
High Speed Pattern Matching for Network IDS/IPS
Mansoor Alicherry

Lucent Bell Laboratories
Murray Hill, NJ, USA - 07974
Email: mansoor@bell-labs.com

M. Muthuprasanna

Iowa State University
Ames, IA, USA - 50011

Email: muthu@iastate.edu

Vijay Kumar

Lucent Bell Laboratories
Murray Hill, NJ, USA - 07974

Email: vijay@bell-labs.com

Abstract— The phenomenal growth of the Internet in the last
decade and society’s increasing dependence on it has brought
along, a flood of security attacks on the networking and
computing infrastructure. Intrusion detection/prevention systems
provide defenses against these attacks by monitoring headers
and payload of packets flowing through the network. Multiple
string matching that can compare hundreds of string patterns
simultaneously is a critical component of these systems, and is a
well-studied problem. Most of the string matching solutions today
are based on the classic Aho-Corasick algorithm, which has an
inherent limitation; they can process only one input character
in one cycle. As memory speed is not growing at the same pace
as network speed, this limitation has become a bottleneck in the
current network, having speeds of tens of gigabits per second.

In this paper, we propose a novel multiple string matching
algorithm that can process multiple characters at a time thus
achieving multi-gigabit rate search speeds. We also propose
an architecture for an efficient implementation on TCAM-
based hardware. We additionally propose novel optimizations
by making use of the properties of TCAMs to significantly
reduce the memory requirements of the proposed algorithm.
We finally present extensive simulation results of network-based
virus/worm detection using real signature databases to illustrate
the effectiveness of the proposed scheme. 1

I. INTRODUCTION

The past few years have witnessed a tremendous increase
in the frequency and sophistication of attacks on the Internet.
There have been notorious viruses/worms like Code Red,
Nimda, Slammer etc. [1] making the news. By exploiting
the security flaws in operating systems, underlying network
protocols and different software implementations, attackers
bring down significant parts of the Internet in a matter of
hours using distributed co-ordinated attacks aided with an ever-
increasing population of zombie machines. The combination of
widespread software homogeneity and Internet’s unrestricted
communication model creates an ideal climate for launching
such attacks. With the Internet becoming the hub for global
commerce and communications, such attacks can have a
devastating effect on global economy.

The most commonly employed defense today is to use end-
host based solutions that rely on security service tools, anti-
virus software, personal and enterprise firewalls etc. These
approaches have drawbacks in being insufficiently fast to
meet new virus threats, and the inability to respond fast
is increasingly being exploited by new worms designed to
contaminate tens of thousands of hosts in less than an hour.

1Work done while M. Muthuprasanna was visiting Lucent Bell Labs.

It is hard to install security upgrades in a large number of
enterprise network clients within such a short duration of
time. This was clearly evident in the inability to defend
against the DDoS attacks on SCO Group and others, in spite
of prior information about the nature, date and time of the
impending attack [2]. A more effective approach would be
to use network-based defenses to stop worm propagation in
the network before they reach a large number of end users.
Previous studies [3] have shown that 90% of transit paths
pass through top 10 ISPs, so interdicting attack traffic in the
core network is a highly effective approach, if the search
speeds needed at the core can be achieved.

Although various network-based defense techniques such as
statistical filtering [4], honeypots [5], network telescopes [6]
etc. have been proposed, the most common defense in use
today is intrusion detection and prevention using signature
matching. Signature matching techniques are widely deployed
due to their high levels of precision and accuracy. Various
network IDS/IPS such as SNORT [7] employ packet filtering
of incoming data packets based on the occurrence of known
signature patterns in the packet headers or payload. However,
most current network-based security devices can perform
only layer 3 or layer 4 packet filtering with the packet header.
Line speed packet filtering based on bit-patterns in packet
payload (layer 7 filtering) is a big challenge especially when
scanning for thousands of patterns. Additionally, it is now
increasingly common to have upto 10Gbps Ethernet speeds in
metro/enterprise networks and upto 40Gbps speeds at the core.

Additionally, high-speed pattern matching is required for a
wide variety of other equally critical applications, including
scanning through large data-sets (logs) for data mining
operations, low latency XML switching, DNA sequence
matching etc. Of greater interest is the use of pattern
matching in next-generation network monitoring applications,
including but not limited to, stateful packet inspection for QoS
management, VOIP filtering, bandwidth metering, optimal
cache replication etc. However, we limit our focus here to
network-based IDS/IPS for virus/worm detection.

Motivated by these problems, we looked at the issue of
multiple string matching at line speeds of 10Gbps and above.
Most of the string matching solutions today derive from the
classic Aho-Corasick algorithm [8]. We identify two main
drawbacks of this approach: 1) The state machine transitions

1871-4244-0593-9/06/$20.00 ©2006 IEEE

are single byte transitions, which makes it hard to scale to
current network speeds. 2) The state machine is large, and
highly memory intensive. We also note that current network
architectures process the data packet by packet rather than
byte by byte, and hence multiple input bytes are available at
a time for content inspection. The TCAM memory chips can
handle inputs which are hundreds of bits long (upto 576 bits
as of today). TCAMs also support a ternary “don’t care” state
that can be used to greatly scale down memory requirements
by aggregating the different rules together. Our proposed
algorithm take advantage of all these different features.

Our main contributions in this paper are:
1. We develop a novel multi-character multi-pattern string
matching technique to achieve faster search speeds.
2. We propose a novel transition optimization to significantly
reduce the memory requirements of the algorithm.
3. Finally, we evaluate the proposed techniques using real-life
virus/worm signatures to study their effectiveness.

II. RELATED WORK

The string matching algorithms have been traditionally
used in many applications like word processing, search-and-
replace operations, bibliographic search etc. Additionally,
they are also increasingly being used for IP lookup in routers,
virus/worm detection using signature matching, network
monitoring for stateful packet filtering etc. Researchers have
proposed various software and hardware based solutions in
efficiently tackling the underlying string matching problem.

Software-based: The Knuth-Morris-Pratt[9] and Boyer-
Moore[10] are classic software-based string matching
algorithms. The substring matching[11], two-way string
matching[12], Rabin-Karp randomized algorithms[13] and
others propose various novel string matching solutions. The
real-time algorithm in [14] is highly suited for hardware
implementations. The Aho-Corasick (AC) algorithm[8] is
the seminal work in the field of multiple string matching
algorithms. Tuck et al. proposed novel techniques[15] to
reduce the memory requirements of the AC algorithm
by using Bitmap Compression and Path Compression.
Various other algorithms[16][17][18][19], that improve on the
average running time of the AC algorithm have been proposed.

Hardware-based: Recently, in addition to software-based
techniques, efforts have been directed towards achieving
high speed implementations of the multiple string matching
algorithms in hardware. Research has been directed along two
directions: firstly towards design of efficient data structures
and other optimizations for faster memory access rates,
and secondly design of higher throughput algorithms to
augment the well-known algorithms in literature. In [20],
the authors adapt the AC algorithm to process multiple
bytes at a time on an FPGA, leading to much better
average throughput. A deterministic finite state machine is
used in [21] for performing multi-byte high-speed string

matching on an FPGA. In [22], the authors propose a SRAM
based AC implementation that also gives higher average case
throughput. In [23], the authors propose a TCAM-based multi-
byte multiple string matching algorithm with limited support
for wildcards. In [24], the authors propose a bit-split finite
state machine to achieve higher search speeds on specialized
hardware. In [25], the author proposes balanced routing table
search based algorithm, for FPGA and ASIC implementations.

There has also been extensive work on imprecise string
matching algorithms using hashing techniques and bloom
filters as proposed in [26]. The use of non-deterministic finite
automata and other FPGA optimizations has been proposed in
[27],[28]. In addition, various hardware-based techniques for
intrusion detection have been proposed in[29][30][31][32][33].

III. PROPOSED SOLUTION

The classic Aho-Corasick algorithm was the first technique
proposed to do multiple string matching in linear time, and
it constructs a finite state machine to do so. Like many
subsequent solutions to the multiple string matching problem,
our proposed solution is also based on this state machine. In
our solution, we describe a TCAM-based architecture that can
efficiently implement this state machine, where the number
of TCAM entries is equal to number of transitions in the
state machine and is independent of the number of states
therein. We then propose a state encoding scheme using
certain properties of the TCAM, which can implement the
state machine with only a fraction of the existing TCAM
entries. We finally propose techniques to increase the pattern
matching speeds, scalable to multi-gigabit network speeds
today, by implementing an equivalent state machine making
state transitions on multiple characters.

A. Aho-Corasick Algorithm
The Aho-Corasick (AC) multiple string matching

algorithm [8] builds a deterministic finite state automaton
(DFA) that encodes all the strings to be searched, in multiple
stages. The first stage called the goto function constructs a
trie of the patterns, where the root of the trie represents the
state where no strings have been partially matched. All the
strings are extended from the root node adding one state
per character. The strings that share a common prefix also
share a corresponding set of parent nodes in the trie. We
call the distance of a state from the root in the goto trie as
the depth of that state. To match a string, we start from the
root node and traverse the edges according to the specified
input characters. The second stage involves the insertion of
the next transitions. When a string match is not found, it is
possible that the suffix of the previously matched string is
the prefix of another string in the trie, and hence we use the
next transitions to slide to a different string (branch) in the trie.

Example: Figure 1 gives an example of the goto trie for the
patterns ABCDEFGHIJK, WXYZABCDIJ and WXYZABPQ.
If the input is WXYZABCDEFGHIJK, we start with the root

188

node and look for the pattern WXYZABCDIJ. After input
D (state 19), there is no transition on input E. But it is a
partial match for the pattern ABCDEFGHIJK and hence we
put a next transition from state 19 to state 5. Note that all
states have next transitions to states 1 and 12 on characters A
and W respectively, if they do not have a corresponding goto
transition on these characters.

Fig. 1. Aho-Corasick DFA (Not all next transitions shown)

B. Hardware Architecture
We now describe the hardware architecture we assume for

implementing the state machine. The architecture consists of a
TCAM, static RAM (SRAM) and a logic. Each TCAM entry
represents a certain transition in the state machine, and has a
corresponding memory block (structure) in the SRAM whose
address can be computed from the TCAM index. We logically
partition the TCAM entries into two fields: current state and
input. If the state machine transitions from state s1 to state
s2 on input a, then the TCAM contains an entry (s1, a) and
the corresponding entry in SRAM contains s2. If the state s2

corresponds to one or more keywords, then the SRAM entry
also contains pointers to those keywords.

Fig. 2. Hardware Architecture

Figure 2 presents the details of the hardware architecture.
In this paper, we assume the existence of a standard flow
classification hardware module that takes care of identifying
the packets of a flow, sequencing etc. The pattern matching
hardware module runs a unique state machine instance for
each flow. This is essential to detect patterns spread across
multiple packets in a flow. The incoming packets for the
current flow are stored in the input buffer. For each flow, we
store two pieces of information, namely the current state in
the state machine and a pointer to the next input (character)
to be fed to the state machine. These are stored in registers
marked current state and input pointer, initialized to state

zero and the start of the buffer respectively. The hardware
logic concatenates the current state and next character from
the input buffer and feeds them to the TCAM. If there
is a matching entry in the TCAM, the index of the (first)
matching entry gives a location in the SRAM memory which
contains the next state information. The input pointer is now
advanced and the next state value is stored in the current
state register. This process repeats. If there is no match in
the TCAM, the current state is set to the start state and
the input pointer is correspondingly advanced. The input
length field in SRAM is used for multiple character transitions
on a compressed state machine, and is described in Section IV.

Example: Consider the state machine in Figure 1. There are
24 states and 69 transitions (23 goto transitions and 46 next
transitions). The state can hence be represented in 5 bits and
the input character is 8 bits long. Hence each TCAM entry
would be 13 bits long, and the TCAM would have 69 entries
corresponding to each of the 69 state machine transitions.
There would be 69 SRAM structures correspondingly repre-
senting the information about the next state and the matched
keywords. Figure 3 shows a few sample TCAM and SRAM
entries for the state machine in Figure 1.

Fig. 3. TCAM and SRAM entries (no optimization)

C. Memory Optimization
Note that in the above example, out of 46 next transition

entries, 22 are transitions on character A to state 1, and 23
are transitions on character W to state 12. Also note that
the goto transition from state 0 on A and W also reach the
states 1 and 12 respectively. Hence, if we replace the state
0 with ????? in the TCAM, then all these redundant next
transitions are implicitly taken care of, without requiring the
TCAM entries. However, we need to ensure that this entry
comes after the entry corresponding to the transition from
state 15 on input character A. As the TCAM returns the first
matching entry, the state machine would otherwise reach state
0 from state 15 on input A. Figure 4 shows a few sample
TCAM and SRAM entries for the state machine in Figure 1.
Note that the redundant next transitions to states at depth
one in the state machine have now been eliminated.

Additionally, we could eliminate next transitions to states
at higher depths in the state machine. If we suffix the state id
representation of every state by the last character that caused
a goto transition into that state, then we can remove the
next transitions to states at depth two in the state machine.

189

Hence, a state at depth one is represented as “?????i1, . . . , i8”,
where i1, . . . , i8 is the binary representation of the input
character that causes a goto transition from the root node
to that state. This state id representation would then match
all those states in the state machine that is reached by a
goto transition on character i1, . . . , i8 from some other state.
Thus all next transitions to states at depth two in the state
machine are subsumed by the goto transition to depth two
state, along similar lines of argument as above, and hence can
be eliminated from the TCAM.

Fig. 4. TCAM and SRAM entries (with memory optimization)

Along similar lines, if we can dedicate the last 8(m-1) bits
of the state id of a state to encode the last m-1 bytes that cause
the state machine to reach that state using goto transitions
alone, we can ignore the next transitions to all states at depth
≤ m. For example, to eliminate next transitions to states at
depth 5 in the AC DFA in Figure 1, we suffix the state ids
with the last four characters, or goto transitions leading to that
state. Hence state 4 will be represented as “??..??ABCD” and
last 32 bits of state 19 will be ascii value of “ABCD”. Now
the next transition from state 19 to state 5 on character E
is subsumed by the goto transition from state 4 to state 5 on
character E. Clearly, there is a trade-off here since the size of
state identifier increases with m.

Depth (d) 1 2 3 4 5 ≥ 6 Total
States 56 89 100 102 102 7248 7698
Transitions 421243 7576 551 165 121 7382 437038

TABLE I
STATES AND TRANSITIONS IN AHO-CORASICK DFA

Example: We now analyze the AC DFA constructed for a real
virus signature database for the Internet (See Section V for
details). Table I summarizes the number of states at a certain
depth, and transitions to states at those depths in the Aho-
Corasick DFA. We see that the number of transitions to states
at depth 1 in the AC DFA for the sample database, is as high as
96.4% of the total transitions. Note that most of the transitions
to smaller depths are mainly next transitions, as the number of
goto transitions to any state is atmost one. Thus, the proposed
optimization (with m=3) reduces the size of the TCAM state
machine representation to 1.75% of its original size, yielding
memory savings of 98.25%. For the sample database, we see
the law of diminishing returns at play with respect to increased
memory savings. This is partly due to fewer next transitions
to states at higher depths in the AC DFA, and partly due to the
increased bit-space needed to represent the state ids. Hence it
is advisable to restrict m to smaller values (see Section V).

D. Search Speed Enhancement
The techniques described thus far implement the Aho-

Corasick state machine, while processing only one input
character per TCAM lookup. As this does not scale to high
speeds required today, we now propose techniques to achieve
greater speed-up using the same architecture.

Fig. 5. Compressed AC DFA (Not all next transitions shown)

Consider the state machine in Figure 5. This is functionally
similar to the state machine in Figure 1, except that the
transitions are now on four characters each. We call this
state machine, a multi-character (compressed) state machine.
This state machine can be implemented using our proposed
architecture with the following changes: the TCAM entries
now contain four characters in the input field requiring 32
bits for their representation, and the input pointer is now
incremented by 4 for every state transition (i.e every TCAM
lookup). Hence we get a speedup of upto four, provided the
input bus to the TCAM is wide enough (which is achievable
when implemented in custom hardware).

However, it might not always be possible to make state
transitions on the same number of characters (eg. 4 in the
above example), and hence we have another field called
length, in the SRAM corresponding to each transition. The
hardware logic increments the input pointer appropriately
by the corresponding value in SRAM after every TCAM
lookup. Henceforth, we refer to the maximum number of
input characters that are placed in a single TCAM entry as
transition width and denote it by k. Additionally, we need to
“synchronize” the input with the state machine to account for
the offset at which a pattern might occur in the input stream,
and use additional shallow states and transitions to ensure
correctness. In the above description we have left out exact
details, which are explained in detail in next section.

IV. MULTI-CHARACTER STATE MACHINE

We propose constructing a compressed finite state machine
that encodes all the strings and makes state transitions on
multiple (at most k) input characters. We start with the
Aho-Corasick DFA and create an equivalent state machine
called the compressed DFA that has transitions on multiple
input characters, by combining k consecutive states of Aho-
Corasick DFA. The goto transitions are created by combining
k consecutive states of the Aho-Corasick DFA, while the next
transitions are created as in the AC DFA, but with variable
lengths. Figure 5 shows compressed AC DFA for k = 4.

The compressed DFA differs from AC DFA as follows:

190

1) The state transition is done on multiple characters (be-
tween 1 and k characters).

2) Rollback Feature: Once a transition is made, not all the
input in “consumed” by the state machine. Each tran-
sition will indicate the number of characters by which
to advance the input pointer. In rare cases this could
be negative, which means that we need to appropriately
move the input pointer backwards.

3) Longest Input Match: From the same state, the com-
pressed DFA may contain two transitions, where one
input is a subset of the other. In those cases the DFA
takes the transition on the longer input.

4) The strings matched (output) in the DFA are associated
with the transitions; whereas they are associated with
the states in the Aho-Corasick algorithm.

We now present the details of the compressed AC DFA
construction here. We use the subscripts c and o to denote the
compressed and Aho-Corasick DFA respectively. Hence, gotoc

and gotoo represent the goto transitions on the compressed
and Aho-Corasick DFA respectively. We denote by string(s)
and dist(string(s)), the characters consumed in reaching
the state s from the root, and length of that string respectively.

Compressed DFA Goto Algorithm: We create states in
the compressed DFA corresponding to those states in the
Aho-Corasick DFA that are at depths that are multiples of
k, or that are leaf nodes in the goto trie. We call these
states in the Aho-Corasick DFA as core states. The subset
of core states which corresponds to pattern-end states in the
Aho-Corasick DFA are specifically called end core states.
We say that two core states are adjacent if the corresponding
states in the compressed goto trie are adjacent.

We also create a many-to-many mapping (called
skick or sidekick) from the Aho-Corasick DFA to the
compressed DFA. Every core state uniquely maps to its
corresponding compressed state. All the non-core states
in the path between two adjacent core states s1o and s2o

(depth(s1o) < depth(s2o)) map to the sidekick of s2o.
There may be multiple elements in the sidekick of a non-core
state, if that state is part of multiple patterns. We also define
a function cParent for states of the Aho-Corasick DFA as
follows: If the state is a core state, then cParent of the state is
its sidekick state; if the state is a non-core state then cParent
is the parent of any of its sidekicks. Note that the parent
of all the sidekick states of a non-core state are the same.
Intuitively, if the transitions are only goto transitions, the
compressed DFA would be on cParent(stateo) with a goto
transition to skick(stateo), if the AC DFA reaches stateo.

Example: In Figure 1, 0, 4, 8, 11, 15, 19, 21, 23 are core
states, while 11, 21, 23 are end core states. Also states 16, 17
have states 19, 23 as sidekicks and state 15 as cParent.

We create a compressed goto trie by doing a depth first

search (DFS) on the Aho-Corasick goto graph. During the
depth first search, we keep track of the compressed state
corresponding to the preceding core state (parentc), and the
part of the pattern starting from that state (input). If the
current state is a core state (i.e. depth is a multiple of k or
it is a leaf node) then we create a new compressed state. A
gotoc transition on the string input is created from the parent
to the new state. The new state becomes the new parentc and
the input is reset to null. Sidekick and the cParent of the core
state will be the new state. The algorithm is recursively called
for all the children in the Aho-Corasick goto graph, with the
transition character appended to the input string. If the state
is a non-core state, sidekick information is populated from its
child states. A formal description is given in Algorithm 1. The
algorithm has the same complexity as the depth first search of
the flow graph which is linear in the number of states. As the
number of states is at most the total number of characters in
all the input patterns, the complexity of our algorithm is O(n).

Algorithm 1: Compressed DFA Goto Function
cGoto(sto, parentc, depth, inp, out)
{

if (sto is a core state)
{

stc = Create a new compressed state
gotoc(parentc, inp) = stc

parent(stc) = parentc

parentc = stc

skick(sto) = stc

outputc(parentc, stc, inp) = out
if (sto is not an end core state or is a leaf state)

inp = out = null
}

cParent(sto) = parentc

for all a such that gotoo(sto, a) 6= null
{

out = out ∪ outputo(gotoo(sto, a))

cGoto(gotoo(sto, a), parentc, depth + 1, inp + a, out)

if (sto is not core state)
skick(sto) = skick(sto) ∪ skick(gotoo(sto, a))

}

}

Compressed DFA Next Algorithm: We present an algorithm
here to map the Aho-Corasick DFA nexto transitions to
one or more compressed DFA nextc transitions. For a next
transition nexto(so, a) = do, we create a nextc transition
from cParent(so) either to cParent(do) (called backward
next transition) or to all the states in skick(do) (called
forward next transition), based on the length of the transition
and safe(do), as explained below. Note that forward
transitions consume more input characters and hence have a
better throughput than the backward transitions. But it is not
always possible (or easy) to create forward transitions if do

is not a safe state or input length k > TW (the TCAM width).

Definition: A state in the Aho-Corasick DFA is safe if it is
either a core state, or all its children (states) are safe and
there are no next transitions to any state at depth > m.

Safe State computation: Let nexto(so, a) be di
o. Let d1

o and
dk

o be the adjacent core states such that di
o is in the path

191

between d1

o and dk
o . Note that there can be multiple such

dk
o . Let d1

o, d
2

o, . . . d
i
o, . . . d

k
o be the path between d1

o and dk
o

in the goto graph. If there is no next transition, to a state
of depth more than m, from any of di

o, . . . d
k−1

o , then we
can create a next transition from cParent(so) to skick(di

o).
We call such a di

o a safe state. If the next transition is to
a state that is not safe, then we cannot just create such a
transition and guarantee correctness. We use the boolean
function safe to indicate whether a state is safe or not.
Safe state function for all the states can be computed by
doing a depth first search on the Aho-Corasick DFA. A
formal description is presented in [34]. We use safe states
to avoid the possibility of missing certain next transitions,
during a cascade of multiple next transitions in the goto graph.

Forward next transitions: Figure 6(b) shows a forward next
transition. A forward transition for nexto(so, a) = do is
formed when do is a safe state and length of the tran-
sition from cParent(so) to all the nodes in skick(do)
is less than or equal to k. The transition is on input
string(so)−string(cParent(so))+a+(string(skick(do))−
string(do)) and consumes the input, dist(so, cParent(so))+
dist(skick(do), do) + 1 characters.

Fig. 6. Creating next transitions in the compressed AC DFA

Backward next transitions: Figure 6(c) shows a backward
next transition. A backward transition for nexto(so, a) =
do is formed when do is not a safe state or length
of the transition from cParent(so) to any of the states
in skick(do) is more than k. The transition is on in-
put string(so) − string(cParent(so)) + a and consumes
dist(so, cParent(so)) − dist(do, cParent(do)) + 1 charac-
ters. The backward next transition (ABE, 1) indicates that a
next transition on input characters ABE needs to be made,
while consuming only one character A. The input characters
consumed can be negative here; in which case we move the
input pointer backwards (Rollback Feature). A formal proof
of the worst case performance analysis is given in [34].

A formal description is given in Algorithm 2. Here again,
we do a depth first search on the Aho-Corasick goto graph
and create compressed DFA next transitions corresponding to
all the next transitions of the visited state in the Aho-Corasick
DFA. The runtime complexity of the algorithm is also O(n).

Algorithm 2: Compressed DFA Next Function
dfsCompressedNext(sto)

{

parentc = cParent(sto)

forall (a such that depth(nexto(sto, a)) > m)
{

nxt = nexto(sto, a)

pNxtc = cParent(nxt)
backneed = 0

for all sNxtc ∈ skick(nxt)
backneed = cFwd(sto, parentc, nxt, sNxtc)

if (backneed == 1)
cBkwd(sto, parentc, nxt, pNxtc)

}

for all a such that gotoo(sto, a) 6= null
dfsCompressedNext(gotoo(sto, a))

}

/* Forward next transition */
cFwd(sto, parentc, nxt, sNxtc)

{

len = dist(sto , parentc) + 1 + dist(nxt, sNxtc)

inp = (string(sto) − string(parentc)) + a
inp = inp + (string(sNxtc) − string(nxt))

if (len ≤ TW and safe(nxt) == true)
{

nextc(parentc, inp, len) = sNxtc

out = cout(parentc, sto,) ∪ outputo(nxt)
out = out ∪ cout(nxt, sNxtc,)

outputc(parentc, sNxtc, inp) = out

} else
backneed = 1

return backneed

}

/* Backward next transition */
cBkwd(sto, parentc, nxt, pNxtc)

{

len = dist(sto , parentc) + 1 − dist(pNxtc, nxt)

inp = (string(sto) − string(parentc)) + a
nextc(parentc, inp, len) = pNxtc

if (len > 0)
{

out = cout(parentc, sto, len)

if (len == depth(parentc) − depth(sto) + 1)
out = out ∪ outputo(nxt)

} else
out = null

outputc(parentc, pNxtc, inp) = out

}

Example: Figure 1 and Figure 5 show the state transitions
(both goto and next) for the Aho-Corasick DFA and
compressed DFA respectively. Many next transitions to
smaller depth states are eliminated by clever TCAM
optimizations as explained previously. Thus, compressed DFA
with TCAM optimization has only one next transition: to
state 8 on input EFGH consuming 4 characters, while the
AC DFA originally had 46 next transitions.

Shallow State Computation: One problem with the
compressed DFA we have constructed so far is that we may
miss a pattern if the pattern does not start at a position of the
input that is a multiple of k. For example, if k = 4 and the
pattern is ABCDEFGHIJKL, there will be a transition

192

from state 0 to state 1 on the input ABCD. But if the input
string is XXABCDEFGHIJKL, the compressed DFA
will not recognize the pattern, as neither XXAB nor CDEF
(i.e next set of four characters) have any transition from the
state 0. Hence for the compressed DFA to work correctly, we
need to “synchronize” the input and the compressed DFA.

Corresponding to each of the states in the Aho-Corasick
DFA whose depth is less than k, we create a state in the
compressed DFA. We call such states in the Aho-Corasick
DFA original shallow states and in the compressed DFA
compressed shallow states. In the compressed DFA, we put
a transition from the root state to each of the compressed
shallow state sc as follows: Let i be the length of string(sc),
Then gotoc(0, ?k−i + string(sc)) = sc, where ?k−i repre-
sents any k − i characters, and + symbol the concatenation
operator. Also, we will add goto transitions from sc to the
compressed states dc corresponding to its nearest core states
(i.e goto(sc, string(dc)− string(sc)) = dc). Figure 7 shows
an example of the compressed DFA with new shallow states
for the string ABCDEFGH for k = 4.

Fig. 7. Adding shallow states to the compressed AC DFA

Longest Input Match: Due to addition of shallow states, there
might exist multiple transitions on the same input from a given
state. For example if the pattern strings are ABCDEFGH
and CDEFGHIJ , on input ABCDEFGH , there are two
matching transitions from the state 0: one for state ABCD
and the other for ??CD. In those cases, transition to a state
whose string is of longer length takes the precedence. This
can be implemented in hardware by placing higher precedence
rules before the lower precedence rules, as explained later.

To reach the state corresponding to the first core state,
from the root state, the compressed DFA will take either one
direct transition or two transitions through an intermediate
shallow state. In the former case k characters are consumed
in one cycle and in the later case at least k + 1 characters are
consumed in two cycles. To increase the throughput, along
the similar lines, we can create shallow states for each of the
states of depth less than rk (r ≥ 1) in the Aho-Corasick DFA.
In that case we can get a throughput of rk + 1 characters in
r + 1 cycles, if only the goto transitions occur.

Compressed DFA Output Function: The Aho-Corasick
DFA declares the occurrence of a pattern when it reaches
certain states in the DFA. Hence, the matching patterns
(output) is associated with the DFA states. Since we have

only a subset of the original states in the compressed DFA,
it is not always possible to associate the output with the
states. Hence we associate the output function with the DFA
transitions instead. Each transition in the compressed DFA
corresponds to a path in AC DFA. If a pattern is output
with any of the states in the path (excluding the start node,
but including the end node) in the AC DFA, then we output
that pattern with the corresponding transitions. Algorithms 1
and 2, along with creating the state machine and goto, next
transitions, also compute the output functions simultaneously.

Precedence Rules for TCAM Entries: When there are
multiple matches on an input, the TCAM reports only
the first matching occurrence. Since we use the ternary
(don’t care state) of the TCAM for our (smaller depth) next
transition memory optimizations and shallow states, the order
in which the entries are stored in the TCAM contributes
to the correctness of the execution of the pattern matching
engine. The following order needs to be maintained. Entries
for transitions from states that have fewer ‘?’ should precede
the ones having more ‘?’. Within entries having identical
state identifiers, goto transitions should precede the next
transitions. Also within both the goto and next transitions,
the entries that have fewer number of ‘?’ in input should
precede the ones having more ‘?’ in input.

Correctness Argument: We prove the correctness of our
approach by showing the equivalence between the AC and
compressed DFA. In the correctness proof, we show that
only the strings that are reachable in the AC DFA, are
reachable in the proposed compressed DFA, and there exists
an one-to-one equivalence between the two DFAs. An outline
of the correctness proof is presented in Theorem 1 (see
Appendix). See [34] for the complete proofs of the same.

Regular Expressions: One of the most important applications
of pattern matching can be found in virus signature matching
in hardware for high speed applications. However, not all
virus signatures are simple patterns, and are hence represented
using regular expressions. A case-sensitive pattern matching
can be implemented as discussed in [23]. Any regular
expression S with wildcards, given by s1???s2*s3 (say),
where s1, s2 and s3 are simple patterns, can be decomposed
into three individual simple patterns. These simple patterns
can then be implemented in the compressed AC DFA as
if they were three different patterns. We now keep track
of the different simple patterns and detect the existence of
that regular expression, when these simple patterns occur
at specific offsets as in the regular expression itself. The
exact implementation details are presented in [34], based
on efficient post processing stage implementation in [23], [25].

V. SIMULATION RESULTS

In this section, we compare the Aho-Corasick algorithm
with our proposed multiple string matching algorithm. We

193

evaluate the state space and transition space for the DFA in the
two algorithms. We also evaluate the speed-up achieved and
the total memory requirements for a TCAM implementation
of the original and the proposed algorithms.

Virus/Worm Name Virus/Worm Signature
Worm.CodeRed 8bf450ff9590feffff3bf490434b434b898534feffffeb2a8bf48b8

8d68feffff518b9534feffff52ff9570feffff3bf490434b434b8b8d
8d4cfeffff89848d8cfeffffeb0f8b9568feffff83c201899568fefff
f8b8568feffff0fbe0885c97402ebe28b9568feffff83c2018995

Trojan.URLspoof.gen 6c6f636174696f6e2e687265663d756e6573636170652827
*3a2f2f*25303140*2729

DOS.Aardwolf.446 0e1fb82135cd21891e????8c06????b821250e07babc00cd
21b44abb3c008e06????cd21e8

TABLE II
SAMPLE VIRUS/WORM SIGNATURES

We obtained a list of the 100 most widely reported
viruses/worms in the Internet, as of April 2005, from
http://www.wildlist.org. We then obtained signatures for these
viruses/worms from CLAMAV, the widely used open-source
anti-virus toolkit [35]. A few sample signatures are listed
in Table II. These virus signatures show a great variation
in the total length of patterns and also the number and
type of wildcards found in them. We split the signatures
with wildcards into simple patterns as explained previously.
Table III and Figure 8 show the distribution of the individual
lengths of the simple patterns in the signature database.

No. of Virus Signatures 95 No. of Simple patterns 117
Min. Pattern Size 19 Max. Pattern Size 150

Mean/Median Pattern Size 67.73 (64.00) Standard Deviation 33.93

TABLE III
VIRUS SIGNATURE DATABASE STATISTICS

Aho-Corasick DFA: Table I summarizes the number of
states and transitions to the states at different depths in
the Aho-Corasick DFA. Figure 9 shows that the number of
states are high closer to the root, and decrease as the depth
increases. This is the result of the length distribution of the
patterns. Figure 10 shows the number of transitions to the
states at each depth in the DFA on a logarithmic scale. Note
that most of the transitions are to smaller depths, and are
mainly next transitions as noted previously in Section III.

Compressed AC DFA State Space: In Figure 11, we plot
the number of states in the compressed DFA, as a function
of the number of characters allowed in one transition (k). Let
N and L represent the total number of simple patterns and
their average length respectively. The first term in Equation 1
accounts for the shallow states, while the second term accounts
for the remaining states in the compressed DFA. We see that
k=1 is same as the Aho-Corasick DFA. For higher values of
k, we find that the number of states required reduces initially
before it raises again. This happens as one term increases with
k, while the other decreases; and optimal value of k for any
signature database can be trivially found.

States in compressed DFA ≈ N × (k − 1) +
N × L

k
(1)

Compressed AC DFA Transition Space: Figure 12 shows
the number of transitions in the DFA as a function of the
number of characters allowed in one transition (k) for various
values of m. We see a significant decrease in the number
of transition even for m=1. For the Aho-Corasick DFA, the
number of transitions were 437038, where as in our solution
it is 15851 with k=1, m=1. There is significant reduction in
the transition space for m=2 and 3. After a point (m=4) there
is not enough reduction since the number of next transitions
to states of higher depths are small. As m increases, we pay
penalty in terms of bits needed to represent a state. So m=2
or 3 is ideal. As k increases, for the same m, the number
of transitions first decreases and then increases. This can be
explained with the same argument as that for number of states.

TCAM Memory Requirements: In Figure 13, we plot total
TCAM memory requirements for all the transitions in the
compressed DFA, for different values of k and m. Recall
that TCAM entries consists of state id and the input for each
transition. If we denote the number of states and transitions in
the DFA by S and T respectively, then total TCAM memory
requirements is given by Equation 2; the 3 terms corresponding
to a unique state-id prefix, last m-1 byte suffix for the state-id,
and input characters for that transition respectively.

TCAM Memory = T × (log2S + 8(m− 1) + 8k) bits (2)

The commercially available TCAMs do not have a
customizable width in order to allow for flexible usage. The
TCAMs that are available in the market are 36, 72, 144, 288
or 576 bits wide. In Figure 14, the same graph is redrawn
taking into consideration the available TCAM widths, by
using a higher-width TCAM as and when required. We see
that current memory technology does not permit us to operate
this algorithm at really large values of the transition width.
The total TCAM memory requirements of the Aho-Corasick
algorithm for the given signature database assuming a TCAM
implementation, is represented in the graphs as a horizontal
line for comparison. Thus we see that a reduction in the
number of states and transitions, not only provides for higher
throughput but also lesser TCAM memory requirements.

Throughput (Search Speeds): We now focus on the most
crucial aspect of our algorithm, the high throughput it
can achieve. The Aho-Corasick algorithm can give only
one character throughput per transition or clock cycle,
roughly translating to 1 Gbps search speeds on a 250MHz
TCAM. Comparatively, the proposed algorithm can achieve a
significantly higher average case throughput. For our analysis,
we generated multiple packet payload streams by randomly
inserting the virus signatures into the test payload.

In Figure 15, we show the average number of transitions
required for scanning all the streams generated, for varying
values of the transition width in the DFA. The flat line on
the top indicates the Aho-Corasick algorithm. In Figure 16,

194

Fig. 8. Virus Signature Database Statistics Fig. 9. No. of States (Aho-Corasick DFA) Fig. 10. No. of Transitions (Aho-Corasick DFA)

Fig. 11. No. of States (compressed DFA) Fig. 12. No. of Transitions (compressed DFA) Fig. 13. Theoretical TCAM Memory

Fig. 14. Practical TCAM Memory Fig. 15. Average No. of Search Transitions Fig. 16. Average Search Speed

the corresponding search speeds are displayed assuming a
250MHz TCAM implementation. The streams are not eval-
uated for higher transition widths because it would be practi-
cally impossible to achieve such a performance firstly due to
limited memory sizes and access speeds today (see Figure 14)
and also partly due to a large number of shorter patterns
limiting the overall throughput of the system. Also note that
the value of m does not matter in this case, as it achieves
only memory optimization and does not provide any additional
speed improvements. We thus see a significant reduction in the
number of transitions or clock cycles, and hence higher search
speeds when scanning packet payloads.

Additionally, we could use a parallel implementation pro-
cessing multiple packet streams, and/or use packet sampling
techniques to increase the cumulative throughput achieved.
The performance evaluation done in this section did not
assume the existence of any such performance enhancing tech-
niques, although they could very well be used in conjunction
with our proposed algorithm, to achieve even faster search
speeds and scale beyond the immediate needs of 10Gbps in
enterprise networks, and 40Gbps at the network core.

Comparison: We now compare our proposed algorithm with
other known techniques in literature. Although it may not be
possible to make a fair comparison of the different techniques

without accounting for the various algorithmic and hardware-
implementation aspects, we present these here to illustrate the
bare performance of the proposed algorithm when compared
with other known techniques.

Table IV shows the throughput of the different algorithms
known, while Table V shows the memory utilization per
signature database character of the different algorithms. The
comparison methods used in [15] and [25] are used here for
benchmark evaluation. We thus see that the proposed algorithm
has a great potential to meet current day requirements of line
speed network-based virus/worm detection.

VI. CONCLUSIONS

As virus/worm spreads and other network intrusion attacks
increase in frequency and sophistication, the need for effective
attack detection and prevention has increased enormously. The
current state of the art in discovering and stopping these
attacks is by inspecting packets being transported for known
virus patterns or signatures, in packet payloads. The existing
software and hardware solutions for deep packet content
inspection however do not scale with data rates approaching
10Gbps and beyond. Additionally, packet inspection in the
network is essential for various applications including QoS
monitoring, bandwidth metering, stateful packet filtering etc.

195

Algorithm Max. Speed Comments
Aho-Corasick [8] 1 Gbps Earliest known algorithm
Yu et. al. [23] 2 Gbps TCAM implementation
Tuck et. al. [15] 8 Gbps Memory optimized Aho-Corasick
Tripp et. al. [21] 10 Gbps FPGA implementation
Aldwairi et. al. [22] 14 Gbps SRAM implementation
Sugawara et. al. [20] 14 Gbps Selective multi-character transitions
BFPM [25] 10 Gbps 20 Gbps ASIC implementations
Proposed Algorithm 1-20 Gbps Faster FPGA/ASIC implementations

TABLE IV
THROUGHPUT COMPARISON

Algorithm Memory/Char.
Aho-Corasick [8] 2.8 KB
Wu-Manber [19] 1.6 KB
Aldwairi et. al. [22] 126 B
Bitmap compressed Aho-Corasick [15] 154 B
Path compressed Aho-Corasick [15] 60 B
BFPM [25] 3-8 B
Yu et. al. [23] 3-4 B
Proposed Algorithm 4-48 B (varying with k,m)

TABLE V
COMPARISON OF MEMORY UTILIZATION PER CHARACTER

In this paper, we propose a novel multiple string matching
algorithm that uses multi-character transitions on a finite
state automata to increase the throughput, and also lever-
ages a clever transition optimization technique to reduce the
memory requirements. We describe a TCAM-based hardware
architecture to realistically achieve these higher data rates
for virus/worm detection employing signature matching. Our
simulation results demonstrate that the proposed algorithm
indeed scales well in practice to meet the current day re-
quirements, as tested on real virus signature databases. We
are currently developing a prototype of the proposed algorithm
using network processors. We plan to evaluate the higher data
rates that the proposed algorithm can achieve, in real hardware
employing hardware threading and a pipelined architecture,
and when deployed in a real network, as part of future work.

REFERENCES

[1] http://www.wildlist.org. The Wildlist Organization Intl., April 2005.
[2] R. Lemos, http://www.alertsite.com/articles cnet-feb-2004.shtml. Per-

formance Testing and Monitoring, Feb 2004.
[3] D. M. et. al., “Internet quarantine: Requirements for containing self-

propagating code,” in INFOCOM, 2003.
[4] L. Feinstein, D. Schnackenberg, R. Balupari, and D. Kindred, “Statistical

approaches to ddos attack detection and response,” in DISCEX, 2003.
[5] L. Spitzner, Honeypots: Tracking Attackers. Addison-Wesley, 2002.
[6] C. Morrow, http://www.secsup.org/Tracking. BlackHole Route Server

and Tracking Traffic on an IP Network.
[7] http://www.snort.org. SNORT: Open-Source Network IDS/IPS.
[8] A. V. Aho and M. J. Corasick, “Efficient string matching: an aid to

bibliographic search,” Commun. ACM, vol. 18, no. 6, pp. 333–340, 1975.
[9] D. E. Knuth, J. H. M. Jr., and V. R. Pratt, “Fast pattern matching in

strings,” SIAM J. Comput., vol. 6, no. 2, pp. 323–350, June 1977.
[10] R. S. Boyer and J. S. Moore, “A fast string matching algorithm,”

Commun. ACM, vol. 20, no. 10, pp. 762–772, October 1977.
[11] D. M. Sunday, “A very fast substring search algorithm,” Commun. ACM,

vol. 33, no. 8, pp. 132–142, August 1990.
[12] M. Crochemore and D. Perrin, “Two-way string matching,” J. ACM,

vol. 38, no. 3, pp. 650–674, 1991.
[13] R. M. Karp and M. O. Rabin, “Efficient randomized pattern-matching

algorithms,” IBM J. Res. Dev., vol. 31, no. 2, pp. 249–260, 1987.
[14] Z. Galil and J. Seiferas, “Time-space optimal string matching (prelimi-

nary report),” in STOC, 1981.
[15] N. T. et.al., “Deterministic memory-efficient string matching algorithms

for intrusion detection,” INFOCOM, 2004.

[16] J. J. Fan and K. Y. Su, “An efficient algorithm for matching multiple
patterns,” IEEE Trans. on Knowledge and Data Engineering, vol. 5,
no. 2, pp. 339–351, 1993.

[17] B. Commentz-Walter, “A string matching algorithm fast on the average,”
in ICALP, 1979.

[18] M. Fish and G. Verghese, “Fast content-based packet handling for
intrusion detection,” in UCSD Technical Report CS2001-0670, 2001.

[19] U. Manber and S. Wu, “A fast algorithm for multi-pattern searching,”
in Tech.Report TR-94-17, CS Dept., University of Arizona, 1994.

[20] Y. Sugawara, M. Inaba, and K. Hiraki, “Over 10gbps string matching
mechanism for multi-stream packet scanning systems,” in FPL, 2004.

[21] G. Tripp, “A finite-state machine based string matching system for
intrusion detection on high-speed networks,” in EICAR, 2005.

[22] M. Aldwairi, T. Conte, and P. Franzon, “Configurable string matching
hardware for speeding up intrusion detection,” SIGARCH. Comput.
Archit. News, vol. 33, no. 1, pp. 99–107, 2005.

[23] F. Yu, R. Katz, and T. V. Lakshman, “Gigabit rate packet pattern
matching using tcam,” in ICNP, 2004.

[24] L. Tan and T. Sherwood, “A high throughput string matching architecture
for intrusion detection and prevention,” in ISCA, 2005.

[25] J. V. Lunteran, “High-performance pattern-matching for intrusion detec-
tion,” IEEE Infocom, 2006.

[26] S. Dharmapurikar, P. Krishnamurthy, T. Sproull, and J. W. Lockwood,
“Deep packet inspection using parallel bloom filters,” in Micro, 2004.

[27] R. Sidhu and V. K. Prasanna, “Fast regular expression matching using
fpgas,” in FCCM, 2001.

[28] Z. K. Barker and V. K. Prasanna, “Time and area efficient pattern
matching on fpgas,” in FPGA, 2004.

[29] C. R. Clark and D. E. Schimmel, “Efficient reconfigurable logic circuits
for matching complex intrusion detection patterns,” in FPL, 2003.

[30] B. L. Hutchings, R. Franklin, and D. Carver, “Assisting network intru-
sion detection with reconfigurable hardware,” in FCCM, 2002.

[31] I. Sourdis and D. Pnevmatikatos, “Pre-decoded cams for efficient and
high speed nids pattern matching,” in FCCM, 2004.

[32] M. Gokhale, D. Dubois, A. Dubois, M. Boorman, S. Poole, and
V. Hogsett, “Towards gigabit rate network intrusion detection technol-
ogy,” in FPL, 2002.

[33] Y. H. Cho, S. Navab, and W. H. Mangione-Smith, “Specialized hardware
for deep network packet filtering,” in FPL, 2002.

[34] M. Alicherry, M. Muthuprasanna, V. Kumar, and V. Poosala, “Multi-
character multi-pattern matching for high speed applications,” in Lucent
Bell Labs Technical Report, 2005.

[35] http://www.clamav.net. Clam AntiVirus toolkit for UNIX.

VII. APPENDIX
Theorem 1: The Aho-Corasick and compressed DFA are equivalent.

Proof: First, let us assume that there are no forward next transitions in the compressed
DFA, i.e. we replace all the forward transition with backward transitions. Let
0, s1

o, s2
o, . . . , sn

o be the states visited in the Aho-Corasick DFA for the input
a1a2 . . . an. For simplicity, we assume that sn

o is a core state, but the claims hold
even if sn

o is not a core state. We claim that the same input in the compressed DFA
will visit states 0, cParent(s1

o), cParent(s2
o), . . . , cParent(sn

o), uniquely in
order. The claim is plainly evident to be true if there were only goto transitions in
the state sequence. However, if there is any next transition in the state sequence,
let si

o be the first state that has a next transition, i.e. nexto(si
o, ai+1) = si+1

o .
Let sj

o (i − k < j ≤ i) be the nearest core state of si
o . Then cParent(sj

o)

does not have a goto transition on aj+1aj+2 . . . aiai+1 . . . and will take the
backward next transition to cParent(si+1

o). Now continuing the argument from
cParent(si+1

o), we can prove that the compressed DFA will take the state sequence
0, cParent(s1

o), cParent(s2
o), . . . , cParent(sn

o).

Now we prove that, the above claim is true even if there are forward next transitions,
i.e. both forward and backward next transitions will take the compressed DFA to the
same state, but with backward next transitions going through an intermediate state. Since
the output patterns are associated with transitions and not the states, correctness is not
compromised. Let si

o be the first state that has a next transition (nexto(si
o, ai+1) =

si+1
o) which corresponds to a forward next transition in the compressed DFA. si+1

o

has to be a safe state, by definition of forward next transition. Hence in the original
state sequence, there exists a state sj

o (i + 1 ≤ j < i + 1 + k) such that sj
o is

a core state and all the transitions from si+1
o to sj

o are goto transitions. Hence, if
sl

o is the core state in the sequence preceding si
o , then for the input al+1 . . . aj the

compressed DFA with forward next transition will take transition cParent(sl
o) →

cParent(sj
o), whereas the DFA with backward next transition will take the transitions

cParent(sl
o) → cParent(si+1

o) → cParent(sj
o). Continuing the argument

for all the next transitions, we prove the claim. Thus our proposed algorithm ensures
correctness, if Aho-Corasick algorithm is correct, and this has been proved in [8].

196

