
A Distributed and Efficient Flooding
Scheme Using 1-Hop Information

in Mobile Ad Hoc Networks
Hai Liu, Xiaohua Jia, Senior Member, IEEE, Peng-Jun Wan, Xinxin Liu, and Frances F. Yao

Abstract—Flooding is one of the most fundamental operations in mobile ad hoc networks. Traditional implementation of flooding suffers

from the problems of excessive redundancy of messages, resource contention, and signal collision. This causes high protocol overhead

and interference with the existing traffic in the networks. Some efficient flooding algorithms were proposed to avoid these problems.

However, these algorithms either perform poorly in reducing redundant transmissions or require each node to maintain 2-hop (or more)

neighbors information. In the paper, we study the sufficient and necessary condition of 100 percent deliverability for flooding schemes

that are based on only 1-hop neighbors information. We further propose an efficient flooding algorithm that achieves the local optimality in

two senses: 1) The number of forwarding nodes in each step is minimal and 2) the time complexity for computing forwarding nodes is the

lowest, which is OðnlognÞ, where n is the number of neighbors of a node. Extensive simulations have been conducted and simulation

results have shown the excellent performance of our algorithm.

Index Terms—Flooding, broadcasting, mobile ad hoc networks, wireless networks.

Ç

1 INTRODUCTIONS

FLOODING is one of the most fundamental operations in
mobile ad hoc networks (MANETs). Most of the major

routing protocols, such as DSR [1], AODV [2], ZRP [3], LAR
[4], etc., rely on flooding for disseminating route discovery,
route maintenance, or topology update packets. Flooding is
a very frequently invoked utility function in MANETs.
Therefore, an efficient implementation of flooding scheme is
crucial in reducing the overhead of routing protocols and
improving the throughput of networks.

Pure flooding, or blind flooding, was first discussed in [5],
[6], where every node in the network retransmits the flooding
message when it is its first time to receive it. This simple
scheme guarantees that a flooding message can reach all
nodes if there is no collision and the network is connected.
However, it generates an excessive amount of redundant
network traffic because all nodes in the network transmit the
flooding message. This will consume a lot of the energy
resources of mobile nodes and cause congestion of the
network. Furthermore, due to the broadcast nature of radio
transmissions, there is a very high probability of signal
collisions when all nodes flood the message in the network at
the same time, which would cause more retransmissions or
some nodes failing to receive the message. This is the so-
called broadcast storm problem [7]. Sinha et al. claimed that

“in moderately sparse graphs, the expected number of nodes
in the network that will receive a broadcast message was
shown to be as low as 80 percent” in [8].

To solve the broadcast storm problem, several schemes
have been proposed to reduce the redundancy in flooding
operations. The most notable works are [9], [10], and [11].
However, these algorithms either perform poorly in
reducing redundant transmissions or require each node to
maintain 2-hop neighbor information. Maintaining 2-hop
neighbor information for each node incurs extra overhead
of the system and the information can hardly be accurate
when the mobility of the system is high. In the paper, we
propose an efficient flooding algorithm that is only based
on 1-hop neighbors information, which makes the protocol
easy to be implement and light weight in overhead. Our
proposed algorithm also achieves local optimality in two
senses: 1) The number of forwarding nodes is minimal and
2) the time complexity is the lowest. The time complexity
for computing the forwarding nodes in each step is
OðnlognÞ, which is the lower bound (n is the number of
neighbors of a node).

The efficient flooding scheme is different from the
broadcast mechanisms discussed in [12], [13]. The broadcast
mechanism is used for transmission of a large amount data
or stream media data, which requires a broadcast routing to
find an efficient route before the actual transmission of data
so that data can be transmitted efficiently along the
prefound route. In contrast, flooding is usually used for
dissemination of control packets, which is a one-off
operation. It does not need routing before hand.

2 RELATED WORK

The existing efficient flooding schemes can be classified into
three categories based on the information each node keeps:

658 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 5, MAY 2007

. H. Lu, X. Jia, P.-J. Wan, and F.F. Yao are with the Department of
Computer Science, City University of Hong Kong, Kowloon, Hong Kong.
E-mail: {liuhai, jia, pwan}@cs.cityu.edu.hk, csfyao@cityu.edu.hk.

. X. Liu is with the School of Computer Science, Wuhan University, China.
E-mail: whulxx@cityu.edu.hk.

Manuscript received 18 Nov. 2005; revised 7 Apr. 2006; accepted 5 Sept.
2006; published online 9 Jan. 2007.
Recommended for acceptance by J. Hou.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-0481-1105.
Digital Object Identifier no. 10.1109/TPDS.2007.1023.

1045-9219/07/$25.00 � 2007 IEEE Published by the IEEE Computer Society

1) no need of neighbor information, 2) 1-hop neighbor
information, and 3) 2-hop or more neighbor information.

Schemes in the first category do not need information on
neighbors. A pure flooding scheme is a typical example in
this category. The authors of [7], [14] showed the serious
problem that pure flooding causes through analysis and
simulations. A probabilistic-based scheme was further
proposed to reduce redundant rebroadcasts and differenti-
ate timing of rebroadcasts to avoid collisions. Upon
receiving a flooding message for the first time, a node will
forward it with probability P . Clearly, when P ¼ 1, this
scheme is equivalent to pure flooding. The probabilistic
scheme includes counter-based, distance-based, location-
based, and cluster-based flooding schemes. Simulation
results showed different levels of improvement over pure
flooding. This probabilistic scheme was further investigated
in [15]. It showed that the success rate curve for probabil-
istic flooding tends to become linear for the network with
low average node degree and resembles a bell curve for the
network with high average node degree. In these schemes, a
nonredundant transmission might be dropped out, without
being forwarded further. This will cause some nodes in the
network to fail to receive the flooding message (i.e., these
nodes are not reached by the flooding). Besides this
deliverability problem, another major concern of these
techniques is the difficulties in setting the right threshold
value (e.g., retransmission probability, etc.) in various
network situations [16].

Schemes in the second category assume that each node
keeps information of 1-hop neighbors. One-hop neighbor
information can be obtained by exchanging the HELLO
message in MAC layer protocols. A major issue in the
schemes that use 1-hop or 2-hop information is the selection
of a subset of neighbors for forwarding the flooding
message. There are two strategies for choosing forwarding
nodes: sender-based, where each sender nominates a subset
of its neighbors to be the next hop forwarding nodes, and
receiver-based, where each receiver of a flooding message
makes its own decision on whether it should forward the
message. Several flooding schemes that use 1-hop informa-
tion and guarantee 100 percent deliverability were dis-
cussed in [10]. This work also analyzed the performance of
the two strategies for choosing forwarding nodes. To avoid
transmission collision, it also proposed a simple transmis-
sion order for forwarding nodes: A farther neighbor waits
for a shorter time to forward a message after it receives it.
The flooding with self-pruning (FSP) scheme proposed in
[17] is a receiver-based scheme that uses 1-hop information.
In this scheme, a sender forwards a flooding message by
attaching all of its 1-hop neighbors to the message. A
receiver compares its own 1-hop neighbors with the node
list in the message. If all of its 1-hop neighbors are already
included in the list, it will not forward the message;
otherwise, it forwards the message as its sender. The work
in [18] compared the performance of several flooding
schemes. It showed that the improvement of FSP is very
limited in most network conditions. Another notable work
of efficient flooding that uses 1-hop neighbor information is
Edge Forwarding [9]. For each node, its transmission
coverage is partitioned into six equal-size sectors. A node,

upon receiving a flooding message, makes its own decision
whether it should forward the message based on the
availability of other forwarding nodes in the overlapped
areas. Taking an example in Fig. 1, node a, whose coverage
disk is partitioned into six sectors, floods a message that is
received by its neighbor b. Node b does not need to forward
the message if and only if 1) there exist nodes in the small
enclosed areas A, B and C, and 2) any nodes in areas D and
E can be reached by the nodes in A and C, respectively.
This is because the coverage disk of b can be covered by
either a or the nodes in areas A, B, and C. By doing so, it
reduces the forwarding nodes in flooding.

Most existing flooding schemes that use neighborhood
knowledge are based on information of 2-hop neighbors. To
obtain the information about 2-hop neighbors, one solution
is that each node attaches the list of its own neighbor
information to the HELLO message for exchange. The
schemes proposed in [17], [19], [20], [21] are sender-based,
while the schemes in [11], [22], [23], [24], [25], [26] are
receiver-based. In the schemes that use 2-hop neighbor
information, each node knows the network topology
(connectivity) of 2-hop neighbors. To forward messages
efficiently, the task for each node is to select the minimal
subset of its 1-hop neighbors that can reach all of its 2-hop
neighbors. A multipoint relaying method was proposed in
[19], [20] which tries to find the minimal number of
forwarding nodes among the neighbors. Finding the
minimal number of forwarding nodes was proved to be
NP-complete [20]. Authors proposed a heuristic algorithm
that selects forwarding nodes at each step such that the
number of newly covered neighbors is maximized. The
approximation ratio of this heuristic algorithm was proved
to be at most logn, where n is the number of 2-hop
neighbors. Notice that this performance ratio is only for
each step (i.e., for 2-hop neighbors), not for the entire
network. Another important technique is the use of
connected dominating set (CDS) [11], [27]. A dominating set
(DS) is a subset of nodes such that every node in the graph
is either in the set or is adjacent to a node in the set. A CDS
is a connected DS. Any routing in MANETs can be done
efficiently via CDS [11]. Although finding minimal CDS
(MCDS) is NP-hard even in unit disk graph (UDG) [28],
some distributed algorithms for computing MCDS with
approximation ratio have been proposed in [27], [29].
However, maintaining a CDS in the network is costly,
which is not suitable for flooding operations in highly
mobile situations. Generally, the schemes that use 2-hop
neighbor information incur high protocol overhead in the
network with high mobility and high node density and they

LIU ET AL.: A DISTRIBUTED AND EFFICIENT FLOODING SCHEME USING 1-HOP INFORMATION IN MOBILE AD HOC NETWORKS 659

Fig. 1. Example of edge forwarding.

cannot be easily fitted into a network that does not support

2-hop neighbor information exchange.
Our flooding scheme requires each node to keep only

1-hop neighbor information, including their IDs and their

geographic locations. The location information of each

node can be obtained via GPS or some distributed

localization methods [30] when GPS service is not

available. We prove that our flooding scheme not only

guarantees 100 percent deliverability, but also achieves

local optimality in terms of the number of forwarding

nodes and computational complexity. In this paper, we

will not discuss the scheduling of transmissions of

forwarding nodes. Interested readers can refer to the

related work in [31], [32].
The rest of the paper is organized as follows: We propose

an efficient flooding scheme in Section 3. Section 4 discusses

the handling of mobility. In Section 5, we discuss the

simulation of our flooding scheme by using the ns-2 test

bed and compare its performance with other flooding

algorithms. Finally, we conclude the work in Section 6.

3 EFFICIENT FLOODING SCHEME BASED ON 1-HOP

INFORMATION

3.1 System Model and Overview of Method

We assume all nodes in the network have the same

transmission range R. Thus, the network can be represented

as a unit disk graph GðV ;EÞ. We assume the network is

connected. Each node v in V has a unique ID, denoted by

idðvÞ. Let NðvÞ denote the set of neighbor nodes of v. That is,

nodes in NðvÞ are within the transmission range of v and

can receive signals transmitted by v. Node v needs to know

the information of its direct neighbors, including their IDs

and their geographic locations. The 1-hop neighbor in-

formation can be easily obtained from the HELLO messages

periodically broadcast by each node. For the rest of the

paper, we simply use neighbors to mean 1-hop neighbors.
The basic idea of our flooding scheme is as follows: When a

node (called the source) has a message to be flooded out, it

computes a subset of its neighbors as forwarding nodes and

attaches the list of the forwarding nodes to the message. Then,

it transmits (broadcasts) the message out. After that, every

node in the network does the same as follows: Upon receiving

a flooding message, if the message has been received before, it

is discarded; otherwise, the message is delivered to the

application layer, and the receiver checks if itself is in the

forwarding list. If yes, it computes the next hop forwarding

nodes among its neighbors and transmits the message out in

the same way as the source. The message will eventually

reach all the nodes.
We discuss our method in three parts: 1) forwarding

node selection, where a node selects a subset of its 1-hop

neighbors to forward the flooding message, 2) forwarding

node optimization, which further reduces the size of

forwarding nodes by removing the nodes that are already

covered, and 3) mobility handling, where each node

incrementally updates its forwarding set in response to

topology changes.

3.2 Theoretical Foundations of Minimal Forwarding
Nodes

We aim at designing a 1-hop flooding scheme. Flooding

schemes in [9], [10], and [17] are all 1-hop flooding schemes

that guarantee 100 percent deliverability of flooding

messages. To achieve the optimal efficiency, we need to

study the sufficient and necessary condition of 100 percent

deliverability for flooding schemes that are based on 1-hop

information. We introduce the following definitions:

Definition 1 (Coverage disk of a node). The coverage disk of

node s, denoted by dðsÞ, is a disk that is centered at s and

whose radius is the transmission range of s.

Since all neighbors of node s should be covered by dðsÞ,
in this paper, we call “s covers u” or “u is covered by s”

when u is a neighbor of s.

Definition 2 (Coverage area of a node-set). The coverage area

of a set of nodes A, denoted by CðAÞ, is the union of coverage

disks of nodes in A.

We simply state “the area is covered by A” if the area is

within CðAÞ.
Definition 3 (Neighbor’s coverage area). The neighbor’s

coverage area of node s is the union of coverage disks of all s’s

neighbors plus s itself, i.e., CðNðsÞ [fsgÞ.
Definition 4 (Boundary of neighbor’s area). The boundary of

neighbor’s area of node s is the boundary of the area of

CðNðsÞ [fsgÞ.

For simplicity, the neighbor’s coverage area is called the

neighbor’s area and the boundary of neighbor’s area called the

neighbor’s boundary for the rest of the paper. For example, in

Fig. 2, the set of neighbors of s NðsÞ ¼ fu; v; wg. Thus, the

neighbor’s area of s is Cðfs; u; v; wgÞ, i.e., the whole shadow

area. The neighbor’s boundary of s is the outside boundary of

this shadow area.

Definition 5 (Forwarding set). The set of forwarding nodes of

s, denoted by F ðsÞ, is a subset of s’s neighbors that are selected

for forwarding the flooding message (F ðsÞ includes s itself).

Definition 6 (Minimum forwarding set FminðsÞ). The

minimal forwarding set of s, denoted by FminðsÞ, is the

smallest F ðsÞ that covers the neighbor’s area of s.

Definition 7 (100 percent deliverability). A flooding scheme

is said to be 100 percent deliverable if and only if, FOR ANY

NETWORK TOPOLOGY, all the nodes in the network should

660 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 5, MAY 2007

Fig. 2. Neighbor’s area of node s.

be able to receive flooding messages, letting every node execute

the flooding scheme.

Theorem 1. A 1-hop flooding scheme achieves 100 percent

deliverability if and only if, for each node s, the neighbor’s area

of s is covered by F ðsÞ.
Proof. Sufficient condition ð Þ. Suppose, for each node s,

the neighbor’s area of s is covered by F ðsÞ. We need to

prove that the flooding scheme achieves 100 percent

deliverability.
For each transmission node s, since all 2-hop

neighbors of s are within the neighbor’s area of s, they
are sure to be covered by nodes in F ðsÞ. Thus, all nodes
that are 2-hop away from the source s are sure to be
covered by F ðsÞ. Notice that s’s 3-hop neighbors are
neighbors of s’s 2-hop neighbors. There must exist some
transmission nodes in F ðsÞ such that s’s 3-hop neighbors
are 2-hop neighbors of these transmission nodes. Thus,
s’s 3-hop neighbors are sure to be covered by forwarding
sets of these transmission nodes. Nodes that are 4-hop
and more from the source can be proved in a similar
way. Therefore, the flooding message will be forwarded
hop by hop throughout the whole network.

Necessary condition ð!Þ. Suppose a flooding schemeA
achieves 100 percent deliverability. Let FAðsÞ denote the
set of forwarding nodes of s that is computed by A. We
need to prove that, for each node s, the neighbor’s area of s
is covered by FAðsÞ. We prove it by contradiction.

Suppose scheme A does not guarantee that, for each
node, the neighbor’s area of the node is covered by FAðsÞ.
There must exist node s in some network and the
neighbor’s area of s is not fully covered by FAðsÞ. Since
FminðsÞ is the smallest forwarding set that covers the
neighbor’s area of s, we have FminðsÞ 6� FAðsÞ. In other
words, there exists node u 2 FminðsÞ and u =2 FAðsÞ.
Notice that the coverage disks of all nodes in FminðsÞ
are sure to contribute to the neighbor’s boundary of s (if
not, it can be removed from FminðsÞ). We construct a new
topology based on the current network as follows. We
only keep node s and its neighbors and remove all other
nodes from the network. Then, a new node, say v, is
added and placed on the boundary that is contributed
only by u (the dashed line in Fig. 3 is the neighbor’s
boundary of s). From s’s view, everything remains the
same since s has information of only 1-hop neighbors. So,
FAðsÞ remains the same on this new topology. Notice that
u is the only neighbor of s that can reach v and u =2 FAðsÞ.
Thus, v cannot be covered by any node in FAðsÞ.

On the other hand, since there are no other nodes
outside the coverage disk of s, node v can neither be
covered by forwarding set of other nodes. That is, node v
will eventually miss the flooding message. It contradicts
the assumption that flooding scheme A achieves
100 percent deliverability. Theorem 1 is proved. tu

Theorem 1 tells us that the sufficient and necessary
condition of 100 percent deliverability for any 1-hop
flooding scheme is that, for each node s, the neighbor’s
area of s should be covered by F ðsÞ. Otherwise, some nodes
in the network may miss the flooding message. Theorem 1
gives the theoretical guideline for computing F ðsÞ in our
flooding scheme.

3.3 Computing Minimal Forwarding Nodes

Suppose s is a node that receives a flooding message for the
first time and s appears in the forwarding list attached to
the message (s could be the original source of the message).
s is designated as a forwarding node and it computes the
next hop forwarding nodes from its neighbors. Since s only
has 1-hop neighbor information, it does not know who are
the 2-hop neighbors. To achieve 100 percent deliverability,
according to Theorem 1, F ðsÞ must cover the entire
neighbor’s area of s. Our task can be formally defined as:

Minimize F ðsÞ such that
[

v2F ðsÞ
dðvÞ ¼

[

u2NðsÞ
dðuÞ:

Taking the example in Fig. 2 again, s has three neighbors:
u, v and w. Since dðuÞ [dðvÞ [dðsÞ makes up the neighbor’s
area of s, it is enough to cover all of s’s 2-hop neighbors if
only u and v forward the message. In other words,
dðwÞ � dðuÞ [dðvÞ [dðsÞ, there is no need for w to forward
the message.

To minimize F ðsÞ, every node in F ðsÞ must contribute to
the neighbor’s boundary of s; otherwise, this node can be
removed from F ðsÞ without affecting the coverage area of
F ðsÞ. Therefore, computing the minimal F ðsÞ is to find a
subset of NðsÞ such that every node in the subset
contributes to the neighbor’s boundary of s.

We first give a simpleOðn2Þ algorithm to compute F ðsÞ as
follows, where n ¼ jNðsÞj: Since the outside nodes of NðsÞ,
i.e., the nodes further away from s, are usually the nodes that
contribute to the neighbor’s boundary of s, all nodes in NðsÞ
are sorted in descending order into a list according to their
euclidean distances to s. The first node in the list (that is the
farthest away from s) is included in F ðsÞ. Each time, the next
node in the list is considered. If its coverage disk is not fully
covered by the so far constructed F ðsÞ, it is added into F ðsÞ.
This operation is repeated until all nodes in the list are
considered. It is not difficult to see that F ðsÞ covers the
neighbor’s area of s, i.e., FminðsÞ � F ðsÞ. Notice that every
node inF ðsÞ contributes to the neighbor’s boundary of s. Any
node inF ðsÞ cannot be removed since other nodes cannot take
over its duty. That is, F ðsÞ � FminðsÞ. Therefore, F ðsÞ is the
minimum. It is easy to see that the time complexity of this
algorithm is Oðn2Þ.

Next, we present an algorithm with time complexity
OðnlognÞ. The strategy of this method is to compute the
neighbor’s boundary of s and, thus, the nodes that

LIU ET AL.: A DISTRIBUTED AND EFFICIENT FLOODING SCHEME USING 1-HOP INFORMATION IN MOBILE AD HOC NETWORKS 661

Fig. 3. Construct a new topology.

contribute to this boundary are the nodes in F ðsÞ. We use
the pair wise boundary merging method to compute the
boundary efficiently. Initially, each node is arbitrarily
paired with another node to merge their coverage bound-
aries. Then, the merged pair’s boundary is further merged
with another pair’s boundary. This merge operation is
repeated until eventually there is only one big merged
boundary, which is the neighbor’s boundary of s. The
minimal F ðsÞ consists of the nodes that contribute to this
boundary.

Before considering the procedure for merging boundaries,

we introduce data structures to represent arcs and bound-

aries. A boundary consists of a sequence of arcs. If we use the

location of s as the reference point, any arc in the neighbor’s

boundary of s can be uniquely defined by a 3-tuple ð�s; u; �eÞ,
where �s, u, and �e are the starting angle, the center and the

ending angle of the arc, respectively. �s and �e are relative to

the horizontal line going through s counting in the counter-

clockwise direction. For example, in Fig. 4, line os is the

horizontal line from s, which is used as the reference line in

counting the starting and ending angles of arcs. Arcab
_

of disk

u is represented by ðffosb; u; ffosaÞ, where ffosb is the starting

angle and ffosa the ending angle of ab
_

.

A boundary consists of a sequence of arcs. Thus, a

boundary is represented by an array of arcs, denoted by B½ �.
The ith element in B½ �, B½i� ¼ ð�si ; ui; �ei Þ, i ¼ 1; . . . ;m,

denotes the ith arc in the boundary. The arcs in B½ � are

sorted in nondescending order according to their starting

angles. That is, B½1�:�s1 � B½2�:�s2 � . . . � B½m�:�sm. This

sorted feature of arcs in B is critical to the efficient merging

algorithm to be presented below. Because of this feature, the

arcs in two boundaries can be merged in the same

sequential order as the progress of their array indices

without backtracking. To make the ending angle greater

than the starting angle, any arc that crosses the horizontal

line from s is split into two arcs. For the same example in

Fig. 4, arc cd
_

is split into arcs od
_

and co
_

and they are

represented by ð0�; v; ffosdÞ, ðffosc; v; 360�Þ, respectively. The

neighbor’s boundary of s in Fig. 4 can be represented as

B½ � ¼ fod
_

; db
_

; ba
_

; ac
_
; co
_g

¼ fð0�; v; ffosdÞ; ðffosd; s; ffosbÞ; ðffosb; u; ffosaÞ;
ðffosa; s; ffoscÞ; ðffosc; v; 360�Þg:

Considering merging two boundaries Bi and Bj into a
new one B, we start from the first arcs in Bi and Bj,
respectively, merge them, and store the merged arc in B.
Suppose now we are at the point of merging the kth arc of
Bi (i.e., Bi½k�) with the lth arc of Bj (i.e., Bj½l�) and storing
the merged arc in B½h�. Notice that two arcs intersect each
other at no more than two points (because any two different
disks intersect with each other at no more than two points).
There are three possible cases of the intersection: 1) no
intersection, 2) only one intersecting point, and 3) two
intersecting points. We discuss the cases one by one.

If arcsBi½k� andBj½l� have no intersection, it can be further

divided into three subcases: 1) The sectors of two arcs overlap

each other, as in Fig. 5a, 2) the sector of one arc is contained by

the other, as in Fig. 5b, and 3) there is no overlapping of the

sectors of two arcs, as in Fig. 5c. For case 1, arc Bi½k�
contributes to the resulting boundary B. Thus, the resulting

arc inB isBi½k�, i.e.,B½h� ¼ Bi½k�. Then, we move to next arc in

Bi and compareBi½kþ 1�withBj½l�. For case 2, segment ab
_

of

Bi½k� is for sure to contribute to B, but segment bc
_

may

intersect with the arc of Bj½lþ 1�. Therefore, B½h� is set to ab
_

.

Then, we move to the next arc inBj, i.e.,Bj½lþ 1�, to compare

it with segment bc
_

. For case 3, without loss of generality,

assuming Bi½k�:�s < Bj½l�:�s, arc Bi½k� is sure to contribute to

B, but Bj½l�may intersect with Bi½kþ 1�. We set B½h� ¼ Bi½k�
and move the next to compareBi½kþ 1�withBj½l�. Notice that,

in the above merging operation, we use the important feature

that arcs in Bi and Bj are sorted according to their starting

angles and the merging operation can be done in sorted order.
Cases 1-3 are exhaustive if two arcs Bi½k� ¼ ð�su; u; �euÞ and

Bj½l� ¼ ð�sv; v; �evÞ have no intersection. Since Bi½k� and Bj½l�

662 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 5, MAY 2007

Fig. 4. Example of arcs.

Fig. 5. Relationship between two arcs. (a) Case 1.1. (b) Case 1.2. (c) Case 1.3. (d) Case 2. (e) Case 3.

are symmetrical, we only need to consider one of the
symmetrical cases. Notice that �sv is either inside ð�su; �euÞ, or
is outside ð�su; �euÞ. If �sv is inside ð�su; �euÞ, �ev is either inside
ð�su; �euÞ (Case 2) or is outside ð�su; �euÞ (Case 1). If �sv is outside
ð�su; �euÞ, we only need consider the case �ev is outside ð�su; �euÞ
(Case 3). This is because the other case is symmetrical as in
case 1, where �sv is inside ð�su; �euÞ and �ev is outside ð�su; �euÞ.

For the case where arcs Bi½k� and Bj½l� have only one

intersecting point at b, as shown in Fig. 5d, segment ab
_

of

Bi½k� contributes to B and segment bc
_

of Bj½l� may intersect

with Bi½kþ 1�. Thus, we set B½h� ¼ab
_

and then move to the

next to compare Bi½kþ 1� with the segment bc
_

of Bj½l�.
If arcsBi½k�andBj½l�have two intersecting points at band c,

as shown in Fig. 5e, both segments ab
_

of Bj½l� and bc
_

ofBi½k�
contribute toB. We setB½h� ¼ab

_

andB½hþ 1� ¼bc
_

. Then, we

move to compare Bi½kþ 1�with segment cd
_

of Bj½l�.
Given two arcs Bi½k� ¼ ð�su; u; �euÞ and Bj½l� ¼ ð�sv; v; �evÞ,

the remaining problem is how to determine which case
these two arcs belong to. First, it is easy to compute two
intersecting points of disk u and disk v. The basic idea is to
determine how many intersecting points of the disks are
contained in both arcs Bi½k� and Bj½l�. Similarly to counting
the starting (ending) angle of an arc, we compute the
relative angles of these two points to the reference point s in
the counterclockwise direction. Bi½k� and Bj½l� have one
(two or zero) intersecting point(s) if and only if the relative
angle of one (two or zero) intersecting point(s) is (are) both
contained in the starting angle and ending angle of Bi½k�
and Bj½l�. For example, if the relative angle of one
intersecting point of both disks is contained in ð�su; �euÞ and
ð�sv; �evÞ, Bi½k� and Bj½l� are in cases 1 � 3. To further define
cases 1 � 3, we simply compare the starting angles and
ending angles of Bi½k� and Bj½l�. For example, if �su � �sv � �eu
and �eu � �ev, they are in case 1. Notice that all computations
can be done in constant time.

Following the above discussion of merging the two arcs
in Bi and Bj and moving the pointer to the next arc for
merging, this operation can be repeated until all arcs in Bi

are merged with Bj into the new boundary B. The following
is the detailed algorithm:

BoundaryMerge Algorithm

Input: Bi and Bj.

Output: B.

Begin

k ¼ 1; // pointer to the current arc in Bi.

l ¼ 1; // pointer to the current arc in Bj.

h ¼ 1; // pointer to the current arc in B.

while (there is unmerged arc in both Bi and Bj) do

Merge Bi½k� and Bj½l� to B according to cases 1-3;

Adjust k, l, and h accordingly;

Return B.

End

Theorem 2. The time complexity of BoundaryMerge algorithm is
Oðn1 þ n2Þ, where n1 and n2 are the numbers of arcs in Bi

and Bj, respectively.

Proof. Notice that, in BoundaryMerge algorithm, we always
move to the next arc of Bi or Bj after comparison and no

backtracking is needed. So, the total running time is
Oðn1 þ n2Þ, where n1 and n2 are the number of arcs in Bi

and Bj, respectively. Theorem proved. tu

Now, we consider the forwarding node selection algo-
rithm. Initially, for each node i, 1 � i � jNðsÞj, its arc
outside of the area of dðsÞ is represented by a boundary
array Bi½ �. Then, the arcs are merged pair wise by using the
BoundaryMerge algorithm until it becomes a single
boundary of the coverage area of NðsÞ. F ðsÞ consists of
the nodes that contribute to this boundary.

FwdNodes Algorithm

Input: s and NðsÞ.
Output: F ðsÞ.
Begin

j ¼ n; // n ¼ jNðsÞj.
while j > 1 do

for ði ¼ 1; i < j; i ¼ iþ 2Þ
Bðiþ1Þ=2½ � ¼ BoundaryMergeðBi½ �; Biþ1½ �Þ;

j ¼ j=2;

Output F ðsÞ ¼ fB½i�:uiji ¼ 1; 2; . . . ; kg; //B: the final

boundary.

End

Notice that if n is odd in the above algorithm, we add a
virtual arc whose starting angle and ending angle are both
0�. It does not affect the correctness of the output.

Theorem 3. The time complexity of FwdNodes algorithm is
OðnlognÞ, where n ¼ jNðsÞj.

Proof. In the FwdNodes algorithm, each time we partition
the current n boundaries into an n=2 group and run the
BoundaryMerge algorithm to merge two boundaries in
each group. According to Theorem 2, it takes OðnÞ to
complete boundary merge in all groups. Since each time
the number of groups is reduced by half, it costs OðlognÞ
to obtain the final group, i.e., coverage’s boundary. So,
the total time complexity is OðnlognÞ. tu

The FwdNodes algorithm requires that each node has 1-
hop information. According to Theorem 1, it guarantees
that all nodes can receive the flooding message. Based on
these conditions, the following theorem states that our
algorithm is optimal:

Theorem 4. The FwdNodes algorithm achieves local optimality

in terms of: 1) the number of forwarding nodes is minimal, i.e.,
F ðsÞ ¼ FminðsÞ; 2) the time complexity is the lowest.

Proof. In the FwdNodes algorithm, each node only has 1-
hop information. To cover 2-hop neighbors that are
beyond its view, each node should select some 1-hop
neighbors to relay the message such that these selected
neighbors can sufficiently cover the neighbor’s area of
the node. Thus, all 2-hop neighbors are guaranteed to be
covered. In the algorithm, each node s selects the
minimal set of nodes F ðsÞ to forward the message by
computing the neighbor’s boundary of s. Notice that any
node in F ðsÞ contributes to the final boundary. If a node
in F ðsÞ does not relay the message, other nodes cannot
take over its duty. It means that all nodes in F ðsÞ should

LIU ET AL.: A DISTRIBUTED AND EFFICIENT FLOODING SCHEME USING 1-HOP INFORMATION IN MOBILE AD HOC NETWORKS 663

forward the message to guarantee 2-hop neighbors are
covered. Thus, we have F ðsÞ ¼ FminðsÞ.

According to Theorem 3, the time complexity of
computing F ðsÞ is OðnlognÞ, where n ¼ jNðsÞj. Notice
that computing F ðsÞ is equivalent to computing the
neighbor’s boundary of s. We will prove that sorting
problem can be reduced to a boundary computing
problem.

Given n real numbers to be sorted, we first scale
them to the numbers in ½0; 2��. For each scaled number
a 2 ½0; 2��, point u is placed on the border of a small
circle, such that ffuso ¼ a (see Fig. 6, the center of the
small circle is s, line os is parallel to the X-axis and
angles are counted in the counterclockwise direction).
Notice that these nodes are in NðsÞ and the distance
from s are the same. So, each disk of node contributes
to the neighbor’s boundary of s. After running
FwdNodes algorithm, starting angles B½i�:�si , i ¼ 1; 2;
. . . ; n, of the final boundary are in nondescending
order. It is equivalent to sorting the given n nodes.
That is, the sorting problem can be reduced to
boundary computing problem. We know that the
fastest sorting algorithm costs OðnlognÞ time. So, the
FwdNodes algorithm is the fastest algorithm to
compute the neighbor’s boundary of s. tu

The local optimality of the algorithm is based on the
accurate location information of nodes. However, the location
information of nodes may not be 100 percent accurate in real
applications. Our method can be slightly modified to deal
with the situation where the location information is not
100 percent accurate. Suppose the error of location informa-
tion is	r. For example, in Fig. 7a, the position of u is u’s self-
estimated location and u’s actual location can be anywhere
within the small circle with radius r. Thus, the largest
variation ofu’s actual location is the diameter of the circle, i.e.,
2r. To compensate for this location error, we can simply make
the valid coverage area of each node a disk with radius ðR

2rÞ (the gray disk in Fig. 7a). By doing so, we ensure that the
actual neighbor’s area of s will be covered by nodes in F ðsÞ
with radiusR in the real system and 100 percent deliverability
can be guaranteed. The following theorem gives a formal
proof of the 100 percent deliverability of this modified
method:

Theorem 5. Given location error 	r and transmission
range R, by using ðR
 2rÞ as the radius of coverage disk
for computing F ðsÞ, the algorithm guarantees 100 percent

deliverability in the real system, provided the unit disk

graph with radius ðR
 2rÞ is connected.

Proof. According to Theorem 1, it is equivalent to prove that

the actual neighbor’s area of s, using ðR
 2rÞ as the

radius of coverage disk, is covered by nodes in F ðsÞ with

radius R in the real system. We prove it by contradiction.
Suppose the actual neighbor’s area of s cannot be

covered by nodes in F ðsÞ with radius R in the real
system. There must exist node a that is covered by actual
location u with radius ðR
 2rÞ. But, a cannot be covered
by any node in F ðsÞ at its actual location with radius R.
Taking an example in Fig. 7b, the outside dash line is the
theoretical neighbor’s boundary of s by using ðR
 2rÞ as
the radius of coverage disk. Suppose the position of u0 is
u’s self-estimated location. We know dðu; u0Þ � r, where
dðu; u0Þ is the euclidean distance between u and u0. Since
dðu; aÞ�R
2r, we have dðu0; aÞ�dðu; u0Þþdðu; aÞ�R
r.

If u0 2 F ðsÞ, then a can be covered by u0 at its actual
location u with radius R since dðu; aÞ � R
 2r. It
contradicts the assumption that a cannot be covered by
any node in F ðsÞ at its actual location with radius R.

If u0 62 F ðsÞ, we have dðu0; bÞ � R
 2r (otherwise, u0

contributes to the theoretical neighbor’s boundary of s,
i.e., u0 2 F ðsÞ). Thus, we have

dða; bÞ ¼ dðu0; aÞ
 dðu0; bÞ � ðR
 rÞ
 ðR
 2rÞ � r: ð1Þ

Notice that b is the theoretical neighbor’s boundary of
s. There must exist node v0 2 F ðsÞ such that b is covered
by v0 with radius ðR
 2rÞ. That is,

dðv0; bÞ � R
 2r: ð2Þ

Combining (1) with (2), we have dðv0; aÞ � dðv0; bÞ þ
dða; bÞ � R
 r. Suppose position v is the actual location of
v0. We have dðv; v0Þ � r. Thus, dðv; aÞ � dðv; v0Þ þ dðv0; aÞ
� R. That is, a can be covered by v0 at its actual location v
with radius R. It also gets contradicted. Theorem 5 is
proved. tu

Noticing that r is often very small compared with R, this

modification will not significantly degrade the performance

of our algorithm.
After computing F ðsÞ, s attaches IDs of nodes in F ðsÞ to

the flooding message and broadcasts it out. When receiving

this message, a neighbor node of s, say u, checks if its own

ID is in the forwarding list attached to the message. If yes, it

will compute F ðuÞ and broadcast the message in the same

664 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 5, MAY 2007

Fig. 6. The sorting problem is reduced to a boundary computing problem. Fig. 7. Reducing the coverage disk to compensate the location error.

way as s. In this way, the message is forwarded hop by hop
until all of the nodes in the network receive it.

The proposed method is based on the model that the
network is represented as a unit disk graph. The methodol-
ogy is applicable to the cases where the coverage area of
each node is not a perfect disk. According to Theorem 1, so
long as the neighbor’s area is covered by F ðsÞ, 100 percent
deliverability is always guaranteed. The deliverability
guarantee has nothing to do with the shape of the node’s
coverage area. Therefore, if node s knows the coverage
areas of its neighbors (even they are not in the shape of a
perfect disk), s can still compute F ðsÞ to cover its neighbor’s
area and 100 percent deliverability can be achieved. If the
exact shape of coverage area is costly or impossible to
obtain, one solution is to approximate the actual coverage
area with some regular shape such that this regular shape is
surely covered by the actual coverage area. Similarly to
Theorem 5, we can prove that 100 percent deliverability is
still guaranteed when using these regular shapes to
compute F ðsÞ.

3.4 Forwarding Node Optimization

The F ðsÞ computed above is only locally optimal based on
the 1-hop information of s. When a node u receives the
flooding message from s (we call s the parent of u) and u is a
forwarding node nominated by s (i.e., u 2 F ðsÞ), the
computing of F ðuÞ can be further optimized based on the
information of F ðsÞ, which is attached to the flooding
message from s. This is because some nodes in F ðuÞ may
already be covered by node s or node-set F ðsÞ and, thus,
F ðuÞ could be further reduced by removing out those nodes.

Consider the example given in Fig. 8, where nodes u and
v are neighbors of s and F ðsÞ ¼ fu; vg. The coverage area
dðuÞ overlaps with dðsÞ and dðvÞ (notice node v is also in
F ðsÞ). The nodes in the overlapped area of dðuÞ with dðsÞ
were already considered by s when computing F ðsÞ. Thus,
these nodes can be removed from F ðuÞ. For the overlapped
area of dðuÞwith other nodes in F ðsÞ, for example, node v in
Fig. 8, we use node ID as the priority for forwarding
messages. That is, the node with the smaller ID has to
forward the message if its coverage disk overlaps with
another node. Therefore, the nodes of F ðuÞ that fall into the
coverage area of the following node-set can be removed
from F ðuÞ:

fsg [fvj v 2 ðF ðsÞ \NðuÞÞ and idðvÞ � idðuÞg: ð3Þ

Notice that, in node-set (3), we only consider set
F ðsÞ \NðuÞ. That is, nodes in node-set (3) are all neighbors

of node u. Thus, u knows the geographic locations of nodes
in the above node-set. This location information is necessary
when u checks whether nodes in F ðuÞ fall into the coverage
area of the node-set (3). We can see this optimization is still
based on 1-hop information of a node.

Taking the example in Fig. 8 again, suppose idðvÞ � idðuÞ
and F ðuÞ ¼ f1; 2; 3; 4; 5g. Since nodes 1 and 2 are in NðsÞ,
they are already covered by s and can be removed from
F ðuÞ. Node 3 is covered by v and v is also a forwarding
node and idðvÞ � idðuÞ. Thus, node 3 can also be removed
from F ðuÞ. Finally, F ðuÞ ¼ f4; 5g. That is, node u only needs
to nominate the nodes of F ðuÞ in a clear area.

The significance of this optimization is that it prevents
the flooding message from going backward. The message is
always propagated forward toward the uncovered area,
which reduces the redundant transmissions greatly.

The following is the optimized forwarding node selec-
tion algorithm. It is executed whenever a node receives a
flooding message:

OptFwdNodes Algorithm

Input: message m from s.

Begin

if m was received before, then discard m;

else

Deliver m to upper layer;

if this node, say u, is in forward-list in m

Compute F ðuÞ;
Remove from F ðuÞ the nodes that are covered by

node-set (3);

Attach F ðuÞ to m and transmit m out.

End

According to Theorem 4, we know that the FwdNodes
algorithm can guarantee that all nodes receive a flooding
message. After optimization in the OptFwdNodes algo-
rithm, the 100 percent deliverability feature is still pre-
served. The following theorem states this feature:

Theorem 6. The OptFwdNodes algorithm guarantees that all
nodes can receive a flooding message.

Proof. According to Theorem 4, if all forwarding nodes run
the FwdNodes algorithm, 100 percent deliverability is
guaranteed. So, to prove Theorem 6, we need to prove
that removing nodes from F ðuÞ in the OptFwdNodes
algorithm does not affect 100 percent deliverability of
our scheme.

We suppose fu; vg � F ðsÞ and idðvÞ � idðuÞ. If some
nodes in F ðuÞ are neighbors of s and v, the coverage
disks of these nodes are sure to be within the coverage
area of F ðsÞ and F ðvÞ. So, there is no need to let these
nodes forward the message. Thus, removing these nodes
from F ðuÞ does not affect 100 percent deliverability of
our scheme. The theorem is proved. tu
The time complexity of OptFwdNodes algorithm is given

below.

Theorem 7. The time complexity of the OptFwdNodes algorithm
is OðnlognÞ, where n ¼ jNðsÞj.

Proof. It is not difficult to see that the time complexity of the
OptFwdNodes algorithm is the same as that of the
FwdNodes algorithm. Theorem 7 is proved. tu

LIU ET AL.: A DISTRIBUTED AND EFFICIENT FLOODING SCHEME USING 1-HOP INFORMATION IN MOBILE AD HOC NETWORKS 665

Fig. 8. An example of optimizing F ðuÞ.

The source node first floods a message by running
FwdNodes algorithm. Each forwarding node forwards the
message by running OptFwdNodes algorithm. Finally, all
nodes in the network can receive the message and the
redundant transmission can be significantly reduced. How-
ever, transmission failures often occur in MANETs due to the
unpredictable environments. A nodes that misses a flooding
message still has a chance to receive the message from other
nodes by “redundant” transmissions. Thus, further optimi-
zation of the forwarding set is needed or not is based on the
practical situations of networks. If transmissions are reliable,
further optimization can save more redundant messages.
Otherwise, a few redundant messages may be helpful to the
fault tolerance of the system.

4 MOBILITY HANDLING

In MANETs, nodes may be mobile, which causes dynamic
changes of the network topology. For the flooding scheme,
each node, say s, maintains its neighbor information and
computes F ðsÞ. To cope with the dynamic topology changes,
there are two strategies to maintain the flooding scheme: 1) no
update, each node recomputes its forwarding node set for
each flooding request, or 2) incremental update. Each node
incrementally updates its forwarding node set upon each
topology change. For strategy 1, we do not need to do
anything. In this section, we propose an efficient algorithm
that can incrementally update the forwarding node set as the
topology changes. By using this method, nodes do not need to
recompute the forwarding node set when it needs to flood a
message. The forwarding node set is maintained at each node
and is always ready for use.

For each node u, there are three cases that require
updating F ðuÞ: 1) a neighbor of u moves, but still in NðuÞ,
2) a neighbor of u moves out of NðuÞ, and 3) a node moves
in and becomes the new neighbor of u. We assume that only
one update is handled at a time. We concentrate on
updating F ðuÞ for these three cases and discuss them case
by case.

Case 1. We consider the first case that a neighbor of u,
say v, moves but is still in NðuÞ. There are two subcases.

Case 1.1. If v 62 F ðuÞ, we need to check whether the
coverage disk of v exceeds the neighbor’s boundary of u. If
it happens, the disk of v will contribute to the final
boundary B and F ðuÞ will be updated. We first compute
how many arcs in B are affected by the movement of v. It
can be done by locating the starting angle and ending angle
of the current location of disk v in B by binary search.
Suppose that k arcs in B are affected by the arc of disk v. It
means that the sectors of these arcs overlap with the sector
of disk v. Notice that these k arcs form a continuous
segment of B in nondecreasing order according to their
starting angles. Then, we run BoundaryMerge algorithm to
merge this segment and the arc of disk v to update the new
boundary B and F ðuÞ.

Case 1.2. If v 2 F ðuÞ, the final boundary B not only may
be affected by the current location of v, but also may be
affected by the former location of v. Notice that v 2 F ðuÞ and
the location of v changes. Some nodes in NðuÞ
 F ðuÞ may
contribute to B because v leaves its former place. On the
other hand, some nodes in F ðuÞ may become invalid
because v moves to the current place. So, it has two steps to
update. We first compute how many arcs in NðuÞ may

contribute to the new boundary because of leaving v. Since

there is no order in NðuÞ, we find k arcs that may contribute

to B one by one. We compute the new boundary of these

k arcs. Second, similarly to Case 1.1, we still need to

compute how many arcs in B are affected by the new

location of v. Suppose l continuous arcs in B are affected.

We update B and F ðuÞ again by merging these l continuous

arcs and the arc of disk v in current place.
Case 2. Node v is a neighbor of u and v moves out of

NðuÞ. If v 62 F ðuÞ, there is no need to update. If v 2 F ðuÞ,
some nodes in NðuÞ
 F ðuÞ may contribute to B due to the

leaving of v. This is similar to the first step of Case 1.2. We

can update F ðuÞ for this case.
Case 3. Node v moves into the coverage disk of u and

becomes a new neighbor of u. Similar to Case 1.1. We can

update F ðuÞ for this case. A detailed algorithm is given

below.

TopologyUpdate Algorithm

Input: v that changes its location to u.

Output: updated F ðuÞ.
Begin

if v 62 F ðuÞ and v is now in NðuÞ //case 1.1 or case 3.

Find arcs in B that are affected by disk v;

//suppose k arcs B½i�; B½iþ 1�; . . . ; B½iþ k
 1� are

affected.
BoundaryMergeðfB½i�; B½iþ 1�; . . . ; B½iþ k
 1�g; dðvÞÞ;

if v 2 F ðuÞ //case 1.2 or case 2.

Find arcs in NðuÞ that are affected by v’s leaving;

//suppose k arcs are affected.

Compute the boundary of the affected k arcs;

Find arcs in B that are affected by v’s current place;

//suppose l arcs B½i�; B½iþ 1�; . . . ; B½iþ l
 1� are

affected.
BoundaryMergeðfB½i�; B½iþ 1�; . . . ; B½iþ l
 1�g; dðvÞÞ;

Update F ðuÞ based on the new boundary B.

End

Theorem 8. The time complexities of the update for Case 1.1,

Case 3, Case 1.2, and Case 2 areOðkþ lognÞ andOðnþ klogkÞ,
respectively, wheren ¼ jNðsÞj and k is the number of nodes that

are affected by topology change.

Proof. For Case 1.1 and Case 3, it costs OðlognÞ to locate the

arc of disk v in B by binary search. It further costs OðkÞ to

merge fB½i�; B½iþ 1�; . . . ; B½iþ k
 1�g and disk v by the

BoundaryMerge algorithm. So, the total time cost of

update for Case 1.1 and Case 3 is Oðkþ lognÞ.
For Case 1.2 and Case 2, it costs OðnÞ to find k disks of

nodes in NðuÞ that are affected by the movement of v.
Similarly to boundary computing in the FwdNodes
algorithm, computing the new boundary of these k disks
costs OðklogkÞ. It further costs Oðlþ lognÞ to compute the
new boundary of l disks in the second step. So, the total
time cost of update for Case 1.2 and Case 2 is
Oðnþ klogkÞ. Theorem 8 is proved. tu

From Theorem 8, we can see that update for Case 1.1 and

Case 3 is very efficient compared to recomputing F ðuÞ.
Update for Case 1.2 and Case 2 is also efficient when k is not

666 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 5, MAY 2007

large. If k ¼ �ðnÞ, the time complexity of the TopologyUp-
date algorithm is the same as that of FwdNodes algorithm.

5 SIMULATION

To analyze the performance of our flooding scheme, we
compare it with three deliverability-guaranteed schemes:
Pure flooding, Edge Forwarding [9], and CDS-based flooding
[11]. The information of the schemes is listed in Table 1.
Edge Forwarding is picked because that it has the best
performance among existing 1-hop flooding schemes [9]. It
is a good comparative criterion to inspect our flooding
scheme. CDS is one of the most important techniques to
flooding operation in MANETs. So, CDS-based flooding is
further selected for comparisons. In the CDS-based scheme,
a node marks itself as belonging to the CDS if there exist
two unconnected neighbors. A marked node can quit the
CDS later if its neighbors are covered by two CDS neighbors
and they have greater IDs. It was proved that the marked
nodes form a CDS [11]. Notice that all forwarding nodes in
a flooding operation form a CDS in the network. It means
that the number of forwarding nodes is no less than the
number of MCDS (Minimum CDS) in the network. So, the
number of MCDS is the lower bound of the number of
forwarding nodes. Although computing MCDS is NP-hard,
there exists a ratio-8 approximation algorithm [29]. This
lower bound is computed and is used as a benchmark for
comparison with the simulated flooding schemes.

We study the performance of flooding schemes against
four parameters: number of nodes, transmission range, network
size, and network load. We run simulations under the ns-2
testbed with the CMU wireless extension. The simulator
parameters are listed in Table 2. The popular two-ray
ground reflection model is adopted as the radio propaga-
tion model. The MAC layer scheme follows the IEEE 802.11
MAC specification. We use the broadcast mode with no
RTS/CTS/ACK mechanisms for all message transmissions.
Each data packet with attached information has a constant
length of 256 bytes. The bandwidth of a wireless channel is
set to 2M b=s as the default. Some of the schemes require
nodes to send a HELLO message to their 1-hop neighbors
periodically. This cost of the HELLO message is ignored in
our performance study.

The main objective of those efficient flooding schemes is
to reduce the number of forwarding nodes as much as
possible such that the redundant transmission is mini-
mized. So, we use the metric ratio of forwarding nodes to
evaluate the efficiency of flooding schemes. The ratio of
forwarding nodes is defined to be the ratio of the total

number of nodes involved in the packet forwarding in a
flooding operation over the total number of nodes in the
network, such as:

ratio of forwarding nodes ¼ the number of forwarding nodes

the number of total nodes
:

Reducing the forwarding nodes in flooding would
effectively reduce the signal collision in the network. The
MAC layer of IEEE 802.11 in ns-2 can check the occurrence
of collisions. If the number of collisions is high, it would
result in more packet loss or more retransmissions. We also
use the metric number of collisions to evaluate the efficiency
of flooding schemes. The number of collisions is defined to
be the sum of collisions that each node experiences before it
receives the flooding message correctly.

Signal collisions will eventually affect the deliverability
of flooding messages. Some nodes in the network miss
flooding messages due to the large number of collisions.
The metric deliverability ratio is used to further study the
efficiency of algorithms. The deliverability ratio is defined
by the number of nodes that successfully receive the
flooding messages over the total number of nodes in the
network.

In each simulation run, we generate a certain number of
nodes and randomly place them on a square area. There is a
link between two nodes if and only if their Euclidean
distance is not greater than transmission range R. The
source which initiates a flooding message is randomly
picked from nodes in the network. Only one flooding occurs
at any one time (except for the experiments on deliverability
ratio). Three flooding schemes and the theoretical lower
bound that are mentioned above are simulated and

LIU ET AL.: A DISTRIBUTED AND EFFICIENT FLOODING SCHEME USING 1-HOP INFORMATION IN MOBILE AD HOC NETWORKS 667

TABLE 1
Four Flooding Schemes in Simulation

TABLE 2
Simulation Parameters

compared with our scheme under the same environment.

We study how the ratio of forwarding nodes, the number of

collisions, and the deliverability ratio are affected by four

parameters: the number of nodes, transmission range,

network size, and network load, respectively. The results

presented in the following figures are the means of

100 separate runs. Any case where the network is not

connected is discarded.

5.1 Performance versus Number of Nodes

In this simulation, a certain number of nodes, from 200 to

1000, are randomly placed on a 1; 000� 1; 000 m2 area. The

transmission range is fixed at 250 m. In the experiment of

deliverability ratio in Fig. 9c, the network load is set to

10 Pkt/s. It means that the network generates 10 flooding

messages per second on average. The deliverability ratio is

calculated for 100 seconds. Since every node is a forwarding

node in the pure flooding scheme, its curve was dropped

out in Fig. 9a. The simulation results are plotted in Fig. 9a,

Fig. 9b, and Fig. 9c. We have following observations:

1. The performance of our flooding scheme is signifi-
cantly better than performance of Edge Forwarding
and CDS-based schemes showed in Fig. 8. This is
because that each forwarding node u selects the
minimal F ðuÞ to cover all 2-hop neighbors in our
scheme. It guarantees that the number of forwarding
nodes is minimized at each step, while the Edge
Forwarding and CDS-based schemes do not.

2. The curve of our scheme becomes closer to the curve
of lower bound when the number of nodes increases.
In Fig. 9a, when the number of nodes reaches 1,000,
only 16.5 percent of nodes participate in forwarding
in our scheme while ratios of Edge Forwarding and
CDS-based schemes are 50.7 percent and 71 percent,
respectively. This is because, as the increase of
network density (resulting from the increase of
nodes), NðuÞ becomes larger, but F ðuÞ is saturated.
That is, the number of nodes required to cover the
same area (i.e., the neighbor’s area) will not increase
that much, because each node has a fixed coverage
disk. Therefore, the ratio F ðuÞ=NðuÞ decreases as the
increase of nodes in the network. We can conclude

that our flooding scheme is more suitable for
networks with high density.

3. Both the curves of our scheme and of Edge
Forwarding fall down when the number of nodes
increases in Fig. 9a. But, the number of nodes has
little effect on the result of CDS-based scheme.
Notice that when network density increases, there is
more chance for u’s neighbors being connected. At
the same time, high density also causes increase of
NðuÞ. It means there is a high chance that there exist
two unconnected neighbors. So, these two conflict-
ing factors make the result of CDS-based scheme not
sensitive to the change of number of nodes.

4. Our scheme, Edge Forwarding and CDS-based
scheme have much lower collisions comparing with
pure flooding. The reason is that every node
forwards flooding messages in pure flooding and it
results in large number of collisions in the network.
Collisions of pure flooding and CDS-based schemes
increase quickly while the number of nodes in-
creases. Performance of our scheme is the best
among all schemes. For example, in Fig. 9b, when
the number of nodes reaches 600, the number of
collisions of our scheme is only 211 while that of
Edge Forwarding and CDS-based schemes are 335
and 469, respectively. After that, their collisions are
more than 100 percent higher than our scheme.

5. Deliverability ratio of our scheme is significantly
higher than the ratios of Edge Forwarding, CDS-
based and pure flooding schemes. In Fig. 9c, our
scheme guarantees 100 percent deliverability when
the number of nodes varies from 200 to 400, while
deliverability ratios of other schemes are only
75 percent-92 percent around. Although collisions
occur in our scheme even the number of nodes is
small, a node that misses flooding messages from a
forwarding node still has chance to receive messages
from another forwarding node. So the value of our
scheme can almost reach 100 percent if the number
of nodes is between 200 to 600 (the number of
collisions is low). The performance of pure flooding
is the worst among the three schemes. It is caused by
the broadcast storm problem since every node
retransmits the flooding message in the network.

668 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 5, MAY 2007

Fig. 9. Performance versus the number of nodes.

5.2 Performance versus Transmission Range

In this simulation, 500 nodes are randomly placed on a
1000� 1000 m2 area. The network load is set to 10Pkt/s and
each simulation is run for 100 seconds in Fig. 10c. We study
the performance against the transmission range of each
node. The simulation results are plotted in Fig. 10a, Fig. 10b
and Fig. 10c. We have following observations:

1. Performance of our scheme is significantly better than
performance of Edge Forwarding and CDS-based
schemes shown in Fig. 10a. The reason is similar to the
results in Fig. 9a. As the increase of transmission
range, each node has more neighbors. It has the same
effect on the increase of network density as the
increase of nodes in a fixed square area.

2. The curve of our scheme becomes closer to the curve
of lower bound when transmission range increases
in Fig. 10a. This trend is more significant than that in
Fig. 9a. See Fig. 10a, when the transmission range
reaches 300 m, only 19 percent of nodes participate
in forwarding in our flooding scheme while values
of Edge Forwarding and CDS-based schemes are
58 percent and 67 percent, respectively. This is
because that increase of transmission range not only
results in higher density of network, but also makes
flooding faster in the network. It means that flooding
operation can be done in less steps due to the large
transmission range of nodes. Notice that our scheme
achieves that the number of forwarding nodes is
minimal at each step. So, less steps to complete
flooding makes our results closer to the lower bound
when transmission range increases.

3. Both the curves of our scheme and Edge Forwarding
fall down when transmission range increases in
Fig. 10a. The curve of CDS-based scheme does not
change much when R increases from 100 m to 250 m.
The reason has been discussed before. But, further
increase of R makes the curve fall down. It is because
that when R reaches a certain value, such as 250 m in
Fig. 10a, further increase of R will slightly increase
NðuÞ due to the fixed number of nodes. But, an
increase of R makes nodes have more chance to be
connected. So, the curve of the CDS-based scheme falls
down when R is more than 250 m.

4. Curves in Fig. 10b show the similar trend as those in
Fig. 9b. When the transmission range increases (i.e.,
a node has more neighbors), there are more chances
for nodes to experience collisions. Since our scheme
minimizes the number of forwarding nodes in each
step, its performance is much better than that of pure
flooding, Edge Forwarding and CDS-based schemes.

5. Deliverability ratios of three schemes all increase
when transmission range increases in Fig. 10c. It is
because that increase of transmission range not only
causes more collisions, but also provides more
chances for nodes to receive flooding messages from
different forwarding nodes. See Fig. 10c, the ratio of
our scheme becomes very close to 100 percent when
transmission range reaches 300. Our scheme per-
forms best among four schemes.

5.3 Performance versus Network Size and
Network Load

In the simulation of Fig. 11a, we increase the area of the
network region, from 200,000 to 1,000,000 m2. The node
density is fixed at 1,000m2=node. That is, there are 200 nodes
in the network with size 200,000 m2. The generated nodes
are randomly placed on the network square domain. We fix
the transmission range at 250 m. We observe that our
scheme and Edge Forwarding are both highly scalable with
respect to the network size. In contrast, performance of
CDS-based scheme is better in a smaller network, but
becomes worse when network size increases. Thus, it is not
a scalable flooding scheme. Once again, our scheme
performs the best among all flooding schemes.

In the simulation of Fig. 11b, 1,000 nodes are randomly
placed on a 1; 000� 1; 000 m2 area. The transmission range
is fixed at 250 m. We vary the network load from 1Pkt/s to
25Pkt/s and each simulation is run for 100 seconds. We
observe that performance of our scheme is significantly
better than that of pure flooding, Edge Forwarding and
CDS-based schemes. The ratio of our scheme keeps almost
100 percent when network load is less than 15Pkt/s. Further
increase of network load causes the curve to quickly fall
down. It is because that more frequently flooding message
are generated, larger number of collisions nodes experience.
In contrast, the curves of pure flooding, Edge Forwarding

LIU ET AL.: A DISTRIBUTED AND EFFICIENT FLOODING SCHEME USING 1-HOP INFORMATION IN MOBILE AD HOC NETWORKS 669

Fig. 10. Performance versus transmission range.

and CDS-based schemes fall down when network load is
just over 5Pkt/s.

6 CONCLUSIONS

The paper addressed the efficient flooding problem in

MANETs. We have presented an efficient flooding scheme

that uses only 1-hop neighbor information. We have proved

that our proposed scheme achieves the local optimality in

terms of: 1) the number of forwarding nodes is the minimal

and 2) the time complexity OðnlognÞ is the lowest. Extensive

simulations have been conducted to compare our scheme

with pure flooding, Edge Forwarding and CDS-based

schemes. Simulation results have shown that our proposed

scheme uses less forwarding nodes, incurs less collision,

obtains high deliverability ratio and is highly scalable,

compared with the existing schemes.

ACKNOWLEDGMENTS

This work is supported in part by the Research Grants

Council of Hong Kong under grant numbers CityU 1165/

04E, CityU 114505, and NSF China 60633020.

REFERENCES

[1] D. Johnson and D.A. Maltz, “Dynamic Source Routing in Ad Hoc
Wireless Networks,” Mobile Computing, T. Imielinski and
H.F. Korth, eds., pp. 153-181, Kluwer Academic Publishers, 1996.

[2] C.E. Perkins, “Ad Hoc On-Demand Distance Vector (AODV)
Routing,” INTERNET DRAFT—Mobile Ad Hoc NETworking
(MONET) Working Group of the Internet Eng. Task Force (IETF),
Nov. 1997.

[3] Z.J. Haas and M.R. Pearlman, “The Zone Routing Protocol (ZRP)
for Ad Hoc Networks,” Mobile Ad Hoc NETworking (MONET)
Working Group of the Internet Eng. Task Force (IETF), Nov. 1997.

[4] Y. Ko and N. Yaidya, “Location-Aided Routing (LAR) in Mobile
Ad Hoc Networks,” Proc. MOBICOM ’98, pp. 66-75, 1998.

[5] C. Ho, K. Obraczka, G. Tsudik, and K. Viswanath, “Flooding for
Reliable Multicast in Multi-Hop Ad Hoc Networks,” Proc. Int’l
Workshop Discrete Algorithms and Methods for Mobile Computing and
Comm., pp. 64-71, 1999.

[6] J. Jetcheva, Y. Hu, D. Maltz, and D. Johnson, “A Simple Protocol
for Multicast and Broadcast in Mobile Ad Hoc Networks,”
Internet Draft: draft-ietf-manet-simple-mbcast-01.txt, July 2001.

[7] S. Ni, Y. Tseng, Y. Chen, and J. Sheu, “The Broadcast Storm
Problem in a Mobile Ad Hoc Network,” Proc. ACM/IEEE
MOBICOM ’99, pp. 151-162, Aug. 1999.

[8] P. Sinha, R. Sivakumar, and V. Bharghavan, “Enhancing Ad Hoc
Routing with Dynamic Virtual Infrastructures,” Proc. IEEE
INFOCOM ’01, pp. 1763-1772, 2001.

[9] Y. Cai, K.A. Hua, and A. Phillips, “Leveraging 1-Hop Neighbor-
hood Knowledge for Efficient Flooding in Wireless Ad Hoc
Networks,” Proc. 24th IEEE Int’l Performance Computing and Comm.
Conf. (IPCCC), Apr. 2005.

[10] C.C. Yang and C.Y. Chen, “A Reachability-Guaranteed Approach
for Reducing the Broadcast Storms in MANETs,” Proc. IEEE
Semiann. Vehicular Technology Conf. (VTC ’02), Sept. 2002.

[11] J. Wu and H. Li, “On Calculating Connected Dominating Set for
Efficient Routing in Ad Hoc Wireless Networks,” Proc. Third Int’l
Workshop Discrete Algorithms and Methods for Mobile Computing and
Comm. (DiaLM), pp. 7-14, 1999.

[12] J.E. Wieselthier, G.D. Nguyen, and A. Ephremides, “On the
Construction of Energy-Efficient Broadcast and Multicast Trees in
Wireless Networks,” Proc. IEEE INFOCOM ’00, 2000.

[13] D. Li, X. Jia, and H. Liu, “Energy Efficient Broadcast Routing in
Ad Hoc Wireless Networks,” IEEE Trans. Mobile Computing, vol. 3,
no. 2, pp. 144-151, Apr.-June 2004.

[14] Y. Tseng, S. Ni, and E.Y. Shih, “Adaptive Approaches to Relieving
Broadcast Storms in a Wireless Multihop Mobile Ad Hoc
Networks,” Proc. Int’l Conf. Distributed Computing Systems (ICDCS
’01), pp. 481-488, 2001.

[15] Y. Sasson, D. Cavin, and A. Schiper, “Probabilistic Broadcast for
Flooding in Wireless Mobile Ad Hoc Networks,” Technical Report
IC/2002/54, Swiss Federal Inst. of Technology, 2002.

[16] M.T. Sun, W.C. Feng, and T.H. Lai, “Location Aided Broadcast in
Wireless Ad Hoc Networks,” Proc. GLOBECOM ’01, 2001.

[17] H. Lim and C. Kim, “Multicast Tree Construction and Flooding in
Wireless Ad Hoc Networks,” Proc. ACM Int’l Workshop Modeling,
Analysis, and Simulation of Wireless and Mobile System (MSWIM),
pp. 61-68, Aug. 2000.

[18] B. Williams and T. Camp, “Comparison of Broadcasting Techni-
ques for Mobile Ad Hoc Networks,” Proc. MOBIHOC ’02, pp. 914-
205, 2002.

[19] A. Laouiti, A. Qayyum, and L. Viennot, “Multipoint Relaying: An
Efficient Technique for Flooding in Mobile Wireless Networks,”
Proc. 35th Ann. Hawaii Int’l Conf. System Sciences (HICSS ’01), 2001.

[20] A. Qayyum, L. Viennot, and A. Laouiti, “Multipoint Relaying for
Flooding Broadcast Messages in Mobile Wireless Networks,” Proc.
35th Hawaii Int’l Conf. System Sciences, 2002.

[21] W. Lou and J. Wu, “Double-Covered Broadcast (DCB): A Simple
Reliable Broadcast Algorithm in MANETs,” Proc. INFOCOM ’04,
2004.

[22] B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris, “Span: An
Energy-Efficient Coordination Algorithm for Topology Mainte-
nance in Ad Hoc Wireless Networks,” Proc. MOBICOM ’01,
pp. 85-96, July 2001.

[23] W. Peng and X. Lu, “On the Reduction of Broadcast Redundancy
in Mobile Ad Hoc Networks,” Proc. MOBIHOC ’00, 2000.

[24] I. Stojmenovic, M. Seddigh, and J. Zunic, “Dominating Sets and
Neighbor Elimination Based Broadcasting Algorithms in Wireless
Networks,” IEEE Trans. Parallel and Distributed Systems, vol. 13,
no. 1, pp. 14-25, Jan. 2002.

670 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 5, MAY 2007

Fig. 11. Performance versus network size and network load.

[25] J. Sucec and I. Marsic, “An Efficient Distributed Network-Wide
Broadcast Algorithm for Mobile Ad Hoc Networks,” CAIP
Technical Report 248, Rutgers Univ., Sept. 2000.

[26] J. Wu and F. Dai, “Broadcasting in Ad Hoc Networks Based on
Self-Pruning,” Proc. INFOCOM ’03, Mar. 2003.

[27] F. Dai and J. Wu, “An Extended Localized Algorithm for
Connected Dominating Set Formation in Ad Hoc Wireless
Networks,” IEEE Trans. Parallel and Distributed Systems, vol. 15,
no. 10, pp. 908-920, 2004.

[28] M.V. Marathe, H. Breu, H.B. Hunt III, S.S. Ravi, and D.J.
Rosenkrantz, “Simple Heuristics for Unit Disk Graphs,” Networks,
vol. 25, pp. 59-68, 1995.

[29] P.J. Wan, K. Alzoubi, and O. Frieder, “Distributed Construction of
Connected Dominating Set in Wireless Ad Hoc Networks,” Proc.
IEEE INFOCOM ’02, vol. 3, pp. 1597-1604, June 2002.

[30] K. Langendone and N. Reijers, “Distributed Localization in
Wireless Sensor Networks: A Quantitative Comparison,” Compu-
ter Networks, vol. 43, pp. 499-518, 2003.

[31] D.R. Kowalski and A. Pelc, “Deterministic Broadcasting Time in
Radio Networks of Unknown Topoloby,” Proc. 43rd Ann. IEEE
Symp. Foundations of Computer Science (FOCS ’02), 2002.

[32] R. Gandhi, S. Parthasarathy, and A. Mishra, “Minimizing Broad-
cast Latency and Redundancy in Ad Hoc Networks,” Proc. Fourth
ACM Int’l Symp. Mobile Ad Hoc Networking and Computing
(MOBIHOC ’03), pp. 222-232, June 2003.

Hai Liu received the BSc (1999) and MSc
(2002) degrees in applied mathematics from the
South China University of Technology, China.
He is currently a PhD candidate in the Depart-
ment of Computer Science at the City Uni-
versity of Hong Kong. His research interests
include distributed systems, wireless networks,
and mobile computing.

Xiaohua Jia received the BSc (1984) and MEng
(1987) degrees from the University of Science
and Technology of China and received the DSc
(1991) degree in information science from the
University of Tokyo, Japan. Professor Jia is
currently associated with the Department of
Computer Science at the City University of Hong
Kong. His research interests include distributed
systems, computer networks, WDM optical net-
works, and Internet and mobile computing. He is

a senior member of the IEEE.

Peng-Jun Wan received the PhD degree (1997)
from the University of Minnesota, the MS degree
(1993) from the Chinese Academy of Science,
and the BS degree (1990) from Tsinghua
University. His research interests include wire-
less networks and optical networks.

Xinxin Liu received the BSc (1998) degree from
the Huazhong University of Science and Tech-
nology and the MEng (2003) degree from the
China Ship Research & Development Academy.
Currently, he is a PhD student at Wuhan
University. His research interests include em-
bedded systems and computer networks.

Frances F. Yao received the BSc (1969) degree
from National Taiwan University and the PhD
(1973) degree in mathematics from the Massa-
chusetts Institute of Technology. She is currently
head of the Department of Computer Science at
the City University of Hong Kong. Her research
interests include combinatorial and geometric
algorithms, energy-efficient computing, and sen-
sor networks. She is a fellow of the AAAS.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

LIU ET AL.: A DISTRIBUTED AND EFFICIENT FLOODING SCHEME USING 1-HOP INFORMATION IN MOBILE AD HOC NETWORKS 671

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

