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ABSTRACT
TCP and IP fragmentation can be used to evade signature
detection at Intrusion Detection/Prevention System (IDS /
IPS). Such fragments may arrive out-of-sequence to escape
from being detected by the string matching algorithm of IDS
/ IPS. The common defense is buffering and reassembling
packets. However, buffering of out-of-sequence packets can
become impractical on high speed links due to limited fast
memory capacity, especially when the concurrent flows are
in large quantity, or extremely disordered in circumstances
such as attacks. So such buffering strategy is vulnerable to
memory exhausting denial of service (DoS).

In this paper, AC-Suffix-Tree, a buffer free scheme for string
matching is proposed, which detects patterns across out-of-
sequence packets without buffering and reassembly. This
novel algorithm associates the classical Aho-Corasick (AC)
algorithm with a pattern suffix tree to search patterns with
only the state numbers of AC automaton and suffix tree
stored. It demands significantly less memory than buffer-
ing the packets themselves. Therefore the IDS can resist
memory exhausting DoS attack. AC-Suffix-Tree consumes
1-2 orders of magnitude less memory than buffering the en-
tire packet, and it has the same temporal complexity as AC
algorithm when there are no out-of-sequence packets.

Categories and Subject Descriptors
C.2.0 [Computer Communication Networks]: General—

Security and protection

General Terms
Algorithms, Security

Keywords
String Matching, Packet Reordering, Network Security

1. INTRODUCTION
Network security devices such as IDS/IPS or content filter-
ing devices are widely deployed. Briefly, an IDS is a device
tapping packets from a link and alerts for possible intru-
sions. An IPS is similar to an IDS, except it is inline and
drops malicious packets instead of generating alerts. Most
IDS/IPS are signature based, they keep a set of signatures
(strings or regular expressions) and match them against pay-
load of incoming packets. When there is a match, the packet

is identified as malicious. The most popular multi-pattern
matching algorithm used in IDS/IPS is AC [2], which works
at linear time. It can locate multiple patterns at the same
time in network traffics.

A flow in network is a finite sequence of packets, which have
the same five-tuples (source IP, destination IP, source port,
destination port, protocol). If the length of a transferred
string exceeds the maximum capacity of one packet, it is
divided into segments and encapsulated into packets. The
packets may reach network devices in an undetermined order
due to multiple routes, packet retransmission or IDS evasion.
Such phenomenon is called packet reordering.

In order to detect target strings (patterns) which are dis-
persed in different packets, an IDS/IPS has to buffer and
reassemble out-of-sequence packets. What is the current sit-
uation of packet reordering in Internet? In 2005, Dharma-
purikar found that packet reordering in TCP traffic only
affects 2-3% of the overall traffic[6]. An older paper reports
that 90% of the TCP packets were reordered in the trace
of Dec. 1997 and Jan. 1998 [3], but Dharmapurikar claims
it was because the older generation of router architecture.
Anyway, even if packet reordering is not serious in normal
traffic, reassembling all the traffic is a common solution in
IDS/IPS. Another solution is traffic normalizers, which are
located in networks to remove ambiguous traffic before being
exposed to IDS/IPS [7]. A normalizer still needs to maintain
the state of each connection and to buffer out-of-sequence
packets. Both the method of reassembly and normalizer re-
quire a large quantity of resources, thus bring potential bot-
tleneck when working with high speed networks, and make
IDS/IPS vulnerable to memory exhausting attacks [10].

There have been several attempts detecting attacks without
reassembly or normalizers. George Varghese etal. proposed
an approach named Split-Detect[9]. It split the signature
into pieces. Detection of any piece will cause the fast path
of IDS divert the TCP flow to the slow path. The processing
and storage requirements of Split-Detect can be 10% of that
required by a conventional IDS. Split-Detect is set out to
solve the same problem as this paper does, but it does not
completely avoid reassembly. It just offloads the reassembly
from fast path to slow path, so that not every flow needs
to be reassembled. The slow path still needs to reassem-
ble packets. Moreover, according to the paper, Split-Detect
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requires three assumptions: a small modification to TCP
receivers, a change in the definition of signature detection,
and a restriction to exact signatures or regular expressions
with a fixed exact length. All of the three assumptions are
difficult to satisfy.

Another related paper is [12], in which an algorithm named
On-Line Reassembly (OLR) is proposed. It utilizes a DAWG
to store patterns and records the automaton state to avoid
reassembly. This idea is very like our algorithm, but this
paper does not consider the situation that a coming packet
exactly fits a hole, thus it is logically incomplete. Moreover,
our algorithm uses AC automaton, which is faster and is
the most popular string matching algorithm in modern IDS.
Our algorithm is also compatible with other AC-based string
matching algorithms, which makes our algorithm more prac-
tical.

In order to develop a buffer-free scheme to process strings
across the payload of packets, and to solve the reordering
problem, we proposed a novel scheme using a suffix tree in
the matching process. Dharmapurikar has used the concept
of hole to measure the reordering issue. As described in
Fig. 1, A hole is defined as a sequence gap which occurs
in the TCP stream when a packet arrives with a sequence
number greater than the expected one [6]. The size (the
number of packets delayed) and the duration (the number
of packets till the hole is filled) of the hole can largely affect
the buffer needed for reassembly. But our scheme is not
sensitive to the size or duration of the holes; buffer size is
only related to the number of successive blocks in current
flow. Each buffer entry for one successive block is just 28
Bytes, which makes the memory usage under control even
in the worst case. In the common case, when packets come
in order, the temporal complexity is the same as AC because
there is no chance to use suffix tree.

Standard suffix tree has a tremendous space usage. In order
to compress the size of the suffix tree, we proposed a data
structure combining suffix tree and suffix array. Such data
structure has the same spatial complexity as AC state ma-
chine, yet has the same temporal complexity as the standard
suffix tree structure.

The remainder of this paper is organized as follows: Sec-
tion 2 gives the formulation and notations of the string
matching problem, and introduces AC and suffix tree al-
gorithm. Section 3 describes our scheme in detail. Section 4
analyzes the performance of the algorithm. Experiments
have been taken for both spatial and temporal performance
evaluation and results are discussed. As a summary, in Sec-
tion 5, we state our conclusion.

2. BACKGROUND
Before introducing our scheme, some notations must be de-
fined to help description. The classic algorithms of AC Au-
tomaton (ACA) and Pattern Suffix Tree (PST) should also
be introduced because they are important components in
our scheme described later.

2.1 Notations
In this paper, a flow is considered as a complete string, and
a packet of the flow is treated as a segment of it. A misuse
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Figure 1: Concept of hole and successive blocks

pattern in IDS/IPS can be of various forms, such as byte
string, regular expression, and so on. In this paper, we focus
on string patterns that are signatures of intrusion. IDS/IPS
should detect/block flows with these patterns to protect the
digital assets behind it.

This paper uses the notations in the book Algorithms on
Strings [5] :

A string is a finite sequence of elements of a alphabet A,
which is a finite nonempty set whose elements are called
letters. A zero letter sequence is called an empty string
and is denoted by ε. The set of all the strings on the alphabet
A is denoted by A∗. The length of a string x is denoted by
|x|, and the letter at index i (begin with 0) of x is denoted
by x[i], where i ∈ {0, 1, . . . , |x| − 1}. The product – also
called the concatenation – of two strings x and y is the
string composed of the letters of x followed by the letters of
y. It is denoted by xy.

A string x is a factor of a string y if there exist two strings
u and v such that y = uxv. When u = ε, x is a prefix of y;
and when v = ε, x is a suffix of y. A factor x of a string y
is proper if x �= y. It is denoted respectively as x �fact y,
x ≺fact y, x �pref y, x ≺pref y, x �suff y and x ≺suff y when
x is a factor, a proper factor, a prefix, a proper prefix, a
suffix and a proper suffix of y.

Besides the notations above, some new notations about seg-
ment are introduced to help explanation:

A segmented string (denoted by Y ) is a string in the form
of y1y2 · · · yn. Here n � 2, and yi ∈ A∗, yi �= ε for i =
1, 2, . . . , n. A pattern set (denoted by X) is a set of pattern
strings that IDS/IPS inspect against.

y1, y2, . . . , yn are called segments of Y , and they may come in
undetermined order. For each segment yi, it can get through
or get lost in network links. The segments get through can
be combined to several successive blocks of Y . If no pattern
x ∈ X can be found in these successive blocks, it can be
determined no threats are in this flow.

2.2 AC Automaton
The AC algorithm is one of the most popular multiple pat-
tern matching algorithms. It compiles the pattern set to
a deterministic finite automaton (DFA). Each state stands
for a letter in the pattern set, and one state may belong to
multiple patterns. The AC algorithm sequentially reads the
input string and search along the DFA. It has linear per-
formance to the length of the input string, regardless of the
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typedef struct{
uint_32 NextState[ ALPHABET_SIZE ];
uint_32 FailState;
AC_PATTERN *MatchList;

}AC_NODE;

Figure 2: Data structure of AC NODE
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Figure 3: DFA of pattern set X = {abaaba, ababab}

Table 1: Output Function of X

state 6 9 others

output(state) {abaaba} {ababab} ∅

number and length of the search strings.

The implementation of AC can be divided into preprocess-
ing and searching stages. During the preprocessing stage, a
DFA is built according to the pattern set. Such DFA con-
tains some goto functions which determines the next state
for current input letter, some failure functions which indi-
cates the next state when there is no goto function for cur-
rent input letter, and some output functions which output
successful matches on current state.

The data structure of AC state node is shown in Fig. 2. The
ALPHABET_SIZE is 256, so the size of the data structure is
1032 Bytes.

Fig. 3 is an example of DFA for pattern set X = {abaaba,
ababab}. Its output function is shown in Table 1.

The searching stage is described in Function 1. The return
value contains the final state and a list of matched patterns.

2.3 Pattern Suffix Tree
A Pattern Suffix Tree (PST) of a pattern set X is a trie
which is built from the proper suffix set of X. For example,
let X = {abaaba, ababab}, the proper suffix set of X is

{a, ba, aba, aaba, baaba, b, ab, bab, abab, babab}
an example of PST is shown in Fig. 4.

A PST is an automaton whose state transition function is de-
scribed in Function 2. The procedure of constructing suffix
tree is similar to DFA construction in AC algorithm. The
failure function and output function in AC is not needed
here. The return value contains the stop state and a “fact”
mark. Once the input string is not finished but there is
no available next state, fact is false; and once the input
string is finished but PST is not finished, fact is true. So
fact = true means str is a proper factor of some patterns
in X

Function 1 ACA(str, state)

match ← ∅
for i = 0 to length(str)− 1 do

if there is an arc (state, t) labeled str[i] in ACA then
state ← t
match ← match ∪ output(state)

else
state ← failstate(state)

end if
end for
return (state, match)
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Figure 4: PST of pattern set X = {abaaba, ababab}

typedef struct{
uint_32 NextState[ ALPHABET_SIZE ];
uint_32 PreState; // parent node of

// this node
uchar PreChar; // the path from parent

// node to itself
uint_32 count; // help to compress PST

}PST_NODE;

Figure 5: Data structure of PST NODE

The data structure of PST state node is shown in Fig. 5. The
ALPHABET_SIZE is 256. PreChar is the path from parent node
to current node. count is used in the process of compression.
Consider the alignment issue of the compiler, the size of the
data structure is 1036 Bytes.

Our algorithm needs to trace back from the current state
to the root node, retrieve the string in this path. Hence,
the function path(state) constructed to returns the string of
path, i.e. the letters from root to current state. For example,
path(11) is baab on the PST shown in Fig. 4.

3. PROPOSED ALGORITHM
3.1 AC-Suffix-Tree Algorithm
Fig. 6 shows a simple situation of two packets’ reordering.
When packet y2 comes first, a pattern may exist between
the two packets only if some prefix of y2 is one suffix of the
patterns. So the PST can be used to determine whether a
suffix of patterns exits at the beginning of y2. If PST returns
successfully, record the PST state. When y1 comes, get the
path from the PST state recorded, add the path to the end
of y1, then the pattern can be matched.

Now dive into more details of the AC-Suffix-Tree algorithm.
A pattern x’s occurrences in a segmented string Y = y1y2 · · ·
yn can be divided into two cases. One is that x only exists
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Function 2 PST (str, state)

for i = 0 to length(str)− 1 do
if there is an arc (state, t) labeled str[i] in PST then

state ← t
else

return (state, false)
end if

end for
return (state, true)
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Figure 6: Examples of two packets’ reordering

in single segment,

∃i ∈ {1, 2, . . . , n}, x �fact yi (1)

The other is x exists across several segments,

∀i ∈ {1, 2, . . . , n}, x �fact yi (2)

For the first case, the occurrence of x can be find out by
passing yi to the ACA of x. Notice that whatever the initial
state of the ACA is, it can find out all the occurrences of x
in yi. This can be done whenever yi is received.

The second case is what this paper focuses on, ∃i, j ∈
{1, 2, . . . , n} , i<j so that

x �fact yiyi+1 · · · yj (3)

but

x �fact yi+1yi+2 · · · yj , x �fact yiyi+1 · · · yj−1 (4)

In order to deal with this case without buffering the input
string y1, y2, . . . , yn, more work should be done:

First, begin with a simple example: assume there are only
two segments, yi and yj , j = i + 1. In this case, ∃u, v ∈ A∗
so that x = uv and u �suff yi, v �pref yj .

If yi comes first, pass it to the ACA of x and then save the
final state of the ACA as s1. When yj comes, pass it to
the ACA with initial state s1, the occurrence of x can be
found. For example, suppose X = {abaaba, ababab}, yi =
aaba, yj = abaa, there is an occurrence of abaaba in yiyj .
When yi comes, it is passed to the ACA of X (as shown in
Fig. 3), and the final state of the ACA is 3. Save s1 = 3,
and let packet yi pass through. When yj comes, recover
the ACA state 3 and go on searching, it will find out the
occurrence of abaaba. So yj is marked up and this input
string is recognized as threatening. Because only yi gets

through, i.e., there is only a part of abaaba pass the check,
the threats cannot take effects and are successfully blocked.

If yj comes first, it is passed to the PST of x and the stop
state of the PST is saved as s2. When yi comes, the passed
string yi is appended by the path of s2 in PST before input
to the ACA, the occurrence of x can also be found out. For
example, assuming X = {abaaba, ababab}, yi = aaba, yj =
abaa, there is an occurrence of abaaba in yiyj . When yj

comes, it is passed to the PST of X (as shown in Fig. 4),
and the stop state of the PST is 6. Save s2 = 6, and let
yj pass through. When yi comes, it is passed to the ACA
of X appended by path(6) = aba. Then the ACA does
pattern matching on aabaaba. Then the ACA finds out the
occurrence of abaaba. So yi is dropped and this data is
marked up and this input string is recognized as threatening.
Because only yj gets through, i.e., there is only a part of
abaaba in it, the threats are successfully blocked, too.

Considering the possibility of packet retransmission, this al-
gorithm need one more step to avoid evasion attempt. For
example, if the pattern is divided into 3 packets, packets 2,3
arrive first and pass the system. When packet 1 arrives, it
will be dropped. The pattern state is cleared. The sender
then retransmit packet 1. It will pass the IDS, and all 3
packets will get to the destination. In order to avoid this
situation, one solution is to send RST packets to both sides
of the connection once a pattern is detected, so the receiver
will terminate this connection and no longer accepts the re-
transmitted packet.

In a word, the ACA of x can be used to keep the suffix
information of a segment, while the PST of x can be used
to keep the prefix information of a segment.

What if the pattern x crosses more than two segments?
A information merging mechanism is used to merge the
PST state records in successive blocks. Suppose there are
yiyi+1 · · · yj , j > i+1. ∃u, v ∈ A∗ so that x = uyi+1yi+2 · · ·
yj−1v and u �suff yi, v �pref yj . In this case, the return
value “fact” of PST is used to identify the proper factor
of x. fact = true means the entire segment is a proper
factor of x, thus needs to merge the PST state with the
predecessor segment.

The detailed pseudo code description of our algorithm is
shown in Appendix A. The data structure of Buffer is
shown in Fig. 7. Next is the pointer to the next connection
record for resolving hash collisions. The size of the data
structure is 28 Bytes.

Timeout mechanism is not included in the algorithm in or-
der for brevity. In the real network deployment, timeout
mechanism is necessary because some flows may miss FIN
or RESET packets. For example, in our test of Lincoln Lab
traces [1], about 0.37% of the packets are never terminated
by FIN or RESET packets. Such flows must be flushed from
the buffer after it has silenced for a long time.

3.2 An Example
Here is an example for easy understanding of our algorithm.
Suppose the pattern set X = {abaaba, ababab} and the
segmented string Y = y1y2y3y4, where y1 = bbaa, y2 =
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Figure 8: Examples of PST and Suffix array

typedef struct _bufStruct{
uint_32 fid;
uint_32 seq;
uint_32 len;
uint_32 s1;
uint_32 s2;
uint_32 fact;
_bufStruct* Next; //pointer to the next

// connection record for resolving
// hash collisions (32 bits)

}BUFFER_STRUCT;

Figure 7: Data structure of BUFFER STRUCT

baba, y3 = baab, y4 = aabb. The coming order is y3, y1, y4, y2,
flow ID is 1.

Firstly, an ACA and a PST is generated respectively for X
as shown in Fig. 3 and Fig. 4, respectively. Initially we set
Buffer = ∅. Then we begin to handle the input segments.

1. Suppose the first input segment is y3 = baab.
Because y3 is the first coming segment of flow 1,

there is no record in the Buffer for flow 1. Passing y3

to ACA and PST both with initial state 0, the return
value s1 = 2, s2 = 11, match = ∅, fact = true.

These are implemented by the pseudo codes at line
33 and 52. After the process, Buffer contains one
entry: (1, 8, 4, 2, 11, true).

2. The second input segment is y1 = bbaa.
Because there is neither y1’s predecessor nor succes-

sor in the Buffer, the process for y1 is the same as y3.
Passing y1 to ACA and PST both with initial state 0,
the return value s1 = 1, s2 = 8, match = ∅, fact =
false.

After the process, Buffer contains two entries:
(1, 0, 4, 1, 8, false) and (1, 8, 4, 2, 11, true).

3. The third input segment is y4 = aabb.
Because Buffer contains the information of y4’s

predecessor – (1, 8, 4, 2, 11, true), y4 is passed to ACA
with initial state 2. The return value s1 = 0, match =
∅. Since the “fact” mark of y4’s predecessor is true,
y4 is passed to PST with initial state 11. The return
value s2 = 12, fact = false.

These are implemented by the pseudo codes at line

26, 33 and 44. After information merging, Buffer con-
tains two entries: (1, 0, 4, 1, 8, false) and (1, 8, 8, 0, 12,
false).

4. The final input segment is y2 = baba.
Because Buffer contains the information of both

y2’s predecessor and successor – (1, 0, 4, 1, 8, false) and
(1, 8, 8, 0, 12, false), path(12) = baaba is appended to
y2’s tail and str = bababaaba is passed to ACA with
initial state 1. The return value s1 = 6, match =
{abaaba, ababab}. Then y2 is dropped, all records with
fid = 1 is cleaned from Buffer.

These are implemented by the pseudo codes at line
26, 29, 33 and 35-38. After the process, Buffer = ∅.

Notice that even if y1, y3, y4 has got through, they don’t
contain the full malicious string, thus will not cause damage.

3.3 Compression of Suffix Tree
As shown above, the AC suffix tree algorithm has advantages
in reducing the memory usage on reordered packets. But
it also incurs new memory usage. A standard Suffix Tree
requires tremendous memory usage. If the length of each
pattern is ni, the upper bound of memory occupation is

∑

i

(ni − 1)(ni − 2)/2 (5)

so that it is O(n2) spatial complexity. For example, a pat-
tern abcde’s suffix tree is shown in Fig. 8(a). Though the
string length is only 5 letters, the state number reaches 10
with counting the transitions. For the real pattern set, the
size of suffix tree is usually 10 times larger than AC state
machine, which hinder the practical use of our algorithm.

Consider a single pattern such as abcde, the arrangements of
the suffixes {bcde, cde, de, e} are very regular. A natural
idea of compression is using a suffix array instead of a tree.
The suffix array of pattern abcde can be shown as Fig. 8(b).
There is only a root node and four children nodes, the other
nodes are stored in a single pattern string with some pointers
point to them.

Following is how to compress a single pattern’s suffix tree to
a suffix array. Each state node has a counter. While building
the suffix tree, every accessed or new created state’s counter
increases by one. After the preprocessing stage, perform a
depth first search to the tree. Once a state is found the
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counter is 1, point the next state of this node to the suffix
array, and release all the state nodes below it.

When added more patterns, the suffixes of multiple pat-
terns may be duplicated, which can cause unwillingly incre-
ment of the counters. So it’s necessary to list all the suffixes
and deduplicate them, then build the suffix tree. For ex-
ample, the suffixes of abcde and bacde after deduplication
are {bcde, acde, cde, de, e}. The suffix array of the two
patterns is shown in Fig. 8(c).

The searching stage is similar to that of standard PST de-
scribed in Section 2.3. After the input string is processed
without failure, if the matching stopped in state machine,
then return the state number; if the matching stopped in ar-
rays, then return the array and the index in it. The path()
function is also like that of PST if the matching stopped in
state machine, and if the matching stopped in arrays, just
return the sub string before current index in the array.

The preprocessing stage time can be several times longer
than that of AC due to the compression. But for network
security devices the preprocessing speed is not important,
they focus more on the searching speed.

After the compression, the upper bound of state number
is

∑
i(ni − 1), which is the same scale as AC Automaton.

Note that one state node is 1036 Bytes, and one letter in the
array is just 1 Byte. So the memory usage of the array can
be largely ignored. The temporal complexity is the same as
the standard PST, the only difference is that the matching
step is divided into two parts: the state machine part and
the array part.

4. PERFORMANCE ANALYSIS
4.1 Experiments
The AC Suffix Tree algorithm is implemented as a process in
network processing platform to evaluate its performance. To
alleviate the input speed bottleneck, AC suffix tree process
feed the tcpdump trace files stored in ramdisk. When there
is a match, a log message will be written into a file.

The pattern set is chosen from the latest rules of Snort
2.8.6.1[8], released on 22 Jul, 2010. All the patterns are
fixed strings, no regular expressions included. The pattern
set is divided into two parts according to pattern length with
the threshold length set to 8. The reason for doing such clas-
sification is observation of the impact of pattern length to
the memory usage. The detailed parameters of the pattern
set is shown in Table 2. The upper bound of AC automaton
size is calculated by

∑

i

ni × sizeof(AC NODE) (6)

and the upper bound of PST size is calculated by

∑

i

(ni − 1)(ni − 2)

2
× sizeof(PST NODE) (7)

where ni is the length of pattern i.

The network traces are generated by a small program. We
don’t use captured traces because the severity of the reorder-
ing and number of sessions are not under control. Using

Table 2: Parameters of Snort pattern sets

Short Set Long Set

Entries 786 1485

Max pattern length 8 127

Average pattern length 5.01 26.15

Upper Bound of AC size 4.0 MB 40.0 MB

Upper Bound of PST size 9.5 MB 637.2 MB

these generated traces it is easy to observe the time and
memory usage under different kinds of reordering.

Four traces are used in this experiment. They are all unidi-
rectional and the Ethernet frame size is 1518. Each of them
contains 10,000 sessions, and each session has 10 packets.
The packets come like this: the first packets of the 10,000
sessions come, then the second, the third· · · . Trace One
is not reordered, all packets comes with continual sequence
number. Trace Two has one hole with the duration of one
packet for each session, that is, for example, packets come in
the order of {1, 3, 2, 4, 5, 6, 7, 8, 9, 10}. Trace Three has one
hole with duration of 8 packets and size of 2, for example,
{1, 4, 5, 6, 7, 8, 9, 10, 2, 3}. Trace Four has two holes, both
with duration 6, for example, {1, 3, 4, 6, 7, 8, 9, 2, 10, 5}.

The experiments will compare the AC-Suffix-Tree algorithm
with standard AC algorithm with reassembling scheme. The
reassembling scheme only buffers packets that are reordered,
not all the packets.

The following experiments are running on a PC with one
Pentium Dual-Core CPU E5300 at 2.60GHz. The system
has 4 GB of DDR2 RAM and runs Windows XP 32-bit SP3.
The development environment is Visual Studio 6.0 SP6 with
winpcap 4.1.2.

4.2 Temporal Complexity
According to the algorithm, when a packet p comes, the
processing includes 5 steps:

1. Find p’s predecessor and successor.
Time taken by this process depends on the data

structure of Buffer. Our implementation uses a hash
table to store flow entries, and resolve hash collisions
by chaining the colliding records in a linked list. The
space is enough to maintain 1M connection records.
Even if there are 100K concurrent connections, the
theoretical memory accesses required for a successful
search are only 1 + (0.1M − 1)/(2× 1M) ≈ 1.05 [4].

After the flow is located, a linear search is performed
to find p’s predecessor and successor. The temporal
complexity is O(log l) under binary search, where l is
the number of successive blocks in this flow.

2. Get information from p’s predecessor and successor.
There’s a path-searching operation in this process

(at line 29 of pseudo code). Time needed to do this
is O(m− 1) if the returned state is in suffix tree, here
m = max

x∈X
|x|. That is, m is the length of the longest

pattern, and m−1 is the depth of PST. If the returned
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Figure 9: Processing speed for different traces with
Long Set

state is in suffix array, the path can be immediately
returned in O(1).

3. Do pattern matching with ACA.
Time taken by this process is O(|yi|+ m− 1).

4. Merge information
A group of state transitions in PST (at line 44 and

52) is O(m− 1).

5. Update Buffer
Time taken by this process is O(1).

To sum up, the temporal complexity of the algorithm is
O(|Y |+ nm), here n is the number of segments in the data
flow and m is the length of the longest pattern.

Note that O(|Y |+ nm) is just an upper bound. In particu-
lar, when the segments come in order, the whole process is
O(|Y |) because there is no chance to use PST.

Fig. 9 shows the processing speed to the four traces. The
speed (in Mbps) is the quotient of tcpdump file size (in bits)
by the processing time (in seconds). For Trace One the speed
of AC-Suffix-Tree is almost the same as AC with reassembly,
even it has some extra operations like comparisons for each
packet. For Trace Two, Three and Four, the speed of AC-
Suffix-Tree algorithm is slower, because the PST is used.
The more reordered packets, the more frequently the PST
is used. But the speed is still acceptable. Recall that the
severe reordering is not a normal condition, so the speed
should not be too bad for normal traces.

4.3 Spatial Complexity
There are two aspects of spatial complexity. The first is the
size of AC and Suffix Tree/Array, which is generated during
the preprocessing stage. The second is the size of buffer
needed during the searching stage.
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Figure 10: Memory usage of AC and suffix tree

4.3.1 Preprocessing Stage
Though the upper bounds of AC automaton and PST size
have been analyzed in Section 3.3, they are just the worst
cases and can hardly being reached. In the practical pat-
tern set, different patterns may contain same substrings, so
the states can be reused. The chance they share the same
substrings becomes larger when the patterns are short, thus
the AC automaton and suffix tree can be much smaller than
the upper bond.

Fig. 10 shows the size of AC automaton and suffix tree (be-
fore and after compression). As we can see, the compression
successfully reduces the size of suffix tree to 1/4 - 1/10 of
the original size. The longer the patterns are, the larger the
original PST is, and the higher compression ratio is. After
the compression, the size of suffix tree is about the same
as AC. For shorter patterns, the suffix tree is even smaller
than AC, which means the patterns share many common
substrings.

4.3.2 Searching Stage
According to the information merging mechanism, the mem-
ory needed by one data flow depends on not how many
segments in the flow, but how many successive blocks re-
ceived. For example, Trace Four has the packet sequence of
{y1, y3, y4, y6, y7, y8, y9, y2, y10, y5}. Since y3, y4 are
successive, their information is merged. And when y6, y7,
y8, y9 come, their information is merged into another record.
So the maximum number of buffer entries is 3, one contains
information of block y1, the second contains information of
block y3, y4, and the last contains information of y6, y7, y8,
y9. When y2 come, the first two records are merged, when
y10 come, it merges with the last record; when y5 finally
comes, the leaving two records are merged into one.

Therefore, the number of buffer entries is only related to the
number of current successive blocks. A data flow consists of
n segments needs �n/2 buffer entries in the worst case. In
particular, when packets come in order, only one buffer entry
is needed.

Besides, the size of each entry is only 28 Bytes, it is inde-
pendent with the content of yi. So when the size of every
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Figure 11: Buffer size while processing packets with
Long Set

segment is relatively large, each entry takes much less mem-
ory than buffering the content of yi.

In conclusion, the memory consumption by one data flow is
proportional to the number of successive blocks in the data
flow.

Fig. 11 shows the comparison of buffer needed in the two
schemes: AC with reassembly scheme, and AC-Suffix-Tree.
The horizontal axis shows the number of packets, the ordi-
nate axis shows the buffer size when the current packet is
processed. It shows the main advantage of AC-Suffix-Tree–
low memory usage, especially when the reordering is severe.
Moreover, in Trace Three, though the duration of the hole
is 8 and length of the hole is 2, the entries of AC-Suffix-Tree
are no more than 2. This shows the insensitive to the hole’s
size and duration. From Trace Three and Trace Four, it can
be seen that the entries in the buffer is only related by the
number of successive blocks.

5. CONCLUSION AND FUTURE WORK
In this paper, a string matching algorithm called AC-Suffix-
Tree is proposed. The algorithm utilizes an ACA and a PST
to help recording information of fragmented data flows, thus
the memory usage is much less than packet reassembly. The
algorithm is fast enough because it is based on AC, and has

the same time performance as AC when there is no reorder-
ing. Another advantage of our algorithm is insensitivity to
the size and duration of holes in network flows, which makes
IDS robust against memory exhausting DoS attack.

Future work includes porting this scheme to other string
matching algorithms. Our scheme is based on AC, but it is
theoretically compatible with other automaton based string
matching algorithms, such as CIAC [11]. Such variation
algorithms can provide specific performance improvement,
such as reducing the size of state machine.
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APPENDIX
A. PSEUDO CODE OF AC-SUFFIX-TREE
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1: Buffer ← ∅
2:
3: while here comes a packet p do
4: fid = HASH(p.srcip, p.dstip, p.srcport, p.dstport)
5: seq ← sequence number of p
6: len ← length of payload of p
7: str ← payload of p
8:
9: /* find p’s predecessor and successor */

10: pre ← NULL
11: suc ← NULL
12: for all rec ∈ Buffer that rec.fid equals to fid do
13: if seq equals to (rec.seq + rec.len) then
14: pre ← rec
15: else if (seq + len) equals to rec.seq then
16: suc ← rec
17: end if
18: end for
19:
20: s1 ← 0 /* state of ACA */
21: s2 ← 0 /* state of PST */
22: fact ← false /* a mark for PST */
23:
24: /* get information from pre and suc */
25: if pre �= NULL then
26: s1← pre.s1
27: end if
28: if suc �= NULL then
29: str ← strcat(str, path(suc.s2))
30: end if
31:
32: /* do pattern matching */
33: (s1, match)← ACA(str, s1)
34: if match �= ∅ then
35: drop p
36: send RST packets to both sizes
37: remove all records of fid from Buffer
38: continue
39: end if
40:
41: /* information merging */
42: if pre �= NULL then
43: if pre.fact then
44: (s2, fact)← PST (str, pre.s2)
45: else
46: s2← pre.s2
47: end if
48: seq ← pre.seq
49: len ← len + pre.len
50: remove pre from Buffer
51: else
52: (s2, fact)← PST (str, 0)
53: end if
54: if suc �= NULL then
55: if not suc.fact then
56: s1← suc.s1
57: fact ← false
58: end if
59: len ← len + suc.len
60: remove suc from Buffer
61: end if
62:
63: /* store merged information to Buffer */

64: Buffer = Buffer ∪ {(fid, seq, len, s1, s2, fact)}
65: let p get through
66: end while
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