
462 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 15, NO. 2, APRIL 2007

O(logW) Multidimensional Packet Classification
Haibin Lu, Member, IEEE, and Sartaj Sahni, Fellow, IEEE

Abstract—We use a collection of hash tables to represent a
multidimensional packet classification table. These hash tables
are derived from a trie-representation of the multidimensional
classifier. The height of this trie is (), where is the sum
of the maximum possible length, in bits, of each of the fields of
a filter. The leaves at level of the trie together with markers
for some of the leaves at levels such that are stored
in a hash table . The placement of markers is such that a
binary search of the ’s successfully locates the highest-priority
filter that matches any given packet. The number of hash tables
equals the trie height, (). Hence, a packet may be classified
by performing (log) hash-table lookups. So the expected
lookup-complexity of our data structure for multidimensional
packet classification is (log). Our proposed scheme affords a
memory advantage over the (log) 1-D scheme of Waldvogel
et al. For multidimensional packet classification, our proposed
scheme provides both a time and memory advantage over the
extended grid-of-tries scheme of Baboescu et al.

Index Terms—Binary search on levels, expected complexity, mul-
tidimensional packet classification.

I. INTRODUCTION

AN INTERNET router classifies incoming packets into
flows1 utilizing information contained in packet headers

and a table of (classification) rules. This table is called the
router table (equivalently, rule table). Each router table rule
is a pair of the form , where is a filter and is an action.
The action component of a rule specifies what is to be done
when a packet that satisfies the rule filter is received. Sample
actions are drop the packet, forward the packet along a certain
output link, and reserve a specified amount of bandwidth. The
filter component of a rule is a -tuple the fields of which may
represent, for example, the source address of the packet, the
destination address, protocol, and port number. Each field of a

-tuple may be specified as a single value, a range or a prefix.
A destination address field that is specified as a range
matches the destination address iff , while a
destination address field specified by the prefix matches all
destination addresses that begin with .2 A filter matches a
packet iff every field of matches the corresponding value of

Manuscript received February 9, 2004; revised April 1, 2005; approved by
IEEE/ACM TRANSACTIONS ON NETWORKING Editor M. Buddhikot.

H. Lu is with the Department of Computer and Information Science and En-
gineering, University of Florida, Gainesville, FL 32611 USA, and also with the
University of Missouri-Columbia, Columbia, MO 65211-2060 USA (e-mail:
halu@cise.ufl.edu; luhaibin@missouri.edu).

S. Sahni is with the Department of Computer and Information Science
and Engineering, University of Florida, Gainesville, FL 32611 USA (e-mail:
sahni@cise.ufl.edu).

Digital Object Identifier 10.1109/TNET.2007.892845

1A flow is a set of packets that are to be treated similarly for routing purposes.
2For example, the prefix 10 matches all destination addresses that begin with

the bit sequence 10; the length of this prefix is 2.

(i.e., the destination field (if any) of matches the destination
address of , the source address field (if any) of matches the
source address of , the port number field (if any) of matches
the port number of , etc.). We may assume that no two rules
of the router table have the same filter.

Since an Internet router table may contain several rules that
match a given packet , a tie breaker is used to select a rule from
the set of rules that match . Some commonly used tie breakers
are: 1) select the first rule in the table that matches ; 2) select
the highest-priority rule that matches ; and 3) select the most
specific rule that matches .3

In the packet classification problem, we wish to determine
which rule of the router table is to be applied to a given packet.
Data structures to represent 1-D router tables (i.e., tables in
which every filter has a single field, which is typically the desti-
nation address of the packet being classified), have been exten-
sively studied. These structures are reviewed in [21] and [22],
for example. Although 1-D prefix filters are adequate for desti-
nation based packet forwarding, higher dimensional filters are
required for firewall, quality of service, and virtual private net-
work applications, for example. Two-dimensional prefix filters,
for example, may be used “to represent host to host or net-
work to network or IP multicast flows” [14] and higher dimen-
sional filters are required if these flows are to be represented
“with greater granularity.” Data structures for multidimensional
(i.e.,) packet classification are developed in [1]–[3], [7],
[9]–[11], [14], [18], [20], [25], [27], [28], for example. In the
sequel we use the terms rule and filter interchangeably because
the filters in a rule-table are distinct and, in this paper, we are
not concerned with the action associated with a rule.

In this paper, we propose a binary-search-on-levels (BSOL)
scheme for multidimensional filters. Our scheme, like that of
Waldvogel et al. [30], relies on an underlying trie whose levels
are searched using the binary search method as proposed in [8].
The difference lies in how the trie is defined. With the defini-
tion we employ, our 1-D structure readily extends to the multidi-
mensional case. The strategy employed by Waldvogel et al. [30]
cannot easily be extended to multidimensional packet classifi-
cation. The expected lookup complexity of our BSOL scheme
is , where is the sum of the maximum possible
length, in bits, of each of the fields of a filter. For 1-D desti-
nation-address IPv4 prefixes, ; for 2-D IPv4 (source
address, destination address) prefix filters, ; and for
4-D (source address, destination address, source port, destina-
tion port) filters in which each port number as at most 16 bits,

.
In Section II, we describe our BSOL scheme. Experimental

results are presented in Section III. Section IV describes past

3Let f and g be two filters. f is more specific than g iff every packet matched
by f also is matched by g and there is at least one packet matched by g that is
not matched by f

1063-6692/$25.00 © 2007 IEEE

LU AND SAHNI: MULTIDIMENSIONAL PACKET CLASSIFICATION 463

research related to the topic of this paper, and our results are
summarized in Section V.

II. BINARY SEARCH ON LEVELS (BSOL)

In Section II-A, we describe the BSOL scheme for 1-D classi-
fiers. In Section II-B, we show how the 1-D BSOL scheme may
be generalized to two or more dimensions.

A. One-Dimensional BSOL

Let be a filter set, where each filter
is a range .4 For definiteness, assume that each range

is a range of destination addresses. Our scheme works
just as well if is a range port numbers etc. Let

if any. Since matches all packets, we can
safely remove all filters whose priority is lower than that of

. does not need to be stored in BSOL. Any packet
that has no matching filter in BSOL is automatically matched by

. From now on, we assume does not contain .
We first map into a trie. For simplicity we describe a map-
ping that uses a one-bit trie. Other varieties of tries (such as a
fixed-stride trie) also may be used. With each node of the trie,
we associate an interval int in the destination address space

.5 The interval root.int associated with the root of the
trie is . The intervals associated with the children, if
any, of the root are obtained by dividing root.int into two equal
parts, and . The former is asso-
ciated with the left child of the root, and the latter is associated
with the right child of the root. In general, in a one-bit trie, the
interval associated with a node is half that associated with its
parent (if any).

Each node of the trie has a list, POList, of ranges that par-
tially overlap int, a field bmr that stores the best (i.e., highest
priority) range that matches all of int, and a field bs that gives
the path from the trie root to . To construct the one-bit trie for

, we begin with a root node root int , and
bs null. Set root POList and root bmr null. If the

number of ranges in POList is more than a predefined constant
, node is split into a left and right child; the POList, bmr, bs

and int values for the left and right children of are determined
from the information associated with node . For example, the
bs value of the left child of is bs (0 is attached to bs)
and that of the right child is bs . The one-bit trie is con-
structed by splitting nodes until each leaf has a POList with at
most ranges. Once we have the one-bit trie, we construct a
collection of hash tables , where is the height
of the trie. contains the leaves in level of the trie together
with markers for some of the leaves in levels . Each leaf
places a marker in those hash tables that lie on the path taken
by a binary search (to be described later). The hash-table key
used by a leaf or marker in is the first bits of the bs value of
the leaf in or of the leaf that placed the marker in . Fig. 1
gives the algorithm to construct the one-bit trie for as well as
the collection of hash tables. pri returns the priority of range

4Note that every prefix may be represented as a range.
5For IPv4 destination addresseesW = 32 and for IPv6 addressesW = 128

Fig. 1. Build 1-D BSOL.

Fig. 2. Determine marker levels for a leaf at level leaf Level.

pri null is less than pri for null. Fig. 2 gives the al-
gorithm used by each leaf to determine the levels into which it
needs to place a marker.

Fig. 3 shows the one-bit trie when and
the filter-set ranges are

. The priority of range is (i.e., the first matching
tie breaker). The int value for each node is shown just above
the node. Since root int . The remaining
values associated with a node are shown only for the leaves. The
three-field box outside each leaf shows the bs (top field), bmr,
and POList values for the leaf. Since each node has a unique
bs, we can identify each node by its bs value. For example, the
left child of the root is node0 and the node whose int is [0, 3] is
node00. Notice that node bs node bmr null, and
node POList .

464 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 15, NO. 2, APRIL 2007

Fig. 3. Example trie for 1-D filters (T = 2;W = 4).

Fig. 4. Search for best matching-filter in 1-D BSOL.

The trie of Fig. 3 is quite similar to a leaf-pushed trie. The
essential differences between our trie and a leaf-pushed trie are
a) our trie may be used with ranges while a leaf-pushed trie is
used only with prefixes and b) our trie uses a threshold to
stop the partitioning process while, in a leaf-pushed trie, .

In a binary search of , and is searched first,
then either or is searched. Since is on the search
path to , leaves at level 2 of the trie place markers in . The
marker key is a one-bit key, the first bit of the bs value of the
leaf that places a marker. In our case, both node00 and node01
place a marker in with key 0; in reality only one distinct
marker gets placed in . The marker in is shown in Fig. 3
by shading the level 1 node (node0) that is an ancestor of the leaf
(leaves) placing the marker. For our example, null

marker leaf , and leaf leaf . The
first component of a hash-table tuple is the key and the second
is either a marker or a leaf. A marker is represented by a special
symbol and a leaf by the two fields bmr and POList.

Fig. 4 shows the algorithm to search the hash tables
for the best matching-filter for the destination

. The algorithm uses the binary-search method to determine
the that contains the best matching-filter for . Its correct-
ness follows from the construction of the s.

We consider two examples to illustrate the working of the
BSOL search algorithm. First, to find the best matching-filter
for (the binary representation of 9 is 1001) in Fig. 3, we
start by searching using the first bit of 9. We find a matching
entry (1, leaf). Since it is a leaf, the binary search stops here. The
bmr and POList fields are examined and is determined to be

Fig. 5. Example trie for 1-D filters (T = 1;W = 4).

the best matching-filter. Second, to find the best matching-filter
for (0101 in binary), we use the first bit of to find the
entry (0, marker) in . Since this is a marker, we move to
and search using the first two bits (01) of 5. This search
returns the entry (01, leaf). Searching the leaf entry returns
(also matches 5 but the priority of is lower than that of

).
Fig. 5 shows the trie for the same set of ranges as

used in Fig. 3. However, this time . For this
case, null marker leaf

marker leaf leaf marker ,
and leaf leaf . To find the best
matching-filter for , we start the binary search at
using the first two bits of 9. There is no matching entry in .
So the binary search moves to and finds (null, marker).
Since it is a marker, there may be a matching leaf at a lower
level. We move to and find (1, leaf). Searching this entry
returns .

It is important to note that the one-bit trie is used only to
explain the construction of the s. It is only the s that are
explicitly stored in our router-table data structure.

Correctness of the Scheme: First observe that a search of
the underlying trie always terminates at a leaf and that this leaf
contains adequate information to determine the highest priority
filter that matches the given destination address. Let be the
leaf at which the serach for destination address terminates. To
prove the correctness of our search algorithm of Fig. 4, we need
to show that it reaches the proper leaf of the underlying trie.
At the start of the algorithm, left and right . So, is at a
level between left and right. The search maintains this invariant.
Note that has an entry for each node at level of the under-
lying trie. So, when is searched using the first bits of the
destination address , the search returns null iff the underlying
trie has no node at level that corresponds to the first bits of .
In this case, the search of the underlying trie must terminate at
a level (i.e., is at a level). Hence, the search algo-
rithm of Fig. 4 correctly sets right by . When the search of

returns a nonnull value, the underlying trie has a node at
level that corresponds to the first bits of . If the found entry
in is a marker, then is not a leaf and so the level of is
greater than . In particular, the level of must be between
and right. If the found entry in is not a marker, is a leaf
and by the invariant and the fact that matches the first bits
of .

LU AND SAHNI: MULTIDIMENSIONAL PACKET CLASSIFICATION 465

Comparison With Scheme of Waldvogel et al. [30]: The
binary search on hash tables scheme differs from the BSOL
scheme proposed by us in the following ways.

1) The scheme of [30] works only for prefix filters whereas
ours applies to general ranges.

2) Hash table in the scheme of [30] consists of prefixes
whose length is plus markers for longer-length prefixes
for which is on the binary-search path. The marker
placement scheme is the same for our BSOL hash tables
and the hash tables of [30].

3) In the scheme of [30], each marker in records the
longest length prefix whose length is less than and which
matches the marker. In our scheme we do not record
any such information. Our markers do not need this in-
formation because, in BSOL, every packet is classified
by searching for the appropriate leaf of the underlying
leaf-pushed trie; this leaf contains all the information
needed to classify the packet. The scheme of [30] may be
thought of as based on a non-leaf-pushed trie. In such a
trie, the information in nodes on the search path to a leaf
is needed to properly classify a packet. For example, the
longest prefix that matches a given destination address is
the last prefix encountered on this path (this prefix may
not be in the reached leaf). This information is encoded
into the markers in the scheme of [30].

4) The scheme of [30] requires space. To deter-
mine the space requirements of BSOL, note that each level
of our trie has nodes. This follows from the obser-
vation that each filter can be in the POList of at most 2
nodes on the same level. Hence, each level can have at
most nodes with a POList whose size is at least 2. Since
a node with a POList whose size is must be a leaf,
each level can have at most nodes (as there are at most

parents possible for these nodes). Since the number of
levels in our trie is , the total number of nodes in
our trie is . The number of entries in equals the
number of nodes at level of our trie. So, the total space
needed for all of our hash tables is . Even though
the worst-case space complexity our our scheme is more
than that of [30], we note that it has been observed that the
tries for practical 1-D classifiers have fewer than nodes.
Hence, for practical 1-D classifiers, the space required by
our scheme is while that for the scheme of [30] re-
mains .

5) Both schemes have an lookup complexity.
6) The BSOL scheme is easily extended to higher-dimension

classifiers retaining its complexity (this analysis
regards the number of dimensions as a constant). We know
of no way to extend the scheme of [30] to higher dimen-
sions and obtain a search complexity of .

B. Two-Dimensional BSOL

Let be a set of 2-D filters. Each
filter is a 2-D rectangle and and

are, respectively, the projections of on the and axes.
Table I shows a set of seven filters, and Fig. 6 shows these seven
filters as rectangles.

TABLE I
TWO-DIMENSIONAL FILTERS

Fig. 6. Rectangular representation (W = W = 4).

We again use a trie to explain the construction of the hash
tables on which a binary search is performed to find a best
matching-filter. With each node of the trie, we associate a rec-
tangle rect in 2-D space . Here

is the maximum possible number of bits for the dimension
address. For our example of Table I, . When

the two fields of each filter represent the source and destination
addresses of an IPv4 packet, .

The nodes of our trie have the same fields as for the 1-D case
except that the field int is replaced by the field rect (rectangle).
For our trie, root rect root bs
null root bmr null, and root POList . A trie node whose
POList is larger than a prespecified threshold is split into two
children by splitting its rectangle in either the direction or

direction. For all nodes at a given level of the trie, the split
direction is the same.

Fig. 7 shows the trie that results when the filters of Table I
are mapped into a trie using the threshold . In this figure,
the nodes at levels 0 (root) and 2 are split along the direction
while those at levels 1 and 3 are split along the direction. The
split directions from level 0 to are concatenated to form a
partition sequence, where is the height of the trie (in
Fig. 7). The partition sequence for Fig. 7 is . The partition
sequence for Fig. 8, which also is for the filters of Fig. 6, is .

The algorithm to construct the hash tables for our 2-D BSOL
scheme is the same as that in Fig. 1 except that int is replaced
by rect.

The hash tables that correspond to Fig. 7 are
null marker leaf marker

leaf leaf marker , and
leaf leaf . The hash tables for Fig. 8

are null marker leaf
leaf marker , and leaf leaf .

466 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 15, NO. 2, APRIL 2007

Fig. 7. Trie for 2-D filters with partition sequence yxyx and T = 2.

Fig. 8. Trie for 2-D filters with partition sequence yyy and T = 2.

To determine the best matching-filter for a packet , we
first construct based on the partition sequence. For example,
if the partition sequence is , we use the first bit of as the
first bit of , the first bit of as the second bit of , the second
bit of as the third bit of , and the second bit of as the fourth
bit of . So for the packet (6, 11) [(0110, 1011) in
binary]. If the partition sequence is , we use the first three
bits of as the first three bits of . So for the packet
(6, 11).

Once we have constructed as described, the 1-D search al-
gorithm of Fig. 4 is used to determine the best matching-filter
for . For example, to determine the best matching-filter for (6,
11) using the hash tables for Fig. 7, we construct and
start the binary search at using the first two bits of . The
search for 10 in returns null. We move to and find (null,
marker). Since this is a marker, there is a possibility of finding a
matching leaf at a lower level of the trie. Hence, we move to
and search using the first bit of . There is a match (1, leaf).
Searching this leaf returns . As a second example, suppose
we search for the best matching-filter for (4, 1) [the binary rep-
resentation is (0100, 0001)]. We construct as 0001 and start
the binary search at . Searching returns (00, marker). So
the search moves to . The search of returns (000, leaf).
From the returned hash-table entry, we determine that is the
best matching-filter (although also matches (4, 1), it has a
lower priority than).

Heuristic for Selecting Partition Sequence: From Figs. 7 and
8 we see that different partition sequences result in tries that
have a different number of leaves and in which each filter is
stored in a different number of leaves. Hence, different parti-
tion sequences result in different space requirement. The trie

for the partition sequence has four leaves, and each filter is
stored only once. The trie for the partition sequence has
five leaves, and filter is stored in node0010 and node0011.

The following heuristic can be used to select the partition
direction at each trie level to minimize is a leaf POList .
Let NTP be the current set of leaf nodes that need to be par-
titioned during the BSOL construction procedure. Initially
NTP root if root POList . Let NB be the
number of filters that will be broken (i.e., the partition line
passes through the filter) if the direction is chosen to partition
node NTP. Let NB NTP NB . The direc-
tion is chosen for partitioning/splitting at the current level
such that NB is the least.

For example, in Fig. 6, initially, NTP root NB
since filters are broken when we split/partition along
the direction, and NB . Thus, the direction is used
to partition at level 0. After partitioning at the root, we move
to level 1, NTP node NB since only filter is
broken by an direction partition, and NB . The direc-
tion is chosen again. At level 2, NTP node NB ,
and NB . Therefore, level 2 also uses direction for
partitioning.

C. -Dimensional BSOL

Extending BSOL to dimensions is straightforward.
We omit the details here. Once again we obtain a collection of
hash tables based upon a trie-mapping of the filters. A search
key is constructed from data obtained from the packet that is
to be classified as well as from the partitioning sequence used to
construct the trie. The hash tables are searched using and the
binary search algorithm of Fig. 4.

Lemma 1: Using the BSOL scheme multidimensional packet
classification can be done performing hash-table
searches plus a search in at most one POList. The number of
hash tables is , where is the height of the trie used to
construct the hash tables.

Proof: True since there are levels and a binary search
on levels is performed.

Notice that , where is the number of
bits in th dimension. For 4-D filters (IPv6 source address range,
IPv6 destination address range, source port range, destination
port range) with 16-bit port numbers, and at most nine
hash-table searches are needed to reach a leaf. The reached leaf
may be searched serially in time.

Lemma 2: Let be the number of leaves in the trie for BSOL.
The space requirement of BSOL is , where
is the height of the trie.

Proof: Each leaf leaves at most markers and each leaf
requires space to store.

Reduce the Number of Hash Tables: Before the markers are
generated, the trie levels with no leaf nodes can be removed.
We call the level with at least one leaf node nonempty levels.
Let be the number of nonempty levels. We only need hash ta-
bles instead of , and multidimensional packet classification
can be done by performing hash-table searches plus a
search in at most one POList. Other improvement similar to that
in [17] and [26] may be applied to further reduce the value of .

LU AND SAHNI: MULTIDIMENSIONAL PACKET CLASSIFICATION 467

TABLE II
MEMORY REQUIREMENT (IN KILOBITS) OF BSOL1D

AND [30]. loadFactor = 0:5

III. EXPERIMENTAL RESULTS

A. Comparison With the 1-D Scheme of Waldvogel et al. [30]

Waldvogel et al. [30] have proposed a scheme for 1-D packet
classification. Like our scheme, their scheme employs hash ta-
bles that are searched using a binary search. We first compare
the memory requirements of their scheme and that of our pro-
posed scheme BSOL1D for 1-D classification. For this compar-
ison we use use four IPv4 prefix databases obtained from [19].
The databases MaeWest and Aads were obtained on November
22, 2001 and Pb and Paix were obtained September 13, 2000. In
our memory analysis we assume that memory is bit addressible;
so we count the number of bits required.

For the scheme ofWaldvogel et al. [30], let be the hash table
for the prefixes and markers whose length is pLen . Each entry
in is a triple (key, flag, action), where key may be a marker
or a prefix. The length of key is pLen bits and that of action is
assumed to be eight bits. The flag field is one bit (flag for a
prefix and 1 for a marker). For a marker, action is the action that
corresponds to the longest matching prefix of the marker. Thus,
eachentryof requirespLen bits.So the totalnumber
of bits required by is size pLen loadFactor,
where loadFactor is the hash table loading density.

For BSOL1D, each entry of is a pair (key, leafIndex). The
length of key is still pLen bits. leafIndex is null for a marker.
For a leaf, leafIndex serves as an index into a list of the leaves
of . When bmr is not null, the leaf is a 4-tuple (1, bAction,
POListSize, POList), where bAction is the action that corre-
sponds to the bmr for this leaf. When bmr is null, the leaf is
a triple (0, POListSize, POList). It is enough to give POListSize

bits. Each entry of POList is a triple (prefixLength, pre-
fixValue, action). prefixLength is five bits for IPv4 We only need
POList length pLen bits for prefixValue of the th prefix
in the POList since the key field gives the first pLen bits.
Let leafStructSize be the total number of bits required to store
the leaves of . Then leafStructSize bits are enough for
leafIndex. also needs a 32-bit pointer pointing to the leaf
structure and 32 bits for leafStructSize.

Table II gives the memory required for the scheme of [30] and
BSOL1D for different values of . As noted in [30], hash tables
need be constructed only for those lengths for which there is at
least one prefix. Once the lengths for which hash tables will be
constructed are determined, the binary search paths6 (and hence
the location of markers) are well defined. The same observation

6Now the binary search is done over the set of prefix lengths for which we
have a hash table.

TABLE III
CLASSIFIER E.L1 (473 FILTERS). LOAD FACTOR OF HASH TABLE IS 0.5

TABLE IV
CLASSIFIER E.L2 (508 FILTERS). LOAD FACTOR OF HASH TABLE IS 0.5

applies to BSOL, hash tables need be maintained only for
those trie levels that have at least one leaf node. Once these
levels are determined, the binary search paths (and hence the
location of markers) are well defined. Table II accounts for
the elimination of hash tables for the stated prefix lengths and
trie levels. The reported memory requirements are for the case
when loadFactor , i.e., each hash table is half-full and the
longest-matching tie breaker is used. With , BSOL1D
takes about 10% more memory than does the scheme of [30]
for MaeWest, 18% more for Paix, 3.5% more for Pb, and 5.3%
less for Aads. With or 4, BSOL1D takes about half as
much memory as taken by [30].

With respect to memory accesses, BSOL1D with
makes the same number of hash-table lookups as does the
scheme of [30]. When , BSOL1D needs an extra memory
access to get to the relevant leaf of (for small and mod-
estly large cache lines, this leaf may be searched with a single
memory access). Note that if the reduced memory required by
BSOL1D (for) enables one to store all the hash tables
in fast memory, say SDRAM, versus using slower memory for
the structure of [30], BSOL1D would provide faster lookup.

B. Memory Requirement of BSOL as a Function of

We experimented with two 4-D classifiers, e.l1 and e.l2, avail-
able from [12].7 The filter component of a rule is a 4-tuple

= (source address prefix, destination address prefix,
protocol, port number range). The classifiers e.l1 and e.12, re-
spectively, have 473 and 508 filters. The remaining classifiers
used in [12] have less than 50 rules and were considered too
small for our experiments.

Tables III and IV give, for different values of , the memory
requirement, the number of leaves, trie height, and the number
of levels that have at least one leaf node. Clearly the choice of

greatly affects the memory requirement of BSOL (T plays an
important role in determining the extent of the splitting of the
same rule into multiple leaves).

Let be the maximum number of filters that match any
packet when only the source and destination components of a
filter are considered. Baboescu et al. [3] have observed that in
real-world classifiers, . A possible heuristic to select

7Despite significant effort, we were unable to get the large real classifiers used
by others in their research.

468 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 15, NO. 2, APRIL 2007

Fig. 9. EGT-PC node structure. Search-unrelated fields are removed from the code at [16].

is to initially set , and then increase (decrease) if the
memory requirement is higher (lower) than the memory budget.

Since normally works fine, we use for the
rest of our experiments.

Note that to classify a packet, we make hash-table
searches plus a linear search in a leaf node.

C. Comparison With the -D Scheme of Baboescu et al. [3]

Baboescu et al. [3] have proposed the extended grid-of-tries
with path compression (EGT-PC) scheme for multidimensional
packet classification. The code for EGT-PC is available from
[16].

To obtain a fair comparison of the memory requirements of
BSOL and EGT-PC, we discarded the fields of the trie nodes
of EGT-PC that are not needed for lookups. The node structure
used by us to determine the memory requirement of EGT-PC is
given in Fig. 9. Each trie node uses left (zero) and right (one)
pointers to locate its children. Since we know the total number of
trie nodes, numNodes, in the trie, we allocate numNodes
bits to each child pointer rather than the standard 32-bits per
pointer. The field pdimList points to the filters stored in the
node of a bottom-level trie. Although the code of [16] uses a
linked list to store the rules in a node of the bottom-level trie, for
our space analysis we use a more efficient representation—an
array of rules together with the number of rules in the array. For
each rule, only the protocol and port range fields plus the action
need to be stored. The protocol field takes eight bits and the port
number range takes 32 bits (16 bits for start point, and 16 bits
for finish point).

For a multidimensional BSOL, the data structure is the same
as that for the 1-D BSOL except that each entry of POList is
a filter plus the associated action. Since key already gives us
some number of leading bits of the filter, we can reduce the
space required by a filter by not storing these bits again. Sup-
pose that key uses kProt leading bits of the protocol field, kSr-
cAddr leading bits of the source address, kDstAddr leading bits
of the destination address, and kPort leading bits of the port
number. For the th filter in POList, the protocol field needs
8-kProt bits, the source address prefix takes five bits for prefix
length and POList srcAddrLen kSrcAddr bits for

TABLE V
MEMORY REQUIREMENT OF EGT-PC AND BSOL. LOAD FACTOR OF HASH

TABLE IS 0.5. T = 20.M IS THE MAXIMUM NUMBER OF FILTERS WHO

SHARE THE SAME SOURCE-DESTINATION PREFIX PAIR

TABLE VI
NUMBER OF MEMORY ACCESSES PER LOOKUP OF EGT-PC
AND BSOL. LOAD FACTOR OF HASH TABLE IS 0.5. T = 20

TABLE VII
MEMORY REQUIREMENT OF EGT-PC AND BSOL FOR 5-D SYNTHETIC

RANDOM CLASSIFIERS GENERATED USING CLASSBENCH [29]. LOAD FACTOR

OF HASH TABLE IS 0.5. M IS THE MAXIMUM NUMBER OF FILTERS WHO

SHARE THE SAME SOURCE-DESTINATION PREFIX PAIR. T = 20

the remaining bits of the prefix; the destination address prefix
uses five bits for length and POList dstAddrLen
kDstAddr bits for the remaining bits of the prefix; and the port
number range needs kPort bits. BSOL makes
hash-table lookups to reach a leaf, and then a linear search of
the leaf is performed. It is fair to use for the memory
requirement comparison between BSOL and EGT-PC.

Experiment on Two 4-D Classifiers: Table V shows the
memory required by our BSOL scheme and the EGT-PC
scheme of [3] on our two 4-D classifiers, e.l1 and e.l2, available
from [12]. is the maximum number of filters that share

LU AND SAHNI: MULTIDIMENSIONAL PACKET CLASSIFICATION 469

TABLE VIII
NUMBER OF MEMORY ACCESSES PER LOOKUP OF EGT-PC AND BSOL FOR 5-D SYNTHETIC RANDOM

CLASSIFIERS GENERATED USING CLASSBENCH [29] WHEN CACHE LINE SIZE IS 64 BYTES. T = 20

TABLE IX
NUMBER OF MEMORY ACCESSES PER LOOKUP OF EGT-PC AND BSOL FOR 5-D SYNTHETIC RANDOM

CLASSIFIERS GENERATED USING CLASSBENCH [29] WHEN CACHE LINE SIZE IS 128 BYTES. T = 20

the same source-destination prefix pair. The tie breaker we
used is the first matching rule. The hash tables of BSOL use
a loading factor of 0.5 (half full). For the e.l1 classifier our
BSOL structure takes half as much memory as required by the
EGT-PC scheme; for e.l2, the memory required by BSOL is
3.6% that required by EGT-PC.

To estimate lookup performance, we use the center of each
filter in each classifier as the query point and record the number
of memory accesses during lookup. The maximum, minimum,
average, and standard deviation of the number of memory ac-
cesses per lookup are given in Table VI. The cache line size
affects lookup performance. Each EGT-PC node can be loaded
with one cache miss. Depending on its size, searching the pdim-
List stored in the EGT-PC node may result in several cache
misses. Since is equal to 6 for both e.l1 and e.l2 and one
64-byte cache line can load ten filters, changing cache line size
from 64 bytes to 128 bytes does not affect the lookup perfor-
mance of EGT-PC. However, BSOL lookup benefits from larger
cache line sizes as BSOL may store up to (in test)
filters in a leaf node. The number of memory accesses required
by BSOL is 32% to 38% that required by EGT-PC on average.
The variation and maximum number of memory accesses are
also much smaller.

Experiment on 5-D Synthetic Random Classifiers: We
experimented with several random 5-D classifiers generated
by ClassBench [29]. Table VII shows the memory required
by our BSOL scheme and the EGT-PC scheme of [3]. Our
BSOL scheme takes about 20% of the memory required by
the EGT-PC scheme. On a Pentium IV 1.5-GHz PC, the
preprocessing time (i.e., the time to construct the necessary
hash tables) of BSOL is less than 60 ms for each of these
five random classifiers. Table VIII (IX) shows the number of
memory accesses per lookup required by BSOL and EGT-PC
when the cache line size is 64 bytes (128 bytes). The number of
memory accesses required by BSOL is 9% to 14% that required
by EGT-PC, on average, when the cache line size is 128 bytes.

Experiment on 5-D Synthetic Seed-Based Classifiers: We
also experimented with several 5-D classifiers generated by

ClassBench [29] based on the input seed files. The input seed
file defines the characteristics of the original small classi-
fiers. The large synthetic classifiers were generated using the
command line dbgenerator -bc seed 1000 2 0.5 -0.1. Table X
shows the memory required by our BSOL scheme and the
EGT-PC scheme of of [3]. On a Pentium IV 1.5-GHz PC, the
preprocessing time of BSOL is less than 1 s for all tested clas-
sifiers other than fw2 with 9629 filters (2.5 s), ipc1 with 5735
filters (6.2 s), and ipc1 with 9505 filters (3.5 s). For synthetic
classifiers based on the seed acl1, our BSOL scheme takes
about 51% to 77% of the memory required by the EGT-PC
scheme. For synthetic classifiers based on the seeds fw2 and
ipc1, our BSOL scheme takes less memory than does the
EGT-PC scheme on the first classifier, and more memory on
the remaining classifiers (in fact, much more on the classifiers
of size about 6000 and 10 000). We looked into the classifiers
based on seeds fw2 and ipc1 and found that these classifiers
contain a significant number of mesh-like filters, i.e., filters
whose source/destinaiton IP prefix pairs are (, destination IP
prefix) or (source IP prefix,). Since BSOL recursively splits
space, mesh-like filters cause significant memory increase.
This is a weakness of space subdivision-based classification
schemes such as as HiCuts and BSOL. EGT-PC does not suffer
from such a space explosion when mesh-like filters are present
because EGT-PC stores each filter only once.

One way to deal with the memory explosion of BSOL when
mesh-like filters are present is to increase the value of . An
alternative is to divide the classifier into two subsets. BSOL2
divides the classifiers into two subsets. The first subset contains
filters with source IP prefix length less than 5, and the second
subset contains the remaining filters. BSOL2 then builds sepa-
rate hash-table collections for each subset. The memory require-
ment of BSOL2 is shown in Table X.

Table XI (XII) shows the number of memory accesses per
lookup required by EGT-PC, BSOL, and BSOL2 when the
cache line size is 64 bytes (128 bytes). We list only the average
and standard deviation due to space limitations. BSOL2 al-
ways outperforms EGT-PC. The number of memory accesses

470 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 15, NO. 2, APRIL 2007

TABLE X
MEMORY REQUIREMENT OF EGT-PC, BSOL, BSOL2 FOR 5-D SYNTHETIC

CLASSIFIERS GENERATED USING CLASSBENCH [29]. LOAD FACTOR OF

HASH TABLE IS 0.5. M IS THE MAX NUMBER OF DISTINCT

SOURCE-DESTINATION PREFIX PAIRS MATCHING A PACKET

TABLE XI
NUMBER OF MEMORY ACCESSES PER LOOKUP OF EGT-PC, BSOL, AND

BSOL2 FOR 5-D SYNTHETIC CLASSIFIERS GENERATED USING CLASSBENCH

[29]. THE SEEDS ARE ACL1, FW2, AND IPC1. CACHE LINE SIZE IS 64 BYTES

required by BSOL2 to classify a packet is less than twice that
required by BSOL. This is because the leaves of BSOL are
often full and require more memory accesses, whereas the
leaves of BSOL2 are often not full. The performance of BSOL
and BSOL2 benefits more from a large cache line than does
that of EGT-PC. When hardware support to search the hash
tables of BSOL and BSOL2 in parallel is available, BSOL2 will
outperform BSOL on both memory requirement and lookup.

IV. RELATED WORK

Waldvogel et al. [30] have proposed a packet classification
scheme for 1-D prefix filters. Their scheme performs a binary
search on hash tables organized by prefix length. Let be
the maximum possible length, in bits, of a prefix in the router
table, and let be the number of different prefix lengths. Note
that for IPv4, for IPv6, and

. This binary search scheme proposed by Waldvogel et al.
[30] has an expected complexity of for
lookup. Srinivasan and Varghese [26] and Kim and Sahni [17]
have proposed ways to improve the performance of the binary-
search-on-lengths scheme by using controlled prefix expansion

TABLE XII
NUMBER OF MEMORY ACCESSES PER LOOKUP OF EGT-PC, BSOL, AND

BSOL2 FOR 5-D SYNTHETIC CLASSIFIERS GENERATED USING CLASSBENCH

[29]. THE SEEDS ARE ACL1, FW2, AND IPC1. CACHE LINE SIZE IS 128 BYTES

to reduce the value of . Braun et al. [4] implement the scheme
of [30] in hardware. Broder and Mitzenmacher [6] proposed
using multiple hash functions (two hash functions) to improve
the lookup performance.

We note that Waldvogel’s scheme is very similar to the -ary
search-on-length scheme developed by Berg et al. [5] and the bi-
nary search-on-length schemes developed by Willard [31]. Berg
et al. [5] used a variant of stratified trees [8] for 1-D point lo-
cation in a set of disjoint ranges. Willard [31] modified strat-
ified trees and proposed the y-fast trie data structure to search a
set of disjoint ranges. By decomposing filter ranges that are not
disjoint into disjoint ranges, the schemes of Berg et al. [5] and
Willard [31] may be used for longest-prefix matching in static
router tables. The asymptotic complexity for a search using the
schemes in [5] and [31] is the same as that of Waldvogel’s
scheme [30]. The decomposition of overlapping ranges into dis-
joint ranges is feasible for static router tables but not for dy-
namic router tables because a large range may be decomposed
into disjoint small ranges.

It is challenging to design data structures for multidimen-
sional router tables. The problem of point location in a static
set of nonoverlapping -dimensional hyperrectangles re-
quires time with memory requirement or

time with memory requirement [13].
Multidimensional classification is no easier than the point
location problem since filters can overlap.

Gupta et al. [13] review data structures for multidimensional
router tables. Hierarchical tries require time for lookup
with memory requirement. Hierarchical tries can
support update in time. Set pruning trees [24] support
search in time with memory requirement.
Cross-producting [24] decomposes the lookup into 1-D
classifications and thus supports lookup in time, where

is the lookup time for 1-D classification. Cross-producting
requires memory, and is also suitable for range filters if
the data structure used for 1-D classification also supports range
filters. HiCuts [11] supports lookup in time with

memory requirement, where is the maximum bucket
size and is the cache line size.

LU AND SAHNI: MULTIDIMENSIONAL PACKET CLASSIFICATION 471

Baboescu et al. [3] have proposed a general strategy along
with a specific data structure for multidimensional packet clas-
sification. The scheme of Baboescu et al. [3] relies on the fol-
lowing characteristic of real-world classifiers: “the number of
distinct source-destination prefix pairs matching a packet is even
less than 20” [3]. The general strategy proposed by Baboescu
et al. [3] uses any 2-D search algorithm to find all the rules
whose source-destination prefix pairs match the source-destina-
tion fields of the incoming packet. Then a linear search is per-
formed on these rules to determine which match the remaining
fields. Thus, the time needed to determine the best matching
filter for an incoming packet is the time to find all rules that
match the source and destination fields of the packet plus the
time to check these rules against the remaining fields.

The specific data structure proposed in [3] is the extended
grid-of-tries with path compression (EGT-PC). EGT-PC is a
modified grid-of-tries [24] that employs path compression to
reduce the search time and memory requirement. Let be the
number of distinct source-destination prefix pairs matching a
packet. EGT-PC takes time to search grid-of-trie to
get all source-destination prefix pairs that match a packet’s
source-destination IP addresses. There are at most pairs.
Each source-destination prefix pair corresponds to a bucket.
The bucket contains filters who share source-destination prefix
pair. Let be the maximum number of filters who share the
same source-destination prefix pair. Note that and are
determined by the classifier, while used in BSOL and HiCuts
is selected by the user. EGT-PC then searches buckets for
the best matching filter. Therefore, the time complexity of a
lookup using EGT-PC is , where is the
cache line size. EGT-PC has memory requirement since
it uses path-compressed trie and saves each filter only once.

Therefore, EGT-PC guarantees the linear memory require-
ment but depends on the characteristics of real classifiers (i.e.,

and being a small value) to achieve reasonable lookup
performance. In contrast, HiCuts guarantees
lookup performance but depends on the characteristics of real
classifiers to achieve a reasonable memory requirement. In
this regard, our BSOL scheme is similar to HiCuts. BSOL
also has memory requirement. BSOL guarantees

lookup performance but depends on the char-
acteristics of real classifiers to achieve a reasonable memory
requirement. Both HiCuts and BSOL use space subdivision
method to partition classifier into many small subsets of filters.

V. CONCLUSION

We have developed an lookup scheme for multidi-
mensional packet classification. Unlike the scheme
proposed by Waldvogel et al. [30] for 1-D prefix tables, our
scheme works for both prefixes and ranges and multidimen-
sional classifiers. For 1-D IPv4 tables, our scheme uses less
memory than is used by the scheme in [30] provided .
For multidimensional classifiers, our BSOL scheme provides a
time advantage over the EGT-PC scheme proposed in [3]. The
BSOL scheme provides a memory advantage over the EGT-PC
scheme on two 4-D classifiers available from [12], on random
5-D synthetic classifiers generated using ClassBench [29], and

on some of the 5-D synthetic seed-based classifiers generated
using ClassBench [29]. In [3] it is shown that the EGT-PC
scheme has a memory advantage over other competing schemes
for multidimensional classifiers.

REFERENCES

[1] F. Baboescu and G. Varghese, “Scalable packet classification,” pre-
sented at the ACM SIGCOMM, San Diego, CA, 2001.

[2] F. Baboescu and G. Varghese, “Fast and scalable conflict detection for
packet classifiers,” in Proc. 10th IEEE Int. Conf. Network Protocols
(ICNP’02), 2002, pp. 270–279.

[3] F. Baboescu, S. Singh, and G. Varghese, “Packet classification for core
routers: Is there an alternative to CAMs?,” in Proc. IEEE INFOCOM,
2003, pp. 53–63.

[4] F. Braun, J. Lockwood, and M. Waldvogel, “Reconfigurable
router modules using network protocol wrappers,” in Field-Pro-
grammable Logic and Applications (FPL 2001). Berlin, Germany:
Springer-Verlag, Aug. 2001, vol. 2147, Lecture Notes in Computer
Science, pp. 254–263.

[5] M. Berg, M. Kreveld, and J. Snoeyink, “Two- and three-dimensional
point location in rectangular subdivisions,” J. Alg., vol. 18, no. 2, pp.
256–277, 1995.

[6] A. Broder and M. Mitzenmacher, “Using multiple hash functions to
improve IP lookups,” in Proc. IEEE INFOCOM, 2001, pp. 1454–1463.

[7] M. Buddhikot, S. Suri, and M. Waldvogel, “Space decomposition tech-
niques for fast layer-4 switching,” in Protocols for High-Speed Net-
works, 1999, pp. 25–42.

[8] P. V. Emde Boas, R. Kass, and E. Zijlstra, “Design and implementation
of an efficient priority queue,” Math. Syst. Theory, vol. 10, pp. 99–127,
1977.

[9] D. Eppstein and S. Muthukrishnan, “Internet packet filter management
and rectangle geometry,” in Proc. 12th ACM-SIAM Symp. Discrete Al-
gorithms, 2001, pp. 827–835.

[10] A. Feldman and S. Muthukrishnan, “Tradeoffs for packet classifica-
tion,” in Proc. IEEE INFOCOM, 2000, pp. 1193–1202.

[11] P. Gupta and N. McKeown, “Packet classification using hierarchical
intelligent cuts,” presented at the ACM SIGCOMM, Cambridge, MA,
1999.

[12] P. Gupta, Recursive Flow Classification (RFC). Stanford Univ. [On-
line]. Available: http://klamath.stanford.edu/~pankaj/rfcv1.0.tar.gz

[13] P. Gupta and N. Mckeown, “Algorithms for packet classification,”
IEEE Network, vol. 15, no. 2, pp. 24–32, 2001.

[14] A. Hari, S. Suri, and G. Parulkar, “Detecting and resolving packet filter
conflicts,” in Proc. IEEE INFOCOM, 2000, pp. 1203–1212.

[15] E. Horowitz, S. Sahni, and S. Rajasekeran, Computer Algo-
rithms/C++. New York: W. H. Freeman, 1997.

[16] Internet Algorithms Lab. [Online]. Available: http://www.ial.ucsd.edu/
classification/

[17] K. Kim and S. Sahni, “IP lookup by binary search on length,” J. Inter-
connect. Netw., vol. 3, pp. 105–128, 2002.

[18] T. Lakshman and D. Stiliadis, “High speed policy-based packet for-
warding using efficient multi-dimensional range matching,” presented
at the ACM SIGCOMM, Vancouver, BC, Canada, 1998.

[19] Merit, IPMA Statistics. [Online]. Available: http://nic.merit.edu/ipma
[20] L. Qiu, G. Varghese, and S. Suri, “Fast firewall implementations for

software and hardware-based routers,” in Proc. 9th Int. Conf. Network
Protocols (ICNP), 2001, pp. 241–250.

[21] M. Ruiz-Sanchez, E. Biersack, and W. Dabbous, “Survey and tax-
onomy of IP address lookup algorithms,” IEEE Network, vol. 15, no.
2, pp. 8–23, Mar.-Apr. 2001.

[22] S. Sahni, K. Kim, and H. Lu, “Data structures for one-dimensional
packet classification using most-specific-rule matching,” Int. J. Found.
Comput. Sci., vol. 14, no. 3, pp. 337–358, 2003.

[23] H. Samet, Application of Spatial Data Structures: Computer Graphics,
Image Processing, and GIS. Reading, MA: Addison-Wesley, 1989.

[24] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel, “Fast and scal-
able layer 4 switching,” presented at the ACM SIGCOMM, Vancouver,
BC, Canada, 1998.

[25] V. Srinivasan, S. Suri, and G. Varghese, “Packet classification using
tuple space search,” in ACM SIGCOMM, Cambridge, MA, 1999.

[26] V. Srinivasan and G. Varghese, “Fast address lookups using controlled
prefix expansion,” ACM Trans. Comput. Syst., vol. 17, no. 1, pp. 1–40,
Feb. 1999.

[27] V. Srinivasan, “A packet classification and filter management system,”
in Proc. IEEE INFOCOM, 2001, pp. 1464–1473.

472 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 15, NO. 2, APRIL 2007

[28] X. Sun and Y. Zhao, “Packet classification using independent sets,” in
IEEE Symp. Computers and Communications (ISCC 2003), 2003, pp.
83–90.

[29] Filter Set Generator. [Online]. Available: http://www.arl.wustl.edu/
~det3/

[30] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner, “Scalable high-
speed prefix matching,” ACM Trans. Comput. Syst., vol. 19, no. 4, pp.
440–482, Nov. 2001.

[31] D. E. Willard, “Log-logarithmic worst-case range queries are possible
in space �(N),” Inf. Process. Lett., vol. 17, pp. 81–84, 1983.

Haibin Lu (M’04) received the B.E. and M.E. de-
grees in electronic engineering from Tsinghua Uni-
versity, Beijing, China, in 1997 and 1999, and the
Ph.D. degree in computer engineering from the Uni-
versity of Florida, Gainesville, in 2003.

He joined the faculty of the Department of Com-
puter Science, University of Missouri-Columbia, as
an Assistant Professor in 2003. His primary research
focus lies in algorithmic aspects of computer network
and multimedia communication.

Sartaj Sahni (M’79–SM’86–F’88) received the
B.Tech. degree in electrical engineering from the
Indian Institute of Technology, Kanpur, and the M.S.
and Ph.D. degrees in computer science from Cornell
University, Ithaca, NY.

He is currently a Distinguished Professor and
Chair of Computer and Information Sciences and En-
gineering at the University of Florida, Gainesville.
He has published over 300 research papers and
written 15 texts. His research publications are on
the design and analysis of efficient algorithms,

parallel computing, interconnection networks, design automation, and medical
algorithms. He has been involved as an External Evaluator of several computer
science and engineering departments. He is a Co-Editor-in-Chief of the Journal
of Parallel and Distributed Computing, a Managing Editor of the International
Journal of Foundations of Computer Science, and a member of the editorial
boards of Computer Systems: Science and Engineering, the International
Journal of High Performance Computing and Networking, and the Interna-
tional Journal of Distributed Sensor Networks and Parallel Processing Letters.

Dr. Sahni was awarded the IEEE Computer Society Taylor L. Booth
Education Award in 1997 “for contributions to Computer Science and En-
gineering education in the areas of data structures, algorithms, and parallel
algorithms,” and in 2003, he was awarded the IEEE Computer Society W.
Wallace McDowell Award “for contributions to the theory of NP-hard and
NP-complete problems.” He was awarded the 2003 ACM Karl Karlstrom
Outstanding Educator Award for “outstanding contributions to computing
education through inspired teaching, development of courses and curricula
for distance education, contributions to professional societies, and authoring
significant textbooks in several areas including discrete mathematics, data
structures, algorithms, and parallel and distributed computing.” He has served
as Program Committee Chair, General Chair, and a Keynote Speaker at many
conferences. He has also served on several NSF and NIH panels. He is a
member of the European Academy of Sciences, a Fellow of the ACM, AAAS,
and Minnesota Supercomputer Institute, and a Distinguished Alumnus of the
Indian Institute of Technology, Kanpur.

