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Abstract

In many applications string pattern matching is one of
the most intensive tasks in terms of computation time and
memory accesses. Network Intrusion Detection Systems
and DNA Sequence Matching are two examples. Since
software solutions are not able to satisfy the performance
requirements, specialized hardware architectures are re-
quired. In this paper we propose a complete framework for
regular expression matching, both in its architecture and
compiler. This special-purpose processor is programmed
using regular expressions as programming language. With
the parallelism exploited in the design it is possible to
achieve a throughput greater than one character per clock
cycle, requiring O(n) memory space. The VHDL descrip-
tion of the proposed architecture is fully configurable. A
design space exploration to find the optimal architecture
based on area and performance cost-function is presented.

1 Introduction

Pattern matching is a well known computational inten-
sive task and represents the core of several application do-
mains. A regular expression [6] (RE), often called a pat-
tern, is an expression that represents a set of strings. In net-
working security and QoS applications [12] [1] [11] [4] it
is required to detect packets which payload matches within
a set of predefined patterns. Software solutions are not fast
enough to perform this task at real time, therefore dedicated
hardware designs are required (e.g. as specified in [12]).
Bioinformatics requires DNA sequence matching [2] [3];
that is a very computationally expensive task. To speedup
software programs, several solutions have been proposed,
like in [3] where the DNA sequences are compressed and
a new algorithm is used. Several research groups have
been studying hardware solutions: mostly based on Non-
deterministic Finite Automaton (NFA). In [8] an archi-
tecture that allows extracting and sharing common sub-

expressions to reduce the area of the circuit, is presented.
To change the regular expression to match, it is necessary
to re-generate the HDL description that depends on the pat-
tern. In [4] a NFA has been used to dynamically build ef-
ficient circuits for pattern matching. The implementation
is dependent on the pattern. In [10] an FPGA implemen-
tation is proposed: it requires O(n2) memory space and
processes one text character in one clock cycle. The ar-
chitecture is NFA-based and requires additional time and
space to rebuild its structure. Therefore, the time required
for a matching operation is not constant; it can be linear in
best cases but exponential in worst ones. In [11] a parallel
FPGA implementation allows to increase the throughput for
simultaneous matching of multiple patterns. In [2] a DNA
sequence matching processor for FPGA with a Java inter-
face is presented: parallel comparators are used, but it sup-
ports only simple RE semantics. The work proposed in [1]
focuses on REs pattern matching engines implemented with
reconfigurable hardware: a NFA-based implementation and
a tool for automatic generation of the VHDL description are
presented.

To the best of our knowledge this paper presents a novel
and different approach to the pattern matching problem:
REs are considered the programming language for a ded-
icated CPU. We do not build either Deterministic nor Non-
deterministic Finite Automaton of the RE, hence we do not
require additional setup time as in [10]. ReCPU - the pro-
posed architecture - is a processor able to fetch an RE from
the instruction memory and perform the matching with the
text stored in the data memory. The architecture is opti-
mized to execute computations in a parallel and pipelined
way. It involves several advantages: on average it com-
pares more than one character per clock cycle as well as
it requires linear memory occupation. The processor has
been developed together with a compiler inspired from the
VLIW design style. This has double benefits. First, one
can configure the design for achieving a particular balance
of performance, area, power, etc. Second, the compiler can
automatically fit the high-level language to the suitable ar-
bitrary level of parallelism.
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In Figure 1 the complete working flow is shown: the user
defines the architecture parameters specifying the number
of parallel units. These information are used to synthesize
ReCPU on the hardware design flow, and to compile the RE
- provided by the user - following the software design flow.

Figure 1. ReCPU Framework Flow.

In ReCPU it is possible to easily change the pattern at
run-time just updating the content of the instruction mem-
ory, without modifying the underlying hardware. The state
of the art approaches - [8], [4], [1] - require a re-generation
of the HDL description whenever the processed regular ex-
pression changes. In comparison with the solution proposed
in [8] the key advantage of our approach is the flexibil-
ity. Considering the CPU-like approach a small compiler
is necessary to produce the binary code from the given RE,
specified with the standard syntax.

The novelty introduced by our work can be found:

• in the RE programming language (Section 2);

• in the special-purpose ISA for conveying RE (Sec-
tion 2);

• in the special-purpose CPU targeted for this ISA (Sec-
tions 3, 3.1, 3.2). The proposed architecture has been
implemented on a reconfigurable device to be adapted
to the different run-time working scenarios.

Results of synthesis on FPGA with the corresponding
design space exploration for finding the optimal architecture
are addressed in Section 4. Conclusions and future works
are exposed in Section 5.

2 Compiler Description

ReCPU executes instructions stored in the program
memory. We developed a compiler to translate REs into

bitwise instructions. Section 2.1 focuses on the novel idea
of considering REs an high-level programming language
and Section 2.2 on the compiler structure and compilation
phase.

2.1 RE as High-Level Programming Language

A program is composed by a sequence of instructions,
each of those is a part of the original RE. Following this ap-
proach the final user is able to specify the RE with standard
syntax 1 without the need of programming the special pur-
pose processor at bit-level. In a generic RE single characters
are considered RE that match themselves and additionally a
set of operators are defined (given two REs: a and b):

• a · b: matches strings matching a and b;

• a|b: strings matching either a or b ;

• a∗: strings with zero or more occurrences of a;

• a+: strings with one or more occurrences of a;

• (a): define the scope and precedence of the operators.

2.2 The Compiler and the Compilation Phase

The RE compiler (REc) follows the VLIW approach [5],
where architectural parameters are exposed to the compiler,
that exploits the parallelism issuing the instructions to dif-
ferent parallel units. REc - similarly - is aware of the num-
ber of configurable units in the ReCPU architecture and
based on this it splits the RE into different instructions. This
approach corresponds to a customizable VLIW architecture
where the designer can customize the whole framework:
modifying the number of clusters in the ReCPU to obtain
a different trade-off in terms of performance, power, area,
etc. Once REc is updated with the new hardware parame-
ters a different set of instructions will be generated starting
from the given high-level RE. The binary code produced
by the compiler is composed of opcode and reference, as
shown in Figure 2. The opcode is divided into three slices:
the MSB indicating an open parenthesis, the next 2-bits the
internal operand (i.e. used within the characters of the ref-
erence), and the last bits for the external operand (i.e. loops
and close parenthesis).

The compiler - written in Python - starting from the high
level description of the RE generates the files to be loaded
in the instruction memory and the data memory given the
input text. Controls are performed to detect syntactical er-
rors. Considering the stack-size REc computes the maxi-
mum level of nested parentheses and determines whether
the architecture can execute the RE without overflowing the

1IEEE POSIX 1003.2, as described in [6] and [7].
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Figure 2. ReCPU Instruction Structure.

stack. The novel idea of considering REs as a programming
language is clarified by the following examples: operators
like ∗ and + correspond to loop instructions. Such operators
find more occurrences of the same pattern (i.e. a loop on the
same RE instruction). Complex nested REs are loops on
more than one instruction. The loop terminates whenever
the matching of the current instruction fails.

Nested parentheses (e.g. (((ab)∗ (c|d))|(abc))) are man-
aged as function calls. An open parenthesis inside an RE
is a call instruction while the closed one is a return: in the
former the status of the processor is pushed into the stack
while in the latter is returned. Using such approaches we
can tackle very complex REs by means of well and widely
known processor techniques.

3 Architecture Description

The block diagram of ReCPU is shown in Figure 3. This
section describes the microarchitecture: Data Path in Sec-
tion 3.1 and Control Unit in Section 3.2. ReCPU uses two
separate memories: data for the input text and instruction
for the RE. One of the main features of ReCPU is the ex-
ecution of more than one character comparison per clock
cycle. The architecture is adaptable, i.e. the designer can
specify the number of parallel units: to adapt it to the re-
quirements it is necessary to perform a trade-off in terms of
performance, area, power, etc. To find the optimal archi-
tecture a cost-function has been defined and a Design Space
Exploration has been carried out (see Section 4).

3.1 Data Path

In the Data Path are placed all the different parallel com-
parators organized in Clusters. Each comparator unit com-
pares a character from the input text with one from the pat-
tern. The total number of elements in a cluster - indicated as
ClusterWidth - is the number of characters that can be com-
pared every clock cycle if a sub-RE is matching. This pa-
rameter influences the throughput in case the pattern starts
matching the input text. The processor is composed of sev-
eral Clusters - the total number is indicated as NCluster -

that are used to compare a sub-RE starting by shifted po-
sition of the input text. This influences the throughput in
case the pattern is not matching. Some architectural tech-
niques - pipelining, data and instructions prefetching, mul-
tiple memory ports - are used to increase the parallelism
achieving throughput of more than one character per clock
cycle. The pipeline, controlled by the Control Unit, is com-
posed by two stages: Fetch/Decode and Execute. Due to
the regular control flow of the instructions a good predic-
tion technique - i.e. duplicated instruction-fetching units -
avoids stalls resulting in a reduction of the execution latency
with a consequent performance improvement. In Fetch/De-
code stage, the two instruction buffers load two sequen-
tial instructions: when an RE starts matching, one buffer
prefetches the next instruction and the other keeps a backup
of the first one. If the RE fails the backup instruction is used
without stalling the pipeline. Parallel data buffers and du-
plicated inner registers reduce the latency to access the data
memory. The second stage of the pipeline - fully combina-
torial - is the Execute. The reference forwarded by the pre-
vious stage is compared with the data read from the RAM.
The configurable number of comparator clusters is shown
in Figure 4. Each cluster is shifted by one character from
the previous to process a wider set of data in a single clock
cycle. The results of each cluster are collected and evalu-
ated by the Engine, that produces a match/not match signal
that is analyzed by the Control Unit.

We designed a fully configurable VHDL implementation
that allows to modify some architectural parameters. This
way it is possible to define the best architecture fullfilling
the user requirements, to find a good trade-off between tim-
ing, area constraints and desired performance.

3.2 Control Unit

A RE is defined as a sequence of instructions (i.e. a set
of conditions to be satisfied). Whenever all the instructions
of an RE are matched, the whole RE is satisfied. The Data
Path cannot identify the result of the entire RE and it cannot
request data or instructions to the external memories: the
execution is managed by the Control Unit (see Figure 3):
the core part is the Finite State Machine (FSM) shown in
Figure 5.

In a not-matching condition, the same instruction ad-
dress is fetched while the data address is incremented every
clock cycle. The comparisons are exploited by all the clus-
ters in the Data Path. Thus, several characters are compared
simultaneously. If an RE starts matching, ReCPU switches
to the matching mode.

In this scenario, a single cluster is used. Still more than
one character comparison per clock cycle is achieved by
means of the different comparators of the cluster. In this
state if one of the instructions of the RE fails, the exe-
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Figure 3. Block diagram of ReCPU with 4 Clusters, each of those has a ClusterWidth of 4.

Figure 4. Comparator clusters working on an
input text. The top and bottom pictures cor-
respond to two subsequent clock cycles.

cution has to be restarted from the address where the RE
started to match. Whenever a NOP instruction is detected
the RE is considered complete. ReCPU outputs indicate if
and at which address of the data memory the RE matched

Figure 5. Finite State Machine of the Control
Unit.

successfully. Loops (i.e. + or * operators) are a special
cases, treated with a call/return function-paradigm. As
soon as an open parenthesis (i.e. a call) is decoded, the
Control Unit pushes the current matching status, the pro-
gram counter and the current internal operator in the stack.
The computation continues normally until a return instruc-
tion (i.e. a closed parenthesis followed by an operator) is
fetched. The previous context is restored and the over-
all matching value is updated. If the not matching condi-
tion is verified while processing a call, the stack is flushed,
the whole RE is considered as failed and the computation
restarts.
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4 Experimental Results

In [9], the proposed architecture has been synthesized us-
ing Synopsys Design Compiler on STMicroelectronics HC-
MOS8 ASIC technology library featuring 0.18µm silicon
process: experimental results (area and time constraints)
have been shown for an architecture with NCluster and
ClusterWidth equal to 4. In [9] the proposed architecture
has been compared with other state of the art solutions,
showing an average performance increase of 9.1 times re-
spect to the most commonly used software tool. Table 1
shows the speedup of the architecture with respect to grep2.

Table 1. Performance comparison between
grep and ReCPU on a text file of 65K char-
acters.

Pattern grep ReCPU Speedup
E|F |G|HAA 19.1 ms 32.7 µs 584.8

ABCD 14.01 ms 32.8 µs 426.65
(ABCD)+ 26.2 ms 393.1 µs 66.74

A ReCPU constant performance index of the time re-
quired to process a character cannot be determined due to
the dependence on the input data and the RE. Different sce-
narios are possible (each of those has its performance fig-
ure) - where the input text is:

1. not matching current instruction with · operator;

2. not matching current instruction with | operator;

3. matching current instruction with any operator.

The corresponding time per character (expressed in
ns/char) figures are computed by the following formulas:

1.

Tcnm =
Tcp

NCluster + ClusterWidth − 1
(1)

2.

Tonm =
Tcp

NCluster
(2)

3.

Tm =
Tcp

ClusterWidth
(3)

The time per character can be used to compute the bit-
rate3 Bx:

Bx =
1

Tx
· 8 · 109 (4)

where Tx is either (1), (2) or (3).

In this paper we present a complete Design Space Explo-
ration (DSE) to define the optimal architecture (synthesized

2www.gnu.org/grep
3The bit-rate represents the number of bits processed in a second, it is

computed considering 1 char = 8 bits.

on different Xilinx FPGAs). This represents an outgoing
work towards the exploration of a reconfigurable solution.
We changed the structure modifying the number of parallel
units - i.e. NCluster and ClusterWidth - in the com-
pletely adaptable VHDL description. Finally we analyzed
how area and performance were scaling. We exploited the
DSE using an NCluster between {2, 4, 8, 16, 32, 64} and
ClusterWidth equal to {8}. Increasing the number of
NCluster more characters are checked in parallel, and
so ReCPU results to be faster whenever the pattern is not
matching the input text. Due to the higher hardware com-
plexity the critical path increases and the maximum pos-
sible clocking frequency decreases. On the other side, a
bigger ClusterWidth corresponds to much better per-
formance whenever the input string starts matching the RE
because a wider sub-expression (i.e. an instruction) is pro-
cessed in a single clock cycle. The FPGA synthesis results
are shown in Table 2.

Figure 6. Area and performance cost function
values for different ReCPU configurations.

To evaluate different configurations that have been syn-
thesized and listed in Table 2, we defined a cost function
that takes into account the previous scenarios and considers
the consequences in terms of area and performance:

costf = p1 · Tcnm + p2 · Tonm + p3 · Tm (5)

The function costf(·) evaluates the different perfor-
mance indexes with a corresponding probability for differ-
ent cases. We consider that the probability of having an
and operator in the current instruction is 0.5 as well as the
one of having an or. Among these cases there is respec-
tively the 0.25 probability of matching the pattern and 0.25
of not matching. We consider all the cases equiprobable.
The costf is the resulting average time per character based
on the previous probabilities. p1 is the probability of having
an and operator and the pattern is not matching (0.25), p2 an
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Ncluster ClusterWidth RamWidthData RamWidthInstr FPGA Technology Critical Path Max Freq Area Norm. Area Tcnm Tonm Tm cost
ns MHz EU

2 8 10 8 Virtex-II pro xc2vp30-fg676-7 8.9 111.9 6082 0.133 0.993 4.469 1.1 1.92
4 8 12 8 Virtex-II pro xc2vp30-fg676-7 9.7 102.9 7379 0.162 0.884 2.431 1.2 1.44
8 8 16 8 Virtex-II pro xc2vp30-fg676-7 10.1 99.2 9508 0.209 0.672 1.26 1.3 1.11

16 8 24 8 Virtex-II pro xc2vp30-fg676-7 11.2 89.6 14254 0.313 0.485 0.697 1.4 0.99
32 8 40 8 Virtex-II pro xc2vp30-fg676-7 11.6 86.3 22532 0.494 0.297 0.362 1.4 0.89
64 8 72 8 Virtex-II pro xc2vp30-fg676-7 12.9 77.1 45573 1 0.183 0.203 1.6 0.91
2 8 10 8 Virtex-IV xc4vsx35-ff668-12 7.42 134.778 6218 0.136 0.824 3.71 0.9 1.6
4 8 12 8 Virtex-IV xc4vsx35-ff668-12 7.595 131.658 7327 0.161 0.69 1.899 0.9 1.12
8 8 16 8 Virtex-IV xc4vsx35-ff668-12 8.709 114.818 10030 0.220 0.581 1.089 1.1 0.96

16 8 24 8 Virtex-IV xc4vsx35-ff668-12 9.494 105.329 14335 0.315 0.413 0.593 1.2 0.84
32 8 40 8 Virtex-IV xc4vsx35-ff668-12 9.66 103.52 25470 0.559 0.248 0.302 1.2 0.74
64 8 72 8 Virtex-IV xc4vsx35-ff668-12 10.878 91.932 40220 0.883 0.153 0.17 1.4 0.76
2 8 10 8 Spartan3 xc35400-fg456-5 15.602 64.096 6283 0.138 1.734 7.801 2 3.36
4 8 12 8 Spartan3 xc35400-fg456-5 17.182 58.199 7287 0.160 1.562 4.296 2.1 2.54
8 8 16 8 Spartan3 xc35400-fg456-5 18.198 54.951 10078 0.221 1.213 2.275 2.3 2.01

16 8 24 8 Spartan3 xc35400-fg456-5 20.096 49.762 14776 0.324 0.874 1.256 2.5 1.79
32 8 40 8 Spartan3 xc35400-fg456-5 20.595 48.556 22965 0.504 0.528 0.644 2.6 1.58
64 8 72 8 Spartan3 xc35400-fg456-5 23.086 43.316 41131 0.903 0.325 0.361 2.9 1.61

Table 2. Results after synthesizing ReCPU with different parameters on Xilinx FPGAs.

or operator that does not match the pattern (0.25) and p3 a
matching with any operator (0.5). The optimal cost function
can be different according to the characteristics of the text
and the RE. The goal of this work is to define a complete
framework, not the best cost function.

The plot of Figure 6 has on the X-axis the area occu-
pied while on Y-axis the cost function costf(·). It allows
to select the best architecture according to area and perfor-
mance requirements. The three sets of points correspond to
different FPGA architectures. It is easily possible to iden-
tify which are the optimal Pareto points and which are the
dominated ones.

5 Conclusions and Future Works

Nowadays pattern matching is one of the main compu-
tational and memory intensive tasks. Software solutions
do not meet the performance requirements, so special hard-
ware architectures are proposed. We propose a novel archi-
tecture: a special-purpose processor for regular expression
matching with the definition of a regular expression pro-
gramming language. This approach enables the possibility
of overcoming the current state of the art performance limit
of one character comparison per clock cycle. The architec-
ture is based on a configurable number of comparators and
the compiler is aware of the underlying architecture (fol-
lowing the VLIW paradigm). We implemented ReCPU on
reconfigurable devices, such as Xilinx FPGAs, and we car-
ried out a Design Space Exploration to determine the best
architecture according to the defined cost function: a trade-
off in terms of performance, area, etc. We have shown in
Table 2 the results of the synthesis on three different FP-
GAs: Virtex-II pro, Virtex-IV, Spartan3. In the plot of Fig-
ure 6 it is possible to identify - according to the defined cost
function - which are the optimal configurations.

Future works are focused on the definition of a reconfig-
urable version of the ReCPU based on FPGA-devices. This

way, we could dynamically reconfigure the architecture at
run-time achieving the best performance for the given RE.
We would also like to explore some optimizations for the
REc compiler.
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