
An Efficient IP Address Lookup Algorithm Using a
Priority Trie

Hyesook Lim
Information Electronics Engineering

Ewha Womans University
Seoul, Korea

hlim@ewha.ac.kr

Ju Hyoung Mun
Information Electronics Engineering

Ewha Womans University
Seoul, Korea

Abstract—Fast IP address lookup in the Internet routers is
essential to achieve packet forwarding in wire-speed. The longest
prefix matching for the IP address lookup is more complex than
exact matching because of its dual dimensions, length and value.
By thoroughly studying the current proposals for the IP address
lookup problem, we find out that binary search could be a low-
cost solution while providing high performance. Most of the
existing binary search algorithms based on trie have simple data
structures which can be easily implemented, but they have empty
internal nodes. Binary search algorithms based on prefix values
do not have empty nodes, but they either construct unbalanced
trees or create extra nodes. In this paper, a new IP address
lookup algorithm using a priority trie is proposed. The proposed
algorithm is based on the trie structure, but empty internal nodes
are replaced by priority prefixes. The longest prefix matching in
the proposed algorithm is more efficiently performed since
search can be immediately finished when input is matched to a
priority prefix. The performance evaluation results show that the
proposed priority trie has very good performance in terms of the
memory requirement, the lookup speed, and the scalability.

Keywords-Internet protocol; Address lookup; Binary trie;
Priority trie

I. INTRODUCTION
The rapid growth of the Internet traffic requires for routers

to perform high-speed packet forwarding. As an essential
component to achieve fast packet forwarding, the Internet
protocol (IP) address lookup is one of the most challenging
tasks to the Internet routers since it should be performed in
wire-speed for each incoming packet under the circumstance
that packets’ arrival rates and the size of routing tables have
been dramatically increased [1]. The IP address lookup is to
determine the output port using the destination IP address of
incoming packets in order to forward the packets toward their
final destinations.

IP addresses have two levels of hierarchy: network part and
host part. The network part is called prefix. Class-less inter-
domain routing (CIDR) structure allows the arbitrary length of
prefixes and address aggregation at multiple levels. As a result,
the IP address lookup problem in routers requires searching the
forwarding table for the longest prefix that matches the

destination address of a given input packet in order to find the
most specific route. Determining the longest matching prefix
(LMP) or the best matching prefix (BMP) for the IP address
lookup now involves two dimensions: length and value [2].

High-performance routers facilitates hardware parallelism
using specialized memories called ternary content addressable
memory (TCAM), in which an address lookup is performed
with a single memory access. However, as a power-hungry
device, TCAM is a lot more expensive than ordinary memory
in implementation cost. A lot of algorithms and architectures
performing the longest prefix match using ordinary memories
have been proposed.

A set of metrics is used in evaluating the performance of
the IP address lookup algorithms. Search speed is the primary
metric and it is highly dependent on the number of memory
accesses for table lookups since memory access is the most
time consuming operation in the search process [3]. The size of
the required memory is also an important metric according to
the growth of the size of routing tables to several hundred
thousand entries. For routing tables which have dynamically
changed routes, providing incremental updates is also
important. Scalability is another important metric, in which
algorithms should be easily modified for accommodating large
routing tables.

In this paper, a new IP address lookup algorithm using a
priority trie is proposed. Most of the trie-based algorithms have
many empty internal nodes which cause excessive memory
space and memory accesses. Moreover, the trie-based
algorithms compare a given input with shorter prefixes first,
and hence search has to be continued until a leaf is visited even
if a match is found. The proposed algorithm removes empty
internal nodes replacing by the longest prefix among the
prefixes belonged to the sub-tree of each empty node as a root.
Hence the memory requirement is reduced. The replaced node
is called priority node. Search in the proposed algorithm is
immediately finished without searching the complete trie if a
given input matches a priority node, and hence search
performance is significantly improved.

This paper is organized as follows. In Section II, we briefly
summarize the related works for IP address lookup. Section III

This research was partially supported by the Ministry of Information and
Communication, Korea, under the HNRC-ITRC support program supervised
by the Institute of Information Technology Assessment.

©1-4244-0357-X/06/$20.00 2006 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2006 proceedings.

presents our proposed algorithm. In Section IV, extensive
simulation results including the comparison with the related
works are shown. Section V concludes the paper.

II. RELATED WORKS

A. Algorithms based on hashing
Hashing has been popularly used for layer 2 address lookup

which requires exact matching. Hashing converts a long length
string into a smaller length which can be used as a memory
pointer, and hence collision is the intrinsic problem of hashing.
Broder et al. proposed to use multiple hash functions in order
to reduce collisions [4]. For the IP address lookup, hashing is
applied into prefixes of the same length, and the longest prefix
among matched prefixes in each length is selected as the best
match [5]-[7]. Waldvogel et al. proposed to use binary search
on hash tables organized by prefix lengths [5]. Lim et al.
proposed to use multiple hash functions in reducing collisions
and perform parallel search for every hash tables in each length
[6]. Other interesting approach is to combine the hashing and
the binary search [7]. In their approach, hashing is primarily
applied into prefixes of the same length, and for prefixes
collided into the same entry, binary search is performed.

B. Binary search algorithms based on trie
A trie is the most intuitive data structure for the IP address

lookup [2][8]-[10]. The trie is a tree-based data structure which
applies linear search on length. Each prefix resides in a node of
the trie, of which the level and the path from the root node is
uniquely determined by the length and the value of the prefix,
respectively. Figure 1 shows the binary trie for an example set
of prefixes. In Figure 1, black nodes represent prefixes, and
white nodes represent unassigned internal nodes. At each node,
search in the binary trie proceeds to the left or right according
to the sequential inspection of address bits starting from the
most significant bit.

The binary trie is a natural way to represent prefixes, but it
is not balanced and the depth of the trie is usually W, where W
is the maximum prefix length. Moreover, because of
unassigned internal nodes included in the trie, memory space is
wasted. Another intrinsic problem of the trie is that shorter
prefixes are located in a higher level and hence they are
compared earlier than longer prefixes. Therefore, even if a
match is found, search has to be continued until a leaf is visited
in order to look for a longer match.

In order to reduce the depth of the trie, multi-bit trie
inspects more than one bit at a time [8], and path-compressed
trie collapses one-way branch nodes [2]. Level-compressed trie

applies multi-bit trie with path compression [9]. In order to
save memory by compression, Lulea algorithm proposed a
compact trie structure for fast lookup [10], but it requires a lot
of pre-processing and hence does not allow incremental
updates.

C. Binary search algorithms based on prefix value
Binary prefix tree (BPT) [11] algorithm attempts to perform

binary search on prefix values. In order to perform the binary
search on prefix values, prefixes should be sorted according to
their magnitude. The BPT scheme provides a set of new
definitions for the comparison of prefixes of different lengths
in sorting prefixes in the order of magnitude. For two prefixes
of different lengths, the first m bits are compared, where m is
the length of the shorter prefix. The prefix having the bigger
value is defined as a bigger prefix. If they are the same, then
the (m +1)th bit of the longer prefix is checked. If the (m +1) th
bit is 1, the longer prefix is bigger, and otherwise the shorter
prefix is bigger.

 However, the binary search can not be directly applied to
this sorted list because of prefix nesting relationship. Assuming
that an incoming packet which has the prefix A as a best
matching prefix is given, it is possible to exist prefixes which
have the prefix A as its sub-string. If such prefixes are
compared earlier than the prefix A with the input, the binary
search can be directed to the wrong half of the list which does
not include the prefix A. The BPT algorithm solves this issue
by restricting ancestor prefixes being compared earlier than
descendant prefixes. The BPT does not have empty internal
nodes, and hence it has the advantage in required memory size.
However, depending on the depth of the prefix hierarchy, tree
depth could become very large as will be shown in Section IV.

 As an attempt to reduce the depth of tree, the weighted
prefix tree (WPT) [12] considers the number of descendents in
selecting the root of each level. The constructed WBPT has a
shorter depth and is more balanced than BPT. Using the fact
that disjoint prefixes construct a perfectly balanced tree, the
multiple balanced prefix trees (MBPT) [13] constructs multiple
balanced trees only with disjoint prefixes. The disjoint prefix
tree (DPT) [14] constructs the BPT for leaf-pushed prefixes,
and hence it is a perfectly balanced tree for the extended set of
prefixes generated by the leaf-pushing. The binary search on
range (BSR) [15] treats each prefix as an interval which has a
start address and an end address. The start and the end
addresses are defined by padding zeros and ones to the
maximum length, respectively. Hence the length dimension is
completely removed. However, since the start and the end
addresses are stored into the routing table, the number of
elements could be the twice of the actual number of prefixes in
the worst case. For each disjoint interval, the BSR scheme has
to pre-compute and store the BMP, and the binary search is
performed on the list of intervals. Incremental update is not
possible because of the pre-computation of BMPs for each
interval.

III. PROPOSED ALGORITHMS
As mentioned earlier, not only the binary trie has many

empty internal nodes but also shorter prefixes are stored at
Figure 1. The binary trie for an example set of prefixes

©1-4244-0357-X/06/$20.00 2006 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2006 proceedings.

higher levels and hence they are compared earlier than longer
prefixes. Therefore, even if a match is found, search has to be
continued until a leaf is visited. If prefixes are reversely
assigned, in other words, if longer prefixes are associated with
higher level nodes and shorter prefixes are associated with
lower level nodes, search can be finished immediately when
there is a match. However, in order for a prefix to be associated
with a node in a lower level than its length, the prefix has to be
duplicated 2j-i times, where i is the length of the prefix and j is
the located level.

In this paper, we propose to use the empty internal nodes in
locating longer prefixes at higher levels. In other words, if we
associate an empty node with the longest prefix among the
prefixes belonged to a sub-tree rooted by the empty node,
empty nodes are completely removed, the depth of a trie would
be reduced, and search would be more efficient. The prefixes
associated with empty nodes are named priority prefixes. Since
we only associate empty nodes with longer prefixes and
prefixes are located in either the same level or the higher level
than its prefix length, there is no prefix duplication in our
algorithm.

Figure 2 shows the proposed priority-trie using the same
example set of prefixes as in Figure 1. The black nodes
represent the prefixes located in their own levels, and the nodes
with bold boundary represent the priority prefixes. In Figure 2,
since the prefix P4 is the longest prefix belonged to the binary
trie of the empty root, it is located into the root node. There are
two prefixes with the same length belonged to the sub-tree of
the empty node 0*. Here we assume to break the tie from the
left prefix, and hence the prefix P0 becomes the priority prefix.
The prefix P3 is the longest prefix among the prefixes belonged
to the sub-tree of the empty node 1*, and hence the prefix P3 is
located into 1*, and so on.

A. Building the proposed priority-trie
Building the proposed priority-trie is composed of

following four steps. In the first step, prefixes are listed in the
increasing order of their lengths. Since the optimum depth of
the binary trie is 2log (1) 1N + − for N prefixes, in the
second step, prefixes with the length less than or equal to L are
stored into the corresponding level of nodes in the binary trie,
where L = 2log (1) 1N + − . In the third step, starting from
the longest prefix in the list, follow the search path and store
the prefix into the first empty node met in the path or create a
leaf and mark the prefix as a priority prefix. Repeat this step
until every prefixes longer than L are located. In the final
refinement step, if the number of nodes is greater than N, this

means that empty nodes still exist. Starting from the bottom-
left prefixes to the bottom-right prefixes, remove the prefix,
follow the trie, and locate it into the first empty node met in the
path and mark the prefix as a priority prefix. Repeat this step
until the number of nodes is equal to N.

 Table I shows the routing table built by the proposed
algorithm. The first column is the memory address and it can
be arbitrary. The second column represents whether the stored
prefix is a priority prefix (1) or an ordinary prefix (0). Prefixes
and their lengths are stored in the third and the fourth column,
respectively, and two child pointers are shown in the following
columns. The last column is the output port corresponding to
the prefix, and we put the prefix name in this column for
simplicity. As shown, the number of routing entries in the
proposed algorithm is equal to N.

B. Search
The search procedure in the proposed priority trie is shown

in Figure 3. Same as the search in the binary trie, search
proceeds to the left or right according to the sequential
inspection of address bits starting from the most significant bit.
However, search in the proposed algorithm is finished either at
a match with a priority prefix or at a leaf while it is always
finished at a leaf in the binary trie.

C. Update
For the deletion of a prefix in the proposed priority trie, the

prefix is located and the first three fields of the located entry
are deleted. Since this node still contains the child pointers so

Figure 2. The proposed priority-trie

Search (input)
BMP = *;
ptr = index(root); //start at root
do {

if (input == prefix(ptr)) // input matches to a prefix
 {

BMP = prefix(ptr);
 if (priority(ptr) == ‘1’)

break; //matched prefix is a priority prefix
}
if (nextBit(input) == ‘0’)

ptr = leftPtr(ptr); // follow the left pointer
else ptr = rightPtr(ptr); //follow the right pointer;

} while (ptr ! = NULL)
return BMP;

Figure 3. Search procedure in the proposed priority-trie

TABLE I. ROUTING TABLE FOR THE PROPOSED PRIORITY TRIE

addr Priority
/ordinary prefix length leftPtr rightPtr Out

port
0 1 100110* 6 1 2 P4
1 1 00* 2 - 3 P0
2 1 10010* 5 4 5 P3
3 0 01* 2 - - P1
4 1 10011* 5 6 7 P5
5 0 11* 2 - 8 P8
6 1 1000* 4 - - P2
7 0 101* 3 - - P6
8 1 1110* 4 - 9 P7
9 0 1111* 4 - - P9

©1-4244-0357-X/06/$20.00 2006 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2006 proceedings.

that the search process continues to lower levels, we should
maintain the node. If we assume that the entire routing table is
rebuilt with appropriate regular intervals, the number of empty
nodes by the prefix deletion would not be a problem.

For the insertion of a new prefix in the proposed algorithm,
we have shown the update procedure in Figure 4. There are two
cases that multiple nodes are affected by an insertion. The first
case is when the new prefix matches a priority prefix and it is
longer than the priority prefix, and the second case is that the
ordinary node of the new prefix was taken by other priority
prefix. In these cases, the new prefix takes the place, and for
the priority prefix, in which its place is taken away, the same
procedure is repeated. According to the reported statistics [3],
the number of nested networks is less than 7, and hence the
number of nodes affected by a prefix insertion would be
statistically limited by 7. All other cases, either the new prefix

is stored at a leaf or the prefix in the routing table is replaced
by the new prefix.

IV. PERFORMANCE EVALUATION
Simulations are performed using C language for real

routing data from backbone routers [16]. Table II and Table III
show performance evaluation results of our proposed priority
binary trie and priority multi-bit (2-bit) trie, respectively, in
terms of the number of routing prefixes (N), the number of
priority prefixes (Np) among routing prefixes, the maximum
prefix length (D), the depth of our proposed priority trie (Dp),
the average number of memory accesses (Ta) for an address
lookup, and the memory requirement (M) for various sizes of
routing data. As shown in the number of priority prefixes in
Table II, more than 90 % of the prefixes for the first three
routing tables are stored by priorities, and this means that the
original binary trie has a lot of empty nodes. The more priority
nodes the better search performance is expected in our
proposed algorithm. The average number of memory accesses
is between 16 and 23, and it is not much degraded as the
growth of the routing table size.

In Table III, since 2 bits are considered at the same time in
the 2-bit trie, extra nodes generated for fitting into the stride
size are shown in Nextra. The performance of the proposed
algorithm in terms of the trie depth, the average number of

TABLE II. PERFORMANCE OF THE PROPOSED PRIORITY BINARY TRIE

Routing
Table N Np D Dp Ta M

(Kbyte)
MAE-West1 14,553 14,199 32 24 16.66 127.9

Aads 20,204 19,568 32 24 17.43 177.6
MAE-West2 29,584 26,671 32 24 18.22 260.0

PORT 80 112,310 50,091 32 28 20.35 987.1
Grouptlcom 170,601 70,525 32 24 20.76 1.46M

Telstra 227,223 119,149 32 32 22.86 1.95M

TABLE IV. COMPARISON WITH OTHER ALGORITHMS

Port80 (112,310) Telstra (227,223)
Algorithm

incremental
update Tmax

 Ta
 M

(MByte)
Nextra

 Tmax Ta
 M

 (MByte)
Nextra

Binary trie[2] yes 32 22.15 1.29 112,907 32 24.64 2.59 225,682

BPT[11] no 44 25.82 1.25 0 66 30.80 2.60 0
WPT[12] no 36 20.44 1.25 0 39 23.96 2.60 0
BSR[15] no 18 11.42 0.96 72,063 19 11.07 1.76 124,795

Proposed binary yes 28 20.35 0.99 0 32 22.86 1.95 0
Proposed multi-bit yes 16 11.27 1.79 21,630 16 12.51 3.85 41,850

Update (inputPrefix)
curLevel = 0;
newPfx = inputPrefix;
ptr = index(root); //start at the root
do {

if (newPfx == prefix(ptr)) // a match
{

if (priority(ptr) == ‘1’) //match a priority prefix
if ((length(newPfx) > length(ptr))

or (length(newPfx) == curLevel))
 {

tmp = prefix(ptr);
 store newPfx into the ptr;

 if (length(newPfx) > curLevel)
 priority(ptr) = 1;
else priority(ptr) = 0;

 newPfx = tmp;
 }
 else if (length(newPfx) == length(ptr))
 store newPfx into the ptr;
 break;

else //match an ordinary prefix
 if (length(newPfx) == length(ptr))
 store newPfx into the ptr;
 break;

}
if (nextBit(newPfx) == ‘0’)

ptr = leftPtr(ptr);
else ptr = rightPtr(ptr);
curLevel++;
if (ptr == NULL)

create a ptr;
store newPfx into the ptr;
priority(ptr) =1;

} while (ptr ! = NULL)

Figure 4. Update procedure in the proposed priority trie

TABLE III. PERFORMANCE OF THE PROPOSED PRIORITY MULTI-BIT TRIE

Routing
Table N Np Nextra D Dp Ta

M
(Kbyte)

MAE-West1 14,553 14,388 2,337 16 12 9.70 214.4
Aads 20,204 19,124 3,208 16 12 10.05 297.2

MAE-West2 29,584 23,016 6,273 16 13 10.54 455.2
PORT 80 112,310 36,362 21,630 16 16 11.27 1.79M

Grouptlcom 170,601 47,073 32,732 16 13 11.45 2.71M
Telstra 227,223 75,929 41,850 16 16 12.51 3.85M

©1-4244-0357-X/06/$20.00 2006 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2006 proceedings.

memory accesses, and the required memory size, is not much
degraded as the growth of routing table sizes, and hence the
proposed scheme is good in scalability toward large routing
data.

We have done performance comparison with existing
binary search schemes, one with 112K entries and the other
with 227K entries. Table IV shows the performance
comparison in terms of the worst case number of memory
accesses (Tmax), the average number of memory accesses (Ta),
the required memory size (M), and the number of extra nodes
required in the algorithms (Nextra). As shown in Table IV, the
proposed priority multi-bit trie is the best in the worst-case
number of memory accesses. The BSR algorithm and the
proposed priority multi-bit trie is the best in the average
number of memory accesses. In the required memory size,
BSR and the proposed priority binary trie show the best
performance. Since BSR algorithm requires the pre-
computation of best matching prefixes in each disjoint interval,

it does not provide incremental update while the proposed
algorithm provides incremental update as described in the
previous section.

V. CONCLUSION
As an attempt to remove unnecessary nodes in the trie

structure, this paper proposed a new trie-based algorithm for IP
address lookup. The proposed algorithm constructs a priority
trie, in which each empty node in the trie structure is replaced
by a priority prefix which is the longest prefix belonged to the
sub-trie rooted by the empty node. Therefore, empty nodes in
the trie are completely removed. Search in the proposed
priority trie finished either at a leaf or at a match to a priority
prefix since it is guaranteed that the matched priority prefix is
the longest prefix in the search path. Hence the performance of
the proposed algorithm in terms of the memory requirement
and search speed is significantly improved compared with the
conventional trie structure.

REFERENCES
[1] H. Jonathan Chao, “Next generation routers,” Proceedings of the IEEE,

vol. 90, no. 9, pp. 1518-1558, Sep. 2002
[2] M.A. Ruiz-Sanchex, E.W. Biersack, and W. Dabbous, “Survey and

taxonomy of IP address lookup algorithms,” IEEE Network, pp.8-23,
March/April 2001

[3] George Varghese, “Network algorithmics: An interdiciplinary approach
to designing fast networked devices,” Morgan Kaufmann Publishers,
Elsevier Inc, 2005

[4] A. Broder and M. Mitzenmacher, “Using multiple hash functions to
improve IP lookups”, in Proc. IEEE INFOCOM, 2001, pp. 1454-1463

[5] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner, “Scalable high
speed IP routing lookups,” in Proc. ACM SIGCOMM Conf., Cannes,
France, 1997, pp. 25–35

[6] Hyesook Lim and Yeojin Jung, "A parallel multiple hashing
architecture for IP address lookup," in Proc. IEEE HPSR2004, Apr.
2004, pp.91-98

[7] Hyesook Lim, Ji-Hyun Seo, and Yeo-Jin Jung, "High speed IP address
lookup architecture using hashing," IEEE Communications Letters,
vol.7, no.10, pp.502-504, Oct. 2003

[8] Sartaj Sahni and Kun Suk Kim, “Efficient construction of multibit tries
for IP address lookup,” IEEE/ACM Transactions on Networking,
vol.11, no.4, pp.650-662, Aug. 2003

[9] Stefan Nilsson and Gunnar Karlsson, “IP-address lookup using LC-
tries,” IEEE Journal of Selected Areas in communications, vol.17, no.6,
pp.1083-1092, June 1999

[10] M. Degermark, A. Brodnik, S. Carlsson, and S. Pink, “Small forwarding
tables for fast routing lookups,” in Proc. ACM SIGCOMM, 1997, pp.3-
14

[11] N. Yazdani and P. S. Min, “Fast and scalable schemes for the IP address
lookup problem,” in Proc. IEEE HPSR2000, pp 83-92

[12] Changhoon Yim, Bomi Lee, and Hyesook Lim, "Efficient binary search
for IP address lookup," IEEE Communications Letters, vol.9, no.7,
pp.652-654, Jul. 2005

[13] Hyesook Lim, Bomi Lee, and Won-Jung Kim, “Binary searches on
multiple small trees for IP address lookup,” IEEE Communications
Letters, vol.9, no. 1, pp.75-77, Jan. 2005

[14] Hyesook Lim, Wonjung Kim, and Bomi Lee, “Binary search in a
balanced tree for IP address lookup,” in Proc. IEEE HPSR2005, May
2005, pp. 490-494

[15] B. Lampson, V. Srinivasan, and G. Varghese, “IP lookups using
multiway and multicolumn search,” IEEE/ACM Transactions on
Networking, vol.7, no.3, pp 324-334, Jun. 1999

[16] http://www.potaroo.net

©1-4244-0357-X/06/$20.00 2006 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2006 proceedings.

