
POWER-EFFICIENT RANGE-MATCH-BASED PACKET CLASSIFICATION ON FPGA∗

Yun R. Qu Viktor K. Prasanna

Ming Hsieh Department of Electrical Engineering
University of Southern California, Los Angeles, CA 90089

{yunqu, prasanna}@usc.edu

ABSTRACT

Packet classification is a kernel application performed at net-
work routers. Many classification engines are optimized for
prefix and exact match, while a range-to-prefix translation
can lead to rule set expansion. Under limited power budget,
it is challenging to achieve high classification throughput.
In this paper, we present a high-performance and power-
efficient packet classification engine on FPGA. We construct
a modular Processing Element (PE); each PE compares a
stride of the input packet header against a stride of a range
boundary. We concatenate multiple PEs into a systolic ar-
ray. Efficient power optimization techniques including self-
enabled power gating and entropy-based scheduling are ex-
plored on our architecture. Experimental results show that,
for 4K 15-field rule sets, our prototype on a state-of-the-art
FPGA can achieve 250Million Packets Per Second (MPPS)
throughput. Using the proposed power optimization tech-
niques, our classification engine consumes 30% of the power
without sacrificing the throughput.

1. INTRODUCTION

The development of Internet demands routers to support a
variety of network applications, such as firewall processing
and Quality of Service (QoS) differentiation. This makes
packet classification a kernel function for network manage-
ment tasks; an incoming packet can be discarded, forwarded
to specific ports, or broadcast based on many criteria.

Packet classification faces the following challenges: (1)
the expanding depth and width of the classification rule sets,
(2) the growing complexity of the rule sets, and (3) the in-
creasing demand for high throughput and low power. For
example, in OpenFlow protocol [1], 15 fields of the packet
header have to be examined; some fields require generic
range match to be performed. Meanwhile, many emerg-
ing network applications require high throughput under con-
strained power budget. These factors make packet classifi-
cation a critical task in high-performance routers.

∗Supported by U.S. National Science Foundation under grant CCF-
1320211. Equipment grant from Xilinx Inc. is gratefully acknowledged.

Many existing solutions for packet classification employ
Ternary Content Addressable Memory (TCAM) [2]. TCAM
is notorious for its high cost and power consumption. State-
of-the-art VLSI chips can be built with massive amount of
on-chip computation and memory resources, as well as large
number of I/O pins for off-chip memory accesses; FPGAs
[3], with their flexibility and reconfigurability, are especially
suitable for accelerating network applications.

In this paper, we propose a high-performance and power-
efficient packet classification engine on FPGA. The engine
can perform prefix match, exact match, or range match on
any field. Efficient power optimization techniques are em-
ployed on this engine. Specifically:

• We construct a modular PE to match a stride of the
packet header against a stride of a range boundary.
We concatenate multiple PEs into a systolic array to
sustain high clock rates for large rule sets.
• We employ a self-enabled power gating technique on

our architecture. The modular PEs are selectively en-
abled to save the memory access power.
• We propose an entropy-based scheduling for various

fields. To improve the efficiency of our power gating
technique, the fields corresponding to higher entropy
values are matched in the first few pipeline stages.
• We prototype our designs on a state-of-the-art FPGA.

Post place-and-route results demonstrate 250MPPS
throughput while using 1.655W power (70% reduc-
tion compared to the non-optimized designs).

The rest of the paper is organized as follows: Section 2 in-
troduces the packet classification problem. We present our
hardware architecture and optimization techniques in Sec-
tion 3 and Section 4, respectively. We evaluate the perfor-
mance on FPGA in Section 5. Section 6 compares our work
with the related works. Section 7 concludes the paper.

2. BACKGROUND

2.1. Packet Classification

Packet classification involves classifying packets based on
multiple fields in the packet header [2, 4]. The individual

Table 1: An example of OpenFlow packet classification rule set [1], N = 4 rules, M = 15 fields

RID Ingr
Meta- Eth Eth Eth

VID Vprty
MPLS MPLS

SA DA Prtl ToS SP DP
data src dst type lbl tfc

No. of bits 32 64 48 48 16 12 3 20 3 32 32 8 6 16 16
R0 5 1024 00:13:A9:00:42:40 00:13:08:C6:54:06 0x0800 * 5 0 * 001* * TCP 0 * *
R1 * 1024 00:FF:FF:FF:FF:FF 00:13:08:C6:54:06 0x0800 100 7 163 0 00* 1011* UDP * * *
R2 * 2048 * 00:FF:FF:FF:FF:FF 0x8100 4095 7 * * 1* 1011* * * 2-1024 5-5
R3 * * 00:13:E6:24:5F:31 11:7B:C5:98:F0:FF * * * * * * * * * * 80

predefined entries for classifying a packet are called rules,
which are stored in a rule set. Each rule has a rule ID
(RID), multiple fields and their associated values, a prior-
ity, and an action to be taken if matched. Different fields in
a rule require various types of match criteria, such as prefix
match, range match, and exact match. A packet is consid-
ered matching a rule only if it matches all the fields in that
rule. A packet may match multiple rules, but usually only
the rule with the highest priority is used to take action.

We denote the total number of rules as N . We index all
the fields as m = 0, 1, . . . ,M − 1, where M is the total
number of packet header fields. The classic packet classifi-
cation [2] requires M = 5 fields to be examined, while the
OpenFlow table lookup [1] checks in total M = 15 fields
of the packet header. In Table 1, we show an OpenFlow 15-
field rule set consisting of 4 rules (omitting the actions) as
an example. Our methodology in this paper can be applied
to packet classification involving more than 15 fields.

2.2. Range Match

We denote the field requiring prefix match as prefix match
field, while we define the “projection” of the rule in this field
as prefix match rule. For example, “001*” is a prefix match
rule in the SA field of the rule set in Table 1. Similarly, exact
match field, exact match rule, range match field, and range
match rule can be defined.

Many existing packet classification engines are optimized
for prefix match and exact match [5], especially when TCAM
is used. For range match, they usually require range-to-
prefix translations [4]. This leads to rule set expansion:
for instance, a range1 [1, 8) in a 3-bit field corresponds to
a union of 3 prefixes: {001, 01∗, 1∗}. Note, however, any
given prefix or exact value can be represented by a single
(generic) range. Hence, in this paper, we propose a PE that
matches ranges; this means our overall architecture can per-
form prefix match, exact match, and range match on any
field of a packet header without rule set expansion.

3. ARCHITECTURE

To handle all types of matches, prefixes or exact values are
first translated into ranges; this step is trivial so we ignore
it in this paper. Suppose we have Wm-bit ranges, where

1Without loss of generality, we use half-closed and half-open closures.

R
e

gi
st

e
r

f_in

-b
it

 C
o

m
p

ar
at

o
r

eql0

less0

y
x

D
at

a

m
e

m
o

ry

𝑾𝒎

𝒔

en0 en0_out

eql0_out

less0_out

en0_in

eql0_in

less0_in

R
e

gi
st

e
r

-b
it

 C
o

m
p

ar
at

o
r

eql1

less1

y
x

D
at

a

m
e

m
o

ry

𝒔

en1 en1_out

eql1_out

less1_out

en1_in

eql1_in

less1_in

Register

f_out

𝒔

d0

d1

Fig. 1: A modular PE comparing an s-bit stride with c = 2
range boundaries in parallel

m = 0, 1, . . . ,M − 1. A naive approach to match ranges
is to deploy a Wm-bit comparator for each range boundary.
However, since (1) Wm can be relatively large (e.g. 64 bits),
and (2) the critical path in the comparator is O(Wm), this
naive approach often results in low clock rate.

The key idea of our approach in this section is to split a
range boundary in a long field into multiple shorter strides;
this leads to shorter critical paths and higher clock rate. An-
other major difference between this work and prior works
[2,4,6] is that our architecture is self-aware and can be tuned
for better power consumption (see Section 4).

3.1. Modular PE

We construct a modular Processing Element (PE) to com-
pare an s-bit stride of the input packet header against n
strides of n range boundaries independently. We show the
modular PE in Figure 1, where clock and control signals
are omitted for simplicity. We denote the number of range
boundaries compared by a modular PE as c. The modular
PE in Figure 1 compares an s-bit stride of the packet header

Table 2: Truth table for a “≤” comparator and the corre-
sponding enable signal (“*” denotes “don’t care”)

eql0 in less0 in x and y eql0 less0 en0

0 0 * 0 0 0
0 1 * 0 1 en0 in

1 *
x = y 1 * en0 in

x < y 0 1 en0 in

x > y 0 0 0

bits (f in) with c = 2 range upperbounds (d0 and d1) con-
currently. In general, a modular PE can compare c range
boundaries in parallel; such a modular PE consists of c data
memory modules, c comparators, the logic used to generate
c enable signals, and registers.

In Figure 1, an s-bit comparator has ports x and y. The x
port is fed by an s-bit stride of the input packet header; the y
port is fed by the upperbound stored in the data memory. A
comparator also takes partial matching results from a previ-
ous PE (e.g., eql0 in and less0 in) as inputs. The function
of this comparator is described in Table 2.

The enable signals (e.g., en0 and en1) are used to enable
the data memory modules in the next modular PE; they are
generated based on Table 2. Since these enable signals are
very useful for power optimization, we defer the discussion
of this type of signals to Section 4. The registers are used to
buffer data in two dimensions:

1. Horizontal / row-wise: The enable signals and partial
matching results are propagated in this direction.

2. Vertical / column-wise: The input packet headers are
buffered along this direction.

3.2. Matching Ranges

For n upperbounds in a Wm-bit field (m = 0, 1, . . . ,M−1),
a row of dWm

s e modular PE can be concatenated to produce
the correct partial matching result. Each PE produces the
partial matching result from the highest-order stride down
to the stride currently examined. Specifically:
• For the first PE in a row, the input enable signals and

the inputs eql0 in, . . . are all tied to “1” (logic high);
the inputs less0 in, . . . are “don’t care”.

• For all the modular PEs except the last one in this row,
the outputs eql0 out, less0 out, . . . are all connected
to the corresponding inputs of the next modular PE.

For example, suppose we have an upperbound d0 = 101101
in a 6-bit field, and this upperbound is partitioned into 3
strides “10”, “11”, and “01”. In this case, 3 modular PEs
are required in a row. Suppose we have the corresponding
field of an input packet header 100101 to be compared with
this upperbound. Based on Table 2, we have:

1. The partial results generated from the first PE are
eql0 = 1, and less0 = ∗.

2. Continuing this example, in the second PE, we have
eql0 in = 1, less0 in = ∗, and x = 01 < y = 11;
the partial results generated from the second PE are
eql0 = 0, and less0 = 1.

3. The partial results generated from the second PE are
propagated into the last PE. The partial results output
by the last PE are eql0 = 0, and less0 = 1, indicating
the input is less than the upperbound.

In summary, the correctness of our horizontal pipeline con-
struction can be verified for all the inputs.

The modular PE shown in Figure 1 is designed for com-
paring the input stride with the strides of c upperbounds;
a similar modular PE can be exploited for lowerbound com-
parisons (by switching port x and y in all the c comparators).

3.3. Systolic Array

As shown in Figure 2, there are three types of interconnec-
tions between modular PEs in the same row. The logic cor-
rectness of the interconnections can be verified easily.

Using the interconnections shown in Figure 2, we can
arrange a large number of modular PEs into a systolic array,
as shown in Figure 3. In this systolic array:

• The strides from the input packet headers are prop-
agated vertically. Each column of PEs compares an
s-bit input stride with the corresponding strides of all
the N upperbounds/lowerbounds.
• The partial searching results, along with the enable

signals, are propagated horizontally. Each row of PEs
examines the input packet header against c rules.

In this example, field 0 and field 1 can be prefix/exact/range
match fields. The entire design is parameterized so s and
c are adjusted during design time in Section 5. In partic-
ular, to scale up the design for wider packet headers, we
can add more columns of PEs; to scale up the number of
rules, we can deploy more rows of PEs in the systolic array.
For fixed s and c, the total number of rows required for N
rules is dNc e, while the total number of columns required for(∑

Wm

)
-bit packet headers is 2 ·

∑
dWm

s e.

4. POWER OPTIMIZATIONS

4.1. Motivation

As can be seen in Figure 1, there are a group of enable sig-
nals propagated horizontally; each enable signal is used to
enable the corresponding data memory module in the next
PE. The intuitions of using the enable signals are: (1) If any
field of the input packet header does not match a rule, then
the entire packet header is considered as not matching this
rule. (2) If a packet header has been identified as not match-
ing the rule in one field, then the PEs in other fields can
clock-gate their data memory modules to save power.

eql0_out

larger0_out less0_in

PE

eql0_in

…

…

…
 PE

eql0_out

less0_out larger0_in

PE

eql0_in

…

…

…
 PE

Type II: between PEs of different fields Type III: between PEs for upperbounds and lowerbounds

eql0_out

less0_out less0_in

PE

eql0_in

…

…

…
 PE

Type I: between PEs for the same field

BV[0]

en0_out en0_in en0_out en0_in en0_out en0_in

Fig. 2: Interconnections between modular PEs (from left to right): (Type I) for the same field, both comparing upper-
bounds/lowerbounds; (Type II) for the same field, one comparing upperbound but the other comparing lowerbound; (Type
III) for different fields.

PE
[0,1]

PE
[1,1]

PE
[0,0]

PE
[1,0]

Type III

PE
[0,2]

PE
[1,2]

Field 0
upperbound

Type II

PE
[0,3]

PE
[1,3]

Strides of pkt. headers

Field 0
lowerbound

Field 1
upperbound

Type I

PE
[0,4]

PE
[1,4]

PE
[0,5]

PE
[1,5]

Field 1
lowerbound

R
e

su
lt

s

Fig. 3: Systolic array consisting of 2 rows and 6 columns, and matching M = 2 fields. PE[i, j] denotes the modular PE in the
i-th row and j-th column, where i = 0, 1, . . . , dNc e − 1, j = 0, 1, . . . , 2 ·

(∑
dWm

s e
)
− 1.

If a data memory module is gated off from clock, we
denote this data memory module as “deactivated”. On the
other hand, we denote the status where a data memory mod-
ule is accessed regularly as “activated”.

4.2. Self-enabled Power Gating

For the first modular PE in a specific row, its input enable
signals are tied logic high. For all the other PEs in the same
row, if any PE signifies a mismatch between the input packet
header and the range specified by a rule, then all the PEs
following this PE can have their corresponding data memory
modules deactivated. Our power gating technique relies on
the hardware architecture to realize the correct conditions to
save power; thus, we denote this technique as self-enabled
power gating. This technique has two properties:

1. (Chaining) If one data memory module is deactivated,
a chain of data memory modules in the following PEs
will be deactivated, saving a great amount of power.

2. (Fine-grained) Since the rules are independent, the
activation / deactivation for different data memory mod-
ules is also independent.

For the chaining property, suppose, for example, we have
an upperbound d0 = 101101 split into 3 strides “10”, “11”,
and “01”. Suppose we have the input 111101 to be com-
pared with this upperbound. Based on Table 2, the first mod-
ular PE generates eql0 = 0, less0 = 0, and en0 = 0. This
enable signal will deactivate the data memory of the sec-
ond PE (storing the stride “11”); as a consequence, the data

memory modules of the last PE (storing the stride “01”) will
also be deactivated.

For fine granularity, continuing the above example, fur-
ther suppose we have another upperbound d1 = 111111 to
be compared. Although many data memory modules stor-
ing the strides of d0 are deactivated, all the data memory
modules storing the strides of d1 are activated for this input.

4.3. Entropy-based Scheduling

4.3.1. Problem Definition

To make the self-enabled power gating more effective, for a
given packet header and a given rule, we need to report the
mismatch, if any, as early as possible; this leads to deactiva-
tion of a large number of data memory modules in the same
row due to the chaining property as discussed in Section 4.2.

We show an example in Figure 4, where 4 modular PEs
are placed in a row for 2 exact match fields. For simplicity,
here we assume n = 1, i.e., a row of PEs only compare the
packet headers with one rule. The first two modular PEs
examine a given packet header field m, while the last two
modular PEs examine another packet header field m′, where
m,m′ ∈ {0, 1, . . . ,M − 1}. Consider the following two
cases, as shown in this figure:
• Case (1): The input packet header matches the rule

in field m, but does not match this rule in field m′.
The mismatch is identified in the higher order stride
of field m′. This is quite late; the 3 data memory mod-
ules in the first 3 PEs are activated.

PE PE PE

PE PE PE

Case (1): only 1 memory module is deactivated

Case (2): 3 memory modules are deactivated

PE

PE

rearrange

Fig. 4: Scheduling 4 PEs. A white box denotes a PE whose
data memory module is activated; a black box denotes a PE
whose data memory modules is deactivated.

• Case (2): The input packet header does not match
the rule in field m′; the mismatch is identified in the
higher order stride of field m′. This is early enough
to have 3 data memory modules deactivated for this
input packet header.

Although the classification results for the above two cases
are the same, the second case leads to more deactivated data
memory modules and more power savings in turn.

We define a problem: Given a rule set consisting of N
rules and M fields, and a systolic array with self-enabled
power gating, find an optimal (static) scheduling of all the
fields to save the maximum amount of power.

An optimal solution to this problem is difficult, since the
actual power saving also depends on the input packet trace.
In this paper, we assume the input values in each packet
header field are uniformly distributed.

4.3.2. Greedy Algorithm

We denote the number of bits in field m as Wm, where
m = 0, 1, . . . ,M − 1. We index the rules as n, where
n = 0, 1, . . . , N − 1. A range in field m may cover mul-
tiple values in [0, 2Wm). Given a rule set, we denote the
number of occurrences for value k(m) in field m as fk(m) ,
where k(m) ∈ [0, 2Wm). Therefore, the probability that an
input value k(m) matches some rules in field m is

pk(m) =
fk(m)∑

k(m)

fk(m)

(1)

We show an example in Table 3, where the entropy of field
m is given by the following equation:

H(m) = −
∑
k(m)

[
pk(m) · log pk(m)

]
(2)

Based on the above notations, we propose a greedy al-
gorithm based on the entropy of the packet header fields:

Table 3: An example of entropy calculation for a 2-bit
field m (Wm = 2); the ranges specified by the rules are
[1, 2),[0, 2),[0, 3), and [2, 4). The entropy is 1.91 bits.

Possible value k(m) 0 1 2 3

No. of occurrences fk(m) 2 3 2 1

Probability pk(m)
1
4

3
8

1
4

1
8

Step 1 Calculate H(m), ∀m using Equation 2.
Step 2 Schedule all the fields in descending order of H(m);

i.e., the fields with higher H(m) are always scheduled
(early) in the front of the horizontal pipelines.

This algorithm can be a suboptimal solution, but it reduces
the design complexity. This algorithm is intuitive because
a field with higher entropy reveals more information; thus,
such a field should be matched early to identify mismatches.

5. PERFORMANCE EVALUATION

5.1. Experimental Setup

We conducted experiments on the state-of-the-art Xilinx Vir-
tex 7 FPGA (XC7VX1140T-FLG1930 -2L) [3]. This FPGA
has 218800 logic slices, 1100 I/O pins, and 68Mb BRAM;
it can be configured to realize a large amount of distributed
RAM (distRAM, upto 18Mb). We evaluated the perfor-
mance using Xilinx Vivado 2014.2 design tool [7]. We used
the following performance metrics:

• Throughput: the number of packets classified per unit
time (in MPPS).
• Resource utilization: the utilization of basic FPGA re-

sources including logic slices, BRAM, and I/O pins.
• Power: the power consumption of the entire design on

FPGA (in Watts).

We set a conservative clock constraint of 250MHz for all of
our designs. We reported resource utilization and clock rate
using post-place-and-route reports.

We instantiated data memory modules using distRAM2;
this design choice localized memory accesses. We exploited
single-port distRAM to support self-enabled power gating.
For power estimation, we fixed the temperature at 25 ◦C; we
used Switching Activity Interchange Format (SAIF) files as
inputs to Vivado power analysis tool.

Due to the lack of large real-life rule sets, especially
for packet classification involving more than 5 fields [8],
we built synthetic rule sets where the entropy of each field
could be adjusted separately. In our synthetic rule sets, the
entropies of fields SA, DA, SP, DP, and Prtl followed the
real-life 5-tuple rule sets [9]; for other fields, the entropy
of field m were assumed to be min{logN, log

(
2Wm

)
} pes-

simistically. For fair comparisons on power, we set at least

2Hence the throughput is numerically equal to the clock rate.

0

133

267

400

533

0

0.5

1

1.5

2
s=

2
,c

=
2

s=
2

,c
=

8

s=
2

,c
=

3
2

s=
4

,c
=

2

s=
4

,c
=

8

s=
4

,c
=

3
2

s=
8

,c
=

2

s=
8

,c
=

8

s=
8

,c
=

3
2

s=
1

6
,c

=
2

s=
1

6
,c

=
8

s=
1

6
,c

=
3

2

M
ax

. C
lo

ck
 (

M
H

z)

P
o

w
e

r
(W

)

Dynamic Static Clock Rate

Fig. 5: Static power, dynamic power, and maximum achiev-
able clock rate with respect to s and c

Table 4: Used I/O pins with respect to the number of rules
N , each rule having

∑
Wm = 512 bits, s = 4, c = 64

N 64 128 192 256 320 384 448 512

I/O 144 272 400 528 656 784 912 1040

% 13% 25% 36% 48% 60% 71% 83% 95%

one wildcard rule3 in each rule set. We fed our packet clas-
sification engine with random packet headers.

5.2. Deciding s and c

Since our packet classification engine is fully parameterized,
we first determine the values of s and c as discussed in Sec-
tion 3.1. Initially, we fix the packet header length

∑
Wm =

64; we fix the number of rules N = 128. For power con-
sumption, we employ the optimization techniques in Sec-
tion 4. We vary s = 2, 4, 8, 16, and c = 2, 4, 8, 16, 32, 64;
we have seen similar performance results for other com-
binations of these parameters. In Figure 5, we show the
power breakdown of our entire design at 250MHz, and the
maximum achievable clock rate on FPGA. Considering both
power and clock rate, we choose s = 4 and c = 64 for our
designs on FPGA. The performance of s = 4 and c = 64
is best because (1) on our FPGA, each logic slice contains 4
6-input LUTs; (2) the design with s = 4 and c = 64 uses the
LUT-based distRAM as data memory modules efficiently.

5.3. Throughput

We show the throughput performance with respect to
∑

Wm

and N in Figure 6, where s = 4 and c = 64. As can be
seen, our designs on FPGA sustains > 250MPPS through-
put even for 4K 512-bit rules. The throughput tapers as we
scale up the design with respect to

∑
Wm or N . As the

3i.e., a default action will be performed if there is no other match.

0 100 200 300 400

128

256

512

1024

2048

4096

Throughput (MPPS)

N
o

. o
f

R
u

le
s

(N
)

ΣWm=64 ΣWm=128 ΣWm=192 ΣWm=256

ΣWm=320 ΣWm=384 ΣWm=448 ΣWm=512

0% 25% 50% 75% 100%

128

256

512

1024

2048

4096

Logic Slice Utilization

N
o

. o
f

R
u

le
s

(N
)

ΣWm=64 ΣWm=128 ΣWm=192 ΣWm=256

ΣWm=320 ΣWm=384 ΣWm=448 ΣWm=512

Fig. 6: Throughput and logic slice utilization with respect to
the length of the packet header (

∑
Wm) and the number of

rules (N), s = 4, c = 64

design gets larger, more resources have to be used (see Sec-
tion 5.4), and the routing becomes more complex; it is more
difficult for the design tool to optimize long critical paths.

5.4. Resource Utilization

Using s = 4 and c = 64, we show the utilization of logic
slices with respect to

∑
Wm and N in Figure 6. We also

show the utilization of I/O pins in Table 4. As can be seen:
(1) The resource utilization on FPGA scales linearly with
respect to both

∑
Wm and N . (2) The largest design sup-

ported on our FPGA is
∑

Wm = 512 and N = 4K, limited
by the available I/O pins and logic slices on FPGA.

(i) Classic 5-field packet classification, M = 5,
∑

Wm = 104

(ii) OpenFlow 15-field table lookup, M = 15,
∑

Wm = 356

Fig. 7: Power consumption of 100 tests (each test processing 1K packet headers) for N = 128, 256, 512, 1024, and (i) M = 5,∑
Wm = 104, and (ii) M = 15,

∑
Wm = 356. A red “◦” denotes the scenario where no optimization is applied. A pink “×”

denotes the scenario where only self-enabled power gating is used. A blue “+” denotes the scenario where both self-enabled
power-gating and entropy-based scheduling are used; this scenario demonstrates the least power consumption.

5.5. Power Consumption

In Figure 7, we show the power performance with respect
to N , for the classic packet classification (M = 5) and the
OpenFlow table lookup (M = 15) under three scenarios:

1. Without any power optimization technique.
2. With self-enabled power gating, but randomly schedul-

ing of packet header fields.
3. With self-enabled power gating along with entropy-

based scheduling of packet header fields.
To see the effect of random scheduling, we run 100 tests for
a fixed pair of M and N , each test using a specific (possibly
different) scheduling of packet header fields. For each test,
the power consumption is averaged on 1K random packets.
As can be seen in Figure 7:
• Compared to the designs without any power optimiza-

tion techniques, the designs with self-enabled power
gating reduce the average power consumption by 60%.

• By also exploiting entropy-based scheduling of packet
header fields, our designs reduce the average power
consumption further by 20%.

• As the packet header gets longer (by increasing M),
more and more fields are gated away from matching
the input packet header; therefore we observe even
more power savings for larger M .

Using our power optimization techniques, the average power
consumption of our largest design (

∑
Wm = 512 and N =

4K) is 1.655Watts; this is only 30% of the power consumed
by a design without any optimization, 5.674Watts.

6. RELATED WORK

6.1. Decision-tree vs. Decomposition

There are two major categories for packet classification ap-
proaches [2]: decision-tree-based and decomposition-based
approaches. The decision-tree-based approaches employ sev-
eral heuristics to cut the space recursively into smaller sub-
spaces [4,13]. The major advantage of a decision-tree-based
approach is that various optimization techniques can be ap-
plied [8]. However, the performance of a decision-tree-based
approach depends on the statistics of the rule set. Also, for
an M -field rule set consisting of N rules, the recursive cut-
ting can consume O(NM) memory; this is very expensive.

In decomposition-based approaches, the fields of an in-
put packet header are searched independently; the partial re-
sults of all the fields are merged to produce the final match-
ing result [14, 15]. The main advantage of the decomposi-
tion-based approaches is that parallel data structures can be
explored. However, it can take either O(NM) memory or
O(MN) time to merge all the partial results from M fields.

Table 5: Performance comparison

Approach Platform Match Type
Rule Sets Throughput Throughput ×N ×M

No. of rules, N No. of fields, M (MPPS) (MPPS×1K)
Ma et al. [10] decision-tree multi-core GPP any 9K 5 ∼ 14 ∼ 630

Han et al. [5] decomposition GPP + GPU prefix / exact 32K 10 ∼ 58 ∼ 18560

Qu et al. [11] decomposition multi-core GPP any 32K 15 ∼ 30 ∼ 14400

Song et al. [12] decomposition FPGA + TCAM any 1.2K 5 ∼ 20 ∼ 120

Kennedy et al. [13] decision-tree FPGA any 60K 5 ∼ 15 ∼ 4500

Pus et al. [14] decomposition FPGA prefix / exact 0.6K 5 ∼ 500 ∼ 1500

Jiang et al. [8] decision-tree FPGA any 5K 12 ∼ 125 ∼ 7500

This work decomposition FPGA any 4K 15 > 250 > 15000

6.2. Platforms

Excluding TCAM, algorithmic solutions for packet classi-
fication mainly exploit FPGA, multi-core General Purpose
Processor (GPP), or/and Graphics Processing Unit (GPU)
platforms. Without using off-chip memory, FPGA often
supports high throughput for rule sets of moderate size [8].
With an optimized memory hierarchy, a multi-core GPP [10]
or a GPU-accelerated platform [5] can employ parallel algo-
rithms and support very large rule sets. Our designs in this
paper employ a decomposition-based approach on FPGA;
the resulting architecture is a systolic array supporting generic
range match and efficient power optimization techniques.

6.3. Comparison

We compare our work with the existing works in Table 5.
For the prior works on multi-core GPP or/and GPU, Ma
et al. [10] exploit 2× 4-core Intel Xeon X5550 running at
2.7GHz and assume the availability of TCAM. Han et al. [5]
employ 2× 4-core Intel Xeon X5550 running at 2.7GHz,
and 2 NVIDIA GTX480 cards. Qu et al. [11] exploit 2× 8-
core AMD Opteron 6278 running at 2.4GHz. For fair com-
parisons, the results of the prior works on FPGA [8, 13, 14]
are all scaled up on the state-of-the-art Xilinx Virtex-7 plat-
form; this is done by considering (1) the maximum clock
frequency and (2) the maximum memory capacity on these
platforms. Since many designs are usually constrained by
other FPGA resources (e.g., limited I/O pins), the through-
put estimation for the prior works on FPGA are optimistic.

We use the product of the throughput, the number of
rules (N), and the number of fields (M) as a compound
performance metric4. As can be seen in Table 5, compared
to [5], our design achieves similar performance with respect
to this compound performance metric; however, our design
supports generic range match much more efficiently without
any rule set expansion. With respect to this compound per-
formance metric, our packet classification engine achieves

4The same amount of hardware resources are required in the following
two cases: (1) by replicating a design α times, we can achieve α× through-
put for the same rule set; (2) by replicating a design α times, we can support
α× larger rule sets while sustaining the same throughput.

at least 2× performance compared to the existing works on
FPGA.

7. CONCLUSION

We presented a range-match-based packet classification en-
gine on FPGA in this paper. We concatenated modular PEs
into a systolic array, and explored efficient power optimiza-
tion techniques. Many existing works have not provided
power consumption results; we will compare the power con-
sumption of our work with prior works in the future.

8. REFERENCES

[1] “OpenFlow Switch Specification V1.3.1,”
https://www.opennetworking.org/images/stories/downloads/sdn-resources/
onf-specifications/openflow/openflow-spec-v1.3.1.pdf.

[2] D. E. Taylor, “Survey and Taxonomy of Packet Classification Techniques,” ACM
Computing Surveys, vol. 37, no. 3, pp. 238–275, 2005.

[3] “Virtex-7 FPGA Family,”
http://www.xilinx.com/products/virtex7.

[4] P. Gupta and N. McKeown, “Algorithms for packet classification,” IEEE Net-
work, vol. 15, no. 2, pp. 24–32, 2001.

[5] S. Han, K. Jang, K. Park, and S. Moon, “PacketShader: A GPU-accelerated
Software Router,” SIGCOMM Comput. Commun. Rev., vol. 40, no. 4, pp. 195–
206, 2010.

[6] Y. R. Qu, S. Zhou, and V. K. Prasanna, “High-performance Architecture for
Dynamically Updatable Packet Classification on FPGA,” in Proc. ACM/IEEE
ANCS, 2013, pp. 125–136.

[7] “Vivado Design Suite,”
http://www.xilinx.com/products/design-tools/vivado.html.

[8] W. Jiang and V. K. Prasanna, “Scalable Packet Classification on FPGA,” IEEE
Trans. VLSI Syst., vol. 20, no. 9, pp. 1668–1680, 2012.

[9] “Evaluation of Packet Classification Algorithms,”
http://www.arl.wustl.edu/∼hs1/PClassEval.html.

[10] Y. Ma, S. Banerjee, S. Lu, and C. Estan, “Leveraging Parallelism for Multi-
dimensional Packet Classification on Software Routers,” SIGMETRICS Per-
form. Eval. Rev., vol. 38, no. 1, pp. 227–238, 2010.

[11] Y. R. Qu, S. Zhou, and V. K. Prasanna, “Scalable Many-Field Packet Classifica-
tion on Multi-core Processors,” in Proc. IEEE SBAC-PAD, 2013, pp. 33–40.

[12] H. Song and J. W. Lockwood, “Efficient Packet Classification for Network Intru-
sion Detection using FPGA,” in Proc. ACM/SIGDA FPGA, 2005, pp. 238–245.

[13] A. Kennedy, X. Wang, Z. Liu, and B. Liu, “Low Power Architecture for High
Speed Packet Classification,” in Proc. ACM/IEEE ANCS, 2008, pp. 131–140.

[14] V. Pus, J. Korenek, and J. Korenek, “Fast and Scalable Packet Classification
using Perfect Hash Functions,” in Proc. ACM/SIGDA FPGA, 2009, pp. 229–
236.

[15] S. Dharmapurikar, H. Song, J. Turner, and J. Lockwood, “Fast Packet Classifi-
cation using Bloom Filters,” in Proc. ACM/IEEE ANCS, 2006, pp. 61 –70.

