
All-Match Based Complete Redundancy Removal
for Packet Classifiers in TCAMs

Alex X. Liu Chad R. Meiners Yun Zhou
Department of Computer Science and Engineering

Michigan State University
East Lansing, MI 48823, U.S.A.

{alexliu, meinersc, zhouyun}@cse.msu.edu

Abstract—Packet classification is the core mechanism that
enables many networking services on the Internet such as firewall
packet filtering and traffic accounting. Using Ternary Content
Addressable Memories (TCAMs) to perform high-speed packet
classification has become the de facto standard in industry.
TCAMs classify packets in constant time by comparing a packet
with all classification rules of ternary encoding in parallel.

Despite their high speed, TCAMs suffer from the well-known
interval expansion problem. As packet classification rules usually
have fields specified as intervals, converting such rules to TCAM-
compatible rules may result in an explosive increase in the
number of rules. This is not a problem if TCAMs have large
capacities. Unfortunately, TCAMs have very limited capacity,
and more rules means more power consumption and more heat
generation for TCAMs. Even worse, the number of rules in
packet classifiers have been increasing rapidly with the growing
number of services deployed on the internet.

The interval expansion problem of TCAMs can be addressed
by removing redundant rules in packet classifiers. This equivalent
transformation can significantly reduce the number of TCAM
entries needed by a packet classifier. Our experiments on real-
life packet classifiers show an average reduction of 58.2% in the
number of TCAM entries by removing redundant rules.

In this paper, we propose an all-match based complete redun-
dancy removal algorithm. This is the first algorithm that attempts
to solve first-match problems from an all-match perspective.
We formally prove that our redundancy removal algorithm
guarantees no redundant rules in resulting packet classifiers. We
conducted extensive experiments on both real-life and synthetic
packet classifiers. These experimental results show that our
redundancy removal algorithm is both effective in terms of
reducing TCAM entries and efficient in terms of running time.

I. INTRODUCTION

Packet classification, which has been widely deployed on
the Internet, is the core mechanism that enables routers to
perform many networking services such as firewall packet
filtering, virtual private networks (VPNs), network address
translation (NAT), quality of service (QoS), load balancing,
traffic accounting and monitoring, differentiated services (Diff-
serv), etc. As more services are deployed on the Internet,
packet classification grows in demand and importance.

The function of a packet classification system is to map each
packet to a decision (i.e., action) according to a sequence (i.e.,
ordered list) of rules, which is called a packet classifier. Each
rule in a packet classifier has a predicate over some packet
header fields and a decision to be performed upon the packets

The work of Alex X. Liu is supported in part by the National Science
Foundation under Grant No. CNS-0716407.

that match the predicate. To resolve possible conflicts among
rules in a classifier, the decision for each packet is the decision
of the first (i.e., highest priority) rule that the packet matches.
Table I shows an example packet classifier of three rules. The
format of these rules is based upon the format used in Access
Control Lists on Cisco routers.

A. Motivation

Using Ternary Content Addressable Memories (TCAMs) to
perform high-speed packet classification has become the de
facto standard in industry. A TCAM is a memory chip where
each entry can store a packet classification rule that is encoded
in ternary format. Given a packet, the TCAM hardware can
compare the packet with all stored rules in parallel and then
return the decision of the first rule that the packet matches.
Thus, it takes O(1) time to find the decision for any given
packet. Current TCAMs can support up to 133 million searches
per second for 144-bit wide keys [16]. Because of their high
speed, TCAMs have become the de facto industrial standard
for high speed packet classification [1]–[3], [16]. In 2003, most
packet classification devices shipped were TCAM-based [4].
More than 6 million TCAM devices were deployed worldwide
in 2004 [4].

Despite their high speed, TCAMs have their own limitations
with respect to packet classification.

a) Interval expansion: TCAMs can only store rules that
are encoded in ternary format. In a typical packet classification
rule, source IP address, destination IP address, and protocol
type are specified in prefix format, which can be directly
stored in TCAMs, but source and destination port numbers
are specified in intervals (i.e., ranges), which need to be
converted to one or more prefixes before being stored in
TCAMs. This can lead to a significant increase in the number
of TCAM entries needed to encode a rule. For example, 30
prefixes are needed to represent the single interval [1, 65534],
so 30× 30 = 900 TCAM entries are required to represent the
single rule r2 in Table I.

b) Low capacity: TCAMs have limited capacity. The
largest TCAM chip available on the market has 18Mb while
2Mb and 1Mb chips are most popular [4]. Given that each
TCAM entry has 144 bits and a packet classification rule may
have a worst expansion factor of 900, it is possible that an
18Mb TCAM chip cannot store all the required entries for a
modest packet classifier of only 139 rules. While the worst

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.

978-1-4244-2026-1/08/$25.00 © 2008 IEEE 574

Rule Source IP Destination IP Source Port Destination Port Protocol Action
r1 * 192.168.0.1 * * * discard
r2 1.2.3.0/24 192.168.0.1 [1,65534] [1,65534] TCP accept
r3 * * * * * accept

TABLE I
AN EXAMPLE PACKET CLASSIFIER

case may not happen in reality, this is certainly an alarming
issue. Furthermore, TCAM capacity is not expected to increase
dramatically in the near future due to other limitations that we
will discuss next.

c) High power consumption and heat generation: TCAM
chips consume large amounts of power and generate large
amounts of heat. For example, a 1Mb TCAM chip consumes
15-30 watts of power. Power consumption together with the
consequent heat generation is a serious problem for core
routers and other networking devices.

d) Large board space occupation: TCAMs occupy much
more board space than SRAMs. For networking devices such
as routers, area efficiency of the circuit board is a critical issue.

e) High hardware cost: TCAMs are expensive. For ex-
ample, a 1Mb TCAM chip costs about 200 ∼ 250 U.S. dollars.
TCAM cost is a significant fraction of router cost.

All these limitations of TCAMs can be addressed by re-
ducing the number of TCAM entries that a packet classifier
requires. As we reduce the number of TCAM entries required,
we can use TCAMs of smaller capacities, which results
in less board space and lower hardware cost. Furthermore,
reducing the number of rules in a TCAM directly reduces
power consumption and heat generation because the energy
consumed by a TCAM grows linearly with the number of
ternary rules it stores.

An effective way to reduce the number of TCAM entries
that a packet classifier requires is to remove the redundant
rules in the packet classifier. A rule in a packet classifier is
redundant if and only if removing the rule does not change
the semantics of the packet classifier. For example, rule r2

in the packet classifier in Table I is redundant because there
is no packet whose first matching rule is r2. Through this
equivalent transformation of removing redundant rules, the
number of TCAM entries needed by a packet classifier can
be significantly reduced. Using the example of the packet
classifier in Table I, removing redundant rules reduces the
number of TCAM entries needed from 902 down to 2. Our
experiments on real-life packet classifiers show an average
reduction of 58.2% on the number of TCAM entries by
removing redundant rules.

A key advantage of reducing TCAM entries by removing
redundant rules is that it can be easily deployed because it does
not require any modification of existing packet classification
systems. In comparison, a number of previous interval expan-
sion solutions require hardware and architecture modifications
to existing packet classification systems, making their adoption
by networking manufacturers and ISPs much less likely [16],
[18], [21], [25].

B. Redundancy Removal

A rule that examines d-dimensional fields can be viewed
as a d-dimensional object. Real-life packet classifiers are
typically 4-dimensional or 5-dimensional. While identifying
redundant rules in 1-dimension packet classifiers is simple,
identifying redundant rules in multi-dimensional packet clas-
sifiers is by no means easy.

In this paper, we present an all-match based complete
redundancy removal algorithm. This is the first algorithm
that attempts to solve first-match problems from an all-match
perspective. We formally prove that the resulting packet clas-
sifiers have no redundant rules after running our redundancy
removal algorithm. We conducted extensive experiments on
both real-life and synthetic packet classifiers. The experimental
results show that our redundancy removal algorithm achieves
an average compression ratio of 41.8% for TCAM entries.

In our previous workshop paper [17], we presented a
first-match based redundancy removal algorithm. We have
improved upon that previous work in several ways. First,
the redundancy theorem becomes simpler. The redundancy
theorem in [17] distinguishes upward and downward redundant
rules, and detects them separately. In contrast, the redundancy
theorem presented here gives a single criterion that can detect
both upward and downward redundant rules. Second, the new
redundancy removal algorithm is more efficient. The algorithm
in [17] scans a packet classifier twice and build packet decision
trees twice in order to remove the two types of redundant rules.
In comparison, the new algorithm only scans a packet classifier
once and build one all-match tree with similar cost of building
a packet decision tree. The new algorithm is about twice as
efficient as the algorithm in [17]. Third, in this paper, we
extensively measured the effectiveness of redundancy removal
on reducing TCAM entries, whereas no such empirical results
were presented in [17].

Redundancy detection and removal have benefits beyond
minimizing TCAM entries. One exemplary use of redundancy
detection is in analyzing packet classifiers for potential errors.
For instance, when a rule is shadowed by rules above it,
the rule becomes redundant; however, this is typically not
the intent of the router or firewall administrator. Therefore,
redundancy could be an indicator of errors in packet classifiers.

The rest of this paper proceeds as follows. We start by
reviewing previous work in Section II. Then, we formally
define the terms and concepts related to redundancy removal in
Section III. We introduce all-match trees and the redundancy
theorem based on them in Section IV. In Section V, we
present the algorithm for constructing all-match trees and the
algorithm for removing redundant rules based on the all-match
tree. In Section VI, we show the experimental results on
both real-life and synthetic packet classifiers. Finally, we give
concluding remarks in Section VII.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.

575

II. RELATED WORK

Many software solutions have been proposed for finding the
decision of the first rule that a packet matches in a given packet
classifier (e.g., [6], [7], [10], [13], [15], [19], [20], [22], [26],
[27]). A comprehensive survey of this work is given in [24].

Little previous work has been done on redundancy removal
other than our preliminary work in [17]. In [12], Gupta defined
two types of redundant rules: backward redundant rules and
forward redundant rules. A rule r in a packet classifier is
backward redundant if and only if there exists another rule
r′ listed above r such that all packets that match r also match
r′. A rule r in a packet classifier is forward redundant if and
only if there exists another rule r′ listed below r such that the
following three conditions hold: (1) all packets that match r
also match r′, (2) r and r′ have the same decision, (3) for each
rule r′′ listed between r and r′, either r and r′′ have the same
decision, or no packet matches both r and r′′. The backward
and forward redundant rules defined in [12] are two special
types of redundant rules. For example, in the example packet
classifier in Figure 1, rules r2 and r3 are redundant, but they
are neither backward redundant rules nor forward redundant
rules.

r1 :

r2 :

r3 :

r4 :

1 50

40 90

30 60

51 100

accept

discard

discard

discard

Fig. 1. A simple packet classifier

A significant amount of work explores ways to cope with
the well-known interval expansion problem. These solutions
fall into three broad categories: (1) TCAM modification, which
requires changing TCAM hardware circuits, and (2) range
encoding, which does not require changing TCAM hardware
circuits, but does require preprocessing for every packet. and
(3) classifier minimization, which does not require changing
TCAM hardware circuits nor preprocessing for any packet.
Next, we review previous work in these three categories.

TCAM Modification: The basic idea is to modify TCAM
circuits for packet classification purposes. For example, Spitz-
nagel et al. proposed adding comparators at each entry level to
better accommodate range matching [21]. This is an important
research direction. However, any solutions from this research
line will not be deployed for many years due to issues
of cost and development [16]. Furthermore, changing the
ternary nature of TCAMs makes such TCAMs less generally
applicable to applications other than packet classification.

Range Encoding: The basic idea is to re-encode intervals
that appear in a packet classifier and then store the re-encoded
rules in the TCAM. When a packet comes, the packet needs
to be preprocessed according to the re-encoding scheme such
that the packet, after preprocessing, can be used as a search
key for the TCAM. Several range encoding schemes have
been proposed [16], [18], [25]. While the TCAM circuit does
not need to be modified to implement range encoding, the
system hardware does need to be reconfigured to allow for

preprocessing of packets, and the delay caused by packet
preprocessing could be problematic.

Classifier Minimization: The basic idea is to convert a given
packet classifier to another semantically equivalent packet
classifier that requires fewer TCAM entries. These solutions
are the most likely to be deployed by networking vendors and
ISPs because they require no changes to TCAM hardware or
existing packet classification systems and incur no preprocess-
ing overhead for packets. Our work, along with [5], [8], [9],
[23], falls into this category.

Three papers focus on one-dimensional and two dimen-
sional packet classifiers. Draves et al. proposed an optimal
solution for one-dimensional packet classifiers in the context
of minimizing routing tables in [9]. Subsequently, in the same
context of minimizing routing tables, Suri et al. proposed an
optimal dynamic programming solution for one-dimensional
packet classifiers. They also observed that a generalization of
the dynamic program was optimal for two-dimensional packet
classifiers in which two rules either are non-overlapping or
one contains the other geometrically [23]. Suri et al. noted
that their dynamic program would not be optimal for packet
classifiers with more than 2 dimensions. In our studies, we
have extended and implemented Suri et al.’s algorithm to
minimize 5-dimensional packet classifiers. Unfortunately, the
extended algorithm is prohibitively slow even for a packet
classifier with just a few rules. Recently, Applegate et al.
proposed an optimal solution for packet classifiers with two
dimensions in which each rule must have one field specified
as the whole domain of the field and there are only 2 decisions
[5].

In [8], Dong et al. proposed a method for minimizing packet
classifiers in TCAMs. In Dong’s algorithm, the redundancy
removal algorithm in our previous work [17] is used as a core
routine that is repeatedly called.

III. FORMAL DEFINITIONS

We now formally define the concepts of fields, packets,
rules, packet classifiers, and redundant rules. A field Fi is a
variable of finite length (i.e., of a finite number of bits). The
domain of field Fi of w bits, denoted D(Fi), is [0, 2w − 1]. A
packet over the d fields F1, · · · , Fd is a d-tuple (p1, · · · , pd)
where each pi (1 ≤ i ≤ d) is an element of D(Fi). Packet
classifiers usually check the following five fields: source IP ad-
dress, destination IP address, source port number, destination
port number, and protocol type. The length of these packet
fields are 32, 32, 16, 16, and 8 respectively. We use Σ to
denote the set of all packets over fields F1, · · · , Fd. It follows
that Σ is a finite set and |Σ| = |D(F1)|×· · ·×|D(Fd)|, where
|Σ| denotes the number of elements in set Σ and |D(Fi)|
denotes the number of elements in set D(Fi).

A rule has the form 〈predicate〉 → 〈decision〉. A
〈predicate〉 defines a set of packets over the fields F1

through Fd, and is specified as F1 ∈ S1 ∧ · · · ∧ Fd ∈
Sd where each Si is a subset of D(Fi) and is specified
as either a prefix or a nonempty nonnegative integer in-
terval. A prefix {0, 1}k{∗}w−k with k leading 0s or 1s
for a packet field of length w denotes the integer interval

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.

576

[{0, 1}k{0}w−k, {0, 1}k{1}w−k]. For example, prefix 01**
denotes the interval [0100, 0111]. A rule F1 ∈ S1 ∧ · · ·∧Fd ∈
Sd → 〈decision〉 is a prefix rule if and only if each Si is
represented as a prefix.

When using a TCAM to implement a packet classifier, we
typically require that all rules be prefix rules. However, in a
typical packet classifier rule, some fields such as source and
destination port numbers are represented as integer intervals
rather than a prefix. This leads to interval expansion (also
called range expansion), the process of converting a rule that
may have fields represented as integer intervals into one or
more prefix rules. In interval expansion, each field of a rule
is first expanded separately. The goal is to find a minimum
set of prefixes such that the union of the prefixes corresponds
to the integer interval. For example, if one 3-bit field of a
rule is the integer interval [1, 6], a corresponding minimum
set of prefixes would be 001, 01∗, 10∗, 110. The worst-case
interval expansion of a w−bit integer interval results in a set
containing 2w−2 prefixes [14]. The next step is to compute the
cross product of each set of prefixes for each field, resulting
in a potentially large number of prefix rules. In Section I, the
interval expansion of rule r2 in Table I resulted in 30× 30 =
900 prefix rules.

A packet (p1, · · · , pd) matches a predicate F1 ∈ S1 ∧ · · · ∧
Fd ∈ Sd and the corresponding rule if and only if the condition
p1 ∈ S1 ∧ · · · ∧ pd ∈ Sd holds. We use α to denote the set of
possible values that 〈decision〉 can be. For firewalls, typical
elements of α include accept, discard, accept with logging,
and discard with logging.

A sequence of rules 〈r1, · · · , rn〉 is complete if and only
if for any packet p, there is at least one rule in the sequence
that p matches. To ensure that a sequence of rules is complete
and thus is a packet classifier, the predicate of the last rule is
usually specified as F1 ∈ D(F1) ∧ · · ·Fd ∈ ∧D(Fd), which
every packet matches. A packet classifier f is a sequence of
rules that is complete. A packet classifier f is a prefix packet
classifier if and only if every rule in f is a prefix rule.

Two rules in a packet classifier may overlap; that is, there
exists at least one packet that matches both rules. Furthermore,
two rules in a packet classifier may conflict; that is, the two
rules not only overlap but also have different decisions. Packet
classifiers typically resolve conflicts by employing a first-
match resolution strategy where the decision for a packet p
is the decision of the first (i.e., highest priority) rule that p
matches in f . The decision that packet classifier f makes for
packet p is denoted f(p).

We can think of a packet classifier f as defining a many-to-
one mapping function from Σ to α, where Σ denotes the set
of all possible packets and α denotes the set of all possible
decisions. Two packet classifiers f1 and f2 are equivalent,
denoted f1 ≡ f2, if and only if they define the same mapping
function from Σ to α; that is, for any packet p ∈ Σ, we
have f1(p) = f2(p). Using the concept of equivalent packet
classifiers, we define redundant rules as follows.

Definition 1 (Redundant Rule): A rule r is redundant in a
packet classifier f if and only if the resulting packet classifier
f ′ after removing rule r is equivalent to f .

IV. ALL-MATCH BASED REDUNDANCY THEOREM

In this section, we introduce the concept of all-match trees
and the all-match based redundancy theorem.

A. All-Match Trees

Definition 4.1 (All-Match Tree): An all-match tree t for a
packet classifier f : 〈r1, r2, · · · , rn〉 over fields F1, · · · , Fd is
a tree that has the following five properties:

1) Each node v is labeled with a packet field denoted F (v).
If v is a nonterminal node, then F (v) is a packet field.
If v is a terminal node, then F (v) is a list of integer
values 〈i1, i2, · · · , ik〉 where 1 ≤ i1 < i2 · · · < ik ≤ n.

2) Each edge e:u → v is labeled with a nonempty set of
integers, denoted I(e), where I(e) is a subset of the
domain of u’s label (i.e., I(e) ⊆ D(F (u))).

3) The set of all outgoing edges of a node v in t, denoted
E(v), satisfies the following two conditions:

a) Consistency: I(e) ∩ I(e′) = ∅ for any two distinct
edges e and e′ in E(v).

b) Completeness:
⋃

e∈E(v) I(e) = D(F (v)).
4) A directed path from the root to a terminal node is

called a decision path. No two nodes on a decision
path have the same label. Given a decision path P :
(v1e1v2e2 · · · vmemvm+1), the matching set of P is
defined as the set of all packets that satisfy (F (v1) ∈
I(e1))∧ (F (v2) ∈ I(e2))∧ · · · ∧ (F (vm) ∈ I(em)). We
use M(P) to denote the matching set of P .

5) For any decision path P : (v1e1v2e2 · · · vmemvm+1)
where F (vm+1) = 〈i1, i2, ..., ik〉 and for any rule rj(1 ≤
j ≤ n), if M(P) ∩ M(rj) = φ, then M(P) ⊆ M(rj)
and j ∈ {i1, i2, · · · , ik}. �

Fig 3 shows an all-match tree for the simple packet classifier
in Fig 2. In this example, we assume every packet has only
two fields F1 and F2, and the domain of each field is [1, 10].

r1 : F1 ∈ [1, 5] ∧ F2 ∈ [1, 10] → accept
r2 : F1 ∈ [1, 5] ∧ F2 ∈ [5, 10] → accept
r3 : F1 ∈ [6, 10] ∧ F2 ∈ [1, 3] → discard
r4 : F1 ∈ [1, 10] ∧ F2 ∈ [1, 10]→ discard

Fig. 2. A simple packet classifier

1,4 1,2,4 3,4 4

[1,5]

[1,4] [5,10] [1,3] [4,10]

[6,10]

F2

F1

F2

Fig. 3. An all-match tree for the packet classifier in Fig 2

In an all-match tree for a packet classifier f , for any deci-
sion path P : (v1e1v2e2 · · · vmemvm+1) where F (vm+1) =
〈i1, i2, ..., ik〉, if a packet p satisfies this path P , then
{ri1 , ri2 , ..., rik

} are exactly all the rules in f that p matches.
This is why we call such a tree an “all-match tree”.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.

577

The structure of an all-match tree is somewhat similar to that
of a firewall decision diagram (FDD) [11]. However, they have
two major differences. First, they are semantically different.
Each all-match tree is associated with a particular packet
classifier that is specified by a sequence of rules and it encodes
the quantitative relationship among the rules in the packet
classifier. In contrast, a firewall decision diagram describes
the semantics of a packet classifier, just as a sequence of
rules does. Second, they are syntactically different. Unlike all-
match trees, a firewall decision diagram may not be a tree.
Furthermore, in an all-match tree, a terminal node is labeled
by a sequence of integer values; in contrast, in a firewall
decision diagram, a terminal node is labeled by a decision
for the packets that match the decision path from the root to
the terminal node.

B. The All-Match Based Redundancy Theorem

Before we present the All-Match Based Redundancy Theo-
rem, we first prove the following lemma.

Lemma 4.1: Let t be an all-match tree for packet classifier
f : 〈r1, r2, · · · , rn〉. For any rule ri in f , let P1,P2, · · · ,Ph

be all the decision paths whose terminal node contains ri, then
the following condition holds: M(ri) =

⋃h
j=1 M(Pj). �

Proof:
(1) According to property 5 in the definition of all-match

trees, we have M(Pj) ⊆ M(ri) for every j (1 ≤ j ≤ h).
Thus, we have

⋃h
j=1 M(Pj) ⊆ M(ri).

(2) Consider a packet p in M(ri). According to the con-
sistency and completeness properties of all-match trees, there
exists one and only one decision path that p matches. Let P
be this decision path. Thus, we have p ∈ M(ri) ∩ M(P).
According to property 5 in the definition of all-match trees,
i is in the label of P’s terminal node. Thus, we have
P ∈ {P1,P2, · · · ,Ph}. Therefore, we have p ∈ ⋃h

j=1 M(Pj).
Thus we get M(ri) ⊆

⋃h
j=1 M(Pj). �

Theorem 4.1 (All-Match Based Redundancy Theorem):
Let t be an all-match tree for packet classifier
f : 〈r1, r2, · · · , rn〉. Rule ri is redundant in f if and
only if in all terminal nodes of t that have i as their first
value, i is immediately followed by another integer j such
that ri and rj have the same decision. �

Proof:
(1) Suppose in all terminal nodes of t that have i as their

first value i is immediately followed by another integer j such
that ri and rj have the same decision. We next prove that ri

is redundant in f .
We observe that removing a rule ri only possibly affects

the decisions for the packets in M(ri). Let P1,P2, · · · ,Ph

be all the decision paths in t whose terminal node contains
i. According to Lemma 4.1, we have M(ri) =

⋃h
j=1 M(Pj).

Consider an arbitrary packet p in M(ri). Suppose we have
p ∈ M(Pj). Let f ′ be the resulting packet classifier after
removing ri from f . To prove that ri is redundant in f , we
only need to prove f(p) = f ′(p). Let the label of the terminal
node of Pj be 〈i1, i2, · · · , ik〉. Because i ∈ {i1, i2, · · · , ik},
there are two cases:

Case 1: i1 = i. In this case, ri1 is the first rule in f that
p matches. Thus, removing ri does not affect the decision for
p. In this case, we have f(p) = f ′(p).

Case 2: i1 = i, and ri has the same decision as ri2 . In f ,
ri is the first rule that p matches. In f ′, ri2 is the first rule
that p matches. Because ri and ri2 has the same decision, we
have f(p) = f ′(p) in this case.

Therefore, ri is redundant in f .
(2) Suppose rule ri is redundant in f and there exists a

terminal node in t whose first two values are i followed by
j. and ri and rj have different decisions. Let P denote the
decision path from the root to this terminal node. Consider a
packet p ∈ M(P). Thus, ri is the first rule that p matches in f
and rj is the first rule that p matches in f ′. Because ri and rj

have different decisions, we have f(p) = f ′(p). This conflicts
with the assumption that ri is redundant. Therefore, if ri is
redundant in f , then in all terminal nodes of t that have i as
their first value i is immediately followed by another integer
j such that ri and rj have the same decision. �

V. ALL-MATCH BASED REDUNDANCY REMOVAL

In this section, we first present an algorithm for constructing
all-match trees from packet classifiers. Second, we present a
redundancy removal algorithm based on Theorem 4.1. Third,
we prove that the resulting packet classifier does not have any
redundant rules.

A. The All-Match Tree Construction Algorithm

According to Theorem 4.1, in order to detect and remove
redundant rules in a packet classifier, we first need to construct
an all-match tree for that packet classifier. The pseudocode for
the all-match tree construction algorithm is shown in Figure
4.

All − Match Tree Construction Algorithm
Input : A packet classifier f : 〈r1, r2, · · · , rn〉.
Output : A all-match tree t for packet classifier f .
Steps:
1.Build a path from rule r1. Let v denote the root.

The label of the terminal node is 〈1〉.
2.for i := 2 to n do APPEND(v, ri, 1, i);
End

APPEND(v, (F1 ∈ S1) ∧ · · · ∧ (Fd ∈ Sd) → 〈dec〉, m, i)
/*F (v) = Fm and E(v) = {e1, · · · , ek}*/
1. if (m = d + 1) then

Add i to the end of v’s label;
Return;

2. if (Sm − (I(e1) ∪ · · · ∪ I(ek))) �= ∅ then
(a) Add an outgoing edge ek+1 with label Sm − (I(e1) ∪ · · · ∪ I(ek)) to v;
(b) Build a decision path from (Fm+1 ∈ Sm+1) ∧ · · · ∧ (Fd ∈ Sd) → 〈dec〉,

and make ek+1 point to the first node in this path;
(c) Add i to the end of the label of the terminal node of this decision path;

3. for j := 1 to k do
if I(ej) ⊆ Sm then

APPEND(ej ’s target,(F1 ∈ S1) ∧ · · · ∧ (Fd ∈ Sd) → 〈dec〉,m+1,i);
else if I(ej) ∩ Sm �= ∅ then

(a) Add one outgoing edge e to v, and label e with I(ej) ∩ Sm;
(b) Make a copy of the subgraph rooted at the target node of ej ,

and make e points to the root of the copy;
(a) Replace the label of ej by I(ej) − Sm;
(d) APPEND(e’s target,(F1 ∈ S1) ∧ · · · ∧ (Fd ∈ Sd) → 〈dec〉,m+1,i);

Fig. 4. All-Match Tree Construction Algorithm

Consider the packet classifier in Figure 2. The process
of constructing the corresponding all-match tree is shown in
Figure 5.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.

578

1,4 1,2,4 3,4 4

[1,5]

[1,4] [5,10] [1,3] [4,10]

[6,10]

F2

F1

F2

1,4 1,2,4 3,4

[1,5]

[1,4] [5,10]
[1,3]

[6,10]

F2

F1

F2

1,4 1,2,4

[1,5]

[1,4] [5,10]

F1

F2

1,4

[1,5]

[1,10]

F1

F2

Fig. 5. Constructing an all-match tree

B. The All-Match Based Redundancy Removal Algorithm

We first introduce two auxiliary lists that are used in the all-
match based redundancy removal algorithm: containment list
and residency list. Given an all-match tree that has m terminal
nodes, we assign a unique sequence number in [1,m] to each
terminal node. In the containment list, each entry consists
of a terminal node sequence number and the rule sequence
numbers contained in the terminal node. In the residency list,
each entry consists of a rule sequence number and the set
of terminal nodes which contains this rule. The all-match list
and the residency list for the all-match tree in Figure 3 are in
Figure 6.

1
2

3
4

1,4

1,2,4

3,4

4

Containment List

Rule #

Residency List

Terminal
node #

1
2

3
4

1,2

2

3

1,2,3,4

Fig. 6. The containment list and the residency List for the all-match tree in
Figure 3

The all-match based redundancy removal algorithm works
as follows. Given a packet classifier f : 〈r1, r2, · · · , rn〉, this
algorithm scans f from rn to r1, and checks whether each rule
is redundant using Theorem 4.1. Whenever a rule is detected
as redundant, the rule is removed from f . The pseudocode of
the algorithm is shown in Figure 7.

Consider the packet classifier in Figure 2 and its all-match
tree in Figure 3. The all-match list and the residency list are
in Figure 6. We next demonstrate the process of determining
whether r4 is redundant using the all-match based redundancy
removal algorithm shown in Figure 7. From the residency list,
we know that rule r4 is contained in terminal nodes 1, 2, 3
and 4. In terminal node 4, r4 is the only value, and thus is not
redundant. Next, we check whether r3 is redundant. From the
residency list, we know that r3 is contained in terminal node
3. In terminal node 3, the first value is 3, and is immediately
followed by a 4, and r3 and r4 have the same decision.
According to the Theorem 4.1, r3 is redundant. Subsequently,

All − Match Based Redundancy Removal Algorithm
Input : (1) A packet classifier f : 〈r1, r2, · · · , rn〉.

(2) A all-match tree t for f .
Output : A packet classifier f ′ where f ≡ f ′ and there is no redundant rule in f ′.
Steps:
1.Build the containment list ConList[1..m] from t.

Build the residency list ResList[1..n] from t.
2.for i := n to 1 do

(1) redundant := true
(2) for each terminal node sequence number tn in ResList[i] do

if (i is the only value in ConList[tn]) or
(i is the first value in ConList[tn] and the second value
in ConList[tn], say j, satisfies the condition that
ri and rj have different decisions)

then
redundant := false;
break;

(3) if redundant then
remove ri from f ;
for each terminal node sequence number tn in ResList[i] do

delete i from ConList[tn];

Fig. 7. All-Match Based Redundancy Removal Algorithm

we remove r3 from the packet classifier and delete 3 from the
third entry of the all-match list. In a similar fashion, we can
further detect that r2 is redundant and r1 is not redundant.
The resulting packet classifier is shown in Figure 8.

F1 ∈ [1, 5] ∧ F2 ∈ [1, 10] → accept
F1 ∈ [1, 10] ∧ F2 ∈ [1, 10]→ discard

Fig. 8. The resulting packet classifier after removing redundant rules from
the packet classifier in Figure 2

C. Proof of Complete Redundancy Removal

A packet classifier redundancy removal algorithm is a
complete redundancy removal algorithm if and only if for
any packet classifier the algorithm produces a semantically
equivalent packet classifier in which no rule is redundant.

Theorem 5.1: The All-Match Based Redundancy Removal
Algorithm is a complete redundancy removal algorithm. �

Proof:
Let f be a given packet classifier and Let t be an all-

match tree for f . Let f ′′ be the resulting packet classifier after
running the all-match based redundancy removal algorithm.
Suppose f ′′ has a rule ri that is redundant in f ′′. Let f ′ be the
resulting packet classifier after the algorithm has examined all
the rules from ri+1 to rn and the redundant rules from ri+1 to
rn has been removed. Because the algorithm does not remove
ri, ri is not redundant in f ′. According to Theorem 4.1, there
is at least a terminal node v that satisfies one of the following
conditions:

1) this terminal node only contains i,
2) this terminal node has i as its first value and i is

immediately followed by another value j such that ri

and rj have different decisions.

If v satisfies one of the two conditions, then v still satisfies
that condition after the algorithm removes all the redundant
rules above ri, because i will never be deleted from v
according to the algorithm. Therefore, ri is not redundant in
f ′′ according to Theorem 4.1. �

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.

579

It is worth noting that the order from n to 1 in detecting
redundant rules is critical. If we choose another order, the
algorithm may not be able to guarantee complete redundancy
removal. Take the order from 1 to n as an example. When we
check whether ri is redundant, suppose ri is not redundant
because there is one and only one terminal node in the all-
match tree that has i as its first value and i is immediately
followed by another value j such that ri and rj have different
decisions. We further suppose j is immediately followed by
another value k where ri and rk have the same decision. After
moving all the redundant rules after ri, j is possibly removed
from the terminal node and consequently ri and rk become
the first two values in the terminal node and they have the
same decision. Thus, ri becomes redundant.

VI. EXPERIMENTAL RESULTS

In this section, we evaluate the effectiveness and efficiency
of the redundancy removal algorithm on both real-life and
synthetic packet classifiers.

A. Effectiveness on Real-life Packet Classifiers

We first define the metrics that we used to measure the
effectiveness of the redundancy removal algorithm. In this
paragraph, f denotes a packet classifier, S denotes a set of
packet classifiers, and RR denotes the redundancy removal al-
gorithm. We then let RR(f) denote the classifier produced by
applying the redundancy removal algorithm on f , Direct(f)
denote the prefix classifier produced by applying direct interval
expansion on f , and |f | denote the number of rules in f . We
define the following six metrics for assessing the performance
of RR on a set of classifiers S.

• The average compression ratio of RR over S =
Σf∈S

|Direct(RR(f))|
|Direct(f)|
|S| .

• The total compression ratio of RR over S =
Σf∈S |Direct(RR(f))|

Σf∈S |Direct(f)| .
• The average expansion ratio of RR over S =

Σf∈S
|Direct(RR(f))|

|f|
|S| .

• The total expansion ratio of RR over S =
Σf∈S |Direct(RR(f))|

Σf∈S |f | .
• The average expansion ratio of direct expansion over S

=
Σf∈S

|Direct(f)|
|f|

|S| .
• The total expansion ratio of direct expansion over S =

Σf∈S |Direct(f)|
Σf∈S |f | .

We next define a set RL of 17 real-life packet classifiers that
we performed experiments on. We actually obtained 42 real-
life packet classifiers from distinct network service providers
that range in size from dozens to hundreds of rules. Although
this collection of classifiers is diverse, some classifiers from
the same network service provider have similar structure and
exhibited similar results under the redundancy removal algo-
rithm. To prevent this repetition from skewing the performance
data, we divided the 42 packet classifiers into 17 structurally
distinct groups, and we randomly chose one from each of the
17 groups to form the set RL.

Compression Ratio of Real-life Packet classifiers. The
average compression ratio of the redundancy removal algo-
rithm over the packet classifiers in RL is 41.8%. The total
compression ratio of the redundancy removal algorithm over
the packet classifiers in RL is 35.0%. In Figure 9, we show
the compression ratios of the redundancy removal algorithm
for each packet classifier in RL in increasing order. Figure
10 shows the distribution of compression ratios achieved by
the redundancy removal algorithm over the packet classifiers
in RL. From these experimental results, we can see that our
redundancy removal algorithm can significantly reduce the
number of TCAM entries for a packet classifier.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Packet Classifier Groups

0.0

0.2

0.4

0.6

0.8

1.0

C
o
m

p
re

ss
io

n
 R

a
ti

o

Redundancy Removal

Fig. 9. Compression ratios of real-life packet classifier groups

[0,0.01] (0.01, 0.25] (0.25, 0.5] (0.5, 0.75] (0.75, 1]
Compression Ratio

0

10

20

30

40

50

60

70

P
e
rc

e
n

ta
g

e
 o

f
C

la
ss

if
ie

r
G

ro
u

p
s

Redundancy Removal

Fig. 10. Distribution of real-life packet classifiers by compression ratio

Expansion Ratio of Real-life Packet classifiers. The aver-
age expansion ratios of the redundancy removal algorithm and
the direct expansion algorithm over the packet classifiers in
RL are 19.9 and 69.9 respectively. The total expansion ratios
of the redundancy removal algorithm and the direct expansion
algorithm over the packet classifiers in RL are 7.1 and 20.4
respectively. In Figure 11, we show the expansion ratios of
the redundancy removal algorithm and the direct expansion
algorithm for each packet classifier in RL. Figure 12 shows
the distribution of expansion ratios achieved by the redundancy
removal algorithm and the direct expansion algorithm on the
packet classifiers in RL. Interval expansion is indeed a real

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.

580

issue as over 60% of our packet classifiers have an expansion
ratio of over 50 if we use direct interval expansion. From these
experimental results, we can see that redundancy removal can
significantly reduce the expansion ratio of packet classifiers.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Packet Classifier Groups

0

20

40

60

80

100

120

140

160

180

E
xp

a
n

si
o
n

 R
a
ti

o

Redundancy Removal
Direct Expansion

Fig. 11. Expansion ratios of real-life packet classifier groups

[0, 0.5] (0.5, 1] (1, 25] (25, 50] (50, 200]
Expansion Ratio

0

10

20

30

40

50

60

70

P
e
rc

e
n

ta
g

e
 o

f
C

la
ss

if
ie

r
G

ro
u

p
s

Redundancy Removal
Direct Expansion

Fig. 12. Distribution of real-life packet classifiers by expansion ratio

B. Effectiveness on Synthetic Packet Classifiers

Packet classifier rules are considered confidential due to
security concerns. Thus, it is difficult to get many real-
life packet classifiers to experiment with. To address this
issue and further evaluate the effectiveness of our redundancy
removal algorithm, we generated a set of synthetic packet
classifiers, denoted SY N , in the following fashion. Every
predicate of a rule in our synthetic packet classifiers has five
fields: source IP address, destination IP address, source port
number, destination port number, and protocol type. We first
randomly generated a list of values for each field. For IP
addresses, we generated a random class C address; for ports
we generated a random interval; for protocols, we generated
a random protocol number. Given these lists, we generated
a list of predicates by taking the cross product of all these
lists. We added a final default predicate to our list. Finally,
we randomly assigned one of two decisions, accept or deny,
to each predicate to make a complete rule.

Compression Ratio of Synthetic Packet classifiers. The
average compression ratios of the redundancy removal algo-
rithm over the packet classifiers in SY N is 35.2%. The total
compression ratios of the redundancy removal algorithm over
the packet classifiers in SY N is 24.4%. Figure 13 shows the
distribution of compression ratios achieved by the redundancy
removal algorithm over the packet classifiers in SY N .

[0, 0.15] (0.15, 0.35] (0.35, 0.55] (0.55, 0.75] (0.75, 1]
Compression Ratio

0

5

10

15

20

25

30

35

40

45

P
e
rc

e
n

ta
g

e
 o

f
C

la
ss

if
ie

rs

Fig. 13. Distribution of synthetic packet classifiers by compression ratio

Expansion Ratio of Synthetic Packet classifiers. The
average expansion ratios of the redundancy removal algorithm
and the direct expansion algorithm over the packet classifiers
in SY N are 60.1 and 178.0 respectively. The total expansion
ratios of the redundancy removal algorithm and the direct
expansion algorithm over the packet classifiers in SY N are
45.8 and 196.1 respectively. Figure 14 shows the distribution
of expansion ratios achieved by the redundancy removal
algorithm and the direct expansion algorithm on the packet
classifiers in SY N .

[0, 1] (1, 25] (25, 50] (50, 100](100, 500]
Expansion Ratio

0

20

40

60

80

100

P
e
rc

e
n

ta
g

e
 o

f
C

la
ss

if
ie

rs

Redundancy Removal
Direct Expansion

Fig. 14. Distribution of synthetic packet classifiers by expansion ratio

C. Efficiency on Real-life Packet Classifiers

We implemented our algorithm using SUN Java JDK 1.4.
Our experiments were carried out on a desktop PC running
Windows XP with 1G memory and a single 2.2 GHz AMD
Opteron 148 processor. Table II shows the running time
of the first-match based redundancy removal algorithm and

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.

581

0 200 400 600 800 1000 1200
Number of Original Rules

0.00

0.05

0.10

0.15

0.20

T
o
ta

l
T

im
e
 i

n
 S

e
co

n
d

s
All-Match Based Redundancy Removal
First-Match Based Redundancy Removal

Fig. 15. Running time of both all-match based and first-match based
redundancy removal algorithms vs. number of original rules

the all-match based redundancy removal algorithm for three
representative packet classifiers.

Number of Rules First-Match (sec) All-Match (sec)
42 0.491 0.171
87 0.179 0.047

661 1.105 0.750

TABLE II
SAMPLE RUNNING TIME DATA FOR REAL-LIFE PACKET CLASSIFIERS

D. Efficiency on Synthetic Packet Classifiers

Figure 15 shows the average running time of the all-
match based redundancy removal algorithm in comparison
with the first-match based redundancy removal algorithm on
the synthetic packet classifiers. We can see that the all-match
based redundancy removal algorithm is about twice as efficient
as the first-match based redundancy removal algorithm.

VII. CONCLUDING REMARKS

Our contributions are three-fold. First, we present a new
concept called all-match trees, and develop a new redundancy
theorem based on such trees. Second, we propose an all-match
based redundancy removal algorithm, which guarantees that
the resulting packet classifier has no redundant rules. This
algorithm shows the promise of solving first-match problems
from an all-match perspective. Last, we conducted extensive
experiments on both real-life and synthetic packet classifiers.
The experimental results show that our redundancy removal
algorithm can effectively reduce TCAM entries by an average
of 58.2%.

The results in this paper can be extended for use in many
systems where a system can be represented by a sequence of
rules. Examples of such systems are rule-based systems in the
area of artificial intelligence and access control in the area of
databases. In these systems, we can extend the results in this
paper to remove redundant rules and thereby make the systems
more efficient.

REFERENCES

[1] Cypress semiconductor corp. content addressable memory.
http://www.cypress.com/.

[2] Integrated device technology, inc. content addressable memory.
http://www.idt.com/.

[3] Netlogic microsystems. content addressable memory.
http://www.netlogicmicro.com/.

[4] A guide to search engines and networking memory.
http://www.linleygroup.com/pdf/NMv4.pdf, November 2006.

[5] D. A. Applegate, G. Calinescu, D. S. Johnson, H. Karloff, K. Ligett, and
J. Wang. Compressing rectilinear pictures and minimizing access control
lists. In Proceedings of the Proceedings of ACM-SIAM Symposium on
Discrete Algorithms (SODA), January 2007.

[6] F. Baboescu, S. Singh, and G. Varghese. Packet classification for core
routers: Is there an alternative to CAMs? In Proceedings of IEEE
INFOCOM, 2003.

[7] F. Baboescu and G. Varghese. Scalable packet classification. In
Proceedings of ACM SIGCOMM, pages 199–210, 2001.

[8] Q. Dong, S. Banerjee, J. Wang, D. Agrawal, and A. Shukla. Packet clas-
sifiers in ternary CAMs can be smaller. In Proceedings of SIGMETRICS,
pages 311–322, 2006.

[9] R. Draves, C. King, S. Venkatachary, and B. Zill. Constructing optimal
IP routing tables. In Proceedings of IEEE INFOCOM, pages 88–97,
1999.

[10] A. Feldmann and S. Muthukrishnan. Tradeoffs for packet classification.
In Proceedings of 19th IEEE INFOCOM, Mar. 2000.

[11] M. G. Gouda and A. X. Liu. Structured firewall design. Computer
Networks Journal, 51(4):1106–1120, March 2007.

[12] P. Gupta. Algorithms for Routing Lookups and Packet Classification.
PhD thesis, Stanford University, 2000.

[13] P. Gupta and N. McKeown. Packet classification on multiple fields. In
Proceedings of ACM SIGCOMM, pages 147–160, 1999.

[14] P. Gupta and N. McKeown. Algorithms for packet classification. IEEE
Network, 15(2):24–32, 2001.

[15] T. V. Lakshman and D. Stiliadis. High-speed policy-based packet
forwarding using efficient multi-dimensional range matching. In Pro-
ceedings of ACM SIGCOMM, pages 203–214, 1998.

[16] K. Lakshminarayanan, A. Rangarajan, and S. Venkatachary. Algorithms
for advanced packet classification with ternary cams. In Proceedings of
the ACM SIGCOMM, pages 193 – 204, August 2005.

[17] A. X. Liu and M. G. Gouda. Complete redundancy detection in
firewalls. In Proceedings of 19th Annual IFIP Conference on Data
and Applications Security, LNCS 3654, S. Jajodia and D. Wijesekera
Ed., Springer-Verlag, pages 196–209, August 2005.

[18] H. Liu. Efficient mapping of range classifier into ternary-cam. In
Proceedings of the Hot Interconnects, pages 95– 100, 2002.

[19] L. Qiu, G. Varghese, and S. Suri. Fast firewall implementations for
software-based and hardware-based routers. In Proceedings the 9th
International Conference on Network Protocols (ICNP), 2001.

[20] S. Singh, F. Baboescu, G. Varghese, and J. Wang. Packet classification
using multidimensional cutting. In Proceedings of ACM SIGCOMM,
2003.

[21] E. Spitznagel, D. Taylor, and J. Turner. Packet classification using ex-
tended tcams. In Proceedings of the 11th IEEE International Conference
on Network Protocols (ICNP), pages 120– 131.

[22] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel. Fast and scalable
layer four switching. In Proceedings of ACM SIGCOMM, pages 191–
202, 1998.

[23] S. Suri, T. Sandholm, and P. Warkhede. Compressing two-dimensional
routing tables. Algorithmica, 35:287–300, 2003.

[24] D. E. Taylor. Survey & taxonomy of packet classification techniques.
ACM Computing Surveys, 37(3):238–275, 2005.

[25] J. van Lunteren and T. Engbersen. Fast and scalable packet classification.
IEEE Journals on Selected Areas in Communications, 21(4):560– 571,
2003.

[26] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner. Scalable high
speed IP routing lookups. In Proceedings of ACM SIGCOMM, pages
25–36, September 1997.

[27] T. Y. C. Woo. A modular approach to packet classification: Algorithms
and results. In Proceedings of IEEE INFOCOM, pages 1213–1222,
2000.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.

582

