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Abstract-Packet Classification is a common task in modern 
Internet routers. The goal is to classify packets into “classes” or 
“flowsTT according to some ruleset that looks at  multiple fields 
of each packet., Differentiated actions can then he applied to the 
traffic depending on the result of the classification. 

Even though rulesets can be expressed in a relatively compact 
way by using high level languages, the resulting decision trees can 
partition the search space (the set of possible attribute values) in 
a potentially very large (lo6 and more) number of regions. This 
calls for methods that sale to such large probIem sizes, though 
the only scalable proposal in the literature so far is the one based 
on a Fat Inverted Segment Tree [I]. 

In  this paper we propose a new geometric technique called G- 
filter for packet classification on d dimensions. G-filter is based 
on an +proved space decnmpasition technique. In addition to 
a theoretical analysis showing that classification in G-filter bas 
O(1) time complexity and slightly super-linear space in the 
number of rules, we provide thorough experiments showing that 
the constants involved are  extremely small on a wide range of 
problem sizes, and that C-filter improve the best results in the 
literature for large problem sizes, and is competitive for small 
sizes as well. 

I .  INTRODUCTION 

The problem of packet classification has received much 
attention in recent years, due to its widespread application 
to different types of network equipment. In a nutshell, the 
problem is to classify packets into “classes” or “flows’’ 
(depending on the granularity) by looking at one or more 
packet attributes. This is normally done hy routers (doing 
a next-hop lookup), firewalls (filtering traffic), shapers and 
policers (to enforce traffic limitations), NAT boxes, and queue 
management systems. 

The classification is done according to a ruleset, which 
can be specified in different languages[2]-[6], as shown in 
Section 11-A. Because classification is done for many different 
purposes, and on different sets of packet attributes. it is unclear 
that any single approach can suit all purposes, Sec. 11-B, shows 
some of the solutions proposed in the literature, with different 
areas of applicability. 

One possible approach is to map the problem into a ge- 
ometric point location problem in a multi-dimensional space. 
The space is partitioned into a number of possibly overlapping 
regions, each associated with an integer indicating its priority. 
The number of regions can become very large, up to lo6 

and more, resulting from the number of possible paths in the 
decision tree generated by the specification of the ruleset. In 
this formulation, the problem then becomes finding the region 
with highest priority to which a point belongs. Theoretical 
results by [7] show how to do classification through point 
location for a 2-D space in O(1) time using slightly super- 
linear storage. These results have been extended in @] to 
handle ddimensional rules, for any arbitrary, but constant, 
value of d. But probably more important than he  asymptotic 
complexity, in a practical implementation, the constants hidden 
in the C l ( )  notation become of fundamental importance. 

The contribution of this paper is a novel geometric algo- 
rithm, called G-filter. for multidimensional packet classifica- 
tion. By theoretical analysis we show that G-filter has O(1) 
classification time and slightly superlinear space in the number 
of rules. More interestingly from a practical point of view. 
through extensive simulations on datasets with different prop- 
erties, we show that G-filter outperforms the best published 
results in the literature [l] on large datasets, and remains 
competitive also for small datasets. 

The paper is structured as follows. In Sec. I1 we formalize 
the problem of packet classification. In Sec. 11-A we briefly 
discuss filter specification languages. Sec. 11-B presents the 
most relevant related work. Section IT1 presents the G-filter 
algorithm, followed in Sec. 111-C by a theoretical analysis of 
its worst case performance. S e c .  IV shows, through simulation, 
that G-filter is practical and improves other proposals in the 
literature. 

11. PRO3LEM DEFiNlTION AND RELATED WORK 

We can state the packet classification problem as follows: 
given a packet g (the “query point” in our representation of the 
problem) made of a set of attributes 91, . .qd (each qi mapped 
to an integer in the range U = [ O . .  .2” - l]), and a set H 
of rules specifying a partition of the attribute space U d  into 
different regions (classes). we want to associate the packet to a 
class depending on the value of its attributes. Typical attributes 
can be source and destination addresses. protocol type, port 
numbers (together, these attributes are called the “5-tuple”), 
protocol flags, and possibly other attributes such as packet size 
and even meta-attributes (e.g. source or destination interface, 
etc .I. 
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The classification result is typically associated to the action 
to be pcrformed on the packet. For a firewall, i t  could be 
as simple as accept or deny a packet; for a more complex 
system. rhc classification result might be used to aggregate the 
packet into lo@icalflon,s (to be passed to separate queues, or be 
subject to shaping or policing) or simply to collect statistics. 

A. Riileser specificasinn 
The ruleset that partitions the attribute space into classes can 

be specified in different ways, A common approach is to use a 
sequential list of n rriles of the form < cluss, 7'1, ~ 2 ,  

where TI>. . . : ' r d  are ranges specifying a !iypes-rectangdar 
region in the attribute space, and class is the result of the 
classification. The classifier will scan the list. in textual order. 
against incoming packets stopping the search at the first rule 
whose region contains the packet's attributes. This is the 
approach used by Cisco's ACLs [5], and in the basic format 
of Juniper [6] or ipfw [2] rules. Basic ipfilter [3] rules are 
similar. but there the search always continues to the end' and 
the classifier returns the last matching rule. 

The fixed rule search ordering is equivalent to associating 
a prior@ field to each rule; this formulation of the ruleset 
makes it possible to approach the problem with more efficient 
algorithms than the linear scan of the ruleset! which has O( 17,) 

time complexity. 
In practice, however, ruleset specification languages tend to 

be a lot more complex than the simple list of rules described 
above. 

First, we could have negations on the ranges of some or all 
the attributes (e.g. src-port 0 - 1 0 2 3  not dst-port 
0 -  1023). Some techniques can easily deal with negations, 
other may not, or wiIl suffer a severe space overhead. 

Second, some classifiers (e.g. those used in statefuf fire- 
walk) can generate or remove d e s  dynamically. Fortunately 
these tend to have a uniform format (e.g. because they are 
generated from a specific template) and so they can be dealt 
with separately from the static part of the ruleset. 

Finally, the independent rules described so far tend to be 
very redundant - e.g. many rules will use the same protocol 
and port ranges. and differentiate on other attributes. 

Ifrulesets are generated manually (as it is often the case), it 
is extremely convenient to use a structured ruleset specification 
language, which allows partial evalualion of the atuibures to 
be performed. This is supported e.g. by Juniper [61 or ipfw [21 
rules, where after a match the classification may continue by 
jumping to a different point in  the ruleset (e.g. in ipfw syntax, 
s k i p t o  I000 proto tcp src-port 80). 

It is still possible to transform a structured ruleset into a 
flat one (where rules can be evahated independently), but at 
the price of a (possibly large) increase in the mleset size. On 
the other hand, this transformation can be worthwhile as it 
can open the way to the use of more efficient classification 
algorithms. So this calls for packet classification algorithms 
that can work efficiently on very luge rulesets. 

'unless the rule contains a "quick" keyword to tznninate he search early. 

B. Related work 
The packet classification probIem has been extensively 

studied recentiy. The naive approach to packet classification 
is to scan sequentially the rule list unril a match is found. The 
scalability of this solution is generally poor, as the search time 
is proportional to the length of the longest path in the rule list. 

The main solutions to improve the search times use various 
combinations of one or more of the following: (a) hardware- 
based solutions [SI? (b) specialized data structures [lo], (c) 
geometry-based algorithms [7], and (d) heuristics [I I]. 

Hardware-based solutions using CAMs can be used to 
exploit the parallelism in the hardware to look up muttiple 
rules in  parallel. They are limited to small rulesets because 
of cost. power and size limitations of CAMs. Other hardware 
based solutions are described in [12]. but still limited to a 
small number of rules. 

If the rulesets language allows jumps, one can structure the 
ruleset as a trie, with a classification time O ( B )  where B is 
the total number of bits on all dimensions. This value can still 
be exceedingly large (e.g. for the 5-tuple in IPv4, B = 104, 
and this motivales the research on algorithms that have lower 
complexity with typical rulesets. 

Aggregated Bit Vrctor(ABV)[13] solves the problem with 
d independent lookups on one dimension, followed by a 
combining phase. For each dimension, a lookup is done using 
a vie. and returning a list of all matching rules on that 
dimensions. The final result is then computed by finding the 
rule with highest priority which is present in all lists. Because 
the amount of memory consumed for storing the lists can be 
extremely large, ABV devotes a lot of effort in  reducing h e  
memory overhead, by representing the list using a compressed 
bit vector. 
Unfortunately, just navigating the tries still requires O(B)  
time, and the compression of the rule lists is not as effective 
as one would like. 

A geometry-based algorithm was proposed by Feldmann 
et al. [ I ] ,  introducing a data structure called FIS Tree (Fat 
Inverted Segment Tree). Here. the problem is approached one 
dimension at a time. FIS partitions the first dimension with 
the endpoints of the projection of the rules on that dimension. 
Each of the segments is then partitioned, according to the 
remaining dimensions of the rules covering each segment, 
into a number of a (d  - 1)-dimensional regions. These can 
be looked up using a (d - 1)-dimensional version of  the 
algorithm. 
To avoid an O ( N 2 )  explosion of the storage requirements, the 
d- 1 dimensional regions are linked in a Fat Inverted Segment 
Tree (FZ3 m e ,  which gives the name to the algorithm) of 
bounded depth, and the common partitions of the regions are 
pushed up in the FIS tree. So, the ( d -  1)-dimensional lookup 
is repeated (but only a bounded number of times) on each of 
the nodes of the HS tree from the Leaf to the root. 
To date, FIS tree is the algorithm that scales best with the 
number of rules. 

Gupta and McKeown[l4] proposed a heuristic approach 
called RFC (Recursive Flow Classification). The main idea is 
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that packet classification involves mapping S bits in the packet 
header to T << S bits of action identifier (this is done via 
a lookup table). These partial identifiers are then combined, 
and the reduction process continues until the final result is 
reached. The depth of the structure is an input parameter of the 
algorithm, and influences the classification time. An advantage 
of KFC is that the various lookup stages can be pipelined. so 
in a hardware implementation, the classifier can have a very 
high throughput. Scalability to medium or large rulesets is still 
an issue though. 

111. C-FILTER 

Our proposal falls in the category of geometry-based so- 
lutions, and it is based on a novel recursive partitioning of 
the search space which has constant depth and modest space 
overhead. 

Let U = [ O f  . .2”  - 11 be the set of possible values of 
the packet’s coordinates, and U” a d-amensional space U“ 
called the universe and representing all possible values of the 
packets’ attributes. Given a set H of n. rules, in our algorithm 
we map rules h E H to hyper-rectangular regions R(k)  =< 
Rl(h): .  . . , Rd(h) >E lid, regions x of the search space to 
hypercubes I(x) =< Il(x),  . . . , I d ( $ )  >E U d .  and packets to 
be classified to points < 91, .  . . , qd >E U d .  The result of the 
classification is the rule with the highest priority among those 
containing the query point. 

The algorithm is made o f  two parts: construction of the 
search data structure for a given region of the search space, 
and the actual packet classification. Ln the latter, once we have 
determined that a packet belongs to a given region (initially 
the entire universe), we use the data smcture associated to 
that region to perform the classification. 

A. Cansfruclion of the data structure 
The input for the algorithm that constructs the search data 

StCUcttlre is a region z of the search space, and a list H ( z )  
of rules potentially interesting the region 5. The output is a 
pointer to a data structure D(’))(Z: H j z ) )  constructed by the 
algorithm. Initially, the algorithm starts with the entire ruleset 
(H(r0ot) = H )  on lhe entire universe U ( ~ u o t )  = Ud). 

The first step of the algorithm is to partition rules h. E H ( z )  
in the following sets, with each rule belonging to only one set: 

1) if h does not intersect 2, it is discarded (a query point 
in region 5 will never match the rule); 

2) otherwise, if  h covers the enure region 2, it becomes 
part of the set co’ueT(2) of cover rules; 

3 )  otherwise, if the projection @(h)  of h on axis j entirely 
covers the projection I j ( z )  of the region T an the same 
axis, h becomes part of the set F B j ( z )  offullbuck rules 
on axis j (if h. satisfies this property for more than one 
axis, we arbitrarily pick one); 

4) otherwise, rule h becomes part of the set cross(a)  o f  
cross rules. which intersect 3: (i.e. have at least one 
vertex in IG} but do not fall in any of the other categories. 
the set cross(s) of cross rules. 

Fig. 1. An example of the construction process in a 2-d space. For the main 
region x. c E couec(r) .  a ,  b E F B l ( r ) .  e E FBz(z) .  d ,  f E crruss(z). 
Of these. for the central subregion y. cl E cuver(y),  f f cross(y). 

The partition reflects the relation of rules with query points 
y belonging to region z. Fig. 1 shows a 2d example of the 
relation between rules and regions. 

Cover rules have the property that any packet q E IC 

matches all rules in cuver(z), The only information we need 
to remember from this set is the rule g(z) with the highest 
priority in couer(x). as this will be a potential result for the 
classification. 

For fallback rules, we know that if q E x, then the j-th 
coordinate of q i s  within the range & ( h )  of all the rules in the 
set F B j ( z ) .  So y will match a rule h f FBj(rc) if and only if 
its remaining d- 1 coordinates are contained in the remaining 
d - 1 ranges of the rule. This is equivalent to finding whether 
the projection of q along’ axis j, Pj(g) (which is contained 
in the projection P’(X)) matches the projection Pj(h) of the 
rule along axis j. So the problem reduces to a classification 
problem in a ( d  - 1)-dimensional region, 

Finally, for cross rules, the fact that q E z does not tell us 
anything about its possible matching with cross rules. So we 
need to refine the search, and we do that by by partitioning 
region z into rn regions of uniform size and shape, and 
recursively constructing the structures DId)(yi ,  cross(z)). For 
the proof of efficiency we exploit heavily the fact shown in 
Fig. 2. 

With this in mind, if after the rule partitioning the region 
has no cross, cover or fallback rules, then the consuuction is 
complete and the algorithm returns a NULL pointer. Otherwise 
the algorithm creates (and returns a reference to} a root 
node of the data structure D ( d ) ( ~ ,  H ( z ) )  with the following 
information: 

a reference to rule g(z), the rule with highest priority in 
couer ( E ) ;  

d references to the (d  - 1)-dimensional structures 
D(d-l)(x, FBj (E)), recursively constructed for the fall- 
back regions; 
nz references to the (recursively constructed) structures 
D(d) (yz, crus s ( 2 ) ) .  

2Note that a projection dung axis j of a &dimensional regon produces a 
( d  - I)-dimensional region with all coordinates but the one on axis j .  This 
is different from the projection on axis j that we have used to determine if 
a rule belongs to the fallback set - in the latter, the projectian produces a 
1 -dimensional range which corresponds to the coordinates of the object on 
axis j. 
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Fig. 2. 
general dimension d only 2dkd-l  of kd regions are crossed by a rule. 

In  a k x k grid B rule can moss at m a t  4k of the k2 regions. In 

Fig. 3.  
fallback data structures. 

The content of each node and its references to other nodes and 

The construction terminates when a region has size 1, because 
any rules intersecting such a region must be a cross rule. As 
an optimization, if the total number of fallback and cross rules 
is smaller than some threshold t ,  we can avoid the recursive 
construction and instead store the highest covering rule and 
the fallbackkross rules into an may. Storagewise, this is 
effective if t < m. In terms of classification times, t should 
be reasonably small. 

Note that G-filter is not restricted LO hyper-rectangular rules. 
We can use rules representing arbiuariIy shaped regions, even 
non connected ones, as long as the rule classification procedure 
is able to correctly process them. This is extremely useful 
in  practice, as it is often the case, in a ruleset, that rules 
have negations on individual dimensions or possibly even 
on the entire region (e.g. no t  ( s r c - i p  10.0.0/8 and 
not dst-ip 10.0.0.0/8). 

Fig. 3 gives a pictorial representation of the search data 
structure, showing the content of each node and its references 
to the fallback data structure and to nodes at the next level. We 
can think of the entire data structure as a main tree with one 
node per region constituting the d-dimensional data structure, 
and references to (d- l)-dimenstonal fallback structures from 
each node. 

B. Classijication 
As a result of the previous construction, the classification 

can be performed as a recursive process on the data structure 

D(d)(root ,  H ) .  At each node (initially the root), we perform 
d recursive queries on the ( A  - 1)-dimensional faIlback 
structures. one recursive query on the region yilq E yi, and 
return the highest priority rule among g(x) and the rules 
returned by the d + 1 recursive queries. In practice, the 
recursive query on region pi can be easily transformed into an 
iterative one with trivial tail-recursion elimination techniques, 
so it is convenient to think of the cIassification process as a 
walk on the d-dimensional tree, visiting one node per level. 

C. Theoretical analysis 
In this Section we investigate the asymptotic time and space 

complexity of ow algorithm. To simplify the analysis, we have 
used a single parameter k to control the splitting of the region 
in the recursive construction, so all regions are always parti- 
tioned into m = kd hypercubes, In an actual implementation 
of h e  algorithm. however, one would change nz depending on 
the number of rules, the number of dimensions, and the size 
of the regions, to achieve the best spaceltime tradeoff. In the 
experimental Section we have studied these tradeoffs. 

We recall that we cast the problem in a general geometric 
setting, and the problem we analyze is the following: 

Given an input set H of n hyper-rectangles in 
U d ,  build a data structure D(’)((Ud, W )  to com- 
pute efficiently argrnaxhEHqpriority( h)  jmax pri- 
ority query) where H, = {h, E H1q E h } .  

I )  Main resiilt: The main theoretical result is the following 
Theorem: 

Z3heorem 1; For an integer w. let U = [0, .., 2w - I] be 
the set of binary numbers of w bits. Let H be a set of n. 
hyper-rectangles in U d  and I; a parameter, 1 5 k I n. 
We can build a data structure Djd)(Ud,  N) using storage 
0 ( 7 2 k f ( ~ )  log; IUI), answering max priority queries in time 
O(log$ [ U l ) .  The constants hidden in the big-Oh notation 
depend on d. 
Remarks: 
1) The parameters of the analysis are only the attribute size, 
w ,  the decomposition parameter, k, and the number of rules, 
n. d is considered a constant, although an arbitrary one, 
2) The function f(d) ,  which will be specified later, grows 
roughly as d2/2.  

Prooj? The proof is by induction on the dimensions. 
The algorithm to build U ( d ) ( O d ,  H )  is the one described in 
Sec. 111, with no arrays (they do not change the asymptotic 
time-space complexity of the algorithm), and a uniform parti- 
tioning of the search region in m = k* cells at each level of 
algorithm. Hence, from the description at the end of Sec. III- 
A, and remembering that in this analysis d is considered a 
constant, the storage required at each node of the data structure 

Because of the uniform decomposition of the tree, the 
recursion depth (levels) of the classification algorithm on the 
d-dimensional structure is logkd(lCild) = log, IUI. 

The next region yi to visit in the d-dimensional data 
structure can be determined in O(d)  (i.e. constant) time by 
computing the indexes ( q j  - s tar t ( l j ( z ) ) )  dzz’ k of the 

is U(kd) .  
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Lev 0 

Lev 1 

Fig. 4. A one-dimensional example of the relation between cross rules and 
vertices of the rules in H .  The white rectangles represent the regions. at each 
level, for which a certain rule (the shaded rectangle) ends up in the moss set. 
There are at most 2 such regions per level (or 2d in the d-dimensional case). 
and fewer when one of the vertices coincides with a boundary between two 
regions. 

d-dimensional array where the pointer to the data structures 
are stored. 

Finally, we will use the following properties of cross rules 
(see Fig. 4): i) at any level, a vertex of a [hyper-rectangle 
associated to a] cross rule must correspond to a vertex of a rule 
in H ,  and ii) a vertex of a rule in H can correspond to at most 
one vertex of a cross rule at each level. Remembering that a 
hyper-rectangle in d-dimensions has 2* vertices, we can have 
at most n2d active regions (i.e. those for which a recursive 
decomposition is required) at each level in the d-dimensional 
data structures. 

We are now ready to complete the proof for the case d = 1, 
d = 2 and then for the generic case. 

One-dimensional case: here there are no fallback sets, so the 
data structure is a IC-ary tree with at most lag, JOl levels. 
Query time. At each level of the tree the algorithm takes 
constant time, so the query time is O(log, lUl). 
Storage. The main tree has ai most 2n active nodes per level, 
each requiring O ( k )  storage. The total storage then becomes 

This is essentially the starting static l-dimensional result 
in [7] which we restate in a different language so to make 
clearer the line of reasoning leading to the multi-dimensional 
extensions. 

a n k  jog, lW. 

Bi-dimensional case: (this case is only discussed €or ease of 
visualization, as it is already covered in the general case) here 
there are two fallback sets per region. 
Query time. At each level of the tree the algorithm takes con- 
stant time to locate ga, plus it must compute two O(logk IUI) 
queries on the fallback data structures. The total query time 
over the logk [U1 levels then becomes U(1og; IC'[). 
Storage, The main tree has at most 4n active nodes at each 
level, each requiring O ( k 2 )  storage. So the main tree, without 
the fallback data structures. requires O(nk2 logk [Vi) storage. 

Consider now all active nodes at level 1 - 1, and let us 
estimate the total size of a fallback set on one dimension at 
level 1. A single input hyper-rectangle h at IC = parent(y) 
contributes to at most 2k fallback sets on one dimension 

among all nodes that are children of 3:. Moreover, at level 
1 - 1, It appears only 4 times since vertices are partitioned. 
Denoting with mi the cardinality of the fallback set of node i 
at level I, we have h a t  for every i, mi < R, moreover summing 
on level 1,  Ci mi 5 8kn. All auxiliary data structures at level 
1 cost order of: 

i 

Summing over all levels we have ha: the total size of all 
auxiliary data structures is O(nIC2 lo& \ U ( ) .  So the overall 
storage is o(& log: 1 . ~ 1 ) .  

General case: the argument is inductive on the dimension. We 
assume that the ( d  - 1)-dimensional structure uses storage 
O ( ? ~ k ~ ( ~ ~ ' ) g ( d  - 1) log:-' 1 ~ 1 )  to answer queries in time 
O(h(d - l)log$-' \VI), and we use that to prove the same 
bounds for the d-dimensional structure. The definition of 
J ( ) : g ( ) ,  and h ( )  will be a result of the analysis. 
Query time, At each level of the tree the algorithm takes O ( d )  
(i.e. constant) time, plus d queries on the ( d  - 1)-dimensional 
fallback structures, each requiring O(h(d - 1)  lag:-' IVl) 
time. The total query time is then 

log, IUI x d x O ( k ( d  - 1)lOgy IUl) = O ( h ( d )  log: lUl) 

when we define recursively h(1) = 1. h ( d )  = d h ( d -  1). Thus 
we get h(dj = d!. 
Storage. We have at most 2dn active nodes at each level, each 
requiring. O ( k d )  storage, for a total size of the main tree of 

Consider now at1 active nodes at level 1 - 1, and let us 
estimate the the total size of the input sets ar level 1 .  A single 
input hyper-rectangle h at 5 = parent(y) contributes to at 
most 2dkd-l sets among all nodes that are children of z. 
Moreover, at level 1 - 1, h appears only 2d times since vertices 
are partitioned. Denoting with na, the cardinality of the input 
sets of node i at level 1 we have that. for every i, mi < n. 
Summing on level I: Ci m, 5 2d+'dk"'n. All auxiliary data 
structures at level I cost order of 

O(n.kd1ogl, ILq). 

i 

- < 2d+ldkd-lnkf(d-l)g(d - 1) l o g y  IUI 

Now defining f recursively as f(1) = I, f(d) = f(d - 
1) -t d - 1, and g ( l j  = 1, g ( d )  = d2d+1g(d - 1) we have 
a bound: O ( ~ ~ k f ( ~ ) g ( d )  log:-' IUI). Summing over a!l levels 
we have that the total size of all auxiliary data structures is: 

Asymptotically f(d) = (I(&) and g ( d )  = O ( d ! 2 ° ( d 2 ) ) .  
However, we would like to point out that the factor g(d), 
depending only on d, should not be considered as predicting 
actual behavior on actual data, since the worst case situation 
it is based on is rather extreme for the target applications. 

O ( n . L f ( d ) g ( d ) l o g :  pi). I 
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2) HOW Io reach cunslant grieq ririie: Now, considering 
Constants terms depending only on dl and choosing A z 

 TI'/^(^). for a small value t > 0 and using the additionai 
assumption n > IU('/c. which is justified in practice, we 
have the following corollary: 

C o r u l l u ~  I :  For an integer w,  let U : [[I: .., 2" - 11 be 
the set of binary numbers of 7u bits. Let H be a set of 11 

hyper-rectangles in [Ud> and 71 1 lUll/". We can build a data 
structure D ( N )  using storage O ( V I + ~ )  answering max priority 
queries in time O(1). 
The constants hidden in the big-Oh notation depend on d, e 
and C, but not on TU and n. 

1V. EXPERIMENTAL RESULTS A N D  COMPARISON WITH 

The theoretical analysis of the previous section only tells 
us that we can achieve constant query time with slightly 
superlinear storage. 

The purpose of this section is to investigate, through sim- 
ulation, what are the constants involved in the 00 notation 
for both query and storage, for some representative rulesets, 
and to compare the performance of our scheme with other 
significant proposals in the literature. 

A. Selected algorithms 
For our tests, we have compared G-filter with 3 other 

algorithms, which are thought to be representative of the state 
of the art, and already illustrated in  Sec. 11-€3: 

ABV is the algorithm proposed in [13]. We used the 
code from the authors of the algorithm to mn the 
experiments on our rulesets. 

RFC is a heuristic approach proposed in [151. Once again, 
we used the code supplied by the authors of the 
algorithm to run the experiments on our rulesets. 

is a geometric approach proposed in [I]. Be- 
cause neither the code nor the rulesets used for the 
experiments were made available by the authors, 
we have implemented the algorithm ourselves, and 
validated our implementation against the published 
results using synthetic rulesets (see Sec. IV-C> with 
the same features. 
Table I compares the memory and time performance 
of our implementation with the one in [ll on rulesets 
of the same size. The results are reasonably close. 
Therefore we consider our code as a valid imple- 
mentation of the FIS tree algorithm, 

Note that while G-Filter has good scalability properties with 
the number of dimensions and ruleset sizes, this is not the 
case for some of the other algorithms we compare it to. As a 
consequence, in this paper we limited our experiments to the 
2-dimensional case. Furthermore, our focus was on storage 
and time used at query time, so we did not investigate the cost 
of the rule preprocessing phase CO compute the data structures 
used at query time. 

Finally. some of the algorithms have some tunable param- 
eters resulting in different storage-time tradeoffs. When this 

OTHER SCHEMES 

RS tree 

4.2 

TABLE I 
COMPARISON FOR LARGE DATA-SFT. ABOVE: OUR FIS CODE. BELOW: 

ORIGINAL FIS DAT.4. n'bf IS THE MEMORY FACTOR. t ,  IS THE NUMBER OF 

ACCESSES IN THE W O R S T  CASE. I,lem I S  THE NUMBER O F  ELEMENTARY 

ISTERVALS. 

16 0.67 3.7 17 

Rules I 2 levels I 3 levels 1 

2.9 15 0.62 2.6 18 

4.1 

1090 4.36 
4.0 

4.6 

was the case, we have tried a number of different values, but 
we omit in our graphs and tables the doininatecl points, i.e. 
those for which both space and time are worse than €or some 
other experiment, 

B. Metrics 

The two main metrics we computed are the storage used 
by the data structures, and the w" cuSe classificauon time. 
Storage is simply expressed as the occupation, in bytes, of the 
data structures used by the classification algorithm. 

The time metric requires a more detailed discussion. In 
all the algorithms we compare the classification reduces to 
a navigation on a linked data structure or searches in a hash 
table. So the classification lime is essentially dominated by 
the number and type of memory accesses. As a consequence, 
ralher than measuring times, we express the classification 
performance in terms of the worsl case number of memory 
accesses. 

Especially €or large data structures, or for software based 
implementations, one can reasonably assume that if the algo- 
rithm accesses a small number of adjacent memory location, 
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the access time is dominated by the latency of the first access 
(e.g. to start a burst transfer from a DRAM, or fill a cache 
Line) and the remaining accesses (within the size of a cache 
line) come at almost no cost. This assumption is made by 
several authors (e.g. [l]) in evaluating the performance of their 
schemes. 

Then. to make H fair comparison of the results, we count 
the number of accesses in two ways: one is the number 
of 32-bit words accessed by the classification algorithm, the 
other is the number of “cache Line” accesses, where we count 
multiple accesses to the same 32-byte cache line as a single 
memory access. Although there are more characteristics of 
the access pattern that influence performance (e.g. whether 
accesses can be pipelined or parallelised, etc.), these two 
numbers give reasonable bounds for the performance of the 
various algorithms. 

1 J Detertiiining rhe worst-case niitnber of accesses: Count- 
ing the worst-case number of memory access is relatively 
simple in RFC (where it is a structural parameter set at build 
time), and ABV (where it corresponds to the longest paths in 
the tries. and can be derived via static analysis). 

The task is slightly harder for FIS Tree, and especially for 
G-filter where at each level we need to perform recursive 
queries on the fallback data structures. Just summing the max 
number of accesses at all levels and for all fallback svuctures 
would yield too pessimistic results, as it would not take into 
account the correlations between the search paths of a single 
query. Thus we resort to a more refined methodology, which 
consists in identifying, for each algorithm, a set S of ”repre- 
sentative queries” for a given data structure, with the property 
that all combinatorially different queries are represented in 
S. Determining the worst case number of accesses requires: 
executing those queries, measuring the number of memory 
accesses, and returning the largest value, 

In the 2-dimensional version of the G-filter data structure, 
we have a collection of 2D grids (the search space partitioning) 
and a collection of input rectangles. We compute all  inter- 
section points of all the grids with the boundaries of all the 
rectangles, all vertices of the grids, and all intersections of 
the boundaries of two input rectangles. This constitutes the 
representative set of queries 5’ for G-filter. To prove it we use 
a continuity argument: consider a generic 2D query point q and 
move i t  without crossing any grid line or any rule boundary 
until it touches two lines. During such move the combinatorial 
path of the nodes of the data structure visited for solving the 
query do not change and the final position of the query is one 
of the points in S. Note that S depends both on the ruleset 
and on the specific data structure. 

For the FiS tree the set of representative queries S is given 
by simply extending the sides of all rectangular rules into full 
lines and taking the intersections of pairs of such lines. 

C. Rulesets 

We have conducted our experiments with two types of 
rulesets: small rulesets and large rulesets. 

” 
0 8 16 24 32 

Mask length for source 

Fig. 5. Prefix length distrihtion flog scale). 

Small rulesets are derived from actual firewall rulesets 
deployed by organizations of moderate size. They are typically 
constructed by hand, with an original size of 50-100 of 
rules (which expand to a few hundreds in the goto-less rule 
format supported by the classifiers in the literature). These 
rulesets include a large number of rules with wildcards on 
one dimension, which are commonly used to allow or deny 
all access to specific machines or subnets, irrespective of the 
other endpoint of the communication. 

Large rulesets are instead meant to be representative of the 
classifiers installed in  large ISP routers, and the goal is to 
evaluate the performance of the algorithm when dealing with 
up to a million mles. Clearly, such large rulesets cannot be 
constructed by hand. so we synthesized them using a technique 
similar to the one used in [l], which is meant to resemble the 
structure of a ruleset used for flow classification. This approach 
was also necessary to validate our implementation against the 
published results for the FIS tree. for which neither the code 
nor the experimental rulesets were available. 

The approach used to generate a large (up to lo6 and more 
rules) ruleset is to create rules with source and destination 
ranges corresponding to prefixes taken from a large routing 
table (in our case a 74k snapshot of MAE West). In addition 
to this table, the ruleset generator takes as input the desired 
ruleset size, and a histogram of the source and destination 
prefix length distribution, similar to the one shown in Fig. 5 
(which in turn resembles the one used in [I]). As a result of 
this process, we have generated rulesets that range from a few 
thousands to over a million rules used in our experiments. 

D. Paranaeter runinp 

iments is the following. 

the maximum size of the hash table to 2OM-entries. 

The setting of the various tunable parameters in the exper- 

For RFC we set the number of hash table accesses to 7, and 

ABV has no tunable parameters. 
FTS Tree can be used with a variable height of the FIS tree 

itself (a larger value saves memory but increases the number 
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of memory accesses), and different algorithms to solve the 
range-lookup problem on each dimension. For the latter, our 
implementation can use a variety of search trees. some with a 
fixed branching factor, some with a different branchifig factor 
at each node. We have run  a number of simulations, witb the 
best results achieved using a FIS tree of depth 2 or 3, variable 
branching factor on the range lookup for the first dimension, 
and fixed branching on the second dimension, 

In G-filter, we can configure the number ni of partitions 
of each region, depending on the level and the number of 
dimensions, and the threshold t below which WG store rules 
into arrays instead of performing the recursive partitioning. In 
d l  expcriments, we use I I Z  = Bd for a11 levels after the first 
one. Unless otherwise specified. the first level is partitioned in 
ni = 1024' regions, and the threshold for the use of arrays is 
t = 13 memory words, 

E. Experiniental results 

The most significant experiments for all algorithms and 
data sets are summarised in  Table 11. The two small rulesets. 
derived from real firewall rulesets, are called juniper and @jk 
with 210 and 238 rules. respectively. For the large rulesets, 
we have produced synthetic ru1ese.t ranging from 34k to 
1.3 million rules. 

SfliaIl Ridesets: As it can be seen. for small rulesets RFC is 
the fastest algorithm (but with a warning - we only count the 
number of hash table accesses - the actual number of memory 
accesses might be larger if memory fills up), but it uses 5-10 
times more memory than the other algorithms. For such small 
rulesets the memory overhead is not worrysome, though. 

FIS and G-filter are on similar performance levels, in terms 
of both on memory usage and cache-line accesses (which is 
reasonably proportional to the actual memory access time). If 
we count the actual number of memory words accessed, G- 
filter appears to be worse, but this is an artifact of the use of 
arrays, widely used for small rulesets, and where each rule 
uses 2 or 3 words. 

ABV tends to be largely worse than the others if we count 
cache-line accesses, mostly because the 1-bit tries used by the 
original implementation tend to be deep and make poor use of 
memory locality, The use of some kind of level-compressed 
tries might reduce h e  number of accesses to smaller values. 

Large Rulesets: As the ruleset size increases, RFC and ABV 
start showing their severe scalability problems. In particular, 
RFC could not complete the data structure construction phase 
for any of the larger rulesets. In fact, already with a 4k ruleset, 
it starts using over 20MB of memory. 

ABV shows a memory usage explosion already with the 
34k ruleset, due to the need to store large lists of rules, not 
easy 10 compress. for each node of the tries. 
FIS and G-filter are the only two algorithms that can cope 

with very large rulesets, while still using a reasonable amount 
of memory (3040 bytes per rule in the best cases) and with 
rather interesting performance in terms of classification times. 
From our experiments, G-filter consistently and significantly 
outperforms HS tree, by up to a factor of 2, whether we 

Mem. 

TABLE I1 
S U M M A R Y  OF EXPERIMENTAL RESULTS FOR DIFFERWT ALGORITHMS. 

RULESET SIZES AKD PARAMETERS 

Came Ruleset 
(size) 

juniper 

(210) 

- 

lpfw 
(238) 

synth. 

W K l  

68KD 

21Kb 
29Kb 
16Kb 

320Kb 
51 Kb 
23Kb 
30Kb 

31Kb - 
300MB 
2.2MB 
2.6MB 
1.1MB 
5.OMB 

synlh . 

( 7 8 ~ 1  

66 
14 
12 
11 
7" 
66 
22 
20 
17 
- 

66 
13 
10 
5 
3 

synth . 
(1.3M) 

- 
1015MB 

4.5MB 
6.4MB 
2.2MB 
2.3MB 

67.8MB 
- 
- 

9.5M0 
13.9MB 
5.9MB 
9.4M% 

- 
- 

20.5MB 
53.OMB 
15.8MB 

- 
- 

44.3MB 
103.8MB 
29.4MB 
90.6MB 

Afg. 

RFC 
ABV 
FIS 
FIS 
G-filler 

RFC 
ABV 
FIS 
FIS 
G-filler 
RFC 
ABV 
FIS 
FIS 
G-filter 
G-filler 
RFC 
ABV 
FIS 

FIS 
G-filler 
G-filter 
G-filter 
RFC 
ABV 
F E  
FlS 
G-filler 
G-filler 

RFC 
ABV 
FIS 
FlS 
G-filler 
RFC 
AEV 
FIS 
FIS 
G-filter 
G-filter - 

- 
67 
15 
11 
10 
6 

3 
- 
- 
17 
12 
10 
7 
- 
- 

20 
13 
12 
- 
- 

22 
14 
12 
a 

usage I acc. 

320KD 1 7* 

- 
Word 
acc. 

7' 
67 
23 
21 
44 
7' 
67 
3t  
29 
63 

- - 

I_ 

- 
- 
99 
22 
16 
42 
18 
- 
142 
24 
19 
48 
42 
18 
- 
- 
26 
21 
51 
43 
1_ 

- 
- 
29 
22 
55 
1_ - 
- 
31 
23 
66 
42 - 

optimize the parameters €or memory usage 
accesses. 

Notes 

hash lookups 

3-deep tree 
2-deep tree 

hash lookups 

3-deep tree 
Zdeep tree 

3-deep tree 
2-deep tree 
m=256~256 
t=5 

3-deep tree 
2-deep tree 
m=32x32 
m=256x256 
m=4Kw4K, t=5 

3-deep tree 
2-deep tree 
m=32x32 

3-deep tree 
2-deep tree 
m=awa 

3-deep tree 
2-deep tree 

m4Kx4K 

r for cache-line 

To further extend the results in the Table, Figures 6. 7 and 8 
show the space-time performance of RS tree and G-filter for 
different values of the tunable parameters on the 78K. 540K 
and 1310K rulesets. As it can be seen, both algorithms can 
implement different space-time uadeoffs, but in general, the 
G-filter performance is always clearly better than the one of 
FIS Tree. 

v. CONCLUSIONS AND FUTURE WORK 

We have presented a geometry-based algorithm for packet 
classification on d-dimensions that is suitable for large rule- 

311 



Storage /time - G-finer VS FIS tree - dataset 7Bk 

G-filler* 
FIS tree 3 

12 
Y 

e a  
!4 ’I- 
s !* S I  

21 i 
0 I O  20 30 40 50 60 70 

Storage MB 

Fig. 6. G-filter VS FIS lree - ruleset 78k 
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Fig. 7. G-filter VS FlS tree - ruleset 510k 

sets, but has reasonably good performance also on very small 
rulesets. On large rulesets, G-filter clearly outperforms the best 
proposal in the literature (PIS tree). Furthermore, its suitability 
to more than 2-dimension filtering makes it an interesting and 
practical candidate to the building of large d-dimensional 
packet classifiers. 

The experiments presented in this paper are focused on 
2-dimensional filters in order to compare G-filter with other 
approaches proposed in the literature. In the future we plan to 
run  extensive experiments on the behaviour of our algorithm 
on large multi-dimensional rulesets. 
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