
Improved TCAM-based Pre-Filtering for
Network Intrusion Detection Systems

Yeim-Kuan Chang, Ming-Li Tsai and Cheng-Chien Su
Department of Computer Science and Information Engineering

National Cheng Kung University
{ykchang, p7694157, p7894104}@mail.ncku.edu.tw

Abstract—With the increasing growth of the Internet, the
explosion of attacks and viruses significantly affects the
network security. Network Intrusion Detection System
(NIDS) is developed to identify these network attacks by a
set of rules. However, searching for multiple patterns is a
computationally expensive task in NIDS. Traditional
software-based solutions can not meet the high bandwidth
demanded in current high-speed networks. In the past, the
pre-filtering designed for NIDS is an effective technique that
can reduce the processing overhead significantly. A FNP-
like TCAM searching engine (FTSE) [5][6] is an example
that uses an 2-stage architecture to detect whether an
incoming string contains patterns.

In this paper, we propose two techniques to improve the
performance of FTSE that utilizes ternary content
addressable memory (TCAM) as pre-filter to achieve gigabit
performance. The first technique performs the w-byte suffix
pattern match instead of using w-byte prefix. The second
technique finds the matching results from all groups rather
than first group. We finally present the simulation result
using Snort pattern set and DEFCON packet traces.

I. INTRODUCTION

With the growth of the Internet, large number of viruses
and malicious probes spread every day. Many network
hosts are vulnerable to attacks. Traditionally, networks
have been protected using firewalls that monitor and filter
network traffic. Firewalls usually examine the packet
headers to determine whether the packets are allowed to
go through or dropped. For example, if a packet attempts
to connect a disallowed port, such as port number 80
(http), the connection is rejected. However, firewalls are
not effective to protect network from worms and viruses.
Today, the most commonly used defense strategy is to use
end-host based solutions that rely on security tools, such
as antivirus software. The main drawback of these
approaches is the inability to protect thousands of hosts in
less than an hour.

Network intrusion detection systems (NIDS) are
utilized to detect malicious attacks and protect Internet
system. The intrusion detection systems are growing in
popularity because they can provide an efficient protection
against the attacks. A NIDS differs from a firewall in that
it needs to scan both the headers and the payloads of each
incoming packet for thousands of suspicious patterns. By
inspecting both packet headers and payloads to identify
attack signatures, NIDS is able to discover malicious
attacks or hackers that intend to intrude.

Because most of the known attacks can be represented
with patterns or combinations of multiple sub-patterns,

pattern matching has become a performance bottleneck in
NIDS. Current NIDS pattern databases contain thousands
of patterns, resulting in a difficult computational task.
Traditionally, software-based NIDS may be overloaded
when the packet arrival rate becomes high. To keep up
with the high-speed networks, hardware-based NIDS
implementation is needed.

Snort [9] is an open source light-weight NIDS which is
designed to filter packets by pre-defined rules. Snort
contains a set of rules with corresponding actions. Each
Snort rule consists of the rule header and the rule options.
The rule header contains the action, protocol, source and
destination IP addresses, and the source and destination
ports. The rule options contain alert messages and
signatures which would be inspected to determine if the
incoming packets match the rule. A sample Snort rule that
detects mountd access is shown in Figure 1. When the new
viruses or malicious attacks are discovered, corresponding
rules are added to Snort. Because of its free availability
and efficiency, Snort is quite commonly used and there
are very large and current databases of signatures
maintained on the Internet.

The rest of the paper is organized as follows: In section

2, we review and summarize the related works. In section
3, we propose two approaches to improve TCAM pre-
filter techniques. The simulation results are presented in
section 4. Finally, we present the conclusions in section 5.

II. RELATED WORKS

In the past few years, several interesting algorithms and
techniques have been proposed for multiple-pattern
matching. Current software-based NIDS cannot meet the
bandwidth requirement of a multiple-gigabit network.
Hence, several hardware-based solutions have been
proposed to solve the problem. In this section, we divide
the common pattern matching solutions for intrusion
detection system into four categories: software-based,
FGPA-based, bloom filter based, and TCAM based. The
detail of each solution will be discussed as follows.

A. Software-based solutions
Knuth-Morris-Pratt (KMP) [4] and Boyer-Moore (BM)

[2] are the most well-known single-pattern matching

alert tcp any any -> 192.168.1.0/24 111
(content:"|00 01 86 a5|"; msg: "mountd access";)

Figure 1. Sample Snort rule

22nd International Conference on Advanced Information Networking and Applications

1550-445X/08 $25.00 © 2008 IEEE
DOI 10.1109/AINA.2008.120

985

22nd International Conference on Advanced Information Networking and Applications

1550-445X/08 $25.00 © 2008 IEEE
DOI 10.1109/AINA.2008.120

985

algorithms. Current Snort implementations use Boyer-
Moore algorithm because BM has the best average-case
performance. However, the performance of the BM
algorithm depends on the characters in the text and pattern
strings. The time complexity of the BM algorithm is sub-
linear of O(n/m) in the best case, O(n) in the average case,
and O(nm) in the worse-case . The Aho-Corasick(AC) [1]
is designed for multiple-pattern matching. By pre-
processing the patterns and build a finite state machine,
AC can process the input text in linear time. However, a
large transition table will slow down the performance in
practice.

B. FPGA-based solutions
Many hardware-based algorithms have been proposed,

where many solutions are based on Field Programmable
Gate Arrays (FPGAs). Because of the emergence of new
worms and viruses, traditional intrusion detection systems
must be able to be re-programmed. FPGAs can be
programmed for fast pattern matching due to their
exploitation of reconfigurable hardware capability and
their ability for parallelism. In recent years, there are
several researches on FPGA pattern-matching for NIDS.
Sourdis et al. proposed a FPGA-based approach by using
pre-decoding technique [7]. The main idea of pre-decoded
CAM is to test for equality of the input for the desired
characters instead of keeping a window of input characters
in the shift register. The results in [7] show the best
throughput is about 11Gbps on Xilinx Virtex2 devices.

C. Parallel Bloom filters
Bloom filter is a space-efficient probabilistic data

structure that is used to test whether an element or string is
a member of a set. False positives are possible, but false
negatives are not. Dharmapurikar et al. [3] proposed a
multiple-pattern matching solution using parallel bloom
filters. The proposed scheme builds a bloom filter for each
possible pattern length. The Bloom filter engine obtains
the input by reading a data stream that arrives at the rate of
one byte per clock cycle. However, the hardware cost
becomes a problem because each different pattern length
requires a separate bloom filter. The hardware cost
problem becomes worse when dealing with very long
virus definitions. Furthermore, this scheme needs to
inspect every single byte of packet payload so that the
maximum throughput is around 2.46Gbps [3].

D. TCAM solutions
Ternary Content Addressable Memory (TCAM) is a

type of memory that consists of a set of entries. A TCAM
allows fully parallel search of entries per TCAM lookup.
Each TCAM entry can store three values for every bit:
zero, one and “don’t care”. Don’t care bits act as
wildcards during a search. The top entry of the TCAM has
the smallest index and the bottom entry has the largest.
The width of each entry can be configured according to
user requirements. For example, a 1M TCAM can be
programmed as 64K entries with 16 bytes per entry, or
32K entries with 32bytes per entry. Given an input string,
TCAM can compare the input with all the entries in
parallel and report the searching result with just one
TCAM lookup time.

Fang Yu et al. [8] proposed a TCAM-based pattern
matching algorithm for handling both short patterns and
long patterns. If a pattern is shorter than TCAM width,

then we put it into TCAM and pad it with don’t care bits.
A pattern longer than TCAM width will split into several
sub-patterns: the first TCAM width prefix pattern and
remaining suffix patterns. There are three data structures
to be stored in memory for matching long patterns: pattern
table, partial hit list, and matching table. To match a
pattern, a window of characters from input string is looked
up in the TCAM. Then, the result is stored in a temporary
table. The window is moved forward by a character and
the lookup process is executed again. At every stage, the
approximate partial match table entry is taken into account
to verify if a complete pattern is matched.

III. PROPOSED ALGORITHMS

A. A brief introduction to FTSE
The basic concept of FTSE [5][6] is described as

follows. FTSE first reads the first w bytes of the data
stream as the input called the sliding window. The sliding
window in next cycle is obtained by advancing 1 to w
bytes of the data stream, depending on how the sliding
window in the current cycle matches the patterns. If any i-
byte suffix of sliding window does not match the i-byte
prefix of pattern P for all i = 1 to w, we can advance the
sliding window by skipping the current w bytes of the data
stream and continue the search with the next w bytes.
Specifically, if the i-byte suffix of the sliding window
does match the i-byte prefix of pattern P for all i = 1 to
w – 1, then we only skip w – i bytes to get the sliding
window for the next cycle and repeat the search process. If
the sliding window matches the w-byte prefix of a pattern,
we send the remaining m – w bytes of the pattern of width
m into an additional matching device called exact
matching module for exact matching starting at the
character next to the sliding window of the data stream.
However, in this case, the next sliding window in the next
cycle is obtained by advancing only one byte of the data
stream. This is because if the exact matching fails (e.g.,
false positive), it is still possible that we can find the
match starting at the second character of the sliding
window of the data stream.

We now describe how FTSE works and its architecture.
The TCAM is divided into w groups from G0 to Gw-1,
where w could be set to the width of TCAM. Group G0
stores the w-byte prefixes of patterns, group G1 stores the
concatenation of one don’t-care byte and (w–1)-byte
prefixes of patterns, group G2 stores the concatenation of
two ‘don’t care’ bytes and (w–2)-byte prefixes of patterns,
and so on. If the pattern is shorter than w bytes (denoted as
short pattern), we pad it with don’t-care bytes. Figure 2
shows an example of FTSE TCAM layout for pattern
P=’ABCDEFG’ with TCAM width w = 4.

The process of finding patterns in the payload of a
packet is as follows: The first w bytes of the packet’s
payload is fetched as the initial sliding window and then
looked up against the patterns stored in TCAM. If the
sliding window matches an entry in group G0, we need to
perform the following two additional operations. First, if
the pattern is shorter than TCAM width, then the full
pattern is found. Second, if the pattern is longer than
TCAM width, an exact match should be performed next
by shifting the sliding window one byte. If the sliding
window matches an entry in group Gi for 1 ≤ i ≤ w–1, the
sliding window will shift w – i bytes to get the next sliding
window for processing. On the other hand, if there is no

986986

match in TCAM, the sliding window will be shifted by w
bytes. Figure 3 shows an example of matching process.
For a pattern P=’ABCDEFG’, TCAM with width of four
is organized as in Figure 2. We first search the first 4
bytes of payload in TCAM and find a match in group G3.
Therefore, the sliding window is shifted by one byte. By
repeating this search process, we find a match with five
TCAM lookups and then report the pattern ID to exact
matching module.

Figure 4 shows the hardware architecture of FTSE
which consists of two parts: TCAM pre-filter module and
exact matching module. The incoming data stream is first
filtered through TCAM pre-filter module, which matches
w-byte prefixes of patterns. If a match occurs in group G0,
the corresponding ID of the partial matching pattern is
sent to the exact matching module for performing the
exact matching between the potential pattern and input
data stream. The controller determines the shift value of
sliding window according to lookup results in TCAM.
The full patterns are stored in 'Pattern Table'.

To verify the effectiveness of FTSE, we analyze the
TCAM memory requirement and theoretical expected
shift value which is defined to be the expected number of
skipped characters per cycle. If we set TCAM width to w,
then the (w-i)-byte prefix of each pattern is stored in group
Gi for 0 ≤ i ≤ w – 1. Suppose we have a total of N patterns
and the number of prefix-patterns in group Gi is Ni. The
total number of TCAM entries is ΣNi. So the total TCAM
memory requirement is w×ΣNi bytes.

To calculate the average shift value, we need to
calculate the matching probability in each group of the
TCAM. For a random w-byte input stream in TCAM, the
matching probability of an entry in group Gi is

,
)2(

)(
8 iw

i
i

N
GP −≅

where the number of don’t-care bytes in Gi is i and each
character is 8 bits The probability of mis-match in one
TCAM lookup is

.)(1 ∑− iGP

Therefore, the average shift value Savg is

() (),)()(1 ∑∑ ×+×−= iGPwGPS iiavg

Increasing the TCAM width greatly reduces the
probability of false positive and increases the average shift
value. The performance of FTSE depends on the average
shift value which is the expected number of TCAM
lookups needed to match the sliding window against the
patterns in TCAM. However, it results in a huge amount
of TCAM memory. Thus, choosing w is a tradeoff
between cost and performance.

According to our observation, the probability of finding
a match in group Gw-1 is greater than that in other groups.
As we mentioned earlier, the average shift value can be
increased by reducing the probability of finding a match in
TCAM. On the other hand, if we can increase the mis-
match probability in one TCAM lookup that results
shifting w bytes in the sliding window, the total number of
TCAM lookups for packet payload should be reduced. In
the following subsections, we provide two approaches for
improving the efficiency of TCAM pre-filter.

B. Suffix matching
As stated, the don’t-care bytes in TCAM entries

increase the probability of finding a match in TCAM. For
example, the probability of matching an entry '***A' in
one TCAM lookup is 1/28 which is large. The average
shift value will decrease while the number of entries in
group Gw-1 increases. But, in this case, the number of
TCAM lookups will also increase before we can find a
match in group G0 and thus we can send the partial
matching result to the exact matching module. In
summary, it is better to get a mis-match in TCAM as often
as possible, so that the sliding window can skip w bytes
and the exact matching module does not get involved. For
this reason, our improved schemes try to avoid using the
don’t-care bytes in TCAM as much as possible.

Our first improved approach matches w-byte suffixes of
patterns instead of prefix matching. We divide the TCAM
entries into w groups from G0 to Gw-1, similar to FTSE. If
the patterns are shorter than w, they will be stored in
TCAM in the same manner as FTSE. Otherwise, for a
pattern of length m denoted by P[1…m], group Gi stores
the w-byte suffix of sub-pattern P[1…m – i] for i = 0 to
w – 1. If the sub-pattern P[1…m – i] is shorter than w, we
also pad it with don’t-care bytes and store it in group Gi.

Sub-patterns that belong to the same group should be
organized according to their lengths in descending order.
It is because TCAM only reports the first matching result
among multiple matches. In this way, patterns whose
lengths are longer than or equal to 2w-1 occupy one
TCAM entry in all groups without padding any don’t-care
byte. Figure 5 shows an example of our improved TCAM
layout for a pattern P=’ABCDEFG’ and TCAM width

AAAABABCAABCDEFG

AAAABABCAABCDEFG

AAAABABCAABCDEFG

AAAABABCAABCDEFG

AAAABABCAABCDEFG match G0

match G2, shift 2 bytes

match G3, shift 3 bytes

match G3, shift 3 bytes

match G1, shift 1 bytes

Figure 3. An FTSE example that needs five TCAM lookups.

Figure 2. TCAM layout for a pattern P=’ABCDEFG’ with TCAM
width w=4.

G0 ABCD

G1 *ABC

G2 **AB

G3 ***A Matching
ID

Pattern Table

Exact
Matching
Module Controller

Buffer

TCAM

Packet
Payload

Figure 4. The hardware architecture of FTSE.

987987

w=4. Since the don’t-care byte does not exist in any
TCAM entry, the probability of matching each TCAM
group is the same. Therefore, the throughput can be
improved due to less needed TCAM lookups. Figure 6
shows an example of matching process. Comparing to
Figure 3, we find a match with only four TCAM lookups.
The proposed suffix algorithm is shown in Figure 7.

Notice that the search process in TCAM is the same as
FTSE. That is, when we have a match in group Gi for i = 1
to w – 1, we shift the sliding window by i bytes and
continue the search with the new sliding window. When
we get a match in group G0, we trigger the exact match
module by sending the partial matching result to it.

Since the don’t-care state could not be eliminated
entirely for some shorter patterns, we might have several
types of entries in each group depending on how many
don’t-care bytes they have. The entries that contain
inclusive relation in the same group could be eliminated
without losing accuracy. For this reason, we can remove
redundant entries from all groups except group G0. For
example, the group Gi (i ≠ 0) contains three entries:
‘ABCD’, ‘*BCD’, and ‘***D’ in Figure 8. Since the input
stream matches the entry ‘ABCD’ or ‘*BCD’, it also
matches the entry ‘***D’. Therefore, we remove the
entries ‘ABCD’ and ‘*BCD’ from group Gi. Figure 8 also
shows the result after removing the redundancy.

C. Multi-character processing
The FTSE or our improved scheme determines how

many bytes to shift the sliding window in input data
stream according to the matching result in TCAM. The
number of characters skipped in sliding window varies
from one to w. This kind of variation in skipping different
number of characters results in an unstable throughput and
needs an extra hardware support like buffer to control the
sliding window. We extend the concept of subsection III-
B to provide a high performance pre-filter approach which
can shift multi-character per TCAM lookup.

Modern TCAM provides a blocking feature that divides
a TCAM into several blocks and allows users to
selectively search one or several blocks in parallel. With
this feature, different groups can be put into different

blocks of the same TCAM and the matching result of each
group can be reported separately.

The basic idea of the second proposed pre-filter
approach is to find the final partial matches from all the
groups rather than only G0, so that we can send the final
partial match to the exact matching module for performing
the exact matches. Since a series of w-byte sub-patterns
are stored in all the groups, our approach determines a
match from any one of these groups, instead of only the
group G0. The group ID along with the offset of the partial
match position in the corresponding matched pattern will
be sent to exact match module. Take Figure 5 as an
example. If input data stream matches the entry ‘CDEF’ in
group G1, it will generate a match signal and send an
offset value that match second four-bytes suffix of pattern
P to the exact matching module. In this way, we can
process multi-character per clock cycle.

However, this approach suffers from high false positive
that generating by the certain of patterns. Those patterns,
whose lengths are shorter than 2w – 1, are padded with
one or more don’t-care bytes, especially the group Gw-1.
The problem with this approach is that short patterns
cause a TCAM matching frequently so false positive
probability will increase greatly. For example, in Figure 9,
the pattern P=’ABCDE’ was divided into four sub-
patterns according to our suffix matching approach with
TCAM width w=4. Those sub-patterns, ‘BCDE’, ‘ABCD’,
‘*ABC’ and ‘**AB’, were stored into groups from G0 to
G3, respectively. The probability of false positive matches
increases greatly in this example as the probability of
matching sub-pattern ‘**AB’ increases.

Figure 9. TCAM layout for a pattern P=’ABCDE’ and
TCAM width w=4.

G0 BCDE

G1 ABCD

G2 *ABC

G3 **AB

Figure 7. Proposed suffix algorithm.

Input: pattern P = p1 p2 ……pm , and TCAM width w
Output: w entries
Suffix algorithm
{

if (m ≥ w)
{

 for i= 0 to w-1 {
 if (m-pos) >= w
 store p(m-w+1)-i ……pm-i into group Gi
 else //we must pad it with ‘don’t care’ byte
 store *…* p1 ……pm-i into group Gi
 }

}
else we handle it as FTSE

}

ABCD

*BCD Gi

***D
Gi ***D

Figure 8. An example of removing redundant entries.

AAAABABCAABCDEFG

AAAABABCAABCDEFG

AAAABABCAABCDEFG

AAAABABCAABCDEFG

match G0

mismatch, shift 4 bytes

Figure 6. An example of the sliding window shift with four
TCAM lookups

mismatch, shift 4 bytes

mismatch, shift 4 bytes

Figure 5. TCAM layout for a pattern P=’ABCDEFG’ with
TCAM width w=4.

G0 DEFG

G1 CDEF

G2 BCDE

G3 ABCD

988988

We can solve this problem by both increasing TCAM
width and restricting the number of groups less than w.
With a large w and a small number of entries in a group,
we can greatly reduce the probability of finding a match in
TCAM. Let w' be our new TCAM width and g be the
reduced number of groups in TCAM. Since each pattern is
divided into g×w'-byte sub-patterns in series, our approach
requires g× w'×N bytes of TCAM memory approximately
and can process g characters per TCAM lookup, where N
is the total number of patterns. Although reducing the
number of groups in TCAM also restricts the performance,
the simulation results shows that our proposed scheme is
better than FTSE.

IV. EXPERIMENTS

In this section, we present the experimental results of
our two improved approaches. We utilized Snort pattern
sets and DEFCON [10] packet traces to evaluate the
effectiveness of the proposed algorithms and original
FTSE.

We used the Snort [9] version 2.4 for our experiments.
The total number of unique patterns in Snort is 2535. The
pattern length distribution is shown in Figure 10. The
average pattern length is 17 bytes and the maximum
pattern length is 364 bytes.

We use five DEFCON8 packet traces for our TCAM
pre-filter simulations. “RootFu!” is a contest run at
DEFCON each year. “Capture the Capture the Flag”
(CCTF) is a project by “The Shmoo Group” to sniff and
log all the data on the “RootFu!” network. Our packet
traces can be derived from the CCTF project held in
DEFCON. Table I shows the matching statistics of these
five DEFCON8 packet trace. The highest pattern-match
rate in our experiments is in the packet trace 4 and the
lowest one is in the packet trace 2.

The throughput in our TCAM pre-filter architecture
will be increased as the average shift value becomes high.
It is because the total number of TCAM lookups can be
decreased. Increasing the TCAM width significantly
reduces the amount of false positive and increase the
average shift value. However, TCAM memory is one of
the more expensive components in this architecture.
Reducing the amount of required TCAM memory is a
major concern. Therefore, we simulate our improved
TCAM pre-filter approaches by using several TCAM
widths.

Table II shows the TCAM memory size requirement
with TCAM width 4, 8, 12, and 16. We observe that our
suffix matching approach had less TCAM memory
requirement when TCAM width is 12 or 16. It is because

that we eliminate certain inclusive entries from group 1 to
group w-1.

For every packet trace, we measure the average shift
values, as shown in Table III to Table VII. With the
TCAM width increasing by four sequentially, the average
shift value increases slowly. The results shows that our
suffix approach had better average shift value than FTSE
in shorter TCAM width, 4 especially. It is because the
number of short patterns becomes low. By comparing with
different packet traces, we can get higher throughput than
FTSE when pattern-match rate of packet trace is low.

Since the DEFCON traces tend to match patterns in
nature, the pattern-match rate is higher than normal
packets. We believe our suffix approach can be improved
if the packet traces are normal ones instead of DEFCON
traces.

For our second approach with multi-character
processing, we perform the experiments by using different
sets of TCAM width w' and the reduced number of groups

0

20

40

60

80

100

120

140

160

180

1 8 15 22 29 36 43 50

pattern length

nu
m

b
er

 o
f
pa

tt
er

n
s

+

Figure 10. Length distribution of patterns in the Snort databases.

Trace Name
Total payload

size (bytes)
of matched

events
Percentage

Defcon8_trace1
(28153903)

148,878,041 15,110,119 10.1%

Defcon8_trace2
(28160701)

13,434,830 781,811 5.8%

Defcon8_trace3
(29124449)

86,117,534 6,306,690 7.3%

Defcon8_trace4
(29142147)

78,488,243 8,972,176 11.4%

Defcon8_trace5
(29190000)

159,480,998 11,834,997 7.4%

Table I. DEFCON8 packet traces.

Table IV. TCAM width impact on
Avg. shift value for DEFCON8

trace2

Table V. TCAM width impact on
Avg. shift value for DEFCON8

trace3

Table III. TCAM width impact on
Avg. shift value for DEFCON8

trace1.

 FTSE Suffix

4 12 14

8 80 89

12 218 195

16 432 332

Table II. TCAM memory size (KB)

 FTSE Suffix

4 3.075 3.092

8 4.847 4.858

12 6.011 6.014

16 6.796 6.796

Table VI. TCAM width impact on
Avg. shift value for DEFCON8

trace4

Table VII.TCAM width impact on
Avg. shift value for DEFCON8

trace5

 FTSE Suffix

4 2.693 2.707

8 4.032 4.012

12 4.744 4.712

16 5.144 5.144

 FTSE Suffix

4 2.619 2.641

8 3.859 3.842

12 4.477 4.451

16 4.819 4.819

 FTSE Suffix

4 2.965 2.985

8 4.650 4.664

12 5.665 5.693

16 6.333 6.322

 FTSE Suffix

4 2.921 2.955

8 4.529 4.539

12 5.470 5.473

16 6.061 6.062

989989

g, denoted as parallel(w', g). Table VIII and Table IX
show the simulation results with different combinations of
w' and g. When g increases, the TCAM memory and
average shift value will increase. Besides, the false
positive was serious due to the short patterns. In our
experiments, w' is double of the value g would be a proper
choice. The results show that our second approach is very
efficient especially for malicious packets.

V. CONCLUSION

In this paper, we proposed two effective TCAM-based
pattern matching approaches for high-speed networks. We
used Snort pattern sets and DEFCON packet traces to
evaluate the performance. Our TCAM-based approach
provides two techniques to improve the performance of
FTSE. The first technique matches the w-byte suffixes of
patterns instead of w-byte prefixes. The second technique

finds the final partial matching results from all the groups
instead of only G0. The second proposed scheme can
process multi characters per TCAM lookup. The results
showed that our two techniques can are better than the
original FTSE.

REFERENCES
[1] A. Aho and M. Corasick, “Efficient string matching: An aid to

bibliographic search,” Communications of the ACM, vol. 18, no. 6,
pp.333-343, June 1975.

[2] R. S. Boyer and J. S. Moore, “A fast string searching algorithm,”
Communications of the ACM, vol. 20, no 10, pp.762-772, Oct.
1977.

[3] S. Dharmapurikar, P. Krishnamurthy, T. S. Sproull and J. W.
Lockwood, “Deep Packet Inspection using Parallel Bloom Filters”,
IEEE Micro, vol. 24, no. 1, pp. 52-61, Jan. 2004.

[4] D. E. Knuth, J. H. M. Jr., and V. R. Pratt, “Fast pattern matching
in strings,” SIAM J. Comput., vol. 6, no. 2, pp. 323–350, June
1977.

[5] R.T. Liu, C.N. Kao, H.S. Wu, M.C. Shih and N.F. Huang, “FTSE:
The FNP-Like TCAM Searching Engine,” in IEEE Symposium on
Computers and Communications, pp 863-868, June 2005.

[6] R.T. Liu, N.F. Huang, C.H. Chen, C.N. Kao, “A Fast String
Matching Algorithm for Network Processor-Based Intrusion
Detection System”, ACM Transactions on Embedded Computing
Systems, Vol. 3, No. 3, Aug. 2004, pp. 614-633.

[7] I. Sourdis and D. Pnevmatikatos. “Pre-decoded CAMs for efficient
and high-speed NIDS pattern matching.” In IEEE Symposium on
Field-Programmable Custom Computing Machines, (FCCM),
Napa, CA, Apr. 2004.

[8] F. Yu, R. H. Katz, T. V. Lakshman, “Gigabit Rate Packet Pattern-
Matching Using TCAM,” in Proceeding of 12th IEEE
International Conference on Network Protocols (ICNP’04), Berlin,
Germany, Oct. 2004, pp. 174-183.

[9] Snort - the de Facto Standard for Intrusion Detection/Prevention,
http://www.snort.org

[10] DEFCON http://cctf.shmoo.com/data/cctf-defcon8/ and
http://www.shmoo.com/

Parallel

6-3
Parallel

8-4
Parallel

10-5
Parallel

12-6

TCAM
memory (KB)

31 59 89 121

Avg. Shift
(byte)

3 4 5 6

Parallel

8-3
Parallel

8-4
Parallel

8-5
Parallel

8-6

TCAM
memory (KB)

43 59 75 90

Avg. Shift
(byte)

3 4 5 6

Table VIII. Parallel (w’, g) with w’=2g

Table IX. Parallel (w’, g) with fixed TCAM width 8 and varied g

990990

