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Abstract—This paper introduces a cooperation-based database caching system for Mobile Ad Hoc Networks (MANETs). The heart of

the system is the nodes that cache submitted queries. The queries are used as indexes to data cached in nodes that previously

requested them. We discuss how the system is formed and how the requested data is found if cached or retrieved from the external

database and then cached. Analysis is performed, and expressions are derived for the different parameters, including the upper and

lower bounds for the number of query caching nodes and the average load they experience, generated network traffic, node bandwidth

consumption, and other performance-related measures. Simulations with the ns-2 software were used to study the performance of the

system in terms of average delay and hit ratio and to compare it with the performance of two other caching schemes for MANETs,

namely, CachePath and CacheData. The results demonstrate the effectiveness of the proposed system in terms of achieved hit ratio

and low delay.

Index Terms—Cache management, distributed cache, mobile ad hoc networks, cache indexing, mobility, database queries.
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1 INTRODUCTION

AS Mobile Ad Hoc Networks (MANETs) are becoming
increasingly widespread, the need for developing

methods to improve their performance and reliability
increases. One of the biggest challenges in MANETs lies
in the creation of efficient routing techniques [6], but to be
useful for applications that demand collaboration, effective
algorithms are needed to handle the acquisition and
management of data in the highly dynamic environments
of MANETs.

In many scenarios, mobile devices (nodes) may be

spread over a large area in which access to external data

is achieved through one or more access points (APs).

However, not all nodes have a direct link with these APs.

Instead, they depend on other nodes that act as routers to

reach them. In certain situations, the APs may be located at

the extremities of the MANET, where reaching them could

be costly in terms of delay, power consumption, and

bandwidth utilization. Additionally, the AP may connect

to a costly resource (e.g., a satellite link) or an external

network that is susceptible to intrusion. For such reasons

and others dealing with data availability and response time,

caching data in MANETs is a topic that deserves attention.
MANETs are dynamic in nature, and therefore, a reliable

caching scheme is more difficult to achieve. Links between

nodes may constantly change as nodes move around, enter,

or leave the network. This can make storing and retrieving

cached data particularly difficult and unreliable. The use of

mobile devices adds even more complexity due to their

relatively limited computing resources (e.g., processing

power and storage capacity) and limited battery life. It

follows that an effective caching system for MANETs needs

to provide a solution that takes all of these issues into

consideration. An important policy of such a solution is not

to rely on a single node but to distribute cache data and

decision points across the network. With distribution,

however, comes a new set of challenges. The most

important of which is the coordination among the various

nodes that is needed in order to store and find data.
A preliminary system was proposed in [2] to cache

database responses to queries in given nodes and uses the

queries as indexes to the responses. This paper builds on

the same general idea but introduces several significant

changes at the design level, in addition to elaborate studies

and simulations that were made to examine the system and

prove its usefulness. Briefly, the architecture of the

proposed system is more flat when compared to the one

in [2] (a review of this system is given at the end of

Section 2), as it eliminates the role of the service manager,

which is responsible for performing management duties,

and instead distributes such duties to the nodes that will

perform the low-level functions themselves. In short, the

aim of the proposed framework is to provide efficient and

reliable caching in MANET environments.
The rest of this paper is organized as follows: In Section 2,

a survey of related work is given, followed by Section 3,

which describes the proposed system. Section 4 provides an

analysis and derives expressions for the system parameters

and performance measures. Section 5 is dedicated to

describing the simulation experiments and discussing the

results. Finally, Section 6 concludes the paper and proposes
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future works related to fault tolerance and improving the
system response.

2 LITERATURE OVERVIEW

Few caching schemes for MANETs have been proposed in
the literature. In this section, we provide a review of some
of those that provide serious solutions to the caching
problem.

In [19], three related caching schemes were discussed:
CachePath, CacheData, and HybridCache. The main idea
behind these schemes is to analyze passing requests and
cache either the data or the address of the node in which it is
stored. Later, if the same request for that data passes through
the node, it can provide the data itself or redirect the request
to its location. CachePath saves space by storing locations
where data should be stored, while CacheData saves time by
storing the data instead of the path. The third scheme,
HybridCache, is a middle solution where queries are cached
by path or by data, depending on what is optimal.

The success of the above systems, in terms of delay and hit
ratio, is highly dependent on node positions relative to each
other and relative to the AP. A node that is caching data will
only be accessed if it is on the path of the request to the
external data source. Even when each node is given infinite
caching space, the system can only reach a high hit ratio
when one node serves as the exclusive connection between
other nodes and the AP. In this case, however, the load on
this node may be prohibitively high. If there is more than
one node that can reach the external data source, the load on
the nodes will decrease, but performance will suffer because
there is no coordination between the nodes. This lack of
coordination also has an adverse effect on space since nodes
cache the paths or data independently. Additionally, it
should be noted that the above schemes rely on the
modification of the routing protocol in that every time a
packet passes through a node, it is checked to see if it is a data
request. If it is, the cache is checked for a copy of the data or
the path to it, and the request is processed accordingly.

In [13], a caching algorithm is suggested to minimize the
delay when acquiring data. In order to retrieve the data as
quickly as possible, the query is issued as a broadcast to the
entire network. All nodes that have this data are supposed to
send an acknowledgment back to the source of the broadcast.
The requesting node (RN) will then issue a request for the
data (unicast) to the first acknowledging node it hears from.
The main advantage of this algorithm is its simplicity and the
fact that it does achieve a low response delay. However, the
scheme is inefficient in terms of bandwidth usage because of
the broadcasts, which, if frequent, will largely decrease the
throughput of the system due to flooding the network
with request packets [9]. Additionally, large amounts of
bandwidth will also be consumed when data items happen to
be cached in many different nodes. Such situations occur
because the system does not account for controlling redun-
dancy, thus allowing many nodes to cache the same data.

In [15] and [14], two strategies for indexing and caching
Web pages were proposed. In the method in [15], several
nodes are chosen as proxy servers to cache proxies and use
multicasting to cooperate and form a single distributed
cache in which any server can handle the client’s request.
When a server receives a client request, it redirects it to the

server that holds the proxy (page). In [14], on the other
hand, a caching software named SQUIRREL was integrated
into Internet nodes to allow several nodes within a given
region to share their caches. The basic idea is to cache each
page at a certain node according to a hashing key obtained
from the page URL. When a new request is issued, either it
is served by the local cache or the key of this request is
calculated, and the request is forwarded to the node that
might have the page in its cache.

Our system shares several basic similarities with [15] in
terms of assigning certain nodes to be guides to cached
objects and making these nodes cooperate to answer a
request. In fact, requests in our system could be changed
from query IDs to Web page URLs without changing the
design of the system. However, in our case, we process the
request at each server (or query directory (QD)) and then
pass it on to the next one instead of multicasting it as in [15].
Also, the server that finds the cached object does not redirect
the client to the other node that contains the object but
forwards the request directly to this node. These strategies
reduce the network traffic significantly without imposing a
large increase on the network response time or hit ratio.

A related scheme for caching, locating, and streaming
multimedia objects (MOs) in mobile networks was pro-
posed in [11]. The basic idea is to rely on an application
manager (APGR) that is interposed between multimedia
applications and the network layer at each node. The APGR
determines the best source caching the required MO, opens
a session with this source’s APGR, and organizes data
streaming by sending control messages at constant time
periods. APGRs communicate with each other to make the
process of finding and downloading MOs much faster.

As was mentioned earlier, the same general idea of
caching database queries and their corresponding responses
was introduced in [2]. In this scheme, the queries were used
as indexes to the responses when searching for data. The
described architecture is hierarchical in the sense that it has
an elected service manager (SM) that oversees the caching
operations and is responsible for assigning the roles of QDs
and caching nodes (CNs) to specific mobile nodes for caching
queries and their responses, respectively. The QDs decide on
which CNs to cache external (noncached) data and maintain
one-way hash tables to quickly locate the responses of the
locally cached queries. The limitations of this scheme include
relying heavily on the SM (and its backup), which, just like
any other mobile node, may move around, leave the
network, or run low on battery power. Second, the system
employs random forwarding of requests when searching for
a cached query that matches the one being requested. This
does not exploit the locations of the QDs with respect to the
RN and with respect to each other, which may result in
unnecessary delays and resource consumptions.

3 PROPOSED FRAMEWORK

This section describes the proposed system, COACS, which
stands for Cooperative and Adaptive Caching System.
The idea is to create a cooperative caching system that
minimizes delay and maximizes the likelihood of finding
data that is cached in the ad hoc network, all without
inducing excessively large traffic at the nodes. First, we
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cover the basic concepts that distinguish COACS from other
systems, as they are essential to the rest of this section.

3.1 Basic Concepts

COACS is a distributed caching scheme that relies on the
indexing of cached queries to make the task of locating the
desired database data more efficient and reliable. Nodes
can take on one of two possible roles: CNs and QDs. A
QD’s task is to cache queries submitted by the requesting
mobile nodes, while the CN’s task is to cache data items
(responses to queries). When a node requests data that is not
cached in the system (a miss), the database is accessed to
retrieve this information. Upon receiving the response, the
node that requested the data will act as a CN by caching this
data. The nearest QD to the CN will cache the query and make
an entry in its hash table to link the query to its response.

The CachePath and CacheData schemes that were dis-
cussed earlier have nodes with functions similar to a CN,
but they do not offer functionality for searching the contents
of all the CNs. In order to find data in a system of only CNs,
all the nodes in the network would need to be searched.
This is where QDs come into play in the proposed system.
QDs act as distributed indexes for previously requested
and cached data by storing queries along with the addresses
of the CNs containing the corresponding data. In this paper,
we refer to the node that is requesting the data as the RN,
which could be any node, including a CN or a QD.

The QD nodes make up the core of the caching system.
To cope with the limited resources of mobile devices and
to decrease the response time of the system, several QDs
are used to form a distributed indexing system. If one QD
receives a request that it has not indexed, the request is
passed on to another QD. The desired number of QDs is a
function of the various system parameters, which are
addressed in Section 4. Fig. 1 shows a simplified example
of a scenario in COACS, where the requested query is
stored in QD2, and its response is stored in CN6.

Since queries typically occupy much less space than the
corresponding data, QDs will be able to store far more
entries compared to the number of entries a CN can hold.
This helps decrease the number of nodes that need to be
queried in order to find data in the MANET. The capacity of
QDs can be further enhanced by using query compression
techniques similar to the one proposed in [10], which may
prove helpful in large networks.

Since COACS is a mobile distributed system, deciding
which QD to send a request to and the next QD to forward it to
(if the first one does not return a hit) is a crucial issue. It would
be inefficient for a request to be forwarded from one end of the
network to another in order to reach one QD and then have it
forwarded back across the network to reach a second QD.
For this, we propose the Minimum Distance Packet
Forwarding (MDPF) algorithm. Many routing protocols
such as DSDV have tables that keep track of how to reach
all known nodes in the network and record the next
neighboring node and the number of hops (metric) needed
to reach a destination. An RN can use this data to send the
request to the nearest QD. If a QD does not have a matching
query, it uses MDPF and forwards the request to a nearby
QD. In COACS, MDPF is used in all scenarios that involve
iteratively searching through nodes. To avoid sending a
packet back to a node that was already visited, a list of visited
nodes is maintained in the packet being forwarded.

3.2 Caching System Formation

The QDs are the central component of the system and must
be selected carefully. Preference should be given to nodes
that are expected to stay the longest in the network and
have sufficient resources. Nodes have to calculate and store
a special score that summarizes their resource capabilities,
including the expected time during which the device is in the
MANET (TIME), the battery life (BAT), the available
bandwidth (BW), and the available memory for caching
(MEM). To be considered a candidate QD, the device must
meet a minimum criterion in each category. That is

fDkgjRk
X > �X; 8X 2 fTIME;BAT;BW;MEMg; ð1Þ

where fDkg is the set of candidate devices, Rk
X is a resource

for device k, and �X is an empirically set threshold for
resource X. If fDkg includes more than one device, then the
one with the maximum weighted score is selected. That is, if
device j is the selected one, then

SCj ¼ maxfSCkgjSCk ¼
X

�XR
k
X; ð2Þ

where SCk is node k’s score, k refers to one of the devices
satisfying the condition in (1), and �X is the weight
associated with resource X such that

P
�X ¼ 1.

Although the QD selection factors in (1) may be very
dynamic in a MANET environment, the configuration of the
system (list of QDs) will not necessarily change when these
factors vary. The QD list will usually only change if a
significant number of nodes join the network, thus requir-
ing additional caching capacity, or a QD leaves, in which
case another node takes its place.

As illustrated in Section 4, the addition of a QD decreases
the average load on existing QDs and potentially increases the
available cache space (given that nodes can cache additional
results) and, in turn, the hit ratio. At the same time though,
this increases the response time of the system. Hence, the
number of QDs should be chosen prudently in order to
restrict the average delay of the system from increasing
indefinitely while maintaining an acceptable load on QDs.

When nodes join the network, they send HELLO packets
so that other nodes know about them. After the HELLO
packets are exchanged, the first node that needs to cache
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Fig. 1. An example of a COACS scenario: a request submitted to QD1

and forwarded to QD2, where a hit occurred. The response of the query,

stored in CN6, is sent to the RN.



a data item (i.e., after submitting a data request and getting
the reply) sends a COACS Score Packet (CSP) containing
its score, address, and caching capacity and an empty
exhausted node list to one of its neighbors. When a node
receives a CSP, it adds its score, address, and caching
capacity to the table in the CSP and then chooses one of the
nearest nodes from its routing table that is not contained in
the list of addresses and the exhausted node list in CSP
(implying that this node has not received this CSP yet) and
sends the CSP to it. If the node receiving the CSP finds that
all nodes from its routing table are present in the list of
addresses in CSP, it adds itself to the exhausted node list and
sends the CSP to a node that is in the list of addresses but not
in the exhausted list. This strategy insures that the CSP will
traverse all nodes in the network sequentially. Each node
checks if the CSP table includes the scores and caching
capacities of all nodes in the network excluding itself (the list
of nodes can be retrieved from the underlying routing
protocol). If yes, it plays the role of a QD Assigner (QDA) by
sending the node that corresponds to the highest score a
QD Assignment Packet (QDAP) containing the CSP table. The
identified node ðQD1Þ computes the starting and maximum
numbers of QDs, Nstrt

QD and Nmax
QD , using the data from the list

in the QDAP. This node then sends a QDAP to the Nstrt
QD � 1

nodes with the highest scores in the list (excluding itself).
Assuming that all candidate QDs returned an acknowl-
edgment, QD1 broadcasts a COACS Information Packet (CIP)
with the addresses of all assigned QDs, thus informing all
nodes in the network of the complete list of QDs. The CIP is
broadcast only when the list of QDs changes, and nodes that
join the network later get the list of QDs by requesting a CIP
from nearby nodes, which reply by sending a unicast CIP.

Generally, a new QD is added to the system when a query
needs to be cached but no QD agreed to cache it. The last
QD to receive the caching request will initiate a CSP. Also,
COACS needs to account for nodes going offline, and it
depends on the routing protocol to detect such occurrences
and update the routing tables. If a QD goes offline, the
first node to discover this will initiate a CSP in order to find a
new candidate QD. In both cases, the first node to compute
the highest score from the CSP will be the QDA and sends a
QDAP to the highest score candidate. If this node accepts,
it broadcasts a CIP with itself added to the QD list; else,
it replies with a negative acknowledgment to the QDA. To
protect against situations in which this candidate takes no
action, a timer is started at the QDA after each QDAP is sent.
If the QDA receives a NACK or if it waits a period of T, it
sends a QDAP to the second-highest-score candidate, and so

on, until a candidate accepts the assignment. As discussed
below, the CN holds for each cache entry, in addition to the
response data, the query itself and a reference to the QD that
caches it. This added information is used to rebuild QD
entries when a QD goes offline. Upon receiving the CIP from
the replacement QD, the concerned CNs will send it the
queries that used to reference the lost QD using a Query
Caching Request Packet (QCRP). The CIP will also serve to
inform nodes about the change and prompt them to update
their QD lists. If a CN goes offline, the QDs will detect its
departure after the routing protocol updates their routing
tables and will delete the associated entries in their cache.
Note that in case an on-demand routing protocol is in place,
each QD could send a special message to all other QDs
periodically to discover if a QD has gone offline. Further-
more, every CN could be set up to return an acknowl-
edgment when it is forwarded a request from a QD, so it
could eventually be discovered when it goes offline.

Additionally, the score of a QD may fall below the set
threshold at any time due to its participation in the network
and its use by the user. When it detects that its score is about to
become low, it broadcasts a CSP packet, and upon receiving
the CIP from the new QD, it transfers its cache to it, broadcasts
a CIP not including itself, and then deletes its cached queries.

3.3 Caching Data

The RN will only act as a CN for the submitted request if the
reply comes from the data source. This, however, does not
preclude the RN from caching the reply for its own use even
if it is cached elsewhere in the ad hoc network but will only
cache it for the purpose of servicing it to another node if this
reply and its associated query are not cached. When an RN
becomes a CN for a particular request, it stores the data item
and the corresponding query and then sends a QCRP to the
nearest QD. If this QD has no memory available, it forwards
the request to its nearest QD, and so on, until a QD that will
store the query is reached or a new QD is added to the
system. If a QD ends up caching the query, it sends a
Cache Acknowledgement Packet (CACK) to the CN, which will
in turn store a reference that links the cached data with
this QD. Fig. 2 shows how a QD processes a request.

3.4 Search Algorithm

Given that all nodes in the MANET have knowledge of all
QDs, then when a node requires certain data, it sends a
Data Request Packet (DRP) to the nearest QD. If this QD does
not have a matching query, it adds its address to the DRP to
indicate that it has already received the request and then
sends this modified DRP to the nearest QD that has not been
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checked yet. This continues until a hit occurs or until all the
QDs have been checked, in which case an attempt is made
to contact the data source. If a hit occurs at a QD, the QD visit
list is removed from the DRP before the latter is sent to the
CN that is caching the corresponding data, which will in
turn send the reply data via a Data Reply Packet (DREP)
directly to the RN, whose address is in the source field of
the request packet. If a CN has gone offline, all QDs will be
able to detect this when their routing tables get updated by
the proactive routing protocol and will delete all the related
entries in their memories. On the other hand, if a CN ever
decides to replace an old cache item with a newer one, it
informs the corresponding QD about it by sending an
Entry Deletion Packet (EDP). In this case, the QD will delete
the related entry from its cache to prevent misdirected
requests for the data. The whole process is depicted in Fig. 3.

This section ends with Table 1, which gives a summary
of the packets discussed.

4 ANALYSIS

In this section, we show how varying some of the system
parameters affects its performance. It is demonstrated later
that as the number of QDs in the system increases, the
average delay to receive a response for a request increases,
while the load on the individual QDs decreases. Conver-
sely, a smaller number of QDs results in a smaller average

delay but a higher load on the QDs. Hence, an “optimal”
number of QDs ought to be found that provides the
maximum possible system caching capacity while resulting
in a tolerable average delay and acceptable load on the
individual QDs. For this purpose, we develop an upper
limit on the average delay and also an upper limit on the
individual QD load and then select the number of QDs
accordingly for different values of the desired hit ratio. We
start with the average delay and later treat the load.

4.1 Average Delay Limit

One way to derive the limit on the average delay � is to make it
equal to the delay of having no caching �NoCaching. The
maximum number of QDsNmax

QD is set accordingly as follows:

Nmax
QD ¼ maxðNQDÞ

��E½� � < E½�NoCaching�: ð3Þ

Next, we derive several parameters that are involved in
computing Nmax

QD :

1. the expected number of hops between any
two nodes,

2. the expected number of hops within the QD system
(different because of MDPF routing),

3. the expected number of hops to the external network
(i.e., AP, assumed to be in the corner of the
topography), and

4. the response time of the system.
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Packets Used in COACS



4.1.1 Expected Number of Hops between Two Nodes

Similar to [4], we assume a rectangular topology with area
a� b and uniform distribution of nodes. Two nodes can
form a direct link if the distance S between them is � r0,
where r0 is the maximum node transmission range. We seek
to compute the expected number of hops between any
two nodes. Using stochastic geometry, the probability
density function of S is given in [4] as

fðsÞ ¼ 4s

a2b2

�

2
ab� as� bsþ 0:5s2

� �
ð4Þ

for 0 � s < b < a. It is concluded that if two nodes are at a
distance s0 from each other, the number of hops between
them, when there are a sufficient number of nodes to form
a connected network, would tend toward s0=r0. Hence,
E½H�, the expected minimum number of hops between any
two nodes in the network, is equivalent to dividing E½S�,
the expected distance, by r0. It should be noted that the
value of E½H� represents a lower bound because when
nodes are sparse in the network, the number of hops will
inevitably increase due to having to route through longer
distances to reach a certain node. When a ¼ b, the expected
number of hops, as is depicted in [4], is

E½H� ¼ 0:521a=r0: ð5Þ

4.1.2 Expected Number of Hops within the System of

Query Directories

The previously determined E½H� represents the expected
number of hops when only one destination choice is
available. However, using MDPF, an RN or a QD picks
the nearest QD, and hence, the expected number of hops is
anticipated to be lower. When there are more choices, it is
more likely for an RN or a QD to find an unchecked QD
that is closer to it than when having fewer choices. We
develop a recursive algorithm, where the analysis for
two choices depends on the expected distance of one choice
(i.e., E½H�), the solution for three choices depends on the
expected number of hops when having two choices, and so
on. First, we define three functions:

E½H
��n ¼ N�;

P ðH < hÞ ¼ P ðS < h� r0Þ ¼
Zh�r0

0

fðsÞds; and

E½HjH < h� ¼
Zh�r0

0

sfðsÞds=
Zh�r0

0

fðsÞds;

which are respectively the expected number of hops given
N choices, the probability that a node is within h hops,
and the expected distance to a node within h hops away.

To understand the analysis, first, suppose we place
two nodes O1 and O2 randomly in a square and pick one of
them, say, O1, as a reference (the node that has to forward
the request). The expected distance (hops) between this
node and O2 is as determined before:

E Hjn ¼ 1½ � ¼ E½H� ¼ 0:521a=r0: ð6Þ

A third node, O3, will either be closer to O1 than O2 or
farther. If we always send to the nearest choice, the

expected number of hops to one of the two choices from
the reference node is

E Hjn ¼ 2½ � ¼P H > E Hjn ¼ 1½ �ð ÞE Hjn ¼ 1½ �
þ P H < E Hjn ¼ 1½ �ð ÞE HjH < E Hjn ¼ 1½ �½ �:

ð7Þ

The above is the probability that O3 is farther times the
expected number of hops to reach O2 plus the probability
that O3 is closer times the expected number of hops to reach
O3. Similarly, after adding node O4, the expected number of
hops from O1 to the nearest of the three choices is

E Hjn ¼ 3½ � ¼P H > E Hjn ¼ 2½ �ð ÞE Hjn ¼ 2½ �
þ P H < E Hjn ¼ 2½ �ð ÞE HjH < E Hjn ¼ 2½ �½ �:

ð8Þ

Hence, we can write the following general expression:

E Hjn¼ iþ 1½ �¼P H > E Hjn¼ i½ �ð ÞE Hjn¼ i½ �
þP H < E Hjn¼ i½ �ð ÞE HjH < E Hjn¼ i½ �½ �:

ð9Þ

In an NQD system, the expected number of hops from the
RN to the nearest QD, say, QD1, is denoted byE½H1jNQD� and
is equal toE½Hjn ¼ NQD�. To calculate the number of hops to
the nearest QD from QD1, denoted byE½H2jNQD�, we add the
expected number of hops when there are NQD � 1 choices;
that is,E½Hjn¼NQD�1�. Hence, the expected number of hops
from the RN to QDi (going through QD1;QD2; . . . ;QDi�1),
when there are NQD choices and using MDPF, is

E HijNQD

� �
¼

XNQD

j¼NQDþ1�i
E Hjn ¼ j½ �: ð10Þ

To calculate the average number of hops to get to the QD with
the desired data from an RN, we multiply the probability Pi
that QDi has the data with the average number of hops
to contact each QD and then take the sum. Hence, the
expected number of hops to get to the QD with the data is

E HQDData

� �
¼
XNQD

i¼1

PiE HijNQD

� �
: ð11Þ

We can use the above to derive the expected number of
hops to get to the last QD in the system:

E HQDLast

� �
¼ E HNQD

jn ¼ NQD

� �
¼
XNQD

j¼1

E Hjn ¼ j½ �: ð12Þ

Assuming a uniform cache size, the probability that the data
is located in QDi, Pi, is equal to 1=NQD.

4.1.3 Expected Number of Hops to the External Network

Assuming an a� a topography filled with a sufficient
number of nodes that are uniformly distributed, the
expected distance to the AP, assumed to be at the corner, is

E½SAP � ¼
Za
0

Za
0

1

a2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
dxdy: ð13Þ
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This seemingly trivial problem has a complex solution,
which is illustrated in Appendix A. After dividing the result
by the transmission range r0, we get the expected number of
hops E½HAP �:

E½HAP � ¼ E½SAP �=r0 ¼ 0:7652a=r0: ð14Þ

4.1.4 Query Directory Access and Delay

To compute the average system delay, we must account for
the hit ratio Rhit, since with a low Rhit, the average number
of accessed QDs will be near the total number of QDs, while
with a high Rhit, it will be near the median number of QDs.
We also need to account for the delay for transmitting
packets between nodes inside the network Tin and the delay
for accessing a node outside the network (data source) Tout.
The delay will vary depending on several factors, such as
node location, packet size, the number of hops to reach
a node, and network congestion. For simplicity, however,
Tin and Tout are assumed to be average delays that account
for these factors. Finally, it is noted that the processing
delays at the CNs and QDs were neglected since the process
of searching for the query ID takes very small time when
compared to Tin and Tout.

In the case of a hit and after a delay of TinE½HQDData
�

(to get to the QD with the data), an additional delay of
2 TinE½H� is incurred to access the CN and transmit the
reply back to the RN. For a miss and after a delay of
TinE½HQDLast

� (to traverse all QDs), a delay of TinE½HAP � is
first incurred to forward the request to the AP. This is
followed by a delay of 2Tout for accessing the DB and getting
its reply and a further TinE½HAP � to send it back to the RN.
Considering the above terms and ignoring the processing
delays of the database, QDs, and CNs, the following
expression gives the average delay for the COACS model:

E½� �¼RhitTin E HQDData

� �
þ2E½H�

� 	
þ ð1�RhitÞ Tin E HQDLast

� �
þ2E½HAP �

� 	
þ2Tout

� 	
:
ð15Þ

From the above, the upper and lower limits of delay can
be determined by setting Rhit to zero and one, respectively.
The best and worst performances are respectively the hit
and miss ratio delays:

E½�hit� ¼ Tin E HQDData

� �
þ 2E½H�

� 	
; ð16Þ

E½�Miss� ¼ Tin E HQDLast

� �
þ 2E½HAP �

� 	
þ 2Tout: ð17Þ

One can observe that when there is a miss, the average
delay of the system is greater than 2ðTinE½HAP � þ ToutÞ,
which means that the node would have a lower delay
collecting data from the database server itself. However,
one of the advantages of this system is that the average hit
ratio increases rapidly, which, in turn, decreases the
average response time.

4.1.5 Determining the Maximum Number of

Query Directories

With the above information, we are ready now to apply the
expression in (3) and determine the upper limit of NQD.
First, however, we specify the delay for going straight to the
database as

E½�NoCaching� ¼ Tin 2E½HAP �ð Þ þ 2Tout: ð18Þ

Next, we can plug in the expressions of E½H�, E½HQDData
�,

E½HQDLast
�, and E½HAP � in (15) and then use the resultant

expression along with (18) in (3). We get the following
inequality:

E½HQDData
�þð1=Rhit�1ÞE HQDLast

� �
�0:4884a=r0�2Tout=Tin<0:

ð19Þ

Since E½HQDData
� and E½HQDLast

� are recursively derived, the
inequality in (19) is evaluated for different values of Rhit

and NQD. We want to determine the maximum NQD value
Nmax
QD that satisfies (19) for each Rhit value. For example, by

setting a=r0 to 10 for a 1 Km2 area and Tout=Tin to eight, we
obtain the results shown in Fig. 4a, which illustrates the
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Fig. 4. (a) Average delay for different hit ratio values versus NQD plotted against the delay of no caching. (b) Delay versus hit ratio for different

NQD values.



value of Nmax
QD for different Rhit values, as shown in Table 2.

The right graph shows the delay versus Rhit when NQD

varies. It demonstrates that as Rhit increases (fewer trips are
made to the data source), the resultant time savings are
increasingly greater than the additional delay incurred by
adding a QD.

4.2 Load Balancing on Query Directories

Since QDs are ordinary nodes themselves, an objective would
be to minimize the number of requests handled by each node
without degrading the system’s performance. Given that
MDPF calls for forwarding the request to the nearest QD and
that the RN may be any one in the network, the initial QD may
then be any of the QDs. Similarly, the second QD may be any
of the remaining QDs, and so on. Hence, the order in which
the QDs are accessed will be uniformly random. We define
the load ratio on QDi, �i, as the ratio of the number of
accesses on QDi to the total number of requests issued
and assume that the QDs have varying cache sizes. Having
a cache size Ci for QDi with no replication, the probability Pi
of finding a random query in QDi is

Pi ¼
CiPNQD

j¼1

Cj

¼ Ci
Ctotal

: ð20Þ

Using this probability, we calculate the load ratio on each
QD in the system ð�iÞ. The derivation of �i is given in
Appendix B and is found to be equal to

�i ¼ Rhit
Pi � 1

2
þ 1: ð21Þ

Note that in the case of a uniform cache size, pi ¼ 1=NQD,
and hence, (21) becomes

�i ¼
Rhit

2
� 1�NQD

NQD
þ 1: ð22Þ

The expression in (21) is plotted in Fig. 5, where one QD
has twice the cache size with respect to the others that have
the same size. The curves illustrate the load trends for the
QD with double the capacity and for any of the other QDs,
as the number of QDs increases. As shown, the load starts
high, especially for the double-capacity QD and then
decreases toward lower bounds associated with different
hit ratios. The curves illustrate that beyond a certain
number of QDs, the benefit in terms of lessening the load
becomes insignificant and also show that the lower limit
of the load per QD is 0.5 under the best circumstances
(100 percent hit ratio and large NQD).

As expected, the largest QD will experience the largest
load, but as NQD increases, this load gets increasingly closer
to that of the other nodes. We find the above results

motivating in two ways. First, a QD donating twice the
amount of cache size is not penalized with much more load.
Second, all other nodes will generally benefit in terms of
load. Hence, the load balancing property of the system is
not greatly disturbed when the caching capacities of the
QDs fluctuate.

4.3 Determining the Starting Number of
Query Directories

The starting number of QDs should be chosen so as to
minimize both the delay and the load on QDs. To build the
system of QDs, there are two possibilities: 1) start with
one QD and then add QDs on demand as the need for more
caching capacity arises or 2) start with NQD QDs such that
Nstrt
QD � NQD � Nmax

QD for a desired hit ratio and add QDs as
needed. We start with Nstrt

QD since this leads to better
performance and reduced overhead: the load on QDs will
initially be lower, and the overhead plus delay involved in
adding a QD while a request is pending will be reduced.

To determine Nstrt
QD , we look for the value of NQD after

which the effect of adding one QD will offer a load fraction
relief that is less than a threshold KL. First, we multiply the
load fraction �i for QDi by the request rate (RR) per node
Rreq and by the number of nodes N to get the total number
of requests handled by this QD. Next, we take the
derivative of the resulting function with respect to NQD

and set it to KL. Given the infinite number of possible
relative cache sizes within the system of QDs, we assume
that all QDs have nearly the same cache size (i.e., use (22)).
The derived number of QDs will then become the lower
bound (starting number) of NQD:

Nstrt
QD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NRreqRhit

2KL

r
: ð23Þ

Taking KL ¼ 0:1 (10 percent), Rreq ¼ 0:1, and N ¼ 100,
Table 3 gives the Nstrt

QD for different hit ratio values.
After the first QD is assigned, it will have a complete list

of the nodes’ scores, number of hops from the routing table,
and cache sizes, all sorted by score. This first QD will
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TABLE 2
Values for the Maximum Values of NQD to

Avoid Excessive Delays

Fig. 5. Fraction of load per QD for different hit ratios. The top curve in

each pair is for the QD with double the size while the lower curve is for

each of the remaining QDs.



estimate the network size by multiplying the number of
hops by the transmission range ðr0Þ. It then estimates the
maximum achievable hit ratio by summing the node cache
sizes and dividing by the size cost of caching an item
ð2� average query sizeþ average result sizeÞ and then by the
total number of queries ðnqÞ. Using this data, the node then
calculates Nmax

QD in accordance with (19) and Nstrt
QD using (23)

and then sets NQD to the smaller of the two (at low hit ratios
Nmax
QD may be smaller). Finally, it sends a QDAP to the other

Nstrt
QD � 1 nodes at the top of the score list using MDPF and

broadcasts a CIP to the network to inform the nodes about
the list of QDs.

4.4 Network Traffic and Bandwidth Consumption

The traffic generated by the COACS system may be
categorized into two types: traffic that is due to submitting
requests and getting results and traffic that results from
performing system management functions (e.g., replacing
disconnected QDs). The second type requires an estimate of
the node disconnection rate, and hence, we start this section
with a study to derive an approximation of this rate.
Next, we investigate the overall traffic generated in the
network and compare it to the case of Cache Path, Cache
Data, and no caching. Finally, we derive expressions to
estimate the bandwidth consumption per node.

4.4.1 Expected Node Disconnection Rate

In this study, we assume that nodes will leave the network
mostly because of mobility, and the network has a sufficient
number of nodes to stay internally connected. Hence, nodes
leave the network only if they are at the edge. We base the
analysis on the random waypoint (RWP) mobility model
that is used in the network simulator software ns-2. We will
therefore refer to the movement epoch, or simply epoch,
which is a random movement from one point to another at a
constant speed and in a random direction. In [3], the
probability density function (pdf) and the expected value of
the length L of an epoch for the RWP model in an area of
size a� b were derived. The pdf is identical to that in (4),
while the EðLÞ for a square area is equal to 0:521a. Using
these derivations, we calculate the expected number of
nodes that will disconnect per second, as illustrated in
Appendix C, and obtain

E½Ndisc� ¼
N � Pd
EðLÞ=v ; ð24Þ

where N is the total number of nodes, v is the constant
speed of the epoch movement, and Pd is the probability that
a node will exit the network. As an example, for a ¼ 1;000,
r0 ¼ 100, and Pd ¼ 0:175, then, given 100 nodes and an
average speed of 2 m/s, the expected time of one movement
epoch is about 260 seconds, and the expected number of
nodes that will leave the network per second (disconnection
rate) is 0.067.

4.4.2 Overall Network Traffic

We start by defining the different packets fields and their
sizes in Table 4. The packet header sizes for IP, TCP, UDP,
and 802.11 are 20, 20, 8, and 34 bytes, respectively. These
fields are used to derive the sizes of the messages used in
COACS and the number of times these messages are sent
during a given time (Table 5). Moreover, this data is also
used to compute the number of requests and replies in
Cache Path, Cache Data, and No Caching (Table 6).

With respect to the data in Table 5, the terms nreq and

Ttotal denote the total number of requests per node and the

network lifetime, respectively, while PQD
full and PCN

full repre-

sent the average probabilities that a QD’s cache and a CN’s

cache are full. It is noted that Pfull is a dynamic value that

changes, for example, when queries are cached in QDs or

when a new QD is added. The term 1=ð1� PQD
fullÞ is an

approximation of
PNQD

n¼0 PQD
full

� �n
, which is one plus the

probability that the first contacted QD is full and the

probability that both the first and second QDs are full, and

so on, including the probability that all QDs are full. This

expression is used to determine the number of transmis-

sions of the QCRP to cache a single query. This packet is

sent initially by the CN and then from one QD to another

until the query is cached or all QDs are checked. The term

ðPfullÞNQD alone is the probability that all QDs are full and is

used to determine the number of times a QDAP is sent.

Next, the term E½QD� is the expected number of traversed

QDs to get a hit and is equal to E½HQDdata�=E½H�. On the

other hand, when NQD is divided by N , it gives the

probability that a node is a QD, while when the number of

cached queries in the system nq �Rhit is divided by NQD, it

yields the average number of queries that a QD caches.
If we multiply the entries in the third and fourth columns

for each packet type in Table 5 and take the sum, we get an
estimate of the total network traffic during Ttotal. This and
the data in Table 6 were plugged into Matlab to generate
plots of the traffic for COACS, CachePath, CacheData, and
No Caching. We consider a 1 Km2 area with 100 nodes
generating 100 requests each. For CAOCS, NQD was varied
with the hit ratio while considering both Nmax

QD and Nstrt
QD .

Taking Ttotal ¼ 3;000 seconds, we can then use the results in
Section 4.4.1 to compute the expected number of times
nodes go offline and get a value that is very close to 200
(most of, if not all, the nodes that leave the network will
rejoin soon after or eventually, and hence, the network will
not drain out of nodes). Assuming that PQD

full ¼ PCN
full ¼ 0:7
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Values for the Starting Values of NQD for a Uniform Cache Size
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Packet Fields and Their Sizes



(70 percent cache full), Fig. 6 compares the overall traffic for
the four systems and presents the control packet overhead
for COACS.

In the figure, the curves that correspond to Nstrt
QD and

Nmax
QD represent the lower and upper bounds for the overall

traffic, respectively. As shown, with Nstrt
QD QDs, the traffic

for COACS is higher than that of CachePath but gets closer
to it as Rhit increases. Moreover, as we shall observe
from the simulation results, COACS operates at a Rhit close
to 0.8 (given the availability of cache capacity), while in
CachePath, Rhit can get up to 0.4. Thus, the effective
network traffic generated under COACS is less than that
generated in a CachePath system. Relative to Fig. 6b, all
packets except DRP and DREP are considered control
packets.

4.4.3 Network Traffic per Node

To estimate the bandwidth consumption per node, we
multiply the average packet size by the rate of the packets
sent, received, or passing through a specific node. The
traffic induced by the setup packets, namely, HELLO, CIP,
and QDAP, are excluded since they are only sent at system
start-up or when a QD is added/replaced, and therefore,
they have transient effects. The main packet types involved
in calculating the average traffic per node are shown in
Table 7, together with the sending and receiving rates for a
CN or RN and the added rates for a QD. The traffic on a QD
is the sum of both because a QD also requests and caches
queries just like any other node.

The above expressions do not include forwarding traffic.
To account for it, we calculate the overall traffic as above
but replace nreq with Rreq (RR per node) and exclude the
originating and receiving node traffic (by subtracting one
from the values of E½H�, E½HAP �, E½HQDdata�, and E½HQDlast�)
and then divide the result by the total number of nodes.
The average forwarding traffic per node versus NQD is
shown in Fig. 7 for different hit ratios.

The average bandwidth consumption per node can be
calculated by multiplying the values in Table 7 by their
respective packet sizes, summing the results, and then adding
the forwarding traffic. The average traffic at a QD and at a
CN plus the penalty that a QD pays are all plotted in Fig. 8
while setting the RR per node to 9 requests per minute
ðRreq ¼ 0:15Þ. Figs. 9a and 9b, on the other hand, show the
effect of varying the RR on the bandwidth.

Finally, Fig. 9c illustrates the impact of changes in the
number of nodes on the average traffic at a QD node. As
illustrated in this graph, this traffic increases linearly with
the increase of N . The increase in traffic is justified since
more nodes will be submitting requests, and these requests
must be forwarded through the existing network nodes,
which will increase the traffic on each node and, conse-
quently, on the whole network.

5 PERFORMANCE EVALUATION

To assess the performance of COACS and compare it
to other systems, namely, CachePath and CacheData, all
three systems were implemented using the ns-2 software
with the CMU wireless extension [16]. The underlying ad hoc
routing protocol chosen was DSDV, which is suitable for
MDPF. However, we also present a scenario implemented
using the AODV routing protocol. The wireless bandwidth
and the transmission range were assumed to be 2 Mbps and
100 m, respectively, while the topography size was set to
1,000� 1,000 m, and the AP that connects the database to the
wireless system was placed near one of the corners. The
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TABLE 5
COACS Packet Sizes and the Number of Times Sent during the Network Lifetime

TABLE 6
Number of Times a Packet Is Sent in No Caching,

CachePath, and CacheData



nodes were randomly distributed in the topography and

followed the RWP movement model. We set the minimum

and maximum speeds of the nodes (Vmin and Vmax) to

0.01 and 2.00 m/s, respectively, and the pause time to

100 seconds. However, in order to study the effect of high

mobility on the network, we present a scenario withVmin set to

10 m/s and Vmax to 20 m/s, and accordingly, the average

velocity Vavg was found to be equal to 13.8 m/s. Finally, the

delay at the data source link ðToutÞwas set to 40 ms, which is
relatively low by Curran and Duffy’s [8] standards. The
rest of the simulation parameters are listed with their values
in Table 8 and are chosen so as to run the different caching
systems on scenarios that were as identical as possible.

In order to calculate the number of runs required for
achieving at least a 90 percent confidence level, we ran a
scenario with default parameter values 10 times. For each
simulation run, the pseudorandom generator seed (based on
the clock of the ns-2 simulator’s scheduler) and the node
movement file were changed. The average hit ratio and delay
of the system were computed starting from T ¼ 500 seconds,
and the mean and standard deviation for each set
were calculated. Next, the number of runs required to
achieve the 90 percent confidence was computed using the
central limit theorem, as discussed in [1]. The þ=�
precision values for the hit ratio and the delay were chosen
as 0.2 and 10 ms, respectively (approximately 20 percent of
the measured maximum value). The required number of
runs was found to be equal to nine for the hit ratio and four
for the delay. As a consequence, we computed the result of
each scenario from the average of nine simulation runs.

In the simulation, each node sends a request every
10 seconds selected from 10,000 different ones following a
biased strict Zipf-like access pattern [20], which has been
used frequently to model nonuniform distributions [5]. In
Zipf’s law, an item ranked i ð1 � i � nqÞ is accessed with
probability 1= i�

Pnq
k¼1 1=k�

� 	
, where � ranges between
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Fig. 6. (a) Total traffic generated during 3,000 seconds. (b) Control packet overhead.

TABLE 7
COACS Packet Send/Receive Rate per Node

Fig. 7. Average forwarding traffic passing by a node in a COACS system.



zero (uniform distribution) and one (strict Zipf distribu-
tion). The access pattern is also location dependent in the
sense that nodes around the same location tend to access
similar data (i.e., have similar interests). For this purpose,
the square area was divided into 25 zones 200 m � 200 m
each. Clients in the same zone follow the same Zipf pattern,
while nodes in different zones have different offset values.
For instance, if a node in zone i generated a request for
data id following the original Zipf-like access pattern,

then the new id would be set to ðidþ nq mod ðiÞÞmod ðnqÞ,
where nq is the database size. This access pattern can make
sure that nodes in neighboring grids have similar, although
not the same, access pattern. The time-out mechanism for
COACS was implemented as follows: After each node
sends a request, it waits for T ¼ 1 second before sending
the same request again if it does not receive an answer
within T , then it waits for another T second, and so on.
After 10 seconds, the node checks if it has not received an
answer for this request; if it has not, it considers this request
as failed and generates a new request. The percentage of
successfully answered requests is stated in Section 5.1.

The starting number of QDs was set to seven in accordance
with the above study and were randomly distributed in
the topography. The times taken to reply to the requests,
in addition to other relevant results, were logged and were
used to generate the output that is discussed next.

5.1 Hit Ratio

The effective cache size in CachePath is not the sum of the
caching capacity of all the nodes, since significant amounts

972 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 7, NO. 8, AUGUST 2008

Fig. 8. Average bandwidth consumption for a QD, CN, and penalty for being a QD.

Fig. 9. Average bandwidth consumption versus RR for (a) a QD and (b) a CN and (c) the effect of increasing the number of nodes on the QD bandwidth.

TABLE 8
Parameters Used in the Simulations



of redundancy can easily occur in the system. Additionally,
for a request to be found using this system, it must
“accidentally” pass through a node that is caching the path
to the data or a miss will occur. On the other hand, because
there is coordination between the QDs in COACS, redun-
dancy is eliminated, and the effective caching capacity is the
total cache size of all the nodes. It can be concluded that for
the same amount of resources, COACS uses these resources
more efficiently, thus achieving a much higher hit ratio
compared to CachePath and CacheData. This is shown in
Fig. 10 and is illustrated using four scenarios.

The first scenario corresponds to Fig. 10a, which
represents our normal simulation setup. The second
scenario is depicted in Fig. 10b, which shows that the hit
ratio of the three systems slightly decreases before it
stabilizes at the end of the simulation. In the third scenario
(Fig. 10c), the Zipf parameter � was set to 0.3. In this
scenario, all data items are requested with high probabil-
ities. Since the total number of requests made during the
simulation time is 10,000, which is equal to the number of
data items, it is less likely to find a new request in the cache,
and hence, the hit ratio significantly decreases. Last, the
routing protocol was changed to AODV in the fourth
scenario. Although the hit ratio did not change as compared
to the first scenario, the percentage of answered queries
dropped for the three systems. Using DSDV, the percentage
of answered queries was between 80 percent and 88 percent
for COACS and 79 percent and 91 percent for CachePath
and CacheData. Using AODV, on the other hand, the

percentage of answered queries was 77 percent for COACS,
82 percent for CachePath, and 78 percent for CacheData.

5.2 Average Delay

Fig. 11 compares the average delay of COACS to that of
No Caching, CachePath, and CacheData for the same
four scenarios discussed above. In all scenarios, COACS
clearly outperforms all three systems. As shown in all
graphs, the delay of all systems follows a decreasing trend
(due to increasing hit ratio) until nodes start moving after
500 seconds from the start of the simulation. It can be
observed that at higher mobility, the delay of COACS and
CachePath increases. Moreover, CachePath performs better
than CacheData at low mobility, which is consistent with
the results presented in [19]. The delay of the three systems
is approximately the same when the Zipf parameter � was
set to 0.3. Finally, when AODV is used, the delay of all
systems significantly increases since AODV requires an
overhead delay for discovering new routing paths when
they are needed.

5.3 Varying the Cache Size and the Request Rate

The default cache size of a node was set to 200 Kbit, thus
giving a total cache size in the network of approximately
20 Mbit, in contrast to 100 Mbit for the database size. Fig. 12
shows the effect of varying the cache size of a node on the
hit ratio and delay of the three systems. The average hit
ratio of CachePath and CaheData increases with increasing
cache size, while that of COACS does not change because
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Fig. 10. Hit ratio for COACS, CachePath, and CacheData versus time in four scenarios.



the effective hit ratio in COACS depends on the total cache
size of QDs. The average delay of the three systems
decreases with increasing cache size because fewer cache
replacements are encountered.

Fig. 13 shows the behavior of the hit ratio, delay, and
total network traffic in response to varying the RR, which was
varied between 0.67 and 6 requests per minute. The average
hit ratio of the three systems increases with increasing RR
because more requests are cached. The delay of COACS
decreases with increasing RR up to 1.5 requests per minute,
where it starts increasing again. At low RRs, CacheData
has less delay than CachePath but the situation is reversed
starting from an RR of 2 requests per minute, where
CachePath starts to perform better. Finally, Fig. 13c shows
the overhead traffic of COACS that is caused by the control
packets and request forwarding.

6 CONCLUDING REMARKS AND FUTURE WORK

This paper presented a novel architecture for caching
database data in MANETs that works by caching queries
in special nodes (QDs) and using them as indexes to their
responses. A key feature of the system is its ability to
increase the hit ratio rapidly as more requests for data are
submitted. Lower and upper bounds were derived for the
number of QDs to control the load on these nodes and the
system response time. The design assumed a proactive
routing protocol and relied on updates to the routing table
for detecting nodes leaving and coming into the network.
However, it can be easily adapted to reactive protocols like
AODV through the addition of few messages to invoke
certain system maintenance functions. Simulations results
showed that the system performs significantly better than
other recently proposed systems in terms of achieving
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Fig. 11. Average delay for No Caching, CachePath, CacheData, and COACS.

Fig. 12. Average hit ratio and delay for the three systems when varying the CN cache size.



better hit ratios and smaller delays but at the cost of a
slightly higher bandwidth consumption.

This research focused on the design of the COACS system
and analyzed its performance. There are, however, several
enhancements that can be introduced for improving the
system’s performance and reliability. At the top of the list are
cache invalidation, cache replication, partial cache reuse, and
the graceful shutdown of devices. Cache invalidation aims to
keep the cache consistent with the data source, and for this,
the design of COACS allows for improving on current
methods that use the invalidation report (IR)-based cache
management scheme [7], [18]. Instead of broadcasting the IRs
to all nodes, the server could just send them to the QDs, and
these could in turn disseminate them to the concerned CNs.
This will notably cut down on network traffic and make the
update process more efficient. As to replication, a simple
algorithm could be implemented in which a QD that gets a
request for caching a query would send a QCRP to a distant
QD that is more than a certain number of hops away.
Moreover, the result of the query may also be replicated by
having selected RNs that request such data become CNs even
if the data comes from the cache. This would distribute the
replicas as much as possible in the network and would help in
reducing the average delay. With partial cache reuse, the
system would make more use of the data in the cache and
reduce the network traffic with the external data source.
Semantic caching, in which the client maintains in the cache
both semantic descriptions and the results of previous queries
[17], [12], could be applied by allowing a query to be
answered partially or completely across the QDs. Finally,
relating to graceful shutdown, if a device outage can be
predicted, an attempt could be made to back up part or all of
the data before it is lost.

APPENDIX A

DERIVING THE EXPECTED DISTANCE TO THE

ACCESS POINT

The solution for calculating the expected number of hops to
reach the AP is the outcome of using tables of integration
and the Mathematica software:

E½SAP �¼
1

a2

Za
0

1

2
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
þlog xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p� �ia
0

� �
dy

¼ 1

a2
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1

2
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p
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3
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þ log 1þ
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a ¼ 0:7652 a:

APPENDIX B

CALCULATING THE LOAD RATIO ON EACH QD

When calculating the load ratio on QDi ð�iÞ, all possible

positions of QDi should be taken into account, since the list

of QDs may be accessed in any order. For this purpose, we

define the function PAðaijnÞ, which is the probability that

QDi will be accessed (or have a request forwarded to) given

that it is in position n (where 1 � n � NQD). As explained in

Section 4.2, this probability depends on the cache size of all

nodes that follow QDi. However, since the next nodes are

considered to be random, an expected total cache size must

be determined. Now, since there is no a priori knowledge of

the positions of each of the other nodes in the sequence,
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Fig. 13. (a) Average hit ratio, (b) delay, and (c) total network traffic for different RRs.



their size is estimated using the expected cache size of other
nodes. This is determined as follows (N stands for NQD):

E CjCi½ � ¼ Ctotal � Ci
N � 1

:

We then multiply this value by the number of nodes that
follow QDi and add Ci to get the total expected cache size of
node QDi, as well as all the nodes that follow it. Dividing
the resultant value by the total cache size of the system
gives us PAðaijnÞ as follows:

PA aijnð Þ ¼ Ci þ
ðN � nÞðCtotal � CiÞ

N � 1


 �
1

Ctotal

¼ ðn� 1ÞCi þ ðN � nÞCtotal
ðN � 1ÞCtotal

:

Finally, since the position of QDi is assumed to be
uniformly random, the probability of it being accessed ð�iÞ
is given by taking the average of PAðaijnÞ for all values of n:

PAðaiÞ ¼�i ¼
1

N

XNQD

n¼1

PA aijnð Þ

¼ 1

N

XNQD

n¼1

ðn � 1ÞCi þ ðN � nÞCtotal
ðN � 1ÞCtotal

¼ 0þ 1þ . . .þ ðN � 1Þð ÞCi
NðN � 1ÞCtotal

þ ðN � 1Þ þ ðN � 2Þ þ . . .þ 1þ 0ð Þ
NðN � 1Þ

¼ 0þ 1þ . . .þ ðN � 1Þð ÞðCi þ CtotalÞ
NðN � 1ÞCtotal

¼ NðN � 1ÞðCi þ CtotalÞ
2NðN � 1ÞCtotal

¼ 1

2
þ Ci

2Ctotal
¼ 1þ Pi

2
:

The value of �i is modified to account for the hit ratio (all
nodes will be accessed upon a miss):

�i ¼ Rhit
1þ Pi

2
þ ð1�RhitÞ ¼ Rhit

Pi � 1

2
þ 1:

APPENDIX C

CALCULATING THE EXPECTED NODE

DISCONNECTION RATE

A node that is at the edge of the network will surely
disconnect if it moves away from the network and travels a
distance that is at least r0. The probability that a node is at
the edge of the network (with an a� b area) can be shown to
be 4ðar0 � r2

0Þ=ðabÞ, while the probability of moving away
from the network has an upper bound of 0.5 (in [3], it is
reported that nodes starting from the edge tend to move
back toward the middle of the area). Finally, the probability
of moving a distance r0 is P ðL > r0Þ, and for an a� a area, it
is obtained from the pdf as follows:

P ðL > r0Þ ¼ 1�
Zr0

0

4l

a4

�a2

2
� 2alþ 0:5l2


 �
dl

¼ 1� �r
2
0

a2
þ 8r3

0

3a3
� r4

0

2a4
:

Now, we can define the probability that a node will
disconnect (exit the network) as

Pd ¼
2 ar0 � r2

0

� 	
ab

1� �r
2
0

a2
þ 8r3

0

3a3
� r4

0

2a4


 �
:

Then, we compute the expected number of nodes that will
disconnect per second by dividing Pd by the expected time
of one movement epoch and multiplying by the total
number of nodes:

E½Ndisc� ¼
N � Pd
EðLÞ=v :
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