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Abstract

Pattern matching is one of the basic problems in 
computer science. In this paper we propose a new 
multiple pattern matching algorithm. Unlike the well 
known Knuth-Morris-Pratt, Boyer-Moore, Karp-Rabin 
and their variants, our algorithm is derived from the 
ideas of sampling and bit index, sampling for 
efficiency and bit index for flexibility, as a result 
providing the simplest way to search for multiple 
patterns. Theoretical analysis and experimental results 
show that our algorithm is average-optimal with 
average complexity of O(n/m) for the search of 
patterns of length m in a text of length n. It  provides a 
proper solution to such needs as matching long 
dispersed patterns and especially bit pattern matching 
(newly introduced in this paper) in data analysis of 
some private protocols’ communication. 

1. Introduction 

Pattern Matching (PM) has many applications in 

most fields of computer science. In this paper we 

present a new PM algorithm for matching multiple

patterns which we argue has the best average runtime 

whereas is very simple and flexible. 

The PM problem consists in finding all occurrences 

of patterns in text. Since any alphabet  can be coded 

in binary, in this paper we view both of text and 

patterns as bit stream but stored in bytes as usually. Let 

T = T[0…n-1]=T0…n-1 be the text of length n, 

P=P[0…m-1]=P0…m-1 the pattern of length m, and P1…

Pr be the r patterns of at least m bytes. An I-substring 

(i-bitstring) is the string of continuous I bytes (bits) in 

T or P. So-called bit pattern matching--a new term 

introduced in the paper--is the problem that P need not 

start at some byte of T, but may begin at any bit of any 

byte in T. 

Classical PM algorithms have KMP [1], BM [2],

KR [3], and their variants [4-11] with different 

matching policies, and in practice BM style algorithms 

are considered the most efficient. Most PM algorithms 

have the general structure [12] in Fig. 1. 

PM algorithms mainly differ in the computation of 

shift increment according to matching policies. 

Generally, there are some deficiencies in the 

algorithms above, including: 1) the efficiency of 

algorithms depends heavily on the alphabet; 2) the 

speed advantage of matching long pattern is not 

evident; and 3) they are not suitable for bit pattern 

matching.  

To solve these problems, we propose a new 

algorithm known as SBI (Sampling and Bit Indexing). 

Unlike KMP, BM and KR, SBI is derived from the 

simple ideas of sampling [13] and bit index. 

Theoretical analysis and experimental results show that 

SBI is average-optimal with average running time of 

O(n/m) in the condition that the total length of patterns 

is no more than tens of thousands.  

Generic_Pattern_Matcher ( T, P ) 

n  length ( T )     m  length ( P ) 

Precompute ( P ) 

s  0 

while s  n – m do 

s  s + Shift_Increment ( s, T, P ) 
where

Precompute ( P ) derives some data structure usually in 
form of tables or lists, which are later accessed by 
Shift_Increment. 

Shift_Increment ( s, T, P ) checks for a match at s and 
then computes a shift increment from s. 

Figure 1. General structure of PM algorithm 
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In section 2 we describe the basic type of SBI in 

details. Section 3 contains the proof of the correctness 

and the analysis of time complexity and space 

complexity. Section 4 makes discussions of three 

variants of basic SBI. Some experimental results are 

presented in section 5 to verify our algorithm. The last 

section is the conclusion and relative work for further 

research.

2. Basic SBI Algorithm 

We need some specific terms used by SBI. 

Definition 1: A full match means that P is identical 

to some m-substring of T, while a partial match means 

some I-substring of P is identical to some I-substring 

of T, where I 1...m is the length of partial match. 

Definition 2: Sampling is a positioning operation, 

moving forward a constant distance (also called jump)

over T or P every time. The I-substirng or i-bitstring 

taken at the sampling point of T or P is known as index 

(abbr. idx later). 

2.1. Basic Ideas of SBI 

The idea of SBI is simple: if there is a full match 

between T and P, it must also be a partial match. By 

means of sampling T to obtain the i-bitstring as a 

possible partial match, we can extend a partial match 

to a full match. This idea is illustrated in Fig. 2, where 

three partial matches as indices lie at the beginning, in 

the middle, and at the tail of P, respectively. 

To decide whether or not an i-bitstring is a partial 

match, we need sample P to gather all its i-bitstrings in 

advance. Hence, SBI algorithm has two stages: 

the first stage is preprocessing of P to store in 

table the information of all its i-bitstrings as 

indices which may be partial matches;  

the second stage is to sample T to obtain 

corresponding index, and with the help of 

preprocessing information extend partial matches 

to full matches if there are any.  

Following are the two stages of basic SBI in details 

in the case of single pattern (i.e. r =1). 

2.2. The Preprocessing Stage 

In this stage we preprocess P to create an array V of 

linked lists of index of P. 

The first thing is to compute related parameters. 

According to n, m, and available memory, we can 

obtain three parameters: i--the length of index in bit, I-

-the length of index in byte, and J --the jump of 

sampling T in byte. The computation formula and 

related restrictions are as follows: 

2i   =  ×  n / m 

I    =  ( i + 7 ) / 8    ( 1   I   m / 2 ) 

J    =  m – I + 1      ( r × J    2i )

where n and m are the lengths of text and pattern 

respectively, i and I are the index width in bit and byte 

respectively, J is the const jump of sampling text, and 

 is called compression ratio (0< 1).

For example, n = 228, m = 25, r = 1, we choose 

=1/27, then i = 16, I = 2, J = 31. Note that i is not 

necessarily the multiple of 8. In practice we may 

choose i=8~24, and i=16~20 is usually a good choice. 

Figure 2. Ideas of SPM: extend partial match to full match 

Figure 3. Pseudo code of function PP 

Figure 4. Structure of array V 

000…00 offset 

000…01

000…10 offset offset 

000…11

……

111…10 offset 

111…11

idx of i bits

…

list V[idx] of idx offset in P 

T     sampling               sampling              sampling 

… … … …

P                   P                     P
When sampling T, three partial matches as indices 

are found. At these points, we try to extend partial 

matches forward and backward to possible full ones. 

Function PP ( n, m, P ) 

1.  compute i, I, J 

2.  allocate memory for V 

3.  for p = 0 to 2i-1 do  V[p]  NULL 

4.  for p = 0 to J-1 do

5.      get i-bitstring of P as idx at byte p 

6.      if V[idx] equals NULL then 

7.          create linked list V[idx] 

8.      insert node of offset p into V[idx] 
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Then what we need do is to create an array V of 

linked lists of index sampled from P. In other words, V 

is a pointer array of size 2i, whose element is either 

NULL or a pointer to a linked list. Every node in the 

list V[idx] stores the offset in P of the index idx, and 

V[idx] consists of nodes with the same idx sampled 

with jump 1 byte at different point of P. 

The preprocessing stage can be described by 

function PP (PreProcessing) in Fig. 3. 

We illustrate the structure of the array V in Fig. 4. 

2.3. The Sampling and Matching Stage 

In this stage of sampling and matching, we take the 

following steps to find all possible full matches: 

sample T with jump J bytes to get index idx 

decide whether idx is valid, i.e. V[idx] = NULL ? 

if V[idx] != NULL, then extend every partial 

match recorded in the node of linked list V[idx] to 

full match if there is any.  

This procedure can be described by the pseudo code 

of function SM (Sample and Match) in Fig. 5. 

Complete SBI algorithm consists of two functions, 

i.e. PP and SM. Clearly, our simple algorithm uses the 

techniques of sampling and indexing to guarantee the 

efficiency (with constant jump J=m-I+1 every time to 

finish scanning T in n/J steps), and by means of bit 

index supports the flexibility of matching (such as 

single/multiple pattern matching, and bit pattern 

matching discussed in section 4). 

To better understand the algorithm, we give an 

example of matching procedure. Given P = “pattern” 

and m=7, we choose i=16, I=2, J=m-I+1=6. The 

matching procedure of SBI algorithm is illustrated in 

Fig. 6. 

3. Analysis of SBI Algorithm 

In this section we analyze the correctness and 

performance of our algorithm SBI in the basic type. 

Further discussions of its three variants are made in 

Section 4. 

3.1. The Correctness Analysis 

To analyze the correctness, we first have the 

following lemma. We suppose index length (in bytes) I 

 m/2 below. 

Lemma 1: Suppose X is any m-substring of T, we can 

always get an I-substring of X as index when sampling 

T with jump J  m-I+1. 

Function SM ( T ) 
 // call function PP then execute the following 

1. for  t = 0  to  n-1  step J  do 

2.      get i-bitstring as idx at byte t 

3. if V[idx] != NULL then

4. while V[idx] not ends 

5                 get offset p from node of V[idx]  

6.                compare Tt-p...t-p+m-1 against  P0...m-1
// or extend forward and backward from idx 

7.                if match completely then report it 

Figure 5. Pseudo code of  function SM 

Proof: Since jump J  m-I+1 ( m) when sampling T, 

there must be a sampling point j inside X, where 

0...m-1. There are two cases: 1) If 0...m-I, then we 

directly take I-substring of X at j; 2) If m-I+1...m-1, 

then there is another sampling point j’ = j+I-m-1 

0...I-2, and we take I-substring of X at j’. Anyway, we 

can get an I-substring of X as index. 

Due to Lemma 1, we can prove the following 

sampling theorem which is critical to SPM algorithm. 

Theorem 1: (Sampling Theorem) If jump (of sampling 

T) J  m-I+1, then SPM algorithm never discards any 

full match. 

Proof: Suppose there is a m-substring, X, in T to 

match P. By Lemma 1, we can take an I-substring of X 

as index idx at some sampling point. It is clear that idx 

also exists in P since V[idx] is not NULL. Based on 

idx (it is a partial match), we extend backward and 

forward in T and P, finally to succeed in finding a full 

match, which is in fact X (in T) and P. 

Since SPM samples T with jump J=m-I+1, theorem 

1 ensures the correctness of our algorithm. It is not 

difficult to see that if J > m-I+1, then we might get no 

I-substring of X as index such that SPM algorithm fails. 

In actual implementation, we only take as index i-

bitstring instead of I-substring, where I=(i+1)/8, to 

reduce the memory requirement. 

It is worth pointing out that ALGO1 in [4] is in fact 

a special case of SBI when I=1. 

3.2. The Performance Analysis 

To analyze the performance, we prove the theorem 

below. 

Theorem 2: The running time of PM algorithm has a 

lower bound of (n/m). 

Proof: We divide T = T0…n-1 of length n into [n/m] 

contiguous and non-overlapping m-substrings, and 

disregard the few last text bytes that may not complete  
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P:  m = 7.                                                                        We choose i = 16 ( I = 2 ) as the index width.
p a t t e r n

V: derived from P.                                                          Only 6 elements of V[idx] are valid (not NULL). 
p a 0

a t 1

t t 2

t e 3

e r 4

r n 5

……

idx offset in P of idx 

T:  J=m-I+1=6. 

0 1 2 3 4 5 6 7 8 9
1

0

1

1

1

2

1

3

1

4

1
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1

6

1

7

1

8

1

9

2

0

2

1

2

2

2

3

A l g o r i t h m f o r p a t t e r n m a

sampling sampling sampling sampling 

V[“Al”]=NULL V[“th”]=NULL V[“r ”]=NULL V[“er”]: valid, offset in P=4. Extend to 

a match: T18-4…18-4+6  = P0…6

Figure 6. Eample of SPM matching procedure 

a full m-substring. According to [15], the time of 

matching P in T is no less than the total time of 

matching P inside [n/m] m-substrings. Since these m-

substrings are independent, one can not finish the 

whole work of matching in less than [n/m] “processes”. 

Since every “process” spends no less than one time 

unit, i.e. (1), the total time of matching is [n/m] 

× (1)= (n/m). 

To facilitate the analysis of running time of SPM, 

we need  the following lemma. 

Lemma 2: Suppose X=X0...k and Y=Y0...k are two 

strings of same length k+1, the event Xi=Yi, i 0...k

has the same probability p, 0<p 1/2. Then the 

comparison times needed to decide whether or not X 

equals Y (i.e. X=Y) are at most 1/(1-p) on average. 

Proof: Let q=1-p. Note that function g(x) = xpx has its 

peak value gp = -1/(elnp), so g1/2 = 1/(eln2) = 0.53, 

g1/256 = 1/(8eln2) = 0.07. Therefore we may omit the 

small value of pk+1(k+1) in the following computation. 

The average comparison times to decide whether or 

not X=Y are given by 

f(p)   = q×1 + pq×2 + p2q×3 + … pk×(k+1)

= q×1 + pq×2 + … pkq×(k+1) + pkp×(k+1)

 q×( 1+p1×2+… +pk×(k+1) ) 

 q×(1+p1×2+…+pk×(k+1) +…)            (1) 

= q×1/q2 = 1/q  

= 1(1-p).

Here in (1) we reference the sum of well-known series 

1 x1×2+x2×3+x3×4+…=1/(1-x)2.

In this paper, p=1/256 and 1/2 for byte and bit, 

respectively.

We now give the analysis of average running time 

of SBI algorithm, denoted by t(n, m), assuming that 

both T and P are random strings with uniform 

distribution. 

The total time t(n, m) consists of t(n,m)p--

preprocessing time, and t(n,m)s--sampling and 

matching time. According to function PP in Fig. 3, we 

have

t(n, m)p = O( 2i + J ) = O( n / m ) 

But t(n, m)s is much more complicated and needed to 

be investigated in detail. The line 2 of function SM in 

Fig. 4 (denoted by SM_Line2) spends constant time of 

c1. The condition of SM_Line3 has a probability of J/2i

to be true. If SM_Line3 is true, it is easy to see that the 

loop statement of SM_Line4 is run once on average 

because the average length of valid linked list in V is 

one. By Lemma 2, SM_Line5~7 spends constant time 

of c2 on average. Therefore, the mathematical 

expectation of t(n, m)s is: 

E(t(n, m)s)  = n / J × (c1 + ( J / 2i ) × 1 × c2 )

= O( n / J ) = O( n / m ),  if  J = O(2i).

Note that J = O(2i) is to assure J/2i  = O(1).
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Finally we get the average running time of basic 

SBI as follows: 

E (t(n, m))  = E(t(n, m)p) + E(t(n, m)s )

= O(n / m) + O(n / m)  

= O(n / m),  if  J = O(2i).

The formula of t(n,m)s also gives the possible 

worst-case runtime of SBI algorithm as follows: 

t(n, m)s  = n / J × (c1 + ( 1/1 ) × J × m )  

= O(n / J) + n × m 

= O(n m). 

This is encountered when T = an and P = am.

The best-case running time of SBI is clearly 

achieved when none of i-bitstrings of P occurs in T, 

and in this situation we have 

t(n, m) = n / J × (c1 + 0) 

           = O(n / J) 

           = O(n / m). 

It is necessary to point out the fact that SBI  is 

average-optimal with average runtime O(n/m) dose not 

contradict the theoretical result of [15], which shows 

that based on the symbol comparison, the average 

complexity of multipattern matching is (nlog (rm)/m) 

accesses to T. By using the techniques of sampling and 

indexing, our algorithm SPM reduces the time of 

(log (rm)) spent on every block in [15] to O(1). This 

is in fact an application of usual time-space tradeoff, 

because SBI algorithm needs an extra memory space 

for the array V of linked list of index, whose size is 

O(2i + m). 

4. Variants of SBI Algorithm 

For the basic type of SBI algorithm in section 2, in 

this section we discuss its three variants to meet such 

needs as multiple patterns, bit pattern matching and 

less memory space. 

4.1. Variant for Multiple Patterns 

SBI can extend naturally to multiple patterns. Given 

r patterns, P1… Pr, of lengths m1…mr, respectively, m 

= min{mk}.

The function PP in Fig.1 needs to be modified to 

PP2 in Fig.7. PP2 has two differences from PP: one is 

the addition of a loop of line 4 for multiple patterns; 

the other is the inserted node with more information of 

k and p. 

The function SM in Fig.3 needs minor modification, 

including SM_Line5 (more information of k and p) 

and SM_Line6 (ompare T against Pk). New version 

SM2 is given in Fig. 8. 

It is easy to see that average running time of SBI in 

the case of multiple patterns is 

Figure 7. Pseudo code of function PP2 

Figure 8. Pseudo code of function SM2 

Figure 9. Structure of packed V 

t(n, m)  = t(n, m)p + t(n, m)s

= O(2i + rJ) + n/J × (c1 + (rJ/2i ) × 1 × c2 ) 

= O( n/m ),   if  rJ = O(2i).

That is to say, the average running time for multiple 

patterns is still O(n/m) in the reasonable condition of 

rJ=O(2i). In practice, we can choose the proper i such 

that rJ=O(2i) as follows: 

 if           rJ < 20000       then    let  i = 16 

 else if   rJ <  60000       then    let  i = 17 

 else if   rJ <  100000     then    let  i = 18 

 else if   rJ <  300000     then    let  i = 19 

 else                                   let  i = 20 

idx  0 

idx  1 

idx  2 

…..

   idx  rJ-1 

valid idx of i bits list of idx offset in  P1… Pr

Function PP2 (n, m, r, P
1
… P

r
)

1.  compute i, I, J 

2.  allocate memory for V 

3.  for  p = 0 to 2i-1  do V[p]  NULL 

4.  for  k = 0  to  r-1  do

5.      for  p = 0  to  J-1  do

6.          get i-substring of Pk as idx at byte p 

7.          if V[idx] equals NULL then 

8.              create linked list V[idx] 

9.          insert node of k and p into V[idx]

Function SM2 ( T ) 
// call function PP2 then execute the following 

1.  for  t = 0  to  n-1  step J  do

2.      get i-bitstring as idx at byte t 

3.      if V[idx] != NULL then 

4.           while V[idx] not ends

5                 get k and p from node of V[idx]  

6.                compare Tt-p...t-p+m-1 against P
k
0...m-1

// or extend forward and backward from idx 

7.                if match completely then report it 
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4.2. Variant for Bit Pattern Matching 

This paper for the first time introduces the concept 

of bit pattern matching, which is not yet fully studied 

by other PM algorithms. SBI algorithm can meet the 

need of bit pattern matching with minor changes in 

function PP and SM as follows: 

PP_Line1:   J= m-I+1                                              

J=m-I

PP_Line4:   for p=0 to J-1 do

for p=0 to 8J-1  do 

PP_Line5:   get i-bitstring of P as idx at byte p       

get i-bitstring of P as idx at bit p 

SM_Line7: compare Tt-p...t-p+m-1 and P0…m-1

compare T and P bitwisely from idx 

The average running time of SBI in the case of bit 

pattern matching is 

t(n, m)   = t(n, m)p + t(n, m)s

= O( 2i + 8J ) + n/J × (c1 + (8J/2i )×1×c2)

= O( n/m ),   if  8J = O(2i).

Clearly it is still average-optimal. 

In the data analysis of some private protocols such 

as banking key management protocol ISO8732 [14]

and tactical data link in military communication, bit 

pattern matching is necessarily applied. Our algorithm 

presents a proper solution to such needs, while other 

PM algorithms so far are not suitable for bit pattern 

matching. 

4.3. Variant for Less Memory Space 

SBI needs extra memory space of size O(2i + rm) to 

store the array V. Since most elements of V are NULL, 

the memory requirement can be reduced to O(rm + rm) 

= O(rm) by only storing the information of valid 

indices of r patterns, resulting in the packed type of V 

with the structure in Fig. 9, where all rJ indices are 

sorted. In this case it depends on the binary search to 

decide whether or not index of T is valid. The average 

runtime of this variant accordingly becomes 

O(nlog2(rm)/m), which is consistent with the 

theoretical result of [15].

5. Experimental Results 

This section presents some experimental results of 

comparison between SBI, KMP, BM and AC-BM. 

The test platform is Windows Server 2003 with 

configuration of CPU P4 3.20GHz and main memory 

1GB. The texts used have two different sources, one 

being actual IP-based packets and the other being 

encrypted data. The patterns of different lengths are 

randomly generated in advance. All runtimes reported 

are averages of 10 different runs with no consideration 

of data loading time.  The time unit is ms. 

In the tables and figures, PLEN denotes pattern 

length, PNUM pattern number, SBI_bit SBI’s variant 

for bit pattern matching, and * means the time used is 

too long to need comparison with others.  

5.1. Average Runtime of Single Pattern 

In the case of single pattern, basic SBI is used to 

compare against KMP and BM both of which are only 

suitable for single pattern matching. 

The used text is actual IP packets of size 300MB. 

The actual runtimes of KMP, BM and SBI are shown 

in Table 1 with different pattern lengths from 4 to 40. 

Based on the same data in Table 1, the form of plotted 

curves is presented in Fig.10, where KMP/3 denotes 

the one-third of actual runtime of KMP because KMP 

consumes much more time than BM and SBI. 

It is clear that SBI runs twice faster than BM on 

average.

5.2. Average Runtime of Multiple Patterns 

In the case of multiple patterns, we compare the 

multiple pattern version of SBI with AC-BM. 

The text for test is also actual IP-based packets of 

total size 300MB. The actual runtimes of SBI and AC-

BM are given in Table 2 with two cases of PLEN=8 

and PLEN=16. Part of data from Table 2 are plotted in 

Fig. 11, where “AC-BM m=16” and “SBI m=16” stand 

for the case of PLEN=16 for both algorithms, 

respectively.

From Fig.11, we see that the advantage of SBI over 

AC-BM is great. 

5.3. Average Runtime of Bit Pattern 

For the test of bit pattern matching, we still use the 

text of actual IP packets of size 300MB for different 

pattern length from 4 to 40 to compare SBI_bit against 

basic SBI. Table 3 lists their average runtimes, which 

are plotted in Fig. 12. 

Fig. 12 shows that SBI_bit has the same average-

case performance as basic SBI for patterns whose 

lengths are no less than 12, i.e. m  12.  When m = 4, 8, 

there are clear gaps between two plotted lines. The 

reason is that the jump J for basic SMP equals m-I+1, 

while the jump J for SPM_bit equals m-I, where I=2, 

such that the difference of the sampling times (i.e. n / 

(m-I+1) and n / (m-I), respectively) is not negligible 

when m is small. 
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Table 1. Average runtime of single pattern 
matching

PLEN KMP BM SBI

4 1725 1073 674

8 1721  559 295

12 1668  385 209

16 1667  310 151

20 1665  262 125

24 1671  223 109

28 1678  203  98

32 1700  198  90

36 1679  176  84

40 1710  161  87

Table 2. Average runtime of multiple patterns 

PNUM
SBI

(PLEN =8) 

SBI

(PLEN

=16) 

AC_BM

(PLEN

=8)

AC_BM

(PLEN

=16) 

1 302 151  776  421

10 301 156  903  567

20 301 159 1126  728

40 307 165 1473 1142

80 318 179 2573 2229

160 348 208 6319 4557

320 382 246 * *

640 459 312 * *

1000 536 395 * *

2000 773 500 * *

Table 3. Average runtime of SBI and SBI_bit 

PLEN basic SBI SBI_bit

4 657 926

8 295 350

12 204 228

16 148 159

20 120 131

24 109 117

28 98 101

32  93  92

36  82  85

40  79  84

Table 4. Average runtime of basic SBI for 
different length of text and different numbers of 

patterns 

PNUM n=600MB n=400MB n=200MB

1  600  398 201

10  604  404 203

20  612  409 204

40  625  418 207

80  646  435 217

160  701  468 232

320  798  529 265

640  965  639 318

1000 1150 757 378

2000 1653 1100 543

Figure 10. Runtimes of KMP, BM and SBI for single pattern 

Figure 11. Runtimes of SBI  and AC-BM for mutiple patterns 

Figure 12. Runtimes of basic SBI  and SBI_bit 

Figure 13. Runtimes of basic SBI for different n, r and same m 
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5.4. Runtime of SPM for Different n and m 

In this test, we use the encrypted communication 

data of different length n as text. Table 4 presents the 

runtimes of basic SPM compared against itself, finding 

patterns of different numbers (r=1~2000) and same 

length (m=8) in text of different length 

(n=600/400/200 MB). Fig.13 gives plotted curves. 

Table 4 and Fig.13 again verify the conclusion that 

SPM is average-optimal when the number of patterns 

is not very large. 

From the experimental results of four tests above, 

we find out that SPM operates at a much higher 

efficiency than BM style algorithms, and that the 

average runtime of SPM matches very well to the 

result of our theoretical analysis, i.e. O(n/(m-I+1)) = 

O(n/m), where I=2 or 3 in practice, in the condition 

that the total length of patterns is no more than tens of 

thousands bytes. 

6. Conclusion 

This paper has proposed a simple, efficient PM 

algorithm known as SPM and its three variants. 

Derived from the simple ideas of sampling and bit 

index, SPM achieves the average-optimal performance 

and great flexibility. 

Due to array  V, SPM can support addition and 

deletion of some patterns even in the execution 

procedure. In the case of small alphabet , if we code 

in binary (bit) in advance when storing the text and 

pattern, then we can use SPM_bit to finish the pattern 

matching. SPM can also be easily parallelized to meet 

the need for distributed computation. 

We recommend SPM when the patterns are long 

and dispersed because of the fastest speed in this case. 

The drawback of SPM is the increased memory space 

required for array V, while this is generally affordable 

at present. Another deficiency is its worst runtime 

O(nm), which is worth further study to improve it. 
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