
StriD2FA: Scalable Regular Expression Matching for
Deep Packet Inspection

Xiaofei Wang† Junchen Jiang‡ Yi Tang‡ Yi Wang‡ Bin Liu‡ Xiaojun Wang†
†School of Electronic Engineering, Dublin City University, Dublin, Ireland

‡Department of Computer Science and Technology, Tsinghua University, Beijing, China

Abstract—Deep packet inspection (DPI) has become one of the
key components of a Network Intrusion Detection System (NIDS)
and it compares packet content against a set of rules written
in regular expression. The need to keep up with ever-increasing
line speed has forced NIDS designers to move to hardware-based
implementation where the memory resources are limited.

In this paper, we present LBM, a novel accelerating scheme
for regular expression matching which converts the original byte
stream into much shorter integer stream and then matches it with
a variant of DFA, called Stride-DFA(StriD2FA). In the instance of
LBM that we realize, a speedup of 10-15 is achievable while the
required memory size is much less than that in the traditional DFA.

Index Terms—Regular Expression Matching, DPI, DFA

I. INTRODUCTION

DPI technologies have been increasingly deployed in NIDS
to detect attacks or viruses. To this end, state-of-the-art systems,
including Snort [1], ClamAV [2] and security applications from
Cisco Systems [3], compare packet content to a set of rules.
Rules written in strings are initially popular, but have limited
expressiveness. To support increasingly complex services, regu-
lar expression (regex) has been used to replace string by these
systems due to its higher expressiveness and flexibility. The need
to keep up with ever-increasing line speed has forced NIDS
designers to move to hardware or high-speed memory where
memory resources are limited. Thus, to design regex matching
that achieves both time and space efficiency is a significant
challenge.

A novel length-based matching (LBM) is presented for ac-
celerating regex matching. Like traditional methods, LBM has a
DFA-like matcher called Stride-DFA (StriD2FA). However, LBM
differs from traditional methods in two key ways:

• In LBM, a packet as a byte stream is first converted into a
much shorter stride-length (SL) stream (i.e., integer stream)
before sending to StriD2FA. Therefore, the shorter the SL
stream is, the higher the speedup can be achieved (in our
system, 10 to 15 times speedup is achievable).

• Since it is the SL stream that StriD2FA receives (rather than
original byte string as in DFA), StriD2FA is not directly
built from regex, but is built according to different kinds of
SL streams. Therefore, the fundamental difference between
StriD2FA and DFA is that in DFA a transition records a
byte while in StriD2FA it records a length (i.e., integer).

This paper is supported by NSFC (60625201, 60873250, 61073171), 973
project (2007CB310702), Tsinghua University Initiative Scientific Research
Program, the Specialized Research Fund for the Doctoral Program of Higher
Education of China and Dublin City University Research Collaboration Program.

The benefits of LBM are not only limited to increase matching
speed. As to memory consumption, StriD2FA also costs less
memory than DFA-based accelerating algorithms, for two rea-
sons: 1) it has less states since regexes are stored more compactly
in StriD2FA (Section IV), and 2) the upper bound of SL are
easily controlled (Subsection III-A) so that each state has less
fan-out. Moreover, LBM can be expediently applied on existing
hardware/software platform, as StriD2FA share the same I/O
interfaces and logic structure with traditional DFA built directly
from the regex set.

LBM also leads to two key challenges. First, to preserve the
expressiveness of regex,any regex should be able to transform to
StriD2FA. This is achieved by a graph algorithm that transform
any DFA to a StriD2FA (Section IV). Second, since the SL
stream is a compressed representation of the original stream, only
part of the original stream is matched by StriD2FA, causing false
positive (but no false negative). An algorithm is proposed that
ensures the false positive rate is at an acceptable low level (detail
in Section V). A verification phase is used for accurate matching
if a possible match is found by StriD2FA. Since the majority of
the Internet traffic is not malicious so that it is possible to get
quite high throughput if the probability of having to execute
accurate matching is low [4].

In particular, the contributions are summarized as follows:

• Introduce the concept of LBM, a novel accelerating scheme
for regex matching which converts the original byte stream
into much shorter integer stream and then matches it with
a variant of DFA, called StriD2FA.

• Give the formal construction of StriD2FA that transforms
any set of regex to a StriD2FA.

• Describe the method to extract SL stream from input stream
so that false positive rate can be reduced to an relative low
level.

• Realize an general instance of LBM. It is demonstrated that
this instance achieves both space and time efficiency and
can be expediently migrated to existing platforms. 10 to
15 times speedup is achievable while the memory cost is
smaller than traditional DFA.

The rest of the chapter is organized as follows. In Section II
the previous work related to pattern matching is discussed.
Section III presents the overall structure of LBM and how it
works with an example. Section IV gives the formal construction
of a StriD2FA and false positive will be addressed in Section V.
Section VI reports and analyzes the performance of LBM and
StriD2FA. The paper is finally concluded by Section VII.

II. RELATED WORK

Regex matching was initially studied as a topic in automata
theory and formal theory in the context of theoretical computer
science [5]. To accelerate the regex matching in real-world
systems, the problem has been intensively studied in practical
scenarios in recent years. Vulnerability signature is recently
proposed and applied as an alternative of regex, but it still
requires a high speed regex matching subsystem [6].

For multiple characters multi-string matching, the algorithms
in [7]–[9] all exploit parallelism, to improve throughput with
tradeoffs between memory and bandwidth. With Bloom-filter
implemented in on-chip memory, Dharmapurikar et al. presented
a scheme [7] that can process multiple characters per clock
cycle and attain average throughput up to multigigabit with
moderate memory consumption. However, the proposed schemes
are vulnerable to malicious attacks since in the worst case they
must frequently access the relatively slow off-chip SRAMs to
launch exact string comparisons. In [8], Nan et al. introduced a
variable-stride method to deal with string matching rule set. The
variable-stride can enhance the matching performance. However,
the performance of the matching scheme is rule set and input
string dependent, and the worst case performance can be pretty
bad. Brodie et al. [9] increased the throughput of regex matching
by expanding the alphabet set, resulting in an exponentially
increased memory requirement in the worst case. A recent
method [4] introduced the sampling techniques to accelerate
regex matching, but it not all kinds of regex are supported.

In additional to the aforementioned accelerating approaches,
DFA-based compression methods also enhance the system per-
formance by using multiple matching engines, or faster memory.
Transition compression approaches obtain a high compression
rate by greatly reducing per-state-transition table. D2FA [10]
acknowledged as the original work in this approach, compress
DFA by applying default transitions, at the cost of accessing
DFA multiple times per input character. Subsequent works in-
cluding [11], [12] improved the worst case as well as aver-
age performance. State compression technique was first utilized
in [13], where patterns are selectively grouped to deflating state
explosion. Another work [14] performed a partial NFA-to-
DFA conversion to preventing state explosion. The state-of-the-
art work XFA [15] uses auxiliary memory to reduce the DFA
state explosion and achieves a great reduction ratio. However,
it is not suitable for real-time applications on networks due to
its significant startup overheads. Our proposed method does not
conflict with above works, since the fundamental structures DFA
is completely preserved.

abcababbabccacabc

F aS

F aS

Fig. 1. Use tag and sliding window to convert input stream into SL stream
(with tag ‘a’, window size w = 3).

III. SYSTEM DESIGN PRINCIPLES AND CHALLENGES

A. Converting input stream into SL stream

The convertor works as follows (see Figure 1). When se-
quentially scanning a byte stream, some specific characters are
chosen, called a tag. A tag is used to get the distances between
two adjacent tags which are called stride lengths (SL). Let Fx(S)
denote the SL stream of S when using x as the tag. The top row
of Figure 11 shows the result of Fa(S). The SLs of the same tags
are calculated by a convertor. A convertor is basically a counter
which can be easily implemented in either software or hardware
platform.

The convertor leads to a problem that the SL sent to a
StriD2FA can be arbitrarily large, forcing StriD2FA to handle
an infinite alphabet set. To solve this problem, a fixed size
sliding window is adopted (a similar application is found in [8]).
The window works in the following way (the bottom row of
Figure 1): if a tag is not found within a window, then the last
character of the window is marked as a fingerprint anchor, the
window size w is sent to StriD2FA and the character following
the fingerprint anchor is set to be the beginning of the window.
In this manner, any SL sent to a StriD2FA must be in a finite
alphabet set Σ = {1, . . . , w}.

B. An Example of StriD2FA

In this Section, an example is used to explain how input
stream is converted, matched by a StriD2FA and verified if a
potential match is found by StriD2FA. Suppose the regex rule
is .*abba.{2}caca2. It matches any contiguous part of the
input stream that starts with abba, followed by two arbitrary
characters, and finally ends with caca. Here ‘a’ is chosen as the
tag and the window size is 3. Then Fa(.*abba) is (1 | 2 | 3)+3.
Since the length of the first a in caca relies on two arbitrary
characters which could be [ˆab][ˆab]3, a[ˆa], [ˆa]a,
or aa. So possibly the SL stream of Fa(.{2}caca) = 3 1 2 | 1
3 2 | 2 2 2 | 1 1 2 2. Finally the regex .*abba.{2}caca could
be transformed to (1 | 2 | 3)+ 3 (3 1 2 | 1 3 2 | 2 2 2 | 1 1 2 2),
where the alphabet set is {1, 2, 3} Figure 2 shows the traditional
DFA and the StriD2FA for regex .*abba.{2}caca.

Given an byte stream T =‘‘abcababbabccacabc’’, it
is first converted into SL stream Fa(T) =3 2 3 3 1 2, and
then matched by the StriD2FA in Figure 2(b). As 3 2 3 3 1
2 is matched by the StriD2FA, then the input stream is sent the
verification module to make an accurate match by using some
traditional methods (e.g., reversed DFA in [4]).

C. Benefits of LBM

1) Increased speed: If the lengths between tags (properly
chosen) are relatively long, the method can achieve quite a high
speedup. According to the statistics in Section VI, average SLs of
some characters are larger than 100. As a result, a high speedup
is supported statistically by our experiments.

1Underscore is used to indicate an SL, not a character.
2JFlex syntax for regex is used in this report, i.e., “.” and “*” means the

wildcard and any number of matchings respectively. In default, the 8bit input
character set is used to analyze.

3[ˆab] matches any character other than ‘a’ or ‘b’.

6 9[^a] c a c a5 [^ab]2 3b 4b1 a a

7

8 10

a
b b

a

a

b

12

11

13 14 15

c

c

c

b

b

b

[^ab]a

16

b

a
[^ab]

a

[^a]

(a) Traditional DFA

1

1,2
,3

1,2

84 12 3

2

13 6 272

5

3 1

3

3

(b) StriD2FA using tag ‘a’

Fig. 2. Traditional DFA and StriD2FA of regex .*abba.{2}caca (transitions back to state 1, 2 and 3 are partly ignored for simplicity).

2) Small memory consumption: Compared with traditional
DFA, the StriD2FA is more compact in memory for two reasons.
Firstly, the number of states is generally less than traditional
DFA (e.g., StriD2FA has 8 less states than the traditional DFA
in Figure 2). Secondly, the fanout of each state is controlled by
the window size, and which is generally far smaller than the
fanout of a traditional DFA (256 in standard ASCII). With less
states and a more compact state-transition table, the memory
consumption is greatly reduced compared with traditional DFA.

D. Challenges
1) Regex converting: Regex is powerful by using multiple

wildcard characters (e.g., ‘.’, ‘*’), length restrictions (‘?’, ‘+’)
and groups of characters (‘[]’, ‘ˆ’). So how to preserve the
expressiveness in StriD2FA raises a significant challenge. For
example, by applying the LBM method, .*abba.{2}caca can
be rewritten as a different pattern: (1 | 2 | 3)+ 3 (3 1 2 | 1 3 2
| 2 2 2 | 1 1 2 2). In Section IV, a formal method to efficiently
construct StriD2FA from any regex is described.

2) False positive rate: Since the SL stream is a highly com-
pressed form of an input stream, part of the information is left out
before being sent to StriD2FA. So it is only a potential matching
if StriD2FA reports a matching, causing a false positive. For
example, if given two strings T=“efe” and T ’=“ere”, we have
Fe(T’) = 5 = Fe(T). If the stride length 5 is matched, it is not
sure if it is T or T’ that is matched.

IV. BUILDING STRID2FAS FROM REGEX

A formal construction is given about how to construct
StriD2FA from a regex. It involves four steps: 1) build a
standard DFA by traditional method from a regex; 2) restructure
the DFA by classifying all the transitions; 3) transform the
restructured DFA to a non-deterministic StriD2FAs by the
depth first search (DFS) algorithm; 4) determinize to the final
StriD2FA (similar to the determinization in traditional DFA).

Step 1: Compile Regex to standard DFA -The way of com-
piling a regex to a standard DFA is conventional (intensively
studied in [5]). Figure 2(a) is the traditional DFA of regex
.*abba.{2}caca. Since regex has an equivalent expressive-
ness with DFA (every regex has an equivalent DFA), so all the
things need to do is to convert a DFA into its corresponding
StriD2FA that matches the SL stream without giving any false
negative rate. That is the task of the next two steps.

Step 2: Restructure DFA by classifying transitions -In this step,
all labels are removed on transitions and mark each transition
whether its character is c4 (solid transition if true and dashed

4Let c denote the tag which is selected and windows size is w.

transition otherwise). Figure 3(a) shows the output after classi-
fication on Figure 2(a) with tag ‘a’.

Step 3: Transform to non-deterministic StriD2FA -The input of
this step is the restructured DFA (a directed graph consisting of
solid and dashed transition), and the output is a non-deterministic
StriD2FA, a directed graph where each transition is labeled with
a SL value (i.e., integer). Non-deterministic means some states
can have more than one outgoing transitions labeled with the
same SL (integer). To explain the method, the following steps
are processed recursively: starting from any state q,

• if a solid transition (pointing to state q′) is reachable in l
steps where l ≤ w, add a transition labeled l from q to q′;

• otherwise (i.e., there is an all-dashed-transition path of
length w to state q′), add a transition labeled w from q
to q′.

The first case applies when the convertor extracts SL of l(l ≤ w),
and the second case applies when the convertor finds no tag in the
window and then uses the window size w as the SL. The basic
operation can be done by a depth first search with maximum
depth w. For the whole graph, the basic operation is processed
iteratively, starting from the initial state to find all the reachable

Algorithm 1 Step 3: Transform directed graph to StriD2FA
1: Procedure BUILD(G,w)
2: Input: G = (V,E, q0, F), w ◃ E

consists of solid and dashed transitions, q0: initial state and
F : set of final states, w: window size

3: Output: StriD2FA A = (Q,Σ, δ, q0, F)
4: Q = δ = F = ∅,Σ = {1, . . . , w}
5: Explore(q0, q0, w,Q, δ, F)
6: return A = (Q,Σ, δ, q0, F)
7:
8: Procedure Explore(q, p, depth,Q, δ, F)
9: if depth = 0 then

10: Q← q ∪Q
11: δ ← δ ∪ (p, w, q)
12: else
13: for e = (q, q′) ∈ D+(q) do ◃ D+(q): the set of

outgoing transitions of q
14: if e is dashed then
15: depth← depth− 1
16: Explore(q′, p, depth,Q, δ, F)
17: else
18: Q← q′ ∪Q
19: δ ← δ ∪ (p, w − depth, q′)
20: Explore(q′, p, w,Q, δ, F)
21: end if
22: end for
23: end if
24: return

6 953 4

7

8 10

12

11

13 14 15 1621

(a) Directed graph after step 2, transitions pointing to state 1 and 2 are partly omitted for
clarity).

7

2 53 101

1,2
,3

1,2,3

2

13

3

1

14

1

2

3

162

3
3

3
3

1,2,3 3

1

(b) The non-deterministic StriD2FA after step 3 (for
clarity, transitions labeled 2 and 3 from state 7,10,13,14,16
to state 2 and transitions labeled 1 from state 10,14 to state
2 are omitted).

Fig. 3. An example showing the results after step 2 and step 3.

states and build transitions between them. The pseudocode is
given in Algorithm 1 (Let ◃ denote the comment symbol).
Figure 3(b) is the non-deterministic StriD2FA transformed from
Figure 3(a).

Step 4: Determination to StriD2FA -The method to determinate
non-deterministic StriD2FA to a deterministic finite automaton is
exactly the same to the procedure of determining traditional NFA
to DFA, so we will not present its details. Figure 2(b) shows the
final structure of StriD2FA determined from Figure 3(b).

V. OPTIMIZATION OF FALSE POSITIVE

Minimizing false positive rate while preserving other perfor-
mances (i.e., throughput and memory usage) is analyzed in this
section. High false positive rate leads to frequently use of the
verification module, degrading the overall throughput. Although
the idea and core mechanism is simple and straightforward,
StriD2FA is a very complicated system as a whole, so several
optimizations have been adopted in LBM system.

Essentially, the optimization of reducing false positive rate is
a balance between two extremes. On the one hand, to reduce
the false positive rate to zero, all possible characters should be
used as tag at the convertor should be checked (that is, 256 in
worst case) and build a StriD2FA for each of them; however,
this will degrade speedup to one (as every input character
invokes an access to some StriD2FAs) and lead to large memory
consumption (linear with the number of tags). On the other
hand, to achieve a high throughput and low memory usage, it is
expected to use as few tags as possible; however, the possibility
of false positives can increase significantly since a large portion
of the input characters is left out5.

To strike a balance, a small group of proper tags is selected
so that each regex rule can be “covered” by some tags in the
group. In the following two subsections, first the definition about
how a regex rule is “covered” by some tags is given , and then
the choosing of tags is addressed to achieve both space-time
efficiency and lower false positive rate.

A. How tags “cover” regex rule

Intuitively, a rule is covered by one or more tags c1, . . . , ck
when it is of very high probability that the rule is matched
if StriD2FA1, . . . , StriD

2FAk all report a match. Here
StriD2FAi is the StriD2FA with respect to tag ci in rule

5The last character in the window is marked as a fingerprint anchor if it is no
tag in the window.

set(i = 1, . . . , k). However, it is impossible to pre-compute
this probability since it strongly relies on the input string
which is unknown when choosing tags. Fortunately, from
the experiments, it is easy to find that choosing “frequent”
characters in a rule as tags can greatly reduce false positive
rate. The meaning of being “frequent” is quite straightforward:
the frequency Freq(c, r) of a character c in a regex r refers
to the number of occurrences of c in regex r over the sum of
lengths of all fixed substrings in r:

Freq(c, r) =

∑
s∈Sc,r

(#c in s)∑
s∈Sc,r

|s|

Here Sc,r is the set of fixed substrings in regex rule r and |s| is
the length of string s. Then the definition of how tags “cover”
regex rule is given as followings.

Definition 1: A regex rule r is covered by a set of tags, TAG,
if the frequency of TAG in r exceeds a predefined threshold θ.

The reason of using Freq(c, r) to select tags is twofold. First,
Freq(c, r) has the additive property; that is, the frequency of a
set of characters in regex r is the sum of Freq(c, r) over all c in
the character set. So it is very simple to calculate the frequency
of a set of characters in all regex rules. Second, with higher
Freq(c, r), the possibility of false positive is lower because more
part (i.e., more characters) of the regex rule is checked by the
chosen set of tags.

VI. EVALUATION

To evaluate the efficiency of LBM, an instance is implemented
of it, which uses tags to produce SL stream (as in Section III-A).
The StriD2FAs are built in the way described in Section IV.

The performance of LBM system, including throughput and
memory size, is influenced by four aspects: (a) input stream
(trace), (b) regex rules, (c) window size and (d) selected tags.
The memory consumption is influenced by (b)(c)(d); speedup is
influenced by (a)(c)(d); and the overall throughput is influenced
by (a)(b)(c)(d).

A. Memory consumption

The rule set is used from the latest version of Snort (v2.8.6
as of 03 Aug, 2010) and ClamAV (0.96.2 as of 15 Feb, 2010).
Traditionally, combining all (even part of) regex rules into one
DFA requires large amount of memory; for example more than
15 GB of memory is needed if 88 Snort rules are combined into
one single DFA [15] (the traditional DFA memory usage is in

TABLE I
COMPARISON WITH STRID2FA, K-DFA AND TRADITIONAL DFA

Snort
Memory Traditional k-DFA StriD2FA
factors DFA k=2 k=4 w=10 w=20 w=30
State 5298 6152 8314 671 447 264

Alphabet set 256 2114 7024 10 20 30
Transition 1.35M 13.0M 58.39M 6.7k 8.94k 7.92k

ClamAV
Memory Traditional k-DFA StriD2FA
factors DFA k=2 k=4 w=10 w=20 w=30
State 6721 8362 10051 834 526 392

Alphabet set 256 2673 9532 10 20 30
Transition 1.72M 8.78M 28.04M 8.3k 10.5k 11.7k

the second column of Table I). For StriD2FA, the memory usage
of different rule sets using various window sizes is investigated.
Sliding window is adopted to control the largest SL which is sent
to the StriD2FAs and reduce the size of state-transition table from
256 to window size w. The fifth to seventh column in Table I
show the total number of states and transitions in all StriD2FAs
using different window size w. The results are compared with the
memory cost of another well-known DFA acceleration matching
method k-DFA [16].
B. Speedup

Three real-life are employed network traffic traces to evaluate
the system, which are Darpa, Defcon and Tsinghua-trace respec-
tively. Darpa trace is from the DARPA intrusion detection data
sets collected by MIT Lincoln Laboratory [17]. Defcon trace is
from the Shmoo Group DefCon 9.0 Capture the Flag Contest
[18]. Tsinghua-trace was collected in the gateway of Tsinghua
University campus network.

In LBM, the speedup over a long time scale equals the average
stride length (SL). Figure 4 illustrates the SL’s dependency on the
window size, confirmed by experiments on 3 different traces. In
each of the boxplots, the upper and lower bars mark the 97% and
3% percentiles of the average strides, respectively. A quasi-linear
relationship is made evident by the line that is constituted by the
mid-points, with the average SL surpassing half the window size.
Therefore, a high throughput can be guaranteed with different
window sizes and tags.

C. Performance on real trace

The above three traces are used to evaluate the performance
of LBM method. With LBM matching engine, only SL stream
which is occupies about 0.38% of the original input stream will
be sent to StriD2FA to make a match. According to the exper-
imental results of Tsinghua-trace and some groups of ClamAV
rules, there are 127 potential matches alarmed by StriD2FA while
13 real matches are confirmed by the verification module.

In addition to the above three different kinds of traces, other
traces collected from the World Wide Web should also be
used to test the performance and stability of the LBM scheme.
WebbSpam [19] consists of nearly 572,292 Web spam pages with
the size of 5.54GB, was chosen additionally to demonstrate the
performance of the LBM scheme. According to the statistics,
about 99.41% of the input stream has been pre-filtered by the
architecture which means only 0.58% (263.5M) data needs to
be sent to StriD2FA to match instead of matching the whole

0 20 40 60 80 100 120 140 160 180 200 220

20

40

60

80

100

120

140

160

Tsinghua-trace

0 5 10 15 20 25 30 35 40 45 50

10

20

30

40

50

Defcon

0 10 30 40 50 60 70 80

10

20

30

40

50

60

70

80

Darpa

20 100 120w=

A
v
e
ra
g
e
 s
tr
id
e

Fig. 4. Average stride length under different window sizes.

raw bytes. There are 392 potential matches and 89 matches real
matches among of it.

VII. CONCLUSION

In this paper, we present LBM, a novel accelerating scheme
for regular expression matching which converts the original byte
stream into much shorter integer stream and then matches it with
a variant of DFA, named StriD2FA. We also give the formal
construction of StriD2FA that transforms any set of regex to a
StriD2FA and describe the method to produce SL stream so that
false positive can be reasonably reduced. Evaluating results show
that our architecture can achieve 10 to 15 times speedup with
about 30% less memory consumption than the traditional DFA.

REFERENCES

[1] “Snort: Network intrusion detection system,” http://www.snort.org/.
[2] “Clam AntiVirus,” http://www.clamav.net/.
[3] “Cisco IOS IPS,” http://www.cisco.com.
[4] D. Ficara, G. Antichi, A. Pietro, S. Giordano, G. Procissi, and F. Vitucci,

“Sampling techniques to accelerate pattern matching in network intrusion
detection systems,” in Proc. of IEEE ICC, 2010.

[5] J. Hopcroft, R. Motwani, and J. Ullman, Introduction to Antomata Theory,
Languages and Computation. Addison Wesley.

[6] Z. Li, G. Xia, H. Gao, Y. Tang, Y. Chen, B. Liu, J. Jiang, and Y. Lv,
“Netshield: Matching with a large vulnerability signature ruleset for high
performance network defense,” in Proc. of ACM SIGCOMM, 2010.

[7] S. Dharmapurikar and J. W. Lockwood, “Fast and scalable pattern matching
for network intrusion detection engines,” IEEE JSAC, vol. 24, no. 10, 2006.

[8] N. Hua, H. Song, and T. Lakshman, “Variable-stride multi-pattern matching
for scalable deep packet inspection,” in Proc. of INFOCOM, 2009.

[9] B. C. Brodie, D. E. Taylor, and R. K. Cytron, “A scalable architecture
for high-throughput regular-expression pattern matching,” in Proc. of
ACM/IEEE International Symposium on Computer Architecture (ISCA),
2006.

[10] S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley, and J. Turner, “Algorithms
to accelerate multiple regular expressions matching for deep packet inspec-
tion,” in Proc. of ACM SIGCOMM, 2007.

[11] S. Kumar, J. Turner, and J. Williams, “Advanced algorithms for fast and
scalable deep packet inspection,” in Proc. of ACM/IEEE Symposium on
Architectures for Networking and Communcations Systems (ANCS), 2006.

[12] M. Becchi and P. Crowley, “An improved algorithm to accelerate regular
expression evaluation,” in Proc. of ACM/IEEE Symposium on Architectures
for Networking and Communcations Systems (ANCS), 2007.

[13] F. Yu, Z. Chen, Y. Diao, T. V. Lakshman, and R. H. Katz, “Fast and
memory-efficient regular expression matching for deep packet inspection,”
in Proc. of ACM/IEEE Symposium on Architectures for Networking and
Communcations Systems (ANCS), 2006.

[14] M. Becchi and P. Crowley, “A hybrid finite automaton for practical deep
packet inspection,” in Proc. of ACM International Conference on emerging
Networking EXperiments and Technologies(CoNEXT), 2007.

[15] R. Smith, C. Estan, and S. Jha, “XFA: Faster signature matching with
extended automata,” in IEEE Symposium on Security and Privacy, 2008.

[16] M. Becchi and P. Crowley, “Efficient regular expression evaluation: theory
to practice,” in ANCS, 2008, pp. 50–59.

[17] “Mit darpa intrusion detection data sets,” http://www.ll.mit.edu/mission/
communications/ist/corpora/ideval/data/index.html.

[18] “Shmoo group defcon 9.0 capture the flag contest data sets,” http://ictf.cs.
ucsb.edu/data/defcon ctf 09/.

[19] S. Webb, J. Caverlee, and C. Pu, “Introducing the webb spam corpus: Using
email spam to identify web spam automatically,” in Proceedings of the 3rd
Conference on Email and Anti-Spam (CEAS).

