
Packet Classification
Decomposition Techniques

via Improved Space

Filippo Geraci, Marco Pellegrini. Paolo Pisati
Istituto di Informatica e Telematica.
Consignlio Nazionale delle Ricerche

Email: { filippo.geraci,marco.pellegrini,paolo.pisati} @ii t.cnr.it

Luigi Rizzo
Dip. Ingegneria dell’hformazione

UniversitA degli studi di h a

Email: rizzo@iet.unipi.it
Pisa, Italy Pisa, Italy

Abstract-Packet Classification is a common task in modern
Internet routers. The goal is to classify packets into “classes” or
“flowsTT according to some ruleset that looks at multiple fields
of each packet., Differentiated actions can then he applied to the
traffic depending on the result of the classification.

Even though rulesets can be expressed in a relatively compact
way by using high level languages, the resulting decision trees can
partition the search space (the set of possible attribute values) in
a potentially very large (lo6 and more) number of regions. This
calls for methods that sale to such large probIem sizes, though
the only scalable proposal in the literature so far is the one based
on a Fat Inverted Segment Tree [I].

In this paper we propose a new geometric technique called G-
filter for packet classification on d dimensions. G-filter is based
on an +proved space decnmpasition technique. In addition to
a theoretical analysis showing that classification in G-filter bas
O(1) time complexity and slightly super-linear space in the
number of rules, we provide thorough experiments showing that
the constants involved are extremely small on a wide range of
problem sizes, and that C-filter improve the best results in the
literature for large problem sizes, and is competitive for small
sizes as well.

I . INTRODUCTION

The problem of packet classification has received much
attention in recent years, due to its widespread application
to different types of network equipment. In a nutshell, the
problem is to classify packets into “classes” or “flows’’
(depending on the granularity) by looking at one or more
packet attributes. This is normally done hy routers (doing
a next-hop lookup), firewalls (filtering traffic), shapers and
policers (to enforce traffic limitations), NAT boxes, and queue
management systems.

The classification is done according to a ruleset, which
can be specified in different languages[2]-[6], as shown in
Section 11-A. Because classification is done for many different
purposes, and on different sets of packet attributes. it is unclear
that any single approach can suit all purposes, Sec. 11-B, shows
some of the solutions proposed in the literature, with different
areas of applicability.

One possible approach is to map the problem into a ge-
ometric point location problem in a multi-dimensional space.
The space is partitioned into a number of possibly overlapping
regions, each associated with an integer indicating its priority.
The number of regions can become very large, up to lo6

and more, resulting from the number of possible paths in the
decision tree generated by the specification of the ruleset. In
this formulation, the problem then becomes finding the region
with highest priority to which a point belongs. Theoretical
results by [7] show how to do classification through point
location for a 2-D space in O(1) time using slightly super-
linear storage. These results have been extended in @] to
handle ddimensional rules, for any arbitrary, but constant,
value of d. But probably more important than he asymptotic
complexity, in a practical implementation, the constants hidden
in the C l () notation become of fundamental importance.

The contribution of this paper is a novel geometric algo-
rithm, called G-filter. for multidimensional packet classifica-
tion. By theoretical analysis we show that G-filter has O(1)
classification time and slightly superlinear space in the number
of rules. More interestingly from a practical point of view.
through extensive simulations on datasets with different prop-
erties, we show that G-filter outperforms the best published
results in the literature [l] on large datasets, and remains
competitive also for small datasets.

The paper is structured as follows. In Sec. I1 we formalize
the problem of packet classification. In Sec. 11-A we briefly
discuss filter specification languages. Sec. 11-B presents the
most relevant related work. Section IT1 presents the G-filter
algorithm, followed in Sec. 111-C by a theoretical analysis of
its worst case performance. S e c . IV shows, through simulation,
that G-filter is practical and improves other proposals in the
literature.

11. PRO3LEM DEFiNlTION AND RELATED WORK

We can state the packet classification problem as follows:
given a packet g (the “query point” in our representation of the
problem) made of a set of attributes 91, . .qd (each qi mapped
to an integer in the range U = [O . . .2” - l]), and a set H
of rules specifying a partition of the attribute space U d into
different regions (classes). we want to associate the packet to a
class depending on the value of its attributes. Typical attributes
can be source and destination addresses. protocol type, port
numbers (together, these attributes are called the “5-tuple”),
protocol flags, and possibly other attributes such as packet size
and even meta-attributes (e.g. source or destination interface,
etc .I.

304 0-7803-8%8-9/05/$20.D0 (C)2005 IEEE

The classification result is typically associated to the action
to be pcrformed on the packet. For a firewall, i t could be
as simple as accept or deny a packet; for a more complex
system. rhc classification result might be used to aggregate the
packet into lo@icalflon,s (to be passed to separate queues, or be
subject to shaping or policing) or simply to collect statistics.

A. Riileser specificasinn
The ruleset that partitions the attribute space into classes can

be specified in different ways, A common approach is to use a
sequential list of n rriles of the form < cluss, 7'1, ~ 2 ,

where TI>. . . : ' r d are ranges specifying a !iypes-rectangdar
region in the attribute space, and class is the result of the
classification. The classifier will scan the list. in textual order.
against incoming packets stopping the search at the first rule
whose region contains the packet's attributes. This is the
approach used by Cisco's ACLs [5], and in the basic format
of Juniper [6] or ipfw [2] rules. Basic ipfilter [3] rules are
similar. but there the search always continues to the end' and
the classifier returns the last matching rule.

The fixed rule search ordering is equivalent to associating
a prior@ field to each rule; this formulation of the ruleset
makes it possible to approach the problem with more efficient
algorithms than the linear scan of the ruleset! which has O(17,)

time complexity.
In practice, however, ruleset specification languages tend to

be a lot more complex than the simple list of rules described
above.

First, we could have negations on the ranges of some or all
the attributes (e.g. src-port 0 - 1 0 2 3 not dst-port
0 - 1023). Some techniques can easily deal with negations,
other may not, or wiIl suffer a severe space overhead.

Second, some classifiers (e.g. those used in statefuf fire-
walk) can generate or remove d e s dynamically. Fortunately
these tend to have a uniform format (e.g. because they are
generated from a specific template) and so they can be dealt
with separately from the static part of the ruleset.

Finally, the independent rules described so far tend to be
very redundant - e.g. many rules will use the same protocol
and port ranges. and differentiate on other attributes.

Ifrulesets are generated manually (as it is often the case), it
is extremely convenient to use a structured ruleset specification
language, which allows partial evalualion of the atuibures to
be performed. This is supported e.g. by Juniper [61 or ipfw [21
rules, where after a match the classification may continue by
jumping to a different point in the ruleset (e.g. in ipfw syntax,
s k i p t o I000 proto tcp src-port 80).

It is still possible to transform a structured ruleset into a
flat one (where rules can be evahated independently), but at
the price of a (possibly large) increase in the mleset size. On
the other hand, this transformation can be worthwhile as it
can open the way to the use of more efficient classification
algorithms. So this calls for packet classification algorithms
that can work efficiently on very luge rulesets.

'unless the rule contains a "quick" keyword to tznninate he search early.

B. Related work
The packet classification probIem has been extensively

studied recentiy. The naive approach to packet classification
is to scan sequentially the rule list unril a match is found. The
scalability of this solution is generally poor, as the search time
is proportional to the length of the longest path in the rule list.

The main solutions to improve the search times use various
combinations of one or more of the following: (a) hardware-
based solutions [SI? (b) specialized data structures [lo], (c)
geometry-based algorithms [7], and (d) heuristics [I I].

Hardware-based solutions using CAMs can be used to
exploit the parallelism in the hardware to look up muttiple
rules in parallel. They are limited to small rulesets because
of cost. power and size limitations of CAMs. Other hardware
based solutions are described in [12]. but still limited to a
small number of rules.

If the rulesets language allows jumps, one can structure the
ruleset as a trie, with a classification time O (B) where B is
the total number of bits on all dimensions. This value can still
be exceedingly large (e.g. for the 5-tuple in IPv4, B = 104,
and this motivales the research on algorithms that have lower
complexity with typical rulesets.

Aggregated Bit Vrctor(ABV)[13] solves the problem with
d independent lookups on one dimension, followed by a
combining phase. For each dimension, a lookup is done using
a vie. and returning a list of all matching rules on that
dimensions. The final result is then computed by finding the
rule with highest priority which is present in all lists. Because
the amount of memory consumed for storing the lists can be
extremely large, ABV devotes a lot of effort in reducing h e
memory overhead, by representing the list using a compressed
bit vector.
Unfortunately, just navigating the tries still requires O(B)
time, and the compression of the rule lists is not as effective
as one would like.

A geometry-based algorithm was proposed by Feldmann
et al. [I] , introducing a data structure called FIS Tree (Fat
Inverted Segment Tree). Here. the problem is approached one
dimension at a time. FIS partitions the first dimension with
the endpoints of the projection of the rules on that dimension.
Each of the segments is then partitioned, according to the
remaining dimensions of the rules covering each segment,
into a number of a (d - 1)-dimensional regions. These can
be looked up using a (d - 1)-dimensional version of the
algorithm.
To avoid an O (N 2) explosion of the storage requirements, the
d- 1 dimensional regions are linked in a Fat Inverted Segment
Tree (FZ3 m e , which gives the name to the algorithm) of
bounded depth, and the common partitions of the regions are
pushed up in the FIS tree. So, the (d - 1)-dimensional lookup
is repeated (but only a bounded number of times) on each of
the nodes of the HS tree from the Leaf to the root.
To date, FIS tree is the algorithm that scales best with the
number of rules.

Gupta and McKeown[l4] proposed a heuristic approach
called RFC (Recursive Flow Classification). The main idea is

305

that packet classification involves mapping S bits in the packet
header to T << S bits of action identifier (this is done via
a lookup table). These partial identifiers are then combined,
and the reduction process continues until the final result is
reached. The depth of the structure is an input parameter of the
algorithm, and influences the classification time. An advantage
of KFC is that the various lookup stages can be pipelined. so
in a hardware implementation, the classifier can have a very
high throughput. Scalability to medium or large rulesets is still
an issue though.

111. C-FILTER

Our proposal falls in the category of geometry-based so-
lutions, and it is based on a novel recursive partitioning of
the search space which has constant depth and modest space
overhead.

Let U = [O f . .2” - 11 be the set of possible values of
the packet’s coordinates, and U” a d-amensional space U“
called the universe and representing all possible values of the
packets’ attributes. Given a set H of n. rules, in our algorithm
we map rules h E H to hyper-rectangular regions R(k) =<
Rl(h): . . . , Rd(h) >E lid, regions x of the search space to
hypercubes I(x) =< Il(x), . . . , I d ($) >E U d . and packets to
be classified to points < 91, . . . , qd >E U d . The result of the
classification is the rule with the highest priority among those
containing the query point.

The algorithm is made o f two parts: construction of the
search data structure for a given region of the search space,
and the actual packet classification. Ln the latter, once we have
determined that a packet belongs to a given region (initially
the entire universe), we use the data smcture associated to
that region to perform the classification.

A. Cansfruclion of the data structure
The input for the algorithm that constructs the search data

StCUcttlre is a region z of the search space, and a list H (z)
of rules potentially interesting the region 5. The output is a
pointer to a data structure D(’))(Z: H j z)) constructed by the
algorithm. Initially, the algorithm starts with the entire ruleset
(H(r0ot) = H) on lhe entire universe U (~ u o t) = Ud).

The first step of the algorithm is to partition rules h. E H (z)
in the following sets, with each rule belonging to only one set:

1) if h does not intersect 2, it is discarded (a query point
in region 5 will never match the rule);

2) otherwise, if h covers the enure region 2, it becomes
part of the set co’ueT(2) of cover rules;

3) otherwise, if the projection @(h) of h on axis j entirely
covers the projection I j (z) of the region T an the same
axis, h becomes part of the set F B j (z) offullbuck rules
on axis j (if h. satisfies this property for more than one
axis, we arbitrarily pick one);

4) otherwise, rule h becomes part of the set cross(a) o f
cross rules. which intersect 3: (i.e. have at least one
vertex in IG} but do not fall in any of the other categories.
the set cross(s) of cross rules.

Fig. 1. An example of the construction process in a 2-d space. For the main
region x. c E couec(r) . a , b E F B l (r) . e E FBz(z) . d , f E crruss(z).
Of these. for the central subregion y. cl E cuver(y), f f cross(y).

The partition reflects the relation of rules with query points
y belonging to region z. Fig. 1 shows a 2d example of the
relation between rules and regions.

Cover rules have the property that any packet q E IC

matches all rules in cuver(z), The only information we need
to remember from this set is the rule g(z) with the highest
priority in couer(x). as this will be a potential result for the
classification.

For fallback rules, we know that if q E x, then the j-th
coordinate of q i s within the range & (h) of all the rules in the
set F B j (z) . So y will match a rule h f FBj(rc) if and only if
its remaining d- 1 coordinates are contained in the remaining
d - 1 ranges of the rule. This is equivalent to finding whether
the projection of q along’ axis j, Pj(g) (which is contained
in the projection P’(X)) matches the projection Pj(h) of the
rule along axis j. So the problem reduces to a classification
problem in a (d - 1)-dimensional region,

Finally, for cross rules, the fact that q E z does not tell us
anything about its possible matching with cross rules. So we
need to refine the search, and we do that by by partitioning
region z into rn regions of uniform size and shape, and
recursively constructing the structures DId)(yi , cross(z)). For
the proof of efficiency we exploit heavily the fact shown in
Fig. 2.

With this in mind, if after the rule partitioning the region
has no cross, cover or fallback rules, then the consuuction is
complete and the algorithm returns a NULL pointer. Otherwise
the algorithm creates (and returns a reference to} a root
node of the data structure D (d) (~ , H (z)) with the following
information:

a reference to rule g(z), the rule with highest priority in
couer (E) ;

d references to the (d - 1)-dimensional structures
D(d-l)(x, FBj (E)), recursively constructed for the fall-
back regions;
nz references to the (recursively constructed) structures
D(d) (yz, crus s (2)) .

2Note that a projection dung axis j of a &dimensional regon produces a
(d - I)-dimensional region with all coordinates but the one on axis j . This
is different from the projection on axis j that we have used to determine if
a rule belongs to the fallback set - in the latter, the projectian produces a
1 -dimensional range which corresponds to the coordinates of the object on
axis j.

306

K -
I___._---- : Rule
l..__l-.--*

-....” r-1 Crossed regions

Fig. 2.
general dimension d only 2dkd-l of kd regions are crossed by a rule.

In a k x k grid B rule can moss at m a t 4k of the k2 regions. In

Fig. 3.
fallback data structures.

The content of each node and its references to other nodes and

The construction terminates when a region has size 1, because
any rules intersecting such a region must be a cross rule. As
an optimization, if the total number of fallback and cross rules
is smaller than some threshold t , we can avoid the recursive
construction and instead store the highest covering rule and
the fallbackkross rules into an may. Storagewise, this is
effective if t < m. In terms of classification times, t should
be reasonably small.

Note that G-filter is not restricted LO hyper-rectangular rules.
We can use rules representing arbiuariIy shaped regions, even
non connected ones, as long as the rule classification procedure
is able to correctly process them. This is extremely useful
in practice, as it is often the case, in a ruleset, that rules
have negations on individual dimensions or possibly even
on the entire region (e.g. no t (s r c - i p 10.0.0/8 and
not dst-ip 10.0.0.0/8).

Fig. 3 gives a pictorial representation of the search data
structure, showing the content of each node and its references
to the fallback data structure and to nodes at the next level. We
can think of the entire data structure as a main tree with one
node per region constituting the d-dimensional data structure,
and references to (d- l)-dimenstonal fallback structures from
each node.

B. Classijication
As a result of the previous construction, the classification

can be performed as a recursive process on the data structure

D(d)(root , H) . At each node (initially the root), we perform
d recursive queries on the (A - 1)-dimensional faIlback
structures. one recursive query on the region yilq E yi, and
return the highest priority rule among g(x) and the rules
returned by the d + 1 recursive queries. In practice, the
recursive query on region pi can be easily transformed into an
iterative one with trivial tail-recursion elimination techniques,
so it is convenient to think of the cIassification process as a
walk on the d-dimensional tree, visiting one node per level.

C. Theoretical analysis
In this Section we investigate the asymptotic time and space

complexity of ow algorithm. To simplify the analysis, we have
used a single parameter k to control the splitting of the region
in the recursive construction, so all regions are always parti-
tioned into m = kd hypercubes, In an actual implementation
of h e algorithm. however, one would change nz depending on
the number of rules, the number of dimensions, and the size
of the regions, to achieve the best spaceltime tradeoff. In the
experimental Section we have studied these tradeoffs.

We recall that we cast the problem in a general geometric
setting, and the problem we analyze is the following:

Given an input set H of n hyper-rectangles in
U d , build a data structure D(’)((Ud, W) to com-
pute efficiently argrnaxhEHqpriority(h) jmax pri-
ority query) where H, = {h, E H1q E h } .

I) Main resiilt: The main theoretical result is the following
Theorem:

Z3heorem 1; For an integer w. let U = [0, .., 2w - I] be
the set of binary numbers of w bits. Let H be a set of n.
hyper-rectangles in U d and I; a parameter, 1 5 k I n.
We can build a data structure Djd)(Ud, N) using storage
0 (7 2 k f (~) log; IUI), answering max priority queries in time
O(log$ [U l) . The constants hidden in the big-Oh notation
depend on d.
Remarks:
1) The parameters of the analysis are only the attribute size,
w , the decomposition parameter, k, and the number of rules,
n. d is considered a constant, although an arbitrary one,
2) The function f(d) , which will be specified later, grows
roughly as d2/2.

Prooj? The proof is by induction on the dimensions.
The algorithm to build U (d) (O d , H) is the one described in
Sec. 111, with no arrays (they do not change the asymptotic
time-space complexity of the algorithm), and a uniform parti-
tioning of the search region in m = k* cells at each level of
algorithm. Hence, from the description at the end of Sec. III-
A, and remembering that in this analysis d is considered a
constant, the storage required at each node of the data structure

Because of the uniform decomposition of the tree, the
recursion depth (levels) of the classification algorithm on the
d-dimensional structure is logkd(lCild) = log, IUI.

The next region yi to visit in the d-dimensional data
structure can be determined in O(d) (i.e. constant) time by
computing the indexes (q j - s tar t (l j (z))) dzz’ k of the

is U(kd) .

307

Lev 0

Lev 1

Fig. 4. A one-dimensional example of the relation between cross rules and
vertices of the rules in H . The white rectangles represent the regions. at each
level, for which a certain rule (the shaded rectangle) ends up in the moss set.
There are at most 2 such regions per level (or 2d in the d-dimensional case).
and fewer when one of the vertices coincides with a boundary between two
regions.

d-dimensional array where the pointer to the data structures
are stored.

Finally, we will use the following properties of cross rules
(see Fig. 4): i) at any level, a vertex of a [hyper-rectangle
associated to a] cross rule must correspond to a vertex of a rule
in H , and ii) a vertex of a rule in H can correspond to at most
one vertex of a cross rule at each level. Remembering that a
hyper-rectangle in d-dimensions has 2* vertices, we can have
at most n2d active regions (i.e. those for which a recursive
decomposition is required) at each level in the d-dimensional
data structures.

We are now ready to complete the proof for the case d = 1,
d = 2 and then for the generic case.

One-dimensional case: here there are no fallback sets, so the
data structure is a IC-ary tree with at most lag, JOl levels.
Query time. At each level of the tree the algorithm takes
constant time, so the query time is O(log, lUl).
Storage. The main tree has ai most 2n active nodes per level,
each requiring O (k) storage. The total storage then becomes

This is essentially the starting static l-dimensional result
in [7] which we restate in a different language so to make
clearer the line of reasoning leading to the multi-dimensional
extensions.

a n k jog, lW.

Bi-dimensional case: (this case is only discussed €or ease of
visualization, as it is already covered in the general case) here
there are two fallback sets per region.
Query time. At each level of the tree the algorithm takes con-
stant time to locate ga, plus it must compute two O(logk IUI)
queries on the fallback data structures. The total query time
over the logk [U1 levels then becomes U(1og; IC'[).
Storage, The main tree has at most 4n active nodes at each
level, each requiring O (k 2) storage. So the main tree, without
the fallback data structures. requires O(nk2 logk [Vi) storage.

Consider now all active nodes at level 1 - 1, and let us
estimate the total size of a fallback set on one dimension at
level 1. A single input hyper-rectangle h at IC = parent(y)
contributes to at most 2k fallback sets on one dimension

among all nodes that are children of 3:. Moreover, at level
1 - 1, It appears only 4 times since vertices are partitioned.
Denoting with mi the cardinality of the fallback set of node i
at level I, we have h a t for every i, mi < R, moreover summing
on level 1, Ci mi 5 8kn. All auxiliary data structures at level
1 cost order of:

i

Summing over all levels we have ha: the total size of all
auxiliary data structures is O(nIC2 lo& \ U () . So the overall
storage is o(& log: 1 . ~ 1) .

General case: the argument is inductive on the dimension. We
assume that the (d - 1)-dimensional structure uses storage
O (? ~ k ~ (~ ~ ') g (d - 1) log:-' 1 ~ 1) to answer queries in time
O(h(d - l)log$-' \VI), and we use that to prove the same
bounds for the d-dimensional structure. The definition of
J () : g () , and h () will be a result of the analysis.
Query time, At each level of the tree the algorithm takes O (d)
(i.e. constant) time, plus d queries on the (d - 1)-dimensional
fallback structures, each requiring O(h(d - 1) lag:-' IVl)
time. The total query time is then

log, IUI x d x O (k (d - 1)lOgy IUl) = O (h (d) log: lUl)

when we define recursively h(1) = 1. h (d) = d h (d - 1). Thus
we get h(dj = d!.
Storage. We have at most 2dn active nodes at each level, each
requiring. O (k d) storage, for a total size of the main tree of

Consider now at1 active nodes at level 1 - 1, and let us
estimate the the total size of the input sets ar level 1 . A single
input hyper-rectangle h at 5 = parent(y) contributes to at
most 2dkd-l sets among all nodes that are children of z.
Moreover, at level 1 - 1, h appears only 2d times since vertices
are partitioned. Denoting with na, the cardinality of the input
sets of node i at level 1 we have that. for every i, mi < n.
Summing on level I: Ci m, 5 2d+'dk"'n. All auxiliary data
structures at level I cost order of

O(n.kd1ogl, ILq).

i

- < 2d+ldkd-lnkf(d-l)g(d - 1) l o g y IUI

Now defining f recursively as f(1) = I, f(d) = f(d -
1) -t d - 1, and g (l j = 1, g (d) = d2d+1g(d - 1) we have
a bound: O (~ ~ k f (~) g (d) log:-' IUI). Summing over a!l levels
we have that the total size of all auxiliary data structures is:

Asymptotically f(d) = (I(&) and g (d) = O (d ! 2 ° (d 2)) .
However, we would like to point out that the factor g(d),
depending only on d, should not be considered as predicting
actual behavior on actual data, since the worst case situation
it is based on is rather extreme for the target applications.

O (n . L f (d) g (d) l o g : pi). I

308

2) HOW Io reach cunslant grieq ririie: Now, considering
Constants terms depending only on dl and choosing A z

 TI'/^(^). for a small value t > 0 and using the additionai
assumption n > IU('/c. which is justified in practice, we
have the following corollary:

C o r u l l u ~ I : For an integer w, let U : [[I: .., 2" - 11 be
the set of binary numbers of 7u bits. Let H be a set of 11

hyper-rectangles in [Ud> and 71 1 lUll/". We can build a data
structure D (N) using storage O (V I + ~) answering max priority
queries in time O(1).
The constants hidden in the big-Oh notation depend on d, e
and C, but not on TU and n.

1V. EXPERIMENTAL RESULTS A N D COMPARISON WITH

The theoretical analysis of the previous section only tells
us that we can achieve constant query time with slightly
superlinear storage.

The purpose of this section is to investigate, through sim-
ulation, what are the constants involved in the 00 notation
for both query and storage, for some representative rulesets,
and to compare the performance of our scheme with other
significant proposals in the literature.

A. Selected algorithms
For our tests, we have compared G-filter with 3 other

algorithms, which are thought to be representative of the state
of the art, and already illustrated in Sec. 11-€3:

ABV is the algorithm proposed in [13]. We used the
code from the authors of the algorithm to mn the
experiments on our rulesets.

RFC is a heuristic approach proposed in [151. Once again,
we used the code supplied by the authors of the
algorithm to run the experiments on our rulesets.

is a geometric approach proposed in [I]. Be-
cause neither the code nor the rulesets used for the
experiments were made available by the authors,
we have implemented the algorithm ourselves, and
validated our implementation against the published
results using synthetic rulesets (see Sec. IV-C> with
the same features.
Table I compares the memory and time performance
of our implementation with the one in [ll on rulesets
of the same size. The results are reasonably close.
Therefore we consider our code as a valid imple-
mentation of the FIS tree algorithm,

Note that while G-Filter has good scalability properties with
the number of dimensions and ruleset sizes, this is not the
case for some of the other algorithms we compare it to. As a
consequence, in this paper we limited our experiments to the
2-dimensional case. Furthermore, our focus was on storage
and time used at query time, so we did not investigate the cost
of the rule preprocessing phase CO compute the data structures
used at query time.

Finally. some of the algorithms have some tunable param-
eters resulting in different storage-time tradeoffs. When this

OTHER SCHEMES

RS tree

4.2

TABLE I
COMPARISON FOR LARGE DATA-SFT. ABOVE: OUR FIS CODE. BELOW:

ORIGINAL FIS DAT.4. n'bf IS THE MEMORY FACTOR. t , IS THE NUMBER OF

ACCESSES IN THE W O R S T CASE. I,lem I S THE NUMBER O F ELEMENTARY

ISTERVALS.

16 0.67 3.7 17

Rules I 2 levels I 3 levels 1

2.9 15 0.62 2.6 18

4.1

1090 4.36
4.0

4.6

was the case, we have tried a number of different values, but
we omit in our graphs and tables the doininatecl points, i.e.
those for which both space and time are worse than €or some
other experiment,

B. Metrics

The two main metrics we computed are the storage used
by the data structures, and the w" cuSe classificauon time.
Storage is simply expressed as the occupation, in bytes, of the
data structures used by the classification algorithm.

The time metric requires a more detailed discussion. In
all the algorithms we compare the classification reduces to
a navigation on a linked data structure or searches in a hash
table. So the classification lime is essentially dominated by
the number and type of memory accesses. As a consequence,
ralher than measuring times, we express the classification
performance in terms of the worsl case number of memory
accesses.

Especially €or large data structures, or for software based
implementations, one can reasonably assume that if the algo-
rithm accesses a small number of adjacent memory location,

309

the access time is dominated by the latency of the first access
(e.g. to start a burst transfer from a DRAM, or fill a cache
Line) and the remaining accesses (within the size of a cache
line) come at almost no cost. This assumption is made by
several authors (e.g. [l]) in evaluating the performance of their
schemes.

Then. to make H fair comparison of the results, we count
the number of accesses in two ways: one is the number
of 32-bit words accessed by the classification algorithm, the
other is the number of “cache Line” accesses, where we count
multiple accesses to the same 32-byte cache line as a single
memory access. Although there are more characteristics of
the access pattern that influence performance (e.g. whether
accesses can be pipelined or parallelised, etc.), these two
numbers give reasonable bounds for the performance of the
various algorithms.

1 J Detertiiining rhe worst-case niitnber of accesses: Count-
ing the worst-case number of memory access is relatively
simple in RFC (where it is a structural parameter set at build
time), and ABV (where it corresponds to the longest paths in
the tries. and can be derived via static analysis).

The task is slightly harder for FIS Tree, and especially for
G-filter where at each level we need to perform recursive
queries on the fallback data structures. Just summing the max
number of accesses at all levels and for all fallback svuctures
would yield too pessimistic results, as it would not take into
account the correlations between the search paths of a single
query. Thus we resort to a more refined methodology, which
consists in identifying, for each algorithm, a set S of ”repre-
sentative queries” for a given data structure, with the property
that all combinatorially different queries are represented in
S. Determining the worst case number of accesses requires:
executing those queries, measuring the number of memory
accesses, and returning the largest value,

In the 2-dimensional version of the G-filter data structure,
we have a collection of 2D grids (the search space partitioning)
and a collection of input rectangles. We compute all inter-
section points of all the grids with the boundaries of all the
rectangles, all vertices of the grids, and all intersections of
the boundaries of two input rectangles. This constitutes the
representative set of queries 5’ for G-filter. To prove it we use
a continuity argument: consider a generic 2D query point q and
move i t without crossing any grid line or any rule boundary
until it touches two lines. During such move the combinatorial
path of the nodes of the data structure visited for solving the
query do not change and the final position of the query is one
of the points in S. Note that S depends both on the ruleset
and on the specific data structure.

For the FiS tree the set of representative queries S is given
by simply extending the sides of all rectangular rules into full
lines and taking the intersections of pairs of such lines.

C. Rulesets

We have conducted our experiments with two types of
rulesets: small rulesets and large rulesets.

”
0 8 16 24 32

Mask length for source

Fig. 5. Prefix length distrihtion flog scale).

Small rulesets are derived from actual firewall rulesets
deployed by organizations of moderate size. They are typically
constructed by hand, with an original size of 50-100 of
rules (which expand to a few hundreds in the goto-less rule
format supported by the classifiers in the literature). These
rulesets include a large number of rules with wildcards on
one dimension, which are commonly used to allow or deny
all access to specific machines or subnets, irrespective of the
other endpoint of the communication.

Large rulesets are instead meant to be representative of the
classifiers installed in large ISP routers, and the goal is to
evaluate the performance of the algorithm when dealing with
up to a million mles. Clearly, such large rulesets cannot be
constructed by hand. so we synthesized them using a technique
similar to the one used in [l], which is meant to resemble the
structure of a ruleset used for flow classification. This approach
was also necessary to validate our implementation against the
published results for the FIS tree. for which neither the code
nor the experimental rulesets were available.

The approach used to generate a large (up to lo6 and more
rules) ruleset is to create rules with source and destination
ranges corresponding to prefixes taken from a large routing
table (in our case a 74k snapshot of MAE West). In addition
to this table, the ruleset generator takes as input the desired
ruleset size, and a histogram of the source and destination
prefix length distribution, similar to the one shown in Fig. 5
(which in turn resembles the one used in [I]). As a result of
this process, we have generated rulesets that range from a few
thousands to over a million rules used in our experiments.

D. Paranaeter runinp

iments is the following.

the maximum size of the hash table to 2OM-entries.

The setting of the various tunable parameters in the exper-

For RFC we set the number of hash table accesses to 7, and

ABV has no tunable parameters.
FTS Tree can be used with a variable height of the FIS tree

itself (a larger value saves memory but increases the number

310

of memory accesses), and different algorithms to solve the
range-lookup problem on each dimension. For the latter, our
implementation can use a variety of search trees. some with a
fixed branching factor, some with a different branchifig factor
at each node. We have run a number of simulations, witb the
best results achieved using a FIS tree of depth 2 or 3, variable
branching factor on the range lookup for the first dimension,
and fixed branching on the second dimension,

In G-filter, we can configure the number ni of partitions
of each region, depending on the level and the number of
dimensions, and the threshold t below which WG store rules
into arrays instead of performing the recursive partitioning. In
d l expcriments, we use I I Z = Bd for a11 levels after the first
one. Unless otherwise specified. the first level is partitioned in
ni = 1024' regions, and the threshold for the use of arrays is
t = 13 memory words,

E. Experiniental results

The most significant experiments for all algorithms and
data sets are summarised in Table 11. The two small rulesets.
derived from real firewall rulesets, are called juniper and @jk
with 210 and 238 rules. respectively. For the large rulesets,
we have produced synthetic ru1ese.t ranging from 34k to
1.3 million rules.

SfliaIl Ridesets: As it can be seen. for small rulesets RFC is
the fastest algorithm (but with a warning - we only count the
number of hash table accesses - the actual number of memory
accesses might be larger if memory fills up), but it uses 5-10
times more memory than the other algorithms. For such small
rulesets the memory overhead is not worrysome, though.

FIS and G-filter are on similar performance levels, in terms
of both on memory usage and cache-line accesses (which is
reasonably proportional to the actual memory access time). If
we count the actual number of memory words accessed, G-
filter appears to be worse, but this is an artifact of the use of
arrays, widely used for small rulesets, and where each rule
uses 2 or 3 words.

ABV tends to be largely worse than the others if we count
cache-line accesses, mostly because the 1-bit tries used by the
original implementation tend to be deep and make poor use of
memory locality, The use of some kind of level-compressed
tries might reduce h e number of accesses to smaller values.

Large Rulesets: As the ruleset size increases, RFC and ABV
start showing their severe scalability problems. In particular,
RFC could not complete the data structure construction phase
for any of the larger rulesets. In fact, already with a 4k ruleset,
it starts using over 20MB of memory.

ABV shows a memory usage explosion already with the
34k ruleset, due to the need to store large lists of rules, not
easy 10 compress. for each node of the tries.
FIS and G-filter are the only two algorithms that can cope

with very large rulesets, while still using a reasonable amount
of memory (3040 bytes per rule in the best cases) and with
rather interesting performance in terms of classification times.
From our experiments, G-filter consistently and significantly
outperforms HS tree, by up to a factor of 2, whether we

Mem.

TABLE I1
S U M M A R Y OF EXPERIMENTAL RESULTS FOR DIFFERWT ALGORITHMS.

RULESET SIZES AKD PARAMETERS

Came Ruleset
(size)

juniper

(210)

-

lpfw
(238)

synth.

W K l

68KD

21Kb
29Kb
16Kb

320Kb
51 Kb
23Kb
30Kb

31Kb -
300MB
2.2MB
2.6MB
1.1MB
5.OMB

synlh .

(7 8 ~ 1

66
14
12
11
7"
66
22
20
17
-

66
13
10
5
3

synth .
(1.3M)

-
1015MB

4.5MB
6.4MB
2.2MB
2.3MB

67.8MB
-
-

9.5M0
13.9MB
5.9MB
9.4M%

-
-

20.5MB
53.OMB
15.8MB

-
-

44.3MB
103.8MB
29.4MB
90.6MB

Afg.

RFC
ABV
FIS
FIS
G-filler

RFC
ABV
FIS
FIS
G-filler
RFC
ABV
FIS
FIS
G-filter
G-filler
RFC
ABV
FIS

FIS
G-filler
G-filter
G-filter
RFC
ABV
F E
FlS
G-filler
G-filler

RFC
ABV
FIS
FlS
G-filler
RFC
AEV
FIS
FIS
G-filter
G-filter -

-
67
15
11
10
6

3
-
-
17
12
10
7
-
-

20
13
12
-
-

22
14
12
a

usage I acc.

320KD 1 7*

-
Word
acc.

7'
67
23
21
44
7'
67
3t
29
63

- -

I_

-
-
99
22
16
42
18
-
142
24
19
48
42
18
-
-
26
21
51
43
1_

-
-
29
22
55
1_ -
-
31
23
66
42 -

optimize the parameters €or memory usage
accesses.

Notes

hash lookups

3-deep tree
2-deep tree

hash lookups

3-deep tree
Zdeep tree

3-deep tree
2-deep tree
m=256~256
t=5

3-deep tree
2-deep tree
m=32x32
m=256x256
m=4Kw4K, t=5

3-deep tree
2-deep tree
m=32x32

3-deep tree
2-deep tree
m=awa

3-deep tree
2-deep tree

m4Kx4K

r for cache-line

To further extend the results in the Table, Figures 6. 7 and 8
show the space-time performance of RS tree and G-filter for
different values of the tunable parameters on the 78K. 540K
and 1310K rulesets. As it can be seen, both algorithms can
implement different space-time uadeoffs, but in general, the
G-filter performance is always clearly better than the one of
FIS Tree.

v. CONCLUSIONS AND FUTURE WORK

We have presented a geometry-based algorithm for packet
classification on d-dimensions that is suitable for large rule-

311

Storage /time - G-finer VS FIS tree - dataset 7Bk

G-filler*
FIS tree 3

12
Y

e a
!4 ’I-
s !* S I

21 i
0 I O 20 30 40 50 60 70

Storage MB

Fig. 6. G-filter VS FIS lree - ruleset 78k

Siorage / time - G-filter VS FIS ! r e - data$& 540k

W

I
10 20 30 40 50 60 70 80 90

Storage M B

Fig. 7. G-filter VS FlS tree - ruleset 510k

sets, but has reasonably good performance also on very small
rulesets. On large rulesets, G-filter clearly outperforms the best
proposal in the literature (PIS tree). Furthermore, its suitability
to more than 2-dimension filtering makes it an interesting and
practical candidate to the building of large d-dimensional
packet classifiers.

The experiments presented in this paper are focused on
2-dimensional filters in order to compare G-filter with other
approaches proposed in the literature. In the future we plan to
run extensive experiments on the behaviour of our algorithm
on large multi-dimensional rulesets.

REFERENCES
[l] A. F e l d k n n and S. Muthukrishnan. “Tradeoffs for packet

classification.” in ZNFOCOM (3), 2000, pp, 1193-1202. [Online].
Available: citeseer.ist.psu.edu/article/feldmannOOtradeoffs.html

StorageItim-G-filterVS FIStree-dataset 1310k
2 5 , , , I I I , I

G-liber s I
0 n i FIS tree 0

4

0
2a 30 40 50 60 70 BO so ico 110

Storage M0

Fig. 8. G-filter VS FIS tree - ruleset 1310k

[21 L. Rizzu. “ipfw2 manual page.” http://www.freebsd.org/cgi/man.cgi?qutxy=ipfw
[3] D. Reed. “Ipfilter web page.” http:l/~ww.phildev.netlipf/.
[4] D. Hartmeier, M. Franzen. C. Berger. R- McBride. and C. E. Acar, “pf:

The opnbsd packet filter,” http://openhsd.orglfaq/pf/,
[SI G. A. Held, “Worhng with cisco access lists,” Int. J. New. M a g . .

vol. 9. no. 3. pp. 151-154, 1999.
[6] “Juniper firewall filter configutation,” http://www.juni~r.net/.
[7] D. Eppstein and S . Muthukrishnan. “Internet packet fileter management

and rectangle geometry;’ in Proceedings of the 12th Annual Symposium
on DiEcmte Algorithm. New York. NY. USA: ACM Aess, Jan. 2001,

[SI M. Pellegrini, ‘Fast internet packet filtering on any number of attributes
via multi-dimensional point stabbing,” IIT-CNR. Istituto di Informatica
e Telematica del CNR. Tech. Rep.. 2001. [Online]. Available:
http://www.imc.pi.cnr.iU pelleQrini/papiri/tr-hqperboxstabbing.ps

[9] C. Matsumoto, ”Cam vendors consider algorithmic alternatives.” in
EEfimes. May 2002.

[IO] E Baboescu. S. Singh. and G. Varghese, “Packet classification for core
routers: Is there an alternative to cams?” in INFOCOM. 2003. [Online].
Available: citeszer.ist.psu.eduIbabozscuO3~c~t.htmi

[I l l P. Gupta and N. McKeown, ”Packet classification using hierarchical
intelligent cuttings,” in Prm. Hor Interconnects VU. 2000, pp. 34-41.
[Online]. Available: computer.org/micro/m2O~/m1034abs.htm

[I21 L. piu, G . Varghese. and S. Sun. “Fast firewall implementations for
software-based and hardware-based routers.” in Proceedings of fhe
2001 ACM SICMETRICS intemarionul conference on Measurement and
modeling of compurer system.

[I31 E Baboescu and G, Varghese, “Scalable packet classification,” in Pro-
ceedings of INFOCOM 2001.

(141 P. Gupta and h’. McKeown, “Packet classification on multiple fields,” in
Proceedings ofINF0COA.I 1999.

[I51 P. Gupta and McKeown, “Algorithms for packet classification,” in
IEEE Nework. 2001, pp. 24-32. vol: 152, 2001. [Online]. Available:
citeseer,ist.psu.edu/guptaOI algorithms .html

pp. 827-815.

ACM Press. 2001, pp. 344-345.

ACM Press. 2001, pp. 199-210.

ACM Press, 1999. pp. 147-160.

312

