
www.elsevier.com/locate/comcom

Computer Communications 29 (2006) 3037–3050
A scalable IPv6 route lookup scheme via dynamic variable-stride
bitmap compression and path compression q

Kai Zheng *, Zhen Liu, Bin Liu

Department of Computer Science, Tsinghua University, Beijing 100084, PR China

Available online 10 January 2006
Abstract

The significantly increased address length of IPv6 (128-bit) provides an endless pool of address space. However, it also poses a great
challenge on wire-speed route lookup for high-end routing devices, because of the explosive growth of both lookup latency and storage
requirement. As a result, even today’s most efficient IPv4 route lookup schemes can hardly be competent for IPv6. In this paper, we
develop a novel IPv6 lookup scheme based on a thorough study of the distributions of real-world route prefixes and associative RFC
documents. The proposed scheme combines the bitmap compression with path compression, and employs a variable-stride mechanism
to maximize the compress ratio and minimize average memory reference. A possible implementation using mixed CAM devices is also
suggested to further reduce the memory consumption and lookup steps.

The experimental results show that for an IPv6 route table containing over 130K prefixes, our scheme can perform 22 million lookups
per second even in the worst case with only 440 Kbytes SRAM and no more than 3 Kbytes TCAM. This means that it can support
10 Gbps wire-speed forwarding for back-to-back 40-byte packets using on-chip memories or caches. What’s more, incremental updates
and high scalability is also achieved.
� 2005 Elsevier B.V. All rights reserved.

Keywords: CAM; Compression; IPv6; Route lookup
1. Introduction

Internet Protocol Version 6 (IPv6) is one of the key sup-
porting technologies of the Next Generation Network
(NGN). The most distinctive feature of IPv6 is its 128-bit
address, which is significantly increased from IPv4 and pro-
vides an extremely large pool of address space for the Inter-
net. However, this innovation also poses a great challenge
on the data path functions of IP packet forwarding, such as
IP address lookup. This pressure is caused mainly by the
0140-3664/$ - see front matter � 2005 Elsevier B.V. All rights reserved.

doi:10.1016/j.comcom.2005.11.003

q This work was supported by NSFC (Nos. 60173009 and 60373007),
China 863 High-tech Plan (Nos. 2002AA103011-1 and 2003AA115110),
China/Ireland Science and Technology Collaboration Research Fund
(CI-2003-02), and the Specialized Research Fund for the Doctoral
Program of Higher Education of China (No. 20040003048).

* Corresponding author. Tel.: +8610 6277 3441; fax: +8610 6277 3616.
E-mail addresses: Zk01@mails.tsinghua.edu.cn (K. Zheng), Liuzhen

02@mails.tsinghua.edu.cn (Z. Liu), Liub@tsinghua.edu.cn (B. Liu).
following two factors: (1) the performances of most exist-
ing IP lookup algorithms, including lookup throughput
and storage requirement, are sensitive to the key length
and will decrease dramatically when migrated to IPv6. (2)
The rapid advances in fiber-optic technology push the link
speed of backbone from 2.5 to 10 Gbps or even 40 Gbps,
making wire-speed forwarding much more difficult to guar-
antee. Therefore, an effective Longest Prefix Matching

(LPM) algorithm for 128-bit IP address is very essential
for routers/switches deployed at future networks.

Currently, packet forwarding based on CIDR IPv4
address lookup is well understood with both trie-based
algorithms and TCAM-based mechanisms in the literature.
trie-based algorithms are usually said to be time consum-
ing, and commonly a lot of memory accesses are needed
for a single address lookup. Moreover, most of them
[1–4] can hardly be scaled to support IPv6, because their
lookup time grows linearly with the search key (Destination
IP Address) length. Some algorithms have constant search

mailto:Zk01@mails.tsinghua.edu.cn
mailto:Liuzhen 02@mails.tsinghua.edu.cn
mailto:Liuzhen 02@mails.tsinghua.edu.cn
mailto:Liub@tsinghua.edu.cn

3038 K. Zheng et al. / Computer Communications 29 (2006) 3037–3050
time for IPv4, such as DIR-21-3-8 [5]. However, their high
storage requirements only allow them to be implemented
with mass-but-slow SDRAMs. What’s more, the exponen-
tially increased memory requirements with the search key
length make them not suitable for IPv6 implementation.

The Lulea [6] algorithm, for the first time, develops the
concept of bitmap compression to improve storage efficien-
cy, achieving both small memory requirement and almost
constant lookup time. Hence much faster SRAM chips
can be employed to replace SDRAMs. However, its spe-
cially designed memory organization is un-scalable for
IPv6 or large route tables. Furthermore, it is known to
be very hard to update since it needs leaf-pushing. The
Eatherton’s Tree Bitmap algorithm [7] improves upon
Lulea by creating a data structure (with two kinds of bit-
maps, Internal Bitmap and External Bitmap) which does
not require leaf-pushing and therefore supports fast incre-
mental updates. An implementation of the Tree Bitmap
algorithm, referred to as Fast IP Lookup (FIPL) [8], shows
that a storage requirement of about 6.3 bytes per prefix and
performance of over one million lookups per FIPL engine
can be achieved. However, FIPL uses a fixed lookup stride
of four at each level, hence for each IP address lookup it
may require more than 32/4 = 8 memory accesses in the
case of IPv4, and 128/4 = 321 in the case of IPv6, which
make it also infeasible for IPv6 migration.

Ternary Content Addressable Memory (TCAM) is a fully
associative memory that allows a ‘‘don’t care’’ state to be
stored in each memory cell in addition to 0s and 1s. Since
the contents of a TCAM can be searched in parallel and the
first matching result can be returned within only a single
memory access, TCAM-based scheme is very promising
in terms of building a high-speed LMP lookup engine
[9,10]. Moreover, TCAM-based tables are typically much
easier to manage and update than trie-based ones. Howev-
er, on the other hand, the high cost to density ratio and
high power consumption of TCAM prevent it from being
widely adopted in building route lookup engines. This sit-
uation will get even worse when migrated to IPv6, since
the storage requirement for TCAM-based tables also grows
linearly with the address length.

A good IP (v6) address lookup scheme should have the
following features. (1) High enough lookup throughput to
support high-speed interface even in the worst case (i.e.,
minimum-sized packets coming in back-to-back); (2) small
memory requirement, making it practical to be implement-
ed with small but fast memory chips or on-chip caches; (3)
scalability with the key length, maintaining the lookup
time, and memory requirement at a feasible low level when
migrated to IPv6; (4) Low update cost, to cope with the
instability of the BGP protocol.

In this paper, we develop a novel lookup scheme which
can achieve all the features mentioned above. The main
1 Actually, as reported by the authors, three additional memory accesses
are needed.
contributions of the paper are threefold: first, we introduce
a series of trie-associated concepts and terms, presenting a
new and explicit view of the IP lookup problem and the
related techniques/methods. Second, by analyzing
real-world IPv4 route tables and several IPv6 ‘‘initial allo-
cation’’ route tables, we not only provide a number of
informative observations on distributions of route prefixes
and several useful heuristics for lookup scheme designing,
but also build an IPv6 prefix generator according to these
observations and the recommendations from associative
RFC and RIPE documents. This is very essential for cur-
rent IPv6 lookup scheme performance evaluations, since
the available ‘‘future-like’’ IPv6 route tables are not suffi-
cient. Finally, based on those observations, we develop a
novel Dynamic Variable-Stride Bitmap Compressing lookup

scheme with Path Compression (DVSBC-PC) and a further
optimized scheme with mixed CAM device (DVSBC-PC-
CAM).

The rest of the paper is organized as follows. Section 2
presents several trie-associated concepts and terms. In Sec-
tion 3, we list a number of informative observations on dis-
tributions of route prefixes, present several useful heuristics
for lookup scheme designing, and develop an IPv6 prefix
generator for performance evaluation. Section 4 describes
the dynamic variable-stride bitmap compressing IP lookup
scheme with path compression (DVSBC-PC) and a further
optimized scheme with mixed CAM mechanism (DVSBC-
PC-CAM). Section 5 presents the experimental results and
performance evaluation of the proposed scheme, as well as
the comparison with other schemes. Finally, a conclusion is
drawn in Section 6.

2. Definitions and terms for IP address lookup and the trie

system

In our opinion, the prefix trie system is more than a
tool to introduce trie-based algorithms. In addition to
an important data structure in both route table organiza-
tion and route lookup implementation, it is also very
helpful in acquiring a better understanding of the LPM
problem. In this section, for the sake of providing intu-
itions for IP address lookup scheme design and present-
ing an explicit view of the trie system, we introduce/
develop a set of definitions and terms, which will be used
throughout the paper.

2.1. Definition: IP address

The bits in a specific IPv6 address are ordered as shown
in Fig. 1, where the 1st bit (MSB) lies in the leftmost posi-
tion and the 128th bit (LSB) lies in the rightmost position.
And we let IP[i � j] denotes the set of the ith to jth bits of
an IP address.
1 2 3 4 …… 127 128

Fig. 1. IP address format.

A

B

C

ED

F
IHG

Sub-Trie#1

Sub-Trie#2

Sub-Trie#4

Sub-Trie#3

Sub-Trie#5

Fig. 3. A possible sub-trie hierarchy of the prefix trie introduced in Fig. 2.
Again, we omit the non-genuine nodes in this figure. We see that the prefix
trie is partitioned into 5 sub-tries, and they form a sub-trie hierarchy with
3 levels.

K. Zheng et al. / Computer Communications 29 (2006) 3037–3050 3039
2.2. Definition: trie, nodes; prefix depth and prefix level

A Full Binary Trie is introduced to represent the whole
prefix space, with each node for a possible prefix. The pre-
fix of a route table entry defines a path in the trie ending in
some node, which is called the Prefix Nodes in this paper. If
a node itself is not a prefix node but its descendants include
prefix nodes, we call it an Internal Node. Node that is either
a prefix node or an internal node is called Genuine Node,
which indeed carries route information. We name a prefix
node as a Prefix Leaf if none of its descendants is a prefix
node. Fig. 2 depicts an example prefix trie and can be used
to explain these definitions.

Depth of a prefix (node) is defined as the number of its
ancestor nodes in the prefix trie. For instance, in the exam-
ple of Fig. 2 the depths of prefix node A, D, and F are 0, 4,
and 6, respectively. For a given prefix node n, there may be
multi paths from n to its multi descendant leaf nodes.
Among these paths, let Pmax be the one containing the most
prefix nodes. The number of prefix nodes (excluding node n

itself) in Pmax is called the Prefix Level of prefix node n. In
the example of Fig. 2, the level of prefix node A, D, and F
are 2, 0, and 1, respectively.

2.3. Definition: sub-trie, sub-trie hierarchy

The term Sub-Trie is defined to be a full binary trie that
is carved out from a prefix trie. It can be specified by a 2-
tuple (root, height), where root is the root node of the sub-
trie, and height indicates the size of the sub-trie, as shown
in Fig. 3. We call the nodes on the bottom of the sub-trie
its Edge Nodes, and the sub-trie should have 2height edge
nodes. For instance, the height of sub-trie#3 in Fig. 3 is
2, and so it has 22 = 4 edge nodes, two of which are genuine
nodes (one internal node and one prefix node).

A prefix trie can be partitioned into a set of sub-tries in
different ways. If the partitioned sub-tries set satisfy: (1) it
covers all of the genuine nodes on the prefix trie; (2) the
root nodes of any sub-tries are the edge nodes of other
sub-tries, we call it a sub-trie hierarchy of the prefix trie.
Fig. 3 also shows a possible sub-trie hierarchy. Note that
sub-trie hierarchy is also not unique for a given prefix trie.
Internal Nodes Prefix Nodes

A

D

F

IHG

Depth 0

Depth 1

Depth 7

Fig. 2. An example routing table and the corresponding binary trie built from i
in the figure.
As will be explained in the later sections, different prefix
trie partitioning may lead to different performance for cer-
tain algorithms (e.g., the bitmap compression based algo-
rithms). A proper way of partitioning is, therefore, very
important for that kind of algorithms.

2.4. Definition: Pointer Array, Compressed Pointer Array

Each genuine node carries either Next hop IP address
(NIP) or trie structure information. We use a data structure
called Pointer Array (PA) to hold the route information
carried by the edge nodes of a sub-trie, with each pointer
representing the memory location of either the NIP or
the next level sub-trie structure, as shown in Fig. 4.

As depicted in Fig. 4, two successive pointers (for the
second and third edge nodes, respectively) within in
the PA contain the same value (NIP2). In order to reduce
the storage requirement, we can keep only one such infor-
mation in a Compressed Pointer Array (CPA) by introduc-
ing a bitmap to indicate which values are omitted. As is
illustrated in lower part of Fig. 4, NIP2 appears only one
time in the Compressed Pointer Array. The ‘0’ in the bit-
map shows that the corresponding pointer in the original
PA is omitted, and IP address matching the prefix corre-
sponding to the 3rd edge node should follow the
3 � 1 = 2nd (since there is only one ‘0’s in the first 3 bits
 Prefix Leaf

B

C

E

Route Table
No Prefix Next Hop
A * NIP1
B 1* NIP2
C 1111* NIP3
D 11000* NIP3
E 11001* NIP1
F 000001* NIP4
G 0000000 NIP2
H 0000001 NIP1
I 0000011 NIP1

t. For clarity and simplicity, we omit the trivial nodes (non-genuine nodes)

A SubTrie

B

C

Height=2

4 Edge nodes

Root node

C:1111*

B:1*

Route Table

1 1 0 1

Bitmap

&p NIP2 NIP2 NIP3

Pointer Array

&p NIP2 NIP3

Compressed Pointer

Fig. 4. PA (Pointer Array) and the corresponding Compressed PA. This
figure depicts part of the prefix trie introduced in Fig. 2. The sub-trie has 4
edge nodes and they are associated with a PA with 4 pointers, each of
which contains the memory location of either the NIP or the next sub-trie
structure.

3040 K. Zheng et al. / Computer Communications 29 (2006) 3037–3050
of the bitmap, we know that only one pointer has been
omitted in the PA) pointer in the CPA, i.e., NIP2.

Such idea/technique is called Bitmap Compression,
which has been adopted in several algorithms. Although
it is hard to scale to IPv6 in its original form, it is useful
in providing intuitions for memory-saving lookup scheme.

CPA Density (CPAD) of a sub-trie is defined as the ratio
of the number of pointers in the CPA to the total number
of edge nodes of the sub-trie. This parameter indicates the
compressing ratio/potential of a sub-trie structure. For
instance, the CPAD of the sub-trie shown in Fig. 4 is
3/4, or 75%, which means that roughly 100–75% = 25%
of the storage can be saved by bitmap compression. CPAD
is relative to the ‘‘complexity’’ of sub-trie structure. Prefixes
are more likely to be overlapped with each other (i.e.,
CPAD is higher) if the sub-trie has more branches or prefix
levels.

2.5. Definition: path skip

Path skip is first introduced in the PATRICIA algo-
rithm [1], referred to as Path Compression. As is shown in
Fig. 5, the left branch of node A contains a chain of four
internal nodes, each of which has only one genuine child
node. Therefore, we can skip these internal nodes during
Fig. 5. Path skip is a term associated with the path compression
technique. This figure is a part of the trie shown in Fig. 2.
the course of trie-traversing, improving average search per-
formance by reducing the number of nodes that need to be
stored or inspected. (We will see in the later section that
specific data structure should be introduced to employ path
compression.)

3. Features of real-world route prefix distributions

3.1. Characteristics of real-world IPv4 route prefix

distribution

Since IPv6 is still in its initiation period, relatively few
IPv6 prefix databases can be utilized for study [11]. What
is more, the current distribution of IPv6 route table will
be quite different from its future patterns because of the
evolving RFC and other regulations. However, it is obvi-
ous that the topology of the Internet will not be altered
greatly during the migration from IPv4 to IPv6. Therefore,
the analysis of IPv4 route prefix distributions is necessary
in providing intuitions and clues for designing novel look-
up scheme for future IPv6 applications. Although allocated
according to different regulations, they still possess some
common characteristics. In this section, we first introduce
some characteristics of real-world IPv4 route prefix distri-
bution. Then the properties of IPv6 route table will be
deduced based on these observations and associated
documents.

We have analyzed a large amount of real-world route
tables collected from famous route service projects
[12,15], and acquired several useful characteristics of the
prefix distributions. Due to the space limitation, we pick
only two typical ones from these route tables to illustrate
our observations, as is described in Table 1.

3.1.1. Distribution on prefix levels

Fig. 6 depicts the prefix distribution on different levels.
We can see that the number of prefixes decreases logarith-
mically with the growth of prefix level (note the logarithmic
scale on the y axis). Almost all of the prefixes have only five
to six levels and the majority (e.g., over 90%) of them are in
Level 0 (i.e., they are prefix leaves). This indicates that in
the real networks, the subnet hierarchies of the Internet
do not have too many levels. Note that prefix level reflects
the extent of prefix overlapping. Therefore, the fewer the
prefix levels, the fewer overlaps among the prefixes, and
therefore the higher bitmap compression ratio is expected
to be. Since the network infrastructure/topology of the
Table 1
Two real-world route tables

Name of database Date Number of prefixes Number of
next hop

Mae-West [12] 2001–03 33,960 45
RRC06 [15] 2003–11 131,372 35

The Mae-West table from the IPMA project was a very famous table with
middle-size; The RRC06 tables are fairly large BGP tables in the real
world.

Fig. 6. Prefix distributions on prefix level.

Fig. 7. CPA Density distributions. This figure lists the CPAD distribu-
tions for nine kinds of sub-tries along the x axis, rooting from depth 17 to
19 and with a height of 6 to 8, respectively. These sub-tries represent the
part of the prefix trie with highest prefix density. (Here we only take sub-
tries containing genuine nodes into account.) (a) CPA Density distribution
of the Mae-West table. (b) CPA Density distribution of the RRC06 table.

K. Zheng et al. / Computer Communications 29 (2006) 3037–3050 3041
Internet should not be largely altered during the migration
from IPv4 to IPv6, this observation is also expected to be
useful for IPv6.

3.1.2. CPA Density distributions for different types of sub-

tries

Fig. 7 depicts the CPAD distribution for sub-tries
with different root and height in 2 route tables. CPAD
indicates the potential of bitmap compression and lower
CPAD can achieve higher compression ratio. It can be
seen that the majority of the sub-tries are fairly com-
pressible. For example, the CPAD of 95% sub-tries are
less than 0.3 in the Mae-West table, and 0.4 in the
RRC06 table. Moreover, CPAD tends to drop down
with the increase of the height and root depth of the
sub-trie. However, CPAD also varies considerably
among sub-tries even with the same parameters if we
have noticed the discrepancy between the ‘‘Max’’ and
‘‘Min’’ bars. Some sub-tries still have relatively high
CPAD. This indicates that adopting uniform parameters
such as stride for sub-tries might not get good enough
performances in terms of memory saving.

3.1.3. Path skip distribution on different depths of the prefix
trie

The distributions in Fig. 8 show that path skips of the
large route table tend to be shorter than small one. This
is easy to understand since more genuine nodes result in
less single-child internal nodes that can be path com-
pressed. For example, path skips on Depth 24, which
has the largest number of genuine nodes, are distinctively
shorter than those on other depths. This observation
shows that path compression may not be quite effective
for route tables with high genuine node/prefix leaves den-
sity (e.g., in the case of the RRC06 table). However, this
technique may be useful for future IPv6 applications
because low genuine node and prefix leaf density are
expected in the case of IPv6, as will be discussed in
the next sub-section.

3.2. IPv6 prefix characteristics

In this subsection, we will introduce an initial IPv6 route
table and estimate the future IPv6 prefix distribution based
on a thorough study of the associated RFCs [16–19] and
RIPE documents [11]. Some useful implications for devel-
oping IPv6 route lookup algorithms will also be discussed.

Fig. 8. Path skip distributions on different depths of the trie.

Fig. 9. Real-world (initial) IPv6 prefix distribution on prefix lengths. Note
the logarithmic scale on the y axis. (a) On Length (b) On Level.

3042 K. Zheng et al. / Computer Communications 29 (2006) 3037–3050
3.2.1. Current (initial) IPv6 prefix distribution

Fig. 9(a) depicts the IPv6 prefix distribution on prefix
length of a real-world IPv6 global route table (Route-View
IPv6 route table, Data: 2004-10-3, Size: 680 Prefixes2. [20]).
We can see that the majority are ‘/32’ prefixes, which is
referred to as the ‘‘initial IPv6 allocation blocks’’ [11]. As
mentioned in [11], this kind of IPv6 address blocks are allo-
cated to the Local Internet Registries (LIRs) who: (1)
‘‘plan to provide IPv6 connectivity to organizations to
which it will assign ’/48’s by advertising that connectivity
through its single aggregated address allocation’’; (2) ‘‘have
a plan for making at least 200 ‘/48’ assignments to other
organizations within two years’’. (Note: the last informa-
tion is essential for the IPv6 prefix generation, which will
be introduced shortly.) Some even shorter prefixes (length
from 16-bit to 31-bit) were assigned to high level subscrib-
ers according to RFC 2374 [16] before it was replaced by
RFC 3587 [19]. In RFC 2374 and RFC 2928 [17], IPv6
address blocks were organized in a complex aggregatable
hierarchy which includes the TLA (Top Level Aggregation)
‘/16’ blocks, sub-TLA blocks, NLA (Next Level Aggrega-
tion) ‘/48’ blocks, SLA (Site Level Aggregation) ‘/64’
blocks, and the Interface Level address (’/128’).

Fig. 9(b) depicts the IPv6 prefix distribution on prefix
level, where is very similar to the cases of IPv4. And we can
see that there are only four prefix levels (i.e., subnet levels).

3.2.2. Future IPv6 prefix distribution estimation and the

IPv6 prefix generator
RFC 3587 (up-to-dated) replaces RFC 2374 and simpli-

fies the aggregatable IPv6 address hierarchy. Now there are
only three levels of prefixes: the Global routing prefix
(4–48th bits. Note that the 1–3th bits of IPv6 unicast
address should be ‘001’), the subnet ID (49–64th bits),
and the interface ID (65–128th bits).

According to RFC 3177 (IAB/IESG recommendation
on IPv6 address allocation to sites) [18] and RIPE 267
[11], the IPv6 address blocks should be allocated to sub-
scribes following these rules: (1) ‘/48’ in the general case,
except for very large subscribes, which could receive a
‘/47’ or multiple ‘/48s’; (2) ‘/64’ when it is known that
2 There are totally 6700 prefixes in the original database, however, only
680 of them are unique (since the database may contain identical route
prefix announced by different source routers).
one and only one subnet is needed by design; (3) ‘/128’
when it is ABSOLUTELY known that one and only one
device is connecting.

From the related recommendation of RFCs and RIPE
documents introduced above, we come to some useful con-
clusions as follows:

i. It is obvious but important that there is no prefix with
length between 64 bit and 128 bit (excluding 64 bit and
128 bit).
ii. The majority of the prefixes should be the ‘/48s’, and
‘/64s’ the secondary majority. Other prefixes would be
distinctly fewer than the ‘/48s’ and ‘/64s’.
iii. Specifically, the number of ‘/128s’ should be tiny,
which would be similar with the ratio of the ‘/32s’ in
the case of IPv4. Both conclusion No. i and No. iii pres-
ent a very useful information, that if we do not take
account of the minority ’/128s’, the longest prefix is
actually 64 bits.

Fig. 10. Artificially generated IPv6 prefixes distributions. According to
the above 5 conclusions, we artificially generate 15–30 prefixes from each
prefix in the real-world Route View IPv6 route table. There are totally
129483 prefixes in this table, and they are assigned randomly with the Next
Hop IP address from 110 distinct IPv6 addresses.

K. Zheng et al. / Computer Communications 29 (2006) 3037–3050 3043
iv. On one hand, the address space of IPv6 increases
exponentially from that of IPv4, and the average/overall
prefix lengths of IPv6 are distinctively longer than that
of IPv4 (also refer to Conclusion ii); on the other hand,
the better aggregatability of IPv6 effectively controls the
increase of the prefix number, which may even smaller
than that of current IPv4. Both these two tend to make
the prefix density of IPv6 much smaller than that of
IPv4. Hence the IPv6 prefix trie should be more com-
pressible (for both bitmap compression and path com-
pression), according to the analysis in Section 3.
v. Future (or the near future) IPv6 address blocks will be
allocated to common subscribers from the current initial
LIRs blocks. This is important for IPv6 prefix generat-
ing according to current initial allocation prefix.

Based on these conclusions, we develop an IPv6
generator3 generating subscriber level IPv6 prefixes for
IPv6 route lookup algorithm benchmarking. The general
function of the generator is described as follows:

Using a real-world ‘‘Initially Allocated’’ IPv6 route
table as seed file, the generator analyzes certain character-
istics of the table such as prefix number and locations.
Based on the analysis, it randomly produces a specific num-
ber (assigned by the user) of prefixes from the imported
seed prefixes following a given prefix length. Then it will
validate the generated prefixes and randomly assigns Next
hop IP addresses to the prefixes. This procedure repeats
until the pre-defined metrics are met.

Fig. 10 depicts the prefix distribution of a generated
IPv6 route table example, which is also used in the perfor-
mance evaluation of the proposed lookup scheme.
3 The IPv6 prefix generator and corresponding generated route database
are available at: http://zheng_kai.home4u.china.com/V6Gen.htm.
4. A scalable IPv6 lookup scheme via dynamic variable-stride

bitmap compression and path compression

Conventional Bitmap Compression algorithms typical-
ly employ fixed-stride tries. For example, the sub-trie
hierarchy of Lulea algorithm is set as three levels and
a possible split might use (16, 8, 8) as their sub-trie
heights. In the case of Eatherton’s algorithm [7], the
stride of each level is fixed to 4. However, fixed stride
may suffer from performance degradation in both route
table lookup and storage because of the uneven distribu-
tion of prefix. As can be seen in our previous analysis,
the size of CPA changes a lot even on the same level
of trie with the same height. Since variable-sized nodes
may lead to memory fragmentation, the storage efficiency
is highly depended on the effectiveness of memory alloca-
tor [13]. Moreover, a fixed-stride searching scheme can
hardly be integrated with the path compression skill,
which we found pretty efficient in IPv6.

On the other hand, bitmap compression makes each
component of a sub-trie structure correlated with each
other. In some cases, updating one prefix may lead to the
alternation of the whole sub-trie structure. Moreover, some
schemes employ large stride for level one sub-tire in order
to reduce the search latency. For example, in Lulea algo-
rithm, the height of the first level sub-trie is 16, which con-
tains 216 = 65536 edge nodes. Updating such a sub-trie
would be very costly.

The motivation of our scheme is to give careful consid-
eration to the discrepancies existed among different part of
the prefix trie and to take full advantage of wide word
memory architecture. As is shown in Fig. 11, prefix trie is
partitioned into sub-tries with variable-heights and packed
in fixed-sized wide words. Path compression information
among sub-tires is also included when it is necessary. Our
heuristic trie-construction algorithm wastes the memory
as low as possible and gets rid of the dependence on the
effectiveness of memory allocator.

The detailed implementation of wide embedded memory
and its applications have been fully discussed in many peo-
ple’s works [4,14,21]. In our scheme, one wide word may
contain one big sub-trie when its CPAD is low enough,
or several small sub-tires. Therefore, in addition to the
saved memory space, the number of bits to be looked up
at a time is increased and not limited by the fixed stride.
Moreover, several (successive) sub-tries can be retrieved
using a single memory access, where the memory reference
times needed for some prefix lookups fall. The combination
of path compression further reduces the average search
steps. On the other hand, the dependence of the informa-
tion only exists in single word, which makes the complexity
of update operation also greatly decreased.

4.1. Data structure and trie construction of DVSBC-PC

The data structure of each wide word, called as Word

Frame, is depicted in Fig. 12. Although in our description,

http://zheng_kai.home4u.china.com/V6Gen.htm

SubTrie
Structure

Sub Trie
Structure

SubTrie
Structure

Variable-Stride Bitmap
Compressed sub-trie data

structure, which can be packed
in fixed-sized wide words.

With Path
Compression

Sub Trie
Structure SubTrie

Structure

Prefix Trie

SubTrie
Structure

Fig. 11. A demonstration of the idea of DVSBC-PC.

Fig. 12. The data structure of a Word Frame.

3044 K. Zheng et al. / Computer Communications 29 (2006) 3037–3050
we use 128-byte as an example, the actual word size (denot-
ed as WORD_SIZE) can change with the system imple-
mentation. Generally speaking, longer word may produce
relatively better search performance because of the
decreased average lookup steps. However, blinding enlarg-
ing word size also adds much more difficulties in terms of
system design, which may not be compensated by the gain
in reduced searching time.

Each word frame contains one or more equal-sized sub-
tries, which is composed of header information and
payload. Therefore, in this example of 128-byte wide word,
the memory space used to store sub-trie structure is limited
as 128, 64, 32 or 16 bytes, in order to simplify the memory
management and leave enough flexibility in the case of
update operations. As is shown in Fig. 2, the meaning of
each field in Word Frame is as follows:

• Valid [1 bit]: Indicating whether this word frame con-
tains valid information.

• SubTrieHeight [4 bits]: The height of this sub-trie. If this
field is set as k, the length of Bitmap will be 2k bits.

• Skip[3 bits] and BitString [8 bits]: Information neces-
sary for Path Compression, as has been explained in
Section 2.

• Bitmap[2SubTrieHeightbits] and CPA[variable size]: Infor-
mation necessary for bitmap compression, as has been
explained in Section 2. Each CP within the CPA (i.e.,
Compressed Pointer Array) is 16 bits, representing

Trie-Construction()
{

while (there is a next node in post order traverse)
p = next node in post order traverse ;
if (!Visited(p)) then

next_node = Skip(p);
for (i = MAX ; i >= MIN ; i--)

bitmap_size = 2i/8;
cpa_size = CPASize(next_node, i);
subtrie_size = 2 + bitmap_size + cpa_size;
if (subtrie_size =< WORD_SIZE) then

pointer = MemAllocate(subtrie_size);
 UpdateCPA(p->parents, pointer);

VisitTrie(next_node, i-1);
break;

endif
endfor

endif
endwhile

}

Fig. 13. Algorithm for trie construction.

Trie-Search(DIP, p, current_level)
{

if (p->FirstBit ==1) then
 return p->NIP;

else
start = current_level ;
end = current_level + p->Skip;
if (p->Skip==0 || Match(p->BitString, DIP[start, end])) then

start = end + 1;
end = start + p->SubTrieHeight;
offset = DecodeBitmap(p->Bitmap, DIP[start, end]);
return Trie-Search(DIP, p->CPA[offset+1], end);

else
return p->FailureCP->NIP;

endif
endif

}
DecodeBitmap(bitmap, bit-string)
{

value = the integer represented by bit-string;
return the number of “1” in the first value bits of bitmap;

}

Fig. 14. Algorithm for trie search.

K. Zheng et al. / Computer Communications 29 (2006) 3037–3050 3045
either a Next IP index or a pointer to another sub-trie
structure (indicated by the first bit). The size of CPA
equals to the total number of ‘‘1’’ in the Bitmap. If
Skip is large than zero, a failure CP is added to the
tail of CPA, which is used to return the final lookup
result when the search key mismatches with the Bit-
String. On the other hand, for a given word length,
the height of sub-trie is also confined into certain
ranges (denoted as [MIN, MAX]), according to the
actual number of CPA that can be packed into one
word. For this example where 128Byte word frames
are adopted, the values of MIN and MAX are 2
and 94, respectively.

The algorithm of constructing such a prefix trie is list-
ed in Fig. 13. The outer while loop traverses the binary-
trie in post order and picks out the next available node p

for each iteration. If this node has not been visited, the
Skip(p) operation will perform Path Compression and
return the last node (denoted as next_node in Fig. 13)
in the compressed path. The inner for loop tries to find
the largest sub-trie that can fit into a wide word. In
another word, when the first height i is encountered such
that the size of the partitioned sub-trie is less than
WORD_SIZE, this sub-trie is carved out, a free word
is allocated, the corresponding CP in the parent node
is updated and all the nodes in this sub-trie is labeled
as ‘‘visited’’, except those edge nodes which will be the
root nodes of the next level sub-tries.

Note that in some cases, the largest sub-trie may be
smaller than 64-byte or even less. The procedure MemAllo-
cate(subtrie_size) maintains a list of all the available wide
words, including those storing 64-, 32-, or 16-byte sub-trie
substructures but still have unallocated spaces. For exam-
ple, if the largest sub-trie is smaller than 64-byte but bigger
than 32-byte, a wide word containing unallocated 64-byte
space will be allocated.

4.2. Search algorithm

The search algorithm is listed in Fig. 14. The lookup
process is actually to traverse the sub-trie hierarchy. In
the initial step, we have the search key (the Destination
IP address) and a Compressed Pointer to the root sub-
trie structure (the root node of which is the root node
of the whole prefix trie). Then, we use the key and the
pointer to find the successive word frames and get the
corresponding pointers, iteratively, until we finally come
to NIP Array containing the corresponding next hop
IP address.
4 Note that 2 bytes are required to represent the Trie Header and
128 minus 2 = 126 bytes = 1008 bits are left for Bitmap and CPA. So the
subtrie height is at most ºlog2(1008 � 1)ß = 9 (i.e. when only one sub-trie
structure is stored in the word frame and the size of the CPA is as small as
1). On the other hand, it is straightforward that a sub-trie structure whose
SubTrieHeght = 2 can always smaller than 16 bytes.
4.3. A simple example of the DVSBC-PC algorithm

Fig. 15(a) shows the sub-trie hierarchy (which is formed
according to the DVSBC-PC algorithm) of the prefix trie
introduced in Fig. 2. We see that the prefix trie is parti-
tioned into 3 sub-tries. Since path compression is
employed, some internal nodes with only one genuine child
are omitted (e.g. the three nodes in dashed, in Fig. 15(a)).
We find that though the heights of the three sub-tries are
2, 2, and 3, respectively, the CPA size of the three sub-tries
are all 4 (pointers), so they can all be stored in a word
frame. The corresponding data structure is depicted in
Fig. 15(b). Note: (1) in this example, we assume that the
length of the IP address is 7 bits and WORD_SIZE is
8 bytes. Therefore, the size of sub-trie structure is also con-
strained as 8 bytes; (2) the example is just for demonstra-
tion and in this case very little compression ratio is
achieved.

SubTrie#2

Height=2, Skip=3

Bitmap=’1111’

&NIP2

&NIP1

Bit-String=’000’

&NIP4

&NIP1

&NIP1 (Failure CP)

SubTrie#3

Height=3, Skip=0

Bitmap=’11100010’
&NIP3

&NIP1

Bit-String=none

&NIP2

&NIP3

--

SubTrie#1

NIP2

NIP3

NIP4

NIP1

…

…

NIP Array

…

Height=2, Skip=0

Bitmap=’1111’

&SubTrie#2

&NIP1

Bit-String=none

&NIP2

&SubTrie#3

--

Sub-Trie#1

Sub-Trie#2

Sub-Trie#3

A

a

b

B

C

ED

F

IHG

Skip=3

Fig. 15. An example for DVSBC-PC trie constructing. (a) An example for demonstrating the DVSBC-PC algorithm. The prefix trie (introduced by Fig. 2)
is partitioned into 3 sub-tries. Note that since path compression is employed, some internal nodes are omitted. (b) The corresponding data structures of the
example in sub-figure (a). The memory organization includes 3 sub-trie word frames and the NIP Array. Note that the ‘‘skip’’ value of sub-trie#2 is 3 (>0),
so the corresponding word frame contains a failure CP.

3046 K. Zheng et al. / Computer Communications 29 (2006) 3037–3050
Suppose that the key, i.e., the IP address to lookup, is
‘‘0000010’’. The traverse begins with the root sub-trie,
i.e., sub-trie#1. We find the corresponding Height = 2
and Skip = 0, indicating the lookup stride is 2 and no
path compression is employed in this step. So we just
use the first 2 bits of the key ‘‘00’’ to decode the bit-
map-compressed structure, and then we get the offset
‘‘0’’, which implies that we should follow the
‘‘0 + 1 = 1st’’ CP in the CPA, i.e., a pointer points to
sub-trie#2.

In the next step, we come to sub-trie#2, and the corre-
sponding Height = 2 and Skip = 3, which indicates the
lookup stride is 2 and 3 nodes are path compressed. So
we first use the next 3 bits (i.e., the 3rd to 5th bits) of the
IP address, ‘‘000’’, to compare with the Bitstring segment,
and result is a match. Therefore, we further use the next
2 bits (i.e., the 6th to 7th bits), ‘‘10’’, to decode the bit-
map-compressed structure: Since the string ‘‘10’’ represent
integer ‘‘2’’, and there are two ‘1’s in the first 2 bits of Bit-
map, so we get the offset ‘‘2’’, which implies that we should
follow the ‘‘2 + 1 = 3rd’’ CP in the CPA. Finally, the tra-
verse terminates when we come to the NIP Array and the
corresponding lookup result is NIP4.
4.4. The CAM skipping scheme – adopting CAM to gear up

the lookup performance

A dedicated CAM mechanism based on the following
two heuristics can be introduced to further improve the
lookup performance.

Let kmin be the length of the shortest prefixes. According
to the analysis in section 3 the numbers of genuine nodes
on depth kmin or slightly larger than kmin are very tiny.
And note that the value of kmin is about 16 in the case of
IPv6. If we introduce a k 0-bit-wide CAM to perform the
first level lookup, where k 0 P kmin, the number of memo-
ry accesses for each lookup can be greatly reduced, since
the stride of first level lookup is then increased to k 0.
The number of 128 bit prefixes (or 32 bit prefixes in the
case of IPv4) is small; again if we introduce a 128 bit-(or
32 bit-, in the case of IPv4) Binary CAM (BCAM) for
these prefixes alone, the worst-case performance can
also be improved.

The CAM mechanism employed for the first level look-
up is as depicted in Fig. 16, which includes three partitions:

k’-bit

TCAM

k'-bit

BCAM

128bit BCAM

Associated SRAMCAM/TCAM

High

Priority

&NIP

&Word

-Frame

&NIP

To the sub-trie structure

Fig. 16. The CAM organisation. Note that if k 0 = kmin, the k 0-bit TCAM
can be omitted.

K. Zheng et al. / Computer Communications 29 (2006) 3037–3050 3047
• A k 0-bit wide TCAM (i.e., Ternary CAM) is used to
store the prefixes no longer than k 0-bit, which is similar
to the conventional TCAM-based lookup scheme. And
the pointers to the Word Frame containing the corre-
sponding Next-hop IP addresses are stored in the asso-
ciated SRAM.

• A k 0-bit5 wide BCAM is used for the prefixes between
k 0-bit and 64-bit. Each genuine node on depth k 0 takes
a BCAM entry, and the associated SRAM stores the
pointer to the corresponding sub-trie structure rooting
at this genuine node.

• A 128-bit wide BCAM is used to store the 128-bit prefix-
es alone.

Now, given a key to search, it will be first sent to the
mixed-CAM mechanism for a match. Then the matching
result with the highest priority (as depicted in Fig. 16) is
returned. The result includes the pointer to a word frame
containing either the associated next-hop IP address (for
prefixes less than k 0 bits or exactly 128 bits) or the sub-trie
structure whose root node exactly matches the first k 0th bits
of the key. Then the following process is similar with the
original scheme.

5. Performance evaluation

To evaluate the performance of our scheme, we con-
struct the forwarding tables for a large IPv4 real-world
table (RRC06) and one synthesized IPv6 table introduced
in Section 3 using DVSBC-PC and DVSBC-PC-CAM. In
the latter scheme, we set k 0 = 12 for IPv4 and k 0 = 30 for
IPv6. Since the evaluation results for the middle-sized
IPMA are similar with those of RRC06, we only show
the results for RRC06 due to space limitation.

For the purpose of comparison, the famous multi-bit
trie algorithm, DIR-21-3-8 [5], the Tree Bitmap Com-
pression schemes [7], and conventional TCAM-based
lookup engines are also investigated. Since Lulea algo-
rithm [6] cannot be used for large route tables due to
5 The selection of value k 0 is a tradeoff between the lookup performance
and memory (CAM) consumption. The larger the value of k 0 is, the more
the number of memory accesses can be reduced, however the more the
consumption of CAM is required.
the limited pointer size in the original configurations,
we do not take it into consideration in the following
descriptions.

5.1. Memory requirements

The comparison of memory consumption for these dif-
ferent lookup schemes is shown in Table 2. The forwarding
table constructed by DVSBC-PC is the smallest one, and
can be easily extended to support large route tables or long
IP address. This demonstrates that our algorithm makes
more use of the characteristics of route table and achieves
a higher compression ratio than the other schemes. Com-
pared with conventional TCAM lookup engines,
DVSBC-PC-CAM consumes very tiny TCAM that can
be easily embedded into chips-like network processor.
Although the overall memory requirement is slightly higher
than DVSBV-PC for some route tables, the search time
and update complexity are greatly reduced as explained
in later subsections.

5.2. Lookup performance

Table 3 shows the number of memory accesses for dif-
ferent lookup schemes. Although the IPv6 prefixes are
generally much longer than IPv4, migration from IPv4
to IPv6 only causes less than 2 additional memory acces-
ses on the average in the two proposed schemes. This
indicates that both path compression and variable-stride
bitmap-compression perform much better in IPv6 than
IPv4, since the prefix density of the former is much less
than the latter. On the other hand, the searching steps of
DVSBC-PC-CAM shrink to less than 2/3 of that of
DVSBC-PC for both the average and worst cases, dem-
onstrating the effectiveness of skipping technique when
CAM is introduced.

Suppose that we adopt the state-of-the-art 5ns SRAM.
Then a single DVSBC-PC-CAM search engine achieves
1s/(9*5)ns � 22MSPS (Million Searches Per Second) for
IPv6, or 1s/(5*5)ns = 40MSPS for IPv4 even in the worst
case, which can support 10 Gbps wire-speed packet for-
warding for back-to-back smallest packets6. Although the
performance of DVSBC-PC scheme is relatively lower,
the average searching performance is also sufficient for
10 Gbps links.

Note that although DIR-21-3-8 outperforms the pro-
posed scheme in terms of searching steps, the huge mem-
ory consumption makes it only suitable for long latency
SDRAM and can hardly be scaled to support IPv6. The
conventional TCAM also achieves higher search
throughput at the expense of higher cost and power
consumption.
6 The minimum-sized packet is 60 bytes (40 bytes IPv6 header plus
20 bytes TCP header) for IPv6 and 40 bytes for IPv4. Hence the maximum
packet rate should be 10 Gbit/(60*8 bit) � 20.8Mpps (Packets Per Second)
for IPv6 and 10 Gbit/(40*8 bit) � 31.3Mpps for IPv4.

Table 2
Memory requirements for different lookup schemes

Schemes IPv4 IPv6

TCAM RAM TCAM RAM

DVSBC-PC – 334 KB – 447 KB
DIR-21-3-8 – >9 MB – N/A
Tree Bitmap – 808 KB – 630 KB

DVSBC-PC-CAMa 0.9 KB 338 KB 2.1 KB 439 KB
Conventional TCAM 511 KB 511 KB 2 MB 2 MB

N/A, not available.
a Assume that 1K TCAM = 2K BCAM.

Table 3
Lookup performance comparisons

Schemes IPv4 IPv6

Worst Avg. Worst Avg.

DVSBC-PC 8 7.17 14 8.3
DIR-21-3-8 3 1.64 N/A N/A
Tree Bitmap 11 (8 + 3) 8.58 35 (32 + 3) 14.9

DVSBC-C-CAM 5 4.33 9 5.1
Conventional TCAM 1 1 2 2

N/A, not available.

Fig. 17. Sub-trie splitting when overflow occurs.

3048 K. Zheng et al. / Computer Communications 29 (2006) 3037–3050
5.3. Updating performance

For the DVSBC-PC scheme, since it is developed based
on the trie, prefix insertion or deletion operation is similar
with those of the binary trie algorithm which can be easily
implemented in a incremental way. The difference is that
compressed sub-trie structures, instead of trie node struc-
tures, are stored. And inserting/deleting a prefix may also
lead to an increase/decrease of the memory requirement
of the corresponding compressed sub-trie structure. Some-
times the previously allocated memory space may be no
longer enough to accommodate the modified sub-trie struc-
ture, or sometimes the previously allocated memory space
may be ‘‘too large’’ for the modified sub-trie structure
which results in waste of memory. In these cases, additional
memory accesses are needed to adjust the memory
organization:

When a prefix insertion/modification leads to overflow,
i.e., the previously allocated memory space is no longer
enough to accommodate the modified sub-trie structure,
then:

i. If the allocated size is no more than 128 bytes (i.e., 64,
32, or 16 bytes), a new memory space (in another word
frame) is allocated to the sub-trie structure, the size of
which is doubled. In this case two memory accesses
are needed additionally, one to write the new word
frame and the other to modify the corresponding point-
er in its parent sub-trie.
ii. If the allocated size is already 128 bytes (the largest size
for a sub-trie structure), the original sub-trie would be
splitted into three sub-tries, as shown in Fig. 17. In this
case, six memory accesses are needed additionally, three
for new word frame write-in, respectively, and the other
three for the corresponding pointers modifications.

When the prefix deletion/modification results in the
actual size of the sub-trie structure is smaller than half of
the allocated memory space (which is larger than 16 bytes),
a new and half-sized memory space would be allocated to
the sub-trie structure. In this case, two additional memory
accesses are needed, one to move the sub-trie structure and
the other to modify the corresponding pointer in its parent
sub-trie.

For the DVSBC-PC-CAM scheme, when updating the
128-bit prefixes or the prefixes shorter than k 0 bits, it is
actually the same with conventional CAM-based schemes,
so incremental update can be easily achieved. When updat-
ing the prefixes between k 0 bits and 64 bits, it is similar with
the DVSBC-PC scheme, except that in some cases one
additional BCAM access may be needed.

In summary, the update process of both schemes can be
performed in an incremental way. No any counter updat-
ing or mass structure rebuilding is needed at all.

5.4. Scalability and flexibility

The main intention of this paper is not to present a pro-
totype of an IPv6 lookup scheme implementation with spe-
cific design parameters, but to utilize the proposed word
frame and dynamic variable-stride lookup scheme to
achieve both storage and lookup efficiency for IPv6 address
lookup. Though we have defined a 128-byte word frame in
a specific way, the lookup scheme is actually flexible.

• In the proposed Word Frame structure, we use 16-bit-
wide pointers, the first 13 bits of which is used for word
frame addressing. So the prototype supports up to
213 = 8192 word frames, i.e., about 1 Mbytes memories.
Note that only less than 500 Kbytes are needed for a
route table with more than 130K prefixes. For extremely
large route tables, if exists in the future, we may enlarge
the pointer size accordingly. For instance we can raise
the pointer size to 18 bits, and then support up to
4 Mbytes memories. However, this results in about
18/16–100% = 13% memory requirement overhead,
which implies that the pointer size should be carefully
chosen to tradeoff between scalability and memory
requirement.

K. Zheng et al. / Computer Communications 29 (2006) 3037–3050 3049
• The size of Word Frame can be adjusted according to the
system environment. Note that wider memory word may
generally result in relatively better lookup performance
since the upper bound of each lookup stride would be
larger. However, blindly increasing word wide may also
incur waste of memory because more pointer bits may
be needed for addressing within each Word Frame.

• The proposed lookup scheme still works even though
on-chip wide-word technique may not be available. In
this case, a data-bus-extended off-chip memory module
with multiple SRAM chips can be adopted
alternatively.

• According to the analysis in Sections V.B, a single
DVSBC-PC-CAM engine provides over 22M IPv6 look-
ups per second, supporting 10 Gbps line rate even in the
worst case. Moreover, actually, scalable throughput can
be achieved when pipeline or parallel fashion with multi-
ple memory units is adopted. For instance, if the sub-trie
structures of different levels are stored in different phys-
ical memory units, respectively, a pipeline skill can be
employed and results in speedup of the lookup
throughput.

6. Conclusion

The significantly increased address length of IPv6 pos-
es a great challenge on wire-speed packet forwarding for
high-end routing devices. In this paper, we propose a
novel IPv6 route lookup scheme based on some implica-
tions acquired from a thorough study of the real-world
route tables and associative documents for IPv6 prefix
allocation. Our scheme combines the bitmap compression
with path compression to fully exploit the high com-
pressibility of IPv6 route table. Taking the uneven distri-
bution of prefix trie into consideration, variable-stride
trie partitioning is employed to further reduce the mem-
ory requirement and searching steps. We also develop a
data structure called word frame and associated trie con-
struction algorithm. When implemented in the newly
emerged technique named wide word, fast incremental
update can also be achieved.

The experimental results show that only some hundreds
Kbytes memory is needed for a synthesized large IPv6
route table containing 130K prefixes. A single lookup
engine with state-of-the-art 5ns SRAM achieves more than
22 million lookups per second even in the worst case, which
can support wire-speed packet forwarding for 10 Gbps
links.

The ongoing researches of our team will cover: (1) fur-
ther improving the compression ratio and saving more
memory; (2) extending the proposed scheme to support
applications that require multi-field searching, such as
Packet Classification.
References

[1] D.R. Morrison, PATRICIA – practical algorithm to retrieve infor-
mation coded in alphanumeric, J. ACM 15 (4) (1968) 514–534.

[2] S. Nilsson, G. Karlsson, IP-address lookup using LC-tries, IEEE J.
Select. Areas Commun. 17 (6) (1999).

[3] A. Donnelly, T. Deegan, IP route lookup as string matching, in:
Proceedings of IEEE Local Computer Networks, 2000, pp. 589–595.

[4] J. van Luntereb, Searching very large routing tables in wide
embedded memory, in: Proceedings of IEEE GLOBECOM, vol. 3,
2001, pp.1615–1619.

[5] P. Gupta, S. Lin, N. McKeown, Routing lookups in hardware at
memory access speed, in: Proceedings of IEEE INFOCOM’98, 1998,
pp. 1240–1247.

[6] M. Degermark, A. Brodnik, S. Carlsson, S. Pink, Small forwarding
tables for fast routing lookups, in: Proceedings of ACM/SIG-
COMM’97, 1997, pp. 3–14.

[7] W. Eatherton, Hardware-based internet protocol prefix lookups,
Washington University Electrical Engineering Department (MS
Thesis), 1999.

[8] D.E. Taylor, J.S. Turner, J.W. Lockwood, T.S. Sproull, D.B. Parlour,
Scalable IP lookup for Internet routers, IEEE J. Selected Areas
Commun. 21 (4) (2003) 522–534.

[9] CYRESS. http://www.cypress.com/.
[10] IDT. http://www.idt.com/products/.
[11] RIPE 267: APNIC, ARIN, RIPE NCC, IPv6 Address Allocation and

Assignment Policy, Document ID: ripe-267, January 2003, available
at: http://www.ripe.net/ripe/docs/ipv6policy.html.

[12] Database of the Mae-West router from the IPMA Project (A joint
effort of the University of Michigan and Merit Network) http://
www.merit.edu/ipma.

[13] S. Sikka, G. Varghese, Memory-efficient state lookups with fast
updates, ACM SIGCOMM Comput. Commun. Rev. 30 (4) (2000)
335–347.

[14] N. Tuck, T. Sherwood, B. Calder, G. Varghese, Deterministic
memory-efficient string matching algorithms for intrusion detection,
in: Proceedings of IEEE INFOCOM’04, vol. 4. Hong Kong, 2004, pp.
2628–2639.

[15] Database of the RRC06 router from the RRCC Project (Routing
Registry Consistency Check Project), available at: http://www.ripe.-
net/rrcc/.

[16] RFC 2374: R. Hinden, M. O’Dell, S. Deering, An IPv6 Aggregatable
Global Unicast Address Format, 1998, available at: ftp://ftp.ripe.net/
rfc/rfc2374.txt.

[17] RFC 2928: R. Hinden, S. Deering, R. Fink, T. Hain, Initial IPv6 Sub-
TLA ID Assignments, 2000, available at: ftp://ftp.ripe.net/rfc/
rfc2928.txt.

[18] RFC 3177: IAB, IESG, IAB/IESG Recommendations on IPv6
Address. 2001, available at: ftp://ftp.ripe.net/rfc/rfc3177.txt.

[19] RFC 3587: R. Hinden, S. Deering, E. Nordmark, IPv6 Global
Unicast Address Format, 2003, available at: ftp://ftp.ripe.net/rfc/
rfc3587.txt.

[20] Route-View v6 database, available at: http://archive.routeviews.org/
route-views6/bgpdata/.

[21] T. Sherwood G. Varghese, B. CalderA, Pipelined memory architec-
ture for high throughput network processors, in: Proceedings of the
30th International Symposium on Computer Architecture (ISCA),
2003, pp. 288–299.

http://www.cypress.com/
http://www.idt.com/products/
http://www.ripe.net/ripe/docs/ipv6policy.html
http://www.merit.edu/ipma
http://www.merit.edu/ipma
http://www.ripe.net/rrcc/
http://www.ripe.net/rrcc/
http://archive.routeviews.org/route-views6/bgpdata/
http://archive.routeviews.org/route-views6/bgpdata/

Bin Liu (M’03) received the M.S. and Ph.D.

degree both in computer science and engineering

from North-Western Poly-Technical University,

Xi’an, China in 1988 and 1993, respectively.From

1993 to 1995 he was a postdoctoral research

fellow in the National Key Lab. of SPC and

Switching Technologies, Beijing University of

Post and Telecommunications. In 1995 he trans-

ferred to Dept. of Computer Science, Tsinghua

University as an associated professor, where he

mainly focused on multimedia networking

including ATM switching technology and Internet infrastructure. He is

now the director of the Lab. of Broadband Networking Technology and a

full professor of Computer Science and Technology at Tsinghua Univer-

sity, Beijing, since 1999. He has been the PI of many projects related to

high-speed switches, core routers, network processors as well as multi-

media access gateways. His current research areas include high perfor-

mance switches/routers, network security, network processors and traffic

engineering. He holds 11 Chinese patents and has published more then 100

papers in the above fields. He received lots of academic and honorary

awards from the home and the abroad. Prof. Liu served as TPC member

for INFOCOM 2005-2006, HRSR’05 (also Panel Chair), ICCCN’05. He is

now a Guest Editor for the IEEE Journal of Selected Areas- Special Issue

on the High Speed Network Security and a member of Communications

Security Technical subCommittee (CSTsC), ComSoc.

Zhen Liu received the Master degree in computer

science in 2004, in Tsinghua University, China.

Now she is a Ph.D candidate in the same

university. Her current researches focus on the

network processor architecture as well as its

memory hierarchy design.

Kai Zheng received the Master degree in computer

science in 2003 from Tsinghua University, China.

Now he is a Ph.D candidate in the same univer-

sity. His current researches focus on high perfor-

mance IP route lookup, packet classification and

network security related to Intrusion Detections

System and other string-matching associated

network architectures.

3050 K. Zheng et al. / Computer Communications 29 (2006) 3037–3050

	A scalable IPv6 route lookup scheme via dynamic variable-stride bitmap compression and path compression
	Introduction
	Definitions and terms for IP address lookup and the trie system
	Definition: IP address
	Definition: trie, nodes; prefix depth and prefix level
	Definition: sub-trie, sub-trie hierarchy
	Definition: Pointer Array, Compressed Pointer Array
	Definition: path skip

	Features of real-world route prefix distributions
	Characteristics of real-world IPv4 route prefix distribution
	Distribution on prefix levels
	CPA Density distributions for different types of sub-tries
	Path skip distribution on different depths of the prefix trie

	IPv6 prefix characteristics
	Current (initial) IPv6 prefix distribution
	Future IPv6 prefix distribution estimation and the IPv6 prefix generator

	A scalable IPv6 lookup scheme via dynamic variable-stride bitmap compression and path compression
	Data structure and trie construction of DVSBC-PC
	Search algorithm
	A simple example of the DVSBC-PC algorithm
	The CAM skipping scheme - adopting CAM to gear up the lookup performance

	Performance evaluation
	Memory requirements
	Lookup performance
	Updating performance
	Scalability and flexibility

	Conclusion
	References

