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Abstract—The size of routing tables in backbone routers 
continues to keep a rapid growth, and an effective solution is 
routing table compression. Meanwhile, there is an increasingly 
urgent demand for fast routing update due to the increase of 
mobile communications and new emerged Internet 
functionalities. Furthermore, the link transmission speed of 
backbone routers has increased up to 100Gbps commercially 
and towards 400Gbps Ethernet for Lab experiments, resulting 
in a raring need of ultra-fast routing lookup. Therefore, to 
achieve high performance, backbone routers must gracefully 
handle the three problems: routing table Compression, fast 
routing Lookup, and fast incremental UpdatE (CLUE). 
Previous works often only concentrate on one of the three 
dimensions, failing to satisfy the future high speed requirement. 

To address these issues, we propose a complete set of 
solutions—CLUE, by improving previous works of our group 
and adding a novel incremental update mechanism. CLUE 
consists of three parts: a routing table compression algorithm, 
an improved parallel lookup mechanism, and a new fast 
incremental update mechanism. The routing table compression 
algorithm is based on our previous work: ONRTC algorithm 
[24], which is a preparation for fast TCAM parallel lookup and 
fast update of TCAM and redundancy. The second part is the 
improvement of the logical Caching scheme for dynamic Load-
balancing Parallel Lookup (CLPL) mechanism [1]. And the 
last one is the conjunction of the trie, TCAM and dynamic 
redundancy update algorithms. Mathematical proof shows that 
speedup factor is proportional to hit ratio of redundancy in the 
worst case, which is confirmed by our extensive experiments. 
Large-scale experimental results show that, compared with 
CLPL, CLUE only needs about 71% TCAM entries, 4.29% 
update time and 3/4 dynamic redundancy for keeping the same 
high throughput. In addition, CLUE outperforms CLPL in the 
following two aspects: the frequent interactions between 
control plane and data plane caused by redundancy update are 
avoided, and the priority encoder of TCAM is no longer 
needed. 

I. INTRODUCTION 

Internet has maintained a rapid growth for many years, 
which brings three major problems: i) routing table 
compression -- due to an annual increase of about 15% of the 
routing table size, ISPs struggle to suppress the table growth, 
in order to further postpone the requirement for upgrading 
the infrastructure; ii) routing lookup -- to handle the current 
gigabit-per-second traffic, the backbone routers must be able 
to forward hundreds of millions of packets per second, thus 
bringing huge pressure to routing lookup; iii) fast update -- 
facing more and more frequent routing updates, routing table 
must be incrementally updated as fast as possible. These 
three problems of Compression, Lookup, and UpdatE are 

abbreviated to CLUE in this paper, and CLUE also stands for 
a set of solutions for the three problems. 

With regard to i), the typical solutions are [3-6]. 
Although they can achieve high compression ratio, they can’t 
achieve fast updates, especially when TCAM is used. 
Therefore, we proposed the ONRTC algorithm in [24], 
which supports parallel lookup and fast update. 

With regard to ii), TCAM-based solutions are usually 
adopted in backbone routers. Ternary Content Addressable 
Memories (TCAMs) [7] are fully associative memories that 
allow a “don’t care” state to be stored in each memory cell in 
addition to 0s and 1s. One TCAM access can finish a routing 
lookup operation. However, the TCAM-based solutions are 
of power consumption and expensive cost. In order to 
achieve power efficiency, F. Zane et al. proposed a bit-
selection architecture [7], which hashes a subset of the 
destination address bits to a TCAM partition, thus making 
TCAM-based routing tables power efficient. This algorithm 
is referred to as ID-bit partition algorithm in this paper. It 
only concentrates on reducing power consumption, but 
cannot improve the lookup speed. 

Today, Ethernet link with 100Gbps has been put into 
service. Suppose that each packet is at its minimum size of 
64 bytes, router should complete a packet lookup every 
5.12ns, while common TCAM needs 15~30ns for one 
lookup. Therefore, parallel lookup with multi-TCAM is 
destined if TCAM solution is adopted. Toward this target, 
previous works of our group have proposed two mechanisms: 
Kai’s algorithm [8] and Dong’s algorithm [1].  

In [8], Kai Zheng et al. proposed a TCAM-based parallel 
architecture, which employs an intelligent partitioning 
algorithm, takes advantage of the inherent characteristics of 
Internet traffic, and increases packet forwarding rate multiple 
times over traditional TCAMs. Power consumption is also 
reduced by using ID-bit partition algorithm. In order to 
achieve load balance, Kai Zheng added 25% redundancy to 
the system based on the long period statistical results. This 
algorithm is referred to as Statistical Load-balancing Parallel 
Lookup (SLPL) in this paper. 

However, according to Dong Lin’s data mining results 
[1], the average overall bandwidth utilization was very low 
but the Internet traffic could be very bursty. Hence, during 
bursty periods, mapping routings table partitions into TCAM 
chips based on long-term traffic distribution cannot balance 
the workload of individual TCAM chip effectively. 
Therefore, the redundancy should be dynamic, and Dong Lin 
et al. proposed a power-efficient parallel TCAM-based 
lookup engine with a distributed logical Caching scheme for 
dynamic Load-balancing Parallel Lookup (CLPL), which is 
referred to as CLPL in this paper. By logical caches, the 
traffic can be allocated to each TCAM relatively evenly. 



With regard to iii), current solutions mostly either only 
focuses on i), or only on ii), but seldom emphasize update, 
maybe because the update was not so frequent before. 
However, according to our data mining results, the update 
problem is becoming more and more serious: the updates 
messages of the backbone routers have reached 35K per 
second in the traffic peak, which makes the traditional 
algorithm not applicable.  

The system performance will be optimized, only if the 
three problems are solved simultaneously. In order to reach 
this goal, besides the previous works of our group, there are 
still several points which need to be improved and finished. 

1) The routing table should be compressed to save 
hardware cost. 

2) The size of redundancy should be further reduced. 
3) The frequent interactions between data plane and 

control plane should be reduced, or even avoided. 
4) The update algorithm should be studied profoundly. 
Towards the above four targets, we proposed a complete 

set of solutions -- CLUE. CLUE consists of a routing table 
compression algorithm -- ONRTC, an improved parallel 
lookup mechanism based on CLPL, and a new incremental 
update mechanism, which involves the trie, TCAM and 
redundancy update. The design philosophy of CLUE is that 
we should not view the three problems isolatedly and 
statically, so as to avoid one-sidedness. In other words, only 
an organic combination of the three aspects can make the 
forwarding plane of routers work well, thus CLUE emerges 
as required. 

The first part of CLUE, i.e., the previously proposed 
ONRTC algorithm [24], compresses the routing table size to 
70% of its original size. More importantly, it also benefits 
the second and the third operation greatly, for prefix overlap 
is eliminated. 

The second part of CLUE is an improvement of CLPL. 
After compressed by ONRTC, the routing table is not 
overlapped any more, and thus bringing a lot of advantages 
to TCAM lookup: 1) the domino effect in the TCAM update 
process will never happen again; 2) the priority encoder is no 
longer needed -- this not only reduces hardware cost, but also 
reduce delay of TCAM lookup time; 3) TCAM partitions can 
be of the same size without redundancy. 4) The compression 
has saved a part of TCAM’s hardware resource. In addition, 
we make the following improvements: 1) Dynamic 
Redundancy (DRed) i doesn’t cache TCAM i’s prefixes, for 
TCAM i and DRed i will never be both looked-up 
simultaneously, and thus 1/4 TCAM space can be saved 
when using four TCAMs. 2) Because of Longest Prefix 
Match (LPM), when DRed is missed, the destination IP 
address should be sent to control panel to compute the prefix 
which should be stored in DRed by using RRC-ME 
algorithm [9]. Because overlap is eliminated by ONRTC, 
RRC-ME algorithm is no longer needed in CLUE. We just 
need to put the prefix which hits the TCAM into DRed. 
Therefore, the interactions between control panel and date 
panel caused by DRed update can be totally avoided. 

The third part of the CLUE is a brand new whole update 
algorithm, including trie update, TCAM update, and DRed 
update. In order to evaluate the update performance 

accurately and objectively, TTF (Time to Fresh) is defined 
here. TTF means the average computing time to update a 
message, which includes TTF1 (TTF-trie): update time of the 
trie, TTF2 (TTF-TCAM): update time of TCAM, and TTF3 
(TTF-Dred): update time of redundancy. TTF indicates a 
router’s sensitivity to the changes of the network state. The 
smaller the TTF is, the more sensitive the router will be. 

To summarize, the primary contributions of this paper lie 
in the following aspects: 

• We propose an integrated problem – CLUE and a 
solution set with the same name. CLUE involves routing 
table compression, parallel lookup, and fast update. 

• We present a complete mathematical proof to bound 
the speedup factor, and verify the mathematical conclusion 
by experimental results. 

The remaining parts of the paper are organized as follows. 
Section II surveys the related work. An improved mechanism 
based on CLPL is elaborated in Section III. Section IV 
illustrates the fast incremental update algorithm of the whole 
system. And extensive evaluation on CLUE over a large-
sized real trace is conducted in Section V. Finally we 
conclude this paper in Section VI. 

II. RELATED WORK 

As mentioned above, three major problems are involved: 
routing table compression, fast lookup, and fast incremental 
update. 

A. Compression Algorithm 

With respect to compression algorithm, many researches 
have been conducted to compress routing table. ORTC [3] 
was proven to be the theoretical optimal compression 
algorithm, and it remains the best algorithm in terms of its 
compression ratio since 1999. However, it has a high 
computational complexity and poor update performance, 
which makes it ill-suited to handle the increasing demand for 
fast incremental updates. In [4], Xin Zhao et al. presented 4-
level algorithm at the cost of changing the forwarding 
behavior of routers. What’s worse, the 4-level algorithm 
could potentially trigger the ‘routing table fluctuation’ and 
‘garbage roaming’ problems, which are illustrated in detail in 
[24]. In [5], the binary trie was changed into the trigeminal 
trie, which corresponds to the three-state properties of 
TCAM. Therefore, a high ratio might be achieved. However, 
the update messages probably introduce domino effect. To 
improve compression ratio, Qing Li et al. adopted 
suboptimal routing [6]. Nevertheless, it could potentially 
introduce serious traffic congestion. 

All the algorithms mentioned above only focus on 
routing table compression. If the compressed routing tables 
are not stored in TCAM, the advantages of compression will 
not be so evident. When the compressed routing tables are 
stored in TCAM, there is still a big obstacle of TCAM 
update -- prefix overlap, due to the introduction of CIDR. 
Prefix overlap refers to some prefixes are a part of others. 
This brings many difficulties for routing lookup: 

1) Layout in TCAM: Prefixes must be ordered by their 
length, and then stored in TCAM. Meanwhile, a priority 
encoder is indispensible. 



2) Update Handling: When updates occur, many prefixes 
will probably move, which is called domino effect in this 
paper. Although many algorithms manage to resist domino 
effect, redundancy must be introduced. Redundancy means 
larger TCAM, more hardware cost, and more power 
consumption. Nevertheless, domino effect still exists. 

3) Power Consumption: one major shortcoming of 
TCAM is its high power consumption. A very effective 
solution is TCAM partition. There are mainly two partition 
algorithms: ID-bit partition [6, 7] and range partition [9]. 
However, the algorithm to determine the partitions was not 
presented in [9]. So Lin Dong et al. proposed sub-tree 
partition [8] to implement range partition. ID-bit partition 
algorithm cannot split the table evenly. Sub-tree partition can 
work better, but it will introduce redundancy.  

If overlap is eliminated, those problems of TCAM-based 
scheme can be handled perfectly: 1) prefixes can be stored in 
TCAM randomly; 2) the priority encoder is no longer needed. 
3) domino effect will never happen; 4) TCAM partition can 
be strictly evenly, without redundancy. 

There are several approaches to reduce overlap, such as 
[10] and [11]. In [10], the routing table is divided into two 
parts: the overlapping part and the non-overlapping part. 
This approach can only reduce overlap. As far as we know, 
only leaf-pushing proposed in [11] algorithm eliminates 
overlap totally. Unfortunately, leaf-pushing causes routing 
table expand too much.  

Therefore, we have proposed Optimal Non-overlap 
Routing Table Constructor (ONRTC) algorithm [24]. As 
shown in Figure 1, any trie can be compressed fast according 
to these six models, which cover all election situations. 
Although the models seem to be complicated, the whole 
algorithm requires only one post-order traversal, which is of 
high efficiency. The details of the six models are left in [24]. 

         
(a) Model1                     (b) Model 2                          (c) Model 3 

       
(d) Model 4                   (e) Model 5                           (f) Model 6 

Figure 1.  Atomic equivalent models of ONRTC. 

B. Routing Lookup Algorithm 

With respect to routing lookup, without any load 
balancing mechanisms, eight or more TCAM chips were 
employed for parallel lookup operations in [12]. But only a 
speedup factor of five was achieved if the lookup requests 
were not evenly distributed. In pursuit of an ultra-high 
lookup throughput, Zheng Kai et al. proposed a load 
balancing mechanism [8] based on some ‘pre-selected’ 
redundancy. Kai exploits the assumption that the lookup 
traffic distribution among IP prefixes can be derived from 
the traffic traces. Then a greedy algorithm with 25% more 
TCAM entries is proposed to optimize the distribution of 
these groups among four TCAMs. However, in the worst 
case, when the traffic is temporarily or permanently biased to 

a limited number of individual route prefixes, the average 
throughput may decrease.  

Based on the data collected from [13], Lin Dong et al. 
observed that the average overall bandwidth utilization was 
very low but the Internet traffic could be very bursty. In 
order to handle the worst case, CLPL uses logical caches 
(which actually mean Dynamic Redundancies (DRed)) in 
place of the static redundancy to achieve dynamic load 
balance.  

C. Incremental Update Mechanism 

With respect to incremental update, there are three 
aspects: 1) trie update; 2) TCAM update; 3) DRed update, if 
DRed is used. 

As for trie update, because SLPL and CLPL adopt no 
compression algorithm, thus their trie update is fastest; while 
ONRTC algorithm is adopted in this paper, and the detailed 
incremental update algorithm is elaborated in [24]. 

As for TCAM update, one big obstacle is domino effect, 
and many researchers strive to reduce it.  

In [14], the routing table is split into partitions according 
to the next hop. Each partition holds a collection of all the 
prefixes which own the same next hop, thus there is no need 
to keep the prefixes sorted in one partition. Therefore, 
domino effect can be reduced. However, one more prefixes 
still be matched, thus the priority is also needed. In addition, 
it cannot achieve power efficiency. 

In [15], all prefixes are split and allocated into different 
single-match TCAMs based on the ancestor-descendant 
relationship among them. It presents an algorithm to 
guarantee that each single-match TCAM generates at most 
one match for a given destination IP address. However, when 
a new prefix is inserted, each single-match TCAM may be 
required to move some of its existing prefixes to another 
TCAM in order to maintain a disjoint set. What’s worse, 
power efficiency cannot be achieved. 

As for DRed update, CLPL adopts LRU policy. But with 
regard to routing update, SLPL and CLPL didn’t mention it. 
Therefore, in [16], Bin Zhang et al. changed CLPL from the 
following two aspects: 

1) A TCAM-chip is used as a DRed in place of CLPL’s 
four small logical caches. It is evident that this change 
degrades the whole system’s performance. This can be 
confirmed again by his experimental results in Figure 8 in 
[16]. The experiments use 12 TCAM chips, and half of the 
experimental results show that the speedup factor is less than 
11, while 11 is the result of CLPL’s worst case.  

2) Bin Zhang et al. argued that SLPL and CLPL 
neglected an important factor—the update time. Thus Bin 
Zhang et al. put the overlapping part of prefixes on the top of 
the TCAM and at the bottom of the next TCAM, while put 
the non-overlapping part in the middle of the TCAM. This 
approach can reduce the domino effect to a certain extent. In 
contrast, in this paper we eliminate domino effect totally, so 
as to minimize the negative effect which updates bring. 

Therefore, we propose CLUE to handle these problems. 
As far as we know, this is the first effort on a full-
dimensional system optimization for the three major routing 
table issues. Only focusing on one of them will encounter 



short-board effect. Therefore, we combine the solutions 
organically, and propose a complete set of solutions named 
CLUE to handle the three major problems simultaneously, so 
as to optimize the performance of routing forwarding. 

III. PARALLEL ROUTING LOOKUP MECHANISM 

A. Partition Algorithm 

In order to achieve parallel lookup, the prefixes should be 
split into partitions firstly. Lin Dong’s sub-tree partition [1] 
algorithm outperforms ID-bit partition algorithm. 
Unfortunately, it will introduce redundancy.  

Because prefix overlap is eliminated by ONRTC, 
partition algorithm becomes very easy, and redundancy is no 
longer needed. Our new partition algorithm consists of two 
steps: 

Step 1: compute the partition size. Suppose the size of 
routing table is M and the partition count is n, then the size 
of each partition is M/n. 

Step 2: traverse the trie by inorder, then put every M/n 
prefixes to each bucket. 

It can be concluded that our new partition algorithm is 
much easier and faster than ID-bit partition algorithm and 
sub-tree partition algorithm, so as to ensure high memory 
utilization. Subsequent experimental results also prove this. 

B. Parrallel Lookup Mechanism 

The detailed implementation architecture of the parallel 
lookup engine is presented in Figure 2, which is an improved 
architecture base on CLPL mechanism. The process of our 
mechanism is shown below (each step is marked by the 
number in Figure 2):  

Step I, when an IP packet arrives, the IP address is sent to 
the Indexing Logic. 

Step II, the Indexing Logic returns a partition number 
which tells the ‘home-TCAM’ containing the matching 
prefix. 

Step III, a tag (the sequence number) is attached to the IP 
address, because this mechanism may cause disorder. 

Step IV, the IP address with Tag and partition number is 
delivered into the Adaptive Load Balance Logic. 

Step V, this is the most important step of this mechanism 
-- Dynamic Redundancy for Load Balancing. To be specific, 
each TCAM is split into buckets, and one bucket is used as 
dynamic redundancy (DRed), as shown in Figure 2. The 
work mechanism of Dynamic Redundancy for Load 
Balancing is as follows: 

a) If the queue of its home TCAM is not full, the 
incoming IP address will be looked-up in its home TCAM, 
then the lookup will be finished smoothly; meantime, the 
other dynamic redundancies will be updated;  

b) If the queue of its home TCAM is full, then the 
incoming IP address will be sent to the idlest queue. One 
important point is worth mentioning: this kind of IP address 
will be only looked-up in the related DRed, NOT the home 
TCAM. Therefore, no IP address will be looked-up in both 
home TCAM and the corresponding DRed. Base on this 
sharp observation, DRed i of CLUE doesn’t store TCAM i’s 
prefix. By this way, CLUE needs smaller redundancy, but 
the same hit rate compared to CLPL.  

c) If incoming IP address misses DRed, it will be sent 
back and a) happens again. 

 
Figure 2.  Improved parallel lookup mechanism1 

C. Novel Dynamic Redundancy Mechanism 

As mentioned above, no IP address will be looked-up in 
both home TCAM and the corresponding dynamic 
redundancy (DRed). As a result, this is NOT really a cache, 

and we use the word ‘DRed’ in place of CLPL’s logical 
cache, but the DRed is updated by cache mechanisms. 

Generally speaking, cache mechanisms can be divided 
into two categories: caching destination addresses (IPs) [17-
19] and caching prefixes [20]. Many papers [17-20] have 

1This parallel mechanism is an improvement of CLPL, which is 
originally shown in Figure 9 in [1]. 
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demonstrated that caching prefixes is more efficient, and this 
is also in accord with our experimental results. Therefore, we 
adopt caching prefixes, as CLPL did. 

However, one big obstacle of caching prefix is overlap. 
Because of LPM, if an inner node is matched, the 
corresponding prefix cannot be sent to DRed. 

For example, as shown in Figure 3, a prefix = 100000 is 
looked-up in the home TCAM, and the LPM result returns p 
(p=1*). However, p cannot be sent to DRed, because its child 
q owns a different next hop. It is obvious that p’=100* 
should be sent to DRed. This approach is called RRC-ME 
algorithm [20], which is adopted in CLPL. 

 
Figure 3.  RRC-ME algorithm 

For RRC-ME algorithm, one important issue is worth 
being mentioned here. Although RRC-ME algorithm is 
simple, its update algorithm is not an easy task. The update 
algorithm mentioned here means that when the routing table 
updates, the DRed must updates as well. This process must 
visit SRAM several times, which is an additional overhead. 

In addition, CLPL adopts RRC-ME algorithm, which 
causes frequent interactions between data plane and control 
plane, while CLUE doesn’t, and the details are as follows. 

 
Figure 4.  The DRed update process of CLPL’s mechanism 

 
Figure 5.  The DRed update process of CLUE’s mechanism 

The DRed update process of CLPL is shown in Figure 4. 
If an incoming IP is looked-up in TCAM1, then the LPM 
prefix is 1*. Prefix 1* must be sent to control panel, which 
executes RRC-ME algorithm by traversing the trie tree 
stored in SRAM, and returns 100*. Then 100* is sent to data 
panel, and is inserted into the four logical caches. It can be 
noted that the DRed update process must execute RRC-ME 
algorithm, and frequent interactions happen, disturbing 
routing lookup a lot. 

As aforementioned, DRed i and TCAM i will never be 
looked-up simultaneously. So CLUE reduces CLPL’s DRed 
size by the rule that DRed i doesn’t cache TCAM i’s prefixes, 
and hit rate doesn’t decline. With regard to four TCAM chips, 
the DRed size of CLUE is reduced into 3/4 of that of CLPL. 

Because overlap is eliminated, RRC-ME algorithm is no 
longer needed. Our new DRed process is shown in Figure 5. 
If an incoming IP address is looked-up in TCAM1, the result 
of LPM is 100*, then 100* is sent to data panel, and is 
inserted into the other three DReds. As a result, control panel 
will not be involved in the process of DRed update process. 
In this way, the update process of DRed is faster and more 
efficient. 

To sum up, our new DRed Mechanism can achieve 
smaller DRed size and avoid frequent interactions between 
data panel and control panel. 

D. Lower Bound of the System Performance 

With regard to the lower bound of the system 
performance, Dong Lin et al. has presented a formal 
mathematical proof, which is flawed. Therefore, a complete 
formal mathematical proof is given here, and the proof 
conclusion is in accord with the corresponding experimental 
results. 

 
Figure 6.  Parallel lookup in the worst case 

Our deduction is under the following two premises:  
1) The update cost is ignored. 
2) The TCAM1 is always working.  
The two premises are practically feasible. Regarding 

premise 1), Dong Lin et al. show that when the cache size is 
set to 1024 and only one cache-missed element is updated 
within a 5000 clock cycles, the system can still easily 
achieve 100% throughput [1]. In addition, each routing 
update only causes one shift in TCAM, that is, O(1) time 
complexity by CLUE. Therefore, the time cost of routing 
update is negligible. Premise 2) holds true via a policy that 
keeps the queue of TCAM1 never empty. 
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In the worst case of this parallel system, all the traffic is 
delivered to a single TCAM, which is TCAM1 in Figure 6. It 
suggests that TCAM2~TCAMN-1 is idle, only Dred2~ DredN-1 
are still working. The definitions of the symbols are 
described below: 

N means the number of TCAM chips used in this system; 
R means the maximum input traffic; 
E means the processing ability of each TCAM; 
u means the percentage of TCAM1’s processing ability 

used to handle the traffic which goes directly to TCAM1; 
1-u means the percentage of processing ability used to 

handle packets missed in Dred; 
h means the hit ratio of the Dred; 
t means the speedup factor of this system. 
Firstly, it is easy to get each symbol’s range. 0 10 12  

Secondly, when all TCAMs work at their best, the system 
can handle the maximum workload R. R tEuE N 1 E R t N u 1                              1                                                 t N 1                              2  

Thirdly, TCAM1 preserves 1-u processing ability to 
handle Dred-missed traffic. R tER uE 1 h 1 u E h 1 11 h 1 11 2 1                               3                                              h 21                              4  

According to (1) and (3), we get that                                     t N 1 h 1                               5  
Then t N 1 
As long as h 21 

According to [17-20] and our experimental tests, the hit 
ratio of (N-2)/(N-1) can be easily achieved. 

According to (5), it can be concluded that in the worst 
case h t 

It suggests that in real traffic, t N 1 h 1 always 
holds true. This conclusion is in consistent with subsequent 
experimental results (see Figure 17). 

IV. THE NEW INCREMENTAL UPDATE MECHANISM 

When an update message arrives, the routing table should 
be updated as fast as possible. Specifically, the whole update 
process is divided into three steps (see Figure 7): 1) trie 
update; 2) TCAM update; 3) DRed update. When the three 
steps are all finished, the update message takes into effect. 
Then how to evaluate the performance of incremental update? 
Time to Fresh (TTF) is defined in this paper, including TTF1 
(TTF-trie), TTF2 (TTF-TCAM), and TTF3 (TTF-DRed).  

The update involved in TCAM will interrupt routing 
lookup, resulting in decrease of lookup rate. As a result, 
TTF2 and TTF3 become more important than TTF1. 

 

Figure 7.  The whole incremental update process of CLUE. 

A. Trie Update 

The performance of trie update is evaluated by TTF1 
(TTF-trie), which means the average computing time of 
updating the trie. If no compression algorithm is adopted, 
TTF1 is minimal, and is regarded as ground-truth. 

Because CLPL mechanism adopted no compression 
algorithm, thus its TTF1 is minimal, and TTF1-CLPL is 
defined to represent its TTF-trie. To be different, we adopt 
previously proposed ONRTC algorithm to compress the trie, 
and the update time is represented by TTF1-CLUE. The 
process of incremental update always keeps the trie non-
overlap. Experimental results show that TTF1-CLUE is a 
little bit longer than TTF1-CLPL. 

B. TCAM Update  

Generally speaking, in order to reduce domino effect, the 
common method is to keep some redundancy at the end of 
TCAM. A naive solution [21] is shown in Figure 8(a). When 
a prefix is inserted, it will move all the following prefixes 
one by one, thus has a time complexity O(n) in the worst 
case, which is clearly undesirable. 

                    

32-bit prefixes

31-bit prefixes

30-bit prefixes

9-bit prefixes

8-bit prefixes

Empty space  
(a) a naive solution                    (b) a classical solution 

Figure 8.  Two approaches to reduce domino effect 

A sophisticated solution [21] is based on the observation 
that two prefixes with the same length can be placed 
interchangeably. This suggests that the domino effect can be 
reduced. As shown in Figure 8 (b), there is only a partial 
ordering constraint among all prefixes. This approach 
enables an empty memory location to be found in at most 32 
prefix shifts. This is a classical method without extra 
overhead, while others need additional cost. Thus we assume 
it is adopted in CLPL, and is selected to be compared with 
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CLUE. Experimental results show that this solution needs 
14.994 shifts in average. 

The previous work [1, 8] of our group didn’t emphasize 
this too much. After overlap is eliminated, the updating 
method of TCAM becomes clear and simple: when inserting 
a prefix, just write it to the end of TCAM; when deleting a 
prefix, just cut the last prefix to replace it. Therefore, CLUE 
needs one shift at most to handle an update message. 

The performance of TCAM update is evaluated by TTF2 
(TTF-TCAM), which indicates the update time of TCAM. 
Whatever partition algorithms are adopted, TCAM update 
must wait till the trie update is finished. The current partition 
algorithms probably need to change more than one prefix 
when one update message arrives.  

It is obvious that our new TCAM update mechanism is 
much more efficient than all the traditional TCAM update 
mechanisms. This conclusion is consistent with the 
subsequent experimental results. 

C. DRed Update 

After the update of TCAM, in order to guarantee 
synchronization and correctness, the DRed must be updated, 
too. As mentioned above, CLPL adopts RRC-ME algorithm 
and its update algorithm.  

When inserting or deleting a prefix in home TCAM, 
RRC-ME algorithm must look up the trie and find all the 
prefixes may be changed by this update. During this process, 
SRAM must be visited several times, which is a waste of 
time. 

In contrast, when inserting a prefix in home TCAM, 
CLUE’s DRed needs no change; when deleting a prefix, 
CLUE just lookup it in the DRed. If it exists, then just delete 
it; otherwise, do nothing.  

It is clear that CLUE is much more efficient than CLPL 
in DRed update. This conclusion is also in accord with the 
subsequent experimental results. 

TTF is the sum of TTF1, TTF2, and TTF3. The whole 
TTF comparison between CLPL and CLUE is given in the 
subsequent experimental results. 

V. EXPERIMENTAL RESULT  

A. Experimental Settings 

1) Trace 

TABLE I.  LOCATIONS OF ROUTERS.  

ID Location ID Location
rrc01 LINX, London rrc11 New York (NY), USA
rrc03 AMS-IX, Amsterdam rrc12 Frankfurt, Germany
rrc04 CIXP, Geneva rrc13 Moscow, Russia
rrc05 VIX, Vienna rrc14 Palo Alto, USA
rrc06 Otemachi, Japan rrc15 Sao Paulo, Brazil
rrc07 Stockholm, Sweden rrc16 Miami, USA  

The RIB packets are taken from www.ripe.net [21] at 
RIPE NCC, Amsterdam, which collects default free routing 
updates from peers. In order to objectively test the 
performance of ONRTC algorithms, the RIB packets at 8:00 
on October 1 in 2011 from 12 routers are selected.  (There 
are 16 routing tables available in www.ripe.net, but four of 

them don’t update to present). Table III shows the routers’ 
location. 

In the routing update experiment, two traces are selected. 
In order to measure TTF-ratio, the update data from 
2011.10.01/08:00 to 2011.10.02/08:00 is selected.  

With regard to real traffic, trace from [23] is selected. 
The traffic from 20:59 to 21:14 on 2011.02.17 in Chicago is 
downloaded and parsed. 

Our lab owns a TCAM (CYNSE70256). It supports 
256K entries with 36-bit width. It can operate at a speed of 
up to 41.5 MHz by looking up 36 bit-width entries. It 
suggests that each lookup costs 1s/41.5MHz 24ns 

Generally speaking, the update time of each lookup is 
roughly equal to time of moving a prefix. Therefore, 24ns is 
regarded as the time cost of moving one prefix in TCAM. 

2) Computer Configuration 
Our experiments are carried out on a windows XP sp3 

machine with Pentium (R) Dual-Core CPU 5500@2.80GHz 
and 4G Memory.  

B. Experiments on Compression by ONRTC 

 
Figure 9.  FIB size before and after compression on 12 routers.  

The ONRTC compression results of 12 routers are shown 
in Figure 9. The taller bars are the original FIB size, while 
the lower are the FIB size after compression by ONRTC 
algorithm. According to the results, the compressed prefix 
number is 71% of the original in average, and the 
compression time is around 39 milliseconds.  

 
Figure 10.  partition comparison among the three algorithms. 
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Figure 10 shows the partition results of three algorithms: 
SCPL algorithm, CLPL algorithm, and CLUE algorithm. 
The same experiments are conducted on 12 routers, with 
only one shown in the figure, because the results are similar. 
As shown in the figure, SCPL cannot split prefixes evenly, 
and CLPL split prefixes evenly at the cost of redundancy. In 
contrast, CLUE splits prefixes evenly with no redundancy, 
with much fewer prefixes in one bucket than both SCPL and 
CLPL. Besides, as the number of partitions rises, SCPL and 
CLPL introduces more redundancy (see Figure 6 in [1]), 
while CLUE still has no redundancy. 

C. Experiments on TTF 

The x-axis of Figure 11~15 stands for the arrival time of 
update messages. For example, 201010231945 means 
2010.10.10/23:19:45.  

 
Figure 11.   TTF1 comparison between CLPL and CLUE. 

Figure 11 shows TTF1 (TTF-trie) of CLUE (ONRTC) 
and CLPL (ground-truth). It can be observed that TTF1 of 
CLUE is a little taller than ground-truth. TTF1 of CLUE 
ranges from 0.1924 microseconds to 0.3574 microseconds 
with a mean of 0.2210 microseconds. Because TTF1 doesn’t 
interrupt routing lookup, a litter bigger TTF1 of CLUE 
doesn’t influence system performance. 

 
Figure 12.  TTF2 comparison between CLPL and CLUE. 

Figure 12 shows TTF2 (TTF-TCAM) of CLUE and 
general method (see Figure 8(b)). As mentioned in 

experimental settings, 24ns is regarded as the time cost of 
moving one prefix in TCAM. TTF2 of CLPL ranges from 
0.3558 microseconds to 0.3782 microseconds with a mean of 
0.3598 microseconds. In contrast, as mentioned above, 
CLUE needs only one shift (O(1)) to handle an update 
message, which means 0.024 microseconds for each update.  

 
Figure 13.  TTF3 comparison between CLPL and CLUE. 

To evaluate the TTF3, we plot TTF-DRed in Figure 13. 
TTF3 of CLUE still maintains 0.024 microseconds; while 
TTF3 of CLPL ranges from 0.1802 microseconds to 0.2878 
microseconds with a mean of 0.1993 microseconds. In other 
words, TTF3 of CLPL is 8.3 times of that of CLUE in 
average, and 11.99 times in worst case.  

 
Figure 14.  TTF2+TTF3 comparison between CLPL and CLUE. 

As aforementioned, TTF2 and TTF3 are more important 
than TTF1, because TTF1 is the time cost in the control 
plane which doesn’t interrupt routing lookup. In other words, 
both TTF2 and TTF3 influence the system performance. 
Therefore, the comparison of TTF2+TTF3 between CLPL 
and CLUE is shown in Figure 14. Results show that 
TTF2+TTF3 of CLUE is 4.29% of CLPL in average and 
3.65% in worst case. 
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Figure 15.  TTF1+TTF2+TT3 comparison between CLPL and CLUE 

TTF, which is the sum of TTF1, TTF2, and TTF3, 
measures a router’s sensitivity to the changes of the network 
state. Figure 15 shows the TTF of CLPL and CLUE. In the 
figure, the TTF of CLPL ranges from 0.6303 microseconds 
to 0.8342 microseconds with a mean of 0.6664 microseconds. 
In contrast, TTF of CLUE is only 0.2690 microseconds in 
average. In other words, TTF of CLPL is 234% of that of 
CLUE. 

D. Experiments on Parallel Lookup 

TABLE II.  WORKLOAD ON DIFFERENT PARTITIONS AND TCAM 
CHIPS. 

2 38.103.176.0 61.91.89.255 21.92%

12 97.69.128.0 119.46.79.255 10.57%

20 194.133.118.0 196.11.124.255 9.18%

23 202.30.78.0 203.128.191.255 4.52%

31 216.207.89.0 255.255.255.255 3.32%

8 72.9.88.0 77.79.211.255 3.13%

16 168.87.144.0 183.87.78.255 0.81%

13 119.46.80.0 134.75.216.255 0.72%

5 65.68.16.0 66.133.181.255 0.70%

11 91.209.9.0 97.69.127.255 0.08%

10 85.95.88.0 91.209.8.255 0.07%

0 0.0.0.0 12.177.231.255 0.00%
4 0.16%

…

2 17.43%

…

3 4.54%

…

1 77.88%

…

#of
Bucket

Range Low Range High
Percent of
partit ion

Percent of
TCAM

# of TCAM
chips

 
 
As shown in TABLE II, routing table from rrc01 is split 

into 32 partitions evenly by CLUE. After test by real traffic, 
the workload of each partition is shown in Column ‘Percent 
of partition’. It can be observed that workload among 
different partitions varies a lot. To simulate bursty traffic, the 
partitions are sorted by the workload percentage in 
descending order. The first 8 partitions are mapped to 
TCAM1, while the second, third and the fourth 8 partitions 
are mapped to TCAM 2, 3, 4, respectively. This is a possible 

mapping situation with extremely uneven workload among 
TCAMs. 

 

Figure 16.  Load balance of workload distribution by CLUE. 

The grey bars labeled ‘Original’ in Figure 16 show the 
extremely uneven workload distribution of Table II. An 
experiment using this distribution is designed to evaluate the 
function of CLUE’s workload balancing. In the simulation 
process, each TCAM takes 4 clocks to process a packet, 
while a packet arrives per clock. The FIFO is set to 256 and 
redundancy size is set to 1024 prefixes. The green bars show 
the traffic distribution balanced by CLUE. It can be seen that 
the green bars labeled ‘CLUE’ are much more even than 
‘Original’. It can be concluded that CLUE can achieve 
excellent workload balancing even in the worst case. 

 

Figure 17.  Speedup factor comparison between CLPL and CLUE and the 
worst case 

Figure 17 shows the relationship between Hit Rate and 
Speedup Factor. It is a comparison among CLPL, CLUE, 
and the worst case in theory. The dotted lines of CLPL and 
CLUE are the results of cubic curve fitting. Both CLPL and 
CLUE are much better than the worst case, which is 
consistent with previous theory results. This figure suggests 
that the speedup factor rises as hit rate rises. In terms of 
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CLPL and CLUE, the same Speedup Factor will be achieved 
by the same hit rate, because they almost overlap. 

 

Figure 18.  Hit rate comparison between CLPL and CLUE.  

The relationship between DRed Size and Hit Rate is 
plotted in Figure 18. The top curve is the result of CLUE, 
and the other one belongs to CLPL. It indicates that CLUE 
achieves much higher Hit Rate than CLPL with the same 
DRed Size. Whereas Figure 17 shows Hit Rate determines 
Speedup Factor, then it can be indirectly concluded that 
CLUE achieves much higher Speedup Factor than CLPL 
with the same DRed Size. 

VI. DISCUSSION AND CONCLUSION 

Due to the explosive increase of Internet volume and 
traffic, routing tables in backbone routers have been 
increasing approximately 15% in size annually. Meanwhile, 
the link transmission speed of backbone routers has 
increased to gigabit-per-second. Consequently, the backbone 
routers are facing CLUE: routing table Compression, fast 
routing Lookup, and fast incremental UpdatE. 

Traditional algorithms seldom cover the three problems 
simultaneously. Therefore, we propose CLUE. The design 
philosophy of CLUE is that we should not view the three 
problems isolatedly and statically, avoiding one-sidedness.  

First, CLUE adopts ONRTC algorithm, which supports 
parallel lookup and fast incremental update. 

Second, several improvements are made based on CLPL 
mechanism, achieving lower hardware cost. 

Third, TTF is firstly defined to describe the sensitivity of 
a router, including TTF-trie, TTF-TCAM, and TTF-DRed. 

Extensive experimental results show that, compared with 
CLPL, CLUE needs much less hardware resource and 
shorter update time to achieve the same speedup factor. 

Next, we will continue our work in the following areas: 1) 
we are applying CLUE on IPv6 routing tables; 2) we are 
applying our algorithms and testing its actual performance in 
real routers. 
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