
A Multipattern Matching Algorithm Using Sampling and Bit Index

Jinhui Chen, Zhongfu Ye Min Tang

Department of Automation
University of Science and Technology of

China
Hefei, P.R.China

jeffcjh@mail.ustc.edu.cn, yezf@ustc.edu.cn

Department of Computer Science and
Technology

Tsinghua University
Beijing, P.R.China

tangmin@csnet1.cs.tsinghua.edu.cn

Abstract

Pattern matching is one of the basic problems in
computer science. In this paper we propose a new
multiple pattern matching algorithm. Unlike the well
known Knuth-Morris-Pratt, Boyer-Moore, Karp-Rabin
and their variants, our algorithm is derived from the
ideas of sampling and bit index, sampling for
efficiency and bit index for flexibility, as a result
providing the simplest way to search for multiple
patterns. Theoretical analysis and experimental results
show that our algorithm is average-optimal with
average complexity of O(n/m) for the search of
patterns of length m in a text of length n. It provides a
proper solution to such needs as matching long
dispersed patterns and especially bit pattern matching
(newly introduced in this paper) in data analysis of
some private protocols’ communication.

1. Introduction

Pattern Matching (PM) has many applications in

most fields of computer science. In this paper we

present a new PM algorithm for matching multiple

patterns which we argue has the best average runtime

whereas is very simple and flexible.

The PM problem consists in finding all occurrences

of patterns in text. Since any alphabet can be coded

in binary, in this paper we view both of text and

patterns as bit stream but stored in bytes as usually. Let

T = T[0…n-1]=T0…n-1 be the text of length n,

P=P[0…m-1]=P0…m-1 the pattern of length m, and P1…

Pr be the r patterns of at least m bytes. An I-substring

(i-bitstring) is the string of continuous I bytes (bits) in

T or P. So-called bit pattern matching--a new term

introduced in the paper--is the problem that P need not

start at some byte of T, but may begin at any bit of any

byte in T.

Classical PM algorithms have KMP [1], BM [2],

KR [3], and their variants [4-11] with different

matching policies, and in practice BM style algorithms

are considered the most efficient. Most PM algorithms

have the general structure [12] in Fig. 1.

PM algorithms mainly differ in the computation of

shift increment according to matching policies.

Generally, there are some deficiencies in the

algorithms above, including: 1) the efficiency of

algorithms depends heavily on the alphabet; 2) the

speed advantage of matching long pattern is not

evident; and 3) they are not suitable for bit pattern

matching.

To solve these problems, we propose a new

algorithm known as SBI (Sampling and Bit Indexing).

Unlike KMP, BM and KR, SBI is derived from the

simple ideas of sampling [13] and bit index.

Theoretical analysis and experimental results show that

SBI is average-optimal with average running time of

O(n/m) in the condition that the total length of patterns

is no more than tens of thousands.

Generic_Pattern_Matcher (T, P)

n length (T) m length (P)

Precompute (P)

s 0

while s n – m do

s s + Shift_Increment (s, T, P)
where

Precompute (P) derives some data structure usually in
form of tables or lists, which are later accessed by
Shift_Increment.

Shift_Increment (s, T, P) checks for a match at s and
then computes a shift increment from s.

Figure 1. General structure of PM algorithm

978-1-4244-1968-5/08/$25.00 ©2008 IEEE 1

In section 2 we describe the basic type of SBI in

details. Section 3 contains the proof of the correctness

and the analysis of time complexity and space

complexity. Section 4 makes discussions of three

variants of basic SBI. Some experimental results are

presented in section 5 to verify our algorithm. The last

section is the conclusion and relative work for further

research.

2. Basic SBI Algorithm

We need some specific terms used by SBI.

Definition 1: A full match means that P is identical

to some m-substring of T, while a partial match means

some I-substring of P is identical to some I-substring

of T, where I 1...m is the length of partial match.

Definition 2: Sampling is a positioning operation,

moving forward a constant distance (also called jump)

over T or P every time. The I-substirng or i-bitstring

taken at the sampling point of T or P is known as index

(abbr. idx later).

2.1. Basic Ideas of SBI

The idea of SBI is simple: if there is a full match

between T and P, it must also be a partial match. By

means of sampling T to obtain the i-bitstring as a

possible partial match, we can extend a partial match

to a full match. This idea is illustrated in Fig. 2, where

three partial matches as indices lie at the beginning, in

the middle, and at the tail of P, respectively.

To decide whether or not an i-bitstring is a partial

match, we need sample P to gather all its i-bitstrings in

advance. Hence, SBI algorithm has two stages:

the first stage is preprocessing of P to store in

table the information of all its i-bitstrings as

indices which may be partial matches;

the second stage is to sample T to obtain

corresponding index, and with the help of

preprocessing information extend partial matches

to full matches if there are any.

Following are the two stages of basic SBI in details

in the case of single pattern (i.e. r =1).

2.2. The Preprocessing Stage

In this stage we preprocess P to create an array V of

linked lists of index of P.

The first thing is to compute related parameters.

According to n, m, and available memory, we can

obtain three parameters: i--the length of index in bit, I-

-the length of index in byte, and J --the jump of

sampling T in byte. The computation formula and

related restrictions are as follows:

2i = × n / m

I = (i + 7) / 8 (1 I m / 2)

J = m – I + 1 (r × J 2i)

where n and m are the lengths of text and pattern

respectively, i and I are the index width in bit and byte

respectively, J is the const jump of sampling text, and

 is called compression ratio (0< 1).

For example, n = 228, m = 25, r = 1, we choose

=1/27, then i = 16, I = 2, J = 31. Note that i is not

necessarily the multiple of 8. In practice we may

choose i=8~24, and i=16~20 is usually a good choice.

Figure 2. Ideas of SPM: extend partial match to full match

Figure 3. Pseudo code of function PP

Figure 4. Structure of array V

000…00 offset

000…01

000…10 offset offset

000…11

……

111…10 offset

111…11

idx of i bits

…

list V[idx] of idx offset in P

T sampling sampling sampling

… … … …

P P P
When sampling T, three partial matches as indices

are found. At these points, we try to extend partial

matches forward and backward to possible full ones.

Function PP (n, m, P)

1. compute i, I, J

2. allocate memory for V

3. for p = 0 to 2i-1 do V[p] NULL

4. for p = 0 to J-1 do

5. get i-bitstring of P as idx at byte p

6. if V[idx] equals NULL then

7. create linked list V[idx]

8. insert node of offset p into V[idx]

2

Then what we need do is to create an array V of

linked lists of index sampled from P. In other words, V

is a pointer array of size 2i, whose element is either

NULL or a pointer to a linked list. Every node in the

list V[idx] stores the offset in P of the index idx, and

V[idx] consists of nodes with the same idx sampled

with jump 1 byte at different point of P.

The preprocessing stage can be described by

function PP (PreProcessing) in Fig. 3.

We illustrate the structure of the array V in Fig. 4.

2.3. The Sampling and Matching Stage

In this stage of sampling and matching, we take the

following steps to find all possible full matches:

sample T with jump J bytes to get index idx

decide whether idx is valid, i.e. V[idx] = NULL ?

if V[idx] != NULL, then extend every partial

match recorded in the node of linked list V[idx] to

full match if there is any.

This procedure can be described by the pseudo code

of function SM (Sample and Match) in Fig. 5.

Complete SBI algorithm consists of two functions,

i.e. PP and SM. Clearly, our simple algorithm uses the

techniques of sampling and indexing to guarantee the

efficiency (with constant jump J=m-I+1 every time to

finish scanning T in n/J steps), and by means of bit

index supports the flexibility of matching (such as

single/multiple pattern matching, and bit pattern

matching discussed in section 4).

To better understand the algorithm, we give an

example of matching procedure. Given P = “pattern”

and m=7, we choose i=16, I=2, J=m-I+1=6. The

matching procedure of SBI algorithm is illustrated in

Fig. 6.

3. Analysis of SBI Algorithm

In this section we analyze the correctness and

performance of our algorithm SBI in the basic type.

Further discussions of its three variants are made in

Section 4.

3.1. The Correctness Analysis

To analyze the correctness, we first have the

following lemma. We suppose index length (in bytes) I

 m/2 below.

Lemma 1: Suppose X is any m-substring of T, we can

always get an I-substring of X as index when sampling

T with jump J m-I+1.

Function SM (T)
 // call function PP then execute the following

1. for t = 0 to n-1 step J do

2. get i-bitstring as idx at byte t

3. if V[idx] != NULL then

4. while V[idx] not ends

5 get offset p from node of V[idx]

6. compare Tt-p...t-p+m-1 against P0...m-1
// or extend forward and backward from idx

7. if match completely then report it

Figure 5. Pseudo code of function SM

Proof: Since jump J m-I+1 (m) when sampling T,

there must be a sampling point j inside X, where

0...m-1. There are two cases: 1) If 0...m-I, then we

directly take I-substring of X at j; 2) If m-I+1...m-1,

then there is another sampling point j’ = j+I-m-1

0...I-2, and we take I-substring of X at j’. Anyway, we

can get an I-substring of X as index.

Due to Lemma 1, we can prove the following

sampling theorem which is critical to SPM algorithm.

Theorem 1: (Sampling Theorem) If jump (of sampling

T) J m-I+1, then SPM algorithm never discards any

full match.

Proof: Suppose there is a m-substring, X, in T to

match P. By Lemma 1, we can take an I-substring of X

as index idx at some sampling point. It is clear that idx

also exists in P since V[idx] is not NULL. Based on

idx (it is a partial match), we extend backward and

forward in T and P, finally to succeed in finding a full

match, which is in fact X (in T) and P.

Since SPM samples T with jump J=m-I+1, theorem

1 ensures the correctness of our algorithm. It is not

difficult to see that if J > m-I+1, then we might get no

I-substring of X as index such that SPM algorithm fails.

In actual implementation, we only take as index i-

bitstring instead of I-substring, where I=(i+1)/8, to

reduce the memory requirement.

It is worth pointing out that ALGO1 in [4] is in fact

a special case of SBI when I=1.

3.2. The Performance Analysis

To analyze the performance, we prove the theorem

below.

Theorem 2: The running time of PM algorithm has a

lower bound of (n/m).

Proof: We divide T = T0…n-1 of length n into [n/m]

contiguous and non-overlapping m-substrings, and

disregard the few last text bytes that may not complete

3

P: m = 7. We choose i = 16 (I = 2) as the index width.
p a t t e r n

V: derived from P. Only 6 elements of V[idx] are valid (not NULL).
p a 0

a t 1

t t 2

t e 3

e r 4

r n 5

……

idx offset in P of idx

T: J=m-I+1=6.

0 1 2 3 4 5 6 7 8 9
1

0

1

1

1

2

1

3

1

4

1

5

1

6

1

7

1

8

1

9

2

0

2

1

2

2

2

3

A l g o r i t h m f o r p a t t e r n m a

sampling sampling sampling sampling

V[“Al”]=NULL V[“th”]=NULL V[“r ”]=NULL V[“er”]: valid, offset in P=4. Extend to

a match: T18-4…18-4+6 = P0…6

Figure 6. Eample of SPM matching procedure

a full m-substring. According to [15], the time of

matching P in T is no less than the total time of

matching P inside [n/m] m-substrings. Since these m-

substrings are independent, one can not finish the

whole work of matching in less than [n/m] “processes”.

Since every “process” spends no less than one time

unit, i.e. (1), the total time of matching is [n/m]

× (1)= (n/m).

To facilitate the analysis of running time of SPM,

we need the following lemma.

Lemma 2: Suppose X=X0...k and Y=Y0...k are two

strings of same length k+1, the event Xi=Yi, i 0...k

has the same probability p, 0<p 1/2. Then the

comparison times needed to decide whether or not X

equals Y (i.e. X=Y) are at most 1/(1-p) on average.

Proof: Let q=1-p. Note that function g(x) = xpx has its

peak value gp = -1/(elnp), so g1/2 = 1/(eln2) = 0.53,

g1/256 = 1/(8eln2) = 0.07. Therefore we may omit the

small value of pk+1(k+1) in the following computation.

The average comparison times to decide whether or

not X=Y are given by

f(p) = q×1 + pq×2 + p2q×3 + … pk×(k+1)

= q×1 + pq×2 + … pkq×(k+1) + pkp×(k+1)

 q×(1+p1×2+… +pk×(k+1))

 q×(1+p1×2+…+pk×(k+1) +…) (1)

= q×1/q2 = 1/q

= 1(1-p).

Here in (1) we reference the sum of well-known series

1 x1×2+x2×3+x3×4+…=1/(1-x)2.

In this paper, p=1/256 and 1/2 for byte and bit,

respectively.

We now give the analysis of average running time

of SBI algorithm, denoted by t(n, m), assuming that

both T and P are random strings with uniform

distribution.

The total time t(n, m) consists of t(n,m)p--

preprocessing time, and t(n,m)s--sampling and

matching time. According to function PP in Fig. 3, we

have

t(n, m)p = O(2i + J) = O(n / m)

But t(n, m)s is much more complicated and needed to

be investigated in detail. The line 2 of function SM in

Fig. 4 (denoted by SM_Line2) spends constant time of

c1. The condition of SM_Line3 has a probability of J/2i

to be true. If SM_Line3 is true, it is easy to see that the

loop statement of SM_Line4 is run once on average

because the average length of valid linked list in V is

one. By Lemma 2, SM_Line5~7 spends constant time

of c2 on average. Therefore, the mathematical

expectation of t(n, m)s is:

E(t(n, m)s) = n / J × (c1 + (J / 2i) × 1 × c2)

= O(n / J) = O(n / m), if J = O(2i).

Note that J = O(2i) is to assure J/2i = O(1).

4

Finally we get the average running time of basic

SBI as follows:

E (t(n, m)) = E(t(n, m)p) + E(t(n, m)s)

= O(n / m) + O(n / m)

= O(n / m), if J = O(2i).

The formula of t(n,m)s also gives the possible

worst-case runtime of SBI algorithm as follows:

t(n, m)s = n / J × (c1 + (1/1) × J × m)

= O(n / J) + n × m

= O(n m).

This is encountered when T = an and P = am.

The best-case running time of SBI is clearly

achieved when none of i-bitstrings of P occurs in T,

and in this situation we have

t(n, m) = n / J × (c1 + 0)

 = O(n / J)

 = O(n / m).

It is necessary to point out the fact that SBI is

average-optimal with average runtime O(n/m) dose not

contradict the theoretical result of [15], which shows

that based on the symbol comparison, the average

complexity of multipattern matching is (nlog (rm)/m)

accesses to T. By using the techniques of sampling and

indexing, our algorithm SPM reduces the time of

(log (rm)) spent on every block in [15] to O(1). This

is in fact an application of usual time-space tradeoff,

because SBI algorithm needs an extra memory space

for the array V of linked list of index, whose size is

O(2i + m).

4. Variants of SBI Algorithm

For the basic type of SBI algorithm in section 2, in

this section we discuss its three variants to meet such

needs as multiple patterns, bit pattern matching and

less memory space.

4.1. Variant for Multiple Patterns

SBI can extend naturally to multiple patterns. Given

r patterns, P1… Pr, of lengths m1…mr, respectively, m

= min{mk}.

The function PP in Fig.1 needs to be modified to

PP2 in Fig.7. PP2 has two differences from PP: one is

the addition of a loop of line 4 for multiple patterns;

the other is the inserted node with more information of

k and p.

The function SM in Fig.3 needs minor modification,

including SM_Line5 (more information of k and p)

and SM_Line6 (ompare T against Pk). New version

SM2 is given in Fig. 8.

It is easy to see that average running time of SBI in

the case of multiple patterns is

Figure 7. Pseudo code of function PP2

Figure 8. Pseudo code of function SM2

Figure 9. Structure of packed V

t(n, m) = t(n, m)p + t(n, m)s

= O(2i + rJ) + n/J × (c1 + (rJ/2i) × 1 × c2)

= O(n/m), if rJ = O(2i).

That is to say, the average running time for multiple

patterns is still O(n/m) in the reasonable condition of

rJ=O(2i). In practice, we can choose the proper i such

that rJ=O(2i) as follows:

 if rJ < 20000 then let i = 16

 else if rJ < 60000 then let i = 17

 else if rJ < 100000 then let i = 18

 else if rJ < 300000 then let i = 19

 else let i = 20

idx 0

idx 1

idx 2

…..

 idx rJ-1

valid idx of i bits list of idx offset in P1… Pr

Function PP2 (n, m, r, P
1
… P

r
)

1. compute i, I, J

2. allocate memory for V

3. for p = 0 to 2i-1 do V[p] NULL

4. for k = 0 to r-1 do

5. for p = 0 to J-1 do

6. get i-substring of Pk as idx at byte p

7. if V[idx] equals NULL then

8. create linked list V[idx]

9. insert node of k and p into V[idx]

Function SM2 (T)
// call function PP2 then execute the following

1. for t = 0 to n-1 step J do

2. get i-bitstring as idx at byte t

3. if V[idx] != NULL then

4. while V[idx] not ends

5 get k and p from node of V[idx]

6. compare Tt-p...t-p+m-1 against P
k
0...m-1

// or extend forward and backward from idx

7. if match completely then report it

5

4.2. Variant for Bit Pattern Matching

This paper for the first time introduces the concept

of bit pattern matching, which is not yet fully studied

by other PM algorithms. SBI algorithm can meet the

need of bit pattern matching with minor changes in

function PP and SM as follows:

PP_Line1: J= m-I+1

J=m-I

PP_Line4: for p=0 to J-1 do

for p=0 to 8J-1 do

PP_Line5: get i-bitstring of P as idx at byte p

get i-bitstring of P as idx at bit p

SM_Line7: compare Tt-p...t-p+m-1 and P0…m-1

compare T and P bitwisely from idx

The average running time of SBI in the case of bit

pattern matching is

t(n, m) = t(n, m)p + t(n, m)s

= O(2i + 8J) + n/J × (c1 + (8J/2i)×1×c2)

= O(n/m), if 8J = O(2i).

Clearly it is still average-optimal.

In the data analysis of some private protocols such

as banking key management protocol ISO8732 [14]

and tactical data link in military communication, bit

pattern matching is necessarily applied. Our algorithm

presents a proper solution to such needs, while other

PM algorithms so far are not suitable for bit pattern

matching.

4.3. Variant for Less Memory Space

SBI needs extra memory space of size O(2i + rm) to

store the array V. Since most elements of V are NULL,

the memory requirement can be reduced to O(rm + rm)

= O(rm) by only storing the information of valid

indices of r patterns, resulting in the packed type of V

with the structure in Fig. 9, where all rJ indices are

sorted. In this case it depends on the binary search to

decide whether or not index of T is valid. The average

runtime of this variant accordingly becomes

O(nlog2(rm)/m), which is consistent with the

theoretical result of [15].

5. Experimental Results

This section presents some experimental results of

comparison between SBI, KMP, BM and AC-BM.

The test platform is Windows Server 2003 with

configuration of CPU P4 3.20GHz and main memory

1GB. The texts used have two different sources, one

being actual IP-based packets and the other being

encrypted data. The patterns of different lengths are

randomly generated in advance. All runtimes reported

are averages of 10 different runs with no consideration

of data loading time. The time unit is ms.

In the tables and figures, PLEN denotes pattern

length, PNUM pattern number, SBI_bit SBI’s variant

for bit pattern matching, and * means the time used is

too long to need comparison with others.

5.1. Average Runtime of Single Pattern

In the case of single pattern, basic SBI is used to

compare against KMP and BM both of which are only

suitable for single pattern matching.

The used text is actual IP packets of size 300MB.

The actual runtimes of KMP, BM and SBI are shown

in Table 1 with different pattern lengths from 4 to 40.

Based on the same data in Table 1, the form of plotted

curves is presented in Fig.10, where KMP/3 denotes

the one-third of actual runtime of KMP because KMP

consumes much more time than BM and SBI.

It is clear that SBI runs twice faster than BM on

average.

5.2. Average Runtime of Multiple Patterns

In the case of multiple patterns, we compare the

multiple pattern version of SBI with AC-BM.

The text for test is also actual IP-based packets of

total size 300MB. The actual runtimes of SBI and AC-

BM are given in Table 2 with two cases of PLEN=8

and PLEN=16. Part of data from Table 2 are plotted in

Fig. 11, where “AC-BM m=16” and “SBI m=16” stand

for the case of PLEN=16 for both algorithms,

respectively.

From Fig.11, we see that the advantage of SBI over

AC-BM is great.

5.3. Average Runtime of Bit Pattern

For the test of bit pattern matching, we still use the

text of actual IP packets of size 300MB for different

pattern length from 4 to 40 to compare SBI_bit against

basic SBI. Table 3 lists their average runtimes, which

are plotted in Fig. 12.

Fig. 12 shows that SBI_bit has the same average-

case performance as basic SBI for patterns whose

lengths are no less than 12, i.e. m 12. When m = 4, 8,

there are clear gaps between two plotted lines. The

reason is that the jump J for basic SMP equals m-I+1,

while the jump J for SPM_bit equals m-I, where I=2,

such that the difference of the sampling times (i.e. n /

(m-I+1) and n / (m-I), respectively) is not negligible

when m is small.

6

Table 1. Average runtime of single pattern
matching

PLEN KMP BM SBI

4 1725 1073 674

8 1721 559 295

12 1668 385 209

16 1667 310 151

20 1665 262 125

24 1671 223 109

28 1678 203 98

32 1700 198 90

36 1679 176 84

40 1710 161 87

Table 2. Average runtime of multiple patterns

PNUM
SBI

(PLEN =8)

SBI

(PLEN

=16)

AC_BM

(PLEN

=8)

AC_BM

(PLEN

=16)

1 302 151 776 421

10 301 156 903 567

20 301 159 1126 728

40 307 165 1473 1142

80 318 179 2573 2229

160 348 208 6319 4557

320 382 246 * *

640 459 312 * *

1000 536 395 * *

2000 773 500 * *

Table 3. Average runtime of SBI and SBI_bit

PLEN basic SBI SBI_bit

4 657 926

8 295 350

12 204 228

16 148 159

20 120 131

24 109 117

28 98 101

32 93 92

36 82 85

40 79 84

Table 4. Average runtime of basic SBI for
different length of text and different numbers of

patterns

PNUM n=600MB n=400MB n=200MB

1 600 398 201

10 604 404 203

20 612 409 204

40 625 418 207

80 646 435 217

160 701 468 232

320 798 529 265

640 965 639 318

1000 1150 757 378

2000 1653 1100 543

Figure 10. Runtimes of KMP, BM and SBI for single pattern

Figure 11. Runtimes of SBI and AC-BM for mutiple patterns

Figure 12. Runtimes of basic SBI and SBI_bit

Figure 13. Runtimes of basic SBI for different n, r and same m

7

5.4. Runtime of SPM for Different n and m

In this test, we use the encrypted communication

data of different length n as text. Table 4 presents the

runtimes of basic SPM compared against itself, finding

patterns of different numbers (r=1~2000) and same

length (m=8) in text of different length

(n=600/400/200 MB). Fig.13 gives plotted curves.

Table 4 and Fig.13 again verify the conclusion that

SPM is average-optimal when the number of patterns

is not very large.

From the experimental results of four tests above,

we find out that SPM operates at a much higher

efficiency than BM style algorithms, and that the

average runtime of SPM matches very well to the

result of our theoretical analysis, i.e. O(n/(m-I+1)) =

O(n/m), where I=2 or 3 in practice, in the condition

that the total length of patterns is no more than tens of

thousands bytes.

6. Conclusion

This paper has proposed a simple, efficient PM

algorithm known as SPM and its three variants.

Derived from the simple ideas of sampling and bit

index, SPM achieves the average-optimal performance

and great flexibility.

Due to array V, SPM can support addition and

deletion of some patterns even in the execution

procedure. In the case of small alphabet , if we code

in binary (bit) in advance when storing the text and

pattern, then we can use SPM_bit to finish the pattern

matching. SPM can also be easily parallelized to meet

the need for distributed computation.

We recommend SPM when the patterns are long

and dispersed because of the fastest speed in this case.

The drawback of SPM is the increased memory space

required for array V, while this is generally affordable

at present. Another deficiency is its worst runtime

O(nm), which is worth further study to improve it.

7. References

[1] D. E. Knuth, J. H. Morris, and V. R. Pratt, ‘‘Fast pattern
in strings, ” SIAM J.Comput., vol. 6, pp.323-350, June
1977.

[2] R. S. Boyer and J. S. Moore, “A fast string searching
algorithm,” Commun. ACM, vol. 20, pp. 762-772, Oct.
1977.

[3] R.M. Karp and M.O. Rabin, “Efficient randomized
pattern-matching algorithms,” IBM Journal of Research
and Development, vol. 31, pp. 249 – 260, 1987.

[4] A.V. Aho and M.J. Corasick, “Efficient string matching:
an aid to bibliographic search,” Commun. ACM, vol.18,
pp.333-340, 1975.

[5] R.N. Horspool, “Practical fast searching in string,”
Software – Practice and Experience, vol.10, pp.501-506,
1980.

[6] D.M. Sunday, “A very fast substring search algorithm,”
Commun. ACM, vol. 33, pp.132-142, 1990.

[7] S. Wu and U. Manber, “A Fast Algorithm for Multi-
Pattern Searching,” Technical Report TR 94-17,
Department of Computer Science, University of
Arizona, May 1994.

[8] K. Sun, “A New String-Pattern Matching Algorithm
Using Partitioning and Hashing Efficiently,” ACM
Journal of Experimental Algorithmics, March 1998.

[9] FENG CAO, “PAMA: A Fast String Matching
Algorithm and Its Application in DNA Sequence
Search,” Thesis Submitted to the Graduate School of
Wayne State University, Detroit, Michigan in partial
fulfillment of the requirements for the degree of master
of sicience, 2004.

[10] Charras, C., Lecroq, T., and Pehoushek, J. D. “A Very
Fast String Matching Algorithm for Small Alphabets
and Long Patterns,” Proceedings of the 9th Annual
Symposium on Combinatorial Pattern Matching, M.
Farach-Colton ed., Piscataway, New Jersey, Lecture
Notes in Computer Science 1448, pp.55-64, Springer-
Verlag, 1998.

[11] S. S. Sheik, Sumit K. Aggarwal, Anindya Poddar, N.
Balakrishnan, and K. Sekar, “A Fast Pattern Matching
Algorithm, ” J. Chem. Inf. Comput. Sci. vol.44, pp.
1251-1256, 2004.

[12] D. Cantone and S. Faro, “Fast-Search: A new efficient
variant of the Boyer-Moore string matching algorithm,”
Proc. of the 2nd Int’l Workshop on Experimental and
Efficient Algorithms. Lecture Notes in Computer
Science 2647, Heidelberg: Springer-Verlag, pp.47 58,
2003.

[13] U. Vishkin, “Deterministic Sampling -- A New
Technique for Fast Pattern Matching,” SIAM J. Comput.,
20, pp.22-40, 1991.

[14] “Banking - Key management (wholesale)”, ISO8732,
Geneva (1988).

[15] G. Navarro and K. Fredriksson, “Average Complexity
of Exact and Approximate Multiple String Matching,”
Theoretical Computer Science, pp.283-290, 2004.

8

