
TriBiCa: Trie Bitmap Content Analyzer for
High-Speed Network Intrusion Detection

N. Sertac Artan
ECE Department

Polytechnic University
Brooklyn, NY

(sartan01@utopia.poly.edu)

H. Jonathan Chao
ECE Department

Polytechnic University
Brooklyn, NY

(chao@poly.edu)

Abstract—Deep packet inspection (DPI) is often used in net-
work intrusion detection and prevention systems (NIDPS), where
incoming packet payloads are compared against known attack
signatures. Processing every single byte in the incoming packet
payload has a very stringent time constraint, e.g., 200 ps for
a 40-Gbps line. Traditional DPI systems either need a large
memory space or use special memory such as ternary content
addressable memory (TCAM), limiting parallelism, or yielding
high cost/power consumption. In this paper, we present a high-
speed, single-chip DPI scheme that is scalable and configurable
through memory updates. The scheme is based on a novel
data structure called TriBiCa (Trie Bitmap Content Analyzer),
which provides minimal perfect hashing functionality. It uses
a trie structure with a hash function performed at each layer.
Branching is determined by the hashing results with an objective
to evenly partition attack signatures into multiple groups at each
layer. During a query, as an input traverses the trie, an address
to a table in the memory that stores all attack signatures is
formed and is used to access the signature for an exact match.
Due to the small space required, multiple copies of TriBiCa
can be implemented on a single chip to perform pipelining and
parallelism simultaneously, thus achieving high throughput. We
have designed the TriBiCa on a modest FPGA chip, Xilinx Virtex
II Pro, achieving 10-Gbps throughput without using any external
memory. A proof-of-concept design is implemented and tested
with 1-Gbps packet streams. By using today’s state-of-the-art
FPGAs, a throughput of 40 Gbps is believed to be achievable.

Index Terms—TriBiCa, NIDPS, minimal perfect hashing

I. INTRODUCTION

High-speed Network Intrusion Detection and Prevention
Systems (NIDPS) have gained a lot of attention recently as
part of the effort to keep up with the ever-increasing bandwidth
requirement of today’s networks. The most time-consuming
task of NIDPS is Deep Packet Inspection (DPI). DPI also
has applications in other networking areas, such as layer-
7 switching, URL inspection, and spam, virus, and worm
detection [1], [2]. DPI is the task of searching for a static
or dynamic set of strings within each incoming packet. In the
NIDPS context, DPI searches for pre-defined attack signatures
in the incoming packets so as to identify malicious content.

Unlike most network applications, such as IP lookup and
packet classification, whose complexity is proportional to the
packet rate in packets/sec, DPI’s complexity is determined by
the data rate in bytes/sec, making it computationally harder
than other applications. DPI’s complexity is also increased by

the number and length of strings in the set (signatures). As a
result, the issue of designing a DPI system that is scalable
in processing speed independent of the string set remains
a challenge. Moreover, the application may have a dynamic
signature set that is updated when necessary. Although in
NIDPS these updates are relatively infrequent, the need to
easily update the NIDPS signature set when required is still a
challenge and often creates conflicts when designing a high-
speed system.

Our goal is to design a high-speed, scalable, and easily
updateable data structure to target these challenges. Specifi-
cally, the data structure will be small and its size scales with
the number of strings and the average string size in the set.
In addition, the updates can be achieved without hardware
modifications. The proposed data structure, called TriBiCa
(Trie Bitmap Content Analyzer), provides minimal perfect
hashing functionality while intrinsically supporting low-cost
set-membership queries. In other words, it provides at most
one match candidate in the signature set that is used to match
the query. It also filters out most of the irrelevant (i.e., legiti-
mate) traffic without referring to any string matching operation
and thus increases the average search rate. Following the data
structure, a hardware architecture is presented that tailors this
data structure to the NIDPS. The proposed architecture fits
into a fraction of a modest FPGA without the need for any
external memory. More specifically, using parallel engines, the
architecture can provide 10-Gbps throughput in the worst case
on a Xilinx Virtex II Pro FPGA. If current state-of-the-art
FPGAs are used, the proposed architecture can easily achieve
DPI at 40 Gbps. The updates can be done through on-chip
memory without any reconfiguration of the on-chip logic (i.e.,
without any hardware modification), allowing faster response
to new attacks. Avoiding external memory access not only
improves speed, but also allows parallel designs to fit into the
same chip.

The rest of this paper is organized as follows. Section II
briefs the related work in high-speed hardware NIDPS. Section
III describes the proposed data structure – TriBiCa. Section IV
outlines the proposed NIDPS architecture based on TriBiCa.
Section V analyzes the TriBiCa data structure and Section VI
provides performance results. Section VII concludes the paper.

0743-166X/07/$25.00 ©2007 IEEE

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

125

II. RELATED WORK

Software DPI methods are not scalable for high-speeds [3]
because general-purpose hardware running software DPI is
intrinsically slow and has limited parallelism. Hence, here we
only consider the hardware approach. Research to increase the
DPI speed focuses on two aspects: (1) increasing the speed
of unit inspection operation (i.e., operation for each byte of
the incoming packet) and (2) reducing the number of DPI
operations by identifying possible malicious packets at the
early stages of the inspecting process, while passing most of
the packets that are legitimate.

To increase the speed of detection, some approaches use
external memory structures [4], [5] such as TCAMs, SRAMs
or both. The former is more expensive and consumes more
power, while the latter suffers from speed limitation. Other
approaches implement the DPI on a single-chip (most of the
time on a single FPGA). The first generation of the single-
chip solutions [6]–[10], with the exception of [10], tailor string
matching circuits to the input set. Although it is high-speed,
it requires hardware reconfiguration for updates. A recent
proposal [11] takes a hybrid approach, using reconfigurable
circuits and on-chip memory. The approach in [11] is similar to
our proposal in that they also use perfect hashing (though not
minimal perfect hashing). Unlike our proposal, [11] requires
reconfiguration and has less than 100% signature memory
utilization due to using perfect hashing rather than minimal
perfect hashing. In [12], a minimal perfect hashing scheme is
provided with O(n) space complexity and low construction
time. This approach, however, requires a complex addressing
scheme, where additional logic is required to calculate the
address in the hash table, to locate the signature for an exact
match. Other recent proposals such as [10], [13], [14] also use
on-chip memory for signature-specific data and for avoiding
hardware reconfiguration for updates.

The pioneering work on single-chip methods without recon-
figuration for signature updates [10] set the stage by modifying
the classical Aho-Corasick String Matching Algorithm [15]
for hardware implementation. Authors in [13] use small state
machines to further improve memory requirements and fit the
entire Snort [3] signature database to 0.4 MB memory. It is
claimed that it can run at 10 Gbps with an ASIC implemen-
tation. It is noteworthy that the ASIC-based solution has a
technology advantage over other proposals, most of which
are FPGA-based. Authors in [16] later showed that FPGA
implementation of [13] can achieve lower throughput while
using larger memory. Authors in [14] use a sparse hash table
to store signatures so that the hash collisions are minimized or,
more likely, eliminated. Although the authors use indirection
to improve memory utilization, it is still lower than many other
proposals. In addition, the authors use glue logic to detect
long patterns, which may require reconfiguration for signature
updates.

Since most of the incoming packets are legitimate, running
DPI for every single byte of an incoming packet is overkill.
Methods exploring this property of intrusion detection were

Fig. 1. Binary trie of TriBiCa. The value in each node shows the maximum
number of items in that node. At each level l, there are 2l nodes, each with a
disjoint set of items from the set S. The total number of items in each level
is always n.

proposed to skip most of the legitimate packets through simple
and fast pre-processing [17]–[19], thus significantly reducing
the string matching operation that allows few queries before
attempting any string matching. However, these methods still
require additional full string matching for suspicious data, and
do not improve the worst-case performance.

III. TRIBICA

A. TriBiCa Data Structure

This section presents TriBiCa, our proposed data structure.
Suppose a set S with n items is stored in a table with exactly
n slots and each slot stores a single item from S. Our objective
is to design a data structure that can represent this set S and
respond to a membership query on S (1) by stating there is
a possible match or not, and (2) if there is a match, pointing
to a single possible match candidate in S (i.e., pointing to a
single table slot) without any prior exact matching between the
query and the items in the set. To achieve the latter objective
requires finding a minimal perfect hash function for S, which
maps each item of S into one of n consecutive integer values
in the table without any collisions. To achieve the former
objective, the data structure should skip most, if not all, of
the non-element queries by providing a simple, low-cost set-
membership query mechanism.

TriBiCa achieves minimal perfect hashing by carefully parti-
tioning the n items into equal-sized groups at each level so that
at the end, all n items are uniquely partitioned, i.e., one item
per group. Let us start with a binary trie with l = �log(n)�1

levels where the root node is at level 0 as shown in Figure
1. The root node of this trie has all the n elements of S. To
simplify our discussion, let us assume n is a power of two.
Then arbitrarily partition n items into two equal-sized groups
(n/2 each) and put one group to the left child node and the
other to the right child node. Let us assume that there exists a
partitioning algorithm that can do just that. Let us also assume
that this algorithm will provide a query mechanism such that
the correct group of a query item can be determined. These
algorithms are described in Section III-B. This operation is

1All logarithms in this paper are in base 2.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

126

then repeated in a recursive manner for each child node. More
specifically, each child node will inherit precisely half of the
items that belong to its parent. When a leaf node is reached,
there will be two items in this node. The algorithm completes
its partitioning by designating one of the items in each leaf
node as the left child and the other as the right child. The
path traversed from the root to each leaf node followed by the
direction of an item in that node (left or right) is unique and
thus defines a unique ID for each element of the set S. These
IDs are used to address the table where S is stored providing
a minimal perfect hash function for S.

A TriBiCa node is shown in Figure 2. Each node consists
of a data bitmap (DB) and a next node bitmap (NB). The DB
indicates whether a given item is stored in this node. If this
item is stored in this node, then the NB shows the child node
inheriting this item. Both bitmaps have equal sizes and are
addressed with a single universal hash function. We call each
NB/DB bit pair in a node a bin. All nodes at the same level
have equal bitmap sizes and are addressed with the same hash
function. To insert an item into a node, we simply hash the
item with this hash function, and set the bit corresponding to
the hash result in the DB. The corresponding NB bit will show
which child (left = 0 or right = 1) node inherits this particular
item. As an example, Figure 3 shows a TriBiCa with 3 levels
and 8 items (I1 - I8). These items are first hashed to the root
node. Half of the items in the root node (I1, I2, I4 and I5)
are inherited by the left child (NB = 0) and the rest by the
right child (NB = 1). The same operation is repeated in the
child nodes (e.g., I5 first goes to right (NB = 1) and then
to the left (NB = 0)). The path traversed is encoded by the
NB values and determines the address of the item in the table.
The partitioning algorithm determines the content of NB. All
items hashed to the same bin in a node share the same next
node information since they share the same NB bit. So, items
hashed to the same bin in a node must go to the same child
node. We call this constraint the collision constraint and any
partitioning algorithm should follow this constraint.

When n is not a power of two, the binary trie will not be
balanced and the partitioning will be left-aligned, i.e., nodes
at level l will be filled from left to right with 2�log(n)�−l items
as long as there are enough items left. The remainder of the
items will be put into the next node and the rest of the nodes
(and their children) will be removed. Optionally, TriBiCa can
be designed as a k-ary trie instead of a binary trie, where each
node has k children (k may differ between levels). This option,
however is not covered in this paper and is left as future work.

Now, let us show the set-membership query mechanism
provided by TriBiCa, which has similarities with Bloom
Filters (BF) [20]. As with BFs, TriBiCa allows low-cost
set-membership queries through bitmaps; however TriBiCa
bitmaps are embedded in a trie structure. Additionally, TriBiCa
provides member identification with a response to a matched
query, a feature that BFs do not provide.

Once all items are hashed into TriBiCa, TriBiCa is ready
for membership queries. The input is first hashed to the DB of
the root node. If the corresponding bit value is zero, then this

Fig. 2. An example TriBiCa node showing 4 items hashed

Fig. 3. An example TriBiCa with 8 items and 2 example queries. The first
query, queries for item I5 matches the item I5 in the table. The second query,
queries for a non-member, I9, which is discarded by TriBiCa.

query item is not a member and it is discarded immediately,
without further processing. On the other hand, if the bit is
set to one, this query item may be a member of S. The
corresponding bit in the NB will show the child to which
to branch. The trie is then traversed until any node gives a
no match (at least one node DB returns a zero) or the leaf
node is reached. If at any node, the DB yields a zero, TriBiCa
discards the input, allowing sub-linear processing time on
average. Otherwise, if the input is hashed at all levels only to
the bins with DB = 1, the NB values on the path will be used
as an address to the table to retrieve the item. Then the input
will be compared with this item for final membership decision,
guaranteeing, at most, one string matching operation per input.
A non-member input may cause a false positive, rendering
one unnecessary string matching operation that resolves the
false positive. These false positives determine the average

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

127

Bin No. 0 1 2 3 4 5 6 7
Occupancy 0 0 2 0 0 1 0 1

Item list - - 1,4 - - 3 - 2

Fig. 4. Occupancy map for the example node in Figure 2

performance but do not impact the worst case (i.e., the worst
case is one string matching operation per query). In Figure 3,
the query for I5, which is in TriBiCa, gives matches in all
nodes it is queried (all DB values are 1). The corresponding
NB values through the path, 010, encodes the location of the
query item in the table. To complete the matching, the item is
fetched from the table and compared with the query. Finally,
for the query with a non-member item, I9 at level 1, the DB
gives a false positive and TriBiCa discards the input. If this
were a false positive, the query would not be discarded and
would reach the final level. The final comparison with the
item in the table would then determine that this item is not a
member. If the average performance is not critical, then data
bitmaps can be removed from TriBiCa nodes, reducing the
memory to half without affecting the worst case.

B. Offline Partitioning Algorithms

As noted in Section III-A, a partitioning algorithm that guar-
antees a non-conflicting partitioning is required for TriBiCa to
achieve minimal perfect hashing. In this section, we describe
such algorithms. For offline partitioning algorithms described
here, an auxiliary data structure for each node called an occu-
pancy map is used. The occupancy map holds the occupancies
for each bin (i.e., the number of items hashed to that bin) in
the node along with the list of items hashed to that bin. Such
a map for the example node given in Figure 2 is shown in
Figure 4. This map is not needed for online operation (i.e.,
on-chip operation).

Following the collision constraint, partitioning the items
in a node with η items into two2 equal-sized groups, is
simply partitioning the occupancy values of that node into
two partitions with equal sums. In other words, let q be the
number of bins with occupancies larger than 0 in a node and
let Q be the set of these occupancy values. Then, finding two
such disjoint subsets of Q each with sum c = η/2 is the same
problem as partitioning the items in a node into two equal-
sized groups under the collision constraint. This problem is
equivalent to the classical number partitioning problem, which
is NP-complete [21].

Fortunately, our instance of the number partitioning problem
has a characteristic that helps us develop a good heuristic. In
[22], Hayes argued that the best predictor of difficulty in the
number partitioning problem is

ψ = w/η (1)

where w is the number of bits required to represent the
largest number in the set (i.e., w = logM and M is the

2If the trie is not balanced, then the sums at the remainder nodes will not
be equal. If a TriBiCa is designed as a k-ary trie, the occupancy values should
be partitioned into k partitions each with equal sums of n/k.

maximum occupancy value among bins of a given node
for the purpose of our discussion). The maximum value in
the occupancy map (that is the occupancy of the bin with
maximum items) is low even for a load factor of ρ = η/µ = 1,
where µ is the size of each bitmap (NB or DB) for this node.
It can be shown that the expected maximum occupancy for a
load factor of 1 is [23],

E[M] = O(log η/ log log η) (2)

From the two equations above, the difficulty of our parti-
tioning problem instance decreases with η, since the expected
value of M is sub-linear in η. As a result, for the high levels
of the trie (i.e., levels close to the root where η is larger), the
problem is simpler, whereas it gets harder as we approach the
leaf nodes. Intuitively, it is easier to find a subset with a desired
sum selected out of many small numbers (high-level nodes),
rather than finding it among a few large numbers (low-level
nodes). So, for high-level nodes, a naı̈ve algorithm is likely to
find a solution, since it is likely that there are many solutions
available. As we approach the leaf nodes, however, this is
unlikely since there will be fewer solutions, if any at all. On
the other hand, using a brute-force algorithm that is basically
trying all possible subsets of Q to find if there is any possible
equal partitioning is feasible at low levels. There are a total of
s = 2q subsets for a given occupancy map. q cannot be larger
than the sum of occupancies (i.e., η), so s is bounded with 2η.
This bound, however, is not tight. Among these subsets only
the subsets with a sum of η/2 is of interest for the purpose of
equal partitioning. For instance, if a subset si has a sum larger
than η/2, the brute-force algorithm will take into consideration
any of si’s supersets. Also, it can easily be observed that for a
given η, as the number of collisions in the hash table increases,
the number of subsets of Q decreases. So, if there are a few
hash collisions, a brute-force algorithm is expected to reach
an equal partitioning fast, since the number of subsets with
sum η/2 is large. On the other hand, if there are many hash
collisions, there are a few subsets so the algorithm covers all
subsets faster, although with a lower probability of finding
an equal partitioning. We next show an equal partitioning
algorithm suitable for high nodes (Blackjack Algorithm) and
another for low nodes (Greedy Algorithm).

C. Blackjack Algorithm

The naı̈ve algorithm proposed here to partition high levels
— The Blackjack Algorithm — is a straightforward algorithm
relying on the fact that for nodes with many items i.e., large η,
the probability of failing to find an equal partitioning is slim.
Besides, in most cases there are too many possible solutions.
On the other hand, for nodes with such large η, the brute-force
approach is not practical. For each node to be partitioned,
starting from the leftmost bin among the occupied bins (i.e.,
any bin, where DB value is 1) and walking to the right, the
items in each bin are added to the left partition unless adding
the next bin causes the size of the left partition to go over η/2
(thus the name, blackjack). If adding the items hashed to the

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

128

bin causes the size of the left partition to go over η/2, this bin
is skipped (i.e., added to the right partition) and the following
bin is tried until a perfect size of η/2 is reached or all bins are
tried. If the perfect size is reached, the remaining items will be
put into the right partition and the partitioning is completed.
Otherwise, the algorithm restarts from the second occupied
bin on the left and retries. If all starting points are exhausted,
either of the following two options can be selected. (1) For
the nodes that failed to partition, their parent nodes are tried
to be partitioned again with a different starting point to allow
new options for the failed node. (2) A new hash function can
be issued for the level, and partitioning of this level restarts
again. This algorithm can be extended to a k-ary trie node by
repeating the same operation for k−1 times for each partition
except the last and with a target sum of η/k.

D. The Greedy Algorithm

For the low levels of TriBiCa, the solutions are not as
abundant as for the high levels. It is specifically critical at
the last level where to reach perfect hashing, there should
not be any collisions in any node at all. The algorithm thus
achieves perfect hashing by trying all possible solutions over
the few low levels. As more levels are included in the search
(i.e., more levels are designated as low levels), the probability
of reaching a perfect hashing increases as demonstrated in
Section V. However, as more levels are included, the solution
space increases substantially; thus, running time may increase
unacceptably. For the application of the NIDPS for Snort
signature database and the possible expansion of this database
in the future, designating the last 4 levels (levels with 16 or
fewer items in their most crowded node) as low-level nodes
is a suitable selection for the given size of the problem as
discussed in Section V.

To simply the discussion, we define a super node as a
subtrie that is rooted from any node of the first level of low-
level nodes and has last level nodes as its leaf nodes. The
Greedy Algorithm works on each super node independently.
The algorithm starts by partitioning the root node of a super
node. To do this partitioning, the algorithm walks through all
subsets of the set of occupancy values (i.e., subsets of Q)
to find a subset with sum η/2. The items in this subset are
inherited by the left child. The remaining items are inherited
by the right child. The algorithm then partitions the child nodes
recursively in the same way as it partitions the root node until
all nodes are partitioned successfully. If all the leaf nodes
are free from collisions, the processing of this super node
is completed successfully. If at some level, all the possible
partitionings failed, the algorithm goes back one level up and
finds the next valid configuration at that level and resumes
recursive behavior.

Note that the partitioning should be successful for all the
subtries rooted from the highest low-level to reach the goal of
finding a minimal perfect hashing for the entire input set S.
If any subtrie exhausts all partitionings without any success,
either the parent high-level nodes are partitioned again to allow
new options for the failed nodes, or a new hash function set

Fig. 5. A deterministic time string matching model

will be issued for the low levels and the partitioning of low
levels restarts from scratch. It can also be very effective to
use a few additional hash sets for the failed super nodes as
detailed in Section VI.

IV. TRIBICA FOR NETWORK INTRUSION DETECTION AND

PREVENTION

In this section, we first present an efficient string-matching
model that achieves deterministic time matching using input
independent state machines. Then, we show that the NIDPS
architecture based on TriBiCa following this model achieves
deterministic throughput. The model, similar to [4] and [24],
emulates the behavior of the Aho-Corasick state machine,
using a memory and a small fixed state machine. This way,
the model can detect arbitrary length signatures, avoiding
scalability issues for long signatures. As in previous work [4],
[24], we start by chopping each signature into c-byte fixed size
chunks. If a signature’s length l is not a multiple of c, then
the last l mod c bytes of this signature will be identified by
a separate detector. Specifically, all signatures with length i,
where i mod c �= 0 will share a detector to detect their final
suffixes. For this purpose, c− 1 detectors are needed.

To carry multiple-string matching over an input stream
in deterministic time, the following conditions should be
satisfied. (1) The string matching system should be able to
detect the starting point of a signature in the payload, even
when another match is in progress. (2) It should be able to
follow a long signature until it is complete. (3) In case of a
failure on detecting a long signature, the DPI system should
be able to continue with the longest prefix detected (i.e., the
prefix that ends in the last detected chunk). (4) If a signature
contains another signature, the contained signature should be
reported whether the large signature is detected or not.

To satisfy the four conditions above, thus achieving deter-
ministic detection time of any input for signatures with length
lc, such that lc mod c = 0, the two detectors shown in Figure
5 that work on c-byte chunks of the input are sufficient.

In Figure 5, detector1 is responsible for detecting c-byte
chunks on a sliding window input. In case of a match,
detector1 reports a unique ID of the detected chunk to
detector2. If this chunk is actually a complete c-byte sig-
nature, a signature found alert is also issued. detector2 is
responsible for detecting larger signatures in a stateful man-
ner. Receiving two matches, c-byte apart from detector1,
detector2 looks for ID1, ID2 to match (a prefix of) a long
signature consisting of chunk1 and chunk2. If there is a

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

129

Fig. 6. TriBiCa for Network Intrusion Detection and Prevention

match, ID1 is replaced with the match ID1−2 (representing
the state “ID1 followed by ID2”). Next ID1−2 and ID3 are
queried in detector2. If on the other hand, ID1, ID2 fails to
match in detector2, detector2 continues with input ID2, ID3

to detect a possible new signature that starts with ID2. This
way, the beginning of the second signature is detected even
when there is an ongoing match without any time penalty
(satisfying conditions 1 and 4 above).

To follow signatures whose 2c-byte or longer prefixes are
a factor or a suffix of other signatures, one state is added
as in [4]. For instance, let (1) ABCD and (2) BCEF be two
signatures, where each character resembles a c−chunk byte.
Then, an input string such as ABCEF will miss signature (2).
However, if we add another state showing transition from ABC
to CE then this will detect the second signature successfully. To
be more specific, the new state should be added starting from
the first location where signature (1) differs from signature
(2) and points to the corresponding location in signature (2)
(satisfying condition 3).

Note that for a sliding window input, c different stateful
detections can be in progress for all c offsets, concurrently
(between 0 and c − 1). However, as pointed out in [24], by
storing the state for each offset individually, this concurrent
requirement can be satisfied.

There are signatures with length not multiples of c (i.e.,
signatures with length R = α · c + r, where α > 0 is
an integer.). To detect these signatures, a similar two-stage
approach is used for each r < c. The first stage (detectorr1)
is responsible for detecting the r < c byte signatures and r < c
byte suffixes. The second stage (detectorr2) detects signatures
with length R bytes. The α · c byte prefix is detected by
detector2 above resulting in a state of Scur. Then detectorr2
makes one query with Scur, IDr, where IDr is the ID of the
r-byte suffix detected by detectorr1.

Based on this model, an NIDPS is designed using TriBiCa.
TriBiCa along with an SSM (Single-String-Matching) Circuit
is used to detect (S, chunk) type of queries for each stage
in Figure 6. For the first stage, a TriBiCa that holds all c-
byte chunks is used (TriBiCa1). TriBiCa1 is queried with
each c-byte chunk of the incoming traffic. If it gives a match,
it points to a single location in the corresponding signature
table (not shown in the figure). The SSM1 circuit then reads
this signature and compares it with the input. If there is a
match, the address of this signature is passed to the second
stage as ID. The second TriBiCa works on ID pairs. All ID
pairs involved in signatures are put into the second TriBiCa.

The operation is similar to the first TriBiCa, other than the
input type. If there is a match on SSM2, this output is fed
back to the second TriBiCa as the new ID. For signatures with
length r < c and for suffixes shorter than c-bytes, additional
TriBiCas are used in a similar way. Note that, for certain cases
(such as 1-byte signatures), trivial data structures (such as a
bitmap showing matched characters) can be used [25].

V. ANALYSIS OF MINIMAL PERFECT HASHING USING

TRIBICA

For a given input set, S, our main objective is to provide a
minimal perfect hashing for this set S using TriBiCa. In this
section, we analyze the probability of TriBiCa achieving such
a minimal perfect hashing for a given set S. To achieve this
goal, it is vital to find equal-partitionings for each and every
node of the TriBiCa. We start by analyzing the probability of
finding an equal-partitioning in a TriBiCa node. Let N (η, µ)
represent a TriBiCa node with η items and a next node bitmap
(NB) of size µ. The simplest case of the equal-partitioning
problem is when η = 2. In this case, an equal-partitioning
is only possible if the two items occupy two different bins,
which can occur with a probability of (µ−1)/µ. To aid in the
analysis for the general case (i.e., when η ≥ 2), let us define
a distribution as any subset of the set of non-zero occupancy
values (the set Q as defined in Section III-B). Furthermore, let
us define a configuration as an equal-partitioning that can be
achieved from a given distribution. If a total of d distributions
(D0, . . . , Dd−1) are possible for a node N and each distribu-
tion Dj has cj configurations (C(j,0), . . . , C(j,cj−1)), then the
probability that the distribution Dj occurs in node N (η, µ)
can be defined as

pDj
=

P(µ, q) ·
(
η

u1

)
·
(
η − u1

u2

)
. . .

(
η − ∑q−1

i=1 ui

uq

)

µη · R (3)

where P(µ, q) shows permutation. (3) can be read as
selecting q bins out of the µ possible bins in the node, then
selecting ui items from the input set to put into these bins,
where at each step, the items are selected from the items
remaining from the previous steps. The µη shows total possible
ways to distribute η items into µ bins. It is possible that, one
occupancy value, ui can be repeated in more than one bin and
re-ordering these bins in the distribution does not change the
distribution. To avoid counting the same distribution more than
once, a repeat factor R is added to (3). R is the product of all
r(ui) factorials, where each r(ui) is the number of repetitions
of the occupancy value ui in the given distribution. cj , the
number of configurations corresponding to each distribution
can be determined by counting the number of subsets of Dj

that have a sum of η/2. The expected number of configurations
(or equal partitionings) for this node can be given as in (4).
Note that, for TriBiCa, since all nodes in the same level have
same memory, E[C] is the same for all nodes at the same
level with the same number of items, η.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

130

E[CN] =
d−1∑
j=0

pDj
· cj (4)

For instance, for N (4, 8) a four-item node, with a load fac-
tor of 0.5, there are five distributions, D1 ={1, 1, 1, 1},
D2 ={1, 1, 2}, D3 ={1, 3}, D4 ={2, 2}, and
D5 ={4}. Two of these distributions (D3 and D5) have
no equal partitionings, i.e., have no configurations. On the
other hand, D1 has three configurations (c1 = 3). Any of
the two items in D1 can be partitioned into the same group
resulting in an equal partitioning. There are

(
4
2

)
= 6 such

groups. Since it does not matter whether the group is the
left or right group, the total number of configurations for
D1 is 3. D2 and D4 provides one equal partitioning each
(C(2,0) = {(1, 1), (2)} and C(4,0) = {(2), (2)}, where items
in the same group are enclosed in parentheses.). From (3),
pj values can be calculated as p1 = 0.41016, p2 = 0.49219,
p3 = 0.054688, p4 = 0.041016, and p5 = 0.0019531. The
probability that this node can give an equal partitioning for
a random set of inputs is PN = p1 + p2 + p4 = 0.94. The
expected number of configurations for this node from (4) is
1.76.

This concludes the analysis for equal partitionings for a
single isolated node. Now, let us look at the effect of the trie
structure of TriBiCa in increasing the success probability of the
equal partitionings. Suppose a set of items is programmed into
TriBiCa and we want to find out the probability that we have
equal partitioning for all nodes. The trie structure allows the
items programmed into the nodes to be organized in different
ways, based on the possible configurations in their ancestor
nodes in the previous levels. For instance, for the example
above, N (4, 8) can have up to three configurations depending
on its distribution. This means if an N (4, 8) has distribution
d1, its child nodes will have three chances to find an equal
partition if they are in the trie structure, instead of one chance
if they were single isolated nodes. The Greedy Algorithm uses
the trie structure to find an equal partitioning and eventually a
minimal perfect hashing by trying all possible configurations at
the low levels. High levels have a higher success probability
of equal partitioning, as discussed in Section III-B, so the
Blackjack algorithm relies on single node equal partitioning.
The following analysis will focus on partitioning low-level
nodes using the Greedy Algorithm to show the impact of
the trie structure on achieving minimal perfect hashing with
TriBiCa. Let S(l) represent a super node with l levels. Then,
the success probability of achieving minimal perfect hashing
for a set with 2l items using a super node S(l) can be defined
recursively with the initial condition of φ0 = Plast as,

φl = [1 − (1 − φ2
l−1)

Eroot] · Proot (5)

where Proot and Plast show the probability of equal par-
titioning for the root node and a last level node of S(l),
respectively, if they were isolated single nodes. Eroot shows
the expected number of configurations at the root node of the

0 0.5 1 1.5 2

x 10
4

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of items (n)

S
uc

ce
ss

 p
ro

ba
bi

lit
y

of
 m

in
im

al
 p

er
fe

ct
 h

as
hi

ng

Fig. 7. The probability of achieving minimal perfect hashing successfully
using TriBiCa for an arbitrary set of hash functions for the last 4 level with
respect to number of items in the set, n.

super node. A TriBiCa with n items requires n/2l such super
nodes. Assuming the probability of achieving equal partitions
for all high-level nodes is PH , the success probability for
minimal perfect hashing with a TriBiCa using S(l) is,

φ = PH · φn/2l

l (6)

Figure 7 shows the success probability of minimal perfect
hashing with respect to the number of items in the set, where
S(4) super nodes are used as low-levels. The effect of the
high probability PH is neglected. The load factor here in all
levels is 0.5, except in the last level where it is 0.25. Since,
the success probability is above 50%, even for 10 thousand
signatures for TriBiCa, we choose to limit the low levels to
four for the NIDPS application.

VI. PERFORMANCE

In this section, performance of TriBiCa is investigated. First,
simulations are carried out to characterize the construction of
TriBiCa in C++. Then, the design is prototyped on an FPGA
to show its runtime performance.

A. Simulations

In this section, the simulations investigating various pa-
rameters of TriBiCa construction (i.e., achieving minimal
perfect hashing for a given set of items) is presented. TriBiCa
construction algorithms are implemented in C++ and tested
on a Pentium 4 2.8-GHz computer with 512-MB memory.
TriBiCa is constructed for three types of signature sets. First
two sets are extracted from a Snort signature set with 1655
exact signatures. The first signature set, S1, consists of 2724
4-byte signatures. These are c = 4 byte chunks of the Snort
signatures. For NIDPS, this set is programmed into the first
TriBiCa of the NIDPS, TriBiCa1, which is described in
Section IV. The second set, S2, consists of 3226 ID pairs
extracted from Snort signatures. This set is programmed into
the second NIDPS TriBiCa, TriBiCa2. The last set, S3,
consists of 65536 random integers. Each simulation below is

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

131

3 4 5 6 7 8 9
0

2

4

6

8

10

12

Total high level memory (× n) bits

A
ve

ra
ge

 r
eh

as
h

op
er

at
io

ns
 n

ee
de

d

S
1

S
2

Fig. 8. Average number of rehashes required for different total high-level
memory sizes

3 4 5 6 7 8 9
0

20

40

60

80

100

120

140

160

180

Total high level memory (× n) bits

M
ax

im
um

 r
eh

as
h

op
er

at
io

ns
 n

ee
de

d

S
1

S
2

Fig. 9. Maximum number of rehashes required for different total high-level
memory sizes

repeated for 100 different hash sets (i.e., 100 trials). Then, av-
erage and maximum values of these trials are presented. Note
that in these simulations, only the worst-case performance is
considered, thus data bitmaps (DB) are not used.

In this first simulation, the partitioning of high-level nodes
is considered using the Blackjack Algorithm. First, each high
level is assigned a single hash function. If any node fails, a new
hash function is assigned to the level of the failed node. Then,
all nodes in that level are partitioned again with this new hash
function. In Figures 8 and 9, average and maximum rehash
operation requirements for all the high levels in each TriBiCa
over 100 trials (100 trials for each memory configuration) are
shown. For both sets, if the total high-level memory is at least
5 × n bits, the number of average rehash operations required
goes to 0.1 and the maximum rehashing requirement for these
memory settings (i.e., total high-level memory ≥ 5 × n bits)
is at most 3. The running times for these memory settings are
all below 1 second.

In the second simulation, the whole TriBiCa is simulated;
however, the focus is on the performance characterization of
the Greedy Algorithm to partition super nodes. We verified
that the effect of high-level memory on this performance is
negligible so the total high level memory is fixed to mhigh = n
for this simulation. Additionally, the last ll = 4 levels of the

6 7 8 9 10
0

20

40

60

80

100

120

140

Total low level memory (× n) bits

T
im

e
(s

ec
)

S
3Max

S
3Avg

S
2Max

S
2Avg

S
1Max

S
1Avg

Fig. 10. Construction time for TriBiCa

TriBiCa are assigned to the super nodes. Thus, the Greedy
Algorithm runs only on these nodes. The nodes above the
last four levels are high-level nodes and are partitioned using
the Blackjack Algorithm. For this simulation, first we run the
Greeedy Algorithm on all super nodes using the same initial
set of hash functions (i.e., a total of ll hash functions, one for
each level of the super nodes). Then, any super node that fails
to partition in this run is rehashed. This means a new set of ll
hash functions is assigned to these super nodes and the Greedy
Algorithm is run again on these nodes only. This rehashing is
repeated until all super nodes are partitioned successfully. In
this way, instead of using ll hash functions, we allow more
hash functions to be used, but we limit the number of these
hash sets by encouraging the usage of the same hash sets by
different super nodes. If a total of H hash sets are used to
partition the super nodes, then a hash set ID of log(H) bits is
attached to each super node to represent the hash set assigned
to this node.

Figure 10 shows the average and maximum construction
times for each signature set over 100 trials each. Note that the
total construction time for the first two sets, in other words the
total construction time for the whole TriBiCa, is at most 35
seconds and 7.4 seconds on average. The construction time
for S3 is at most 134 seconds and 79 seconds on average.
Figure 11 shows the average and maximum number of rehash
operations required for super nodes for each signature set
over 100 trials each. From Figure 11, it can be seen that for
both Snort sets, the maximum number of rehash operations
required is between 2 and 4, based on the total low-level
memory used. For set S3, the number of rehash operations
required is never more than 6 and generally at or below 4.
Considering even the worst case of 6 hash sets in addition
to the original hash set, a 3-bit hash set ID per super node
is enough to accommodate these different hash preferences.
Since each super node consists of 4 levels, it can accommodate
16 signatures, thus the required additional memory for hash
set ID, which corresponds to 3/16 × n bits of memory.

Overall, from the above discussion, the two TriBiCas in the
NIDPS design for the Snort signature set as given in Section
IV can fit into a memory of 65.1 kbits, where 29 kbits (5×n)

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

132

6 7 8 9 10
0

1

2

3

4

5

6

Total low level memory (× n) bits

N
um

be
r

of
 r

eh
as

h
op

er
at

io
ns

S
3Max

S
3Avg

S
2Max

S
2Avg

S
1Max

S
1Avg

Fig. 11. Rehash operations required for low levels

are used for high-level nodes, and 36.1 kbits (7.1 × n) are
used for low-level nodes including the hash set ID storage.
This design can be constructed around 8 seconds on average.

B. Hardware Implementation

We have designed the TriBiCa on a modest FPGA chip,
Xilinx Virtex II Pro. The design can reach clock speeds over
300 MHz, achieving 10-Gbps throughput using 4 TriBiCa-
based NIDPS engines working in parallel that can fit on this
FPGA. The NIDPS architecture designed to detect the Snort
signature set fits into less than 30-block RAMs (540 kbits)
where most of the storage is dedicated to the actual signatures
themselves. Each engine can process 8 bits per clock cycle.
A proof-of-concept design is implemented and tested with 1-
Gbps packet streams. By using today’s state-of-the-art FPGAs,
a throughput of 40-Gbps is believed to be achievable.

VII. CONCLUSION

This paper introduces a novel data structure, TriBiCa, for
high-speed string matching. TriBiCa allows minimal per-
fect hashing of stored strings while providing low-cost set-
membership queries to skip most of the irrelevant input.
A Network Intrusion Detection and Prevention System ar-
chitecture based on TriBiCa is proposed. It uses currently
available, modest FPGAs to reach up to 10-Gbps worst-case
throughput. The proposed architecture does not require any
reconfiguration and all updates can be done through memory
updates. The TriBiCa data structure can further be improved
by using structural optimizations, such as using k-ary tries
and by exploring the characteristics of signature sets such as
character distribution of these sets. Additionally, the proposed
data structure provides minimal perfect hashing on static data.
Updates are done using offline tools and then writing the
changes to the online memory. As a future work, operation
on online updates will be explored. Finally, current NIDPS
architecture supports exact signatures. Its extension to detect
regular expressions will also be explored as a future work.

REFERENCES

[1] C. Burns and D. Newman. (2006, Jan.) Vendors choose to
tout disparate application-acceleration techniques. [Online]. Available:
http://www.networkworld.com/reviews/2006/011606-wfe-features.html

[2] S. Singh, C. Estan, G. Varghese, and S. Savage, “Automated worm
fingerprinting,” in Proc. of the ACM/USENIX Symposium on Operating
System Design and Implementation, San Francisco, CA, Dec. 2004.

[3] [Online]. Available: http://www.snort.org
[4] F. Yu, T. Lakshman, and R. Katz, “Gigabit rate pattern-matching using

tcam,” in Int. Conf. on Network Protocols (ICNP), Berlin, Germany, Oct.
2004.

[5] H. Song and J. Lockwood, “Multi-pattern signature matching for hard-
ware network intrusion detection systems,” in IEEE Globecom 2005,
nov-dec 2005.

[6] J. Moscola, J. Lockwood, R. P. Loui, and M. P., “Implementation of a
content-scanning module for an internet firewall.” in FCCM, 2003, pp.
31–38.

[7] C. Clark and D. Schimmel, “Scalable pattern matching for high-
speed networks,” in IEEE Symposium on Field-Programmable Custom
Computing Machines (FCCM), Napa, California, 2004, pp. 249–257.

[8] Y. H. Cho and W. H. Mangione-Smith, “Fast reconfiguring deep packet
filter for 1+ gigabit network.” in FCCM, 2005, pp. 215–224.

[9] Z. K. Baker and V. K. Prasanna, “High-throughput Linked-Pattern
Matching
for Intrusion Detection Systems,” in Proceedings of the First Annual
ACM Symposium on Architectures for Networking and Communications
Systems, 2005.

[10] N. Tuck, T. Sherwood, B. Calder, and G. Varghese, “Deterministic
memory-efficient string matching algorithms for intrusion detection,” in
Proc. of the 2004 IEEE Infocom Conference, 2004.

[11] I. Sourdis, D. Pnevmatikatos, S. Wong, and S. Vassiliadis, “A recon-
figurable perfect-hashing scheme for packet inspection,” in Proc. 15th
International Conference on Field Programmable Logic and Applica-
tions (FPL 2005), August 2005, pp. 644–647.

[12] Y. Lu, B. Prabhakar, and F. Bonomi, “Perfect hashing for network
applications,” in IEEE Symposium on Information Theory), Seattle, WA,
2006, pp. 2774–2778.

[13] L. Tan and T. Sherwood, “Architectures for bit-split string scanning in
intrusion detection,” IEEE Micro, jan-feb 2006.

[14] G. Papadopoulos and D. N. Pnevmatikatos, “Hashing + memory = low
cost, exact pattern matching.” in Proc.15th International Conference on
Field Programmable Logic and Applications (FPL), August 2005, pp.
39–44.

[15] A. Aho and M. J. Corasick, “Efficient string matching: an aid to
bibliographic search,” Communications of the ACM, vol. 18, no. 6, pp.
333–340, 1975.

[16] H.-J. Jung, Z. K. Baker, and V. K. Prasanna, “Performance of FPGA Im-
plementation of Bit-split Architecture for Intrusion Detection Systems,”
in Proceedings of the Reconfigurable Architectures Workshop at IPDPS
(RAW ’06), 2006.

[17] K. Anagnostakis, S. Antonatos, E. Markatos, and M. Polychronakis,
“E2xb: A domain-specific string matching algorithm for intrusion de-
tection,” in Proc. of the 18th IFIP International Information Security
Conference, 2003.

[18] S.Dharmapurikar, P.Krishnamurthy, T. Sproull, and J. Lockwood, “Deep
packet inspection using parallel bloom filters,” in Symposium on High
Performance Interconnects (HotI), Stanford, CA, Aug. 2003, pp. 44–51.

[19] H. Song, T. Sproull, M. Attig, and J. Lockwood, “Snort offloader: A
reconfigurable hardware nids filter,” in 15th International Conference
on Field Programmable Logic and Applications (FPL 2005), Tampere,
Finland, Aug. 2005.

[20] B. Bloom, “Space/time trade-offs in hash coding with allowable errors,”
Communications of the ACM, vol. 13, no. 7, 1970.

[21] M. Garey and D. Johnson, Computers and Intractability: A Guide to
NP-Completeness. San Francisco, CA: Freeman, 1979.

[22] B. Hayes, “The easiest hard problem,” American Scientist, vol. 90, no.
mar-apr, pp. 113–117, 2002.

[23] T. Cormen, C. Leiserson, and R. Rivest, Introduction to Algorithms.
The MIT Press, 2001.

[24] S. Dharmapurikar and J. Lockwood, “Fast and scalable pattern matching
for content filtering,” in Symposium on Architectures for Networking and
Communications Systems (ANCS), Oct. 2005.

[25] N. S. Artan and H. J. Chao, “Design and analysis of a multi-packet
signature detection system,” to appear in Int. J. Security and Networks.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

133

