after completing a request with
a probability, Pdisc, for a period of time, DiscTime, uniformly
distributed from dmin to dmax.

C. Server Model

There are NData equal-sized (DataSize) data items. The
MSS receives and processes the requests sent by the MHs
with a first-come-first-serve policy. An infinite queue is used to
buffer the outstanding requests from the MHs when the MSS

TABLE II

SIMULATION PARAMETERS.

Parameter Default Value Range
NClient 100 50 − 400
NData 10,000 -
BWserver Downlink 2,400 Kbits/s -

Uplink 153.6 Kbits/s -
BWP2P 2,000 Kbits/s -
TranRange 100 m -
DataSize 3 KBytes -
DataUpdateRate 0 (no data update) 0− 500
CacheSize 100 data items 50 − 250
AccessRange 1000 data items 500− 10, 000
σ, k 40,000, 2 -
θ 0.5 0− 1
Speed (vmin ∼ vmax) 1 ∼ 5 m/s 1 − 30
Pdisc 0 0 − 0.3
DiscTime (dmin ∼ dmax) 1 ∼ 5 s -
ReplaceCandidate 20 data items -
ReplaceDelay 2 -
ω, α 0.25, 0.25 -
ϕ, ϕ′ 10, 3 -
τP , ρP 10 s, 0.5 -

is busy. All data items are randomly updated in the MSS with
an update rate, DataUpdateRate items per second. Table II
shows the default setting and varying range of all simulation
parameters in the simulated experiments.

VI. SIMULATION RESULTS

The performance of GroCoca (denoted as GCC) is com-
pared with a conventional caching scheme that does not
involve any cooperation among MHs (denoted as NC) and
standard COCA (denoted as CC). All schemes adopt least
recently used (LRU) cache replacement policy. We start the
recording of simulation results after the system reaches a
stable state, in which all client caches are full, in order to avoid
a transient effect. A simulated experiment terminates after
each MH generates over 2000 requests beyond the warmup
period.

A. Effect of Cache Size

Our first simulated experiment studies the effect of cache
size on system performance by increasing the cache size from
50 to 250 data items. Figures 2(a) and 2(b) show that the
access latency and server request ratio improve, as the cache
gets larger. The MHs can cache more items with increasing
cache size, so it improves the LCH ratio. For the MHs
adopting COCA schemes, it not only achieves a higher LCH
ratio, but it also enjoys a higher GCH ratio, as depicted in
Figure 2(c). This is because there is a higher chance for
the MHs to obtain their desired items from their peers, with
larger cache. Since GCC further improves the GCH ratio in
TCGs, the MHs with GCC records the highest GCH ratio. The
access latency and server request ratio of GCC are thus better
than NC and CC. Although the MHs adopting GCC enjoy
a higher GCH ratio, they have to consume more power on
cache signature scheme. However, we still observe a lower
power consumption per GCH due to higher GCH. With a
much larger cache, the larger increase in LCH leads to a
slightly diminishing GCH, hence a higher power consumption
per GCH.

186 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 25, NO. 1, JANUARY 2007

50 100 150 200 250
5

10

15

20

25

30

35

40

45

Cache Size (Data Items)

A
cc

es
s

L
at

en
cy

 (
m

s)
NC
CC
GCC

(a) Access Latency

50 100 150 200 250
10

20

30

40

50

60

70

80

90

100

Cache Size (Data Items)

S
er

ve
r

R
eq

u
es

t
R

at
io

 (
%

)

NC
CC
GCC

(b) Server Request Ratio

50 100 150 200 250
20

25

30

35

40

45

50

55

Cache Size (Data Items)

G
lo

b
al

 C
ac

h
e

H
it

 R
at

io
 (

%
)

CC
GCC

(c) GCH Ratio

50 100 150 200 250
1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85

1.9

1.95
x 10

4

Cache Size (Data Items)

P
o

w
er

 C
o

n
su

m
p

ti
o

n
/G

C
H

 (µ
W

.s
)

CC
GCC

(d) Power/GCH

Fig. 2. Effect of cache size on system performance.

B. Effect of Access Pattern

In the second experiment, we study the effect of access pat-
tern on system performance by varying the Zipfian skewness
parameter value, θ, from zero to one and the data access range
from 500 to 10,000 data items. Figures 3(a) and 3(b) reveal
that the access latency and server request ratio improve with
increasing θ for all schemes. When θ = 0, the MHs access the
data items uniformly. On the other hand, their access patterns
become more skewed, with larger θ. The MHs with a more
skewed access pattern are likely to find their desired items
in the local cache, so the LCH ratio improves, leading to an
improvement in access latency and server request ratio.

The GCH ratio of CC and GCC initially improves, but it
drops with further increasing θ, as illustrated in Figure 3(c).
When θ increases, the range of hot data items becomes smaller,
so there is a higher probability for an MH to retrieve its desired
items from its TCG members. However, as θ further increases,
the MH enjoys a much higher LCH ratio that eases the demand
for the global cache, so the GCH ratio drops. When the GCH
ratio drops, the power consumption of the cache signature
scheme is amortized by fewer number of GCHs. Thus, the

power consumption per GCH gets higher due to reduced GCH
ratio at high access skewness, as illustrated in Figure 3(d).

The performance of all schemes gets worse, when the
access range increases, as exhibited in Figure 4. The larger
access range, the more distinct data items the MHs are likely
to access, so they suffer from lower LCH and GCH ratios.
These lower LCH and GCH ratios lead to system performance
degradation, in terms of access latency, server request ratio and
power consumption per GCH. The result also reveals that CC
and GCC perform better than NC, but CC is more effective
than GCC, when the access range gets larger.

C. Effect of Motion Group Size

To evaluate the effect of motion group size on system
performance, we increase GroupSize from 1 to 50. When
the motion group size is equal to one, the mobility model is
equivalent to an individual random waypoint mobility model.
The MHs adopting CC and GCC score the worst GCH ratio
when the group size is equal to one, as shown in Figure 5(c),
that constitutes the worst case of CC and GCC in terms of
access latency, server request ratio and power consumption per

CHOW et al.: GROCOCA: GROUP-BASED PEER-TO-PEER COOPERATIVE CACHING IN MOBILE ENVIRONMENT 187

0 0.2 0.4 0.6 0.8 1
5

10

15

20

25

30

35

40

45

Skewness Parameter (θ)

A
cc

es
s

L
at

en
cy

 (
m

s)

NC
CC
GCC

(a) Access Latency

0 0.2 0.4 0.6 0.8 1
10

20

30

40

50

60

70

80

90

Skewness Parameter (θ)

S
er

ve
r

R
eq

u
es

t
R

at
io

 (
%

)

NC
CC
GCC

(b) Server Request Ratio

0 0.2 0.4 0.6 0.8 1
20

25

30

35

40

45

Skewness Parameter (θ)

G
lo

b
al

 C
ac

h
e

H
it

 R
at

io
 (

%
)

CC
GCC

(c) GCH Ratio

0 0.2 0.4 0.6 0.8 1
1.62

1.64

1.66

1.68

1.7

1.72

1.74

1.76

1.78
x 10

4

Skewness Parameter (θ)

P
o

w
er

 C
o

n
su

m
p

ti
o

n
/G

C
H

 (µ
W

.s
)

CC
GCC

(d) Power/GCH
Fig. 3. Effect of skewness in access pattern on system performance.

GCH, as depicted in Figures 5(a), 5(b) and 5(d) respectively.
The server request and GCH ratios of CC and GCC improve
with increasing motion group size because there is a higher
chance for the MHs to obtain their desired items from their
peers, when there are more neighboring peers with similar data
affinity from which help can be sought. The increasing motion
group size brings two effects on system performance. First, the
larger motion group size leads to higher power consumption
per GCH because the MHs have to handle more global cache
queries and discard more unintended messages, as illustrated
in Figure 5(d). Second, it also induces higher network traffic
around the vicinity of a motion group, which in turn increases
the latency of global cache accesses, as shown in Figure 5(a).

D. Effect of Data Item Update Rate

We next study the effect of data item update rate by
increasing the rate from 0 to 100 items per second. The
performance of all schemes gets worse with increasing data
item update rate, as shown in Figure 6. This is because there
is a higher chance for the MHs to encounter local cache or
global cache misses, when the update rate increases. The lower
LCH and GCH ratios lead to system performance degradation
in access latency and server request ratio. When the GCH

ratio drops, the power consumption on searching the peers’
cache of CC and GCC and cache signature scheme of GCC
is amortized over fewer GCHs, so power consumption per
GCH rises with increasing update rate.

E. Effect of Number of Mobile Hosts

The system scalability is evaluated by increasing the number
of MHs from 50 to 400. Figure 7(a) illustrates that the access
latency of NC increases sharply, when there are more than
100 MHs; it also reveals that CC and GCC can effectively
improve system scalability. Since the access range of each
motion group is randomly assigned, the increasing number of
MHs does not bring in very impressive improvement in the
GCH ratio as anticipated. When two motion groups with no
or little common access range come close together, they may
not be able to take advantage of the cached data items from
one another; they actually degrade the system performance
in terms of power consumption per GCH, as depicted in
Figure 7(b). This is because they have to consume more
power not only to receive more broadcast requests from the
peers of another motion group, but also to discard unintended
messages.

188 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 25, NO. 1, JANUARY 2007

500 2000 4000 6000 8000 10000
10

20

30

40

50

60

70

Access Range (Data Items)

A
cc

es
s

L
at

en
cy

 (
m

s)
NC
CC
GCC

(a) Access Latency

500 2000 4000 6000 8000 10000
0

20

40

60

80

100

Access Range (Data Items)

S
er

ve
r

R
eq

u
es

t
R

at
io

 (
%

)

NC
CC
GCC

(b) Server Request Ratio

500 2000 4000 6000 8000 10000
0

10

20

30

40

50

60

70

Access Range (Data Items)

G
lo

b
al

 C
ac

h
e

H
it

 R
at

io
 (

%
)

CC
GCC

(c) GCH Ratio

500 2000 4000 6000 8000 10000
1.5

2

2.5

3

3.5

4

4.5
x 10

4

Access Range (Data Items)

P
o

w
er

 C
o

n
su

m
p

ti
o

n
/G

C
H

 (µ
W

.s
)

CC
GCC

(d) Power/GCH
Fig. 4. Effect of access range in access pattern on system performance.

F. Effect of Client Disconnection

Finally, we study the effect of client disconnection by
varying the disconnection probability, Pdisc, from 0 to 0.3, as
shown in Figure 8. The access latency of NC decreases with
increasing Pdisc, as depicted in Figure 8(a). This is because
the congestion of the downlink channel relieves, when there
are more disconnected MHs. However, the more disconnected
MHs, the lower GCH ratio the MHs adopting CC and GCC
experience, as shown in Figure 8(c). It is due to the fact that
there are fewer peers that an MH can enlist for help, when
Pdisc gets larger. When Pdisc is 0.15, the MHs adopting GCC
suffer from a higher server request ratio than those adopting
CC, as shown in Figure 8(b).

The MHs adopting CC consume less power per GCH
with increasing Pdisc, as shown in Figures 8(d). The power
consumption on receiving broadcast requests and discarding
unintended messages reduces, when there are more discon-
nected MHs in the system. However, the MHs with GCC
suffer from higher power consumption per GCH, as Pdisc

increases. This is because the MHs have to execute client
disconnection handling protocol that leads to higher power
consumption on receiving (transmitting) cache signatures from
(to) their TCG members, after they reconnect to the network.
Therefore, when the MHs disconnect from the network more

frequently, they not only suffer from a lower GCH ratio, but
they also have to consume more power per GCH.

VII. CONCLUSION

In this paper, we propose a GROup-based COoperative
CAching scheme, namely, GroCoca, for MHs in mobile
environment. In GroCoca, a collection of MHs that possess
similar mobility pattern and data affinity form a group, called
tightly-coupled group (TCG). A TCG discovery algorithm is
proposed to discover all TCGs dynamically in system. The
cache signature scheme is adopted not only to provide hints
for the MHs to make local decision on whether to search the
peers’ cache for their desired data items, but it also provides
information for the MHs to perform cooperative cache replace-
ment in their TCGs. We then compress the cache signature to
reduce the power consumption on transmitting cache signa-
tures between MHs. Within a TCG, two cooperative cache
management protocols are designed for the MHs to work
together to manage their cache space as an aggregate cache.
These two cooperative cache admission control and coopera-
tive cache replacement protocols are adopted to control data
replicas and improve data accessibility in a TCG respectively.
Experimental results depict that GroCoca further improves
system performance in comparison to standard cooperative

CHOW et al.: GROCOCA: GROUP-BASED PEER-TO-PEER COOPERATIVE CACHING IN MOBILE ENVIRONMENT 189

1 10 20 30 40 50
10

15

20

25

30

Motion Group Size (Number of MHs)

A
cc

es
s

L
at

en
cy

 (
m

s)

NC
CC
GCC

(a) Access Latency

1 10 20 30 40 50
0

20

40

60

80

100

Motion Group Size (Number of MHs)

S
er

ve
r

R
eq

u
es

t
R

at
io

 (
%

)

NC
CC
GCC

(b) Server Request Ratio

1 10 20 30 40 50
0

20

40

60

80

100

Motion Group Size (Number of MHs)

G
lo

b
al

 C
ac

h
e

H
it

 R
at

io
 (

%
)

CC
GCC

(c) GCH Ratio

1 10 20 30 40 50
0

2

4

6

8

10
x 10

4

Motion Group Size (Number of MHs)

P
o

w
er

 C
o

n
su

m
p

ti
o

n
/G

C
H

 (µ
W

.s
)

CC
GCC

(d) Power/GCH
Fig. 5. Effect of motion group size on system performance.

0 100 200 300 400 500
10

15

20

25

30

35

40

45

Data Item Update Rate

G
lo

b
al

 C
ac

h
e

H
it

 R
at

io
 (

%
)

CC
GCC

(a) GCH Ratio

0 100 200 300 400 500
1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2
x 10

4

Data Item Update Rate

P
o

w
er

 C
o

n
su

m
p

ti
o

n
/G

C
H

 (µ
W

.s
)

CC
GCC

(b) Power/GCH
Fig. 6. Effect of data update rate on system performance.

caching scheme, which already yields an improvement over
conventional caching scheme. However, the MHs adopting
GroCoca generally suffer from higher power consumption.

REFERENCES

[1] L. D. Fife and L. Gruenwald, “Research issues for data communication
in mobile ad-hoc network database systems,” ACM SIGMOD Record,
vol. 32, no. 2, pp. 42–47, June 2003.

[2] C.-Y. Chow, H. V. Leong, and A. T. S. Chan, “Cache signatures for
peer-to-peer cooperative caching in mobile environments,” in Proc. of

190 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 25, NO. 1, JANUARY 2007

50 100 150 200 250 300 350 400

100

200

300

400

500

600

700

800

Number of MHs

A
cc

es
s

L
at

en
cy

 (
m

s)

NC
CC
GCC

(a) Access Latency

50 100 150 200 250 300 350 400
1.5

2

2.5

3
x 10

4

Number of MHs

P
o

w
er

 C
o

n
su

m
p

ti
o

n
/G

C
H

 (µ
W

.s
)

CC
GCC

(b) Power/GCH
Fig. 7. Effect of number of MHs on system performance.

0 0.05 0.1 0.15 0.2 0.25 0.3
10

15

20

25

30

Disconnection Probability

A
cc

es
s

L
at

en
cy

 (
m

s)

NC
CC
GCC

(a) Access Latency

0 0.05 0.1 0.15 0.2 0.25 0.3
40

50

60

70

80

90

Disconnection Probability

S
er

ve
r

R
eq

u
es

t
R

at
io

 (
%

)

NC
CC
GCC

(b) Server Request Ratio

0 0.05 0.1 0.15 0.2 0.25 0.3
10

15

20

25

30

35

40

45

50

Disconnection Probability

G
lo

b
al

 C
ac

h
e

H
it

 R
at

io
 (

%
)

CC
GCC

(c) GCH Ratio

0 0.05 0.1 0.15 0.2 0.25 0.3
1

1.5

2

2.5

3

3.5

4
x 10

4

Disconnection Probability

P
o

w
er

 C
o

n
su

m
p

ti
o

n
/G

C
H

 (µ
W

.s
)

CC
GCC

(d) Power/GCH
Fig. 8. Effect of disconnection probability on system performance.

International Conference on Advanced Information Networking and
Applications, Mar. 2004, pp. 96–101.

[3] ——, “Group-based cooperative cache management for mobile clients
in a mobile environment,” in Proc. of ICPP, Aug. 2004, pp. 83–90.

[4] ——, “Peer-to-peer cooperative caching in a hybrid data delivery envi-
ronment,” in Proc. of International Symposium on Parallel Architectures,

Algorithms, and Networks, May 2004, pp. 79–84.

[5] ——, “Utilizing the cache space of low-activity clients in a mobile
cooperative caching environment,” International Journal of Wireless and
Mobile Computing, to appear.

[6] W. H. O. Lau, M. Kumar, and S. Venkatesh, “A cooperative cache
architecture in support of caching multimedia objects in MANETs,”

CHOW et al.: GROCOCA: GROUP-BASED PEER-TO-PEER COOPERATIVE CACHING IN MOBILE ENVIRONMENT 191

in Proc. of MobiCom Workshop on Wireless Mobile Multimedia, Sep.
2002, pp. 56–63.

[7] M. Papadopouli and H. Schulzrinne, “Effects of power conservation,
wireless coverage and cooperation on data dissemination among mobile
devices,” in Proc. of MobiHoc, Oct. 2001, pp. 117–127.

[8] F. Sailhan and V. Issarny, “Cooperative caching in ad hoc networks,”
in Proc. of International Conference on Mobile Data Management, Jan.
2003, pp. 13–28.

[9] H. Shen, S. K. Das, M. Kumar, and Z. Wang, “Cooperative caching with
optimal radius in hybrid wireless network,” in Proc. of International
IFIP-TC6 Networking Conference, May 2004, pp. 841–853.

[10] T. Hara, “Effective replica allocation in ad hoc networks for improving
data accessibility,” in Proc. of INFOCOM, Apr. 2001, pp. 1568–1576.

[11] ——, “Cooperative caching by mobile clients in push-based information
systems,” in Proc. of CIKM, Nov. 2002, pp. 186–193.

[12] ——, “Replica allocation in ad hoc networks with periodic data update,”
in Proc. of Interntional Conference on Mobile Data Management, Jan.
2002, pp. 79–86.

[13] H. Hayashi, T. Hara, and S. Nishio, “Cache invalidation for updated
data in ad hoc networks,” in Proc. of International Conference on
Cooperative Information Systems, Nov. 2003, pp. 516–535.

[14] S. Lim, W.-C. Lee, G. Cao, and C. R. Das, “A novel caching scheme
for internet based mobile ad hoc networks,” in Proc. of ICCCN, Oct.
2003, pp. 38–43.

[15] A. Ephremides, J. Wieselthier, and D. J. Baker, “A design concept
for reliable mobile radio networks with frequency hopping signaling,”
Proceedings of IEEE, vol. 75, no. 1, pp. 56–73, Jan. 1987.

[16] A. K. Parekh, “Selecting routers in ad-hoc wireless network,” in Proc. of
International Telecommunications Symposium, Aug. 1994, pp. 420–424.

[17] B. An and S. Papavassiliou, “A mobility-based clustering approach
to support mobility management and multicast routing in mobile ad-
hoc wireless networks,” International Journal of Network Management,
vol. 11, no. 6, pp. 387–395, Nov. 2001.

[18] P. Basu, N. Khan, and T. D. Little, “A mobility based metric for
clustering in mobile ad hoc networks,” in Proc. of ICDCS Workshop
on Wireless Networks and Mobile Computing, Apr. 2001, pp. 413–418.

[19] J.-L. Huang, M.-S. Chen, and W.-C. Peng, “Exploring group mobility
for replica data allocation in a mobile environment,” in Proc. of CIKM,
Nov. 2003, pp. 161–168.

[20] G. H. K. Lam, H. V. Leong, and S. C. F. Chan, “GBL: Group-based
location updating in mobile environment,” in Proc. of DASFAA, Mar.
2004, pp. 762–774.

[21] K. H. Wang and B. Li, “Efficient and guaranteed service coverage in
partitionable mobile ad-hoc networks,” in Proc. of INFOCOM, June
2002, pp. 1089–1098.

[22] Z. J. Haas and M. R. Pearlman, “The performance of query control
schemes for the zone routing protocol,” IEEE/ACM Trans. on Network-
ing, vol. 9, no. 4, pp. 427–438, Aug. 2001.

[23] L. Li, J. Y. Halpern, P. Bahl, Y.-M. Wang, and R. Wattenhofer, “Analysis
of a cone-based distributed topology control algorithm for wireless
multi-hop networks,” in Proc. of ACM PODC, Aug. 2001, pp. 264–273.

[24] D. E. Knuth, The Art of Computer Programming, Volume 2 (3rd ed.):
Seminumerical Algorithms. Addison-Wesley, 1997.

[25] B. Y. Chan, A. Si, and H. V. Leong, “A framework for cache man-
agement for mobile databases: Design and evaluation,” Journal of
Distributed and Parallel Databases, vol. 10, no. 1, pp. 23–57, July 2001.

[26] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrievel.
Addison-Wesley, 1999.

[27] K. Birman, A. Schiper, and P. Stephenson, “Lightweight causal and
atomic group multicast,” ACM Trans. on Computer Systems, vol. 9,
no. 3, pp. 272–314, Aug. 1991.

[28] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache: A
scalable wide-area web cache sharing protocol,” IEEE/ACM Trans. on
Networking, vol. 8, no. 3, pp. 281–293, June 2000.

[29] L. M. Feeney and M. Nilsson, “Investigating the energy consumption
of a wireless network interface in an ad hoc networking environment,”
in Proc. of INFOCOM, Apr. 2001, pp. 1548–1557.

[30] X. Hong, M. Gerla, G. Pei, and C.-C. Chiang, “A group mobility model
for ad hoc wireless networks,” in Proc. of International Workshop on
Modeling, Analysis and Simulation of Wireless and Mobile Systems,
Aug. 1999, pp. 53–60.

[31] J. Broch, D. A. Maltz, D. B. Johnson, Y.-C. Hu, and J. Jetcheva, “A
performance comparison of multi-hop wireless ad hoc network routing
protocols,” in Proc. of MobiCom, Oct. 1998, pp. 85–97.

Chi-Yin Chow received his B.A. (Hons.) and
M.Phil. degrees in computer science from the Hong
Kong Polytechnic University in 2002 and 2005,
respectively. He is currently a Ph.D. student in the
Department of Computer Science and Engineering,
University of Minnesota, Minneapolis, MN. His re-
search interests include location privacy, query pro-
cessing in mobile computing, cooperative caching
and mobile data management. He is a student mem-
ber of the ACM, ACM SIGMOD and IEEE.

Hong Va Leong received his Ph.D. from the Univer-
sity of California at Santa Barbara, and is currently
an associate professor at the Hong Kong Polytechnic
University. He is the program co-chairs of a number
of conferences and has also served on the organizing
committees and program committees of numerous
conferences. He is a reviewer for IEEE Transactions
on Parallel and Distributed Systems, on Knowledge
and Data Engineering, on Computers, on Mobile
Computing, ACM Transactions on Computer Sys-
tems, Information Systems, Theoretical Computer

Science, and other journals. He has published over a hundred refereed research
papers. His research interests are in mobile computing, internet computing,
distributed systems, distributed databases, and digital libraries. He is a member
of the IEEE Computer Society and Communications Society and the ACM.

Alvin T. S. Chan is currently an associate profes-
sor at the Hong Kong Polytechnic University. He
graduated from the University of New South Wales
with a Ph.D. degree in 1995 and was subsequently
employed as a Research Scientist by the CSIRO,
Australia. From 1997 to 1998, he was employed by
the Center for Wireless Communications, National
University of Singapore as a Program Manager. Dr.
Chan is one of the founding members of a university
spin-off company, Information Access Technology
Limited. He is an active consultant and has been

providing consultancy services to both local and overseas companies. His
research interests include mobile computing, context-aware computing and
smart card applications. He is a member of the IEEE and ACM.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 1.8)
 /CalRGBProfile ()
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.50000
 0.50000
 0.50000
 0.50000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.12500
 0.12500
 0.12500
 0.12500
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e002c00200075006d002000650069006e0065006e00200042006500720069006300680074002000fc00620065007200200064006900650020005000440046002f0058002d00310061002d004b006f006d007000610074006900620069006c0069007400e4007400200065007200680061006c00740065006e00200075006e00640020005000440046002d0044006f006b0075006d0065006e007400650020006e00750072002000640061006e006e0020007a0075002000650072007300740065006c006c0065006e002c002000770065006e006e0020007300690065002000fc0062006500720020006400690065007300650020004b006f006d007000610074006900620069006c0069007400e400740020007600650072006600fc00670065006e002e0020005000440046002f00580020006900730074002000650069006e0065002000490053004f002d004e006f0072006d0020007a0075006d002000410075007300740061007500730063006800200076006f006e0020006400690067006900740061006c0065006e00200044007200750063006b0076006f0072006c006100670065006e002e0020005700650069007400650072006500200049006e0066006f0072006d006100740069006f006e0065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c0065006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002000660069006e00640065006e002000530069006500200069006d0020004100630072006f006200610074002d00480061006e00640062007500630068002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200034002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064002700e900760061006c0075006500720020006c006100200063006f006e0066006f0072006d0069007400e9002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d0031006100200065007400200064006500200063006f006e0064006900740069006f006e006e006500720020006c0061002000700072006f00640075006300740069006f006e00200064006500200064006f00630075006d0065006e007400730020005000440046002000e000200063006500740074006500200063006f006e0066006f0072006d0069007400e9002e0020005000440046002f0058002000650073007400200075006e00650020006e006f0072006d0065002000490053004f00200064002700e9006300680061006e0067006500200064006500200063006f006e00740065006e00750020006700720061007000680069007100750065002e00200050006f0075007200200065006e0020007300610076006f0069007200200070006c0075007300200073007500720020006c006100200063007200e9006100740069006f006e00200064006500200064006f00630075006d0065006e00740073002000500044004600200063006f006e0066006f0072006d00650073002000e00020005000440046002f0058002d00310061002c00200063006f006e00730075006c00740065007a0020006c00650020004700750069006400650020006400650020006c0027007500740069006c0069007300610074006500750072002000640027004100630072006f006200610074002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e00200034002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF005000440046002f0058002d0031006100206e9662e0306e30ec30dd30fc30c87528304a30883073658766f84f5c62107528306b4f7f75283057307e30593002005000440046002f00580020306f30b030e930d530a330c330af002030b330f330c630f330c4590963db306b304a3051308b002000490053004f00206a196e96306730593002005000440046002f0058002d0031006100206e9662e0306e658766f84f5c6210306b306430443066306f0020004100630072006f006200610074002030e630fc30b630ac30a430c9309253c2716730573066304f30603055304430024f5c62103057305f00200050004400460020306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200034002e003000204ee5964d30678868793a3067304d307e30593002>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f007300200050004400460020006500200065006d0069007400690072002000720065006c0061007400f300720069006f007300200073006f00620072006500200063006f006e0066006f0072006d0069006400610064006500200063006f006d0020006f0020005000440046002f0058002d00310061002e0020005000440046002f0058002000e900200075006d0020007000610064007200e3006f002000640061002000490053004f00200070006100720061002000740072006f0063006100200064006500200063006f006e0074006500fa0064006f00200067007200e1006600690063006f002e002000500061007200610020006f00620074006500720020006d00610069007300200069006e0066006f0072006d006100e700f50065007300200073006f00620072006500200063006f006d006f00200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200065006d00200063006f006e0066006f0072006d0069006400610064006500200063006f006d0020006f0020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006f0020004700750069006100200064006f002000550073007500e100720069006f00200064006f0020004100630072006f006200610074002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200034002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c00200061007400200072006100700070006f007200740065007200650020006f006d0020006f0076006500720068006f006c00640065006c007300650020006100660020005000440046002f0058002d003100610020006f00670020006b0075006e002000700072006f0064007500630065007200650020005000440046002d0064006f006b0075006d0065006e007400650072002c002000680076006900730020006400650020006f0076006500720068006f006c0064006500720020007300740061006e00640061007200640065006e002e0020005000440046002f005800200065007200200065006e002000490053004f002d007300740061006e0064006100720064002000740069006c00200075006400760065006b0073006c0069006e0067002000610066002000670072006100660069006b0069006e00640068006f006c0064002e00200059006400650072006c006900670065007200650020006f0070006c00790073006e0069006e0067006500720020006f006d0020006f007000720065007400740065006c007300650020006100660020005000440046002d0064006f006b0075006d0065006e007400650072002c00200064006500720020006f0076006500720068006f006c0064006500720020005000440046002f0058002d00310061002c002000660069006e00640065007200200064007500200069002000620072007500670065007200760065006a006c00650064006e0069006e00670065006e002000740069006c0020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200034002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d00200064006500200063006f006d007000610074006900620069006c006900740065006900740020006d006500740020005000440046002f0058002d0031006100200074006500200063006f006e00740072006f006c006500720065006e00200065006e00200061006c006c00650065006e0020005000440046002d0064006f00630075006d0065006e00740065006e002000740065002000700072006f006400750063006500720065006e002000640069006500200063006f006d007000610074006900620065006c0020007a0069006a006e002e0020005000440046002f0058002000690073002000650065006e002000490053004f002d007300740061006e0064006100610072006400200076006f006f00720020006800650074002000750069007400770069007300730065006c0065006e002000760061006e002000670072006100660069007300630068006500200069006e0068006f00750064002e002000520061006100640070006c0065006500670020006400650020006700650062007200750069006b00650072007300680061006e0064006c0065006900640069006e0067002000760061006e0020004100630072006f00620061007400200076006f006f00720020006d00650065007200200069006e0066006f0072006d00610074006900650020006f00760065007200200068006500740020006d0061006b0065006e002000760061006e0020005000440046002d0064006f00630075006d0065006e00740065006e002000640069006500200063006f006d007000610074006900620065006c0020007a0069006a006e0020006d006500740020005000440046002f0058002d00310061002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200034002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e00650073002000700061007200610020007200650061006c0069007a0061007200200075006e00200069006e0066006f0072006d006500200073006f0062007200650020006c006100200063006f006d007000610074006900620069006c006900640061006400200063006f006e0020005000440046002f0058002d0031006100200079002000670065006e006500720061007200200064006f00630075006d0065006e0074006f007300200050004400460020007300f3006c006f00200073006900200073006f006e00200063006f006d00700061007400690062006c00650073002e0020005000440046002f005800200065007300200075006e002000650073007400e1006e006400610072002000490053004f0020007000610072006100200065006c00200069006e00740065007200630061006d00620069006f00200064006500200063006f006e00740065006e00690064006f00200067007200e1006600690063006f002e002000500061007200610020006f006200740065006e006500720020006d00e1007300200069006e0066006f0072006d00610063006900f3006e00200061006300650072006300610020006400650020006300f3006d006f00200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400690062006c0065007300200063006f006e0020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006c006100200047007500ed0061002000640065006c0020007500730075006100720069006f0020006400650020004100630072006f006200610074002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200034002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006d00e400e4007200690074007400e400e40020005000440046002f0058002d00310061002d00790068007400650065006e0073006f0070006900760075007500640065006e0020006a00610020006c0075006f00640061002000730065006e0020006d0075006b006100690073006900610020005000440046002d0061007300690061006b00690072006a006f006a0061002e0020005000440046002f00580020006f006e002000490053004f002d007300740061006e006400610072006400690073006f006900740075002000670072006100610066006900730065006e002000730069007300e4006c006c00f6006e0020006500730069007400790073006d0075006f0074006f002e0020004c0069007300e40074006900650074006f006a00610020005000440046002f0058002d00310061002d00790068007400650065006e0073006f00700069007600690065006e0020005000440046002d0061007300690061006b00690072006a006f006a0065006e0020006c0075006f006e006e00690073007400610020006f006e002000410064006f006200650020004100630072006f0062006100740020002d006b00e400790074007400f6006f0070007000610061007300730061002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200034002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000760065007200690066006900630061007200650020006c006100200063006f006e0066006f0072006d0069007400e0002000610020005000440046002f0058002d0031006100200065002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200073006f006c006f00200069006e0020006300610073006f00200064006900200063006f006e0066006f0072006d0069007400e0002e0020005000440046002f0058002000e800200075006e006f0020007300740061006e0064006100720064002000490053004f00200070006500720020006c006f0020007300630061006d00620069006f00200064006900200063006f006e00740065006e00750074006f0020006700720061006600690063006f002e002000500065007200200075006c0074006500720069006f0072006900200069006e0066006f0072006d0061007a0069006f006e0069002000730075006c006c006100200063007200650061007a0069006f006e006500200064006900200064006f00630075006d0065006e00740069002000500044004600200063006f006e0066006f0072006d0069002000610020005000440046002f0058002d00310061002c00200063006f006e00730075006c00740061007200650020006c0061002000470075006900640061002000640065006c006c0027007500740065006e007400650020006400690020004100630072006f006200610074002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200034002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e500200072006100700070006f007200740065007200650020006f006d0020005000440046002f0058002d00310061002d006b006f006d007000610074006900620069006c00690074006500740020006f00670020006c0061006700650020005000440046002d0064006f006b0075006d0065006e00740065007200200062006100720065002000680076006900730020006b006f006d007000610074006900620065006c002e0020005000440046002f005800200065007200200065006e002000490053004f002d007300740061006e006400610072006400200066006f00720020006700720061006600690073006b00200069006e006e0068006f006c006400730075007400760065006b0073006c0069006e0067002e00200048007600690073002000640075002000760069006c0020006800610020006d0065007200200069006e0066006f0072006d00610073006a006f006e0020006f006d002000680076006f007200640061006e0020006400750020006f007000700072006500740074006500720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006b0061006e002000640075002000730065002000690020006200720075006b00650072006800e5006e00640062006f006b0065006e00200066006f00720020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200034002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e006400200065006e00640061007300740020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200072006100700070006f007200740065007200610020006f006d0020005000440046002f0058002d00310061002d007300740061006e00640061007200640020006f0063006800200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d0020006600f6006c006a00650072002000640065006e006e00610020007300740061006e0064006100720064002e0020005000440046002f0058002000e4007200200065006e002000490053004f002d007300740061006e00640061007200640020006600f6007200200075007400620079007400650020006100760020006700720061006600690073006b007400200069006e006e0065006800e5006c006c002e0020004d0065007200200069006e0066006f0072006d006100740069006f006e0020006f006d002000680075007200200064007500200073006b00610070006100720020005000440046002d0064006f006b0075006d0065006e007400200073006f006d0020006600f6006c006a006500720020005000440046002f0058002d0031006100200068006900740074006100720020006400750020006900200061006e007600e4006e00640061007200680061006e00640062006f006b0065006e0020006600f600720020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200034002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF004300610064006d007500730020004d00650064006900610057006f0072006b0073002000730065007400740069006e00670073002000760065007200730069006f006e00200043004d0057005f0041006300720036005f00560032002e002000200041006c006c002000730065007400740069006e0067007300200070006f00730074006500640020006f006e0020007700770077002e006300610064006d00750073006d00650064006900610077006f0072006b0073002e0063006f006d002e00200020>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [576.000 783.000]
>> setpagedevice

