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Abstract—Network Intrusion Detection System (NIDS) is a 
system developed for identifying attacks by using a set of 
rules. NIDS is an efficient way to provide the security 
protection for today’s internet. Pattern match algorithm 
plays an important role in NIDS that performs searches 
against multiple patterns for a string match. Pattern 
matching is a computationally expensive task. Traditional 
software-based NIDS solutions usually can not achieve a 
high-speed required for ever growing Internet attacks. In 
order to satisfy high-speed packet content inspection, 
hardware-implementable pattern match algorithm is 
required. In this paper, we propose a hardware-based 
pattern match architecture that employs a multi-character 
processor array. The proposed multi-character processor 
array is a parallel and pipelined architecture which can 
process multiple characters of the input stream per cycle. 
The proposed architecture can reduce a lot of unnecessary 
computations and thus it is power efficient. We use Snort 
pattern sets and DEFCON packet traces to perform our 
simulations. Our experiment results show that, with a 3-
character processor array, we can reduce 83% of the 
computations compared with the brute force approach. 

Keywords: intrusion detection, pattern matching, Snort, 
processor array 

I. INTRODUCTION 

With the growth of the Internet, large number of 
viruses and malicious probes spread every day. Many 
network users are vulnerable to attacks. Traditionally, 
networks have been protected using firewalls that monitor 
and filter network traffic. Firewalls usually examine the 
packet headers to determine whether or the packets are 
allowed to pass through or dropped. For example, if a 
user attempts to connect to a disallowed port, such as port 
number 80 (http), the connection is rejected. However, 
firewalls are not effective to protect networks from 
worms and viruses. Today, the most commonly used 
defense strategy is to use end-host based solutions that 
rely on security tools, such as antivirus software. The 
main drawback of these approaches is the inability to 
protect thousands of hosts in less than an hour. 

Network intrusion detection systems (NIDS) are 
utilized to detect malicious attacks and protect Internet 
system. The intrusion detection system are growing in 
popularity because they provide an efficient protection to 
attacks. The NIDS differs from a firewall in that it needs 
to scan both the headers and the payloads of each 
incoming packet for thousands of suspicious patterns. By 
inspecting both packet headers and payloads to identify 
attack signatures, NIDS is able to discover whether 
malicious attacks or hackers are attempting to intrude.  

Because most of the known attacks can be represented 
with patterns or combinations of multiple sub-patterns, 

pattern matching has become a performance bottleneck in 
intrusion detection system. Current NIDS pattern 
databases consist of thousands of patterns and thus 
searching against them is a computationally expensive 
task. Traditionally, software-based NIDS may be 
overloaded when the packet arrival rate becomes high. To 
keep up with the high-speed networks, a hardware-based 
NIDS implementation is generally needed. 

The rest of the paper is organized as follows: In section 
2, we review and summarize the related works. In section 
3, we present the proposed multi-character processor array 
design. The performance evaluation results are presented 
in section 4. Finally, we present the conclusions. 

II. RELATED WORK 

In the past few years, several interesting algorithms 
and techniques have been proposed for multiple-pattern 
matching in the content of network intrusion detection. 
Current software-based NIDS cannot meet the bandwidth 
requirement of a multiple-gigabit network. Hence, several 
hardware-based solutions have been proposed to solve the 
problem. In this chapter, we divide common pattern 
matching solutions for intrusion detection system into 
four categories: software-based, FGPA-based, Bloom 
filter based, TCAM based, and brute force approaches.  
A. Software-based solutions 

Knuth-Morris-Pratt (KMP) [8] and Boyer-Moore (BM) 
[3] are the most well-known single-pattern matching 
algorithms. Assume the length of the pattern is m and the 
length of text is n. The KMP algorithm [8] utilizes a 
precomputed table to prevent redundant comparisons. 
KMP reduces the worst case running time from O(n×m) 
to O(n+m). The precomputed table, or π-table, tells the 
automata which pattern character to match against next. 
That is, the π-table indicates that, when a mismatch 
occurs, we know which position of the pattern to continue 
the matching process without starting the matching over 
from the beginning of the pattern. The time complexity of 
BM algorithm is sub-linear of O(n/m) in the best case, 
and O(n) in the average case . However, the performance 
of the BM algorithm depends on the characters in the 
input string and the pattern. The worst-case complexity to 
find all occurrences in a text needs approximately 3×n 
comparisons regardless whether the text contains a match 
or not. Hence the worse-case time complexity is O(n×m). 
Current Snort implementations use Boyer-Moore 
algorithm because BM has the best average-case 
performance. The Aho-Corasick(AC) [1] is designed for 
multiple-pattern matching. By pre-processing the patterns 
and we build a finite state machine in AC. AC algorithm 
can process the input text in a linear time, so the 
searching complexity of the algorithm is linear in the 
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length of the input text. Although the AC algorithm is 
theoretically independent of the pattern set size, it will 
become slow for a large pattern set in practice because of 
the worse cache locality in accessing a large transition 
table.  
B. FPGA solutions 

With emergence of new worms and viruses, the rule set 
is constantly updated. Therefore, traditional intrusion 
detection systems must be capable of being re-
programmed. Software implementation on general 
purpose processors can not meet the performance 
requirement of the intrusion detection systems. Many 
hardware-based algorithms have been proposed, of which 
many solutions are based on Field Programmable Gate 
Arrays (FPGAs). FPGAs can be programmed for fast 
pattern matching due to their exploitation of 
reconfigurable hardware capability and their ability for 
parallelism. In recent years, there are several researches 
on FPGA pattern-matching for networks intrusion 
detection system. The three main design approaches that 
have been described are brute-force, deterministic finite 
automata (DFA), and non-deterministic finite automata 
(NFA).  

The brute force (BF) approach compares the pattern 
with the packet payload for each possible shift relative to 
the beginning of the packet payload. At each clock cycle, 
the window of the input stream compares with the pattern 
stored in comparators and then slides forward by one byte. 
All the partial matches that were detected in the previous 
cycle are combined by an AND gate to produce the final 
match result. This brute force approach requires O(ms) 
comparisons, where m is the pattern size and s is the input 
stream size. The performance of this module is only 
dependent on the bus width and clock rate.  

Since the sliding window is advanced by one byte at 
each cycle results, the throughput of BF approach is still 
poor, which is linear to the packet payload size. 
Processing multiple input characters per clock cycle is 
needed in order to improve the throughput of matching 
module. The BF matching module can be scaled by 
simply widening the bus and adding duplicate modules 
[4]. Figure 1 shows a BF matching module with a 3-
input-character design for pattern “ABCD”. Each module 
consists of several 1 through 3 comparators in each stage 
of the pipelined register.  

 The drawbacks of this approach are high area cost and 
large number of unnecessary computations. There are  
m×n comparators in an n-character BF module for the 
pattern of length m. Sharing common comparators were 
proposed in [4], [9] to reduce the logic area cost. By 
eliminating duplicated comparators, the logic cost is 
reduced by 25~50 percent. However, sharing comparators 
result in complex and long wire design which will in turn 
decrease the clock rate of the entire design. Besides, the 
redundant computations are still serious. A large number 
of comparisons are required for dealing with multiple 
characters, as shown in Figure 1, because all possible 
combinations of characters are compared against the 
input string in parallel. 

The deterministic finite automata (DFA) approach 
[2,7,10] uses a state machine to track partial pattern 
matches across clock cycles. A DFA will take in a string 
of input character. For each input character it will then 
transition to a state given by following a transition 
function. There is one and only one transition to a next 
state for each pair of state and input character. For this 
reason, it is possible to match complex regular 
expressions using this technique. By definition, a DFA 
can have only one active state. This requires complex 
state transition logic and may necessitate a state machine 
with a large number of states. However, due to their more 
complex logic, DFA circuits provide lower throughput 
than brute-force designs and have similar character 
density. 

The non-deterministic finite automata (NFA) is a finite 
state machine where for each pair of state and input 
character there may be several possible next states. This 
distinguishes it from the deterministic finite automaton 
(DFA), where the next possible state is uniquely 
determined. The NFA approach reduces the transition 
logic complexity by allowing multiple active states. Since 
it is based on a state machine, this technique can support 
regular expressions. NFA circuits have a balance of logic 
and state that maps very well to current FPGA 
architectures, allowing them to achieve higher character 
density.  Sidhu et. al. [9] proposed an approach based on 
nondeterministic finite automaton (NFA) for regular 
expression matching. 
C. Parallel Bloom Filters 

Bloom filter is a space-efficient probabilistic data 
structure that is used to test whether an element or string 
is a member of a set. False positives are possible, but 
false negatives are not. Give a string S, the bloom filter 
computes k hash functions on it, producing k hashing 
values ranging from 1 to m. The filter then set k bits in an 
m-bit vector at the addresses corresponding to the k hash 
values.  

Dharmapurikar et al. [5] proposed a multiple-pattern 
matching solution using parallel bloom filters. The 
proposed scheme builds a bloom filter for each possible 
pattern length. The Bloom filter engine reads as input a 
data stream that arrives at the rate of one byte per clock 
cycle. Each different pattern length that requires a 
separate bloom filter is a limit factor. Especially when 
dealing with very long virus definitions. Furthermore, this 
scheme needs to inspect every single byte of packet 
payload so that the maximum throughput is around 
2.46Gbps.  
D. TCAM solutions 
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Figure 1. The BF matching module of a 3-input-character 
design for pattern ‘ABCD’. 
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Fang Yu et al.[11]proposed a TCAM-based pattern 
matching algorithm for handling both short patterns and 
long patterns. If a pattern is shorter than TCAM width, 
then we put it into TCAM and pad it with don’t care bits. 
A pattern longer than TCAM width will split into several 
sub-patterns: the first TCAM width prefix pattern and 
remaining suffix patterns. There are three data structures 
to be stored in memory for matching long patterns: 
pattern table, partial hit list, and matching table 

  To match a pattern, a window of characters from 
input string is looked up in the TCAM. Then, the result is 
stored in a temporary table. The window is moved 
forward by a character and the look up is executed again. 
At every stage, the approximate partial match table entry 
is taken into account to verify if a complete pattern 
matched 

III. PROPOSED METHOD 

A. Proposed Processing Element Design 
  In this section, we improve the brute force multi-

character architecture design by using the concept of 
processor array. In the proposed multi-character processor 
array architecture of degree n, each processing element 
(PE) can handle n characters per clock cycle. The 
proposed processor array architecture is based on the 
following observations: instead of enabling all PEs each 
of which is compared against a window of input data, we 
only enable some PEs that are necessary to obtain the final 
match signal. As a result, unnecessary comparisons are 
significantly reduced and design complexity is also 
simplified.  
B. Details of Processing Element 

Our processing element is designed to detect a match of 
n-byte sub-pattern against packet payload. There are n 
possible cases that PE should indicate a match for the 
input string by using the matching results at the current 

and last clocks. Consider the example in Figure 2 in which 
each PE of degree 3 stores pattern ‘ABC’. The initial value 
of two inputs, ‘Enable’ and ‘Match’, are set to true. There 
are three cases that PE should indicate a matching signal: 

(1) A window of input string is ‘ABC’ at the current 
clock cycle, 

(2) A window of input string are ‘BC*’ at the current 
clock cycle and ‘**A’ at the previous clock cycle, 
where ‘*’ means ‘don’t care’. 

(3) A window of input string are ‘C**’ at the current 
clock cycle and ‘*AB’ at the previous clock cycle. 

In case (1), the input string exactly matches the pattern 
‘ABC’ and then a match signal is output immediately. In 
the cases (2) and (3), the input string matches k-byte 
prefix and (m–k)-byte suffix of pattern ‘ABC’ at the 
preceding clock and at the current clock, respectively. For 
simplifying our description later, case (1) is called ‘exact 
PE match’ and the other two cases are called ‘partial PE 
match’. In order to keep the previous comparison result, 
shift registers are used to delay the signals of partial PE 
matching results by one clock cycle. 

The PE of degree n consists of n2 8-bit comparators and 
n×(n – 1)/2 SRL16 shift registers. Each n-byte pattern is 
stored in the corresponding comparators of a PE. If pattern 
is shorter than n, we assign a designated value, known as 
wildcard, to the remaining bytes. If pattern is longer than n, 
we cut it into multiple n-byte sub-patterns. It should be 
noted that the last sub-pattern may be less than n bytes.  

Figure 3 shows the block diagram of our processing 
element, which has three inputs and two outputs. A PE is 
active if and only if its input ‘Enable’ is set. The n-bit 
matching result is used to identify the n possible matching 
offsets between then-byte input string and sub-pattern.  
To illustrate how the n-bit match output is set, we assume 
that the n-byte input string is W = w1…wn and the n-byte 
sub-pattern in PE is PE = p1…pn. At clock cycle i, the bit 
k of the n-bit match output denoted by Match_out[k] is set 
to 1 if w1…wn–k =  pk+1…pn and Match_in[k] = 1 for k ∈ 
{1, …, n – 1} and Match_out[n] is set to 1 if  w1…wn =  
p1…pn and Match_in[n] = 1. Notice that the match input 
signal Match_in[k] resulting from wn–k+1…wn=  p1…pk at 
clock i – 1 was delayed one clock by the shift register and 
thus can be used at clock i.  
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Figure 3. The proposed processing element. 
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Each of the n possible sub-pattern matching results of 
PE and the corresponding 1-bit ‘Match’ input are 
combined with an AND gate to produce the 1-bit ‘Match’ 
output. The ‘Enable’ output is set if the input string 
matches the prefix of sub-pattern or the ‘Match’ output is 
set, shown as follows.  

    If the PE detects any bit of matching result is true or 
detects the last k-byte input string matches k-byte prefix of 
sub-pattern, the output ‘Enable’ will be set. The output 
signal of each PE is pipelined to the next PE. Figure 4 
shows the details of PE of degree n = 3. 

Processor arrays are designed to execute mathematical 
operations on multiple data elements simultaneously. 
They can achieve high performance by a huge replication 
of simple processing elements. Processor array is a simple, 
regular, and modular structure for implementing iterative 
pattern matching algorithms [6]. This section describes 
how we design multi-character processor array for pattern 
matching. Our proposed architecture has the properties of 
modularity and regularity. Two properties of our 
architecture that apply to processor array are pipeline and 
parallel techniques and regular multi-character matching 
modules. 
C. Architecture 

We first give some necessary notations as follows 
n: Multi-character degree of our processing element.  
m: The length of pattern P = p1 p2 ……pm 

s: Packet payload size. The input text T= t1 t2 ……ts 

W: a window of input string W = w1 w2 …..wn 

Our proposed architecture uses pipeline and parallel 
techniques to deal with a set of patterns. It enables high-
performance and easily configurable design. For a pattern 
P, one or several PEs executed in a pipelining fashion are 
organized as a processor array according to pattern length 
and multi-character degree of PE. The n-byte input stream 
is compared against n2 comparators in parallel. Moreover, 

all processor arrays designed for a certain pattern are 
executed in parallel. Since the design of PE is scalable, we 
can find a balance between area cost and throughput 
according to different requirements.  

The proposed pipeline and parallel architecture for a set 
of patterns is shown in Figure 5. The processor array 
consists of ⎡m/n⎤ PEs of degree n. The last PE in processor 
array indicates the final match of a pattern. The output 
‘Enable’ of the previous pipeline stage is forwarded as the 
enable input of the next PE. If the ‘Enable’ input of PE is 
set, the PE would be active by a rising clock edge. Two 
inputs ‘Enable’ and ‘Match’ of first PE in processor array 
are always set. The window of input stream is broadcast 
on the input bus to all PEs, and then is shifted by n bytes 
per clock cycle. Because the partial matching signal is 
delayed in a PE, the final match result of processor array 
may delay one clock cycle. The details will be described 
in next section.  

At each pipeline stage, the outputs of PE are stored into 
the registers, and they are feed to next PE by a rising clock 
edge. The data in a register is set to false at first except the 
first one. If the input ‘Enable’ of PE is false, we must 
unset the register to avoid enabling next PE that are fed 
with old data from register. Figure 6 shows the details for 
a pipeline stage. 

Another advantage of our proposed processor array is 
that we provide a computationally efficient architecture. 
By disabling some PEs that had no effect to final 
matching result, a large number of computations can be 
saved. We observe that it is rare for an incoming packet to 
fully match more than hundred of patterns. On the other 
hand, most PEs for those un-matching patterns that never 
occur in packet payload can be disabled efficiently. The 
concept of our saving-computation design is based on the 
following observation:  

Two matching conditions, ‘exact PE match’ and ‘partial 
PE match’ in a PE were described in section II-B, may 
occur. We have the corresponding strategies to each of 
them. The PE never generates a ‘partial PE match’ at 
current clock if input string does not match k-byte prefix 
of sub-pattern at last clock, where 0 < k < n. The pattern P 
is divided into several sub-patterns and those sub-patterns 
are stored in PEs. If the result of comparing n-byte input 
string against first sub-pattern of P neither exact match 
nor k-byte prefix match, it implies that a real match for 
pattern P will not occur from locations b, b+1, ...., b+n-1, 
where b is location of first byte in input string. Thus, we 
can disable the following PEs to save unnecessary 
computations. Otherwise, we must enable the following 
PEs to detect the final match.  

By extending this concept to other PEs, our processor 
array achieves a computationally efficient architecture. 

Enable-out = 

0: otherwise 

1: Match output is set or  
    wn–k+1wn–k … wn = p1p2 … pk, 

where k ∈ {1, …, n – 1} 

CLK 

Final matchPE PE PE PE 
Enable  
Match 

Final matchPE PE PE PE 
Enable  
Match 

Final matchPE PE PE PE 
Enable  
Match 

Input 
stream 

Pattern 1 

Pattern 2 

Pattern k 

Figure 5 A pipeline stage 

register 

clear 

Enable
Match PE 

Figure 6. A pipelined PE. 

994994



The details of our computation saving technique working 
on processor array are described as follows: 

Given a pattern P = p1 p2 ……pm, and input text T = t1 
t2 ……ts. We assume multi-character degree of our PE is n. 

the pattern P is divided into ⎡m/n⎤  sub-patterns, and those 
sub-patterns are stored in the ⎡m/n⎤ corresponsive PEs 
(PE1, PE2, ….., PE⎡m/n⎤). The inputs ‘Enable’ and ’Pre-
Match’ of all PEs are unset except the first one before 
starting to search. In the search phase, there are four cases 
when we compare a window W = w1 w2 …..wn of input text 
against sub-pattern of PEg at clock cycle i, where we 
assume the location of w1 is b ( w1 = tb ) and  1 ≤ g ≤ ⎡m/n⎤. 

(1) Exact match:  
The window W matches sub-pattern PEg exactly, where 

w1 w2 ...wn = pg1 pg2 ...pgn. It implies that a real pattern 
match may occur if the input ‘Pre-Match’ of PEg is true 
and the subsequent m–(g×n) bytes of input string are equal 
to p(g+1)1 ...p(g+1)n,…, p(m/n)1 ...p(m/n)n. Therefore, if the input 
‘Match’ of PEg is true in this case, the outputs ‘Enable’ 
and ‘Match’ of PEg are set. On the contrary, the outputs of 
PEg are unset. 

(2) k-byte prefix match:  
The k-byte suffix of W match k-byte the prefix sub-

pattern, where w(n-k+1) w(n-k+2) …..wn = pg1 pg2 ……pgk. It 
implies that a real pattern match may occur if subsequent  
m–(g×n)+(n–k) bytes of input string are equal to pg(k+1)…pgn 
p(g+1)1 ...p(g+1)n,…, p(m/n)1 ...p(m/n)n. Because those k-byte 
matching results are delayed one clock by shift registers, 
the partial PE match may occur at next clock cycle. 
Therefore, we must enable next PE even if the input 
‘Match’ of PEg is false. 

(3) (n-k)-byte suffix match:  
The (n-k)-byte prefix of W matches (n-k)-byte suffix of 

sub-pattern, where w1 w2…wn-k = pg(n-k+1) pg(n-k+2) …pgn. 
This case is similar to case (1). It implies that a real 
pattern match may occur if the input ‘Match’ of PEg is 
true and the subsequent m–(g×n) bytes of input string are 
equal to p(g+1)1 ...p(g+1)n,…, p(m/n)1 ...p(m/n)n. Therefore, if the 
input ‘Match’ of PEg is true in this case, the outputs 
‘Enable’ and ‘Match’ of PEg are set. On the contrary, the 

outputs of PEg are unset. The difference between cases (1) 
and (3) is the final matching result will delay one clock.   

(4) Mismatch:  
If the cases (1), (2), and (3) were not discovered, a real 

pattern match will not occur from current input string. 
Therefore, the next PE is unset to save unnecessary 
computations.  

If the cases (1), (2), and (3) were not discovered, a real 
pattern match will not occur from current input string. 
Therefore, the next PE is unset to save unnecessary 
computations.  
IV. Performance Evaluation 

We evaluate the efficiency of our multi-character 
processor array architecture using two metrics: area cost 
and computation-saving rate. We used the Snort rule set 
and DEFCON8[13] packet traces for our experiments. We 
used the Snort [12] version of 2.4 for our experiments. 
The total number of unique patterns in Snort is 2535. The 
pattern length distribution is shown in Figure 7. The 
average length of patterns is 17 bytes and the maximum 
length of patterns is 364 bytes.  

 Since our PE design is scalable, we considered three 
multi-character degrees: 3, 4, and 5 to evaluate our 
architecture. As we know that increasing the multi-
character degree of PE increases both the throughput and 
area cost per PE. Thus, we can find a balance between 
performance and cost. 
A. Analysis of area cost 

In this section, we analyze the area cost by real Snort 
patterns. Suppose we have a total of k patterns, each with 
mi bytes. If we set the multi-character degree of PE is n, 
then each pattern will be cut into ⎡mi/n⎤ PEs. Each PE 
consists of n2 8-bits character comparators and n(n–1)/2 
SRL16 shift registers. Therefore, we need total ∑ ⎡mi/n⎤×
n2 comparators and ∑ ⎡mi/n⎤×n(n–1)/2 shift registers in 
our architecture. 

Our Snort rule set contains 2535 unique patterns and 
total 44,416 characters. The average length of patterns is 
17 bytes and the maximum length of patterns is 364 bytes. 
For our experiments, the value of n should be smaller than 
six to achieve the best benefit of cost and performance. If 
we use 3 as multi-character degree of PE, we need total 
15,733 PEs in our entire system and have seven PEs on 
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n=3 n=4 n=5
Computation 
reduction rate 83% 78% 74% 

Table 3. Computation reduction rates for different multi-
character degree. 

 Trace 1 Trace 2 Trace 3 Trace 4 Trace 5

Computation 
reduction rate 83% 83% 83% 83% 83% 

Table 2. Computation reduction rates of various traces
with n = 3. 

 n=3 n=4 n=5 
# of comparators per PE 9 16 25 
# of shift registers per PE 3 6 10 

# of PEs required for Snort 15,733 12,020 9,882 
Avg # of PEs for a pattern 6.2 4.7 3.9 

Table 1. Area cost for different multi-character degrees.
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average for a pattern. Table 1 shows the area cost for 
different multi-character degrees. The results show that 
entire cost will increase significant as n increases.  
B. Computation reduction 

In order to measure the computation reduction rates, we 
utilize five DEFCON8 packet traces for our experiments. 
We compare our computation reduction techniques 
against the general approach that enables all of the PEs 
during the search phase. The general n-character approach 
requires O(ms) comparisons, where m is the pattern size 
and s is the input string size. Our approach can reduce a 
large amount of computations by disabling certain PEs 
that had no effect on final results. First, we calculated the 
computation reduction rate by using different DEFCON8 
packet traces and multi-character degree n=3. Table 2 
shows that the average computation reduction rate is about 
83%, which means we only enable 2675 PEs per clock 
cycle. This result explains that the computation reduction 
rate is stable for different packet traces.    

We also calculate the results with various values for n. 
Since the Snort pattern set contains many short patterns 
and average length of patterns is 17 bytes, a large value of 
n will diminish the effectiveness of our computation 
reduction technique and increase the cost of PE. Therefore, 
we set n to be 3, 4, and 5. Table 3 shows that the 
computation reduction rate will decrease as n increases. 

V. CONCLUSION 

In this paper, we proposed an effective pattern 
matching approach for high-speed network. We used 
Snort pattern set and DEFCON packet traces to evaluate 
the performance. The approach has modular and 
computation reduction properties that can reduce about 
83% computation against brute force approach. The PE 
design is simple and flexible. Thus, choosing n is a 
tradeoff between cost and performance.  
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