
Multi-Character Processor Array for Pattern
Matching in Network Intrusion Detection System

Yeim-Kuan Chang, Ming-Li Tsai and Yu-Ru Chung
Department of Computer Science and Information Engineering

National Cheng Kung University
{ykchang, p7694157, p7695101}@mail.ncku.edu.tw

Abstract—Network Intrusion Detection System (NIDS) is a
system developed for identifying attacks by using a set of
rules. NIDS is an efficient way to provide the security
protection for today’s internet. Pattern match algorithm
plays an important role in NIDS that performs searches
against multiple patterns for a string match. Pattern
matching is a computationally expensive task. Traditional
software-based NIDS solutions usually can not achieve a
high-speed required for ever growing Internet attacks. In
order to satisfy high-speed packet content inspection,
hardware-implementable pattern match algorithm is
required. In this paper, we propose a hardware-based
pattern match architecture that employs a multi-character
processor array. The proposed multi-character processor
array is a parallel and pipelined architecture which can
process multiple characters of the input stream per cycle.
The proposed architecture can reduce a lot of unnecessary
computations and thus it is power efficient. We use Snort
pattern sets and DEFCON packet traces to perform our
simulations. Our experiment results show that, with a 3-
character processor array, we can reduce 83% of the
computations compared with the brute force approach.

Keywords: intrusion detection, pattern matching, Snort,
processor array

I. INTRODUCTION

With the growth of the Internet, large number of
viruses and malicious probes spread every day. Many
network users are vulnerable to attacks. Traditionally,
networks have been protected using firewalls that monitor
and filter network traffic. Firewalls usually examine the
packet headers to determine whether or the packets are
allowed to pass through or dropped. For example, if a
user attempts to connect to a disallowed port, such as port
number 80 (http), the connection is rejected. However,
firewalls are not effective to protect networks from
worms and viruses. Today, the most commonly used
defense strategy is to use end-host based solutions that
rely on security tools, such as antivirus software. The
main drawback of these approaches is the inability to
protect thousands of hosts in less than an hour.

Network intrusion detection systems (NIDS) are
utilized to detect malicious attacks and protect Internet
system. The intrusion detection system are growing in
popularity because they provide an efficient protection to
attacks. The NIDS differs from a firewall in that it needs
to scan both the headers and the payloads of each
incoming packet for thousands of suspicious patterns. By
inspecting both packet headers and payloads to identify
attack signatures, NIDS is able to discover whether
malicious attacks or hackers are attempting to intrude.

Because most of the known attacks can be represented
with patterns or combinations of multiple sub-patterns,

pattern matching has become a performance bottleneck in
intrusion detection system. Current NIDS pattern
databases consist of thousands of patterns and thus
searching against them is a computationally expensive
task. Traditionally, software-based NIDS may be
overloaded when the packet arrival rate becomes high. To
keep up with the high-speed networks, a hardware-based
NIDS implementation is generally needed.

The rest of the paper is organized as follows: In section
2, we review and summarize the related works. In section
3, we present the proposed multi-character processor array
design. The performance evaluation results are presented
in section 4. Finally, we present the conclusions.

II. RELATED WORK

In the past few years, several interesting algorithms
and techniques have been proposed for multiple-pattern
matching in the content of network intrusion detection.
Current software-based NIDS cannot meet the bandwidth
requirement of a multiple-gigabit network. Hence, several
hardware-based solutions have been proposed to solve the
problem. In this chapter, we divide common pattern
matching solutions for intrusion detection system into
four categories: software-based, FGPA-based, Bloom
filter based, TCAM based, and brute force approaches.
A. Software-based solutions

Knuth-Morris-Pratt (KMP) [8] and Boyer-Moore (BM)
[3] are the most well-known single-pattern matching
algorithms. Assume the length of the pattern is m and the
length of text is n. The KMP algorithm [8] utilizes a
precomputed table to prevent redundant comparisons.
KMP reduces the worst case running time from O(n×m)
to O(n+m). The precomputed table, or π-table, tells the
automata which pattern character to match against next.
That is, the π-table indicates that, when a mismatch
occurs, we know which position of the pattern to continue
the matching process without starting the matching over
from the beginning of the pattern. The time complexity of
BM algorithm is sub-linear of O(n/m) in the best case,
and O(n) in the average case . However, the performance
of the BM algorithm depends on the characters in the
input string and the pattern. The worst-case complexity to
find all occurrences in a text needs approximately 3×n
comparisons regardless whether the text contains a match
or not. Hence the worse-case time complexity is O(n×m).
Current Snort implementations use Boyer-Moore
algorithm because BM has the best average-case
performance. The Aho-Corasick(AC) [1] is designed for
multiple-pattern matching. By pre-processing the patterns
and we build a finite state machine in AC. AC algorithm
can process the input text in a linear time, so the
searching complexity of the algorithm is linear in the

22nd International Conference on Advanced Information Networking and Applications

1550-445X/08 $25.00 © 2008 IEEE
DOI 10.1109/AINA.2008.119

991

22nd International Conference on Advanced Information Networking and Applications

1550-445X/08 $25.00 © 2008 IEEE
DOI 10.1109/AINA.2008.119

991

length of the input text. Although the AC algorithm is
theoretically independent of the pattern set size, it will
become slow for a large pattern set in practice because of
the worse cache locality in accessing a large transition
table.
B. FPGA solutions

With emergence of new worms and viruses, the rule set
is constantly updated. Therefore, traditional intrusion
detection systems must be capable of being re-
programmed. Software implementation on general
purpose processors can not meet the performance
requirement of the intrusion detection systems. Many
hardware-based algorithms have been proposed, of which
many solutions are based on Field Programmable Gate
Arrays (FPGAs). FPGAs can be programmed for fast
pattern matching due to their exploitation of
reconfigurable hardware capability and their ability for
parallelism. In recent years, there are several researches
on FPGA pattern-matching for networks intrusion
detection system. The three main design approaches that
have been described are brute-force, deterministic finite
automata (DFA), and non-deterministic finite automata
(NFA).

The brute force (BF) approach compares the pattern
with the packet payload for each possible shift relative to
the beginning of the packet payload. At each clock cycle,
the window of the input stream compares with the pattern
stored in comparators and then slides forward by one byte.
All the partial matches that were detected in the previous
cycle are combined by an AND gate to produce the final
match result. This brute force approach requires O(ms)
comparisons, where m is the pattern size and s is the input
stream size. The performance of this module is only
dependent on the bus width and clock rate.

Since the sliding window is advanced by one byte at
each cycle results, the throughput of BF approach is still
poor, which is linear to the packet payload size.
Processing multiple input characters per clock cycle is
needed in order to improve the throughput of matching
module. The BF matching module can be scaled by
simply widening the bus and adding duplicate modules
[4]. Figure 1 shows a BF matching module with a 3-
input-character design for pattern “ABCD”. Each module
consists of several 1 through 3 comparators in each stage
of the pipelined register.

 The drawbacks of this approach are high area cost and
large number of unnecessary computations. There are
m×n comparators in an n-character BF module for the
pattern of length m. Sharing common comparators were
proposed in [4], [9] to reduce the logic area cost. By
eliminating duplicated comparators, the logic cost is
reduced by 25~50 percent. However, sharing comparators
result in complex and long wire design which will in turn
decrease the clock rate of the entire design. Besides, the
redundant computations are still serious. A large number
of comparisons are required for dealing with multiple
characters, as shown in Figure 1, because all possible
combinations of characters are compared against the
input string in parallel.

The deterministic finite automata (DFA) approach
[2,7,10] uses a state machine to track partial pattern
matches across clock cycles. A DFA will take in a string
of input character. For each input character it will then
transition to a state given by following a transition
function. There is one and only one transition to a next
state for each pair of state and input character. For this
reason, it is possible to match complex regular
expressions using this technique. By definition, a DFA
can have only one active state. This requires complex
state transition logic and may necessitate a state machine
with a large number of states. However, due to their more
complex logic, DFA circuits provide lower throughput
than brute-force designs and have similar character
density.

The non-deterministic finite automata (NFA) is a finite
state machine where for each pair of state and input
character there may be several possible next states. This
distinguishes it from the deterministic finite automaton
(DFA), where the next possible state is uniquely
determined. The NFA approach reduces the transition
logic complexity by allowing multiple active states. Since
it is based on a state machine, this technique can support
regular expressions. NFA circuits have a balance of logic
and state that maps very well to current FPGA
architectures, allowing them to achieve higher character
density. Sidhu et. al. [9] proposed an approach based on
nondeterministic finite automaton (NFA) for regular
expression matching.
C. Parallel Bloom Filters

Bloom filter is a space-efficient probabilistic data
structure that is used to test whether an element or string
is a member of a set. False positives are possible, but
false negatives are not. Give a string S, the bloom filter
computes k hash functions on it, producing k hashing
values ranging from 1 to m. The filter then set k bits in an
m-bit vector at the addresses corresponding to the k hash
values.

Dharmapurikar et al. [5] proposed a multiple-pattern
matching solution using parallel bloom filters. The
proposed scheme builds a bloom filter for each possible
pattern length. The Bloom filter engine reads as input a
data stream that arrives at the rate of one byte per clock
cycle. Each different pattern length that requires a
separate bloom filter is a limit factor. Especially when
dealing with very long virus definitions. Furthermore, this
scheme needs to inspect every single byte of packet
payload so that the maximum throughput is around
2.46Gbps.
D. TCAM solutions

Match

Input
string

A

A

B

A

B

B

C

C

C

D

D

D

1-bit
register

Figure 1. The BF matching module of a 3-input-character
design for pattern ‘ABCD’.

992992

Fang Yu et al.[11]proposed a TCAM-based pattern
matching algorithm for handling both short patterns and
long patterns. If a pattern is shorter than TCAM width,
then we put it into TCAM and pad it with don’t care bits.
A pattern longer than TCAM width will split into several
sub-patterns: the first TCAM width prefix pattern and
remaining suffix patterns. There are three data structures
to be stored in memory for matching long patterns:
pattern table, partial hit list, and matching table

 To match a pattern, a window of characters from
input string is looked up in the TCAM. Then, the result is
stored in a temporary table. The window is moved
forward by a character and the look up is executed again.
At every stage, the approximate partial match table entry
is taken into account to verify if a complete pattern
matched

III. PROPOSED METHOD

A. Proposed Processing Element Design
 In this section, we improve the brute force multi-

character architecture design by using the concept of
processor array. In the proposed multi-character processor
array architecture of degree n, each processing element
(PE) can handle n characters per clock cycle. The
proposed processor array architecture is based on the
following observations: instead of enabling all PEs each
of which is compared against a window of input data, we
only enable some PEs that are necessary to obtain the final
match signal. As a result, unnecessary comparisons are
significantly reduced and design complexity is also
simplified.
B. Details of Processing Element

Our processing element is designed to detect a match of
n-byte sub-pattern against packet payload. There are n
possible cases that PE should indicate a match for the
input string by using the matching results at the current

and last clocks. Consider the example in Figure 2 in which
each PE of degree 3 stores pattern ‘ABC’. The initial value
of two inputs, ‘Enable’ and ‘Match’, are set to true. There
are three cases that PE should indicate a matching signal:

(1) A window of input string is ‘ABC’ at the current
clock cycle,

(2) A window of input string are ‘BC*’ at the current
clock cycle and ‘**A’ at the previous clock cycle,
where ‘*’ means ‘don’t care’.

(3) A window of input string are ‘C**’ at the current
clock cycle and ‘*AB’ at the previous clock cycle.

In case (1), the input string exactly matches the pattern
‘ABC’ and then a match signal is output immediately. In
the cases (2) and (3), the input string matches k-byte
prefix and (m–k)-byte suffix of pattern ‘ABC’ at the
preceding clock and at the current clock, respectively. For
simplifying our description later, case (1) is called ‘exact
PE match’ and the other two cases are called ‘partial PE
match’. In order to keep the previous comparison result,
shift registers are used to delay the signals of partial PE
matching results by one clock cycle.

The PE of degree n consists of n2 8-bit comparators and
n×(n – 1)/2 SRL16 shift registers. Each n-byte pattern is
stored in the corresponding comparators of a PE. If pattern
is shorter than n, we assign a designated value, known as
wildcard, to the remaining bytes. If pattern is longer than n,
we cut it into multiple n-byte sub-patterns. It should be
noted that the last sub-pattern may be less than n bytes.

Figure 3 shows the block diagram of our processing
element, which has three inputs and two outputs. A PE is
active if and only if its input ‘Enable’ is set. The n-bit
matching result is used to identify the n possible matching
offsets between then-byte input string and sub-pattern.
To illustrate how the n-bit match output is set, we assume
that the n-byte input string is W = w1…wn and the n-byte
sub-pattern in PE is PE = p1…pn. At clock cycle i, the bit
k of the n-bit match output denoted by Match_out[k] is set
to 1 if w1…wn–k = pk+1…pn and Match_in[k] = 1 for k ∈
{1, …, n – 1} and Match_out[n] is set to 1 if w1…wn =
p1…pn and Match_in[n] = 1. Notice that the match input
signal Match_in[k] resulting from wn–k+1…wn= p1…pk at
clock i – 1 was delayed one clock by the shift register and
thus can be used at clock i.

CLK

Match

Match
Enable

Enable

PE
n bytes

n bits
Input
string

Figure 3. The proposed processing element.

Enable Enable

Match

Input
string

8

Match

8
8

detect k-byte
fi h

A

A

B

B

C

C

C

B
A

Figure 4. Details of PE with degree 3.

clock

P
E

Match
Match

111

(3)

(1)

i-1

A B *

* *

i

C * *

B

C

C

AB

* (2)

Enable 1

Input
string

Figure 2. Three possible cases that PE should indicate a
match for pattern P=’ABC’ at clock cycle i

A

993993

Each of the n possible sub-pattern matching results of
PE and the corresponding 1-bit ‘Match’ input are
combined with an AND gate to produce the 1-bit ‘Match’
output. The ‘Enable’ output is set if the input string
matches the prefix of sub-pattern or the ‘Match’ output is
set, shown as follows.

 If the PE detects any bit of matching result is true or
detects the last k-byte input string matches k-byte prefix of
sub-pattern, the output ‘Enable’ will be set. The output
signal of each PE is pipelined to the next PE. Figure 4
shows the details of PE of degree n = 3.

Processor arrays are designed to execute mathematical
operations on multiple data elements simultaneously.
They can achieve high performance by a huge replication
of simple processing elements. Processor array is a simple,
regular, and modular structure for implementing iterative
pattern matching algorithms [6]. This section describes
how we design multi-character processor array for pattern
matching. Our proposed architecture has the properties of
modularity and regularity. Two properties of our
architecture that apply to processor array are pipeline and
parallel techniques and regular multi-character matching
modules.
C. Architecture

We first give some necessary notations as follows
n: Multi-character degree of our processing element.
m: The length of pattern P = p1 p2 ……pm

s: Packet payload size. The input text T= t1 t2 ……ts

W: a window of input string W = w1 w2 …..wn

Our proposed architecture uses pipeline and parallel
techniques to deal with a set of patterns. It enables high-
performance and easily configurable design. For a pattern
P, one or several PEs executed in a pipelining fashion are
organized as a processor array according to pattern length
and multi-character degree of PE. The n-byte input stream
is compared against n2 comparators in parallel. Moreover,

all processor arrays designed for a certain pattern are
executed in parallel. Since the design of PE is scalable, we
can find a balance between area cost and throughput
according to different requirements.

The proposed pipeline and parallel architecture for a set
of patterns is shown in Figure 5. The processor array
consists of ⎡m/n⎤ PEs of degree n. The last PE in processor
array indicates the final match of a pattern. The output
‘Enable’ of the previous pipeline stage is forwarded as the
enable input of the next PE. If the ‘Enable’ input of PE is
set, the PE would be active by a rising clock edge. Two
inputs ‘Enable’ and ‘Match’ of first PE in processor array
are always set. The window of input stream is broadcast
on the input bus to all PEs, and then is shifted by n bytes
per clock cycle. Because the partial matching signal is
delayed in a PE, the final match result of processor array
may delay one clock cycle. The details will be described
in next section.

At each pipeline stage, the outputs of PE are stored into
the registers, and they are feed to next PE by a rising clock
edge. The data in a register is set to false at first except the
first one. If the input ‘Enable’ of PE is false, we must
unset the register to avoid enabling next PE that are fed
with old data from register. Figure 6 shows the details for
a pipeline stage.

Another advantage of our proposed processor array is
that we provide a computationally efficient architecture.
By disabling some PEs that had no effect to final
matching result, a large number of computations can be
saved. We observe that it is rare for an incoming packet to
fully match more than hundred of patterns. On the other
hand, most PEs for those un-matching patterns that never
occur in packet payload can be disabled efficiently. The
concept of our saving-computation design is based on the
following observation:

Two matching conditions, ‘exact PE match’ and ‘partial
PE match’ in a PE were described in section II-B, may
occur. We have the corresponding strategies to each of
them. The PE never generates a ‘partial PE match’ at
current clock if input string does not match k-byte prefix
of sub-pattern at last clock, where 0 < k < n. The pattern P
is divided into several sub-patterns and those sub-patterns
are stored in PEs. If the result of comparing n-byte input
string against first sub-pattern of P neither exact match
nor k-byte prefix match, it implies that a real match for
pattern P will not occur from locations b, b+1,, b+n-1,
where b is location of first byte in input string. Thus, we
can disable the following PEs to save unnecessary
computations. Otherwise, we must enable the following
PEs to detect the final match.

By extending this concept to other PEs, our processor
array achieves a computationally efficient architecture.

Enable-out =

0: otherwise

1: Match output is set or
 wn–k+1wn–k … wn = p1p2 … pk,

where k ∈ {1, …, n – 1}

CLK

Final matchPE PE PE PE
Enable
Match

Final matchPE PE PE PE
Enable
Match

Final matchPE PE PE PE
Enable
Match

Input
stream

Pattern 1

Pattern 2

Pattern k

Figure 5 A pipeline stage

register

clear

Enable
Match PE

Figure 6. A pipelined PE.

994994

The details of our computation saving technique working
on processor array are described as follows:

Given a pattern P = p1 p2 ……pm, and input text T = t1
t2 ……ts. We assume multi-character degree of our PE is n.

the pattern P is divided into ⎡m/n⎤ sub-patterns, and those
sub-patterns are stored in the ⎡m/n⎤ corresponsive PEs
(PE1, PE2, ….., PE⎡m/n⎤). The inputs ‘Enable’ and ’Pre-
Match’ of all PEs are unset except the first one before
starting to search. In the search phase, there are four cases
when we compare a window W = w1 w2 …..wn of input text
against sub-pattern of PEg at clock cycle i, where we
assume the location of w1 is b (w1 = tb) and 1 ≤ g ≤ ⎡m/n⎤.

(1) Exact match:
The window W matches sub-pattern PEg exactly, where

w1 w2 ...wn = pg1 pg2 ...pgn. It implies that a real pattern
match may occur if the input ‘Pre-Match’ of PEg is true
and the subsequent m–(g×n) bytes of input string are equal
to p(g+1)1 ...p(g+1)n,…, p(m/n)1 ...p(m/n)n. Therefore, if the input
‘Match’ of PEg is true in this case, the outputs ‘Enable’
and ‘Match’ of PEg are set. On the contrary, the outputs of
PEg are unset.

(2) k-byte prefix match:
The k-byte suffix of W match k-byte the prefix sub-

pattern, where w(n-k+1) w(n-k+2) …..wn = pg1 pg2 ……pgk. It
implies that a real pattern match may occur if subsequent
m–(g×n)+(n–k) bytes of input string are equal to pg(k+1)…pgn
p(g+1)1 ...p(g+1)n,…, p(m/n)1 ...p(m/n)n. Because those k-byte
matching results are delayed one clock by shift registers,
the partial PE match may occur at next clock cycle.
Therefore, we must enable next PE even if the input
‘Match’ of PEg is false.

(3) (n-k)-byte suffix match:
The (n-k)-byte prefix of W matches (n-k)-byte suffix of

sub-pattern, where w1 w2…wn-k = pg(n-k+1) pg(n-k+2) …pgn.
This case is similar to case (1). It implies that a real
pattern match may occur if the input ‘Match’ of PEg is
true and the subsequent m–(g×n) bytes of input string are
equal to p(g+1)1 ...p(g+1)n,…, p(m/n)1 ...p(m/n)n. Therefore, if the
input ‘Match’ of PEg is true in this case, the outputs
‘Enable’ and ‘Match’ of PEg are set. On the contrary, the

outputs of PEg are unset. The difference between cases (1)
and (3) is the final matching result will delay one clock.

(4) Mismatch:
If the cases (1), (2), and (3) were not discovered, a real

pattern match will not occur from current input string.
Therefore, the next PE is unset to save unnecessary
computations.

If the cases (1), (2), and (3) were not discovered, a real
pattern match will not occur from current input string.
Therefore, the next PE is unset to save unnecessary
computations.
IV. Performance Evaluation

We evaluate the efficiency of our multi-character
processor array architecture using two metrics: area cost
and computation-saving rate. We used the Snort rule set
and DEFCON8[13] packet traces for our experiments. We
used the Snort [12] version of 2.4 for our experiments.
The total number of unique patterns in Snort is 2535. The
pattern length distribution is shown in Figure 7. The
average length of patterns is 17 bytes and the maximum
length of patterns is 364 bytes.

 Since our PE design is scalable, we considered three
multi-character degrees: 3, 4, and 5 to evaluate our
architecture. As we know that increasing the multi-
character degree of PE increases both the throughput and
area cost per PE. Thus, we can find a balance between
performance and cost.
A. Analysis of area cost

In this section, we analyze the area cost by real Snort
patterns. Suppose we have a total of k patterns, each with
mi bytes. If we set the multi-character degree of PE is n,
then each pattern will be cut into ⎡mi/n⎤ PEs. Each PE
consists of n2 8-bits character comparators and n(n–1)/2
SRL16 shift registers. Therefore, we need total ∑ ⎡mi/n⎤×
n2 comparators and ∑ ⎡mi/n⎤×n(n–1)/2 shift registers in
our architecture.

Our Snort rule set contains 2535 unique patterns and
total 44,416 characters. The average length of patterns is
17 bytes and the maximum length of patterns is 364 bytes.
For our experiments, the value of n should be smaller than
six to achieve the best benefit of cost and performance. If
we use 3 as multi-character degree of PE, we need total
15,733 PEs in our entire system and have seven PEs on

0

20

40

60

80

100

120

140

160

180

1 8 15 22 29 36 43 50

n
u
m

b
er

 o
f

p
at

te
rn

s

pattern length

Figure 7. Distribution of the string lengths
in the Snort database

n=3 n=4 n=5
Computation
reduction rate 83% 78% 74%

Table 3. Computation reduction rates for different multi-
character degree.

 Trace 1 Trace 2 Trace 3 Trace 4 Trace 5

Computation
reduction rate 83% 83% 83% 83% 83%

Table 2. Computation reduction rates of various traces
with n = 3.

 n=3 n=4 n=5
of comparators per PE 9 16 25
of shift registers per PE 3 6 10

of PEs required for Snort 15,733 12,020 9,882
Avg # of PEs for a pattern 6.2 4.7 3.9

Table 1. Area cost for different multi-character degrees.

995995

average for a pattern. Table 1 shows the area cost for
different multi-character degrees. The results show that
entire cost will increase significant as n increases.
B. Computation reduction

In order to measure the computation reduction rates, we
utilize five DEFCON8 packet traces for our experiments.
We compare our computation reduction techniques
against the general approach that enables all of the PEs
during the search phase. The general n-character approach
requires O(ms) comparisons, where m is the pattern size
and s is the input string size. Our approach can reduce a
large amount of computations by disabling certain PEs
that had no effect on final results. First, we calculated the
computation reduction rate by using different DEFCON8
packet traces and multi-character degree n=3. Table 2
shows that the average computation reduction rate is about
83%, which means we only enable 2675 PEs per clock
cycle. This result explains that the computation reduction
rate is stable for different packet traces.

We also calculate the results with various values for n.
Since the Snort pattern set contains many short patterns
and average length of patterns is 17 bytes, a large value of
n will diminish the effectiveness of our computation
reduction technique and increase the cost of PE. Therefore,
we set n to be 3, 4, and 5. Table 3 shows that the
computation reduction rate will decrease as n increases.

V. CONCLUSION

In this paper, we proposed an effective pattern
matching approach for high-speed network. We used
Snort pattern set and DEFCON packet traces to evaluate
the performance. The approach has modular and
computation reduction properties that can reduce about
83% computation against brute force approach. The PE
design is simple and flexible. Thus, choosing n is a
tradeoff between cost and performance.

REFERENCES

[1] A. Aho and M. Corasick, “Efficient string matching:
An aid to bibliographic search,” Communications
of the ACM, vol. 18, no. 6, pp.333-343, June 1975.

[2] M. Aldwairi, T. Conte, and P. Franzon.
“Configurable string matching hardware for
speeding up intrusion detection.” SIGARCH
Comput. Archit. News, 33(1):99.107, 2005.

[3] R. S. Boyer and J. S. Moore, “A fast string
searching algorithm,” Communications of the ACM,
vol. 20, no 10, pp.762-772, Oct. 1977.

[4] Young H. Cho, W.H. Mangione-Smith, “Deep
packet filter with dedicated logic and read only
memories,” in Proceedings of the 12th IEEE
Symposium of Field-Programmable Custom
Computing Machines, 2004.

[5] S. Dharmapurikar, P. Krishnamurthy, T. S. Sproull
and J. W. Lockwood, “Deep Packet Inspection
using Parallel Bloom Filters”, IEEE Micro, vol. 24,
no. 1, pp. 52-61, Jan. 2004.

[6] Fayez Gebali, A. N. M. Ehtesham Rafiq,
“Processor Array Architectures for Deep Packet
Classification,” IEEE Trans. Parallel Distrib. Syst.
17(3): 241-252 (2006)

[7] Moscola J, Lockwood J, Loui RP, Pachos M.
Implementation of a content-scanning module for
an Internet firewall. In: Pocek KL, ed. Proc. of the
11th Annual IEEE Symp. on Field-Programmable
Custom Computing Machines (FCCM), pp.31-38,
2003.

[8] D. E. Knuth, J. H. M. Jr., and V. R. Pratt, “Fast
pattern matching in strings,” SIAM J. Comput., vol.
6, no. 2, pp. 323–350, June 1977.

[9] R. Sidhu and V. K. Prasanna. Fast Regular
Expression Matching Using FPGAs. In Proceedings
of the 9th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines
(FCCM’01), pages 227–238, Rohnert Park, CA,
USA, May 2001.

[10] Lin Tan, Timothy Sherwood, "A High Throughput
String Matching Architecture for Intrusion
Detection and Prevention," isca, pp. 112-122, 32nd
Annual International Symposium on Computer
Architecture (ISCA'05), 2005

[11] F. Yu, R. H. Katz, T. V. Lakshman, “Gigabit Rate
Packet Pattern-Matching Using TCAM,” in
Proceeding of 12th IEEE International Conference
on Network Protocols (ICNP’04), Berlin, Germany,
Oct. 2004, pp. 174-183.

[12] Snort-the de Facto Standard for Intrusion
Detection/Prevention, [Online] www.snort.org

[13] DEFCON. http://www.shmoo.com/,
http://cctf.shmoo.com/data/cctf-defcon8/

996996

