
CLUE: achieving fast update over compressed table for parallel lookup with
reduced dynamic redundancy

Tong Yang, Ruian Duan, Jianyuan Lu, Shenjiang Zhang, Huichen Dai and Bin Liu
Dept. of Computer Science and Technology, Tsinghua University, Beijing China

Abstract—The size of routing tables in backbone routers
continues to keep a rapid growth, and an effective solution is
routing table compression. Meanwhile, there is an increasingly
urgent demand for fast routing update due to the increase of
mobile communications and new emerged Internet
functionalities. Furthermore, the link transmission speed of
backbone routers has increased up to 100Gbps commercially
and towards 400Gbps Ethernet for Lab experiments, resulting
in a raring need of ultra-fast routing lookup. Therefore, to
achieve high performance, backbone routers must gracefully
handle the three problems: routing table Compression, fast
routing Lookup, and fast incremental UpdatE (CLUE).
Previous works often only concentrate on one of the three
dimensions, failing to satisfy the future high speed requirement.

To address these issues, we propose a complete set of
solutions—CLUE, by improving previous works of our group
and adding a novel incremental update mechanism. CLUE
consists of three parts: a routing table compression algorithm,
an improved parallel lookup mechanism, and a new fast
incremental update mechanism. The routing table compression
algorithm is based on our previous work: ONRTC algorithm
[24], which is a preparation for fast TCAM parallel lookup and
fast update of TCAM and redundancy. The second part is the
improvement of the logical Caching scheme for dynamic Load-
balancing Parallel Lookup (CLPL) mechanism [1]. And the
last one is the conjunction of the trie, TCAM and dynamic
redundancy update algorithms. Mathematical proof shows that
speedup factor is proportional to hit ratio of redundancy in the
worst case, which is confirmed by our extensive experiments.
Large-scale experimental results show that, compared with
CLPL, CLUE only needs about 71% TCAM entries, 4.29%
update time and 3/4 dynamic redundancy for keeping the same
high throughput. In addition, CLUE outperforms CLPL in the
following two aspects: the frequent interactions between
control plane and data plane caused by redundancy update are
avoided, and the priority encoder of TCAM is no longer
needed.

I. INTRODUCTION

Internet has maintained a rapid growth for many years,
which brings three major problems: i) routing table
compression -- due to an annual increase of about 15% of the
routing table size, ISPs struggle to suppress the table growth,
in order to further postpone the requirement for upgrading
the infrastructure; ii) routing lookup -- to handle the current
gigabit-per-second traffic, the backbone routers must be able
to forward hundreds of millions of packets per second, thus
bringing huge pressure to routing lookup; iii) fast update --
facing more and more frequent routing updates, routing table
must be incrementally updated as fast as possible. These
three problems of Compression, Lookup, and UpdatE are

abbreviated to CLUE in this paper, and CLUE also stands for
a set of solutions for the three problems.

With regard to i), the typical solutions are [3-6].
Although they can achieve high compression ratio, they can’t
achieve fast updates, especially when TCAM is used.
Therefore, we proposed the ONRTC algorithm in [24],
which supports parallel lookup and fast update.

With regard to ii), TCAM-based solutions are usually
adopted in backbone routers. Ternary Content Addressable
Memories (TCAMs) [7] are fully associative memories that
allow a “don’t care” state to be stored in each memory cell in
addition to 0s and 1s. One TCAM access can finish a routing
lookup operation. However, the TCAM-based solutions are
of power consumption and expensive cost. In order to
achieve power efficiency, F. Zane et al. proposed a bit-
selection architecture [7], which hashes a subset of the
destination address bits to a TCAM partition, thus making
TCAM-based routing tables power efficient. This algorithm
is referred to as ID-bit partition algorithm in this paper. It
only concentrates on reducing power consumption, but
cannot improve the lookup speed.

Today, Ethernet link with 100Gbps has been put into
service. Suppose that each packet is at its minimum size of
64 bytes, router should complete a packet lookup every
5.12ns, while common TCAM needs 15~30ns for one
lookup. Therefore, parallel lookup with multi-TCAM is
destined if TCAM solution is adopted. Toward this target,
previous works of our group have proposed two mechanisms:
Kai’s algorithm [8] and Dong’s algorithm [1].

In [8], Kai Zheng et al. proposed a TCAM-based parallel
architecture, which employs an intelligent partitioning
algorithm, takes advantage of the inherent characteristics of
Internet traffic, and increases packet forwarding rate multiple
times over traditional TCAMs. Power consumption is also
reduced by using ID-bit partition algorithm. In order to
achieve load balance, Kai Zheng added 25% redundancy to
the system based on the long period statistical results. This
algorithm is referred to as Statistical Load-balancing Parallel
Lookup (SLPL) in this paper.

However, according to Dong Lin’s data mining results
[1], the average overall bandwidth utilization was very low
but the Internet traffic could be very bursty. Hence, during
bursty periods, mapping routings table partitions into TCAM
chips based on long-term traffic distribution cannot balance
the workload of individual TCAM chip effectively.
Therefore, the redundancy should be dynamic, and Dong Lin
et al. proposed a power-efficient parallel TCAM-based
lookup engine with a distributed logical Caching scheme for
dynamic Load-balancing Parallel Lookup (CLPL), which is
referred to as CLPL in this paper. By logical caches, the
traffic can be allocated to each TCAM relatively evenly.

With regard to iii), current solutions mostly either only
focuses on i), or only on ii), but seldom emphasize update,
maybe because the update was not so frequent before.
However, according to our data mining results, the update
problem is becoming more and more serious: the updates
messages of the backbone routers have reached 35K per
second in the traffic peak, which makes the traditional
algorithm not applicable.

The system performance will be optimized, only if the
three problems are solved simultaneously. In order to reach
this goal, besides the previous works of our group, there are
still several points which need to be improved and finished.

1) The routing table should be compressed to save
hardware cost.

2) The size of redundancy should be further reduced.
3) The frequent interactions between data plane and

control plane should be reduced, or even avoided.
4) The update algorithm should be studied profoundly.
Towards the above four targets, we proposed a complete

set of solutions -- CLUE. CLUE consists of a routing table
compression algorithm -- ONRTC, an improved parallel
lookup mechanism based on CLPL, and a new incremental
update mechanism, which involves the trie, TCAM and
redundancy update. The design philosophy of CLUE is that
we should not view the three problems isolatedly and
statically, so as to avoid one-sidedness. In other words, only
an organic combination of the three aspects can make the
forwarding plane of routers work well, thus CLUE emerges
as required.

The first part of CLUE, i.e., the previously proposed
ONRTC algorithm [24], compresses the routing table size to
70% of its original size. More importantly, it also benefits
the second and the third operation greatly, for prefix overlap
is eliminated.

The second part of CLUE is an improvement of CLPL.
After compressed by ONRTC, the routing table is not
overlapped any more, and thus bringing a lot of advantages
to TCAM lookup: 1) the domino effect in the TCAM update
process will never happen again; 2) the priority encoder is no
longer needed -- this not only reduces hardware cost, but also
reduce delay of TCAM lookup time; 3) TCAM partitions can
be of the same size without redundancy. 4) The compression
has saved a part of TCAM’s hardware resource. In addition,
we make the following improvements: 1) Dynamic
Redundancy (DRed) i doesn’t cache TCAM i’s prefixes, for
TCAM i and DRed i will never be both looked-up
simultaneously, and thus 1/4 TCAM space can be saved
when using four TCAMs. 2) Because of Longest Prefix
Match (LPM), when DRed is missed, the destination IP
address should be sent to control panel to compute the prefix
which should be stored in DRed by using RRC-ME
algorithm [9]. Because overlap is eliminated by ONRTC,
RRC-ME algorithm is no longer needed in CLUE. We just
need to put the prefix which hits the TCAM into DRed.
Therefore, the interactions between control panel and date
panel caused by DRed update can be totally avoided.

The third part of the CLUE is a brand new whole update
algorithm, including trie update, TCAM update, and DRed
update. In order to evaluate the update performance

accurately and objectively, TTF (Time to Fresh) is defined
here. TTF means the average computing time to update a
message, which includes TTF1 (TTF-trie): update time of the
trie, TTF2 (TTF-TCAM): update time of TCAM, and TTF3
(TTF-Dred): update time of redundancy. TTF indicates a
router’s sensitivity to the changes of the network state. The
smaller the TTF is, the more sensitive the router will be.

To summarize, the primary contributions of this paper lie
in the following aspects:

• We propose an integrated problem – CLUE and a
solution set with the same name. CLUE involves routing
table compression, parallel lookup, and fast update.

• We present a complete mathematical proof to bound
the speedup factor, and verify the mathematical conclusion
by experimental results.

The remaining parts of the paper are organized as follows.
Section II surveys the related work. An improved mechanism
based on CLPL is elaborated in Section III. Section IV
illustrates the fast incremental update algorithm of the whole
system. And extensive evaluation on CLUE over a large-
sized real trace is conducted in Section V. Finally we
conclude this paper in Section VI.

II. RELATED WORK

As mentioned above, three major problems are involved:
routing table compression, fast lookup, and fast incremental
update.

A. Compression Algorithm

With respect to compression algorithm, many researches
have been conducted to compress routing table. ORTC [3]
was proven to be the theoretical optimal compression
algorithm, and it remains the best algorithm in terms of its
compression ratio since 1999. However, it has a high
computational complexity and poor update performance,
which makes it ill-suited to handle the increasing demand for
fast incremental updates. In [4], Xin Zhao et al. presented 4-
level algorithm at the cost of changing the forwarding
behavior of routers. What’s worse, the 4-level algorithm
could potentially trigger the ‘routing table fluctuation’ and
‘garbage roaming’ problems, which are illustrated in detail in
[24]. In [5], the binary trie was changed into the trigeminal
trie, which corresponds to the three-state properties of
TCAM. Therefore, a high ratio might be achieved. However,
the update messages probably introduce domino effect. To
improve compression ratio, Qing Li et al. adopted
suboptimal routing [6]. Nevertheless, it could potentially
introduce serious traffic congestion.

All the algorithms mentioned above only focus on
routing table compression. If the compressed routing tables
are not stored in TCAM, the advantages of compression will
not be so evident. When the compressed routing tables are
stored in TCAM, there is still a big obstacle of TCAM
update -- prefix overlap, due to the introduction of CIDR.
Prefix overlap refers to some prefixes are a part of others.
This brings many difficulties for routing lookup:

1) Layout in TCAM: Prefixes must be ordered by their
length, and then stored in TCAM. Meanwhile, a priority
encoder is indispensible.

2) Update Handling: When updates occur, many prefixes
will probably move, which is called domino effect in this
paper. Although many algorithms manage to resist domino
effect, redundancy must be introduced. Redundancy means
larger TCAM, more hardware cost, and more power
consumption. Nevertheless, domino effect still exists.

3) Power Consumption: one major shortcoming of
TCAM is its high power consumption. A very effective
solution is TCAM partition. There are mainly two partition
algorithms: ID-bit partition [6, 7] and range partition [9].
However, the algorithm to determine the partitions was not
presented in [9]. So Lin Dong et al. proposed sub-tree
partition [8] to implement range partition. ID-bit partition
algorithm cannot split the table evenly. Sub-tree partition can
work better, but it will introduce redundancy.

If overlap is eliminated, those problems of TCAM-based
scheme can be handled perfectly: 1) prefixes can be stored in
TCAM randomly; 2) the priority encoder is no longer needed.
3) domino effect will never happen; 4) TCAM partition can
be strictly evenly, without redundancy.

There are several approaches to reduce overlap, such as
[10] and [11]. In [10], the routing table is divided into two
parts: the overlapping part and the non-overlapping part.
This approach can only reduce overlap. As far as we know,
only leaf-pushing proposed in [11] algorithm eliminates
overlap totally. Unfortunately, leaf-pushing causes routing
table expand too much.

Therefore, we have proposed Optimal Non-overlap
Routing Table Constructor (ONRTC) algorithm [24]. As
shown in Figure 1, any trie can be compressed fast according
to these six models, which cover all election situations.
Although the models seem to be complicated, the whole
algorithm requires only one post-order traversal, which is of
high efficiency. The details of the six models are left in [24].

(a) Model1 (b) Model 2 (c) Model 3

(d) Model 4 (e) Model 5 (f) Model 6

Figure 1. Atomic equivalent models of ONRTC.

B. Routing Lookup Algorithm

With respect to routing lookup, without any load
balancing mechanisms, eight or more TCAM chips were
employed for parallel lookup operations in [12]. But only a
speedup factor of five was achieved if the lookup requests
were not evenly distributed. In pursuit of an ultra-high
lookup throughput, Zheng Kai et al. proposed a load
balancing mechanism [8] based on some ‘pre-selected’
redundancy. Kai exploits the assumption that the lookup
traffic distribution among IP prefixes can be derived from
the traffic traces. Then a greedy algorithm with 25% more
TCAM entries is proposed to optimize the distribution of
these groups among four TCAMs. However, in the worst
case, when the traffic is temporarily or permanently biased to

a limited number of individual route prefixes, the average
throughput may decrease.

Based on the data collected from [13], Lin Dong et al.
observed that the average overall bandwidth utilization was
very low but the Internet traffic could be very bursty. In
order to handle the worst case, CLPL uses logical caches
(which actually mean Dynamic Redundancies (DRed)) in
place of the static redundancy to achieve dynamic load
balance.

C. Incremental Update Mechanism

With respect to incremental update, there are three
aspects: 1) trie update; 2) TCAM update; 3) DRed update, if
DRed is used.

As for trie update, because SLPL and CLPL adopt no
compression algorithm, thus their trie update is fastest; while
ONRTC algorithm is adopted in this paper, and the detailed
incremental update algorithm is elaborated in [24].

As for TCAM update, one big obstacle is domino effect,
and many researchers strive to reduce it.

In [14], the routing table is split into partitions according
to the next hop. Each partition holds a collection of all the
prefixes which own the same next hop, thus there is no need
to keep the prefixes sorted in one partition. Therefore,
domino effect can be reduced. However, one more prefixes
still be matched, thus the priority is also needed. In addition,
it cannot achieve power efficiency.

In [15], all prefixes are split and allocated into different
single-match TCAMs based on the ancestor-descendant
relationship among them. It presents an algorithm to
guarantee that each single-match TCAM generates at most
one match for a given destination IP address. However, when
a new prefix is inserted, each single-match TCAM may be
required to move some of its existing prefixes to another
TCAM in order to maintain a disjoint set. What’s worse,
power efficiency cannot be achieved.

As for DRed update, CLPL adopts LRU policy. But with
regard to routing update, SLPL and CLPL didn’t mention it.
Therefore, in [16], Bin Zhang et al. changed CLPL from the
following two aspects:

1) A TCAM-chip is used as a DRed in place of CLPL’s
four small logical caches. It is evident that this change
degrades the whole system’s performance. This can be
confirmed again by his experimental results in Figure 8 in
[16]. The experiments use 12 TCAM chips, and half of the
experimental results show that the speedup factor is less than
11, while 11 is the result of CLPL’s worst case.

2) Bin Zhang et al. argued that SLPL and CLPL
neglected an important factor—the update time. Thus Bin
Zhang et al. put the overlapping part of prefixes on the top of
the TCAM and at the bottom of the next TCAM, while put
the non-overlapping part in the middle of the TCAM. This
approach can reduce the domino effect to a certain extent. In
contrast, in this paper we eliminate domino effect totally, so
as to minimize the negative effect which updates bring.

Therefore, we propose CLUE to handle these problems.
As far as we know, this is the first effort on a full-
dimensional system optimization for the three major routing
table issues. Only focusing on one of them will encounter

short-board effect. Therefore, we combine the solutions
organically, and propose a complete set of solutions named
CLUE to handle the three major problems simultaneously, so
as to optimize the performance of routing forwarding.

III. PARALLEL ROUTING LOOKUP MECHANISM

A. Partition Algorithm

In order to achieve parallel lookup, the prefixes should be
split into partitions firstly. Lin Dong’s sub-tree partition [1]
algorithm outperforms ID-bit partition algorithm.
Unfortunately, it will introduce redundancy.

Because prefix overlap is eliminated by ONRTC,
partition algorithm becomes very easy, and redundancy is no
longer needed. Our new partition algorithm consists of two
steps:

Step 1: compute the partition size. Suppose the size of
routing table is M and the partition count is n, then the size
of each partition is M/n.

Step 2: traverse the trie by inorder, then put every M/n
prefixes to each bucket.

It can be concluded that our new partition algorithm is
much easier and faster than ID-bit partition algorithm and
sub-tree partition algorithm, so as to ensure high memory
utilization. Subsequent experimental results also prove this.

B. Parrallel Lookup Mechanism

The detailed implementation architecture of the parallel
lookup engine is presented in Figure 2, which is an improved
architecture base on CLPL mechanism. The process of our
mechanism is shown below (each step is marked by the
number in Figure 2):

Step I, when an IP packet arrives, the IP address is sent to
the Indexing Logic.

Step II, the Indexing Logic returns a partition number
which tells the ‘home-TCAM’ containing the matching
prefix.

Step III, a tag (the sequence number) is attached to the IP
address, because this mechanism may cause disorder.

Step IV, the IP address with Tag and partition number is
delivered into the Adaptive Load Balance Logic.

Step V, this is the most important step of this mechanism
-- Dynamic Redundancy for Load Balancing. To be specific,
each TCAM is split into buckets, and one bucket is used as
dynamic redundancy (DRed), as shown in Figure 2. The
work mechanism of Dynamic Redundancy for Load
Balancing is as follows:

a) If the queue of its home TCAM is not full, the
incoming IP address will be looked-up in its home TCAM,
then the lookup will be finished smoothly; meantime, the
other dynamic redundancies will be updated;

b) If the queue of its home TCAM is full, then the
incoming IP address will be sent to the idlest queue. One
important point is worth mentioning: this kind of IP address
will be only looked-up in the related DRed, NOT the home
TCAM. Therefore, no IP address will be looked-up in both
home TCAM and the corresponding DRed. Base on this
sharp observation, DRed i of CLUE doesn’t store TCAM i’s
prefix. By this way, CLUE needs smaller redundancy, but
the same hit rate compared to CLPL.

c) If incoming IP address misses DRed, it will be sent
back and a) happens again.

Figure 2. Improved parallel lookup mechanism1

C. Novel Dynamic Redundancy Mechanism

As mentioned above, no IP address will be looked-up in
both home TCAM and the corresponding dynamic
redundancy (DRed). As a result, this is NOT really a cache,

and we use the word ‘DRed’ in place of CLPL’s logical
cache, but the DRed is updated by cache mechanisms.

Generally speaking, cache mechanisms can be divided
into two categories: caching destination addresses (IPs) [17-
19] and caching prefixes [20]. Many papers [17-20] have

1This parallel mechanism is an improvement of CLPL, which is
originally shown in Figure 9 in [1].

6

demonstrated that caching prefixes is more efficient, and this
is also in accord with our experimental results. Therefore, we
adopt caching prefixes, as CLPL did.

However, one big obstacle of caching prefix is overlap.
Because of LPM, if an inner node is matched, the
corresponding prefix cannot be sent to DRed.

For example, as shown in Figure 3, a prefix = 100000 is
looked-up in the home TCAM, and the LPM result returns p
(p=1*). However, p cannot be sent to DRed, because its child
q owns a different next hop. It is obvious that p’=100*
should be sent to DRed. This approach is called RRC-ME
algorithm [20], which is adopted in CLPL.

Figure 3. RRC-ME algorithm

For RRC-ME algorithm, one important issue is worth
being mentioned here. Although RRC-ME algorithm is
simple, its update algorithm is not an easy task. The update
algorithm mentioned here means that when the routing table
updates, the DRed must updates as well. This process must
visit SRAM several times, which is an additional overhead.

In addition, CLPL adopts RRC-ME algorithm, which
causes frequent interactions between data plane and control
plane, while CLUE doesn’t, and the details are as follows.

Figure 4. The DRed update process of CLPL’s mechanism

Figure 5. The DRed update process of CLUE’s mechanism

The DRed update process of CLPL is shown in Figure 4.
If an incoming IP is looked-up in TCAM1, then the LPM
prefix is 1*. Prefix 1* must be sent to control panel, which
executes RRC-ME algorithm by traversing the trie tree
stored in SRAM, and returns 100*. Then 100* is sent to data
panel, and is inserted into the four logical caches. It can be
noted that the DRed update process must execute RRC-ME
algorithm, and frequent interactions happen, disturbing
routing lookup a lot.

As aforementioned, DRed i and TCAM i will never be
looked-up simultaneously. So CLUE reduces CLPL’s DRed
size by the rule that DRed i doesn’t cache TCAM i’s prefixes,
and hit rate doesn’t decline. With regard to four TCAM chips,
the DRed size of CLUE is reduced into 3/4 of that of CLPL.

Because overlap is eliminated, RRC-ME algorithm is no
longer needed. Our new DRed process is shown in Figure 5.
If an incoming IP address is looked-up in TCAM1, the result
of LPM is 100*, then 100* is sent to data panel, and is
inserted into the other three DReds. As a result, control panel
will not be involved in the process of DRed update process.
In this way, the update process of DRed is faster and more
efficient.

To sum up, our new DRed Mechanism can achieve
smaller DRed size and avoid frequent interactions between
data panel and control panel.

D. Lower Bound of the System Performance

With regard to the lower bound of the system
performance, Dong Lin et al. has presented a formal
mathematical proof, which is flawed. Therefore, a complete
formal mathematical proof is given here, and the proof
conclusion is in accord with the corresponding experimental
results.

Figure 6. Parallel lookup in the worst case

Our deduction is under the following two premises:
1) The update cost is ignored.
2) The TCAM1 is always working.
The two premises are practically feasible. Regarding

premise 1), Dong Lin et al. show that when the cache size is
set to 1024 and only one cache-missed element is updated
within a 5000 clock cycles, the system can still easily
achieve 100% throughput [1]. In addition, each routing
update only causes one shift in TCAM, that is, O(1) time
complexity by CLUE. Therefore, the time cost of routing
update is negligible. Premise 2) holds true via a policy that
keeps the queue of TCAM1 never empty.

7

In the worst case of this parallel system, all the traffic is
delivered to a single TCAM, which is TCAM1 in Figure 6. It
suggests that TCAM2~TCAMN-1 is idle, only Dred2~ DredN-1
are still working. The definitions of the symbols are
described below:

N means the number of TCAM chips used in this system;
R means the maximum input traffic;
E means the processing ability of each TCAM;
u means the percentage of TCAM1’s processing ability

used to handle the traffic which goes directly to TCAM1;
1-u means the percentage of processing ability used to

handle packets missed in Dred;
h means the hit ratio of the Dred;
t means the speedup factor of this system.
Firstly, it is easy to get each symbol’s range. 0 10 12

Secondly, when all TCAMs work at their best, the system
can handle the maximum workload R. R tEuE N 1 E R t N u 1 1 t N 1 2

Thirdly, TCAM1 preserves 1-u processing ability to
handle Dred-missed traffic. R tER uE 1 h 1 u E h 1 11 h 1 11 2 1 3 h 21 4

According to (1) and (3), we get that t N 1 h 1 5
Then t N 1
As long as h 21

According to [17-20] and our experimental tests, the hit
ratio of (N-2)/(N-1) can be easily achieved.

According to (5), it can be concluded that in the worst
case h t

It suggests that in real traffic, t N 1 h 1 always
holds true. This conclusion is in consistent with subsequent
experimental results (see Figure 17).

IV. THE NEW INCREMENTAL UPDATE MECHANISM

When an update message arrives, the routing table should
be updated as fast as possible. Specifically, the whole update
process is divided into three steps (see Figure 7): 1) trie
update; 2) TCAM update; 3) DRed update. When the three
steps are all finished, the update message takes into effect.
Then how to evaluate the performance of incremental update?
Time to Fresh (TTF) is defined in this paper, including TTF1
(TTF-trie), TTF2 (TTF-TCAM), and TTF3 (TTF-DRed).

The update involved in TCAM will interrupt routing
lookup, resulting in decrease of lookup rate. As a result,
TTF2 and TTF3 become more important than TTF1.

Figure 7. The whole incremental update process of CLUE.

A. Trie Update

The performance of trie update is evaluated by TTF1
(TTF-trie), which means the average computing time of
updating the trie. If no compression algorithm is adopted,
TTF1 is minimal, and is regarded as ground-truth.

Because CLPL mechanism adopted no compression
algorithm, thus its TTF1 is minimal, and TTF1-CLPL is
defined to represent its TTF-trie. To be different, we adopt
previously proposed ONRTC algorithm to compress the trie,
and the update time is represented by TTF1-CLUE. The
process of incremental update always keeps the trie non-
overlap. Experimental results show that TTF1-CLUE is a
little bit longer than TTF1-CLPL.

B. TCAM Update

Generally speaking, in order to reduce domino effect, the
common method is to keep some redundancy at the end of
TCAM. A naive solution [21] is shown in Figure 8(a). When
a prefix is inserted, it will move all the following prefixes
one by one, thus has a time complexity O(n) in the worst
case, which is clearly undesirable.

32-bit prefixes

31-bit prefixes

30-bit prefixes

9-bit prefixes

8-bit prefixes

Empty space
(a) a naive solution (b) a classical solution

Figure 8. Two approaches to reduce domino effect

A sophisticated solution [21] is based on the observation
that two prefixes with the same length can be placed
interchangeably. This suggests that the domino effect can be
reduced. As shown in Figure 8 (b), there is only a partial
ordering constraint among all prefixes. This approach
enables an empty memory location to be found in at most 32
prefix shifts. This is a classical method without extra
overhead, while others need additional cost. Thus we assume
it is adopted in CLPL, and is selected to be compared with

8

CLUE. Experimental results show that this solution needs
14.994 shifts in average.

The previous work [1, 8] of our group didn’t emphasize
this too much. After overlap is eliminated, the updating
method of TCAM becomes clear and simple: when inserting
a prefix, just write it to the end of TCAM; when deleting a
prefix, just cut the last prefix to replace it. Therefore, CLUE
needs one shift at most to handle an update message.

The performance of TCAM update is evaluated by TTF2
(TTF-TCAM), which indicates the update time of TCAM.
Whatever partition algorithms are adopted, TCAM update
must wait till the trie update is finished. The current partition
algorithms probably need to change more than one prefix
when one update message arrives.

It is obvious that our new TCAM update mechanism is
much more efficient than all the traditional TCAM update
mechanisms. This conclusion is consistent with the
subsequent experimental results.

C. DRed Update

After the update of TCAM, in order to guarantee
synchronization and correctness, the DRed must be updated,
too. As mentioned above, CLPL adopts RRC-ME algorithm
and its update algorithm.

When inserting or deleting a prefix in home TCAM,
RRC-ME algorithm must look up the trie and find all the
prefixes may be changed by this update. During this process,
SRAM must be visited several times, which is a waste of
time.

In contrast, when inserting a prefix in home TCAM,
CLUE’s DRed needs no change; when deleting a prefix,
CLUE just lookup it in the DRed. If it exists, then just delete
it; otherwise, do nothing.

It is clear that CLUE is much more efficient than CLPL
in DRed update. This conclusion is also in accord with the
subsequent experimental results.

TTF is the sum of TTF1, TTF2, and TTF3. The whole
TTF comparison between CLPL and CLUE is given in the
subsequent experimental results.

V. EXPERIMENTAL RESULT

A. Experimental Settings

1) Trace

TABLE I. LOCATIONS OF ROUTERS.

ID Location ID Location
rrc01 LINX, London rrc11 New York (NY), USA
rrc03 AMS-IX, Amsterdam rrc12 Frankfurt, Germany
rrc04 CIXP, Geneva rrc13 Moscow, Russia
rrc05 VIX, Vienna rrc14 Palo Alto, USA
rrc06 Otemachi, Japan rrc15 Sao Paulo, Brazil
rrc07 Stockholm, Sweden rrc16 Miami, USA

The RIB packets are taken from www.ripe.net [21] at
RIPE NCC, Amsterdam, which collects default free routing
updates from peers. In order to objectively test the
performance of ONRTC algorithms, the RIB packets at 8:00
on October 1 in 2011 from 12 routers are selected. (There
are 16 routing tables available in www.ripe.net, but four of

them don’t update to present). Table III shows the routers’
location.

In the routing update experiment, two traces are selected.
In order to measure TTF-ratio, the update data from
2011.10.01/08:00 to 2011.10.02/08:00 is selected.

With regard to real traffic, trace from [23] is selected.
The traffic from 20:59 to 21:14 on 2011.02.17 in Chicago is
downloaded and parsed.

Our lab owns a TCAM (CYNSE70256). It supports
256K entries with 36-bit width. It can operate at a speed of
up to 41.5 MHz by looking up 36 bit-width entries. It
suggests that each lookup costs 1s/41.5MHz 24ns

Generally speaking, the update time of each lookup is
roughly equal to time of moving a prefix. Therefore, 24ns is
regarded as the time cost of moving one prefix in TCAM.

2) Computer Configuration
Our experiments are carried out on a windows XP sp3

machine with Pentium (R) Dual-Core CPU 5500@2.80GHz
and 4G Memory.

B. Experiments on Compression by ONRTC

Figure 9. FIB size before and after compression on 12 routers.

The ONRTC compression results of 12 routers are shown
in Figure 9. The taller bars are the original FIB size, while
the lower are the FIB size after compression by ONRTC
algorithm. According to the results, the compressed prefix
number is 71% of the original in average, and the
compression time is around 39 milliseconds.

Figure 10. partition comparison among the three algorithms.

rrc01 rrc03 rrc04 rrc05 rrc06 rrc07 rrc11 rrc12 rrc13 rrc14 rrc15 rrc16
0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

of

 n
od

es

 # of original nodes
 # of compressed nodes

No. # of routers

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

5000

10000

15000

20000

25000

30000

 SCPL
 CLPL
 CLUE

of partition

pa
rt

iti
on

 s
iz

e

9

Figure 10 shows the partition results of three algorithms:
SCPL algorithm, CLPL algorithm, and CLUE algorithm.
The same experiments are conducted on 12 routers, with
only one shown in the figure, because the results are similar.
As shown in the figure, SCPL cannot split prefixes evenly,
and CLPL split prefixes evenly at the cost of redundancy. In
contrast, CLUE splits prefixes evenly with no redundancy,
with much fewer prefixes in one bucket than both SCPL and
CLPL. Besides, as the number of partitions rises, SCPL and
CLPL introduces more redundancy (see Figure 6 in [1]),
while CLUE still has no redundancy.

C. Experiments on TTF

The x-axis of Figure 11~15 stands for the arrival time of
update messages. For example, 201010231945 means
2010.10.10/23:19:45.

Figure 11. TTF1 comparison between CLPL and CLUE.

Figure 11 shows TTF1 (TTF-trie) of CLUE (ONRTC)
and CLPL (ground-truth). It can be observed that TTF1 of
CLUE is a little taller than ground-truth. TTF1 of CLUE
ranges from 0.1924 microseconds to 0.3574 microseconds
with a mean of 0.2210 microseconds. Because TTF1 doesn’t
interrupt routing lookup, a litter bigger TTF1 of CLUE
doesn’t influence system performance.

Figure 12. TTF2 comparison between CLPL and CLUE.

Figure 12 shows TTF2 (TTF-TCAM) of CLUE and
general method (see Figure 8(b)). As mentioned in

experimental settings, 24ns is regarded as the time cost of
moving one prefix in TCAM. TTF2 of CLPL ranges from
0.3558 microseconds to 0.3782 microseconds with a mean of
0.3598 microseconds. In contrast, as mentioned above,
CLUE needs only one shift (O(1)) to handle an update
message, which means 0.024 microseconds for each update.

Figure 13. TTF3 comparison between CLPL and CLUE.

To evaluate the TTF3, we plot TTF-DRed in Figure 13.
TTF3 of CLUE still maintains 0.024 microseconds; while
TTF3 of CLPL ranges from 0.1802 microseconds to 0.2878
microseconds with a mean of 0.1993 microseconds. In other
words, TTF3 of CLPL is 8.3 times of that of CLUE in
average, and 11.99 times in worst case.

Figure 14. TTF2+TTF3 comparison between CLPL and CLUE.

As aforementioned, TTF2 and TTF3 are more important
than TTF1, because TTF1 is the time cost in the control
plane which doesn’t interrupt routing lookup. In other words,
both TTF2 and TTF3 influence the system performance.
Therefore, the comparison of TTF2+TTF3 between CLPL
and CLUE is shown in Figure 14. Results show that
TTF2+TTF3 of CLUE is 4.29% of CLPL in average and
3.65% in worst case.

20
11

01
01

 1
65

0

20
11

01
01

 1
74

0

20
11

01
01

 1
83

0

20
11

01
01

 1
92

0

20
11

01
01

 2
01

0

20
11

01
01

 2
10

0

20
11

01
01

 2
15

0

20
11

01
01

 2
24

0

20
11

01
01

 2
33

0

20
11

01
02

 0
02

0

20
11

01
02

 0
11

0

20
11

01
02

 0
20

0

20
11

01
02

 0
25

0

20
11

01
02

 0
34

0

20
11

01
02

 0
43

0

20
11

01
02

 0
52

0

20
11

01
02

 0
61

0

20
11

01
02

 0
70

0

20
11

01
02

 0
75

0

20
11

01
02

 0
84

0

20
11

01
02

 0
93

0

20
11

01
02

 1
02

0

20
11

01
02

 1
11

0

20
11

01
02

 1
20

0

20
11

01
02

 1
25

0

20
11

01
02

 1
34

0

20
11

01
02

 1
43

0

20
11

01
02

 1
52

0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

T
T

F
1

(m

ic
ro

se
co

nd
)

Time

 TTF1-CLPL
 TTF1-CLUE

20
11

01
01

 1
65

0

20
11

01
01

 1
74

0

20
11

01
01

 1
83

0

20
11

01
01

 1
92

0

20
11

01
01

 2
01

0

20
11

01
01

 2
10

0

20
11

01
01

 2
15

0

20
11

01
01

 2
24

0

20
11

01
01

 2
33

0

20
11

01
02

 0
02

0

20
11

01
02

 0
11

0

20
11

01
02

 0
20

0

20
11

01
02

 0
25

0

20
11

01
02

 0
34

0

20
11

01
02

 0
43

0

20
11

01
02

 0
52

0

20
11

01
02

 0
61

0

20
11

01
02

 0
70

0

20
11

01
02

 0
75

0

20
11

01
02

 0
84

0

20
11

01
02

 0
93

0

20
11

01
02

 1
02

0

20
11

01
02

 1
11

0

20
11

01
02

 1
20

0

20
11

01
02

 1
25

0

20
11

01
02

 1
34

0

20
11

01
02

 1
43

0

20
11

01
02

 1
52

0

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

T
T

F
2

 (
m

ic
ro

se
co

n
d

)

Time

 TTF2-CLPL
 TTF2-CLUE

20
11

01
01

 1
65

0
20

11
01

01
 1

74
0

20
11

01
01

 1
83

0
20

11
01

01
 1

92
0

20
11

01
01

 2
01

0
20

11
01

01
 2

10
0

20
11

01
01

 2
15

0
20

11
01

01
 2

24
0

20
11

01
01

 2
33

0
20

11
01

02
 0

02
0

20
11

01
02

 0
11

0
20

11
01

02
 0

20
0

20
11

01
02

 0
25

0
20

11
01

02
 0

34
0

20
11

01
02

 0
43

0
20

11
01

02
 0

52
0

20
11

01
02

 0
61

0
20

11
01

02
 0

70
0

20
11

01
02

 0
75

0
20

11
01

02
 0

84
0

20
11

01
02

 0
93

0
20

11
01

02
 1

02
0

20
11

01
02

 1
11

0
20

11
01

02
 1

20
0

20
11

01
02

 1
25

0
20

11
01

02
 1

34
0

20
11

01
02

 1
43

0
20

11
01

02
 1

52
0

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

T

T
F

3

(m
ic

ro
se

co
nd

)

 TTF3-CLPL
 TTF3-CLUE

Time

20
11

01
01

 1
65

0

20
11

01
01

 1
74

0

20
11

01
01

 1
83

0

20
11

01
01

 1
92

0

20
11

01
01

 2
01

0

20
11

01
01

 2
10

0

20
11

01
01

 2
15

0

20
11

01
01

 2
24

0

20
11

01
01

 2
33

0

20
11

01
02

 0
02

0

20
11

01
02

 0
11

0

20
11

01
02

 0
20

0

20
11

01
02

 0
25

0

20
11

01
02

 0
34

0

20
11

01
02

 0
43

0

20
11

01
02

 0
52

0

20
11

01
02

 0
61

0

20
11

01
02

 0
70

0

20
11

01
02

 0
75

0

20
11

01
02

 0
84

0

20
11

01
02

 0
93

0

20
11

01
02

 1
02

0

20
11

01
02

 1
11

0

20
11

01
02

 1
20

0

20
11

01
02

 1
25

0

20
11

01
02

 1
34

0

20
11

01
02

 1
43

0

20
11

01
02

 1
52

0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

T
T

F
2+

T
T

F
3

 (
m

ic
ro

se
co

nd
)

Time

 (TTF2+TTF3)-CLPL
 (TTF2+TTF3)-CLUE

10

Figure 15. TTF1+TTF2+TT3 comparison between CLPL and CLUE

TTF, which is the sum of TTF1, TTF2, and TTF3,
measures a router’s sensitivity to the changes of the network
state. Figure 15 shows the TTF of CLPL and CLUE. In the
figure, the TTF of CLPL ranges from 0.6303 microseconds
to 0.8342 microseconds with a mean of 0.6664 microseconds.
In contrast, TTF of CLUE is only 0.2690 microseconds in
average. In other words, TTF of CLPL is 234% of that of
CLUE.

D. Experiments on Parallel Lookup

TABLE II. WORKLOAD ON DIFFERENT PARTITIONS AND TCAM
CHIPS.

2 38.103.176.0 61.91.89.255 21.92%

12 97.69.128.0 119.46.79.255 10.57%

20 194.133.118.0 196.11.124.255 9.18%

23 202.30.78.0 203.128.191.255 4.52%

31 216.207.89.0 255.255.255.255 3.32%

8 72.9.88.0 77.79.211.255 3.13%

16 168.87.144.0 183.87.78.255 0.81%

13 119.46.80.0 134.75.216.255 0.72%

5 65.68.16.0 66.133.181.255 0.70%

11 91.209.9.0 97.69.127.255 0.08%

10 85.95.88.0 91.209.8.255 0.07%

0 0.0.0.0 12.177.231.255 0.00%
4 0.16%

…

2 17.43%

…

3 4.54%

…

1 77.88%

…

#of
Bucket

Range Low Range High
Percent of
partit ion

Percent of
TCAM

of TCAM
chips

As shown in TABLE II, routing table from rrc01 is split

into 32 partitions evenly by CLUE. After test by real traffic,
the workload of each partition is shown in Column ‘Percent
of partition’. It can be observed that workload among
different partitions varies a lot. To simulate bursty traffic, the
partitions are sorted by the workload percentage in
descending order. The first 8 partitions are mapped to
TCAM1, while the second, third and the fourth 8 partitions
are mapped to TCAM 2, 3, 4, respectively. This is a possible

mapping situation with extremely uneven workload among
TCAMs.

Figure 16. Load balance of workload distribution by CLUE.

The grey bars labeled ‘Original’ in Figure 16 show the
extremely uneven workload distribution of Table II. An
experiment using this distribution is designed to evaluate the
function of CLUE’s workload balancing. In the simulation
process, each TCAM takes 4 clocks to process a packet,
while a packet arrives per clock. The FIFO is set to 256 and
redundancy size is set to 1024 prefixes. The green bars show
the traffic distribution balanced by CLUE. It can be seen that
the green bars labeled ‘CLUE’ are much more even than
‘Original’. It can be concluded that CLUE can achieve
excellent workload balancing even in the worst case.

Figure 17. Speedup factor comparison between CLPL and CLUE and the
worst case

Figure 17 shows the relationship between Hit Rate and
Speedup Factor. It is a comparison among CLPL, CLUE,
and the worst case in theory. The dotted lines of CLPL and
CLUE are the results of cubic curve fitting. Both CLPL and
CLUE are much better than the worst case, which is
consistent with previous theory results. This figure suggests
that the speedup factor rises as hit rate rises. In terms of

20
11

01
01

 1
65

0

20
11

01
01

 1
74

0

20
11

01
01

 1
83

0

20
11

01
01

 1
92

0

20
11

01
01

 2
01

0

20
11

01
01

 2
10

0

20
11

01
01

 2
15

0

20
11

01
01

 2
24

0

20
11

01
01

 2
33

0

20
11

01
02

 0
02

0

20
11

01
02

 0
11

0

20
11

01
02

 0
20

0

20
11

01
02

 0
25

0

20
11

01
02

 0
34

0

20
11

01
02

 0
43

0

20
11

01
02

 0
52

0

20
11

01
02

 0
61

0

20
11

01
02

 0
70

0

20
11

01
02

 0
75

0

20
11

01
02

 0
84

0

20
11

01
02

 0
93

0

20
11

01
02

 1
02

0

20
11

01
02

 1
11

0

20
11

01
02

 1
20

0

20
11

01
02

 1
25

0

20
11

01
02

 1
34

0

20
11

01
02

 1
43

0

20
11

01
02

 1
52

0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

T
T

F
1+

T
T

F
2+

T
T

F
3

(m

ic
ro

se
co

nd
)

Time

 (TTF1+TTF2+TTF3)-CLPL
 (TTF1+TTF2+TTF3)-CLUE

0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

TCAM Number

W
or

kl
oa

d
P

er
ce

nt
ag

e

Original

CLUE

0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Hit Rate

S
pe

ed
up

 F
ac

to
r

Worst Case

CLPL

CLUE

t=(N-1)h+1, N=4

11

CLPL and CLUE, the same Speedup Factor will be achieved
by the same hit rate, because they almost overlap.

Figure 18. Hit rate comparison between CLPL and CLUE.

The relationship between DRed Size and Hit Rate is
plotted in Figure 18. The top curve is the result of CLUE,
and the other one belongs to CLPL. It indicates that CLUE
achieves much higher Hit Rate than CLPL with the same
DRed Size. Whereas Figure 17 shows Hit Rate determines
Speedup Factor, then it can be indirectly concluded that
CLUE achieves much higher Speedup Factor than CLPL
with the same DRed Size.

VI. DISCUSSION AND CONCLUSION

Due to the explosive increase of Internet volume and
traffic, routing tables in backbone routers have been
increasing approximately 15% in size annually. Meanwhile,
the link transmission speed of backbone routers has
increased to gigabit-per-second. Consequently, the backbone
routers are facing CLUE: routing table Compression, fast
routing Lookup, and fast incremental UpdatE.

Traditional algorithms seldom cover the three problems
simultaneously. Therefore, we propose CLUE. The design
philosophy of CLUE is that we should not view the three
problems isolatedly and statically, avoiding one-sidedness.

First, CLUE adopts ONRTC algorithm, which supports
parallel lookup and fast incremental update.

Second, several improvements are made based on CLPL
mechanism, achieving lower hardware cost.

Third, TTF is firstly defined to describe the sensitivity of
a router, including TTF-trie, TTF-TCAM, and TTF-DRed.

Extensive experimental results show that, compared with
CLPL, CLUE needs much less hardware resource and
shorter update time to achieve the same speedup factor.

Next, we will continue our work in the following areas: 1)
we are applying CLUE on IPv6 routing tables; 2) we are
applying our algorithms and testing its actual performance in
real routers.

REFERENCES

[1] Lin, D., Zhang, Y., Hu, C., Liu, B., Zhang, X., Pao, D. Route Table
Partitioning and Load Balancing for Parallel Searching with TCAMs.
In Proc. IPDPS, 2007.

[2] X. Meng, Z. Xu, B. Zhang, G. Huston, S. Lu, and L. Zhang. IPv4
Addre-ss Allocation and the BGP Routing Table. ACM SIGCOMM
Computer Communication Review, vol. 35, pp. 71–80, January 2005.

[3] R. Draves, C. King, S. Venkatachary, and B. D. Zill. Constructing
Optimal IP Routing Tables. In Proc. IEEE INFOCOM, 1999.

[4] X. Zhao, Y. Liu, L. Wang, and B. Zhang. On the Aggregatability of
Router Forwarding Tables. In Proc. IEEE INFOCOM, 2010.

[5] Heeyeol Yu. A memory- and time-efficient on-chip TCAM minimizer
for IP lookup. DATE '10 Proceedings of the Conference on Design,
Automation and Test in Europe, 2010.

[6] Qing Li, Dan Wangy, Mingwei Xu, Jiahai Yang. On the Scalability of
Router Forwarding Tables. Nexthop-Selectable FIB Aggregation. In
Proc. IEEE INFOCOM, 2011.

[7] F. Zane, G. Narlikar, A. Basu. CoolCAMs: Power-Efficient TCAMs
for Forwarding Engines. In Proc. INFOCOM, 2003.

[8] Zheng, K., Hu, C., Lu, H., Liu, B. A TCAM-based distributed parallel
IP lookup scheme and performance analysis. IEEE/ACM Trans. Netw.
14, 863–875, 2006.

[9] Mohammad J. Akhbarizadeh and Mehrdad Nourani. Efficient Prefix
Cache for Network Processors, High Performance Interconnects 2004,
pp.41-46, August 2004.

[10] Bin Zhang, Jiahai Yang, Jianping Wu, Qi Li, Donghong Qin. An
Efficient Parallel TCAM Scheme for the Forwarding Engine of the
Next-generation Router. In Proc. IFIP/IEEE IM, 2011.

[11] V. Srinivasan and G. Varghese. Fast IP lookups using controlled
prefix expansion, ACM TOCS, vol. 17, pp. 1–40, Feb. 1999.

[12] R. Panigrahy, S. Sharma. Reducing TCAM Power Consumption and
Increasing Throughput. Proceedings of HotI 2002, pp.107-112,
August 2002.

[13] Abilene. http://www.abilene.iu.edu/noc.html.

[14] E. Ng and G. Lee. Eliminating sorting in ip lookup devices using
partitioned table. In The 16th IEEE International Conf. on
Application Specific Systems, Architecture and Processors, 2005.

[15] K. Jinsoo and K. Junghwan. An efficient ip lookup architecture with
fast update using single-match tcams. In WWIC, 2008.

[16] Bin Zhang, Jiahai Yang, Jianping Wu, Qi Li, Donghong Qin. An
Efficient Parallel TCAM Scheme for the Forwarding Engine of the
Next-generation Router. In Proc. IFIP/IEEE IM, 2011.

[17] Woei-Luen Shyu, Cheng-Shong Wu, and Ting-Chao Hou. Efficiency
Analyses on Routing Cache Replacement Algorithms, ICC’2002,
Vol.4, pp.2[24]2-2236, April/May 2002.

[18] Tzi-cker Chiueh,Prashant Pradhan. High-Performance IP Routing
table Lookup Using CPU Caching. In Proc. INFOCOM, 2003.

[19] Bryan Talbot, Timothy Sherwood, Bill Lin. IP Caching for Terabit
Speed Routers. In Proc. GLOBECOM, 1999.

[20] Mohammad J, Akhbarizadeh and Mehrdad Nourani. Efficient Prefix
Cache for Network Processors. High Performance Interconnects 2004,
pp.41-46, August 2004.

[21] D. Shah and P. Gupta, Fast incremental updates on ternary-CAMs for
routing lookups and packet classification. In Proc. Hot Interconnects
8,Aug. 2000, pp. 145–153.

[22] RIPE Network Coordination Centre.

http://www.ripe.net/data-tools/stats/ris/ris-raw-data.

[23] The CAIDA Anonymized 2011 Internet Traces - <20110217> Colby
Walsworth, Emile Aben, kc claffy, Dan Andersen,
http://www.caida.org/data/passive/passive_2009_dataset.xml

[24] Routing Table Compression and Update Website.
http://s-router.cs.tsinghua.edu.cn/~yangtong/

0 100 200 300 400 500 600 700 800 900 1000 1100
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

DRed Size

H
it

R
at

e

CLPL

CLUE

