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Abstract—Ternary Content Address Memory (TCAM) becomes a 
popular hardware device for storing the packet classifiers due to 
the advantages of high and deterministic lookup performance. 
However, managing the filter set in TCAM is quite complicated 
when filters need to be updated. To ensure the correctness of 
search results, it is required to obtain the right position in TCAM 
for storing the new filter. In addition, some filters need to be 
moved to other positions for maintaining the correct filter 
overlapping relationship based on their priorities. Normally, an 
auxiliary data structure is used to compute how to insert or 
delete a filter into/from TCAM. However, this auxiliary data 
structure is usually complicated and large. Instead of 
maintaining an auxiliary data structure, in this paper, we 
propose an efficient TCAM update scheme that simply uses a 
very small portion of TCAM search cycles to compute how to 
move the filters related to the filter to be inserted or deleted. 
Therefore, a large amount of memory for storing the auxiliary 
data structure along with the local CPU for updates can be 
avoided. In addition, our simulation results show that the 
proposed update scheme needs less number of TCAM movements 
than the existing CoPTUA update scheme [2]. 

Keywords- packet classification, TCAM , rule update 

I. INTRODUCTION 
Packet classification is an important mechanism employed 

by internet routers. The packet header consists of five fields: 
source address, destination address, source port, destination 
port, and protocol. To classify packets, the values of these 
fields are extracted to match a list of rules. A rule can be 
regarded as (F, A), where F is a filter composed of the five 
fields, and A is an action that will be taken when the filter is 
matched by the packet header fields. If multiple filters are 
matched, then the action of the rule with the highest priority 
will be taken. 

Storing filters in Ternary Content Address Memory 
(TCAM) is a popular hardware-based solution for packet 
classification. TCAM-based packet classification stores each 
filter in a TCAM entry in ternary format (i.e. each cell can be 
one of the three states: 0, 1, and x (don’t care)) and all the 
filters are stored with decreasing priority order. The advantage 
of TCAM-based packet classification is that the lookup 
operation only takes one cycle. When a packet arrives, all the 
entries in the TCAM are searched in parallel to find the 
matched filter with the highest priority. Thus, TCAM provides 

high and deterministic search performance for packet 
classification. However, TCAM-based packet classification has 
some well-known disadvantages: 

• High Power Consumption: 

Performing parallel search on all entries to classify a packet 
will result in high power consumption due to the priority 
encoder and parallel search circuits in TCAM chips. Therefore, 
the power efficiency will degrade further when the number of 
filters in the TCAM increases. The drawback of high power 
consumption can be regarded as a tradeoff to achieve high 
search performance. To address this problem, some approaches 
have been proposed to group the TCAM entries [9][12][13], 
and these groups can be enabled or disabled selectively when 
searching the TCAMs. Thus, the power efficiency improves if 
the TCAM entries are grouped properly. 

• Range Expansion Problem: 

In TCAM-based packet classification, the obstacle of 
storage inefficiency occurs due to the existence of ranges in 
some fields of filters. For example, source port and destination 
port are numbers represented in the form of ranges. One 
arbitrary range is not allowed to be stored directly in a TCAM 
entry if the range can’t be represented as a prefix. The 
traditional solution is to convert each range into multiple 
prefixes by using the direct range to prefix conversion 
algorithm [10]. However, using multiple TCAM entries to 
represent a rule will results in the problem of storage 
inefficiency and higher power consumption.  Many approaches 
have been proposed to improve the storage requirement for 
this issue [4][16][17].   

Efficiently updating the filter sets is another issue for 
TCAM-based packet classification. The works that focus on 
this issue are fewer than the others. During the update period, 
some new filters may be inserted and some existing filters may 
be removed. Managing filters in the TCAM becomes 
complicated since the new filters have to be inserted at the right 
position according to their priorities. In addition, some filters 
need to be moved to ensure the correctness of lookup results. 
Generally, an auxiliary data structure such as priority graph is 
maintained to record the priority relationship among filters and 
the TCAM entry positions of filters. Therefore, we can know 
how to perform the TCAM update process by the auxiliary data 
structure.  The update process of packet classifiers is normally 
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performed by a local CPU/ TCAM coprocessor interface (e.g., 
the 64-bit PCI bus in the INTEL IXP2800 network processor 
[18]).  The architecture of conventional TCAM coprocessor 
with a network processor used for packet classification is 
shown in figure 1(a).  The filters which map to distinct memory 
addresses in an associated SRAM are stored in the coprocessor, 
and the corresponding actions are stored in the SRAM. The 
search and update requests are issued by the lookup threads of 
the network processor and the local CPU separately. During the 
update process, the inconsistent and erroneous results can be 
avoided by locking the interface.  However, locking the 
interface during the update process leads to the reduction of 
search performance. Note that we don’t discuss the dual-ported 
TCAM which is accessible from a local CPU and a network 
processor concurrently.  Thus, the algorithm for maintaining 
the consistency of the filter set which usually has high update 
effort is not required in this paper. The auxiliary data structure 
mentioned before usually stored in off-chip SRAM is also 
shown in figure 1(a). Unfortunately, a large amount of memory 
is usually required to store the auxiliary data structure such as 
priority graph.  

In this paper, we propose an efficient TCAM update 
scheme for packet classifiers. We purely use TCAM search 
operations to compute how to move TCAM entries. Therefore, 
our proposed update scheme does not need a large amount of 
memory for auxiliary data structure that would usually be 
stored in off-chip memory. Therefore, the off-chip memory and 
local CPU are not needed in the TCAM coprocessor. The 
proposed TCAM update architecture is shown in figure 1(b). 
The TCAM needs to be designed to support multiple matching 
in our algorithm. Many approaches have been proposed for 
supporting multiple matching, and we will discuss further in 
section 2.   

The rest of the paper is organized as follows:  We review 
the related works in Section II. We describe our update scheme 
in Section III. The experimental results of our scheme are 
shown in Section IV and we conclude in Section V. 

II. RELATED WORKS 
       In this paper, we focus on the problem of managing the 
filter sets when updating packet classifiers in the TCAM. In 
this section, we first introduce other existing TCAM update 
scheme for packet classifier. Since our TCAM needs to be 
designed to support multiple matching, we also briefly 
describe the background of TCAM multiple matching.  

A. Approaches for updating packet classifiers 
Different approaches have been proposed to manage the 

filters in the TCAM for updating packet classifiers 
[1][2][3][14][15]. The authors in [5] proposed two well-
known algorithms, PLO_OPT and CAO_OPT for updating 
prefixes. Both algorithms significantly reduce the number of 
TCAM entry moves in the worst case by keeping the empty 
entries in the center of the TCAM. However, these two 
algorithms can’t be applied to updating packet classifier rules 
directly. Filters can also be grouped and represented as chains 
by the way similar to CAO_OPT algorithm for prefixes 
according to their overlapping and priority relationship. 
However, compared with updating prefixes, there are more 
constraints need to be considered when updating filters. The 
difference is that inserting a filter may lead to merging 
multiple distinct chains, which will probably increase the 
number of TCAM entry moves and the complexity of 
computation. In addition, the lengths of prefix chains must be 
less than or equal to the width of ip address field (e.g., 32 in 
IPv4). However, the lengths of filter chains may be much 
longer than that of prefix chains since the lengths of filter 
chain do not have upper bound.  

The authors in [2] proposed a consistent algorithm to 
update a batch of rules. This algorithm focuses on how to 
maintain the consistency of filter set in order to avoid locking 
the TCAM coprocessor during the update process. Therefore, 
rule matching and updating can be processed simultaneously 
by using the dual-ported TCAM, and the correctness of rule 
matching is ensured even in the progress of update. In order to 

Figure 1(b) The proposed TCAM coprocessor/network processor.

Filter 1
Filter 2

Filter n-1
Filter n

TCAM 

Thread 1

Thread 2

Thread m

Network Processor

MAC Framer

Switch Fabric
I f

Frame

U
pd

at
e 

Search
Write
Read
Valid
Reset

Result 

Mask Data 

Address 

Thread 1

Thread 2

Thread u

SR
A

M
 

L
oo

ku
p 

TCAM CoProcessor

Filter 1 
Filter 2 

Filter n-1 
Filter n 

Action 1
Action 2

Action n-1
Action n

Write

Action 

Thread 1 

Thread 2 

Thread m 

Network Processor 

Switch 
Fabric 

I f

Frame 

Data structure
for update

Search 

SR
A

M
 

Figure 1(a) A conventional TCAM coprocessor/network processor.

Input Data 

MAC Framer 

 CPU  SRAM

1018



maintain consistent filter set for each step of moves, this 
algorithm needs several moves to complete updating a batch 
of rules. Although the TCAM can be searched during update 
progress, a lot of TCAM bandwidth is still wasted for moving 
the entries. In addition, it may take a long time for new rules 
to wait for the completion of previous batch to get in the 
update progress. 

The authors in [1] proposed a fast way to complete updating 
rules by inserting the new filters into arbitrary entries without 
considering the order of priorities among overlapped filters. 
To get the matching results correctly, an auxiliary graph is 
used to maintain the priorities and overlapping relationship 
among these filters. Each filter is given a priority value which 
is equal to one plus the maximum priority value among all the 
filters that overlap it and have higher priority, one is given if 
no such filter exists. The priority values are further appended 
to each filter and stored in the extra bits of TCAM entries. The 
correct lookup results are obtained by searching the matched 
filter with the minimum priority value instead of minimum 
index. However, this approach will degrade the efficiency of 
lookup procedure since it requires log2N lookups to determine 
the filter with highest priority by using binary decision tree, 
where N is the distinct priority values.  

PC-DUOS scheme proposed by [3] is extended from DUOS 
[11]. Two TCAMs called LTCAM and ITCAM are used to 
store filters in PC-DUOS. The LTCAM is used to store the 
filters with highest priority among all overlapped filters and all 
filters in the LTCAM are disjoint. Therefore, the priority 
encoder is not required in the LTCAM. The remaining filters 
are stored in the ITCAM and the priority graph proposed by [1] 
is needed to manage the filters in ITCAM to ensure the 
correctness of lookup results. A multi-dimensional trie is 
maintained to determine which filters should be stored in the 
LTCAM. LTCAM and ITCAM are searched in parallel during 
lookup. The search result of ITCAM is discarded if there is a 
match found in LTCAM since the matched filter in the 
LTCAM must have higher priority than the one in the ITCAM. 
To update a filter, the multi-dimensional trie is first updated 
and used to compute the moves for managing the filter set. 
However, the priority graph is also needed to be updated when 
rearranging the filters in the ITCAM.  

B. TCAM multiple matching 
A lot of different approaches have been proposed to solve 

the TCAM multiple match classification problem [4][6][8]. 
There is an additional valid bit for each TCAM entry to 
indicate whether the entry is active or not. Only the active 
entries are involved in search process. To address the problem 
of multiple matching, the simplest way is modifying the valid 
bit of the best matched entry. This ensures that the entry will 
not participate in the search process of next cycle. Thus, the 
second match is reported after the next lookup by using the 
same search key. The process repeats until all the matches are 
found. The valid bits of all matched entries need to be set to 
valid again for the next search key. However, write operations 
are needed to modify valid bits. It takes 7 cycles per multi-

match (3 cycles for write and 1 cycle for search operation) as 
mentioned in [4].  

The authors in [4] proposed an algorithm that uses the 
extra bits to store the index number of that entry called 
discriminator field. The search key is appended with the 
discriminators when performing TCAM search operation, and 
the discriminators are set to don’t care initially. After 
reporting the first match at position j, the discriminators are set 
to prefixes for range greater than j to get the second match. 
This can be done by utilizing the capability of global masking.   

In order to accomplish the multiple matching by using 
only one TCAM search operation, geometric intersection-
based approaches [8] creates additional entries to record the 
intersection filter. For example, if two filters that overlap with 
each other stored in the TCAM, a new intersection filter of 
these two filters is created and stored above them. Therefore, 
the intersection filter can be regarded as the multiple matching 
of these two filters. However, the problem of memory 
inefficiency and high power consumption occurs when the 
overlapping relationship is severe in the filter set. To address 
this problem, [6] proposed a set splitting algorithm (SSA) to 
efficiently group the filters into multiple blocks. Thus, 
memory requirement and power consumption can be reduced 
significantly while just a little search time is sacrificed. 

III. PROPOSED TCAM UPDATE SCHEME 
The filters’ indices in the filter sets can be treated as their 

priority values where the filter with lower index has higher 
priority. Therefore, we can store entire filter set in TCAM 
without any rearrangement and the correctness of lookup 
results is ensured. However, it may cause many TCAM entry 
moves when we need to insert a new filter. In the worst case, 
all filters need to be moved. To address this problem, we first 
create the priority graph proposed in [1] for the filters that 
initially exist. The filters are further grouped and rearranged 
according to the graph.   

An example of priority graph is shown in figure 2. We use 
five 2-dimensional filters in our example and the regions of 
these filters are shown in the left part of figure 2. In the 
priority graph as shown in the middle part of figure 2, each 
vertex denoted by a circle represents a filter. A directed edge 
is created from vertex i to vertex j if filter i overlaps j and 
filter i has higher priority. Each filter is given a priority value 
which is equal to one plus the maximum priority value among 
all of its ancestors. If the filter has no ancestor, its priority is 
set to one. The priority values of all filters in this example are 
shown in the right part of figure 2. 

We use the priority graph to group the filters into layers as 
follows. We divide TCAM into L layers where L is the 
maximum priority value of the priority graph. The filters with 
priority value i will be grouped into layer i for i = 1 to L. In 
addition, the filters in layer i must be put above layer j for i < j 
in TCAM. Note that the priority graph is no longer needed 
after the grouping procedure mentioned above. Some 
properties will always hold after grouping and we summarize 
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these properties below: 
1. The filters in the same layer are disjoint. 
2. If there are multiple matches in more than one layer 

for a search key, the matched filter in layer i must have 
higher priority than that in layer j for i < j.   

3. A filter in layer i+1 overlaps at least one filter in layer 
i.  

The empty TCAM entries have to be put in some place so 
that the update process can be done successfully. If we 
allocate empty TCAM entries for each layer, it is not 
necessary to move any entry after inserting a filter. However, 
it is not a good solution since we are not sure whether we have 
enough empty TCAM entries for all layers. In addition, if we 
allocate too many empty TCAM entries, the power 
consumption may be high. Therefore, where to place these 
empty entries in TCAM is an important issue. According to 
our experiment, a large portion of filters are in layer 1 and 2. 
Thus, it is reasonable to conjecture that the updated filters 
would have greater chance processed in these two layers, so 
we propose to place the empty TCAM entries between them. 
Figure 3 shows our TCAM configuration for storing the five 
filters in figure 2. We use the extra bits to encode the layer 
field and discriminator field for the capability of multiple 
matching, and we will explain in detail later.   

In order to guarantee the correctness of lookup results, we 
have to ensure that the three properties mentioned before are 
still satisfied after a filter is inserted or deleted. To address the 
range expansion problem, we simply apply the direct-range-
to-prefix conversion (DRPC) algorithm [10]. Subsequently, 
we introduce a specific algorithm to insert or delete a filter. 
That is, the source port and destination port of the filter we 
discuss can be represented by a prefix. Instead of using the 
auxiliary data structure, our algorithm purely uses TCAM 
search operations to determine the relevant filters (the filters 
that would be involved during the update procedure) for 
calculation. Only a little information needs to be maintained 
for managing the filter sets in our update scheme.   

A. Inserting filter R 
The algorithm for insertion can be divided into two parts: 

Calculation and TCAM entry movement.  

A.1 Calculation: 

Before inserting the new filter, we need to calculate where 
to put the filter and which entries should be moved to other 
place. To be precise, if the new filter R overlaps some existing 
filters, we have to ensure that these filters still satisfy property 
2 after insertion. Our scheme simply uses TCAM search 
operations to determine the filters that overlap filter R. We can 
achieve this by making filter R as search key to perform 
TCAM search operation. Then the matched filters must 
overlap filter R. However, conventional TCAM only output 
the filter with the highest priority, in order to find out all the 
overlapped filters, our TCAM should be designed to support 
multiple matches. 

The approaches for supporting TCAM multiple matches 
are discussed in section 2. We apply MUD approach in our 
algorithm due to the advantage of lower power consumption 
compared with other schemes. In addition, it is convenient to 
disable the capability of multiple matching by masking the 
discriminator field when only the best match needs to be 
reported.  As described in [4], we use the index number of 
TCAM entry to encode the discriminator field. In addition, we 
create a layer field for storing the layer number of each filter.  

With the help of multiple matching approaches, we can 
easily determine the filters which overlap filter R. That is, all 
of the matched filters are exactly the ones that need to be 
taken into consideration. If we consider these matched filters 
and R, the relationship among them can be illustrated by using 
Connected Rule Graph (CRG) [2]. An example of Connected 
Rule Graph is shown in figure 4 (C is assumed to be the new 
filter). The direction of the arrows implies the increase in 
priority, and a horizontal line represents the 1-dimensional 
range that the filter covers. For each filter in the same CRG, 
there is at least one filter that overlaps it. 

Figure 3: TCAM Configuration. 
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Now, our goal is to insert filter R into right position and 
maintain the priority relationship of whole CRG. Note that 
inserting a new filter may cause originally different CRGs to 
be merged into one. For example, before we insert filter C in 
figure 4, there are two CRGs where one includes filters A and 
B and the other includes filters D and E. According to the 
grouping properties, filter D needs to be moved from layer 1 
to 4, and filter E needs to be moved from layer 2 to 5 after 
inserting filter C.  

In our algorithm, the filter R is first used as search key to 
perform multiple matching with all TCAM entries. For each 
matched filter, the corresponding layer and TCAM entry index 
need to be recorded in buffer for calculation. In calculation 
phase, we first compare all the matched filters’ priorities with 
R. We accomplish this procedure by storing the filter index as 
priority value in the SRAM. Further, we can divide the 
matched filters into two groups: Group 1 for filters that have 
higher priority than R, and Group 2 for those that have lower 
priority.  

Now, we discuss where to insert filter R. In order to satisfy 
property 2, we should ensure the matched filters that have 
higher priority than R to be placed in the layers higher than R 
(i.e. R has larger layer number after insertion). We first find 
the lowest layer, say k, at which one of the filters in Group 1 
locates. Then we insert filter R in layer k+1. 

In Group 2, the filters in layer � (k+1) should be moved to 
the layer below layer (k+1) to satisfy property 2. We move 
these filters in the increasing order of their layer numbers (i.e. 
selecting the filter with lowest layer number to move first). 
Consider a filter X in Group 2 where X is in layer m and m � k 
+ 1. We first delete X from layer m. Then we use the same 
insertion algorithm to insert X in one of the layers from k+2 to 
L+1, where L is the largest layer number before inserting X. 
We don’t have to check the matched filters again in layers � m 
since the matched filters in layers � m do not affect the 
decision of re-inserting X. Thus, the procedure of multiple 
matching can start from layer m+1 to reduce the time for 
calculation. In fact, it is not necessary to multiple-match all 
the TCAM entries in most cases. Assume X is overlapped with 
one of the filters in layer i during the procedure of multiple 
matching. If X has a priority higher than all the filters in layer i, 
then the filters in layer > i do not affect the decision of where 
to insert X since it’s impossible to find a matched filter against 
X that has a higher priority than X in layer > i. For example, 
assume a filter Y in layer i + 1 is overlapped with X. Based on 

property 3, Y must overlapped with another filter W in layer i 
and W has a priority higher than Y. Since X has a priority 
higher than all the filters in layer i, we must know that the 
priority of X is higher than Y. As a result, filter X must be 
inserted in one of the layers from 1 to i. We use an array 
Layer_max[i] to record the highest priority in layer i. If a 

Figure 5(a). Filter insertion algorithm. 

Figure 5(b). The algorithm for inserting a filter in layer L 

//Insert filter R with priority P into the TCAM. L is the original 
layer number of the filter that needs to be re-inserted. If R is the 
new filter, then Insert(R, P, 0) is performed. 

 
Insert(R, P, L) 
{ 
01 Start = Start_index[L]; // initial index for multiple matching 
02 While(1){ // multiple matching process      
03 result.match = TCAMsearch(R, Start);// Search TCAM from 
04                                                                  index Start  
05  if (result.match =  0 )  break; // No match is found 
06  else { 
07             if(Match_Filter.Priority > P)  
08                 group1[Cnt1++] = Match_Filter;   
09             else  group2[Cnt2++] = Match_Filter;  
10  
11            if (P > Layer_Max[Match_Filter.Layer])  break; 
12   }  //end else 
13      Start = match.index+1; //Match from Start for next cycle. 
14 } //end while 
15  
16 Layer_insert = 1+Max{Layer number of group1}; 
17 Insert_TCAM(R, Layer_insert); 
18 for( i = 0; i < Cnt2 ; i++){ //Cnt2 : number of filters in Group2
19       if(group2[i].Layer < = Layer_insert){  
20 Insert(group2[i].Filter, group2[i].Priority, group2[i].Layer); 
21       Delete group2[i].Filter by invalidating the entry. 
22       }  
23 } //end for 
24 Clear all the elements stored in group1 and group2.  
} 

//Insert filter R into Layer L in the TCAM. 
 

Insert_TCAM(R, L) 
{ 
01  if (Freelist[L]!=NULL){ 
02      Remove the first free index (idx) from Freelist[L]; 
03      TCAMwrite(idx, L, R); // write filter R in the free index  
04                                              (idx) which is in layer L.  
05 }else{ 
06         Find the nearest layer u to layer L; 
07         remove the first free index  (idx) from Freelist[u]; 
08          if(u > L){ 
09               for(i = u to L) 
10                Move the uppermost filter of layer i to the free  
11                entry to create a new free entry in layer (i-1). 
12          } else{ // u < L 
13                  for(i = u to L) 
14                       Move the lowermost filter of layer i to the free  
15                       entry to create a new free entry in layer (i+1). 
16             } 
17       TCAMwrite(idx, L, R); 
18    } // end else 
} 

 

Figure 4: An Example of Connected Rule Graph 

 
 

 
 

1021



match occurs in layer i during the procedure of multiple 
matching, we compare X’s priority with Layer_max[i] to 
decide whether the multiple matching procedure should be 
terminated or not. The Layer_max[i] array should be updated 
when the highest priority filter in layer i is moved to another 
layer.  

A.2 TCAM entry movement: 

For each layer i, we use a linked list Freelist[i] to record 
the position of TCAM empty entries (the empty space for 
layer 1 and 2 can be regarded as infinite), and Start_index[i] 
to record the index of the first filter in layer i. Therefore, we 
can immediately insert the new filter R in one empty entry 
after we know which layer to store the filter R. In this case, we 
don’t need to move any entry to complete the insert operation. 
However, if there are no empty entry in layer i, we need to 
find one empty entry from other layers for R. Some boundary 
filters (the filters that stored in the first or last entry of the 
layer) have to be moved to create a free entry for R.  

To minimize the moves for this process, we propose to 
select the empty entry closet to the layer k (assume k is the 
layer into which R needs to be inserted). We can easily 
determine it by checking the Freelist. Assume the empty entry 
we selected is in layer e, then |e – k| boundary entries need to 
be moved to create an empty entry for the new filter. 
Start_index also needs to be updated when the position of the 
first filter in each layer changes.  

Figure 5(a) shows the detailed algorithm Insert(R, P, L) to 
insert a new filter or re-insert an existing filter with priority P. 
This algorithm first determines the initial index for performing 
multiple matching. In the procedure of multiple matching, the 
required information of the matched filters such as layer 
number is stored in group1 or group2 according to their 
priorities compared with P as shown in line 7-10. Further, the 
steps for update are determined as shown in line 16-23. The 
algorithm for inserting a filter in layer L is also shown in 
figure 5(b). 

B. Deleting filter F 

In order to delete the filter F, we should first determine if 
F exists in the TCAM. In addition, we need to know which 
entry does F stored in if F exists. To complete the above 
calculation efficiently, we utilize the idea of MUD algorithm 
again. Instead of using TCAM index of an entry as its 
discriminators, we create a new field called layer field and use 
�log2 (L+1)� extra bits in each TCAM entry to record its 
corresponding layer number, where L is the maximum layer 
number. It is possible that many filters in the same layer match 
F, but we only need to check the first matched filter and 
lookup its priority value to determine if the filter is the same 
with F. The reason is that the filters in the same layer are 
disjoint (property 1). If any matched filter in layer i is not F, 
then we can ensure that F is not in layer i. Therefore, we can 
use layer number as discriminators and apply MUD algorithm 
to quickly determine the position of F.  

Note that deleting F may violate property 3. Assume that 
F is in layer L, for the filters in layer (L+1) that only overlap 
F in layer L would not satisfy property 3 after the deletion of 
F. We have to move these filters called F’ to layer L. In order 
to determine the filters that have to be moved, we use multiple 
matching scheme again to record the filters that overlap F in 
layer (L+1) in buffer. Then we delete F by invalidating the 
TCAM entry and record its position in Freelist[L] . For each 
filter in buffer, we use it as search key to match the filters in 
layer L. The filter should be moved to Layer L if there is no 
match found. The same process should be recursively 
executed when we delete some F’ in Layer (L+1).   

We use the same filter set shown in figure 2 and 3 to 
illustrate our steps for insertion. If we want to insert filter R in 
figure 6(a), and R’s priority is assumed to be higher than R3’s 
and lower than R2’s. We use filter R as search key to start 
multiple matching. Both layer and discriminator fields of 
search key are set to don’t care initially. R2 will be reported 
first since it is stored in the lowest memory location among the 
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filters that overlap R. The layer number and TCAM entry 
index of R2 are stored in buffer. The discriminator field of the 
search key is further modified to be a set of prefixes for 
representing range 3 to N+5 to continue the multiple matching.  
R3 is the next matched filter and the same information is also 
stored in buffer. Since R’s priority is greater than all filters’ in 
layer 2 (the layer that R3 is stored in), the multiple matching is 
terminated. R is inserted in layer 2 because there is only R2 in 
layer 1 that overlaps R and has higher priority.  We allocate an 
empty entry in layer 2 for storing filter R. The filters with 
layer number � R’s in buffer that has lower priority have to be 
re-inserted. R3 is deleted and start the process for re-insertion. 
Figure 6(b) shows the TCAM configuration after inserting R 
and deleting R3. Note that we don’t check the filters in layer 3 
to determine which filters need to be moved to layer 2 
immediately after deleting R3. This is because that the filters 
in layer 3 that overlap R3 may also have to be re-inserted later. 
The difference between re-insertion and insertion is that re-
insertion can start the multiple matching from the filter’s 
original layer. R3 is determined to be stored in layer 3 and R5 
needs to be re-inserted after calculation of the re-insertion of 
R3. The final TCAM configuration for inserting filter R is 
shown in figure 6(c). 

IV. PERFORMANCE 
We generate large synthetic rule sets by using the tool 

ClassBench [7] to evaluate the update performance of our 
scheme. There are three types of filter sets called access 
control list (ACL), firewall (FW), and IP chain (IPC). We 
generated 10K rules for each type in our simulation. We first 
randomly selected 90% filters from the entire filter set. These 
filters are initially rearranged in the TCAM according to the 
priority graph. The other 10% filters are treated as insertion 
trace. In addition, we also randomly marked 10% filters from 
the selected 90% filter subset as deletion trace. We 
alternatively performed inserting and deleting the filters in 
trace files in our simulation. The time required for updating 
the classifiers is the most important metric to evaluate the 
update performance.  The update period can be divided into 
two parts: Calculating how to rearrange the filter set and 
completing the rearrangement by performing TCAM write 
operations. We will discuss these two parts in detail separately. 

A. Calculation: 

Generally, an auxiliary data structure is needed to maintain 
the overlapping relationship and the priority order among 
filters. When a new filter arrives, the auxiliary data structure 
needs to be updated first, and the right position for the new 
filter is obtained. Unfortunately, updating the auxiliary data 
structure in off-chip memory is time consuming. In addition, a 
large amount of memory is usually required to store the 
auxiliary data structure. For example, each vertex of the 
priority graph needs to maintain the overlapping relationship 
with all the other vertices. In addition, other information such 
as the TCAM entry index that the corresponding filter stored 
in also needs to be recorded. Our scheme purely uses TCAM 
search operation to complete the calculation phase instead of  

maintaining an auxiliary data structure. Table I and II show 
the experimental results of calculation time in terms of the 
number of TCAM search operations for insertion and deletion 
separately in our scheme. According to our experimental 
results, our proposed scheme only takes about tens to 
hundreds additional clock cycles per filter to substitute the 
update process for auxiliary data structure. We analyze the 
reason why firewall filter set has worse performance 
compared with the others. First of all, the range expansion 
problem of firewall is more severe than the others, which 
increases the chance to degrade the efficiency of MUD 
algorithm. Second, it takes more cycles to complete multiple 
matching since FW has more overlapping filters. However, 
it’s obvious that updating the auxiliary data structure for FW 
also takes longer time since more filters are involved in the 
update process.   

B. Entry Rearrangement 

The number of TCAM entry moves is the most common 
metric for evaluating the update performance. Moving an 
entry includes one TCAM write and one TCAM delete 
operation. Grouping the filters reduces the numbers of entry 
moves in the worst case. However, the update trace is closely 
related to the performance of rearrangement. Consider a new 
filter which overlaps several ones in the TCAM for insertion, 
the more the involved filters, the higher the chance of 
requiring more entry moves since more filters need to be 
rearranged (recall the CRG mentioned before). In addition, the 
number of layers is equal to the moves required in the worst 
case. Therefore, the performance may degrade as the number 
of layers increases.  

The issue of where to allocate the empty entries is another 
factor which affects the performance of rearrangement. Most 
existing update schemes allocate a set of contiguous empty 
entries in the middle or end of the TCAM. To determine the 
position of empty entries, we first analyzed the distribution of 
filters based on layers.  Table III shows the first three layers 
that include largest proportion of filters. The maximum 
numbers of layers are also shown in the fifth columns. Since 
there are more than 60% of the filters in layer 1, it’s 
reasonable to conjecture that the new filter has greater chance 
to be inserted in layer 1. Hence, we allocate the empty entries 

Filter Set Avg # of lookups 
per filter 

Max # of lookups 
per filter 

acl_10K     5.54   506 
fw_10K 269.88 9965 
ipc_10K   38.28 1986 

Filter Set Avg # of lookups 
per filter 

Max # of lookups 
per filter 

acl_10K   2.30     84 
fw_10K 16.64 1635 
ipc_10K   6.65   264 

TABLE I.  Calculation results for insertion 

TABLE II.  Calculation results for deletion 
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between layer 1 and 2. The experimental results for entry 
rearrangement are shown in Table IV. Note that we use 
TCAM write operations to perform deletions by unsetting the 
valid bits of the deletion entries.     

C. Analysis with other schemes 

Although reference [1] does not need any TCAM entry 
moves to complete the update process, it still needs to update 
the priority graph first, and the priority values can be further 
updated. In addition, the search performance is worse than the 
other schemes. CoPTUA [2] requires much more time for 
moving the entries to maintain the consistent rule set, which 
delays the time for the new filter to take effect. PC-DUOS [3] 
uses two auxiliary data structures, so it takes more memory to 
maintain them. We also implemented the CoPTUA algorithm 
[2] to calculate the number of TCAM write operations 
required for update by using the same filter set and trace file. 
Since CoPTUA updates a batch of filters at the same time, we 
merged the trace files for insertion and deletion into one. 
Therefore, all the filters in update trace files are processed by 
CoPTUA simultaneously. The number of empty entries affects 
the efficiency of CoPTUA, so we provide three cases where 
2%, 5%, 10%, and 15% of the filter set entries are empty in 
our simulation.  As shown in Table V, at least 15 TCAM write 
operations are required for updating a filter in average 
although 15% of the filter set entries are empty. Note that the 
number of empty entries does not affect the performance of 
our configuration.  

V. CONCLUSION 
In this paper, we proposed an efficient algorithm for 

updating packet classifier. By utilizing the extra bits and 
capability of multiple matching, our scheme does not need to 
allocate a lot of memory to maintain an auxiliary data 
structure. Our experimental results show that only a few 
additional TCAM search cycles are needed to calculate the 
entry rearrangement. The numbers of TCAM entry moves are 
also small due to the approach of layer grouping and 

allocating the empty entries next to the layer that includes 
most filters.    
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Filter Set 2% 5% 10% 15% 
acl_10K 23.56 22.61 16.24 15.65 
fw_10K 28.72 24.26 21.19 20.05 
ipc_10K 25.51 23.65 18.72 15.88 

TABLE V. Average number of TCAM write operations per update 
filter by using CoPTUA to update a batch of rules provided that 2%, 5%, 

10%, and 15% of the filter set entries are empty. 
 Filter Set First  Second Third Maximum 

Layer 

acl_10K Layer 1 
95.1% 

Layer 2 
3.49% 

Layer 3 
0.67% 28 

fw_10K Layer 1 
60.5% 

Layer 15 
6.50% 

Layer 18 
4.66% 44 

ipc_10K Layer 1 
79.2% 

Layer 2 
2.58% 

Layer 23 
1.34% 72 

TABLE III.  The first three layers that contain most filters 

Filter Set avg # of writes 
per insertion 

avg # of writes
per deletion 

acl_10K 1.40 1.13 
fw_10K 3.15 1.40 
ipc_10K 5.24 1.39 

 

TABLE IV.  Experimental Results for Entry Rearrangement 
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