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Abstract—Fast IP address lookup in the Internet routers is 
essential to achieve packet forwarding in wire-speed. The longest 
prefix matching for the IP address lookup is more complex than 
exact matching because of its dual dimensions, length and value. 
By thoroughly studying the current proposals for the IP address 
lookup problem, we find out that binary search could be a low-
cost solution while providing high performance. Most of the 
existing binary search algorithms based on trie have simple data 
structures which can be easily implemented, but they have empty 
internal nodes. Binary search algorithms based on prefix values 
do not have empty nodes, but they either construct unbalanced 
trees or create extra nodes. In this paper, a new IP address 
lookup algorithm using a priority trie is proposed. The proposed 
algorithm is based on the trie structure, but empty internal nodes 
are replaced by priority prefixes. The longest prefix matching in 
the proposed algorithm is more efficiently performed since 
search can be immediately finished when input is matched to a 
priority prefix. The performance evaluation results show that the 
proposed priority trie has very good performance in terms of the 
memory requirement, the lookup speed, and the scalability. 

Keywords-Internet protocol; Address lookup; Binary trie; 
Priority trie 

I.  INTRODUCTION 
The rapid growth of the Internet traffic requires for routers 

to perform high-speed packet forwarding. As an essential 
component to achieve fast packet forwarding, the Internet 
protocol (IP) address lookup is one of the most challenging 
tasks to the Internet routers since it should be performed in 
wire-speed for each incoming packet under the circumstance 
that packets’ arrival rates and the size of routing tables have 
been dramatically increased [1]. The IP address lookup is to 
determine the output port using the destination IP address of 
incoming packets in order to forward the packets toward their 
final destinations.  

IP addresses have two levels of hierarchy: network part and 
host part. The network part is called prefix. Class-less inter-
domain routing (CIDR) structure allows the arbitrary length of 
prefixes and address aggregation at multiple levels. As a result, 
the IP address lookup problem in routers requires searching the 
forwarding table for the longest prefix that matches the 

destination address of a given input packet in order to find the 
most specific route. Determining the longest matching prefix 
(LMP) or the best matching prefix (BMP) for the IP address 
lookup now involves two dimensions: length and value [2]. 

High-performance routers facilitates hardware parallelism 
using specialized memories called ternary content addressable 
memory (TCAM), in which an address lookup is performed 
with a single memory access. However, as a power-hungry 
device, TCAM is a lot more expensive than ordinary memory 
in implementation cost. A lot of algorithms and architectures 
performing the longest prefix match using ordinary memories 
have been proposed.  

A set of metrics is used in evaluating the performance of 
the IP address lookup algorithms. Search speed is the primary 
metric and it is highly dependent on the number of memory 
accesses for table lookups since memory access is the most 
time consuming operation in the search process [3]. The size of 
the required memory is also an important metric according to 
the growth of the size of routing tables to several hundred 
thousand entries. For routing tables which have dynamically 
changed routes, providing incremental updates is also 
important. Scalability is another important metric, in which 
algorithms should be easily modified for accommodating large 
routing tables. 

In this paper, a new IP address lookup algorithm using a 
priority trie is proposed. Most of the trie-based algorithms have 
many empty internal nodes which cause excessive memory 
space and memory accesses. Moreover, the trie-based 
algorithms compare a given input with shorter prefixes first, 
and hence search has to be continued until a leaf is visited even 
if a match is found. The proposed algorithm removes empty 
internal nodes replacing by the longest prefix among the 
prefixes belonged to the sub-tree of each empty node as a root. 
Hence the memory requirement is reduced. The replaced node 
is called priority node. Search in the proposed algorithm is 
immediately finished without searching the complete trie if a 
given input matches a priority node, and hence search 
performance is significantly improved. 

This paper is organized as follows. In Section II, we briefly 
summarize the related works for IP address lookup. Section III 
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presents our proposed algorithm. In Section IV, extensive 
simulation results including the comparison with the related 
works are shown. Section V concludes the paper. 

II. RELATED WORKS 

A. Algorithms based on hashing 
Hashing has been popularly used for layer 2 address lookup 

which requires exact matching. Hashing converts a long length 
string into a smaller length which can be used as a memory 
pointer, and hence collision is the intrinsic problem of hashing. 
Broder et al. proposed to use multiple hash functions in order 
to reduce collisions [4]. For the IP address lookup, hashing is 
applied into prefixes of the same length, and the longest prefix 
among matched prefixes in each length is selected as the best 
match [5]-[7]. Waldvogel et al. proposed to use binary search 
on hash tables organized by prefix lengths [5]. Lim et al. 
proposed to use multiple hash functions in reducing collisions 
and perform parallel search for every hash tables in each length 
[6]. Other interesting approach is to combine the hashing and 
the binary search [7]. In their approach, hashing is primarily 
applied into prefixes of the same length, and for prefixes 
collided into the same entry, binary search is performed. 

B. Binary search algorithms based on trie 
A trie is the most intuitive data structure for the IP address 

lookup [2][8]-[10]. The trie is a tree-based data structure which 
applies linear search on length. Each prefix resides in a node of 
the trie, of which the level and the path from the root node is 
uniquely determined by the length and the value of the prefix, 
respectively. Figure 1 shows the binary trie for an example set 
of prefixes. In Figure 1, black nodes represent prefixes, and 
white nodes represent unassigned internal nodes. At each node, 
search in the binary trie proceeds to the left or right according 
to the sequential inspection of address bits starting from the 
most significant bit.  

The binary trie is a natural way to represent prefixes, but it 
is not balanced and the depth of the trie is usually W, where W 
is the maximum prefix length. Moreover, because of 
unassigned internal nodes included in the trie, memory space is 
wasted. Another intrinsic problem of the trie is that shorter 
prefixes are located in a higher level and hence they are 
compared earlier than longer prefixes. Therefore, even if a 
match is found, search has to be continued until a leaf is visited 
in order to look for a longer match.  

In order to reduce the depth of the trie, multi-bit trie 
inspects more than one bit at a time [8], and path-compressed 
trie collapses one-way branch nodes [2]. Level-compressed trie 

applies multi-bit trie with path compression [9]. In order to 
save memory by compression, Lulea algorithm proposed a 
compact trie structure for fast lookup [10], but it requires a lot 
of pre-processing and hence does not allow incremental 
updates. 

C. Binary search algorithms based on prefix value 
Binary prefix tree (BPT) [11] algorithm attempts to perform 

binary search on prefix values. In order to perform the binary 
search on prefix values, prefixes should be sorted according to 
their magnitude. The BPT scheme provides a set of new 
definitions for the comparison of prefixes of different lengths 
in sorting prefixes in the order of magnitude. For two prefixes 
of different lengths, the first m bits are compared, where m is 
the length of the shorter prefix. The prefix having the bigger 
value is defined as a bigger prefix. If they are the same, then 
the (m +1)th bit of the longer prefix is checked. If the (m +1) th 
bit is 1, the longer prefix is bigger, and otherwise the shorter 
prefix is bigger. 

 However, the binary search can not be directly applied to 
this sorted list because of prefix nesting relationship. Assuming 
that an incoming packet which has the prefix A as a best 
matching prefix is given, it is possible to exist prefixes which 
have the prefix A as its sub-string. If such prefixes are 
compared earlier than the prefix A with the input, the binary 
search can be directed to the wrong half of the list which does 
not include the prefix A. The BPT algorithm solves this issue 
by restricting ancestor prefixes being compared earlier than 
descendant prefixes. The BPT does not have empty internal 
nodes, and hence it has the advantage in required memory size. 
However, depending on the depth of the prefix hierarchy, tree 
depth could become very large as will be shown in Section IV. 

 As an attempt to reduce the depth of tree, the weighted 
prefix tree (WPT) [12] considers the number of descendents in 
selecting the root of each level. The constructed WBPT has a 
shorter depth and is more balanced than BPT. Using the fact 
that disjoint prefixes construct a perfectly balanced tree, the 
multiple balanced prefix trees (MBPT) [13] constructs multiple 
balanced trees only with disjoint prefixes. The disjoint prefix 
tree (DPT) [14] constructs the BPT for leaf-pushed prefixes, 
and hence it is a perfectly balanced tree for the extended set of 
prefixes generated by the leaf-pushing. The binary search on 
range (BSR) [15] treats each prefix as an interval which has a 
start address and an end address. The start and the end 
addresses are defined by padding zeros and ones to the 
maximum length, respectively. Hence the length dimension is 
completely removed. However, since the start and the end 
addresses are stored into the routing table, the number of 
elements could be the twice of the actual number of prefixes in 
the worst case. For each disjoint interval, the BSR scheme has 
to pre-compute and store the BMP, and the binary search is 
performed on the list of intervals. Incremental update is not 
possible because of the pre-computation of BMPs for each 
interval. 

III. PROPOSED ALGORITHMS 
As mentioned earlier, not only the binary trie has many 

empty internal nodes but also shorter prefixes are stored at  
Figure 1.  The binary trie for an example set of prefixes 

©1-4244-0357-X/06/$20.00     2006 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2006 proceedings.



higher levels and hence they are compared earlier than longer 
prefixes. Therefore, even if a match is found, search has to be 
continued until a leaf is visited. If prefixes are reversely 
assigned, in other words, if longer prefixes are associated with 
higher level nodes and shorter prefixes are associated with 
lower level nodes, search can be finished immediately when 
there is a match. However, in order for a prefix to be associated 
with a node in a lower level than its length, the prefix has to be 
duplicated 2j-i times, where i is the length of the prefix and j is 
the located level. 

In this paper, we propose to use the empty internal nodes in 
locating longer prefixes at higher levels. In other words, if we 
associate an empty node with the longest prefix among the 
prefixes belonged to a sub-tree rooted by the empty node, 
empty nodes are completely removed, the depth of a trie would 
be reduced, and search would be more efficient. The prefixes 
associated with empty nodes are named priority prefixes. Since 
we only associate empty nodes with longer prefixes and 
prefixes are located in either the same level or the higher level 
than its prefix length, there is no prefix duplication in our 
algorithm.  

Figure 2 shows the proposed priority-trie using the same 
example set of prefixes as in Figure 1. The black nodes 
represent the prefixes located in their own levels, and the nodes 
with bold boundary represent the priority prefixes. In Figure 2, 
since the prefix P4 is the longest prefix belonged to the binary 
trie of the empty root, it is located into the root node. There are 
two prefixes with the same length belonged to the sub-tree of 
the empty node 0*. Here we assume to break the tie from the 
left prefix, and hence the prefix P0 becomes the priority prefix. 
The prefix P3 is the longest prefix among the prefixes belonged 
to the sub-tree of the empty node 1*, and hence the prefix P3 is 
located into 1*, and so on. 

A. Building the proposed priority-trie 
Building the proposed priority-trie is composed of 

following four steps. In the first step, prefixes are listed in the 
increasing order of their lengths. Since the optimum depth of 
the binary trie is 2log ( 1) 1N + −    for N prefixes, in the 
second step, prefixes with the length less than or equal to L are 
stored into the corresponding level of nodes in the binary trie, 
where L = 2log ( 1) 1N + −   . In the third step, starting from 
the longest prefix in the list, follow the search path and store 
the prefix into the first empty node met in the path or create a 
leaf and mark the prefix as a priority prefix. Repeat this step 
until every prefixes longer than L are located. In the final 
refinement step, if the number of nodes is greater than N, this 

means that empty nodes still exist. Starting from the bottom-
left prefixes to the bottom-right prefixes, remove the prefix, 
follow the trie, and locate it into the first empty node met in the 
path and mark the prefix as a priority prefix. Repeat this step 
until the number of nodes is equal to N.   

 Table I shows the routing table built by the proposed 
algorithm. The first column is the memory address and it can 
be arbitrary. The second column represents whether the stored 
prefix is a priority prefix (1) or an ordinary prefix (0). Prefixes 
and their lengths are stored in the third and the fourth column, 
respectively, and two child pointers are shown in the following 
columns. The last column is the output port corresponding to 
the prefix, and we put the prefix name in this column for 
simplicity. As shown, the number of routing entries in the 
proposed algorithm is equal to N. 

B. Search 
The search procedure in the proposed priority trie is shown 

in Figure 3. Same as the search in the binary trie, search 
proceeds to the left or right according to the sequential 
inspection of address bits starting from the most significant bit. 
However, search in the proposed algorithm is finished either at 
a match with a priority prefix or at a leaf while it is always 
finished at a leaf in the binary trie. 

C. Update 
For the deletion of a prefix in the proposed priority trie, the 

prefix is located and the first three fields of the located entry 
are deleted. Since this node still contains the child pointers so 

 
Figure 2.  The proposed priority-trie 

Search (input) 
BMP = *; 
ptr = index(root); //start at root 
do {  

if (input == prefix(ptr))  // input matches to a prefix 
        { 

BMP = prefix(ptr); 
 if (priority(ptr) == ‘1’)  

break; //matched prefix is a priority prefix 
} 
if (nextBit(input) == ‘0’)  

ptr = leftPtr(ptr); // follow the left pointer 
else    ptr = rightPtr(ptr); //follow the right pointer; 

} while (ptr ! = NULL) 
return BMP; 

Figure 3.  Search procedure in the proposed priority-trie 

TABLE  I.     ROUTING TABLE FOR THE PROPOSED PRIORITY TRIE 

addr Priority 
/ordinary prefix length leftPtr rightPtr Out 

port
0 1 100110* 6 1 2 P4 
1 1 00* 2 - 3 P0 
2 1 10010* 5 4 5 P3 
3 0 01* 2 - - P1 
4 1 10011* 5 6 7 P5 
5 0 11* 2 - 8 P8 
6 1 1000* 4 - - P2 
7 0 101* 3 - - P6 
8 1 1110* 4 - 9 P7 
9 0 1111* 4 - - P9 
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that the search process continues to lower levels, we should 
maintain the node. If we assume that the entire routing table is 
rebuilt with appropriate regular intervals, the number of empty 
nodes by the prefix deletion would not be a problem. 

For the insertion of a new prefix in the proposed algorithm, 
we have shown the update procedure in Figure 4. There are two 
cases that multiple nodes are affected by an insertion. The first 
case is when the new prefix matches a priority prefix and it is 
longer than the priority prefix, and the second case is that the 
ordinary node of the new prefix was taken by other priority 
prefix. In these cases, the new prefix takes the place, and for 
the priority prefix, in which its place is taken away, the same 
procedure is repeated. According to the reported statistics [3], 
the number of nested networks is less than 7, and hence the 
number of nodes affected by a prefix insertion would be 
statistically limited by 7. All other cases, either the new prefix 

is stored at a leaf or the prefix in the routing table is replaced 
by the new prefix. 

 

IV. PERFORMANCE EVALUATION 
Simulations are performed using C language for real 

routing data from backbone routers [16]. Table II and Table III 
show performance evaluation results of our proposed priority 
binary trie and priority multi-bit (2-bit) trie, respectively, in 
terms of the number of routing prefixes (N), the number of 
priority prefixes (Np) among routing prefixes, the maximum 
prefix length (D), the depth of our proposed priority trie (Dp), 
the average number of memory accesses (Ta) for an address 
lookup, and the memory requirement (M) for various sizes of 
routing data. As shown in the number of priority prefixes in 
Table II, more than 90 % of the prefixes for the first three 
routing tables are stored by priorities, and this means that the 
original binary trie has a lot of empty nodes. The more priority 
nodes the better search performance is expected in our 
proposed algorithm. The average number of memory accesses 
is between 16 and 23, and it is not much degraded as the 
growth of the routing table size.  

In Table III, since 2 bits are considered at the same time in 
the 2-bit trie, extra nodes generated for fitting into the stride 
size are shown in Nextra. The performance of the proposed 
algorithm in terms of the trie depth, the average number of 

TABLE II.     PERFORMANCE OF THE PROPOSED PRIORITY BINARY TRIE 

Routing 
Table N Np D Dp Ta M 

(Kbyte)
MAE-West1 14,553 14,199 32 24 16.66 127.9 

Aads 20,204 19,568 32 24 17.43 177.6 
MAE-West2 29,584 26,671 32 24 18.22 260.0 

PORT 80 112,310 50,091 32 28 20.35 987.1 
Grouptlcom 170,601 70,525 32 24 20.76 1.46M 

Telstra 227,223 119,149 32 32 22.86 1.95M 

TABLE IV.     COMPARISON WITH OTHER ALGORITHMS 

Port80 (112,310) Telstra (227,223) 
Algorithm 

incremental 
update Tmax

 Ta
 M 

(MByte) 
Nextra

 Tmax Ta
 M 

 (MByte) 
Nextra

 

Binary trie[2] yes 32 22.15 1.29 112,907 32 24.64 2.59 225,682 

BPT[11] no 44 25.82 1.25 0 66 30.80 2.60 0 
WPT[12] no 36 20.44 1.25 0 39 23.96 2.60 0 
BSR[15] no 18 11.42 0.96 72,063 19 11.07 1.76 124,795 

Proposed binary yes 28 20.35 0.99 0 32 22.86 1.95 0 
Proposed multi-bit yes 16 11.27 1.79 21,630 16 12.51 3.85 41,850 

Update (inputPrefix) 
curLevel = 0; 
newPfx = inputPrefix; 
ptr = index(root); //start at the root 
do {  

if (newPfx == prefix(ptr)) // a match 
{ 

if (priority(ptr) == ‘1’) //match a priority prefix 
if ( (length(newPfx) > length(ptr))  

or (length(newPfx) == curLevel)  ) 
         { 

tmp = prefix(ptr); 
                  store newPfx into the ptr; 

 if (length(newPfx) > curLevel) 
        priority(ptr) = 1; 
else  priority(ptr) = 0; 

                  newPfx = tmp; 
         } 
   else if (length(newPfx) == length(ptr)) 
        store newPfx into the ptr; 
        break; 

else //match an ordinary prefix 
    if (length(newPfx) == length(ptr)) 
         store newPfx into the ptr; 
         break; 

} 
if (nextBit(newPfx) == ‘0’)  

ptr = leftPtr(ptr); 
else ptr = rightPtr(ptr); 
curLevel++; 
if (ptr == NULL)  

create a ptr; 
store newPfx into the ptr; 
priority(ptr) =1; 

} while (ptr ! = NULL) 
 

Figure 4.  Update procedure in the proposed priority trie 

TABLE III.     PERFORMANCE OF THE PROPOSED PRIORITY MULTI-BIT TRIE 

Routing 
Table N Np Nextra D Dp Ta 

M 
(Kbyte)

MAE-West1 14,553 14,388 2,337 16 12 9.70 214.4 
Aads 20,204 19,124 3,208 16 12 10.05 297.2 

MAE-West2 29,584 23,016 6,273 16 13 10.54 455.2 
PORT 80 112,310 36,362 21,630 16 16 11.27 1.79M 

Grouptlcom 170,601 47,073 32,732 16 13 11.45 2.71M 
Telstra 227,223 75,929 41,850 16 16 12.51 3.85M 
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memory accesses, and the required memory size, is not much 
degraded as the growth of routing table sizes, and hence the 
proposed scheme is good in scalability toward large routing 
data. 

We have done performance comparison with existing 
binary search schemes, one with 112K entries and the other 
with 227K entries. Table IV shows the performance 
comparison in terms of the worst case number of memory 
accesses (Tmax), the average number of memory accesses (Ta), 
the required memory size (M), and the number of extra nodes 
required in the algorithms (Nextra). As shown in Table IV, the 
proposed priority multi-bit trie is the best in the worst-case 
number of memory accesses. The BSR algorithm and the 
proposed priority multi-bit trie is the best in the average 
number of memory accesses. In the required memory size, 
BSR and the proposed priority binary trie show the best 
performance. Since BSR algorithm requires the pre-
computation of best matching prefixes in each disjoint interval, 

it does not provide incremental update while the proposed 
algorithm provides incremental update as described in the 
previous section.  

V. CONCLUSION 
As an attempt to remove unnecessary nodes in the trie 

structure, this paper proposed a new trie-based algorithm for IP 
address lookup. The proposed algorithm constructs a priority 
trie, in which each empty node in the trie structure is replaced 
by a priority prefix which is the longest prefix belonged to the 
sub-trie rooted by the empty node. Therefore, empty nodes in 
the trie are completely removed. Search in the proposed 
priority trie finished either at a leaf or at a match to a priority 
prefix since it is guaranteed that the matched priority prefix is 
the longest prefix in the search path. Hence the performance of 
the proposed algorithm in terms of the memory requirement 
and search speed is significantly improved compared with the 
conventional trie structure.  
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