
An Efficient TCAM Update Scheme for Packet
Classification

Yeim-Kuan Chang
Department of Computer Science and Information

Engineering
National Cheng Kung University

Tainan, 701, Taiwan
ykchang@mail.ncku.edu.tw

Kai-Yang Liu
Department of Computer Science and Information

Engineering
National Cheng Kung University

Tainan, 701, Taiwan
p76001433@mail.ncku.edu.tw

Abstract—Ternary Content Address Memory (TCAM) becomes a
popular hardware device for storing the packet classifiers due to
the advantages of high and deterministic lookup performance.
However, managing the filter set in TCAM is quite complicated
when filters need to be updated. To ensure the correctness of
search results, it is required to obtain the right position in TCAM
for storing the new filter. In addition, some filters need to be
moved to other positions for maintaining the correct filter
overlapping relationship based on their priorities. Normally, an
auxiliary data structure is used to compute how to insert or
delete a filter into/from TCAM. However, this auxiliary data
structure is usually complicated and large. Instead of
maintaining an auxiliary data structure, in this paper, we
propose an efficient TCAM update scheme that simply uses a
very small portion of TCAM search cycles to compute how to
move the filters related to the filter to be inserted or deleted.
Therefore, a large amount of memory for storing the auxiliary
data structure along with the local CPU for updates can be
avoided. In addition, our simulation results show that the
proposed update scheme needs less number of TCAM movements
than the existing CoPTUA update scheme [2].

Keywords- packet classification, TCAM , rule update

I. INTRODUCTION
Packet classification is an important mechanism employed

by internet routers. The packet header consists of five fields:
source address, destination address, source port, destination
port, and protocol. To classify packets, the values of these
fields are extracted to match a list of rules. A rule can be
regarded as (F, A), where F is a filter composed of the five
fields, and A is an action that will be taken when the filter is
matched by the packet header fields. If multiple filters are
matched, then the action of the rule with the highest priority
will be taken.

Storing filters in Ternary Content Address Memory
(TCAM) is a popular hardware-based solution for packet
classification. TCAM-based packet classification stores each
filter in a TCAM entry in ternary format (i.e. each cell can be
one of the three states: 0, 1, and x (don’t care)) and all the
filters are stored with decreasing priority order. The advantage
of TCAM-based packet classification is that the lookup
operation only takes one cycle. When a packet arrives, all the
entries in the TCAM are searched in parallel to find the
matched filter with the highest priority. Thus, TCAM provides

high and deterministic search performance for packet
classification. However, TCAM-based packet classification has
some well-known disadvantages:

• High Power Consumption:

Performing parallel search on all entries to classify a packet
will result in high power consumption due to the priority
encoder and parallel search circuits in TCAM chips. Therefore,
the power efficiency will degrade further when the number of
filters in the TCAM increases. The drawback of high power
consumption can be regarded as a tradeoff to achieve high
search performance. To address this problem, some approaches
have been proposed to group the TCAM entries [9][12][13],
and these groups can be enabled or disabled selectively when
searching the TCAMs. Thus, the power efficiency improves if
the TCAM entries are grouped properly.

• Range Expansion Problem:

In TCAM-based packet classification, the obstacle of
storage inefficiency occurs due to the existence of ranges in
some fields of filters. For example, source port and destination
port are numbers represented in the form of ranges. One
arbitrary range is not allowed to be stored directly in a TCAM
entry if the range can’t be represented as a prefix. The
traditional solution is to convert each range into multiple
prefixes by using the direct range to prefix conversion
algorithm [10]. However, using multiple TCAM entries to
represent a rule will results in the problem of storage
inefficiency and higher power consumption. Many approaches
have been proposed to improve the storage requirement for
this issue [4][16][17].

Efficiently updating the filter sets is another issue for
TCAM-based packet classification. The works that focus on
this issue are fewer than the others. During the update period,
some new filters may be inserted and some existing filters may
be removed. Managing filters in the TCAM becomes
complicated since the new filters have to be inserted at the right
position according to their priorities. In addition, some filters
need to be moved to ensure the correctness of lookup results.
Generally, an auxiliary data structure such as priority graph is
maintained to record the priority relationship among filters and
the TCAM entry positions of filters. Therefore, we can know
how to perform the TCAM update process by the auxiliary data
structure. The update process of packet classifiers is normally

2013 IEEE 27th International Conference on Advanced Information Networking and Applications

1550-445X/13 $26.00 © 2013 IEEE

DOI 10.1109/AINA.2013.96

1017

performed by a local CPU/ TCAM coprocessor interface (e.g.,
the 64-bit PCI bus in the INTEL IXP2800 network processor
[18]). The architecture of conventional TCAM coprocessor
with a network processor used for packet classification is
shown in figure 1(a). The filters which map to distinct memory
addresses in an associated SRAM are stored in the coprocessor,
and the corresponding actions are stored in the SRAM. The
search and update requests are issued by the lookup threads of
the network processor and the local CPU separately. During the
update process, the inconsistent and erroneous results can be
avoided by locking the interface. However, locking the
interface during the update process leads to the reduction of
search performance. Note that we don’t discuss the dual-ported
TCAM which is accessible from a local CPU and a network
processor concurrently. Thus, the algorithm for maintaining
the consistency of the filter set which usually has high update
effort is not required in this paper. The auxiliary data structure
mentioned before usually stored in off-chip SRAM is also
shown in figure 1(a). Unfortunately, a large amount of memory
is usually required to store the auxiliary data structure such as
priority graph.

In this paper, we propose an efficient TCAM update
scheme for packet classifiers. We purely use TCAM search
operations to compute how to move TCAM entries. Therefore,
our proposed update scheme does not need a large amount of
memory for auxiliary data structure that would usually be
stored in off-chip memory. Therefore, the off-chip memory and
local CPU are not needed in the TCAM coprocessor. The
proposed TCAM update architecture is shown in figure 1(b).
The TCAM needs to be designed to support multiple matching
in our algorithm. Many approaches have been proposed for
supporting multiple matching, and we will discuss further in
section 2.

The rest of the paper is organized as follows: We review
the related works in Section II. We describe our update scheme
in Section III. The experimental results of our scheme are
shown in Section IV and we conclude in Section V.

II. RELATED WORKS
 In this paper, we focus on the problem of managing the
filter sets when updating packet classifiers in the TCAM. In
this section, we first introduce other existing TCAM update
scheme for packet classifier. Since our TCAM needs to be
designed to support multiple matching, we also briefly
describe the background of TCAM multiple matching.

A. Approaches for updating packet classifiers
Different approaches have been proposed to manage the

filters in the TCAM for updating packet classifiers
[1][2][3][14][15]. The authors in [5] proposed two well-
known algorithms, PLO_OPT and CAO_OPT for updating
prefixes. Both algorithms significantly reduce the number of
TCAM entry moves in the worst case by keeping the empty
entries in the center of the TCAM. However, these two
algorithms can’t be applied to updating packet classifier rules
directly. Filters can also be grouped and represented as chains
by the way similar to CAO_OPT algorithm for prefixes
according to their overlapping and priority relationship.
However, compared with updating prefixes, there are more
constraints need to be considered when updating filters. The
difference is that inserting a filter may lead to merging
multiple distinct chains, which will probably increase the
number of TCAM entry moves and the complexity of
computation. In addition, the lengths of prefix chains must be
less than or equal to the width of ip address field (e.g., 32 in
IPv4). However, the lengths of filter chains may be much
longer than that of prefix chains since the lengths of filter
chain do not have upper bound.

The authors in [2] proposed a consistent algorithm to
update a batch of rules. This algorithm focuses on how to
maintain the consistency of filter set in order to avoid locking
the TCAM coprocessor during the update process. Therefore,
rule matching and updating can be processed simultaneously
by using the dual-ported TCAM, and the correctness of rule
matching is ensured even in the progress of update. In order to

Figure 1(b) The proposed TCAM coprocessor/network processor.

Filter 1
Filter 2

Filter n-1
Filter n

TCAM

Thread 1

Thread 2

Thread m

Network Processor

MAC Framer

Switch Fabric
I f

Frame

U
pd

at
e

Search
Write
Read
Valid
Reset

Result

Mask Data

Address

Thread 1

Thread 2

Thread u

SR
A

M

L
oo

ku
p

TCAM CoProcessor

Filter 1
Filter 2

Filter n-1
Filter n

Action 1
Action 2

Action n-1
Action n

Write

Action

Thread 1

Thread 2

Thread m

Network Processor

Switch
Fabric

I f

Frame

Data structure
for update

Search

SR
A

M

Figure 1(a) A conventional TCAM coprocessor/network processor.

Input Data

MAC Framer

 CPU SRAM

1018

maintain consistent filter set for each step of moves, this
algorithm needs several moves to complete updating a batch
of rules. Although the TCAM can be searched during update
progress, a lot of TCAM bandwidth is still wasted for moving
the entries. In addition, it may take a long time for new rules
to wait for the completion of previous batch to get in the
update progress.

The authors in [1] proposed a fast way to complete updating
rules by inserting the new filters into arbitrary entries without
considering the order of priorities among overlapped filters.
To get the matching results correctly, an auxiliary graph is
used to maintain the priorities and overlapping relationship
among these filters. Each filter is given a priority value which
is equal to one plus the maximum priority value among all the
filters that overlap it and have higher priority, one is given if
no such filter exists. The priority values are further appended
to each filter and stored in the extra bits of TCAM entries. The
correct lookup results are obtained by searching the matched
filter with the minimum priority value instead of minimum
index. However, this approach will degrade the efficiency of
lookup procedure since it requires log2N lookups to determine
the filter with highest priority by using binary decision tree,
where N is the distinct priority values.

PC-DUOS scheme proposed by [3] is extended from DUOS
[11]. Two TCAMs called LTCAM and ITCAM are used to
store filters in PC-DUOS. The LTCAM is used to store the
filters with highest priority among all overlapped filters and all
filters in the LTCAM are disjoint. Therefore, the priority
encoder is not required in the LTCAM. The remaining filters
are stored in the ITCAM and the priority graph proposed by [1]
is needed to manage the filters in ITCAM to ensure the
correctness of lookup results. A multi-dimensional trie is
maintained to determine which filters should be stored in the
LTCAM. LTCAM and ITCAM are searched in parallel during
lookup. The search result of ITCAM is discarded if there is a
match found in LTCAM since the matched filter in the
LTCAM must have higher priority than the one in the ITCAM.
To update a filter, the multi-dimensional trie is first updated
and used to compute the moves for managing the filter set.
However, the priority graph is also needed to be updated when
rearranging the filters in the ITCAM.

B. TCAM multiple matching
A lot of different approaches have been proposed to solve

the TCAM multiple match classification problem [4][6][8].
There is an additional valid bit for each TCAM entry to
indicate whether the entry is active or not. Only the active
entries are involved in search process. To address the problem
of multiple matching, the simplest way is modifying the valid
bit of the best matched entry. This ensures that the entry will
not participate in the search process of next cycle. Thus, the
second match is reported after the next lookup by using the
same search key. The process repeats until all the matches are
found. The valid bits of all matched entries need to be set to
valid again for the next search key. However, write operations
are needed to modify valid bits. It takes 7 cycles per multi-

match (3 cycles for write and 1 cycle for search operation) as
mentioned in [4].

The authors in [4] proposed an algorithm that uses the
extra bits to store the index number of that entry called
discriminator field. The search key is appended with the
discriminators when performing TCAM search operation, and
the discriminators are set to don’t care initially. After
reporting the first match at position j, the discriminators are set
to prefixes for range greater than j to get the second match.
This can be done by utilizing the capability of global masking.

In order to accomplish the multiple matching by using
only one TCAM search operation, geometric intersection-
based approaches [8] creates additional entries to record the
intersection filter. For example, if two filters that overlap with
each other stored in the TCAM, a new intersection filter of
these two filters is created and stored above them. Therefore,
the intersection filter can be regarded as the multiple matching
of these two filters. However, the problem of memory
inefficiency and high power consumption occurs when the
overlapping relationship is severe in the filter set. To address
this problem, [6] proposed a set splitting algorithm (SSA) to
efficiently group the filters into multiple blocks. Thus,
memory requirement and power consumption can be reduced
significantly while just a little search time is sacrificed.

III. PROPOSED TCAM UPDATE SCHEME
The filters’ indices in the filter sets can be treated as their

priority values where the filter with lower index has higher
priority. Therefore, we can store entire filter set in TCAM
without any rearrangement and the correctness of lookup
results is ensured. However, it may cause many TCAM entry
moves when we need to insert a new filter. In the worst case,
all filters need to be moved. To address this problem, we first
create the priority graph proposed in [1] for the filters that
initially exist. The filters are further grouped and rearranged
according to the graph.

An example of priority graph is shown in figure 2. We use
five 2-dimensional filters in our example and the regions of
these filters are shown in the left part of figure 2. In the
priority graph as shown in the middle part of figure 2, each
vertex denoted by a circle represents a filter. A directed edge
is created from vertex i to vertex j if filter i overlaps j and
filter i has higher priority. Each filter is given a priority value
which is equal to one plus the maximum priority value among
all of its ancestors. If the filter has no ancestor, its priority is
set to one. The priority values of all filters in this example are
shown in the right part of figure 2.

We use the priority graph to group the filters into layers as
follows. We divide TCAM into L layers where L is the
maximum priority value of the priority graph. The filters with
priority value i will be grouped into layer i for i = 1 to L. In
addition, the filters in layer i must be put above layer j for i < j
in TCAM. Note that the priority graph is no longer needed
after the grouping procedure mentioned above. Some
properties will always hold after grouping and we summarize

1019

these properties below:
1. The filters in the same layer are disjoint.
2. If there are multiple matches in more than one layer

for a search key, the matched filter in layer i must have
higher priority than that in layer j for i < j.

3. A filter in layer i+1 overlaps at least one filter in layer
i.

The empty TCAM entries have to be put in some place so
that the update process can be done successfully. If we
allocate empty TCAM entries for each layer, it is not
necessary to move any entry after inserting a filter. However,
it is not a good solution since we are not sure whether we have
enough empty TCAM entries for all layers. In addition, if we
allocate too many empty TCAM entries, the power
consumption may be high. Therefore, where to place these
empty entries in TCAM is an important issue. According to
our experiment, a large portion of filters are in layer 1 and 2.
Thus, it is reasonable to conjecture that the updated filters
would have greater chance processed in these two layers, so
we propose to place the empty TCAM entries between them.
Figure 3 shows our TCAM configuration for storing the five
filters in figure 2. We use the extra bits to encode the layer
field and discriminator field for the capability of multiple
matching, and we will explain in detail later.

In order to guarantee the correctness of lookup results, we
have to ensure that the three properties mentioned before are
still satisfied after a filter is inserted or deleted. To address the
range expansion problem, we simply apply the direct-range-
to-prefix conversion (DRPC) algorithm [10]. Subsequently,
we introduce a specific algorithm to insert or delete a filter.
That is, the source port and destination port of the filter we
discuss can be represented by a prefix. Instead of using the
auxiliary data structure, our algorithm purely uses TCAM
search operations to determine the relevant filters (the filters
that would be involved during the update procedure) for
calculation. Only a little information needs to be maintained
for managing the filter sets in our update scheme.

A. Inserting filter R
The algorithm for insertion can be divided into two parts:

Calculation and TCAM entry movement.

A.1 Calculation:

Before inserting the new filter, we need to calculate where
to put the filter and which entries should be moved to other
place. To be precise, if the new filter R overlaps some existing
filters, we have to ensure that these filters still satisfy property
2 after insertion. Our scheme simply uses TCAM search
operations to determine the filters that overlap filter R. We can
achieve this by making filter R as search key to perform
TCAM search operation. Then the matched filters must
overlap filter R. However, conventional TCAM only output
the filter with the highest priority, in order to find out all the
overlapped filters, our TCAM should be designed to support
multiple matches.

The approaches for supporting TCAM multiple matches
are discussed in section 2. We apply MUD approach in our
algorithm due to the advantage of lower power consumption
compared with other schemes. In addition, it is convenient to
disable the capability of multiple matching by masking the
discriminator field when only the best match needs to be
reported. As described in [4], we use the index number of
TCAM entry to encode the discriminator field. In addition, we
create a layer field for storing the layer number of each filter.

With the help of multiple matching approaches, we can
easily determine the filters which overlap filter R. That is, all
of the matched filters are exactly the ones that need to be
taken into consideration. If we consider these matched filters
and R, the relationship among them can be illustrated by using
Connected Rule Graph (CRG) [2]. An example of Connected
Rule Graph is shown in figure 4 (C is assumed to be the new
filter). The direction of the arrows implies the increase in
priority, and a horizontal line represents the 1-dimensional
range that the filter covers. For each filter in the same CRG,
there is at least one filter that overlaps it.

Figure 3: TCAM Configuration.

Index

N empty
entries

N+3

N+4

N+5

1
2

R1
R2

R3
R4

R5

1
1

2
2

3

1
2

N+3
N+4

N+5

Filter Layer Discriminator

R2

R1

R5

R4

R3

1

1

2

2

3

R1

Five 2-dimensional filters

R2

R3

R4

R5

Figure 2: An Example of Priority Graph

1020

Now, our goal is to insert filter R into right position and
maintain the priority relationship of whole CRG. Note that
inserting a new filter may cause originally different CRGs to
be merged into one. For example, before we insert filter C in
figure 4, there are two CRGs where one includes filters A and
B and the other includes filters D and E. According to the
grouping properties, filter D needs to be moved from layer 1
to 4, and filter E needs to be moved from layer 2 to 5 after
inserting filter C.

In our algorithm, the filter R is first used as search key to
perform multiple matching with all TCAM entries. For each
matched filter, the corresponding layer and TCAM entry index
need to be recorded in buffer for calculation. In calculation
phase, we first compare all the matched filters’ priorities with
R. We accomplish this procedure by storing the filter index as
priority value in the SRAM. Further, we can divide the
matched filters into two groups: Group 1 for filters that have
higher priority than R, and Group 2 for those that have lower
priority.

Now, we discuss where to insert filter R. In order to satisfy
property 2, we should ensure the matched filters that have
higher priority than R to be placed in the layers higher than R
(i.e. R has larger layer number after insertion). We first find
the lowest layer, say k, at which one of the filters in Group 1
locates. Then we insert filter R in layer k+1.

In Group 2, the filters in layer � (k+1) should be moved to
the layer below layer (k+1) to satisfy property 2. We move
these filters in the increasing order of their layer numbers (i.e.
selecting the filter with lowest layer number to move first).
Consider a filter X in Group 2 where X is in layer m and m � k
+ 1. We first delete X from layer m. Then we use the same
insertion algorithm to insert X in one of the layers from k+2 to
L+1, where L is the largest layer number before inserting X.
We don’t have to check the matched filters again in layers � m
since the matched filters in layers � m do not affect the
decision of re-inserting X. Thus, the procedure of multiple
matching can start from layer m+1 to reduce the time for
calculation. In fact, it is not necessary to multiple-match all
the TCAM entries in most cases. Assume X is overlapped with
one of the filters in layer i during the procedure of multiple
matching. If X has a priority higher than all the filters in layer i,
then the filters in layer > i do not affect the decision of where
to insert X since it’s impossible to find a matched filter against
X that has a higher priority than X in layer > i. For example,
assume a filter Y in layer i + 1 is overlapped with X. Based on

property 3, Y must overlapped with another filter W in layer i
and W has a priority higher than Y. Since X has a priority
higher than all the filters in layer i, we must know that the
priority of X is higher than Y. As a result, filter X must be
inserted in one of the layers from 1 to i. We use an array
Layer_max[i] to record the highest priority in layer i. If a

Figure 5(a). Filter insertion algorithm.

Figure 5(b). The algorithm for inserting a filter in layer L

//Insert filter R with priority P into the TCAM. L is the original
layer number of the filter that needs to be re-inserted. If R is the
new filter, then Insert(R, P, 0) is performed.

Insert(R, P, L)
{
01 Start = Start_index[L]; // initial index for multiple matching
02 While(1){ // multiple matching process
03 result.match = TCAMsearch(R, Start);// Search TCAM from
04 index Start
05 if (result.match = 0) break; // No match is found
06 else {
07 if(Match_Filter.Priority > P)
08 group1[Cnt1++] = Match_Filter;
09 else group2[Cnt2++] = Match_Filter;
10
11 if (P > Layer_Max[Match_Filter.Layer]) break;
12 } //end else
13 Start = match.index+1; //Match from Start for next cycle.
14 } //end while
15
16 Layer_insert = 1+Max{Layer number of group1};
17 Insert_TCAM(R, Layer_insert);
18 for(i = 0; i < Cnt2 ; i++){ //Cnt2 : number of filters in Group2
19 if(group2[i].Layer < = Layer_insert){
20 Insert(group2[i].Filter, group2[i].Priority, group2[i].Layer);
21 Delete group2[i].Filter by invalidating the entry.
22 }
23 } //end for
24 Clear all the elements stored in group1 and group2.
}

//Insert filter R into Layer L in the TCAM.

Insert_TCAM(R, L)
{
01 if (Freelist[L]!=NULL){
02 Remove the first free index (idx) from Freelist[L];
03 TCAMwrite(idx, L, R); // write filter R in the free index
04 (idx) which is in layer L.
05 }else{
06 Find the nearest layer u to layer L;
07 remove the first free index (idx) from Freelist[u];
08 if(u > L){
09 for(i = u to L)
10 Move the uppermost filter of layer i to the free
11 entry to create a new free entry in layer (i-1).
12 } else{ // u < L
13 for(i = u to L)
14 Move the lowermost filter of layer i to the free
15 entry to create a new free entry in layer (i+1).
16 }
17 TCAMwrite(idx, L, R);
18 } // end else
}

Figure 4: An Example of Connected Rule Graph

1021

match occurs in layer i during the procedure of multiple
matching, we compare X’s priority with Layer_max[i] to
decide whether the multiple matching procedure should be
terminated or not. The Layer_max[i] array should be updated
when the highest priority filter in layer i is moved to another
layer.

A.2 TCAM entry movement:

For each layer i, we use a linked list Freelist[i] to record
the position of TCAM empty entries (the empty space for
layer 1 and 2 can be regarded as infinite), and Start_index[i]
to record the index of the first filter in layer i. Therefore, we
can immediately insert the new filter R in one empty entry
after we know which layer to store the filter R. In this case, we
don’t need to move any entry to complete the insert operation.
However, if there are no empty entry in layer i, we need to
find one empty entry from other layers for R. Some boundary
filters (the filters that stored in the first or last entry of the
layer) have to be moved to create a free entry for R.

To minimize the moves for this process, we propose to
select the empty entry closet to the layer k (assume k is the
layer into which R needs to be inserted). We can easily
determine it by checking the Freelist. Assume the empty entry
we selected is in layer e, then |e – k| boundary entries need to
be moved to create an empty entry for the new filter.
Start_index also needs to be updated when the position of the
first filter in each layer changes.

Figure 5(a) shows the detailed algorithm Insert(R, P, L) to
insert a new filter or re-insert an existing filter with priority P.
This algorithm first determines the initial index for performing
multiple matching. In the procedure of multiple matching, the
required information of the matched filters such as layer
number is stored in group1 or group2 according to their
priorities compared with P as shown in line 7-10. Further, the
steps for update are determined as shown in line 16-23. The
algorithm for inserting a filter in layer L is also shown in
figure 5(b).

B. Deleting filter F

In order to delete the filter F, we should first determine if
F exists in the TCAM. In addition, we need to know which
entry does F stored in if F exists. To complete the above
calculation efficiently, we utilize the idea of MUD algorithm
again. Instead of using TCAM index of an entry as its
discriminators, we create a new field called layer field and use
�log2 (L+1)� extra bits in each TCAM entry to record its
corresponding layer number, where L is the maximum layer
number. It is possible that many filters in the same layer match
F, but we only need to check the first matched filter and
lookup its priority value to determine if the filter is the same
with F. The reason is that the filters in the same layer are
disjoint (property 1). If any matched filter in layer i is not F,
then we can ensure that F is not in layer i. Therefore, we can
use layer number as discriminators and apply MUD algorithm
to quickly determine the position of F.

Note that deleting F may violate property 3. Assume that
F is in layer L, for the filters in layer (L+1) that only overlap
F in layer L would not satisfy property 3 after the deletion of
F. We have to move these filters called F’ to layer L. In order
to determine the filters that have to be moved, we use multiple
matching scheme again to record the filters that overlap F in
layer (L+1) in buffer. Then we delete F by invalidating the
TCAM entry and record its position in Freelist[L] . For each
filter in buffer, we use it as search key to match the filters in
layer L. The filter should be moved to Layer L if there is no
match found. The same process should be recursively
executed when we delete some F’ in Layer (L+1).

We use the same filter set shown in figure 2 and 3 to
illustrate our steps for insertion. If we want to insert filter R in
figure 6(a), and R’s priority is assumed to be higher than R3’s
and lower than R2’s. We use filter R as search key to start
multiple matching. Both layer and discriminator fields of
search key are set to don’t care initially. R2 will be reported
first since it is stored in the lowest memory location among the

R2

R1

R5

R4

R3

R

N-1 empty
entries

1
1

R1
R2

R
R4
R3

1
1

2
2

3

1
2

N+2
N+3
N+4

1

1

1
1 N+5R5 4

 (c) The final configuration
after the rearrangement

Valid Filter Layer Discriminator

(a) Inserting filter R
into filter set.

N-1 empty
entries

1
1

R1
R2

R

R4

1
1

2

2

1
2

N+2

N+4

1

0

1
1 N+5R5 3

Valid Filter Layer Discriminator

(b) R3 should be deleted and
re-inserted after inserting R

Figure 6: The process of inserting a new filter in our algorithm

1022

filters that overlap R. The layer number and TCAM entry
index of R2 are stored in buffer. The discriminator field of the
search key is further modified to be a set of prefixes for
representing range 3 to N+5 to continue the multiple matching.
R3 is the next matched filter and the same information is also
stored in buffer. Since R’s priority is greater than all filters’ in
layer 2 (the layer that R3 is stored in), the multiple matching is
terminated. R is inserted in layer 2 because there is only R2 in
layer 1 that overlaps R and has higher priority. We allocate an
empty entry in layer 2 for storing filter R. The filters with
layer number � R’s in buffer that has lower priority have to be
re-inserted. R3 is deleted and start the process for re-insertion.
Figure 6(b) shows the TCAM configuration after inserting R
and deleting R3. Note that we don’t check the filters in layer 3
to determine which filters need to be moved to layer 2
immediately after deleting R3. This is because that the filters
in layer 3 that overlap R3 may also have to be re-inserted later.
The difference between re-insertion and insertion is that re-
insertion can start the multiple matching from the filter’s
original layer. R3 is determined to be stored in layer 3 and R5
needs to be re-inserted after calculation of the re-insertion of
R3. The final TCAM configuration for inserting filter R is
shown in figure 6(c).

IV. PERFORMANCE
We generate large synthetic rule sets by using the tool

ClassBench [7] to evaluate the update performance of our
scheme. There are three types of filter sets called access
control list (ACL), firewall (FW), and IP chain (IPC). We
generated 10K rules for each type in our simulation. We first
randomly selected 90% filters from the entire filter set. These
filters are initially rearranged in the TCAM according to the
priority graph. The other 10% filters are treated as insertion
trace. In addition, we also randomly marked 10% filters from
the selected 90% filter subset as deletion trace. We
alternatively performed inserting and deleting the filters in
trace files in our simulation. The time required for updating
the classifiers is the most important metric to evaluate the
update performance. The update period can be divided into
two parts: Calculating how to rearrange the filter set and
completing the rearrangement by performing TCAM write
operations. We will discuss these two parts in detail separately.

A. Calculation:

Generally, an auxiliary data structure is needed to maintain
the overlapping relationship and the priority order among
filters. When a new filter arrives, the auxiliary data structure
needs to be updated first, and the right position for the new
filter is obtained. Unfortunately, updating the auxiliary data
structure in off-chip memory is time consuming. In addition, a
large amount of memory is usually required to store the
auxiliary data structure. For example, each vertex of the
priority graph needs to maintain the overlapping relationship
with all the other vertices. In addition, other information such
as the TCAM entry index that the corresponding filter stored
in also needs to be recorded. Our scheme purely uses TCAM
search operation to complete the calculation phase instead of

maintaining an auxiliary data structure. Table I and II show
the experimental results of calculation time in terms of the
number of TCAM search operations for insertion and deletion
separately in our scheme. According to our experimental
results, our proposed scheme only takes about tens to
hundreds additional clock cycles per filter to substitute the
update process for auxiliary data structure. We analyze the
reason why firewall filter set has worse performance
compared with the others. First of all, the range expansion
problem of firewall is more severe than the others, which
increases the chance to degrade the efficiency of MUD
algorithm. Second, it takes more cycles to complete multiple
matching since FW has more overlapping filters. However,
it’s obvious that updating the auxiliary data structure for FW
also takes longer time since more filters are involved in the
update process.

B. Entry Rearrangement

The number of TCAM entry moves is the most common
metric for evaluating the update performance. Moving an
entry includes one TCAM write and one TCAM delete
operation. Grouping the filters reduces the numbers of entry
moves in the worst case. However, the update trace is closely
related to the performance of rearrangement. Consider a new
filter which overlaps several ones in the TCAM for insertion,
the more the involved filters, the higher the chance of
requiring more entry moves since more filters need to be
rearranged (recall the CRG mentioned before). In addition, the
number of layers is equal to the moves required in the worst
case. Therefore, the performance may degrade as the number
of layers increases.

The issue of where to allocate the empty entries is another
factor which affects the performance of rearrangement. Most
existing update schemes allocate a set of contiguous empty
entries in the middle or end of the TCAM. To determine the
position of empty entries, we first analyzed the distribution of
filters based on layers. Table III shows the first three layers
that include largest proportion of filters. The maximum
numbers of layers are also shown in the fifth columns. Since
there are more than 60% of the filters in layer 1, it’s
reasonable to conjecture that the new filter has greater chance
to be inserted in layer 1. Hence, we allocate the empty entries

Filter Set Avg # of lookups
per filter

Max # of lookups
per filter

acl_10K 5.54 506
fw_10K 269.88 9965
ipc_10K 38.28 1986

Filter Set Avg # of lookups
per filter

Max # of lookups
per filter

acl_10K 2.30 84
fw_10K 16.64 1635
ipc_10K 6.65 264

TABLE I. Calculation results for insertion

TABLE II. Calculation results for deletion

1023

between layer 1 and 2. The experimental results for entry
rearrangement are shown in Table IV. Note that we use
TCAM write operations to perform deletions by unsetting the
valid bits of the deletion entries.

C. Analysis with other schemes

Although reference [1] does not need any TCAM entry
moves to complete the update process, it still needs to update
the priority graph first, and the priority values can be further
updated. In addition, the search performance is worse than the
other schemes. CoPTUA [2] requires much more time for
moving the entries to maintain the consistent rule set, which
delays the time for the new filter to take effect. PC-DUOS [3]
uses two auxiliary data structures, so it takes more memory to
maintain them. We also implemented the CoPTUA algorithm
[2] to calculate the number of TCAM write operations
required for update by using the same filter set and trace file.
Since CoPTUA updates a batch of filters at the same time, we
merged the trace files for insertion and deletion into one.
Therefore, all the filters in update trace files are processed by
CoPTUA simultaneously. The number of empty entries affects
the efficiency of CoPTUA, so we provide three cases where
2%, 5%, 10%, and 15% of the filter set entries are empty in
our simulation. As shown in Table V, at least 15 TCAM write
operations are required for updating a filter in average
although 15% of the filter set entries are empty. Note that the
number of empty entries does not affect the performance of
our configuration.

V. CONCLUSION
In this paper, we proposed an efficient algorithm for

updating packet classifier. By utilizing the extra bits and
capability of multiple matching, our scheme does not need to
allocate a lot of memory to maintain an auxiliary data
structure. Our experimental results show that only a few
additional TCAM search cycles are needed to calculate the
entry rearrangement. The numbers of TCAM entry moves are
also small due to the approach of layer grouping and

allocating the empty entries next to the layer that includes
most filters.

REFERENCES
[1] H. Song and J. Turner, “Fast Filter Updates for Packet Classification

using TCAM”, GLOBECOM, 2006.
[2] Z. Wang, H. Che, M. Kumar, and S.K. Das, “CoPTUA: Consistent

Policy Table Update Algorithm for TCAM without Locking”,IEEE
Transactions on Computers, 53, 12, pp.1602-1614. December 2004.

[3] T. Mishra and S.Sahni, “PC-DUOS: Fast TCAM Lookup and Update for
Packet Classifiers”, ISCC - International Symposium on Computers and
Communications, pp.265-270,2011.

[4] K. Lakshminarayanan, A. Rangarajan, and S. Venkatachary,
"Algorithms for Advanced Packet Classification with Ternary CAMs,"
SIGCOMM’05, 2005.

[5] D. Shah and P. Gupta, “Fast Incremental Updates on Ternary-CAMs for
Routing Lookups and Packet Classification”. In HotI, 2000.

[6] F. Yu, T.V. Lakshman, M. A. Motoyama, and R. H. Katz, “SSA: A
power and memory efficient scheme to multi-match packet
classification,” in Proc. Symp. Architect. Netw. Commun. Syst., Oct.
2005.

[7] D. E. Taylor and J. S. Turner, “ClassBench: A Packet Classification
Benchmark”, IEEE/ACM Transactions on Networking, Volume 15, No.
3, pp.499-511,June 2007.

[8] F. Yu and R. H. Katz, "Efficient Multi-Match Packet Classification with
TCAM”, Hot Interconnects, August, 2004.

[9] F. Zane, G. Narlikar, and A. Basu, “CoolCAMs: Power-efficient
TCAMs for Forwarding Engines”, IEEE INFOCOM, 2003.

[10] A. L. Buchsbaum, G. S. Fowler, B. Krishnamurthy, K.-P. Vo, and J.
Wang, "Fast Prefix Matching of Bounded Strings", ACM Journal of
Experimental Algorithmics, vol. 8, Jan. 2003.

[11] T. Mishra and S.Sahni, “DUOS – Simple Dual TCAM architecture for
routing tables with incremental update”, IEEE Symposium on
Computers and Communications, 2010.

[12] R. Panigrahy and S. Sharma, "Reducing TCAM Power Consumption
and Increasing Throughput," Proc. Hot Interconnects, 2001.

[13] K. Zheng, H. Che, Z. Wang, and B. Liu, "An Ultra High Throughput and
Power Efficient TCAM based IP lookup Engine," Proc. IEEE
INFOCOM, 2004.

[14] B. Vamanan and T.N. Vijaykumar, “TreeCAM: Decoupling Updates
and Lookups in Packet Classification,” CoNEXT 2011.

[15] T. Banerjee-Mishra and S. Sahni, “Consistent Updates for Packet
Classifiers,” IEEE Transactions on Computers 2012.

[16] J. Lunteren and T. Engbersen. Fast and Scalable Packet Classification.
IEEE Journal on Selected Areas in Communications, 21, May 2003.

[17] Y.-K. Chang, C.-I. Lee, and C.-C. Su, “Multi-�eld range encoding for
packet classi�cation in TCAM,” in IEEE Infocom Mini-Conference,
2011.

[18] M. Adiletta, M.R. Bluth, D. Bernstein, G. Wolrich, and H. Wilkinson,
"The Next Generation of Intel IXP Network Processors," Intel
Technology J., vol. 6, no. 3, pp 6-18, 2002.

Filter Set 2% 5% 10% 15%
acl_10K 23.56 22.61 16.24 15.65
fw_10K 28.72 24.26 21.19 20.05
ipc_10K 25.51 23.65 18.72 15.88

TABLE V. Average number of TCAM write operations per update
filter by using CoPTUA to update a batch of rules provided that 2%, 5%,

10%, and 15% of the filter set entries are empty.
 Filter Set First Second Third Maximum

Layer

acl_10K Layer 1
95.1%

Layer 2
3.49%

Layer 3
0.67% 28

fw_10K Layer 1
60.5%

Layer 15
6.50%

Layer 18
4.66% 44

ipc_10K Layer 1
79.2%

Layer 2
2.58%

Layer 23
1.34% 72

TABLE III. The first three layers that contain most filters

Filter Set avg # of writes
per insertion

avg # of writes
per deletion

acl_10K 1.40 1.13
fw_10K 3.15 1.40
ipc_10K 5.24 1.39

TABLE IV. Experimental Results for Entry Rearrangement

1024

