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Abstract—With the increasing growth of the Internet, the 
explosion of attacks and viruses significantly affects the 
network security. Network Intrusion Detection System 
(NIDS) is developed to identify these network attacks by a 
set of rules. However, searching for multiple patterns is a 
computationally expensive task in NIDS. Traditional 
software-based solutions can not meet the high bandwidth 
demanded in current high-speed networks. In the past, the 
pre-filtering designed for NIDS is an effective technique that 
can reduce the processing overhead significantly. A FNP-
like TCAM searching engine (FTSE) [5][6] is an example 
that uses an 2-stage architecture to detect whether an 
incoming string contains patterns. 

In this paper, we propose two techniques to improve the 
performance of FTSE that utilizes ternary content 
addressable memory (TCAM) as pre-filter to achieve gigabit 
performance. The first technique performs the w-byte suffix 
pattern match instead of using w-byte prefix. The second 
technique finds the matching results from all groups rather 
than first group. We finally present the simulation result 
using Snort pattern set and DEFCON packet traces. 

I. INTRODUCTION 

With the growth of the Internet, large number of viruses 
and malicious probes spread every day. Many network 
hosts are vulnerable to attacks. Traditionally, networks 
have been protected using firewalls that monitor and filter 
network traffic. Firewalls usually examine the packet 
headers to determine whether the packets are allowed to 
go through or dropped. For example, if a packet attempts 
to connect a disallowed port, such as port number 80 
(http), the connection is rejected. However, firewalls are 
not effective to protect network from worms and viruses. 
Today, the most commonly used defense strategy is to use 
end-host based solutions that rely on security tools, such 
as antivirus software. The main drawback of these 
approaches is the inability to protect thousands of hosts in 
less than an hour.    

Network intrusion detection systems (NIDS) are 
utilized to detect malicious attacks and protect Internet 
system. The intrusion detection systems are growing in 
popularity because they can provide an efficient protection 
against the attacks. A NIDS differs from a firewall in that 
it needs to scan both the headers and the payloads of each 
incoming packet for thousands of suspicious patterns. By 
inspecting both packet headers and payloads to identify 
attack signatures, NIDS is able to discover malicious 
attacks or hackers that intend to intrude.  

Because most of the known attacks can be represented 
with patterns or combinations of multiple sub-patterns, 

pattern matching has become a performance bottleneck in 
NIDS. Current NIDS pattern databases contain thousands 
of patterns, resulting in a difficult computational task. 
Traditionally, software-based NIDS may be overloaded 
when the packet arrival rate becomes high. To keep up 
with the high-speed networks, hardware-based NIDS 
implementation is needed.  

Snort [9] is an open source light-weight NIDS which is 
designed to filter packets by pre-defined rules. Snort 
contains a set of rules with corresponding actions. Each 
Snort rule consists of the rule header and the rule options. 
The rule header contains the action, protocol, source and 
destination IP addresses, and the source and destination 
ports. The rule options contain alert messages and 
signatures which would be inspected to determine if the 
incoming packets match the rule. A sample Snort rule that 
detects mountd access is shown in Figure 1. When the new 
viruses or malicious attacks are discovered, corresponding 
rules are added to Snort. Because of its free availability 
and efficiency, Snort is quite commonly used and there 
are very large and current databases of signatures 
maintained on the Internet.  

 
The rest of the paper is organized as follows: In section 

2, we review and summarize the related works. In section 
3, we propose two approaches to improve TCAM pre-
filter techniques. The simulation results are presented in 
section 4. Finally, we present the conclusions in section 5. 

II. RELATED WORKS 

In the past few years, several interesting algorithms and 
techniques have been proposed for multiple-pattern 
matching. Current software-based NIDS cannot meet the 
bandwidth requirement of a multiple-gigabit network. 
Hence, several hardware-based solutions have been 
proposed to solve the problem. In this section, we divide 
the common pattern matching solutions for intrusion 
detection system into four categories: software-based, 
FGPA-based, bloom filter based, and TCAM based. The 
detail of each solution will be discussed as follows. 

A. Software-based solutions 
Knuth-Morris-Pratt (KMP) [4] and Boyer-Moore (BM) 

[2] are the most well-known single-pattern matching 

alert tcp any any -> 192.168.1.0/24 111 
(content:"|00 01 86 a5|"; msg: "mountd access";)

Figure 1. Sample Snort rule 
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algorithms. Current Snort implementations use Boyer-
Moore algorithm because BM has the best average-case 
performance. However, the performance of the BM 
algorithm depends on the characters in the text and pattern 
strings. The time complexity of the BM algorithm is sub-
linear of O(n/m) in the best case, O(n) in the average case, 
and O(nm) in the worse-case . The Aho-Corasick(AC) [1] 
is designed for multiple-pattern matching. By pre-
processing the patterns and build a finite state machine, 
AC can process the input text in linear time. However, a 
large transition table will slow down the performance in 
practice.  

B. FPGA-based solutions 
Many hardware-based algorithms have been proposed, 

where many solutions are based on Field Programmable 
Gate Arrays (FPGAs). Because of the emergence of new 
worms and viruses, traditional intrusion detection systems 
must be able to be re-programmed. FPGAs can be 
programmed for fast pattern matching due to their 
exploitation of reconfigurable hardware capability and 
their ability for parallelism. In recent years, there are 
several researches on FPGA pattern-matching for NIDS. 
Sourdis et al. proposed a FPGA-based approach by using 
pre-decoding technique [7]. The main idea of pre-decoded 
CAM is to test for equality of the input for the desired 
characters instead of keeping a window of input characters 
in the shift register. The results in [7] show the best 
throughput is about 11Gbps on Xilinx Virtex2 devices. 

C. Parallel Bloom filters 
Bloom filter is a space-efficient probabilistic data 

structure that is used to test whether an element or string is 
a member of a set. False positives are possible, but false 
negatives are not. Dharmapurikar et al. [3] proposed a 
multiple-pattern matching solution using parallel bloom 
filters. The proposed scheme builds a bloom filter for each 
possible pattern length. The Bloom filter engine obtains 
the input by reading a data stream that arrives at the rate of 
one byte per clock cycle. However, the hardware cost 
becomes a problem because each different pattern length 
requires a separate bloom filter. The hardware cost 
problem becomes worse when dealing with very long 
virus definitions. Furthermore, this scheme needs to 
inspect every single byte of packet payload so that the 
maximum throughput is around 2.46Gbps [3]. 

D. TCAM solutions 
Ternary Content Addressable Memory (TCAM) is a 

type of memory that consists of a set of entries. A TCAM 
allows fully parallel search of entries per TCAM lookup. 
Each TCAM entry can store three values for every bit: 
zero, one and “don’t care”. Don’t care bits act as 
wildcards during a search. The top entry of the TCAM has 
the smallest index and the bottom entry has the largest. 
The width of each entry can be configured according to 
user requirements. For example, a 1M TCAM can be 
programmed as 64K entries with 16 bytes per entry, or 
32K entries with 32bytes per entry. Given an input string, 
TCAM can compare the input with all the entries in 
parallel and report the searching result with just one 
TCAM lookup time. 

Fang Yu et al. [8] proposed a TCAM-based pattern 
matching algorithm for handling both short patterns and 
long patterns. If a pattern is shorter than TCAM width, 

then we put it into TCAM and pad it with don’t care bits. 
A pattern longer than TCAM width will split into several 
sub-patterns: the first TCAM width prefix pattern and 
remaining suffix patterns. There are three data structures 
to be stored in memory for matching long patterns: pattern 
table, partial hit list, and matching table. To match a 
pattern, a window of characters from input string is looked 
up in the TCAM. Then, the result is stored in a temporary 
table. The window is moved forward by a character and 
the lookup process is executed again. At every stage, the 
approximate partial match table entry is taken into account 
to verify if a complete pattern is matched. 

III.  PROPOSED ALGORITHMS 

A. A brief introduction to FTSE 
The basic concept of FTSE [5][6] is described as 

follows. FTSE first reads the first w bytes of the data 
stream as the input called the sliding window. The sliding 
window in next cycle is obtained by advancing 1 to w 
bytes of the data stream, depending on how the sliding 
window in the current cycle matches the patterns. If any i-
byte suffix of sliding window does not match the i-byte 
prefix of pattern P for all i = 1 to w, we can advance the 
sliding window by skipping the current w bytes of the data 
stream and continue the search with the next w bytes. 
Specifically, if the i-byte suffix of the sliding window 
does match the i-byte prefix of pattern P for all i = 1 to 
w – 1, then we only skip w – i bytes to get the sliding 
window for the next cycle and repeat the search process. If 
the sliding window matches the w-byte prefix of a pattern, 
we send the remaining m – w bytes of the pattern of width 
m into an additional matching device called exact 
matching module for exact matching starting at the 
character next to the sliding window of the data stream. 
However, in this case, the next sliding window in the next 
cycle is obtained by advancing only one byte of the data 
stream. This is because if the exact matching fails (e.g., 
false positive), it is still possible that we can find the 
match starting at the second character of the sliding 
window of the data stream. 

We now describe how FTSE works and its architecture. 
The TCAM is divided into w groups from G0 to Gw-1, 
where w could be set to the width of TCAM. Group G0 
stores the w-byte prefixes of patterns, group G1 stores the 
concatenation of one don’t-care byte and (w–1)-byte 
prefixes of patterns, group G2 stores the concatenation of 
two ‘don’t care’ bytes and (w–2)-byte prefixes of patterns, 
and so on. If the pattern is shorter than w bytes (denoted as 
short pattern), we pad it with don’t-care bytes. Figure 2 
shows an example of FTSE TCAM layout for pattern 
P=’ABCDEFG’ with TCAM width w = 4. 

The process of finding patterns in the payload of a 
packet is as follows: The first w bytes of the packet’s 
payload is fetched as the initial sliding window and then 
looked up against the patterns stored in TCAM. If the 
sliding window matches an entry in group G0, we need to 
perform the following two additional operations. First, if 
the pattern is shorter than TCAM width, then the full 
pattern is found. Second, if the pattern is longer than 
TCAM width, an exact match should be performed next 
by shifting the sliding window one byte. If the sliding 
window matches an entry in group Gi for 1 ≤ i ≤ w–1, the 
sliding window will shift w – i bytes to get the next sliding 
window for processing. On the other hand, if there is no 
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match in TCAM, the sliding window will be shifted by w 
bytes. Figure 3 shows an example of matching process. 
For a pattern P=’ABCDEFG’, TCAM with width of four 
is organized as in Figure 2. We first search the first 4 
bytes of payload in TCAM and find a match in group G3. 
Therefore, the sliding window is shifted by one byte. By 
repeating this search process, we find a match with five 
TCAM lookups and then report the pattern ID to exact 
matching module. 

Figure 4 shows the hardware architecture of FTSE 
which consists of two parts: TCAM pre-filter module and 
exact matching module. The incoming data stream is first 
filtered through TCAM pre-filter module, which matches 
w-byte prefixes of patterns. If a match occurs in group G0, 
the corresponding ID of the partial matching pattern is 
sent to the exact matching module for performing the 
exact matching between the potential pattern and input 
data stream. The controller determines the shift value of 
sliding window according to lookup results in TCAM. 
The full patterns are stored in 'Pattern Table'. 

To verify the effectiveness of FTSE, we analyze the 
TCAM memory requirement and theoretical expected 
shift value which is defined to be the expected number of 
skipped characters per cycle. If we set TCAM width to w, 
then the (w-i)-byte prefix of each pattern is stored in group 
Gi for 0 ≤ i ≤ w – 1. Suppose we have a total of N patterns 
and the number of prefix-patterns in group Gi is Ni. The 
total number of TCAM entries is ΣNi. So the total TCAM 
memory requirement is w×ΣNi bytes.  

To calculate the average shift value, we need to 
calculate the matching probability in each group of the 
TCAM. For a random w-byte input stream in TCAM, the 
matching probability of an entry in group Gi is  

,
)2(

)(
8 iw

i
i

N
GP −≅  

where the number of don’t-care bytes in Gi is i and each 
character is 8 bits The probability of mis-match in one 
TCAM lookup is  

.)(1 ∑− iGP  

Therefore, the average shift value Savg is  

( ) ( ),)()(1 ∑∑ ×+×−= iGPwGPS iiavg
 

Increasing the TCAM width greatly reduces the 
probability of false positive and increases the average shift 
value. The performance of FTSE depends on the average 
shift value which is the expected number of TCAM 
lookups needed to match the sliding window against the 
patterns in TCAM. However, it results in a huge amount 
of TCAM memory. Thus, choosing w is a tradeoff 
between cost and performance.  

According to our observation, the probability of finding 
a match in group Gw-1 is greater than that in other groups. 
As we mentioned earlier, the average shift value can be 
increased by reducing the probability of finding a match in 
TCAM. On the other hand, if we can increase the mis-
match probability in one TCAM lookup that results 
shifting w bytes in the sliding window, the total number of 
TCAM lookups for packet payload should be reduced. In 
the following subsections, we provide two approaches for 
improving the efficiency of TCAM pre-filter. 

B. Suffix matching 
As stated, the don’t-care bytes in TCAM entries 

increase the probability of finding a match in TCAM. For 
example, the probability of matching an entry '***A' in 
one TCAM lookup is 1/28 which is large. The average 
shift value will decrease while the number of entries in 
group Gw-1 increases. But, in this case, the number of 
TCAM lookups will also increase before we can find a 
match in group G0 and thus we can send the partial 
matching result to the exact matching module. In 
summary, it is better to get a mis-match in TCAM as often 
as possible, so that the sliding window can skip w bytes 
and the exact matching module does not get involved. For 
this reason, our improved schemes try to avoid using the 
don’t-care bytes in TCAM as much as possible. 

Our first improved approach matches w-byte suffixes of 
patterns instead of prefix matching. We divide the TCAM 
entries into w groups from G0 to Gw-1, similar to FTSE. If 
the patterns are shorter than w, they will be stored in 
TCAM in the same manner as FTSE. Otherwise, for a 
pattern of length m denoted by P[1…m], group Gi stores 
the w-byte suffix of sub-pattern P[1…m – i] for i = 0 to 
w – 1. If the sub-pattern P[1…m – i] is shorter than w, we 
also pad it with don’t-care bytes and store it in group Gi.  

Sub-patterns that belong to the same group should be 
organized according to their lengths in descending order. 
It is because TCAM only reports the first matching result 
among multiple matches. In this way, patterns whose 
lengths are longer than or equal to 2w-1 occupy one 
TCAM entry in all groups without padding any don’t-care 
byte. Figure 5 shows an example of our improved TCAM 
layout for a pattern P=’ABCDEFG’ and TCAM width 

AAAABABCAABCDEFG 

AAAABABCAABCDEFG 

AAAABABCAABCDEFG 

AAAABABCAABCDEFG 

AAAABABCAABCDEFG match G0 

match G2, shift 2 bytes

match G3, shift 3 bytes

match G3, shift 3 bytes

match G1, shift 1 bytes

Figure 3. An FTSE example that needs five TCAM lookups.

Figure 2. TCAM layout for a pattern P=’ABCDEFG’ with TCAM 
width w=4. 

G0 ABCD 

G1 *ABC 

G2 **AB 

G3 ***A Matching 
ID

Pattern Table

Exact 
Matching 
Module  Controller 

Buffer

TCAM

Packet 
Payload

Figure 4. The hardware architecture of FTSE. 
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w=4. Since the don’t-care byte does not exist in any 
TCAM entry, the probability of matching each TCAM 
group is the same. Therefore, the throughput can be 
improved due to less needed TCAM lookups. Figure 6 
shows an example of matching process. Comparing to 
Figure 3, we find a match with only four TCAM lookups. 
The proposed suffix algorithm is shown in Figure 7. 

Notice that the search process in TCAM is the same as 
FTSE. That is, when we have a match in group Gi for i = 1 
to w – 1, we shift the sliding window by i bytes and 
continue the search with the new sliding window. When 
we get a match in group G0, we trigger the exact match 
module by sending the partial matching result to it.  

Since the don’t-care state could not be eliminated 
entirely for some shorter patterns, we might have several 
types of entries in each group depending on how many 
don’t-care bytes they have. The entries that contain 
inclusive relation in the same group could be eliminated 
without losing accuracy. For this reason, we can remove 
redundant entries from all groups except group G0. For 
example, the group Gi (i ≠ 0) contains three entries: 
‘ABCD’, ‘*BCD’, and ‘***D’ in Figure 8. Since the input 
stream matches the entry ‘ABCD’ or ‘*BCD’, it also 
matches the entry ‘***D’. Therefore, we remove the 
entries ‘ABCD’ and ‘*BCD’ from group Gi. Figure 8 also 
shows the result after removing the redundancy. 

C. Multi-character processing 
The FTSE or our improved scheme determines how 

many bytes to shift the sliding window in input data 
stream according to the matching result in TCAM. The 
number of characters skipped in sliding window varies 
from one to w. This kind of variation in skipping different 
number of characters results in an unstable throughput and 
needs an extra hardware support like buffer to control the 
sliding window. We extend the concept of subsection III-
B to provide a high performance pre-filter approach which 
can shift multi-character per TCAM lookup.  

Modern TCAM provides a blocking feature that divides 
a TCAM into several blocks and allows users to 
selectively search one or several blocks in parallel. With 
this feature, different groups can be put into different 

blocks of the same TCAM and the matching result of each 
group can be reported separately. 

The basic idea of the second proposed pre-filter 
approach is to find the final partial matches from all the 
groups rather than only G0, so that we can send the final 
partial match to the exact matching module for performing 
the exact matches. Since a series of w-byte sub-patterns 
are stored in all the groups, our approach determines a 
match from any one of these groups, instead of only the 
group G0. The group ID along with the offset of the partial 
match position in the corresponding matched pattern will 
be sent to exact match module. Take Figure 5 as an 
example. If input data stream matches the entry ‘CDEF’ in 
group G1, it will generate a match signal and send an 
offset value that match second four-bytes suffix of pattern 
P to the exact matching module. In this way, we can 
process multi-character per clock cycle.  

However, this approach suffers from high false positive 
that generating by the certain of patterns. Those patterns, 
whose lengths are shorter than 2w – 1, are padded with 
one or more don’t-care bytes, especially the group Gw-1. 
The problem with this approach is that short patterns 
cause a TCAM matching frequently so false positive 
probability will increase greatly. For example, in Figure 9, 
the pattern P=’ABCDE’ was divided into four sub-
patterns according to our suffix matching approach with 
TCAM width w=4. Those sub-patterns, ‘BCDE’, ‘ABCD’, 
‘*ABC’ and ‘**AB’, were stored into groups from G0 to 
G3, respectively. The probability of false positive matches 
increases greatly in this example as the probability of 
matching sub-pattern ‘**AB’ increases. 

Figure 9. TCAM layout for a pattern P=’ABCDE’ and 
TCAM width w=4. 

G0 BCDE 

G1 ABCD 

G2 *ABC 

G3 **AB 

Figure 7. Proposed suffix algorithm. 

Input: pattern P = p1 p2 ……pm , and TCAM width w
Output: w entries  
Suffix algorithm 
{ 

if ( m ≥ w ) 
{ 

      for i= 0 to w-1 {   
         if (m-pos) >= w 
           store p(m-w+1)-i ……pm-i into group Gi 
         else //we must pad it with ‘don’t care’ byte 
           store *…* p1 ……pm-i into group Gi 
       } 

} 
else we handle it as FTSE 

} 

ABCD 

*BCD Gi

***D 
Gi ***D 

Figure 8. An example of removing redundant entries. 

AAAABABCAABCDEFG 

AAAABABCAABCDEFG 

AAAABABCAABCDEFG 

AAAABABCAABCDEFG 

match G0 

mismatch, shift 4 bytes

Figure 6. An example of the sliding window shift with four 
TCAM lookups 

mismatch, shift 4 bytes

mismatch, shift 4 bytes

Figure 5. TCAM layout for a pattern P=’ABCDEFG’ with 
TCAM width w=4. 

G0 DEFG 

G1 CDEF 

G2 BCDE 

G3 ABCD 
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We can solve this problem by both increasing TCAM 
width and restricting the number of groups less than w. 
With a large w and a small number of entries in a group, 
we can greatly reduce the probability of finding a match in 
TCAM. Let w' be our new TCAM width and g be the 
reduced number of groups in TCAM. Since each pattern is 
divided into g×w'-byte sub-patterns in series, our approach 
requires g× w'×N bytes of TCAM memory approximately 
and can process g characters per TCAM lookup, where N 
is the total number of patterns. Although reducing the 
number of groups in TCAM also restricts the performance, 
the simulation results shows that our proposed scheme is 
better than FTSE. 

IV. EXPERIMENTS 

In this section, we present the experimental results of 
our two improved approaches. We utilized Snort pattern 
sets and DEFCON [10] packet traces to evaluate the 
effectiveness of the proposed algorithms and original 
FTSE.  

We used the Snort [9] version 2.4 for our experiments. 
The total number of unique patterns in Snort is 2535. The 
pattern length distribution is shown in Figure 10. The 
average pattern length is 17 bytes and the maximum 
pattern length is 364 bytes.  

We use five DEFCON8 packet traces for our TCAM 
pre-filter simulations. “RootFu!” is a contest run at 
DEFCON each year. “Capture the Capture the Flag” 
(CCTF) is a project by “The Shmoo Group” to sniff and 
log all the data on the “RootFu!” network. Our packet 
traces can be derived from the CCTF project held in 
DEFCON. Table I shows the matching statistics of these 
five DEFCON8 packet trace. The highest pattern-match 
rate in our experiments is in the packet trace 4 and the 
lowest one is in the packet trace 2. 

The throughput in our TCAM pre-filter architecture 
will be increased as the average shift value becomes high. 
It is because the total number of TCAM lookups can be 
decreased. Increasing the TCAM width significantly 
reduces the amount of false positive and increase the 
average shift value. However, TCAM memory is one of 
the more expensive components in this architecture. 
Reducing the amount of required TCAM memory is a 
major concern. Therefore, we simulate our improved 
TCAM pre-filter approaches by using several TCAM 
widths. 

Table II shows the TCAM memory size requirement 
with TCAM width 4, 8, 12, and 16. We observe that our 
suffix matching approach had less TCAM memory 
requirement when TCAM width is 12 or 16. It is because 

that we eliminate certain inclusive entries from group 1 to 
group w-1.  

For every packet trace, we measure the average shift 
values, as shown in Table III to Table VII. With the 
TCAM width increasing by four sequentially, the average 
shift value increases slowly. The results shows that our 
suffix approach had better average shift value than FTSE 
in shorter TCAM width, 4 especially. It is because the 
number of short patterns becomes low. By comparing with 
different packet traces, we can get higher throughput than 
FTSE when pattern-match rate of packet trace is low.  

Since the DEFCON traces tend to match patterns in 
nature, the pattern-match rate is higher than normal 
packets. We believe our suffix approach can be improved 
if the packet traces are normal ones instead of DEFCON 
traces.  

For our second approach with multi-character 
processing, we perform the experiments by using different 
sets of TCAM width w' and the reduced number of groups 
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Figure 10. Length distribution of patterns in the Snort databases.

Trace Name 
Total payload 

size (bytes) 
# of matched 

events 
Percentage

Defcon8_trace1
(28153903) 

148,878,041 15,110,119 10.1% 

Defcon8_trace2
(28160701) 

13,434,830 781,811 5.8% 

Defcon8_trace3
(29124449) 

86,117,534 6,306,690 7.3% 

Defcon8_trace4
(29142147) 

78,488,243 8,972,176 11.4% 

Defcon8_trace5
(29190000) 

159,480,998 11,834,997 7.4% 

Table I. DEFCON8 packet traces. 

Table IV. TCAM width impact on 
Avg. shift value for DEFCON8 

trace2 

Table V. TCAM width impact on 
Avg. shift value for DEFCON8 

trace3 

Table III. TCAM width impact on 
Avg. shift value for DEFCON8 

trace1. 

 FTSE Suffix 

4 12 14 

8 80 89 

12 218 195 

16 432 332 

Table II. TCAM memory size (KB)

 FTSE Suffix 

4 3.075 3.092 

8 4.847 4.858 

12 6.011 6.014 

16 6.796 6.796 

Table VI. TCAM width impact on 
Avg. shift value for DEFCON8 

trace4 

Table VII.TCAM width impact on 
Avg. shift value for DEFCON8 

trace5 

 FTSE Suffix 

4 2.693 2.707 

8 4.032 4.012 

12 4.744 4.712 

16 5.144 5.144 

 FTSE Suffix 

4 2.619 2.641 

8 3.859 3.842 

12 4.477 4.451 

16 4.819 4.819 

 FTSE Suffix 

4 2.965 2.985 

8 4.650 4.664 

12 5.665 5.693 

16 6.333 6.322 

 FTSE Suffix 

4 2.921 2.955 

8 4.529 4.539 

12 5.470 5.473 

16 6.061 6.062 
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g, denoted as parallel(w', g). Table VIII and Table IX 
show the simulation results with different combinations of 
w' and g. When g increases, the TCAM memory and 
average shift value will increase. Besides, the false 
positive was serious due to the short patterns. In our 
experiments, w' is double of the value g would be a proper 
choice. The results show that our second approach is very 
efficient especially for malicious packets. 

V. CONCLUSION 

In this paper, we proposed two effective TCAM-based 
pattern matching approaches for high-speed networks. We 
used Snort pattern sets and DEFCON packet traces to 
evaluate the performance. Our TCAM-based approach 
provides two techniques to improve the performance of 
FTSE. The first technique matches the w-byte suffixes of 
patterns instead of w-byte prefixes. The second technique 

finds the final partial matching results from all the groups 
instead of only G0. The second proposed scheme can 
process multi characters per TCAM lookup. The results 
showed that our two techniques can are better than the 
original FTSE. 
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Parallel 

6-3 
Parallel 

8-4 
Parallel 

10-5 
Parallel 

12-6 

TCAM 
memory (KB) 

31 59 89 121 

Avg. Shift 
(byte) 

3 4 5 6 

 
Parallel 

8-3 
Parallel 

8-4 
Parallel 

8-5 
Parallel 

8-6 

TCAM 
memory (KB) 

43 59 75 90 

Avg. Shift 
(byte) 

3 4 5 6 

Table VIII. Parallel (w’, g) with w’=2g 

Table IX. Parallel (w’, g) with fixed TCAM width 8 and varied g
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