
IEICE TRANS. INF. & SYST., VOL.E90–D, NO.12 DECEMBER 2007
1923

PAPER Special Section on Reconfigurable Systems

FPGA-Based Intrusion Detection System for 10 Gigabit Ethernet

Toshihiro KATASHITA†a), Yoshinori YAMAGUCHI††, Members, Atusi MAEDA††, Nonmember,
and Kenji TODA†, Member

SUMMARY The present paper describes an implementation of an in-
trusion detection system (IDS) on an FPGA for 10 Gigabit Ethernet. The
system includes an exact string matching circuit for 1,225 Snort rules on a
single device. A number of studies have examined string matching circuits
for IDS. However, implementing a circuit that processes a large rule set at
high throughput is difficult. In a previous study, we proposed a method for
generating an NFA-based string matching circuit that has expandability of
processing data width and drastically reduced resource requirements. In
the present paper, we implement an IDS circuit that processes 1,225 Snort
rules at 10 Gbps with a single Xilinx Virtex-II Pro xc2vp-100 using the
NFA-based method. The proposed circuit also provides packet filtering for
an intrusion protection system (IPS). In addition, we developed a tool for
automatically generating the Verilog HDL source code of the IDS circuit
from a Snort rule set. Using the FPGA and the IDS circuit generator, the
proposed system is able to update the matching rules corresponding to new
intrusions and attacks. We implemented the IDS circuit on an FPGA board
and evaluated its accuracy and throughput. As a result, we confirmed in a
test that the circuit detects attacks perfectly at the wire speed of 10 Gigabit
Ethernet.
key words: intrusion detection system, intrusion protection system, exact
string matching, FPGA, 10 Gigabit Ethernet

1. Introduction

The purpose of the present paper is to propose a practical
approach to a complete construction of an intrusion detec-
tion system (IDS) based on the FPGA and to demonstrate
the feasibility of its implementation on 10 Gigabit Ethernet.

As network services become increasingly important in
our society, the demand for network security systems is in-
creasing. The IDS is one such system that inspects network
traffic and detects intrusions and attacks. The system is re-
quired to process the traffic at wire speed and to support
a large rule set in order to detect harmful packets without
omissions. Snort [1] is a widely used open source software-
based IDS. However, the processing speed of Snort is much
slower than wire-speed because of the software-based string
matching. In order to accelerate Snort, several approaches
to string matching circuits have been investigated. A string
matching circuit based on the Nondeterministic Finite Au-
tomaton (NFA) was proposed in [2]–[4]. This circuit has ex-

Manuscript received April 10, 2007.
Manuscript revised June 29, 2007.
†The authors are with the National Institute of Advanced In-

dustrial Science and Technology (AIST), Tsukuba-shi, 305–8568
Japan.
††The authors are with University of Tsukuba, Tsukuba-shi,

305–8577 Japan.
a) E-mail: t-katashita@aist.go.jp

DOI: 10.1093/ietisy/e90–d.12.1923

pandability of throughput and flexibility of updating match-
ing patterns with an FPGA. In a previous study, we pro-
posed a method to generate a lightweight scalable NFA-
based string matching circuit [5]. Although an automated
circuit design was also proposed in [6], their circuit was not
implemented in a practical environment and the accuracy of
the circuit was not verified.

In the present paper, we implemented the proposed IDS
circuit, which processes 1,225 rules at 10 Gbps on a sin-
gle FPGA. The circuit has the following features: packet
classification, header inspection, payload inspection, Snort
rule identification, intrusion notification, and intrusion pro-
tection. We evaluated the circuit in a 10 Gigabit Ethernet
environment. As a result, the circuit detected attacks and in-
trusions correctly at the wire speed of 10 Gigabit Ethernet.
We also developed a tool that automatically generates the
circuit from the Snort rule set using the NFA-based method.
The proposed circuit can be updated by the automation tool
and the FPGA device.

The present paper is organized as follows. Section 2
introduces related research. Section 3 describes the imple-
mentation and automated generation tool in detail. Section 4
presents the results of verification and evaluation. Section 5
shows two examples for the construction of practical sys-
tems. Section 6 describes areas for future research, and
Sect. 7 presents conclusions.

2. Related Research

A number of studies have considered the use of the
string matching circuit for the IDS, NFA [2]–[4], DFA [7],
CAM [8], [9], KMP [10], and other memory-based ap-
proaches [11], [12]. Only the NFA-based approach was able
to achieve 100-Gbps throughput, because it was difficult to
extend the processing width in the other approaches.

Memory-based approaches that were able to update the
rule with ASIC were presented. However, since online up-
date was not supported, these approaches also needed du-
plicative systems to support the online-rule update. Al-
though the KMP-based circuit that updated the matching
rules online was proposed in [10], since the processing
width was fixed to eight bits, the throughput was up to
2.4 Gbps.

An implementation approach of the NFA-based circuit
was proposed in [2]. A method with a Self Reconfigurable
Gate Array (SRGA) was presented to update the matching

Copyright c© 2007 The Institute of Electronics, Information and Communication Engineers



1924
IEICE TRANS. INF. & SYST., VOL.E90–D, NO.12 DECEMBER 2007

Fig. 1 Architecture of the IDS circuit.

rule dynamically. However, the SRGA requires much larger
hardware resources than the FPGA because the SRGA has
multiple configuration memory sets and a dynamic recon-
figuration mechanism. Moreover, a practical SRGA device
has not yet been developed.

An automated circuit generation technique was inves-
tigated in [6]. This approach was similar to that if the
present study in terms simplifying the implementation by
dividing the matching pattern. However, the method of divi-
sion was not effective for NFA-based circuit because it max-
imized common characters in patterns for its CAM-based
string matching circuit. Moreover, no circuit has been im-
plemented practically on an FPGA board.

An IDS for 10 Gigabit Ethernet was proposed by
Force10 [13]. This system supports up to 626 rules,
whereas, as of Feb 20, 2007, there were 1,225 rules that
have the “content” payload option in the Snort snapshot rule
set.

3. IDS Implementation

In order to simplify the implementation of the IDS, we de-
signed a simple flow-though architecture and developed a
tool that automatically generates the circuit from the Snort
rule set.

3.1 Architecture

Figure 1 shows the architecture of the IDS circuit. The cir-
cuit consists mainly of a Snort rule processing unit, an intru-
sion protection unit, a long delay queue, and 10 Gigabit Eth-
ernet interfaces. The circuit inspects network traffic through
the following five steps:

(1) Convert the input traffic format from XAUI (10 Giga-
bit Attachment Unit Interface) to XGMII (10 Gigabit
Media Independent Interface) in order to handle “idle”
patterns easily. It is difficult to handle “idle” on XAUI
because there are three types of patterns, all of which
are scrambled. In contrast, it is simple to use one type

Fig. 2 Detail of Step (2).

of pattern on XGMII. The converted traffic is placed on
the delay queue and copied to the Snort rule processing
unit. Invalid packets are deleted in this step.

(2) Extract packets from the traffic and divide them into a
header and a payload. Packets are classified by proto-
col and type, i.e., UDP, TCP, IP, and ICMP. The header
is split into properties, a frame type, an IP address, a
port number, and so on (see Fig. 2).

(3) Inspect the header and the payload. The header prop-
erties are checked by the comparator arrays. The pay-
load is searched for the matching patterns by the NFA-
based string matching circuit. Matching result signals
are generated for each rule and are passed to the Snort
rule detector in parallel.

(4) Detect the Snort rule by combining the header and pay-
load matching results. A rule detector for each rule
generates the results in parallel. The result signals are
masked by the mask resisters in order to inform the rule
detection once at each packet. The results are encoded
into an 11-bit ID and a validation bit at the priority en-
coder. Figure 3 shows the detail of the Snort rule de-
tector.

(5) Report the intrusion detection result to a host PC. The
detection report circuit counts and tabulates the fre-
quency for each rule. The circuit also accumulates
the lengths of matched and unmatched packets, respec-
tively, at every 125 ms in order to measure the traffic
throughput. These results are reported to the host PC.

The intrusion detection is processed within the flow of



KATASHITA et al.: FPGA-BASED INTRUSION DETECTION SYSTEM FOR 10 GIGABIT ETHERNET
1925

Fig. 3 Detail of Step (4).

network packets through the delay queue. Consequently, the
circuit latency is of fixed length.

The circuit has an intrusion protection function
wherein the matched attacks and intrusions are removed by
the following three additional steps:

(6) Determine whether the matched packet should be re-
moved. The filtering controller checks the result id and
the validation bit and writes a filtering bit onto a ring
buffer at end of each packet. The controller is config-
ured as all the matched packets are removed in the case
of implementation.

(7) Remove the suspicious packets according to the filter-
ing bit. The packet filter loads the bit from the ring
buffer when the packet leaves the delay queue. The
packet that should be removed is replaced by the “idle”
pattern of XGMII.

(8) Convert the output traffic format from XGMII to
XAUI. Hence, the filtered packets are handled as
“idle”, and the attacks and intrusions are removed con-
tinuously at wire speed.

The main data-path of the circuit is 64 bits in width and
so processes the traffic at 10 Gbps in 156.25-MHz clock op-
eration. The latency and maximum packet length are asso-
ciated with the depth of the delay queue of which the depth
is configured to be 16,384, namely, the maximum packet
length is 16,384 bytes in order to support jumbo frames. The
latency is 16,384 + α† cycles (approximately 105 μs).

Rule updating is supported offline by reconfiguring the
FPGA. Depending on the rule, three blocks are primarily
changed: the header matching circuit, the NFA-based string
matching circuit, and the Snort rule detector. other blocks,
such as the priority encoder and the detection report circuit,
are fixed except for exceeding 2,048 rules, because the width
of the ID bus in the implementation is 11 bits. We developed
typical templates of the fixed blocks for the number of the
rules.

3.2 Automatic Generation Tool

We developed an IDS circuit generation tool with Java. The
tool automatically generates a Verilog HDL source code of
the three changeable blocks from the Snort rule set. The
other fixed circuits are provided as templates. The entire
IDS circuit is constructed with the tool and the templates.
Figure 4 shows the procedure for generating the circuit. The
newly developed tool processes the following six steps:

Fig. 4 Procedure for generating the IDS circuit.

(1) Analyze the Snort rule set. Each rule in the rule set is
decoded into three properties: messages, a header rule,
and payload rules.

(2) Enter the header and payload rules into the header and
pattern table, respectively. Duplicative rules that are
already registered in the tables are removed. When the
property definition is preceded by a ‘!’, a negation bit
is enabled. The negation bit indicates that the signal is
alerted if the property does not match. The table index
and the negation bit are stored in the rule table. The
table index indicates whether the header and payload
matching result corresponds to the Snort rule.

(3) Generate the string matching circuit with the NFA-
based approach [5] from the pattern table.

(4) Generate the header matching circuit employing com-
parator arrays. The comparator arrays are constructed
independently for each source port, destination port,
packet type, and so on. The comparator supports ex-
act and range matching.

(5) Generate the rule detector for each rule. One-hot state
machines are generated from the table indexes and the
negation bits.

(6) Provide the templates of the other fixed circuits accord-
ing to the number of rule IDs.

The tool generates the Verilog HDL source codes, a
Snort message table, debug information, and a generation
log. The tool finishes the circuit generation within one
minute. The three changeable circuits have scalable archi-
tectures in the processing width. We have determined that
the string matching circuit achieved over 100 Gbps with a
512-bit processing width [14]. In the implementation, we
selected a 64-bit width for 10-Gbps processing in 156.25-
MHz operation. The templates for 64-bit processing and the
XAUI interface are developed. We also provide 8-bit pro-
cessing templates and a GMII interface for Gigabit Ethernet.

The Snort message table is used to identify the Snort

†The latency of the XAUI-XGMII translator and the packet fil-
tering circuit.



1926
IEICE TRANS. INF. & SYST., VOL.E90–D, NO.12 DECEMBER 2007

Fig. 5 Example of sharing duplicative states.

Fig. 6 Generating the string matching circuit: Step (1).

rule from the detection reports on the host PC. The de-
bug information includes the header and payload properties
needed to generate pseudo intrusions and attacks for testing
the system. The generation log shows the processing report,
for instance, an estimated quantity of the circuit, Snort anal-
ysis details, and an unsupported options report.

The IDS is composed primarily of the string matching
circuit. Consequently, optimizing the string matching circuit
is crucial in order to improve the performance and resource
utilization of the system. For unsophisticated approaches,
the resource requirement of the circuit increases markedly
as the processing width expands [4]. On the other hand, our
automation tool generates a lightweight scalable circuit us-
ing the NFA-based method proposed in [5]. The NFA-based
method reduces the resource utilization of the circuit with-
out reducing its performance by sharing redundant states
and state transition conditions (STCs). Figure 5 shows an
example of sharing duplicative states in an 8-bit processing
NFA with four patterns: “he”, “she”, “his”, and “hers”. The
states that have the same prefix characters can be shared.
There are five different STCs in the right NFA, “h”, “e”, “r”,
“s”, and “i”, whereas nine STCs. In other words, four STCs
are duplicative. For other processing widths, the redundant
states and STCs can be shared in the same manner.

The NFA-based string matching circuit is generated
from the matching pattern through the following three steps:

(1) Extract the duplicative STCs (see Fig. 6). All of the
STCs are extracted by constructing the temporal NFA
of each matching pattern. The STCs already registered
in the table are removed. The NFA is discarded at end
of Step (1).

(2) Generate a state tree of the NFA (see Fig. 7). The NFA
tree for all matching rules is generated by employing
the construction of a goto-function in the Aho-Corasick

Fig. 7 Generating the string matching circuit: Step (2).

Fig. 8 Generating the string matching circuit: Step (3).

approach [15]. The state table and the result table are
constructed. The state table includes the previous state
and the STC for each state. The result table includes
the respective states of matching results.

(3) Build the circuit from the STC table, the state table,
and the result table (see Fig. 8). The circuit consists of
comparators, AND-gates, an NFA, and OR-gates. Flip-
flops are placed on each output signal to improve the
maximum delay.

We reduced the resource requirement by over 50%
compared with a previous study [4]. However, the proposed
method generated large fan-out signals because the reduc-
tion was achieved by sharing redundant resources. The large
fan-out signals consume limited interconnect resources on
the FPGA. In particular, the large fan-out caused by sharing
STC signals constituted a limiting factor of the implementa-
tion. Upon first implementation, we failed in routing due to
an excessively high STC signal density. Therefore, we cus-
tomized the newly developed tool such that the string match-
ing circuit is divided into several units in order to reduce the
fan-out density of the STC signals. The shared states are
maintained by dividing the patterns according to these pre-
fixes, because reducing the number of states is effective for
decreasing the fan-out of the STC signals. Only the NFA
refers to the STCs.



KATASHITA et al.: FPGA-BASED INTRUSION DETECTION SYSTEM FOR 10 GIGABIT ETHERNET
1927

Fig. 9 Photograph of the IDS.

Fig. 10 Composition of the IDS.

3.3 Implement on the FPGA System

We implemented the IDS on a high-performance FPGA
board system. The system consists of two types of FPGA
boards, a main board, and an interface board. The main
board equips a Virtex-II Pro 100 device [16], ten Infini-
band 1X ports, two DDR-SDRAM SO-DIMM sockets, four
individual DDR2-SRAMs, and four flexible PCB connec-
tors. The interface board equips a Virtex-II Pro 7 de-
vice, four Infiniband 1X ports, and an XPAK socket with a
10GBASE-SR module. Figures 9 and 10 show photographs
of the system and its composition, respectively. The main
board is connected to two interface boards with four In-
finiband 1X channels each. The throughput of each chan-
nel is 3.125 Gbps bi-directionally with an InfiniBand cable
that has a performance margin that enable translation at over
2.5 Gbps. The packets are transferred through the four chan-
nels at 10 Gbps employing the XAUI format. We previously
verified the channels and adjusted a pre-emphasis parameter
of Rocket IOs. The main board is also connected to the host
PC through IEEE 1394 in order to report intrusion detection.

The system notices the detection report at each 125 ms
as the throughput and the detection frequency of each Snort
rule. Figure 11 shows an example of the graphical report.
The top graph shows the throughput of the input traffic that
is divided into normal packets and attack packets. The mid-
dle graph shows the categories of intrusions and attacks.

We generated an IDS circuit that has 1,225 rules and
processes at 10 Gbps from the Snort snapshot rule set on Feb
20, 2007. The number of rules was approximately twice that
of Force10 IDS. The rules had “content” in their payload op-

Fig. 11 Example of an intrusion detection report.

tions. The payload options contained 1,221 string patterns.
The total length of the string patterns was 14,404 characters,
and the average length was 11 characters. Table 1 presents
the content of the subset rule. The rules are categorized
based on alert messages. For example, the “EXPLOIT ssh
CRC32 overflow NOOP” rule in the “EXPLOIT” category
alerts of an attack to exploit vulnerable versions of the SSH
daemon. Detail information of the rules is provided in the
doc/signatures directory of the Snort rule set.

The string matching circuits were generated along six
variations of division: non-division, 2, 3, 4, 5, and 6 units.
The maximum operational frequency was configured as
156.25 MHz (64-bit, 10 Gbps). Xilinx ISE 8.2 sp3 was em-
ployed as a synthesis and routing tool. A timing-driven map-
ping and a middle effort level of routing were enabled. The
entire IDS circuit was implemented on the main board. An
interface board was used as a 10-Gigabit-Ethernet transmit-
ter.

Table 2 shows the implementation results. The re-
source utilization is represented as the LUTs and FFs. The
Slices show the area occupied by the LUTs and FFs. The
routing failed in the case of non-division and two-unit de-
sign because of the excessively high density of the intercon-
necting signals. The three-unit design could not fit the tim-
ing constraint. The designs of four, five, and six units could
be implemented successfully. As a consequence, string
matching unit division is verified to be effective for simpli-
fying the implementation, although the resource utilization
increased with the number of units.

Although the number of Slices of the four-unit design
was fewer than that of the three-unit design, the resource
utilization increased. This was probably caused by small
fan-out because it was easy to pack the LUTs and FFs into
the Slices. Figure 12 shows the floor plan of the four-unit
design. The design has 1,221 (= 309 + 320 + 283 + 309)



1928
IEICE TRANS. INF. & SYST., VOL.E90–D, NO.12 DECEMBER 2007

Table 1 Categories of the subset rule.

rule category #rules

ATTACK-RESPONSES 16
BACKDOOR 457

CHAT 25
DDOS 27

DNS 17
DOS 5

EXPLOIT 57
FINGER 12

FTP 17
ICMP 25
IMAP 7
INFO 5
MISC 35

MULTIMEDIA 4
MYSQL 4

NETBIOS 11
ORACLE 10

OTHER-IDS 3
P2P 20

POLICY 27
POP2 2
POP3 12

PORN 21
RPC 36

RSERVICES 13
SCAN 11

SHELLCODE 21
SMTP 29
SNMP 9

SPYWARE-PUT 61
MS-SQL/SMB 28

MS-SQL 50
TELNET 18

TFTP 14
WEB-CGI 4

WEB-CLIENT 10
WEB-COLDFUSION 16

WEB-IIS 16
WEB-MISC 64

WEB-PHP 4
X11 2
total 1225

Table 2 Results of IDS circuit implementation.

#unit routing timing Slices LUTs FFs

non-division ng ng 31865 58347 53196
2 ng ng 33183 61108 56059
3 ok ng 35191 62370 57653
4 ok ok 34996 63663 59173
5 ok ok 35978 64397 60170
6 ok ok 36573 65642 61188

strings for 1,225 Snort rules. Most of the resources are oc-
cupied by the string matching circuit.

4. Evaluation

We evaluated the circuit of the four-string-matching-unit de-
sign with a network test system. The test system verifies fil-
tering accuracy while measuring performance on 10 Gigabit
Ethernet. Verification was performed by the following three
steps (see Fig. 13):

Fig. 12 Floor plan of the IDS circuit.

Fig. 13 Testing the IDS.

(1) Generate traffic that includes attacks and intrusions
from an intrusion model that presents the properties
of the attacks and intrusions. For instance, the traf-
fic of a DDoS attack has numerous packets that include
specific ICMP payloads and different source addresses.
The generated traffic is sent from the tester to the IDS.

(2) Let the IDS process the traffic. If the IDS operates cor-
rectly, all of the attacks and intrusions will be filtered.
The tester receives the returned traffic.

(3) Compare the returned traffic with the sent traffic to ver-
ify the filtering accuracy. The tester verifies the traffic
at wire speed. Finally, the result is reported to the host
PC.

The attack packets were generated from the debug in-
formation of the circuit generation tool, namely, if the IDS
worked correctly, 1,225 types of attacks were detected. The
normal packets were ICMPs that had a specific length range
of random payloads. The lengths of the normal packets were
controlled within a specific range to change the throughput
of the traffic. The normal packets were confirmed in ad-



KATASHITA et al.: FPGA-BASED INTRUSION DETECTION SYSTEM FOR 10 GIGABIT ETHERNET
1929

Table 3 Power consumption of the IDS.

voltage (V) current (A) power (W)

main 3.3 7.61 25.113
board 5.0 0.34 1.700

12.0 0.09 1.080
summary 27.893

interface 3.3 1.24 4.092
board 5.0 2.99 14.950
(two boards) 12.0 0.18 2.160
summary 21.202

total 49.095

Table 4 Power consumption of a computer-based IDS.

voltage (V) current (A) power (W)

ATX unit 3.3 4.96 16.37
5.0 4.53 22.65

12.0 5.99 71.88
summary 110.90

vance not to match the attack rules. The throughput was
also controlled by gaps between the packets. We confirmed
that the traffic was controlled dynamically in with respect to
throughput, rate of the attacks, and types of attacks.

We verified the applicability of the proposed circuit us-
ing various pseudo traffic. As a result, the circuit filtered
the attacks and intrusions accurately in all of the traffic. For
example, either the sent traffic had 595,642 packets that in-
cluded 93,086 attacks, or the received traffic from the IDS
included 502,556 normal packets and no attacks. The num-
ber of received normal packets was identical to the num-
ber of sent packets, 595, 642 − 93, 086 = 502,556. Conse-
quently, the results indicate that the IDS removed the attacks
accurately. In addition, the maximum throughput at which
the circuit processes correctly without dropping packets was
the wire speed of 10 Gigabit Ethernet.

We also evaluated the power consumption of the cir-
cuit. The FPGA system is powered by an ATX supply
unit. We measured the power consumption through the ATX
power cable using a digital clamp meter. Table 3 shows the
power consumption of the main board and the two interface
boards.

On the main board, the 3.3-V line was consumed
mainly by the FPGA and the memory devices. Other lines
were used by peripheral circuits and fans. On the inter-
face boards, 5.0-V line was consumed by the 10GBASE-SR
modules and the FPGAs. The 3.3-V and 12.0-V lines were
used by IO pads on the FPGA and fans, respectively. The to-
tal power consumption of the system was 49.095 W, which
is much less than the 110.90 W required the Xeon 3.06-GHz
computer-based IDS for 1 Gigabit Ethernet (See Table 4).†

The main reason for the low power consumption is that
most of the states are stable in the NFA-based string match-
ing circuit. In other words, most of the duplicative signals
that enter the hot state synchronously have been minimized
by the proposed method. Since there are few signal switch-
ings on FPGA, the dynamic power consumption is small.
Furthermore, the states barely became hot in the 64-bit pro-

Fig. 14 IDS structure to support online-rule update.

cessing. For example, the probability of the STC string “eth-
ernet” appearing in the 64-bit data bus is (1/256)8.

5. Constructing a Practical System

In this section, we show two approaches to operating the
IDS with the proposed circuit, online-rule update, and large
rule set support.

5.1 Online-Rule Update

The system can be composed so as to support online update
of the Snort rule with two main FPGA boards and extended
interface boards. Figure 14 shows the system composition.
The interface boards require eight Infiniband 1X ports. In
other words, two XAUI ports are needed. The input traffic
is duplicated on each main board, and the output traffic is
selected from the data of both of the main boards. The in-
terface boards switch the flow of the traffic synchronously
without blocking the IDS processing. The output timing of
the main boards is simultaneous because the latency of the
circuit on the main board is constant. Figure 15 shows the
procedure for online update of the Snort rule. The system
updates the rule set by the following three steps:

(1) Reconfigure one of the main boards. The board is
switched to be offline and is reconfigured to support a
new rule. The reconfiguration will be performed within
one second.

(2) Seek a switching point. When the reconfiguration is
finished, the main boards process the same flow by
each rule. The removed packets are different because
of the different rules. Therefore, the switching point
must be at an “idle” cycle in both traffics. The inter-
face board finds the switching point.

(3) Switch the flow at the point. The flow to the other main
board is cut. The board is reconfigured with the same
rule set.

5.2 Support Large Rule Set

In the previous section, the implementation results indicate
that the resource utilization for the 1,225 Snort rules was

†The PC-based IDS was measured in the same manner as the
proposed IDS. The power consumption of Force10 IDS has not
been reported.



1930
IEICE TRANS. INF. & SYST., VOL.E90–D, NO.12 DECEMBER 2007

Fig. 15 Procedure for online-rule update in the IDS.

Fig. 16 Support large rule set.

34,996 Slices (79% of the device), 63,663 LUTs, and 59,173
flip-flops in the four-unit design. Consequently, it is dif-
ficult to support a much larger rule set with a single FPGA
(Virtex-II pro 100). However, the proposed IDS architecture
can support the stacking of multiple main boards. Figure 16
shows an example of stacking two boards, the 2,500 rules
are divided into two rule sets. The latency and power con-
sumption increase in proportion to the number of stacked
boards. In the case of 10,000 rules, the system requires eight
main boards and two interface boards. The main board con-
sumes 27.893 W and has a latency of 105 μs, and the two
interface boards consume 21.202 W. Therefore, the power
consumption is 27.893× 8+21.202 = 244.346 (W), and the
latency is 105 × 8 = 840 (µs).

6. Future Work

In the present paper, we described a practical IDS for 10
Gigabit Ethernet with 1,225 Snort rules. In the future, we
intend to investigate rule support enhancement, packet pre-
processing, and verification on a practical network.

The proposed system supports the subset rules that
have “content” in their payload options. However, there are

other options. We intend to support these options by im-
proving the circuit generation tool so as to handle regular
expressions and by developing a sequencer to handle non-
pattern-matching rules.

In addition, packet preprocessing will be incorporated
into the proposed system in order to reassemble fragmented
frames. Frame reassembly will enable the detection of
matching patterns that stride across the fragmented frames.
Hardware-based preprocessing was investigated in [17].

Finally, we intend to evaluate the utility of the proposed
system and determine the number of rules that is required
for practical use. Although there are 6,880 rules in the Snort
rule set, a subset is used in the practical IDS. For example,
if there is no Web server at a site, its related rules are not
needed.

7. Conclusion

In the present paper, we proposed an approach by which to
construct an FPGA-based IDS from the Snort rule set and
demonstrated the implementation of the proposed system.
In addition, we developed an automation tool that generates
the circuit from the rule set with the NFA-based algorithm.
The system is able to update the rules corresponding to new
intrusions and attacks employing the tool.

We implemented the circuit that has 1,225 rules on the
single FPGA for 10 Gigabit Ethernet. The tool was con-
figured to divide the string patterns. Our implementation
revealed that the division of the string matching circuit was
effective in simplifying the routing. The IDS was also veri-
fied to process 1,225 rules correctly at the wire speed of 10
Gigabit Ethernet and to have a low power consumption of
49.095 W.

References

[1] M. Roesch, “Snort — Lightweight intrusion detection for networks,”
13th Systems Administration Conference, LISA ‘99, pp.229–238,
1999.

[2] R. Sidhu and V.K. Prasanna, “Fast regular expression matching us-
ing fpgas,” Proc. IEEE FCCM 2001, pp.227–238, 2001.

[3] B.L. Hutchings and D.C.R. Franklin, “Assisting network intrusion
detection with reconfigurable hardware,” FCCM2002, pp.111–120,
2002.

[4] C.R. Clark and D.E. Schimmel, “Scalable pattern matching for high
speed networks,” FCCM2004, pp.249–257, 2004.

[5] T. Katashita, A. Maeda, K. Toda, and Y. Yamaguchi, “A method
of generating highly efficient string matching circuit for intrusion
detection,” FPL2006, pp.799–802, 2006.

[6] Z.K. Baker and V.K. Prasanna, “A methodology for synthesis of effi-
cient intrusion detection systems on FPGAs,” FCCM2004, pp.135–
144, 2004.

[7] Y. Sugawara, M. Inaba, and K. Hiraki, “Over 10 Gbps string
matching mechanism for multi-stream packet scanning systems,”
FPL2004, pp.225–234, 2004.

[8] I. Sourdis and D. Pnevmatikatos, “Pre-decoded cams for efficient
and high-speed nids pattern matching,” FCCM2004, pp.258–267,
Napa, CA, 2004.

[9] J. Singaraju, L. Bu, and J.A. Chandy, “A signature match processor
architecture for network intrusion detection,” FCCM2005, pp.235–
242, Napa, CA, 2005.



KATASHITA et al.: FPGA-BASED INTRUSION DETECTION SYSTEM FOR 10 GIGABIT ETHERNET
1931

[10] Z.K. Baker and V.K. Prasanna, “Time and area efficient pattern
matching on fpgas,” FPGA’04, pp.223–232, 2004.

[11] G. Papadopoulos and D. Pnevmatikatos, “Hashing + memory = low
cost, exact pattern matching,” Field Programmable Logic and Ap-
plications, 2005, pp.39–44, 2005.

[12] P. Katta, M. Nourani, and R. Panigrahy, “String matching engine
using parallel hashing,” PDCS 2006, pp.478–483, 2006.

[13] “Force 10 networks p-series, motel p10 intrusion prevention system
performance evaluation,” Tech. Rep. 206126, THE TOLLY GROUP,
2006.

[14] T. Katashita, A. Maeda, K. Toda, and Y. Yamaguchi, “Highly ef-
ficient string matching circuit for ids with FPGA,” FCCM2006,
pp.285–286, 2006.

[15] A.V. Aho and M.J. Corasick, “Efficient string matching: An aid
to biblographic search,” ACM Commun., vol.18, no.6, pp.333–340,
1975.

[16] Xilinx Inc, DS083, Virtex-II Pro and Virtex-II ProX Platform FP-
GAs: Complete Data Sheet.

[17] D.V. Schuehler and J. Lockwood, “Tcp-splitter: A tcp/ip flow mon-
itor in reconfigurable hardware,” High Performance Interconnects,
2002, pp.127–131, 2002.

Toshihiro Katashita received his B.E. in
1997, his M.E. in 1999, and his Ph.D (Eng.) de-
gree in 2006 from University of Tsukuba. He is
a researcher at AIST. His research interests are
FPGA based systems, circuit design, and net-
work security.

Yoshinori Yamaguchi received his B.S.
degree in electrical engineering from the Uni-
versity of Tokyo in 1972. He received his PhD
degree from The University of Tokyo in 1993.
He is a professor at the Graduate School of Sys-
tems and Information Engineering at University
of Tsukuba. Before coming to University of
Tsukuba, he worked at Electro Technical Lab-
oratory from 1972 to 1999. His research inter-
ests are areas of computer architecture, paral-
lel computer systems, computer networking and

real-time systems. He has engaged in investigations of high-level language
machines and parallel computer projects EM-3, EM-4, EM-X at Electro
Technical Laboratory. He is currently interested in FPGA-based systems
and high-speed network systems. He is a member of the IEEE Computer
Society and the Information Processing Society of Japan. He received the
IPSJ best paper award in 1991 and the Ichimura Award in 1995.

Atusi Maeda received his B.E. in 1986,
his M.E. in 1988 and his Ph.D.(Eng.) degree
in 1997 all in mathematics from Keio Univer-
sity. He was a research associate in University
of Electro-Communications from 1997 to 1999.
He is currently an Associate Professor at Grad-
uate School of Systems and Information Engi-
neering, University of Tsukuba. His research in-
terests are programming language implementa-
tion, system programming, and garbage collec-
tion. He is a member of ACM, IPSJ, and JSSST.

Kenji Toda received the M.S. degree from
the Keio University, Japan in 1982. He is the
leader of Real-Time Embedded System Semi-
Group in National Institute of Advanced Indus-
trial Science and Technology (AIST). His re-
search interests are real-time computing, em-
bedded systems, and network applications. He
is a member of IPSJ.


