

Abstract—Packet classification is one of the most important

enabling technologies for next generation network services. Even
though many multi-dimensional classification algorithms have
been proposed, most of them are precluded from commercial
equipments due to their high memory requirements. In this
paper, we present an efficient packet classification scheme, called
Bloom Based Packet Classification (B2PC). B2PC comprises of
an innovative 5-field search algorithm that decomposes multi-
field classification rules into internal single field rules which are
combined using multi-level Bloom filters. The design of B2PC is
optimized for the common case based on analysis of real world
classification databases. The hardware implementation of this
scheme handles 4K rules by involving only 530KB of memory for
its data structures, while it supports network streams at a rate of
15Gbps even in the worst case, and more than 40Gbps in the
average case. This system covers 1.3 mm2 in a 0.18µm CMOS
technology. We show that given a certain memory budget and
silicon cost, the B2PC is the most efficient hardware-based
approach to the classification problem.

Index Terms— Packet classification, QoS, Hardware Scheme

I. INTRODUCTION
It is well established that multi-dimensional packet
classification is a difficult problem [1], [8]. However, it is a
necessity in order to support the next generation networking
services incorporating certain Quality of Service (QoS) and
security. Moreover, the ever growing speed of the
interconnection technologies and the trend for low-cost
networking equipments put additional pressure to the packet
classification schemes. In particular, in order for such a
scheme to be used in a real-world networking environment, it
should support the current state-of-the-art networking speeds
(i.e. OC-768 at 40Gpbs) while it should not be prohibitively
expensive. Since packet classification is a very memory
intensive task the latter is mainly translated to either use of
inexpensive DRAM memories, or of small amounts of
SRAMs; the use of TCAMs, although seems optimal from a
performance perspective, is considered inadequate due to their
very high cost and power consumption.

In general, packet classification requires searching a table of
filters for the highest priority or the most specific filter that
matches a certain incoming packet. Filters (or rules as they are
frequently called) map a flow or a set of flows to a FlowID.
Those filters consist of several fields and many different kinds

of matches are supported (e.g. exact value, prefix and range
matches, etc). Each filter or rule may also have an associated
priority to allow more fine grained flow identification when a
certain packet matches more than one rule.

Specifically, the packet classifiers currently employed in
real systems are 5-dimensional and they use the following
fields: (i) Source IP address (32-bits), (ii) Destination IP
address (32-bits), (iii) Source Port (16-bits), (iv) Destination
Port (16-bits) and (v) Protocol (8-bits). A filter in a classifier
may specify any or all of those fields with prefixes, ranges,
exact values or wildcards.

Given the fact that single field searching is a well studied
problem and many efficient solutions have been proposed,
decomposing a multiple field search problem into several
instances of single field searches seems to be the most
practical approach to the classification problem. However, this
decomposition results in a number of complications. The
primary challenge is to efficiently aggregate and combine the
results of the single field searches. Moreover, the single field
search engines should not only return the longest matching
prefix for a given filter field, since the best matching multi-
dimensional filter may contain a field which would not
necessarily comprise of all the longest single-field matching
prefixes. The majority of the techniques employing
decomposition try to take advantage of certain filter set
characteristics that allow them to limit the number of
intermediate results. In general, the decomposition approach
can provide very high throughput due to its parallel nature.
However, this high lookup performance very often comes at
the cost of memory overhead.

In this paper we propose a classification engine, called
B2PC, which follows a similar approach by decomposing
multi-field classification rules into internal single-field rules,
which are then combined using multi-level Bloom filters [13].
B2PC is optimized for filter-sets with a few thousand rules
and its data structures are handling very efficiently the
common-cases identified in a large set of real-world
classifiers. It uses the BOS single field searching scheme
which has been proved to be very efficient [11]. The main
advantages of B2PC are (i) a highly pipelined organization
which results in processing rates of more than 40Gbps, in the
average case, (ii) the innovative memory structures allowing it
to support those rates with only 530KB of off-chip standard
SRAM, (iii) the small hardware footprint, since its
implementation covers only 1.3 mm2 in a 0.18µm CMOS

Memory-Efficient 5D Packet Classification
At 40 Gbps

Ioannis Papaefstathiou
ECE Department, Technical University of Crete,
Kounoupidiana, Chania, Crete, GR73100, Greece

ygp@ece.tuc.gr

Vassilis Papaefstathiou
Institute of Computer Science – FORTH,

Vassilika Vouton, Heraklio, Crete, GR71110, Greece
papaef@ics.forth.gr

0743-166X/07/$25.00 ©2007 IEEE

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

1370

technology and (iv) the ability to very efficiently support
incremental updates. In general, as the performance section
demonstrates, given a certain memory budget, this scheme
provides the highest throughput compared with all the systems
that have been implemented in hardware.

II. RELATED WORK
A complete review of the proposed approaches to the packet

classification problem can be found in [2],[3],[8]. Each of the
proposed schemes is very interesting from a certain
perspective; many of them are optimized for software
implementation taking advantage of certain features of the
current CPUs, such as the Fat Inverted Segment tree (FIS-tree)
[1] and the scheme in [12] which are taking advantage of the
way the CPU caches work; others are tailored to very large
filters sets (i.e. with more than 106 filters) and 2-dimensional
searches (such as FIS-tree, Tuple Space Search [15], etc). The
problem with all the software approaches is that they cannot
support more than 1Gbps rates even when executed on the
state-of-the-art network processors [9], [18].

In the sub-area of hardware-oriented approaches, Gupta and
McKeown introduced Recursive Flow Classification (RFC)
which provides high lookup rates at the cost of large amounts
of memory [4]. The authors introduced a unique high-level
view of the packet classification problem; essentially, packet
classification can be viewed as the reduction of an m-bit
string, defined by the packet fields, to a k-bit string specifying
the set of matching filters for the packet or the action to be
applied to the packet. For classification on the typical IPv4 5-
tuple, m is 104 bits and k is typically in the order of 10 bits.
The authors also performed a comprehensive study of real
filter sets and extracted several useful properties. Specifically,
they reported that the filter overlap and the associated number
of distinct regions created in the multi-dimensional space is
much smaller than the worst case of O(nd). For example for a
filter set with 1734 filters, the number of distinct overlapping
regions in a four-dimensional space was found to be 4316, as
compared to the worst case which is approximately 1013. The
high performance of their presented scheme comes at the cost
of large amounts of memory. Memory usage for less than
1000 filters ranged from a few hundred kilobytes to over one
gigabyte depending on required performance. The authors
propose a hardware architecture using two 64MB SDRAMs
and two 4MB SRAMs that could perform 30 million lookups
per second when operating at 125MHz. The index tables used
for aggregation require significant pre-computation; which
prohibits dynamic updates at high rates.

Lakshman and Stiliadis introduced another multiple field
packet classification algorithm specifically designed for
hardware implementation. Their technique is commonly
referred to as the Lucent bit-vector scheme or Parallel Bit-
Vectors (BV) [15]. The authors make the initial assumption
that the filters are sorted according to priority. Parallel BV
utilizes a geometric view of the filter set and maps filters into
d-dimensional space. The authors implemented a five field
version with five 128KB SRAMs. This configuration supports
512 filters and performs one million lookups per second.

Baboescu and Varghese introduced the Aggregated Bit-Vector
(ABV) algorithm which seeks to improve the performance of
the Parallel BV technique by using statistical observations of
real filter sets [7]. Simulations with real filter sets show that
ABV reduced the number of memory accesses relative to
Parallel BV by a factor of four. Simulations with synthetic
filter sets show more dramatic reductions by a factor of 20 or
more when the filters sets do not contain any wildcards.
However, as wildcards increase, the reductions become much
more modest. Moreover, no specific hardware-implementation
for the ABV has been proposed or even sketched.

The main advantage of the tuple space search algorithm
[16] is its very small memory requirements (O(N) where N is
the number of rules). However, its search and update speed
heavily depends on the number of active tuples and it is
reported to be, in the worst case, forbiddingly high [10].
Moreover, this scheme supports up to 2-dimensional searches;
it has not been simulated using large classification sets or 5-
dimensional searches, and it is optimized for software
implementation, since the hardware scheme proposed do not
scale for large database sets (i.e. containing more than a few
hundreds of filters).

HiCuts [4] and HyperCuts [5] partition the multi-
dimensional search space based on certain heuristics. Each
query leads to a leaf node in a search tree which stores a small
number of rules that can be searched sequentially to find the
best match. The characteristics of the decision tree (depth,
degree of each node, and search criteria applied to each node)
are configured during a preprocessing phase based on the
performance and cost requirements. The main disadvantage of
HiCuts is its high memory requirements (1MB of SRAM for
only 1700 rules), while it needs 20 memory accesses to find a
specific rule. HyperCuts reduces both the memory accesses
needed and the memory requirements of HiCuts significantly.
Unfortunately, no hardware implementation of this latter
scheme is reported, and the one which is sketched needs a
large number of independent memories (i.e. they mention that
they need at least 10 SRAMs working in parallel).

The scheme with the smallest memory requirements,
proposed so far, is the one by Sun et. Al [10]. The proposed
algorithm has a memory ratio (i.e. the ratio of the total amount
of memory used to that needed to just store the classification
rules) of 2. However, the performance results demonstrated
are based on artificial 2-tuple filter sets, while they mention
that in order to be efficient, it terms of speed, they have to use
the very expensive and power hungry TCAMs. Moreover, it is
not clear how this scheme can scale to 5-tuple classification
and what the silicon-cost of the proposed highly pipelined and
parallel hardware architecture would be.

Our B2PC scheme focuses on today’s 5-tuple filter-sets
with a few thousand entries whereas special care has been
taken so as to be efficiently implemented in hardware, and to
demand moderate amounts of inexpensive (i.e. pure SRAM)
memory. Moreover, the proposed device is capable of
supporting the state-of-the-art network rates of 40Gbps and
beyond, while its silicon cost is very low.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

1371

III. B2PC DESIGN
The design of B2PC is driven by the observations of Gupta

and McKeown [8], described in the last section, as well as our
analysis of the real-world filter sets of [14]. The key issues
affecting our design decisions are mainly the following:
1) Current filter sets’ sizes are small, ranging from tens of

filters to less than 5000. However, it is not clear if the size
limitation is due to the networking applications or it has
been imposed by the limited performance of current
classification solutions.

2) The protocol field is restricted to a small set of values;
TCP, UDP and commonly used wildcards (covering more
than 95% of the cases).

3) Filters specify a limited number of unique transport Port
ranges. The specifications for port ranges vary and have
definitions like ‘greater than 1023’ or ‘20 to 23’.

4) The number of unique address-prefix rules matching a
given source or destination address is usually five or less.

5) The number of single field filters matching a given packet
is typically five or less.

6) Different multi-dimensional rules very often share a
number of single-field values.

7) The number of single field values is significantly less than
the number of overall filters.

A. Single Field Operations
Given that B2PC follows the decomposition approach, it is

essential to employ a very efficient single-field scheme
supporting both exact and prefix matches at very high speeds,
while utilizing small amounts of memory. Those requirements
are fulfilled by the BOS scheme described in [11]. Since our
single-field lookup mechanism should not only report the
longest prefix match but, instead, all the prefixes that match,
we have altered the BOS scheme so as to provide us with All-
Prefix-Matches (APM) and for each match the associated
match length, as described in [17]. Moreover, and since BOS
supports prefix matches, a certain mechanism transforming the
range-based Source and Destination Port rules into prefix-
rules has been employed utilizing the algorithm of [1].
Additionally, the BOS engine that supports those Port Fields
has been fine-tuned since the original BOS supports 32-bit
values while in the port fields we have 16-bit values. For the
Protocol field, in order to perform the necessary 8-bit
searches, we use a 256-entry directly indexed table
(PRO_TBL).

Based on the observations described in the last subsection
the proposed scheme supports up to 4K 5-tuple rules,
therefore, each filter can be identified by a 12-bit FlowID. A
general overview of the B2PC scheme is presented in Fig. 1
where all the discrete components are shown.

B. Internally Represented Filters
In order to reduce the memory requirements we take

advantage of the fact that many rules share the same field
values. In order to cope with this value-sharing issue we
decided to have a special internal representation of the various
filters where each particular field (sub-rule) is assigned an

internal ID during rule insertion. The internal ID of each field
is the originally given Flow ID value of the whole rule. If two
or more rules share the same field-value their internal ID is
equal to the first inserted Flow ID. Table II illustrates how the
rules presented in Table I are kept internally in B2PC. This
information is kept in the 4K entry RULES_TBL which is
directly indexed by the 12-bit flow ID.

A side-effect of this ID sharing scheme is that a certain
internal-ID cannot be deleted unless all the rules employing it
are deleted. In order to cope with this problem, we keep a
reference count for each internal ID on each field. The
maximum number of distinct internal IDs is obviously equal to
the maximum number of supported Flow IDs (i.e. 4K); each
internal ID may be referenced from at most 4K rules and
therefore we need 4K 12-bit counters for each field. Therefore,
in total we need 5 x 4096 12-bit counters in order to efficiently
support incremental updates. Obviously, when a newly
inserted rule references an internal ID, we increment the
appropriate counter and when such a rule is deleted we
decrement the counter. The original single field value is only
deleted when the corresponding counter reaches zero.

C. Combining Results
Given the 5 fields of a packet, B2PC has to find which of

the existing rules best matches all of them. In the first stage,
the five single-field engines provide a number of matching
prefixes and the associated IDs. The IP address fields, namely
Source IP and Destination IP, are prefix-based and may
provide at most 33 matches each; 32 possible matches for the
32 possible prefix lengths and 1 for the zero-length wildcard.
Similarly, the port fields may provide at most 17 matches. In
the protocol field we have only exact-value and “match-all”
searches so this sub-engine returns either a match on the value
itself or the wildcard; therefore we have at most 2 matches.

Fig. 1. Overall Architecture of B2PC

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

1372

The internal IDs and the matching lengths returned by each
of the five single field engines are gathered in certain
collection points, one for every field, and they are then
forwarded to the engine that combines all those results. The
collection points are taking the matched prefixes from all the
single-field modules and keep them in decreasing length order.
Each collection point gives the longest prefix match first and
proceeds with the less specific matches.

The results from every single-field engine should be
combined, so as to cover all the possible permutations, and
then it should be determined which of these permutations are

actually valid (i.e. whether such a multi-field rule exists).
Although the possible number of permutations could be large,
in real-world databases, as it was described in Section III, the
maximum number of matches in each field is typically less
than five and the rules that match a certain incoming packet
are usually less than five, as well. In the vast majority of the
existing network applications, the best matching rule is the
rule that has the most specific value. In order to address this
issue, we first check whether the combination of the internal
IDs that come from the longest single field matches, as the
collection points provide them, is indeed valid; then we
continue on checking the less specific matches. This searching
order has increased the performance of our scheme, when
compared to the random order approach, by up to 22%!
Moreover B2PC assigns priorities to the fields that are taken
into account when the permutations are generated. In
particular, the permutations are generated by keeping the
current matched value of the most significant field, at each
time, and producing the combinations of the values coming
from the less significant fields. Based on analysis of real-
world networking applications the significance of fields in
decreasing order is: Source IP, Destination IP, Source Port,
Destination Port and Protocol.

Note that when all the collection points provide the same
internal ID, then we surely know that this permutation belongs
or used to belong to our set; the same value for all the internal
IDs, in a permutation, denotes that the values in all fields are
the initially inserted ones for this specific rule. The only thing
we have to investigate in this case is whether this rule has
been deleted and the values found have only been kept in the
database due to references from other rules.

To illustrate how these permutations are generated, we
show in Table III the header fields of an incoming packet and
the matched results in the collection points. This example
assumes the rules of Table I, while the matched results are
stored in order, from the most specific to the less specific.

The total number of possible permutations is equal to the
overall product of the number of matches in every field:

Totalperm = #Src IP IDs * #Dest IP IDs * #Src Port IDs *
 #Dest Prt IDs * #Proto IDs.
Hence for the matches shown in Table III the total number

of permutations is: Totalperm = 3 * 2 * 1 * 3 * 2 = 36
These 36 generated permutations are shown in Table IV and

the permutation that corresponds to an existing ruleset entry is
shown in bold.

D. Set Membership Queries with Bloom Filters
One of the most important challenges of B2PC, if not the

most important, is how to identify that a permutation belongs
to the given set of rules. Sequential access to the rule table is
prohibitively slow since we may need to access every single
entry of it. Therefore, a data structure that can efficiently
represent a given ruleset and support quick set membership
queries is needed. Hash tables and B-Trees are widely used for
this type of queries but there are also the Bloom Filters that
have received renewed attention in network applications [13].
The main advantage of those filters, when compared to the

TABLE I
EXAMPLE FILTER SET

No Src IP Dest IP Src
Port

Dest
Port Protocol Flow ID

1 139.91.70.* 147.52.16.* * * TCP 10
2 139.91.*.* 147.102.*.* * 21 TCP 14
3 139.91.*.* 147.27.*.* < 1024 * * 17
4 *.*.*.* 139.91.*.* * 80 UDP 26
5 139.91.70.33 147.52.16.33 135 < 1024 TCP 31
6 139.91.70.36 147.27.*.* < 1024 21 * 45
7 *.*.*.* 147.52.*.* * 23 * 47
8 139.91.*.* 147.52.*.* 135 135 TCP 50
9 139.*.*.* 147.*.*.* * 80 TCP 54

10 139.91.*.* 147.52.*.* * 135 TCP 55

TABLE II
INTERNAL REPRESENTATION OF THE EXAMPLE FILTER SET

No Src IP Dest IP Src Port Dest Port Protocol Flow ID

1 10 10 10 10 10 10
2 14 14 10 14 10 14
3 14 17 17 10 17 17
4 26 26 10 26 26 26
5 31 31 31 31 10 31
6 45 17 17 14 17 45
7 26 47 10 47 17 47
8 14 47 31 50 10 50
9 54 54 10 26 10 54

10 14 47 10 50 10 55

TABLE III
INCOMING PACKET HEADER FIELDS

Src IP Dest IP Src Port Dest Port Protocol

139.91.62.39 147.52.17.25 5000 80 TCP

MATCHED RESULTS IN COLLECTION POINTS
14 47 10 26 10
54 54 - 31 17
26 - - 10 -

TABLE IV

TOTAL POSSIBLE PERMUTATIONS

No Src IP
ID

Dest IP
ID

Src Port
ID

Dest Port
ID

Protocol
ID

1 14 47 10 26 10
2 14 47 10 26 17
3 14 47 10 31 10
· · · · · ·
· · · · · ·

18 54 47 10 10 17
19 54 54 10 26 10
20 54 54 10 26 17
· · · · · ·
· · · · · ·

35 26 54 10 10 10
36 26 54 10 10 17

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

1373

other data structures, is that they can easily be implemented in
hardware while supporting set-membership queries at
extremely high rates. The disadvantage of Bloom filters is that
they may report that a certain item is part of the set, when this
is not the case (i.e. false-positive error).

In order to efficiently support classification databases with
up to 4K rules, B2PC employs suitable Bloom Filters. A very
important characteristic of the Bloom Filter is that its false
positive rate can be tuned, as discussed in [13]. In order to
keep this rate low, we have carefully chosen the size of the
Bloom filter bit-vector and then calculated the corresponding
optimal number of hash functions that set the filter’s
individual bits. Based on an analysis presented in detail in [17]
we ended-up with a bit vector which is 214 bits wide; based on
the latter analysis, the optimal number of hashing functions
that set this vector is 4. Given those parameters, the produced
Bloom Filter has a theoretical false positive probability of
6.2%.

 The bit-vector of the Bloom filter is relatively large to be
kept in registers/flip-flops, and therefore it is stored in a
memory array. Having four hash functions means that we have
to set four bit positions in the bit vector and test four bits at
each access; due to the fact that the bit-vector is to be stored in
a memory array we may require up to four memory accesses
to locate each bit. Thus, in order to avoid sequential accesses,
and since the array is quite small and can easily be kept on-
chip, we split this bit-vector into four equal sub-vectors of 4K
bits each and assign each hash function to one of those sub-
vectors. This allows us to implement the accesses in parallel
and decide in a single parallel memory access if the current
permutation belongs to our set. Additionally, this splitting
prevents the hash functions from setting the same bit.

Since certain bits of the Bloom filter may be shared by
many rules in the ruleset, we cannot delete a bit if other rules
depend on this. Therefore, and in order to efficiently support
incremental updates, we keep counters for every bit of the
Bloom filter. Hence, for the 16K bit-vector of our Bloom filter
we need 16K counters. Each counter is at most 12-bits since
this is the maximum number of rules supported. Accordingly,
a bit from the vector is deleted only when the corresponding
counter reaches zero. Since its sub-vectors comprise of 4K
entries, the hash function produces a 12-bit value. Moreover,
based on our analysis of real filter sets, these hash functions
should use all of the ID information so as to provide discrete
values for each permutation. Inherently, the IDs we use are the
actual Source IP (SIP), Destination IP (DIP), Source Port
(SPO), Destination Port (DPO) and Protocol (PRO) IDs.

After careful analysis of the classification databases and the
Bloom Filter properties, we have defined the hash functions
by the use of XOR, SHIFT (>>,<<) and the reverse (REV)
function according to the following formulas:

BLH1 = (SIP>>4) xor REV(DIP>>2) xor (SPO<<4) xor
(DPO>>3) xor (PRO<<3)

BLH2 = SIP xor (DIP<<6) xor (SPO>>2) xor REV(DPO) xor PRO
BLH3 = (SIP<<3) xor REV(DIP) xor REV(SPO) xor

 DPO xor (PRO<<6)
BLH4 = REV(SIP) xor (DIP<<3) xor (SPO>>3) xor

(DPO<<1) xor (PRO>>2)
The performance of these hash functions is studied and

analyzed in the performance section of this paper.

E. Flow ID Resolving
Once we have a match in a set-membership query we

should first determine whether it is a false positive match and
in case it is not, we have to return the corresponding FlowID.
To locate the FlowID we use a hash table of 16K entries
(HSH_TBL) that gives us the matched FlowID. Once we have
the FlowID we access the RULES_TBL, as described in the
last subsection, and compare the stored IDs with the IDs of the
current permutation. In case all IDs match, we have found the
final result, otherwise this match is a false positive and we
continue by testing the rest of the permutations.

Indexing the HSH_TBL requires a hash function and
obviously this function may produce collisions. Resolving
these collisions is trivial by using variable size blocks (such as
in [11]) that hold the colliding FlowIDs. If more than one
FlowIDs are stored in a specific HSH_TBL entry then we
have to sequentially check all of them. The hash function
proved to produce the optimal, for our case, results uses the
already hashed values of BLH1, BLH2, BLH3 and BLH4 to
indicate an entry in HSH_TBL. Its 14-bit value is defined as
follows:

HSH_TBLindex = (BLH1,00) xor (00,BLH2>>4) xor
(00,BLH3) xor (00,REV(BLH4))

The performance of this hash function is also studied and
analyzed in the performance section.

F. Improving the Efficiency of Set Membership Queries
Following our simple approach, we have to check every

generated permutation for actual membership despite the fact
that a certain pair of source-destination addresses or a pair of
source-destination ports may not be part of the ruleset. To
avoid these useless queries we have used two additional
Bloom Filters that contain the information regarding the IP-
Address pairs and the Port-pairs, respectively. This approach
splits the membership queries problem into two sub-problems.
This splitting is based on McKeown’s observations [8] which
state “that the IP address pairs characterize the actual network
paths and the Port pairs characterize the network
applications”. So in order to speed up the processing time, in
the common case, the additional Bloom filters are checked
first, and if they both provide a match then we query the
“Main” Bloom filter (i.e. the one that holds the actual full
rules). After an analysis of the databases, we claim that for
each of the two Bloom Filters, the optimal approach is to use
an 8K entry bit-vector with two hash functions. We again split
each bit-vector into two equal sub-vectors and store them in
separate on-chip tables so as to exploit parallelism. Moreover,
accessing the Bloom filters of the IP-pair and Port-pair can be
done in parallel and simultaneously with the accesses to the
Main Bloom Filter.

Based on our analysis, we have defined the hash functions
for the IP and Port pairs by the use of XOR, SHIFT and
reverse (REV) function according to the following formulas:

IP_BLH1 = { SIP(6:11) xor DIP(0:5) , SIP(0:5) xor DIP(6:11) }
IP_BLH2 = { SIP(0:5) xor DIP(6:11) , SIP(6:11) xor DIP(0:5) }
PR_BLH1 = SPO xor (DPO<<2)
PR_BLH2 = (SPO<<2) xor REV(DPO)

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

1374

The performance of these hash functions is also studied and
analyzed in the next section.

The number of the generated permutations for the IP-pairs
and the Port-pairs is obviously significantly smaller, compared
to the total number of 5-tuple permutations, and thus they can
be checked for actual membership much faster. When both IP
and Port queries are successful, the matched pairs along with
the 2 possible Protocol matches are processed using the
information contained in the Main Bloom filter. Using the
results of Table III we illustrate, in Table V, which queries are
performed in parallel in the three Bloom filters. The queries in
both IP and Port Bloom Filters are started simultaneously.
When at least one of the Bloom Filters returns a match (while
the other may still process the incoming data) a query to the
Main Bloom Filter is performed.

In general, breaking the problem into two stages allows us
to better handle the required membership tests. Looking at the
actual reasoning behind the searching order the IP-pair
enquiry first determines whether a certain network path exists
in the ruleset, while the Port-pair enquiry checks for certain
network configurations; the final rule membership query
clarifies whether those pairs match together in a rule.
Searching these pairs independently distributes the queries
efficiently and provides faster results as the next section
clearly demonstrates.

IV. SIMULATION RESULTS
In order to measure the efficiency of our scheme we

employed realistic filter sets and test patterns. In particular we
have used Taylor’s ClassBench [14] which is a suite of tools
for performance evaluation of classification algorithms and is
publicly available. ClassBench contains a filter set generator
that uses seeds from real-world filter sets in order to provide
synthetic databases which model real filters in an extremely
accurate manner. Moreover, it includes a packet header
generator that produces a sequence of packet headers to
exercise a given filter set; this generator uses the Pareto
Distribution which is the best available statistical model for
Internet traffic. One of the strong points of our work, when
compared with the related work of Section II, comes from the
fact that we are among the first to use such traces, which

model the real-world classification environment much more
accurately than the artificial filter-sets based on routing tables
that have been used in the past.

The efficiency of B2PC was measured using 8 filter sets of
various sizes. Before we use those filters we analyzed their
properties so as to be sure that they are compliant with the
features described in Section II. Then, we estimated the
efficiency of our approach based on the average and worst-
case number of memory accesses needed for classifying a
network packet, as well as its memory requirements.

In order to accurately model the real-world environment we
generate filter sets that represent the most common
classification applications, namely Access Control List (ACL),
Firewall (FW) and IP Chain (IPC). We used the real-filter’s
seeds and generate 8 such sets; for each one of them all the
features of Section III hold.

A. Hashing Functions and False Positives
As it was described in the last section we incorporate many

hash functions in B2PC in order to either index specific bits of
the Bloom filters or to identify the final FlowID. Looking at
the Bloom Filters’ functions the most important property is to
produce several distinct values and minimize the number of
references to each filter-bit. After a thorough analysis of
different such functions we ended up with those described in
subsections III.D and III.F; Table VI shows the number of bits
set by them, in each of the Bloom filters, as well as the
number of rules that reference these bits. Those results
demonstrate that our hashing functions behave efficiently,
since they set a large number of distinct bits and the number of
references per bit is certainly not high. More specifically, in
the Port Bloom filter, the higher number of references comes
from the fact that we have a small number of common values
as we have described in the last subsection. The Main Bloom
Filter has many bits set with a small average number of
references to each bit, due to the scheme we are using for
creation of the internal IDs which produces many distinct
values. Moreover, the average number of references in the IP
Bloom filter is a little higher than in the Main Bloom filter as
an effect of the small number of unique field values in the
latter compared to the size of the set (i.e. feature III.7); in
other words many rules in a set share the same Source and

TABLE V
PARALLEL BLOOM FILTER QUERIES

IP Pair Permutation Port Pair Permutation Rule Permutation
Query

Number Src IP
ID

Dest IP
ID

Src Port
ID

Dest Port
ID

Src IP
ID

Dest IP
ID

Src Port
ID

Dest Port
ID

Protocol
ID

1 14 47 10 26 - - - - -
2 14 47 10 31 14 47 10 26 10
3 14 47 10 10 14 47 10 26 17
4 14 54 10 26 14 47 10 10 10
5 54 47 10 26 14 47 10 10 17
6 54 54 10 26 - - - - -
7 54 54 10 31 54 54 10 26 10
8 54 54 10 10 54 54 10 26 17
9 26 47 10 26 54 54 10 10 10
10 26 47 10 26 54 54 10 10 17
11 26 47 10 31 26 47 10 26 10
12 26 47 10 10 26 47 10 26 17
13 26 54 10 26 26 47 10 10 10
14 - - - - 26 47 10 10 17

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

1375

Destination IP address. It should be noted that the choice of
the Hash functions is indeed crucial, since different such
functions gave us maximum and average reference numbers
which were up to 3 times higher than the presented ones.

Another important characteristic of the Bloom Filters’ hash
functions is the number of false positives they trigger; the bit-
vector size of the filters influences this same metric. Using the
same filter sets and the corresponding packet headers we
measured the false positive rates shown Table VII.

The observed false positive rate in B2PC is close to the
theoretical 6.2% value for 4K active rules, while it is very low
for small filter sets. The high rate of false positives in IP and
Main Bloom filters for ACL1 and ACL2 filter sets can be
justified by the fact that our hashing functions have produced
higher maximum and average reference counts as shown in
Table VI. More specifically, these filter-sets have an increased
number of matched values per field and thus they produce
more permutations for which the Bloom filters are queried. On
the other hand ACL3, which is the largest database, has a very
low rate of false positives despite the fact that we have
observed the highest maximum and average reference counts.
This is due to the fact that it incorporates a small number of
matches in each of the single fields and therefore fewer
permutations are generated and forwarded to the Bloom filters.

The B2PC also uses a hash function in order to identify the
final FlowID of the matching permutation as described in
subsection III.E. We illustrate the collisions produced by this
hash function in Table VIII. As those results demonstrate, the
function we chose seems ideal for such a classification
framework and produces 34% less collisions in the average
case than the worst hashing function we have studied.

B. Storage Requirements
As it was analytically described in the previous sections,

one of our main concerns, when designing the proposed
framework, was to be very memory efficient. In this
subsection we present the storage requirements of B2PC for
all the generated filter sets. To calculate the total storage for
B2PC we measure the storage requirements of the B2PC
tables and the storage of all the employed BOS engines.

As described in [11] each BOS engine employs a number of
static tables and a group of memory blocks implementing its
dynamic memory management (DMM) scheme. Since each
BOS sub-system supports very few unique values the
requirements of the DMM ranges from 2 to 5 KB for each of
the filter sets. Moreover, every BOS engine requires 73KB for
its static tables; so the total memory requirements of each
BOS engine are at most 78KB.

For the total storage requirements of B2PC we have to
calculate the size of the Bloom filters (including their
associated counters), the counters for the internal IDs of each
BOS engine, the protocol table (PRO_TBL), the hash table
(HSH_TBL) and the rules table (RULES_TBL). For our
calculations we assume standard 36-bit wide memory words.
We also assume that two 12-bit counters, together with the
associated information, are placed in a single 36-bit word and
each rule entry needs 2 memory words. Accordingly, the

storage requirements for all the B2PC components needed are
shown in Table IX. As this table demonstrates all our filter
sets can be supported given just 538KB of memory.

C. Memory Accesses
As described in the last section, the lookup performance of

B2PC mainly depends on the lookup time of each BOS engine
and on the set-membership queries in the Bloom filters.

The BOS scheme was introduced and analyzed in [11]
whereas more details regarding its performance, when APM
results are required, can be found in [17]. The BOS scheme
can work either utilizing only one external SRAM device, in
which case it performs its operations in a serial manner, or in

TABLE VI
NUMBER OF REFERENCES IN BLOOM FILTERS

IP Bloom Filter
(8192 bits)

Port Bloom Filter
(8192 bits)

Main Bloom Filter
(16384 bits) Set

Name # set
bits

Max
Refs

Avg
refs

set
bits

Max
Refs

Avg
refs

set
bits

Max
Refs

Avg
refs

ACL1 2651 29 1,77 305 321 15,39 6566 16 1,43
ACL2 2912 32 2,04 396 336 15,02 7847 10 1,51
ACL3 2985 40 2,23 78 708 85,71 8468 9 1,57
FW1 418 8 1,34 107 47 5,27 1023 4 1,10
FW2 355 13 1,48 219 29 2,40 958 4 1,09
FW3 228 7 1,36 78 29 4,00 568 3 1,09
IPC1 2406 10 1,40 164 650 20,5 5251 5 1,28
IPC2 202 8 1,67 18 111 18,77 503 7 1,34

TABLE VII

OBSERVED FALSE POSITIVES RATE

Set
Name

IP Bloom
False Positives (%)

Port Bloom
False Positives (%)

Main Bloom
False Positives (%)

ACL1 3,2 0 5,1
ACL2 8,4 0 8,3
ACL3 0,005 0 0,01
FW1 3,7 0 0
FW2 1,5 0 0
FW3 2,0 0,7 0,2
IPC1 0,3 0 0,5
IPC2 0,1 0 0

TABLE VIII

HASH TABLE COLLISIONS

Set
Name

Set
Size

Max
Collisions

Average
Collisions

ACL1 2348 3 1,17
ACL2 2974 3 1,19
ACL3 3343 3 1,21
FW1 282 2 1,02
FW2 263 2 1,07
FW3 156 1 1
IPC1 1687 2 1,10
IPC2 169 3 1,29

TABLE IX

B2PC COMPONENTS MEMORY REQUIREMENTS

Component Memory Words Total (Kbytes)
BOS ID counters 10240 45

Bloom Filters counters 16384 72
HSH_TBL 16384 72

RULES_TBL 8192 36
PRO_TBL 256 1

Total (not including BOS) 51456 226

BOS Engines (x4) 69812 312
Total 121268 538

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

1376

parallel mode where four SRAM devices are needed. Based on
our simulations with the filter sets and the corresponding
packets headers, the average number of memory accesses
needed to perform a complete search in a parallel manner is
2,2 while the worst case observed is 6 memory accesses;
when BOS operates in sequential mode we need 9,2 accesses
on average and 25 in the worst case.

The second factor which influences the performance of
B2PC is the number of sequential probes in its Bloom filters.
As described in Section III we query the IP and Port pair
Bloom filters in parallel and then probe the Main Bloom filter
for the matched IP and Port pairs; the results of our
simulations are shown in Table X. In addition to the Bloom
Filter accesses, we have to take into account the accesses in
HSH_TBL (that are equal to the collisions presented in Table
VIII) and two memory accesses to acquire the final rule from
RULES_TBL. The total numbers of average and maximum
memory accesses triggered by the various subsystems of
B2PC (excluding the BOS engines) are presented in Table X.

Finally, in order to get the overall memory accesses needed
by the complete B2PC scheme we sum up the accesses of the
BOS engines with those generated by the other B2PC
subsystems. It should be noted that all four BOS engines can
work in parallel; each of them may be configured in parallel or
in sequential mode depending on the actual cost limitations
(the parallel BOS mode needs four times the SRAM devices
required by the sequential mode). In Table XI we present the

total average number of memory accesses needed so as to
process a complete packet. The worst-case numbers can be
calculated if we add to the numbers of Table X the worst case
number of accesses needed by the BOS engines which is 6 in
the case of the parallel mode and 25 for the sequential mode.

V. HARDWARE DEVICE’S COST & PERFORMANCE
The proposed scheme has been Synthesized and Placed and

Routed for a 0.18µm CMOS technology and it works at
400MHz, covering the area shown in Table XII. Using either
one (in case of sequential accesses) or four (for parallel
accesses) 400MHz inexpensive external SRAMs we have
measured the performance of our hardware system.

 Table XIII presents the network performance of B2PC
counted both in Millions of Packets Per Second (Mpps) and in
Gigabit Per Second (Gbps) assuming the device processes
only minimum-size IP-Packets (40 bytes). Obviously, in case
our classifier is employed in a real-world environment it will
process IP packets with a mean size much greater than 100
bytes, as reported in [14] , and therefore it would easily be
able to support network rates of 40 Gbps or higher.

In order to demonstrate the exploitation space of the
proposed framework we have listed, in Table XIV, the
performance of B2PC together with that of other similar
classification schemes, in terms of supported rules, storage
requirements, and traffic rate serviced. Our comparison
contains the most efficient such schemes, that do not use
TCAMs and have been implemented in hardware. The scheme
in [10] as well as HiCuts and HyperCuts, although they have
been designed so as to have very low memory requirements,
they could not be included in this comparison for a number of
reasons : (a) there is no specific hardware implementation
proposed for any of them, (b) for [10] the efficient
implementation sketched by the authors use very expensive
and power hungry TCAMs, (c) especially HyperCuts which is
more efficient that HiCuts, seems to be a very innovative
approach but unfortunately no assumptions can be made
regarding the performance of their sketched hardware
implementation in terms of operation frequency and actual
memory bandwidth needed, while the fact that they need at
least 10 SRAMs working in parallel, is making it more
expensive than B2PC.

Furthermore, in order to be able to better demonstrate the
efficiency of the various classification schemes when the
memory cost is also taken into account, we introduce the
metric of Mpps per Mbyte. This metric has been calculated for
all the schemes of Table XIV by considering that they all work
at 400MHz and linearly extrapolating their throughput, which
is an optimal (for all but our scheme) assumption. It should be
noted that the ABV scheme has not been implemented in
hardware and therefore some elements are missing in Table
XIV. However, we ended up with the demonstrated
Mpps/Mbyte number based on a number of assumptions: (a)
since ABV is similar, yet more complicated than BV, we can
assume that it would work at the same speed as the latter (a
rather optimistic approach), (b) given the fact that ABV is
about an order of magnitude faster than BV in the majority of

TABLE X
NUMBER OF MEMORY ACCESSES IN B2PC DATA STRUCTURES

(NOT INCLUDING BOS)

Set
Name

Bloom
Filters

Accesses
MAX

Bloom
Filters

Accesses
AVG

Hash
Table

Accesses
MAX

Hash
Table

Accesses
AVG

Total
Accesses

MAX

Total
Accesses

AVG

ACL1 17 2,68 3 1,17 22 5,85
ACL2 29 4,03 3 1,19 34 7,22
ACL3 6 2,01 3 1,21 11 5,22
FW1 22 4,74 2 1,02 26 7,76
FW2 18 3,18 2 1,07 22 6,25
FW3 34 5,34 1 1 37 8,34
IPC1 16 2,16 2 1,10 20 5,26
IPC2 4 2,07 3 1,29 9 5,36

TABLE XI

TOTAL NUMBER OF AVERAGE MEMORY ACCESSES IN B2PC
Set

Name
BOS

Parallel
BOS

Sequential
B2PC

Accesses
B2PC with
Seq. BOS

B2PC with
Par. BOS

ACL1 2,20 9,20 5,85 15,05 8,05
ACL2 2,20 9,20 7,22 16,42 9,42
ACL3 2,20 9,20 5,22 14,42 7,42
FW1 2,20 9,20 7,76 16,96 9,96
FW2 2,20 9,20 6,25 15,45 8,45
FW3 2,20 9,20 8,34 17,54 10,54
IPC1 2,20 9,20 5,26 14,46 7,46
IPC2 2,20 9,20 5,36 14,56 7,56

TABLE XII

B2PC SILICON COST
Components Area (mm2) Equivalent NAND Gates

Combinatorial 0,595 115K
Non-Combinatorial 0,250 48K

Memories 0,456 88K
Total 1.301 251K

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

1377

the cases, the efficiency metric can be calculated by linear
extrapolation.

Table XIV clearly shows that, despite the fact that RFC has
the best throughput, its performance is based on greedy
memory consumption and supports at most 1700 rules. On the
other hand ABV does provide the highest number of
Mpps/Mbytes, which is about 35% higher than that of B2PC,
but it supports such efficiency with 80% less rules than B2PC.
Therefore, we claim that our scheme provides the optimal
bandwidth-to-memory approach, for any device that supports
a few thousand rules. Obviously, if performance is the only
issue RFC would be more appropriate, or for embedded, low-
memory, devices scheme of [10] would probably be
preferable. Moreover, for devices supporting relatively small
filter sets ABV seems the natural case.

In general, the efficiency of the proposed scheme comes
from the fact that it takes advantage of all the specific features
of the current real-world filter databases, while it has been
designed from the beginning for efficient hardware
implementation. The algorithm proposed may be less efficient
from the other algorithms found in the bibliography, in worst-
case scenarios, but the hardware implementation of this
scheme is the most efficient one demonstrated so far when
memory requirements, number of rules and bandwidth are all
taken into account. Moreover, its hardware cost (in terms of
silicon covered) is minimal making it an even more promising
approach for low cost classification engines.

VI. CONCLUSIONS
This paper presents a 5-dimensional classification scheme

optimized for state-of-the-art networking applications/services
which incorporate up to 4K classification rules. The proposed
mechanism decomposes multi-field classification rules into
internal single-field rules, which are then combined using
multi-level Bloom filters. Its main advantages come from the
fact that it employs only 530KB of inexpensive external
SRAMs, while it can support network rates higher than

40Gbps. This scheme has been designed so as to be efficiently
implemented in hardware and it covers 1.3mm2 of silicon in a
0.18µm CMOS technology. As our performance results
demonstrate, given a certain memory budget, number of
supported rules and silicon cost, the B2PC provides the
highest performance when compared to all the similar systems
implemented in hardware.

REFERENCES
[1] A. Feldmann and S. Muthukrishnan, “Tradeoffs for Packet

Classification”, in IEEE Infocom’00, March 2000.
[2] J. van Lunteren and T. Engbersen, “Fast and scalable packet

classification”, IEEE Journal on Selected Areas in Communications,
vol. 21, pp. 560–571, May 2003.

[3] T. Y. C. Woo, “A Modular Approach to Packet Classification:
Algorithms and Results”, in Infocom’00, March 2000.

[4] P. Gupta and N. McKeown, “Packet Classification using Hierarchical
Intelligent Cuttings”, in IEEE Micro, vol. 20:1, Jan/Feb 2000, pp 34-41

[5] S. Singh, F. Baboescu, G. Varghese, and J. Wang, “Packet
Classification Using Multidimensional Cutting”, in ACM
SIGCOMM’03, August 2003.

[6] V. Srinivasan, S. Suri, G. Varghese, and M.Waldvogel, “Fast and
Scalable Layer Four Switching”, in ACM SIGCOMM’98, June 1998.

[7] F. Baboescu and G. Varghese, “Scalable Packet Classification”, in
ACM SIGCOMM’01, August 2001.

[8] P. Gupta and N. McKeown, “Algorithms for Packet Classification”, in
IEEE Network Special Issue, March/April 2001, v15, n2, pp 24-32.

[9] Deepa Srinivasan, Wu-chang Feng "Performance Analysis of Multi-
Dimensional Packet Classification on Programmable Network
Processors",in IEEE LCN 2004, November 2004.

[10] Xuehong Sun, S.K. Sahni, Y.Q. Zhao, “Packet classification consuming
small amount of memory”, in IEEE/ACM Transactions on Networking,
Volume: 13, Issue: 5, pp 1135- 1145, Oct. 2005

[11] I. Papaefstathiou, V. Papaefstathiou, “An innovative low-cost
Classification Scheme for combined multi-Gigabit IP and Ethernet
Networks”, in IEEE ICC’06, June 2006

[12] F. Chang, K. Li, Wu-chang Feng, “Approximate Caches for Packet
Classification”, in IEEE Infocom’04, March 2004

[13] S. Dharmapurikar, P. Krishnamurthy, D.E. Taylor, “Longest Prefix
Matching Using Bloom Filters”, in ACM SIGCOMM’03, August 2003

[14] David Taylor and Jonathan Turner, “ClassBench: A Packet
Classification Benchmark”, in IEEE Infocom’05, March 2005.

[15] T. V. Lakshman and D. Stiliadis, “High-Speed Policy-based Packet
Forwarding Using Efficient Multi-dimensional Range Matching”, in
ACM SIGCOMM’98, September 1998.

[16] V. Srinivasan, S. Suri and G. Varghese, “Packet Classification Using
Tuple Space Search,” in ACM SIGCOM’99, September 1999.

[17] V. Papaefstathiou, “Design and Implementation of Network Packet
Classification Engines”, MSc Thesis, Computer Science Department,
University of Crete, 2005, Heraklion, Crete, Greece.

[18] M. Kounavis, A. Kumar, H. Vin, R. Yavatkar and A. Campbell.
“Directions in Packet Classification for Network Processors”. 9th
HPCA, February 2003.

TABLE XIII
WORST CASE NETWORK PERFORMANCE OF B2PC

Mpps Gbps
Set

Name B2PC with
Seq. BOS

B2PC with
Par. BOS

B2PC with
Seq. BOS

B2PC with
Par. BOS

ACL1 26,57 49,68 8,50 15,90
ACL2 24,36 42,46 7,80 13,59
ACL3 27,73 53,90 8,88 17,25
FW1 23,58 40,16 7,55 12,85
FW2 25,88 47,33 8,28 15,15
FW3 22,80 37,95 7,30 12,14
IPC1 27,66 53,61 8,85 17,16
IPC2 27,47 52,91 8,79 16,93

TABLE XIV

SUMMARY OF CLASSIFICATION SCHEMES

Scheme Freq.
(MHz)

of
Rules

Storage
(# of mems)

Throughput
(Mpps)

Efficiency
(Mpps / Mbyte)

BV [15] 33 512 640KB (5) 1 18,9

RFC [4] 125 1700 976 KB (2) +
15,6 MB (2) 30 5,8

ABV [7] - 700 35KB (-) 3,7 105,7
B2PC 400 3300 540 KB (4) 42,5 78,7

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

1378

