
 

  
Abstract—Packet classification is one of the most important 

enabling technologies for next generation network services. Even 
though many multi-dimensional classification algorithms have 
been proposed, most of them are precluded from commercial 
equipments due to their high memory requirements. In this 
paper, we present an efficient packet classification scheme, called 
Bloom Based Packet Classification (B2PC). B2PC comprises of 
an innovative 5-field search algorithm that decomposes multi-
field classification rules into internal single field rules which are 
combined using multi-level Bloom filters. The design of B2PC is 
optimized for the common case based on analysis of real world 
classification databases. The hardware implementation of this 
scheme handles 4K rules by involving only 530KB of memory for 
its data structures, while it supports network streams at a rate of 
15Gbps even in the worst case, and more than 40Gbps in the 
average case. This system covers 1.3 mm2 in a 0.18µm CMOS 
technology. We show that given a certain memory budget and 
silicon cost, the B2PC is the most efficient hardware-based 
approach to the classification problem. 
 

Index Terms— Packet classification, QoS, Hardware Scheme 

I. INTRODUCTION 
It is well established that multi-dimensional packet 
classification is a difficult problem [1], [8]. However, it is a 
necessity in order to support the next generation networking 
services incorporating certain Quality of Service (QoS) and 
security. Moreover, the ever growing speed of the 
interconnection technologies and the trend for low-cost 
networking equipments put additional pressure to the packet 
classification schemes. In particular, in order for such a 
scheme to be used in a real-world networking environment, it 
should support the current state-of-the-art networking speeds 
(i.e. OC-768 at 40Gpbs) while it should not be prohibitively 
expensive. Since packet classification is a very memory 
intensive task the latter is mainly translated to either use of 
inexpensive DRAM memories, or of small amounts of 
SRAMs; the use of TCAMs, although seems optimal from a 
performance perspective, is considered inadequate due to their 
very high cost and power consumption.  

In general, packet classification requires searching a table of 
filters for the highest priority or the most specific filter that 
matches a certain incoming packet. Filters (or rules as they are 
frequently called) map a flow or a set of flows to a FlowID. 
Those filters consist of several fields and many different kinds 

 
 

of matches are supported (e.g. exact value, prefix and range 
matches, etc). Each filter or rule may also have an associated 
priority to allow more fine grained flow identification when a 
certain packet matches more than one rule. 

Specifically, the packet classifiers currently employed in 
real systems are 5-dimensional and they use the following 
fields: (i) Source IP address (32-bits), (ii) Destination IP 
address (32-bits), (iii) Source Port (16-bits), (iv) Destination 
Port (16-bits) and (v) Protocol (8-bits). A filter in a classifier 
may specify any or all of those fields with prefixes, ranges, 
exact values or wildcards. 

Given the fact that single field searching is a well studied 
problem and many efficient solutions have been proposed, 
decomposing a multiple field search problem into several 
instances of single field searches seems to be the most 
practical approach to the classification problem. However, this 
decomposition results in a number of complications. The 
primary challenge is to efficiently aggregate and combine the 
results of the single field searches. Moreover, the single field 
search engines should not only return the longest matching 
prefix for a given filter field, since the best matching multi-
dimensional filter may contain a field which would not 
necessarily comprise of all the longest single-field matching 
prefixes. The majority of the techniques employing 
decomposition try to take advantage of certain filter set 
characteristics that allow them to limit the number of 
intermediate results. In general, the decomposition approach 
can provide very high throughput due to its parallel nature. 
However, this high lookup performance very often comes at 
the cost of memory overhead. 

In this paper we propose a classification engine, called 
B2PC, which follows a similar approach by decomposing 
multi-field classification rules into internal single-field rules, 
which are then combined using multi-level Bloom filters [13]. 
B2PC is optimized for filter-sets with a few thousand rules 
and its data structures are handling very efficiently the 
common-cases identified in a large set of real-world 
classifiers. It uses the BOS single field searching scheme 
which has been proved to be very efficient [11]. The main 
advantages of B2PC are (i) a highly pipelined organization 
which results in processing rates of more than 40Gbps, in the 
average case, (ii) the innovative memory structures allowing it 
to support those rates with only 530KB of off-chip standard 
SRAM, (iii) the small hardware footprint, since its 
implementation covers only 1.3 mm2 in a 0.18µm CMOS 
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technology and (iv) the ability to very efficiently support 
incremental updates. In general, as the performance section 
demonstrates, given a certain memory budget, this scheme 
provides the highest throughput compared with all the systems 
that have been implemented in hardware. 

II. RELATED WORK 
A complete review of the proposed approaches to the packet 

classification problem can be found in [2],[3],[8]. Each of the 
proposed schemes is very interesting from a certain 
perspective; many of them are optimized for software 
implementation taking advantage of certain features of the 
current CPUs, such as the Fat Inverted Segment tree (FIS-tree) 
[1] and the scheme in [12] which are taking advantage of the 
way the CPU caches work; others are tailored to very large 
filters sets (i.e. with more than 106 filters) and 2-dimensional 
searches (such as FIS-tree, Tuple Space Search [15], etc). The 
problem with all the software approaches is that they cannot 
support more than 1Gbps rates even when executed on the 
state-of-the-art network processors [9], [18].  

In the sub-area of hardware-oriented approaches, Gupta and 
McKeown introduced Recursive Flow Classification (RFC) 
which provides high lookup rates at the cost of large amounts 
of memory [4]. The authors introduced a unique high-level 
view of the packet classification problem; essentially, packet 
classification can be viewed as the reduction of an m-bit 
string, defined by the packet fields, to a k-bit string specifying 
the set of matching filters for the packet or the action to be 
applied to the packet. For classification on the typical IPv4 5-
tuple, m is 104 bits and k is typically in the order of 10 bits. 
The authors also performed a comprehensive study of real 
filter sets and extracted several useful properties. Specifically, 
they reported that the filter overlap and the associated number 
of distinct regions created in the multi-dimensional space is 
much smaller than the worst case of O(nd). For example for a 
filter set with 1734 filters, the number of distinct overlapping 
regions in a four-dimensional space was found to be 4316, as 
compared to the worst case which is approximately 1013. The 
high performance of their presented scheme comes at the cost 
of large amounts of memory. Memory usage for less than 
1000 filters ranged from a few hundred kilobytes to over one 
gigabyte depending on required performance. The authors 
propose a hardware architecture using two 64MB SDRAMs 
and two 4MB SRAMs that could perform 30 million lookups 
per second when operating at 125MHz. The index tables used 
for aggregation require significant pre-computation; which 
prohibits dynamic updates at high rates. 

Lakshman and Stiliadis introduced another multiple field 
packet classification algorithm specifically designed for 
hardware implementation. Their technique is commonly 
referred to as the Lucent bit-vector scheme or Parallel Bit-
Vectors (BV) [15]. The authors make the initial assumption 
that the filters are sorted according to priority. Parallel BV 
utilizes a geometric view of the filter set and maps filters into 
d-dimensional space. The authors implemented a five field 
version with five 128KB SRAMs. This configuration supports 
512 filters and performs one million lookups per second. 

Baboescu and Varghese introduced the Aggregated Bit-Vector 
(ABV) algorithm which seeks to improve the performance of 
the Parallel BV technique by using statistical observations of 
real filter sets [7]. Simulations with real filter sets show that 
ABV reduced the number of memory accesses relative to 
Parallel BV by a factor of four. Simulations with synthetic 
filter sets show more dramatic reductions by a factor of 20 or 
more when the filters sets do not contain any wildcards. 
However, as wildcards increase, the reductions become much 
more modest. Moreover, no specific hardware-implementation 
for the ABV has been proposed or even sketched. 

The main advantage of the tuple space search algorithm 
[16] is its very small memory requirements (O(N) where N is 
the number of rules). However, its search and update speed 
heavily depends on the number of active tuples and it is 
reported to be, in the worst case, forbiddingly high [10]. 
Moreover, this scheme supports up to 2-dimensional searches; 
it has not been simulated using large classification sets or 5-
dimensional searches, and it is optimized for software 
implementation, since the hardware scheme proposed do not 
scale for large database sets (i.e. containing more than a few 
hundreds of filters). 

HiCuts [4] and HyperCuts [5] partition the multi-
dimensional search space based on certain heuristics. Each 
query leads to a leaf node in a search tree which stores a small 
number of rules that can be searched sequentially to find the 
best match. The characteristics of the decision tree (depth, 
degree of each node, and search criteria applied to each node) 
are configured during a preprocessing phase based on the 
performance and cost requirements. The main disadvantage of 
HiCuts is its high memory requirements (1MB of SRAM for 
only 1700 rules), while it needs 20 memory accesses to find a 
specific rule. HyperCuts reduces both the memory accesses 
needed and the memory requirements of  HiCuts significantly. 
Unfortunately, no hardware implementation of this latter 
scheme is reported, and the one which is sketched needs a 
large number of independent memories (i.e. they mention that 
they need at least 10 SRAMs working in parallel). 

The scheme with the smallest memory requirements, 
proposed so far, is the one by Sun et. Al [10]. The proposed 
algorithm has a memory ratio (i.e. the ratio of the total amount 
of memory used to that needed to just store the classification 
rules) of 2. However, the performance results demonstrated 
are based on artificial 2-tuple filter sets, while they mention 
that in order to be efficient, it terms of speed, they have to use 
the very expensive and power hungry TCAMs. Moreover, it is 
not clear how this scheme can scale to 5-tuple classification 
and what the silicon-cost of the proposed highly pipelined and 
parallel hardware architecture would be.  

Our B2PC scheme focuses on today’s 5-tuple filter-sets 
with a few thousand entries whereas special care has been 
taken so as to be efficiently implemented in hardware, and to 
demand moderate amounts of inexpensive (i.e. pure SRAM) 
memory. Moreover, the proposed device is capable of 
supporting the state-of-the-art network rates of 40Gbps and 
beyond, while its silicon cost is very low. 
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III. B2PC DESIGN  
The design of B2PC is driven by the observations of Gupta 

and McKeown [8], described in the last section, as well as our 
analysis of the real-world filter sets of [14]. The key issues 
affecting our design decisions are mainly the following: 
1) Current filter sets’ sizes are small, ranging from tens of 

filters to less than 5000. However, it is not clear if the size 
limitation is due to the networking applications or it has 
been imposed by the limited performance of current 
classification solutions. 

2) The protocol field is restricted to a small set of values; 
TCP, UDP and commonly used wildcards (covering more 
than 95% of the cases). 

3) Filters specify a limited number of unique transport Port 
ranges. The specifications for port ranges vary and have 
definitions like ‘greater than 1023’ or ‘20 to 23’. 

4) The number of unique address-prefix rules matching a 
given source or destination address is usually five or less. 

5) The number of single field filters matching a given packet 
is typically five or less. 

6) Different multi-dimensional rules very often share a 
number of single-field values. 

7) The number of single field values is significantly less than 
the number of overall filters. 

A. Single Field Operations 
Given that B2PC follows the decomposition approach, it is 

essential to employ a very efficient single-field scheme 
supporting both exact and prefix matches at very high speeds, 
while utilizing small amounts of memory. Those requirements 
are fulfilled by the BOS scheme described in [11]. Since our 
single-field lookup mechanism should not only report the 
longest prefix match but, instead, all the prefixes that match, 
we have altered the BOS scheme so as to provide us with All-
Prefix-Matches (APM) and for each match the associated 
match length, as described in [17]. Moreover, and since BOS 
supports prefix matches, a certain mechanism transforming the  
range-based Source and Destination Port rules into prefix-
rules has been employed utilizing the algorithm of  [1]. 
Additionally, the BOS engine that supports those Port Fields 
has been fine-tuned since the original BOS supports 32-bit 
values while in the port fields we have 16-bit values.  For the 
Protocol field, in order to perform the necessary 8-bit 
searches, we use a 256-entry directly indexed table 
(PRO_TBL). 

Based on the observations described in the last subsection 
the proposed scheme supports up to 4K 5-tuple rules, 
therefore, each filter can be identified by a 12-bit FlowID.  A 
general overview of the B2PC scheme is presented in Fig. 1 
where all the discrete components are shown. 

B. Internally Represented Filters 
In order to reduce the memory requirements we take 

advantage of the fact that many rules share the same field 
values. In order to cope with this value-sharing issue we 
decided to have a special internal representation of the various 
filters where each particular field (sub-rule) is assigned an 

internal ID during rule insertion. The internal ID of each field 
is the originally given Flow ID value of the whole rule. If two 
or more rules share the same field-value their internal ID is 
equal to the first inserted Flow ID. Table II illustrates how the 
rules presented in Table I are kept internally in B2PC. This 
information is kept in the 4K entry RULES_TBL which is 
directly indexed by the 12-bit flow ID. 

A side-effect of this ID sharing scheme is that a certain 
internal-ID cannot be deleted unless all the rules employing it 
are deleted. In order to cope with this problem, we keep a 
reference count for each internal ID on each field. The 
maximum number of distinct internal IDs is obviously equal to 
the maximum number of supported Flow IDs (i.e. 4K); each 
internal ID may be referenced from at most 4K rules and 
therefore we need 4K 12-bit counters for each field. Therefore, 
in total we need 5 x 4096 12-bit counters in order to efficiently 
support incremental updates. Obviously, when a newly 
inserted rule references an internal ID, we increment the 
appropriate counter and when such a rule is deleted we 
decrement the counter. The original single field value is only 
deleted when the corresponding counter reaches zero. 

C. Combining Results 
Given the 5 fields of a packet, B2PC has to find which of 

the existing rules best matches all of them. In the first stage, 
the five single-field engines provide a number of matching 
prefixes and the associated IDs. The IP address fields, namely 
Source IP and Destination IP, are prefix-based and may 
provide at most 33 matches each; 32 possible matches for the 
32 possible prefix lengths and 1 for the zero-length wildcard. 
Similarly, the port fields may provide at most 17 matches. In 
the protocol field we have only exact-value and “match-all” 
searches so this sub-engine returns either a match on the value 
itself or the wildcard; therefore we have at most 2 matches.  

Fig. 1.  Overall Architecture of B2PC 
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The internal IDs and the matching lengths returned by each 
of the five single field engines are gathered in certain 
collection points, one for every field, and they are then 
forwarded to the engine that combines all those results. The 
collection points are taking the matched prefixes from all the 
single-field modules and keep them in decreasing length order. 
Each collection point gives the longest prefix match first and 
proceeds with the less specific matches.  

The results from every single-field engine should be 
combined, so as to cover all the possible permutations, and 
then it should be determined which of these permutations are 

actually valid (i.e. whether such a multi-field rule exists). 
Although the possible number of permutations could be large, 
in real-world databases, as it was described in Section III, the 
maximum number of matches in each field is typically less 
than five and the rules that match a certain incoming packet 
are usually less than five, as well. In the vast majority of the 
existing network applications, the best matching rule is the 
rule that has the most specific value. In order to address this 
issue, we first check whether the combination of the internal 
IDs that come from the longest single field matches, as the 
collection points provide them, is indeed valid; then we 
continue on checking the less specific matches. This searching 
order has increased the performance of our scheme, when 
compared to the random order approach, by up to 22%! 
Moreover B2PC assigns priorities to the fields that are taken 
into account when the permutations are generated. In 
particular, the permutations are generated by keeping the 
current matched value of the most significant field, at each 
time, and producing the combinations of the values coming 
from the less significant fields. Based on analysis of real-
world networking applications the significance of fields in 
decreasing order is: Source IP, Destination IP, Source Port, 
Destination Port and Protocol. 

Note that when all the collection points provide the same 
internal ID, then we surely know that this permutation belongs 
or used to belong to our set; the same value for all the internal 
IDs, in a permutation, denotes that the values in all fields are 
the initially inserted ones for this specific rule. The only thing 
we have to investigate in this case is whether this rule has 
been deleted and the values found have only been kept in the 
database due to references from other rules. 

To illustrate how these permutations are generated, we 
show in Table III the header fields of an incoming packet and 
the matched results in the collection points. This example 
assumes the rules of Table I, while the matched results are 
stored in order, from the most specific to the less specific. 

The total number of possible permutations is equal to the 
overall product of the number of matches in every field: 

Totalperm =  #Src IP IDs * #Dest IP IDs * #Src Port IDs *                        
                   #Dest Prt IDs * #Proto IDs. 
Hence for the matches shown in Table III the total number 

of permutations is: Totalperm = 3 * 2 * 1 * 3 * 2 = 36 
These 36 generated permutations are shown in Table IV and 

the permutation that corresponds to an existing ruleset entry is 
shown in bold. 

D. Set Membership Queries with Bloom Filters 
One of the most important challenges of B2PC, if not the 

most important, is how to identify that a permutation belongs 
to the given set of rules. Sequential access to the rule table is 
prohibitively slow since we may need to access every single 
entry of it. Therefore, a data structure that can efficiently 
represent a given ruleset and support quick set membership 
queries is needed. Hash tables and B-Trees are widely used for 
this type of queries but there are also the Bloom Filters that 
have received renewed attention in network applications [13]. 
The main advantage of those filters, when compared to the 

TABLE I 
EXAMPLE FILTER SET 

No Src IP Dest IP Src 
Port 

Dest 
Port Protocol Flow ID 

1 139.91.70.* 147.52.16.* * * TCP 10 
2 139.91.*.* 147.102.*.* * 21 TCP 14 
3 139.91.*.* 147.27.*.* < 1024 * * 17 
4 *.*.*.* 139.91.*.* * 80 UDP 26 
5 139.91.70.33 147.52.16.33 135 < 1024 TCP 31 
6 139.91.70.36 147.27.*.* < 1024 21 * 45 
7 *.*.*.* 147.52.*.* * 23 * 47 
8 139.91.*.* 147.52.*.* 135 135 TCP 50 
9 139.*.*.* 147.*.*.* * 80 TCP 54 

10 139.91.*.* 147.52.*.* * 135 TCP 55 
 

TABLE II 
INTERNAL REPRESENTATION OF THE EXAMPLE FILTER SET  

No Src IP Dest IP Src Port Dest Port Protocol Flow ID 

1 10 10 10 10 10 10 
2 14 14 10 14 10 14 
3 14 17 17 10 17 17 
4 26 26 10 26 26 26 
5 31 31 31 31 10 31 
6 45 17 17 14 17 45 
7 26 47 10 47 17 47 
8 14 47 31 50 10 50 
9 54 54 10 26 10 54 

10 14 47 10 50 10 55 
 

TABLE III 
INCOMING PACKET HEADER FIELDS  

Src IP Dest IP Src Port Dest Port Protocol 

139.91.62.39 147.52.17.25 5000 80 TCP 

MATCHED RESULTS IN COLLECTION POINTS 
14 47 10 26 10 
54 54 - 31 17 
26 - - 10 - 

 
TABLE IV 

TOTAL POSSIBLE PERMUTATIONS  

No Src IP 
ID 

Dest IP 
ID 

Src Port 
ID 

Dest Port 
ID 

Protocol 
ID 

1 14 47 10 26 10 
2 14 47 10 26 17 
3 14 47 10 31 10 
· · · · · · 
· · · · · · 

18 54 47 10 10 17 
19 54 54 10 26 10 
20 54 54 10 26 17 
· · · · · · 
· · · · · · 

35 26 54 10 10 10 
36 26 54 10 10 17 
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other data structures, is that they can easily be implemented in 
hardware while supporting set-membership queries at 
extremely high rates. The disadvantage of Bloom filters is that 
they may report that a certain item is part of the set, when this 
is not the case (i.e. false-positive error). 

In order to efficiently support classification databases with 
up to 4K rules, B2PC employs suitable Bloom Filters. A very 
important characteristic of the Bloom Filter is that its false 
positive rate can be tuned, as discussed in [13]. In order to 
keep this rate low, we have carefully chosen the size of the 
Bloom filter bit-vector and then calculated the corresponding 
optimal number of hash functions that set the filter’s 
individual bits. Based on an analysis presented in detail in [17] 
we ended-up with a bit vector which is 214 bits wide; based on 
the latter analysis, the optimal number of hashing functions 
that set this vector is 4. Given those parameters, the produced 
Bloom Filter has a theoretical false positive probability of 
6.2%.  

 The bit-vector of the Bloom filter is relatively large to be 
kept in registers/flip-flops, and therefore it is stored in a 
memory array. Having four hash functions means that we have 
to set four bit positions in the bit vector and test four bits at 
each access; due to the fact that the bit-vector is to be stored in 
a memory array we may require up to four memory accesses 
to locate each bit. Thus, in order to avoid sequential accesses, 
and since the array is quite small and can easily be kept on-
chip, we split this bit-vector into four equal sub-vectors of 4K 
bits each and assign each hash function to one of those sub-
vectors. This allows us to implement the accesses in parallel 
and decide in a single parallel memory access if the current 
permutation belongs to our set. Additionally, this splitting 
prevents the hash functions from setting the same bit.  

Since certain bits of the Bloom filter may be shared by 
many rules in the ruleset, we cannot delete a bit if other rules 
depend on this. Therefore, and in order to efficiently support 
incremental updates, we keep counters for every bit of the 
Bloom filter. Hence, for the 16K bit-vector of our Bloom filter 
we need 16K counters. Each counter is at most 12-bits since 
this is the maximum number of rules supported. Accordingly, 
a bit from the vector is deleted only when the corresponding 
counter reaches zero. Since its sub-vectors comprise of 4K 
entries, the hash function produces a 12-bit value. Moreover, 
based on our analysis of real filter sets, these hash functions 
should use all of the ID information so as to provide discrete 
values for each permutation. Inherently, the IDs we use are the 
actual Source IP (SIP), Destination IP (DIP), Source Port 
(SPO), Destination Port (DPO) and Protocol (PRO) IDs. 

After careful analysis of the classification databases and the 
Bloom Filter properties, we have defined the hash functions 
by the use of XOR, SHIFT (>>,<<) and the reverse (REV) 
function according to the following formulas: 

BLH1 = (SIP>>4) xor REV(DIP>>2) xor (SPO<<4) xor  
(DPO>>3) xor (PRO<<3) 

BLH2 = SIP xor (DIP<<6) xor (SPO>>2) xor REV(DPO) xor PRO 
BLH3 = (SIP<<3) xor REV(DIP) xor REV(SPO) xor 

 DPO xor (PRO<<6) 
BLH4 = REV(SIP) xor (DIP<<3) xor (SPO>>3) xor 

(DPO<<1) xor (PRO>>2)  
The performance of these hash functions is studied and 

analyzed in the performance section of this paper. 

E. Flow ID Resolving 
Once we have a match in a set-membership query we 

should first determine whether it is a false positive match and 
in case it is not, we have to return the corresponding FlowID. 
To locate the FlowID we use a hash table of 16K entries 
(HSH_TBL) that gives us the matched FlowID. Once we have 
the FlowID we access the RULES_TBL, as described in the 
last subsection, and compare the stored IDs with the IDs of the 
current permutation. In case all IDs match, we have found the 
final result, otherwise this match is a false positive and we 
continue by testing the rest of the permutations. 

Indexing the HSH_TBL requires a hash function and 
obviously this function may produce collisions. Resolving 
these collisions is trivial by using variable size blocks (such as 
in [11]) that hold the colliding FlowIDs. If more than one 
FlowIDs are stored in a specific HSH_TBL entry then we 
have to sequentially check all of them. The hash function 
proved to produce the optimal, for our case, results uses the 
already hashed values of BLH1, BLH2, BLH3 and BLH4 to 
indicate an entry in HSH_TBL. Its 14-bit value is defined as 
follows: 

HSH_TBLindex = (BLH1,00) xor (00,BLH2>>4) xor  
(00,BLH3) xor  (00,REV(BLH4)) 

The performance of this hash function is also studied and 
analyzed in the performance section. 

F. Improving the Efficiency of Set Membership Queries  
Following our simple approach, we have to check every 

generated permutation for actual membership despite the fact 
that a certain pair of source-destination addresses or a pair of 
source-destination ports may not be part of the ruleset. To 
avoid these useless queries we have used two additional 
Bloom Filters that contain the information regarding the IP-
Address pairs and the Port-pairs, respectively. This approach 
splits the membership queries problem into two sub-problems. 
This splitting is based on McKeown’s observations [8] which 
state “that the IP address pairs characterize the actual network 
paths and the Port pairs characterize the network 
applications”. So in order to speed up the processing time, in 
the common case, the additional Bloom filters are checked 
first, and if they both provide a match then we query the 
“Main” Bloom filter (i.e. the one that holds the actual full 
rules). After an analysis of the databases, we claim that for 
each of the two Bloom Filters, the optimal approach is to use 
an 8K entry bit-vector with two hash functions. We again split 
each bit-vector into two equal sub-vectors and store them in 
separate on-chip tables so as to exploit parallelism. Moreover, 
accessing the Bloom filters of the IP-pair and Port-pair can be 
done in parallel and simultaneously with the accesses to the 
Main Bloom Filter.  

Based on our analysis, we have defined the hash functions 
for the IP and Port pairs by the use of XOR, SHIFT and 
reverse (REV) function according to the following formulas: 

IP_BLH1 = { SIP(6:11) xor DIP(0:5) , SIP(0:5) xor DIP(6:11) } 
IP_BLH2 = { SIP(0:5) xor DIP(6:11) , SIP(6:11) xor DIP(0:5) } 
PR_BLH1 = SPO xor (DPO<<2) 
PR_BLH2 = (SPO<<2) xor REV(DPO) 
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The performance of these hash functions is also studied and 
analyzed in the next section. 

The number of the generated permutations for the IP-pairs 
and the Port-pairs is obviously significantly smaller, compared 
to the total number of 5-tuple permutations, and thus they can 
be checked for actual membership much faster. When both IP 
and Port queries are successful, the matched pairs along with 
the 2 possible Protocol matches are processed using the 
information contained in the Main Bloom filter. Using the 
results of Table III we illustrate, in Table V, which queries are 
performed in parallel in the three Bloom filters. The queries in 
both IP and Port Bloom Filters are started simultaneously. 
When at least one of the Bloom Filters returns a match (while 
the other may still process the incoming data) a query to the 
Main Bloom Filter is performed. 

In general, breaking the problem into two stages allows us 
to better handle the required membership tests. Looking at the 
actual reasoning behind the searching order the IP-pair 
enquiry first determines whether a certain network path exists 
in the ruleset, while the Port-pair enquiry checks for certain 
network configurations; the final rule membership query 
clarifies whether those pairs match together in a rule. 
Searching these pairs independently distributes the queries 
efficiently and provides faster results as the next section 
clearly demonstrates. 

IV. SIMULATION RESULTS  
In order to measure the efficiency of our scheme we 

employed realistic filter sets and test patterns. In particular we 
have used Taylor’s ClassBench [14] which is a suite of tools 
for performance evaluation of classification algorithms and is 
publicly available. ClassBench contains a filter set generator 
that uses seeds from real-world filter sets in order to provide 
synthetic databases which model real filters in an extremely 
accurate manner. Moreover, it includes a packet header 
generator that produces a sequence of packet headers to 
exercise a given filter set; this generator uses the Pareto 
Distribution which is the best available statistical model for 
Internet traffic. One of the strong points of our work, when 
compared with the related work of Section II, comes from the 
fact that we are among the first to use such traces, which 

model the real-world classification environment much more 
accurately than the artificial filter-sets based on routing tables 
that have been used in the past. 

The efficiency of B2PC was measured using 8 filter sets of 
various sizes. Before we use those filters we analyzed their 
properties so as to be sure that they are compliant with the 
features described in Section II.  Then, we estimated the 
efficiency of our approach based on the average and worst-
case number of memory accesses needed for classifying a 
network packet, as well as its memory requirements. 

In order to accurately model the real-world environment we 
generate filter sets that represent the most common 
classification applications, namely Access Control List (ACL), 
Firewall (FW) and IP Chain (IPC). We used the real-filter’s 
seeds and generate 8 such sets; for each one of them all the 
features of Section III hold.  

A. Hashing Functions and False Positives 
As it was described in the last section we incorporate many 

hash functions in B2PC in order to either index specific bits of 
the Bloom filters or to identify the final FlowID. Looking at 
the Bloom Filters’ functions the most important property is to 
produce several distinct values and minimize the number of 
references to each filter-bit. After a thorough analysis of 
different such functions we ended up with those described in 
subsections III.D and III.F; Table VI shows the number of bits 
set by them, in each of the Bloom filters, as well as the 
number of rules that reference these bits. Those results 
demonstrate that our hashing functions behave efficiently, 
since they set a large number of distinct bits and the number of 
references per bit is certainly not high. More specifically, in 
the Port Bloom filter, the higher number of references comes 
from the fact that we have a small number of common values 
as we have described in the last subsection. The Main Bloom 
Filter has many bits set with a small average number of 
references to each bit, due to the scheme we are using for 
creation of the internal IDs which produces many distinct 
values. Moreover, the average number of references in the IP 
Bloom filter is a little higher than in the Main Bloom filter as 
an effect of the small number of unique field values in the 
latter compared to the size of the set (i.e. feature III.7); in 
other words many rules in a set share the same Source and 

TABLE V 
PARALLEL BLOOM FILTER QUERIES  

IP Pair Permutation Port Pair Permutation Rule Permutation 
Query 

Number Src IP 
ID 

Dest IP 
ID 

Src Port 
ID 

Dest Port 
ID 

Src IP 
ID 

Dest IP 
ID 

Src Port 
ID 

Dest Port 
ID 

Protocol 
ID 

1 14 47 10 26 - - - - - 
2 14 47 10 31 14 47 10 26 10 
3 14 47 10 10 14 47 10 26 17 
4 14 54 10 26 14 47 10 10 10 
5 54 47 10 26 14 47 10 10 17 
6 54 54 10 26 - - - - - 
7 54 54 10 31 54 54 10 26 10 
8 54 54 10 10 54 54 10 26 17 
9 26 47 10 26 54 54 10 10 10 
10 26 47 10 26 54 54 10 10 17 
11 26 47 10 31 26 47 10 26 10 
12 26 47 10 10 26 47 10 26 17 
13 26 54 10 26 26 47 10 10 10 
14 - - - - 26 47 10 10 17 
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Destination IP address. It should be noted that the choice of 
the Hash functions is indeed crucial, since different such 
functions gave us maximum and average reference numbers 
which were up to 3 times higher than the presented ones. 

Another important characteristic of the Bloom Filters’ hash 
functions is the number of false positives they trigger; the bit-
vector size of the filters influences this same metric. Using the 
same filter sets and the corresponding packet headers we 
measured the false positive rates shown Table VII. 

The observed false positive rate in B2PC is close to the 
theoretical 6.2% value for 4K active rules, while it is very low 
for small filter sets. The high rate of false positives in IP and 
Main Bloom filters for ACL1 and ACL2 filter sets can be 
justified by the fact that our hashing functions have produced 
higher maximum and average reference counts as shown in 
Table VI. More specifically, these filter-sets have an increased 
number of matched values per field and thus they produce 
more permutations for which the Bloom filters are queried. On 
the other hand ACL3, which is the largest database, has a very 
low rate of false positives despite the fact that we have 
observed the highest maximum and average reference counts. 
This is due to the fact that it incorporates a small number of 
matches in each of the single fields and therefore fewer 
permutations are generated and forwarded to the Bloom filters.  

The B2PC also uses a hash function in order to identify the 
final FlowID of the matching permutation as described in 
subsection III.E. We illustrate the collisions produced by this 
hash function in Table VIII. As those results demonstrate, the 
function we chose seems ideal for such a classification 
framework and produces 34% less collisions in the average 
case than the worst hashing function we have studied. 

B. Storage Requirements 
As it was analytically described in the previous sections, 

one of our main concerns, when designing the proposed 
framework, was to be very memory efficient. In this 
subsection we present the storage requirements of B2PC for 
all the generated filter sets. To calculate the total storage for 
B2PC we measure the storage requirements of the B2PC 
tables and the storage of all the employed BOS engines.  

As described in [11] each BOS engine employs a number of 
static tables and a group of memory blocks implementing its 
dynamic memory management (DMM) scheme. Since each 
BOS sub-system supports very few unique values the 
requirements of the DMM ranges from 2 to 5 KB for each of 
the filter sets. Moreover, every BOS engine requires 73KB for 
its static tables; so the total memory requirements of each 
BOS engine are at most 78KB. 

For the total storage requirements of B2PC we have to 
calculate the size of the Bloom filters (including their 
associated counters), the counters for the internal IDs of each 
BOS engine, the protocol table (PRO_TBL), the hash table 
(HSH_TBL) and the rules table (RULES_TBL). For our 
calculations we assume standard 36-bit wide memory words. 
We also assume that two 12-bit counters, together with the 
associated information, are placed in a single 36-bit word and 
each rule entry needs 2 memory words. Accordingly, the 

storage requirements for all the B2PC components needed are 
shown in Table IX. As this table demonstrates all our filter 
sets can be supported given just 538KB of memory. 

C. Memory Accesses 
As described in the last section, the lookup performance of 

B2PC mainly depends on the lookup time of each BOS engine 
and on the set-membership queries in the Bloom filters. 

The BOS scheme was introduced and analyzed in [11] 
whereas more details regarding its performance, when APM 
results are required, can be found in [17]. The BOS scheme 
can work either utilizing only one external SRAM device, in 
which case it performs its operations in a serial manner, or in 

TABLE VI 
NUMBER OF REFERENCES IN BLOOM FILTERS  

IP Bloom Filter 
(8192 bits) 

Port Bloom Filter 
(8192 bits) 

Main Bloom Filter 
(16384 bits) Set 

Name # set 
bits 

Max 
Refs 

Avg 
refs 

# set 
bits 

Max 
Refs 

Avg 
refs 

# set 
bits 

Max
Refs

Avg 
refs 

ACL1 2651 29 1,77 305 321 15,39 6566 16 1,43 
ACL2 2912 32 2,04 396 336 15,02 7847 10 1,51 
ACL3 2985 40 2,23 78 708 85,71 8468 9 1,57 
FW1 418 8 1,34 107 47 5,27 1023 4 1,10 
FW2 355 13 1,48 219 29 2,40 958 4 1,09 
FW3 228 7 1,36 78 29 4,00 568 3 1,09 
IPC1 2406 10 1,40 164 650 20,5 5251 5 1,28 
IPC2 202 8 1,67 18 111 18,77 503 7 1,34 

 
TABLE VII 

OBSERVED FALSE POSITIVES RATE   

Set 
Name 

IP Bloom 
False Positives (%) 

Port Bloom 
False Positives (%) 

Main Bloom 
False Positives (%) 

ACL1 3,2 0 5,1 
ACL2 8,4 0 8,3 
ACL3 0,005 0 0,01 
FW1 3,7 0 0 
FW2 1,5 0 0 
FW3 2,0 0,7 0,2 
IPC1 0,3 0 0,5 
IPC2 0,1 0 0 

 
TABLE VIII 

HASH TABLE COLLISIONS 

Set 
Name 

Set 
Size 

Max 
Collisions 

Average 
Collisions 

ACL1 2348 3 1,17 
ACL2 2974 3 1,19 
ACL3 3343 3 1,21 
FW1 282 2 1,02 
FW2 263 2 1,07 
FW3 156 1 1 
IPC1 1687 2 1,10 
IPC2 169 3 1,29 

 
TABLE IX 

B2PC COMPONENTS MEMORY REQUIREMENTS 

Component Memory Words Total  (Kbytes) 
BOS ID counters 10240 45 

Bloom Filters counters 16384 72 
HSH_TBL 16384 72 

RULES_TBL 8192 36 
PRO_TBL 256 1 

Total (not including BOS) 51456 226 
   

BOS Engines (x4) 69812 312 
Total 121268 538 
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parallel mode where four SRAM devices are needed. Based on 
our simulations with the filter sets and the corresponding 
packets headers, the average number of memory accesses 
needed to perform a complete search in a parallel manner is 
2,2 while the worst case observed is 6 memory accesses;  
when BOS operates in  sequential mode we need 9,2 accesses 
on average and 25 in the worst case.  

The second factor which influences the performance of 
B2PC is the number of sequential probes in its Bloom filters. 
As described in Section III we query the IP and Port pair 
Bloom filters in parallel and then probe the Main Bloom filter 
for the matched IP and Port pairs; the results of our 
simulations are shown in Table X. In addition to the Bloom 
Filter accesses, we have to take into account the accesses in 
HSH_TBL (that are equal to the collisions presented in Table 
VIII) and two memory accesses to acquire the final rule from 
RULES_TBL. The total numbers of average and maximum 
memory accesses triggered by the various subsystems of 
B2PC (excluding the BOS engines) are presented in Table X. 

Finally, in order to get the overall memory accesses needed 
by the complete B2PC scheme we sum up the accesses of the 
BOS engines with those generated by the other B2PC 
subsystems. It should be noted that all four BOS engines can 
work in parallel; each of them may be configured in parallel or 
in sequential mode depending on the actual cost limitations 
(the parallel BOS mode needs four times the SRAM devices 
required by the sequential mode). In Table XI we present the 

total average number of memory accesses needed so as to 
process a complete packet. The worst-case numbers can be 
calculated if we add to the numbers of Table X the worst case 
number of accesses needed by the BOS engines which is 6 in 
the case of the parallel mode and 25 for the sequential mode. 

V. HARDWARE DEVICE’S COST & PERFORMANCE 
The proposed scheme has been Synthesized and Placed and 

Routed for a 0.18µm CMOS technology and it works at 
400MHz, covering the area shown in Table XII. Using either 
one (in case of sequential accesses) or four (for parallel 
accesses) 400MHz inexpensive external SRAMs we have 
measured the performance of our hardware system.  

 Table XIII presents the network performance of B2PC 
counted both in Millions of Packets Per Second (Mpps) and in 
Gigabit Per Second (Gbps) assuming the device processes 
only minimum-size IP-Packets (40 bytes). Obviously, in case 
our classifier is employed in a real-world environment it will 
process IP packets with a mean size much greater than 100 
bytes, as reported in [14] , and therefore it would easily be 
able to support network rates of 40 Gbps or higher. 

In order to demonstrate the exploitation space of the 
proposed framework we have listed, in Table XIV, the 
performance of B2PC together with that of other similar 
classification schemes, in terms of supported rules, storage 
requirements, and traffic rate serviced. Our comparison 
contains the most efficient such schemes, that do not use 
TCAMs and have been implemented in hardware. The scheme 
in [10] as well as HiCuts and HyperCuts,  although they have 
been designed so as to have very low memory requirements, 
they could not be included in this comparison for a number of 
reasons : (a) there is no specific hardware implementation 
proposed for any of them, (b) for [10] the efficient 
implementation sketched by the authors use very expensive 
and power hungry TCAMs, (c) especially HyperCuts which is 
more efficient that HiCuts, seems to be a very innovative 
approach but unfortunately no assumptions can be made 
regarding the performance of their sketched hardware 
implementation in terms of operation frequency and actual 
memory bandwidth needed, while the fact that  they need at 
least 10 SRAMs working in parallel, is making it more 
expensive than B2PC.  

Furthermore, in order to be able to better demonstrate the 
efficiency of the various classification schemes when the 
memory cost is also taken into account, we introduce the 
metric of Mpps per Mbyte. This metric has been calculated for 
all the schemes of Table XIV by considering that they all work 
at 400MHz and linearly extrapolating their throughput, which 
is an optimal (for all but our scheme) assumption. It should be 
noted that the ABV scheme has not been implemented in 
hardware and therefore some elements are missing in Table 
XIV. However, we ended up with the demonstrated 
Mpps/Mbyte number based on a number of assumptions: (a) 
since ABV is similar, yet more complicated than BV, we can 
assume that it would work at the same speed as the latter (a 
rather optimistic approach), (b) given the fact that ABV is 
about an order of magnitude faster than BV in the majority of 

TABLE X 
NUMBER OF MEMORY ACCESSES IN B2PC DATA STRUCTURES 

(NOT INCLUDING BOS)  

Set 
Name 

Bloom 
Filters 

Accesses 
MAX 

Bloom 
Filters 

Accesses 
AVG 

Hash 
Table 

Accesses 
MAX 

Hash 
Table 

Accesses 
AVG 

Total 
Accesses

MAX 

Total 
Accesses

AVG 

ACL1 17 2,68 3 1,17 22 5,85 
ACL2 29 4,03 3 1,19 34 7,22 
ACL3 6 2,01 3 1,21 11 5,22 
FW1 22 4,74 2 1,02 26 7,76 
FW2 18 3,18 2 1,07 22 6,25 
FW3 34 5,34 1 1 37 8,34 
IPC1 16 2,16 2 1,10 20 5,26 
IPC2 4 2,07 3 1,29 9 5,36 

 
TABLE XI 

TOTAL NUMBER OF AVERAGE MEMORY ACCESSES IN B2PC  
Set 

Name 
BOS 

Parallel 
BOS 

Sequential 
B2PC 

Accesses 
B2PC with
Seq. BOS 

B2PC with
Par. BOS 

ACL1 2,20 9,20 5,85 15,05 8,05 
ACL2 2,20 9,20 7,22 16,42 9,42 
ACL3 2,20 9,20 5,22 14,42 7,42 
FW1 2,20 9,20 7,76 16,96 9,96 
FW2 2,20 9,20 6,25 15,45 8,45 
FW3 2,20 9,20 8,34 17,54 10,54 
IPC1 2,20 9,20 5,26 14,46 7,46 
IPC2 2,20 9,20 5,36 14,56 7,56 

 
TABLE XII 

B2PC SILICON COST 
Components Area (mm2) Equivalent NAND Gates 

Combinatorial 0,595 115K 
Non-Combinatorial 0,250 48K 

Memories 0,456 88K 
Total 1.301 251K 

 

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings. 
 

1377



 

the cases, the efficiency metric can be calculated by linear 
extrapolation. 

Table XIV clearly shows that, despite the fact that RFC has 
the best throughput, its performance is based on greedy 
memory consumption and supports at most 1700 rules. On the 
other hand ABV does provide the highest number of 
Mpps/Mbytes, which is about 35% higher than that of B2PC, 
but it supports such efficiency with 80% less rules than B2PC. 
Therefore, we claim that our scheme provides the optimal 
bandwidth-to-memory approach, for any device that supports 
a few thousand rules. Obviously, if performance is the only 
issue RFC would be more appropriate, or for embedded, low-
memory, devices scheme of [10] would probably be 
preferable. Moreover, for devices supporting relatively small 
filter sets ABV seems the natural case.   

In general, the efficiency of the proposed scheme comes 
from the fact that it takes advantage of all the specific features 
of the current real-world filter databases, while it has been 
designed from the beginning for efficient hardware 
implementation. The algorithm proposed may be less efficient 
from the other algorithms found in the bibliography, in worst-
case scenarios, but the hardware implementation of this 
scheme is the most efficient one demonstrated so far when 
memory requirements, number of rules and bandwidth are all 
taken into account. Moreover, its hardware cost (in terms of 
silicon covered) is minimal making it an even more promising 
approach for low cost classification engines.  

VI. CONCLUSIONS 
This paper presents a 5-dimensional classification scheme 

optimized for state-of-the-art networking applications/services 
which incorporate up to 4K classification rules. The proposed 
mechanism decomposes multi-field classification rules into 
internal single-field rules, which are then combined using 
multi-level Bloom filters. Its main advantages come from the 
fact that it employs only 530KB of inexpensive external 
SRAMs, while it can support network rates higher than 

40Gbps. This scheme has been designed so as to be efficiently 
implemented in hardware and it covers 1.3mm2 of silicon in a 
0.18µm CMOS technology. As our performance results 
demonstrate, given a certain memory budget, number of 
supported rules and silicon cost, the B2PC provides the 
highest performance when compared to all the similar systems 
implemented in hardware. 
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TABLE XIII 
WORST CASE NETWORK PERFORMANCE OF B2PC  

Mpps Gbps 
Set 

Name B2PC with 
Seq. BOS 

B2PC with 
Par. BOS 

B2PC with 
Seq. BOS 

B2PC with 
Par. BOS 

ACL1 26,57 49,68 8,50 15,90 
ACL2 24,36 42,46 7,80 13,59 
ACL3 27,73 53,90 8,88 17,25 
FW1 23,58 40,16 7,55 12,85 
FW2 25,88 47,33 8,28 15,15 
FW3 22,80 37,95 7,30 12,14 
IPC1 27,66 53,61 8,85 17,16 
IPC2 27,47 52,91 8,79 16,93 

 
TABLE XIV 

SUMMARY OF CLASSIFICATION SCHEMES  

Scheme Freq. 
(MHz) 

# of 
Rules 

Storage 
(# of  mems) 

Throughput 
(Mpps) 

Efficiency 
(Mpps / Mbyte)

BV [15] 33 512 640KB (5) 1 18,9 

RFC [4] 125 1700 976 KB (2) + 
15,6 MB (2) 30 5,8 

ABV [7] - 700 35KB (-) 3,7 105,7 
B2PC 400 3300 540 KB (4) 42,5 78,7 
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