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Abstract—Multibit trie-based pipelines for IP lookups have been demonstrated to be able to achieve the throughput of over 100 Gbps.
However, it is hard to store the entire multibit trie into the on-chip memory of reconfigurable hardware devices. Thus, their performance is
limited by the speed of off-chip memory. In this paper, we propose a new pipeline design called LayeredTrees that overcomes the
shortcomings of the multibit trie-based pipelines. LayeredTrees pipelines the multi-layered multiway balanced prefix trees based on the
concept of most specific prefixes. LayeredTrees is optimized to fit the entire routing table into the on-chip memory of reconfigurable
hardware devices. No prefix duplication is needed and each -bit prefix is encoded in a ( )-bit format to savememory. Assume the
minimal packet size is 40 bytes. Our experimental results on Virtex-6 XC6VSX315T FPGA chip show that the throughputs of 33.6 and
120.8 Gbps can be achieved by the proposed single search engine and multiple search engines running in parallel, respectively.
Furthermore, the impact of update operations on the search performance isminimal.With the same FPGAdevice, an IPv6 routing table of
290,503 distinct entries can also be supported.

Index Terms—IP lookup, most specific prefix, FPGA

1 INTRODUCTION

AN IP router, sometimes called layer-3 switch, performs
the forwarding decision for each incoming packet. All

the operations executed by the router after receiving packets
can be divided into time-critical (fast path) and non-time-
critical (slow path) operations depending on the packet type.
These time-critical operations run for most of the packets
include IP packet validation, packet lifetime control, check-
sum recalculation, destination address parsing, and IP table
lookups, as described in [2]. Among all the time critical
operations, the IP table lookups are themost time consuming.
Thus, IP table lookups must be implemented in a highly
efficient fashion to keep up with the high-speed and high-
bandwidth links connected between routers. IP table lookups
are executed by a forwarding engine that looks up the packet’s
destination IP address against a forwarding table in order to
determine the address of the next-hop router and the egress
port to which the packet should be sent. The forwarding table
must maintain an entry for every network allocated with an
address block represented as a route prefix. Currently, each
prefix can be of any length from 8 to 32. As a result, the search
in a forwarding table can no longer be performed by exact
matching. The IP table lookup becomes the Longest Prefix
Match (LPM) problem which determines the longest route
prefix covering the destination IP address of the packet
because there may be one or more prefixes that match the

destination address. Router designers are challenged to come
up with fast algorithms or architectures for solving LPM.

There are so many schemes proposed for IP lookups in the
literature [8], [9], [12], [36]. They can be classified into two
categories: static and dynamic lookup schemes. An IP lookup
scheme is called static if reconstruction is needed when an
update occurs; otherwise, it is called dynamic. Static lookup
schemes are acceptable when the forwarding table is not
updated frequently. A forwarding table pre-computation is
typically needed in static schemes for improving lookup
speed and reducing memory usage. However, when prefixes
are frequently added in or deleted from the forwarding table,
a dynamic lookup scheme is needed. Many dynamic lookup
schemes [6], [9], [16], [19], [29]-[32], [37], [41] were proposed.
However, they are designed with the software-based routers
in mind [33] and thus most of the performance results are
obtained by the simulation on personal computers. Although
these dynamic data structures can achieve better update
performance than static ones, it is unknown that we can have
an efficient hardware design for them in order to support the
throughput of beyond 100 Gbps for large routing tables. On
the other hands, a number of proposals have focused on
exploiting the pipelining architectures. In this respect, the
multibit-trie based pipeline architectures have gained much
attention because each trie level can bedirectlymappedonto a
pipeline stage with its own memory and uncomplicated
processing logic. As a result, one IP lookup can be performed
every clock cycle and thus the throughput can be significantly
improved. Noticeable trie-based pipeline designs include
Ring [1], CAMP [23], OLP [20], BiOLP [24], BPFL [13], POLP
[13], [22], Bit-Shuffled Trie (BSTrie) [34], FlashLook [3], and
FlashTrie [4]. These pipeline designs can normally achieve a
much higher throughput than dynamic schemes based on
software. For example, the throughputs achieved by BiOLP,
FlashLook, and FlashTrie are beyond 100 Gbps. However,
these multibit-trie-based hardware implementations exhibit
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two disadvantages. First, the required memory for large
routing tables is too large to fit into the on-chip memory of
the most advanced reconfigurable devices such as FPGA.
Thus, off-chip SRAM or DRAM are used to store the entire
routing tables. Thus, the ultimate performance of these im-
plementations is bounded by the speed of off-chip memory
which is usually 5 to 8 ns for a single memory access. Second,
theupdate performancewill be slow. Since one single prefixof
shorter length may need to be expanded to multiple prefixes
of longer lengths, it is not easy to maintain the status of the
original routing table and thus prefix deletions may be diffi-
cult to perform. Other than the trie-based approaches, DMST
[11] was a pipeline design that is not based on trie. DMST is
based on the B-tree data structure constructed from the end-
points of the prefixes. Extended version of DMST can also
achieve the throughput of 100Gbps.However, it has the same
drawback as the trie-based pipelines that the required mem-
ory is too large to be fit into the on-chip memory of FPGA
devices for large routing tables.

In this paper, we shall propose a high-speed pipelined
architecture called LayeredTrees. It uses layer-based prefix
partitioning scheme to construct the multiway B-tree data
structure. We will show that, other than trie and range based
data structure, LayeredTrees can achieve a throughput of
120 Gbps that is even higher than the best multibit-trie-based
implementation nowadays. Such high throughput obtained
by the proposed pipelined architecture comes from the non-
duplication property of the underlined dynamic data struc-
ture along with the most memory-efficient representation to
store prefixes. The data structure for the large routing table is
small enough to be entirely fit in the on-chip memory of the
FPGA devices. As a result, the ultimate performance of the
proposed pipeline will not be bounded by the speed of off-
chip SRAM or DRAM. In addition, since the proposed pipe-
line architecture is based a data structure originally designed
for fast insertion and deletion, the impact of the update
operations on the search performance is minimal.

The rest of the paper is organized as follows: The related
work is discussed in section II. The dynamic multi-layered
multiway balanced prefix trees called LayeredTrees and the
memory reduction optimizations are described in section III. In
section IV, the pipelined architecture proposed for Layered-
Trees is described in details. All the analysis and experimental
results are shown in section V and finally, the concluding
remarks are presented.

2 RELATED WORK

In this section,wefirst review the existingdesigns that are able
to provide the throughput of more than 40 Gbps (OC-768).
Then, we summarize the design model used for the proposed
pipelined architecture.

2.1 Trie Based Pipeline Architecture
A trie data structure is a natural way to store prefixes. It is a
tree-like data structure that directs the search for LPM in a
bitwise fashion by using the destination IP address of the
incoming packet. Trie is mostly implemented using linked
lists in which each trie node has left and right pointers
pointing to its left and right subtries, respectively.

The idea of trie based pipeline architectures is to map each
level of the trie onto a pipeline stage with its ownmemory and
processing logic.Asa result, a lookup request canbe completed
every clock cycle and thus the overall throughput is greatly
improved. However, this trie-based pipeline design results in
unbalanced memory distribution over the pipeline stages
because the memory required in lower trie levels is obviously
much larger than that in higher trie levels. The memory
unbalance in turn leads to a slower clock rate and a notable
negative impact on route update and memory allocation.

The memory unbalance problem of the trie-based pipeline
designs was first mentioned in [17], [39] where authors think
using large amounts of cheap off-chip DRAM inefficiently is
advantageous as long as a faster, simpler, and cheaper solu-
tion is realized. Also mentioned in [39], DRAM memory
access times will become a bottleneck when the link speeds
increase. At the link speeds of 40Gbps and beyond available
today, the entire IP routing tables will need to be stored in
SRAM or on-chip memory. Authors in [1] investigated the
relationship between the on-chip SRAMmemory access time
and the size of memory required per stage. Their estimated
results obtained by thememory generator application CACTI
[38] show that the memory access time increases significantly
with the size of memory.

Rather than based on the levels of leaf-pushed unibit tries,
an alternative height-based pipeline design called scalable dy-
namic pipelining (SDP) is proposed in [18]. This work guaran-
tees a tighter worst-case per-stage memory bound than previ-
ous level-based approaches. It ensures the number of leaves in
the leaf-pushed unibit trie is equal to the number of prefixes by
using a technique called jump nodes to limit the number of
copies of a leaf-pushed node. As a result, each route-update
requires only one write dispatched into the pipeline.

As proposed by Basu and Narilkar [5], the memory imbal-
ance canbe solved byminimizing the stage that has the largest
memory in order to improve the clock rate of the bottleneck
stage. In [5], the disruption of the fast path lookup pipeline by
route updates is also minimized by reducing the number of
write bubbles that are sent to the pipeline for updates. The
write bubbles can be generated by software preprocess for
prefix insertions and deletions. A ring like pipeline architec-
ture is proposed in [1] to further reduce the memory imbal-
ance problem. Any sub-trie of the search data structure is not
restricted to be mapped to stages starting at the first stage. In
other words, the root of each sub-trie can be mapped to any
stage and descendents of the root are mapped to the later
stages orwrappedaround to forma ring. Thedrawback is that
the maximum search throughput becomes a half of the pipe-
line stage clock rate, due to the memory access conflicts
caused by this design. Furthermore, the pipeline architecture
called Circular, Adaptive and Monotonic Pipeline (CAMP) is
proposed in [23] to extend the above ring pipeline. CAMP
decouples the numbers of pipeline stages and trie levels to
give more freedom to map the sib-tries to pipeline stages.
CAMP uses several initial bits as the hashing index to parti-
tion the trie into sub-tries and allows the roots of sub-tries to
bemapped to any stage. To seek a balancedmapping of nodes
onto pipeline stages, dynamic entry and exit points are al-
lowed to exploit which requests can enter and exit at any
stage. Since CAMP allows the requests to enter and exit at
any stage, input and output FIFOs are needed to maintain
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the order of incoming packets, which make CAMP more
complicated.

Three drawbacks caused by the multiple-entry and
multiple-exit stages of CAMP are as follows. First, the request
queues result in extra delaywhich leads to a large variation of
total delay for each request. Second, due to themultiple-entry
stages, the write bubbles disrupt the pipeline operations for
route-updates. Finally,multiple-entry stages also cause access
conflicts and thus reduce the throughput. Therefore, authors
in [20] proposed a new mapping scheme called Optimized
Linear Pipeline (OLP) that reverts to the linear pipeline. InOLP,
all subtries’ roots are mapped to the first stage. However, to
achieve a more balanced memory usage, OLP allows the
nodes on the same level of a subtrie to be mapped onto
different pipeline stages, augmented by the no-operation
(nop) instruction going through the stages. OLP uses a heu-
ristic to map nodes to stages. Each balanced pipeline holds

nodes except possibly the first stage, where is
the total number of nodes and is the number of stages. The
nodes of each sub-trie are stored into a segmented queue,
where the nodes on the level of the subtrie are stored in the

segment of the segmented queue. When the mapping
process runs in stage from to (stage 0 for the
root nodes of all sub-tries), the following steps are executed.
All the segmented queues are sorted in decreasing order of the
number of segments in each segmented queue and also in
decreasing order of the number of nodes in their frontend
segments for a tie breaker. Only the nodes in frontend seg-
ments are popped from queues in order to be put in stage . If
all the nodes in the frontend segment of a queue have been
popped, then the nodes in the next segment of the queue are
not popped until the next stage . In order to further
increase theflexibility tomap trie nodes onto pipeline stages, a
dual-entry bidirectional pipeline called bidirectional optimized
linear pipeline (BiOLP) was designed in [24]. BiOLP employs
the dual-port functionality of the on-chip Block RAMs to
allow two simultaneous accesses to the local memory in each
stage by the two search operations flowing in opposite direc-
tions. BiOLP is different from OLP in that some sub-tries are
inverted by various proposed heuristics. The normal sub-tries
are called forward sub-tries and the inverted ones are called
reverse sub-tries. The priority of a node is defined as its height
and its depth in the forwardand reverse subtries, respectively.
In other words, the nodes of upper levels in forward sub-tries
and that of deep levels in reverse sub-tries have high higher
priority. Thus, nodes with higher priority are mapped to
current stage before that of lower priority. When the priority
of a node is equal to the number of the remaining stages, it is
regarded as a critical node and so it must be mapped onto the
current stage before other nodes. BiOLP also maintains the
packet input order and supports non-blocking route update.
Moreover, BiOLP employs packet caching to improve the
throughput. BiOLP is further improved in [21] by adopting
multiple pipelines to facilitate processingmultiple packets per
clock cycle along with the IP caching and a lightweight
scheduler and several small output delay queues.

A set of designs [25], [26], [28] were proposed to build a
binary search tree for each group of disjoint prefixes using a
level-based prefix partitioning scheme on the binary trie,
which is more general than the partitioning scheme based
on prefix lengths. A bound for the number of binary search

trees is set to limit the number of pipeline needed. With the
binary search trees, the pipeline designs can be implemented
easily. Dual linear pipelined architectures with dual-ported
memory are used to achieve high throughput of beyond
100 Gbps verified by the implementations on ASIC and
FPGA. Another scheme improving on OLP called Parallel
Optimized Linear Pipeline (POLP) architecture was also pro-
posed in [22]. POLP is enhanced by pipelined prefix caches.
Another parallel search hardware design basedmulti-bit tries
called Parallel Frugal Lookup (PFL) was proposed in [14] Since
the level modules designed in PFL is very complex compared
to the traditional multi-bit trie nodes, PFL’s cycle time is
expected to be longer than the multibit trie based pipeline
designs described above. In PFL, the next-hop information is
stored in the external memory, while the structure of the
lookup table is stored in on-chipmemory. In [13], an enhanced
version of PFL called balanced parallelized frugal lookup (BPFL)
algorithmwas proposed. The experimental results onAltera’s
Stratix II EP2S180F1020C5 FPGA chip showed that there is no
significant performance difference in achieved throughput
between BPFL and BiOLP. However, BPFL’s total on-chip
memory requirements are significantly lower than POLP. In
[34], a binary trie based scheme called bit-shuffled trie (BSTrie)
using a bit-shuffling technique was proposed to restructure
thebinary-trie in order to reduce thememoryusageperprefix.
Although BSTrie achieves the best memory utilization, its
search speed becomes slower than some of the existing
schemes due to its complex logic for lookup engine.

Multiple hashing function based designs can also be used
to improve the throughput such as FlashLook [3], FlashTrie [4],
and themulti-hash scheme [15], just to name a few. However,
there are two disadvantages to use hashing. One is the colli-
sions that make the pipeline un-deterministic in terms of
delays required for finishing a lookup. The other is the
rehashing that is needed during route updates. Both FlashLook
in [3] and FlashTrie in [4] achieve high throughputs on off-chip
DRAMs. Also, FlashTrie is based on multibit tries along with
hashing functions.

2.2 Segment Tree Based Hardware Architecture
Other than the numerousmultibit trie based pipeline designs,
binary or multiway search trees based [11], [40] on the end-
points of prefixes can be developed. Two endpoint based
pipelinedesigns, i.e., pipelined dynamic segment tree (pDST) [43]
and dynamic multiway segment tree (DMST) [11] are proposed
in the literature. The basic tree structure of pDST is 2-3 tree
which is implemented as a bi-directional linear pipeline using
dual-ported block RAMs. On the other hand, DMST is based
on the B-tree and targets on using off-chipmemory for storing
the large routing tables.

2.3 Design Model
The design model for the proposed IP lookup algorithm is
illustrated by Fig. 1. The protocol stack contains two planes,
data plane and control plane. The control plane usually
managed by a standard RISC processor consists of a large
number of sophisticated codes that implement the slow-path
protocols. The fast-path functions executed in data plane
typically are the protocols in layer two or three of the network
protocol stack. In this paper, we assume that the slow-path
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RISC processor mainly executes the route update operations
and the IP lookups in fast-path are based on the proposed
LayeredTrees data structure stored in the on-chip memory of
thededicatedFPGA-based search engine. InFig. 1, packets are
received at the receive unit and transmitted to outside by
transmit unit after the nexthop is determined. If the received
packets are for updates, they are sent to the slow-path RISC
processor. The processor executes the update operations and
modifies the contents of the on-chip memory accordingly.
If arrived packets are usual Internet packets, they are sent to
search engine that executes the fast-path function to find the
nexthop and finally are passed to the transmit unit.

3 MULTI-LAYERED MULTIWAY PREFIX TREES
To sustain the information overload on the Internet nowa-
days, the very high-speed backbone routerswith lessmemory
consumption andmore flexibility for updating routing tables
are required. To speed up the search speed, a pipelined
hardware design is considered in this paper. The dynamic
multiway segment tree based scheme [11] implemented in
hardware suffers from the 8 ns off-chip memory access time
because its memory usage is larger than the on-chip memory
available in today’s most advanced FPGA devices. To avoid
the memory access delay of off-chip memory, the entire data
structure should be completely stored in the on-chip memory
for improving the throughput of search engine. Although the
schemeproposed in [40] is able to store the entire routing table
in on-chipmemory, time-intensive precomputation is needed
for theproposed compresseddata structure and thusdynamic
updates are not supported.

In this paper, a data structure called LayeredTrees is pro-
posed for dynamic routing tables. In LayeredTrees, the pre-
fixes in a routing table are grouped into layers based the
concept of themost specific prefixes (also called layer grouping
constraint) proposed in our previous work [8]. In this paper, a
multiway prefix tree structure along with four memory and
pipeline logic optimizations will be proposed to reduce the
memory requirement and increase the pipeline clock rate. The
four optimizations include (1) the simple one-level leaf push
scheme to reduce the number of layers required and thus the
hardware cost, (2) the routing table split to reduce the number
of bits needed for the prefixes of lengths 9 to 24 stored in B-tree
nodes, (3) B-tree order varying scheme to choose the B-tree
order as smaller as possible for the B-tree nodes in each layer,
and (4) the stage 4 clock rate improving scheme to increase the
clock rate of the bottleneck stage 4 of the proposed pipelines
by breaking the stage 4 into three sub-stages. Our simulation

results will show that the proposed design can achieve the
throughput of 120 Gbps by using the FPGA device currently
available.

All the most specific prefixes (i.e., the prefixes associated
with the leaf nodes of the binary trie) that do not enclose any
other prefixes are grouped into layer 0. Assume the prefixes in
layer 0 are removed from the routing table. Now, the most
specific prefixes are grouped into layer 1. The prefix grouping
process can be performed recursively until no prefix exists. In
general, any layer- prefix encloses at least one layer-( )
prefix but does not enclose prefixes in the higher layer for
> . The prefix enclosure analysis for various routing tables

of router AS6447 [7] is shown in Table 1. There are at most
eight layers. Besides, the most noticeable property is that all
the prefixes in the same layer are disjoint. Thus, the prefixes in
a layer can be sorted (described later) and then binary search
can be applied to find the only matched prefix in the layer
against the incoming destination IP address. The search
process starts from the layer 0. If a matched prefix is found,
this must be the longest matched prefix and thus the search
process is finished. Otherwise, the search is performed on the
prefixes in layer 1. This search process repeats until a match is
found or the prefixes in the last layer are exhausted. Since
layer 0 occupies more than 90% of the prefixes, most of the
matches will be found after layer 0 is searched.

The goal of LayeredTrees is to store the entire routing table
in the on-chip memory of FPGA device currently available.
The prefixes in each layer are organized as a B-tree. Given a
small example routing table as shown in Fig. 2, three layers
can be constructed, layer-0 ,
layer-1 , and layer-2 . Fig. 3 shows the three
corresponding B-trees in the increasing order of the prefixes
represented by the lite prefix format described below.

There are twoproblemswhen the B-tree is used to organize
the prefixes in each layer. First, no matter how we construct
the multi-layered B-trees by inserting prefixes in a sequential
order or randomly, the utilization of the B-tree nodes is only
about 50 percent, i.e., a half amount of storage for keys in the
node areunused. Second, the pointers used for the branches of
a B-tree node consume a large amount of memory. The first
problem is solved by controlled B-tree building algorithm
(CBA) proposed in this paper for improving the utilization of
B-tree nodes and also for keeping sufficient slots to accom-
modate the newly inserted prefixes for efficient updates. For
the second problem, we replace the branch pointers in an
ordinary B-tree node by a base pointer pointing to the pre-
built aggregate array of B-tree nodes. Based on the number of

Fig. 1. Design model.

Table 1
Prefix Enclosure Analysis
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valid prefixes stored in a node, it is easy to know how many
children this node has and thus any branch pointer (i.e., index
to the aggregate array) can be computed by adding the base
address to the offset of the branch pointer. To further reduce
the memory consumption, a space efficient prefix format
called lite prefix format is used and a segmentation table [20]
is used for each layer to truncate commonmost significant bits
of prefixes in each segment. All these proposed techniques
will be described in details below.

3.1 Lite Prefix Format
Two commonly used formats to represent the prefixes of
various lengths aremask format and length format. For exam-
ple, prefix in 6-bit address space can be represented as
101000/111000 in mask format or 101000/3 in length format.
In general, each prefix in the -bit address space needs
bits and bits in mask format and length
format, respectively. is 32 in IPv4 or 128 in IPv6. In this
paper, we focus on design for IPv4 since the proposed archi-
tecture can be applied to IPv6 similarly.

The lite prefix format used in the proposed hardware
architecture is similar to ( )-bit prefix representation
proposed in [10]. The definition of lite prefix representation
in the -bit address space is as follows: The prefix of length ,

, is represented as ,where
for to , , and for
to 0, (i.e., is followed by a zero and
consecutive ones). Comparing two prefixes is as simple as
comparing two ( )-bit numbers. However, searching a
matched prefix against the IP address needs some extra
operations after we know for two consecutive
prefixes and in the array of sorted prefixes in a layer.
We have to check if is contained in either or by using the
masks of and described below.

For a prefix in the lite prefix format, its mask
denoted by can be easily recovered by the

logical equations . For example, the

6-bit prefix is converted into 1011011 in 7-bit lite prefix
format and itsmask is 111100. For the routing table consisting
of 300Kprefixes, thememory required for storing the prefixes
in a linear array based on the lite prefix format is 9.9 Mbits
while mask format and length format need 19.2 and 11.4
Mbits, respectively.

3.2 LayeredTrees Search
Assume the B-tree node is of order . Thus, every B-tree node
stores at most ( ) prefixes and branches.

To perform a search with a destination address , layer 0 is
examinedfirst. If a layer-0prefixmatches , i.e., it covers , this
prefix must be the only matching prefix at this layer since all
the prefixes in the same layer are disjoint. It is possible that
some other matching prefixes can be found in other different
layers. However, they must be shorter than the matched
prefix found in layer 0. In general, if a match is found in a
layer , there is no need to search the layer or higher. If a
match is not found in layer , we have to continue the
search operation in layer . Fig. 4 shows the search algorithm
in which is the total number of layers. Line 4 checks if there
exists any key (i.e., ) in node that matches by
performing thematch operations between and all the keys in
parallel that can be easily done by the hardware design. In
lines 5-6, if a match is found, the procedure returns the next-
hop information of the matched prefix. Otherwise, it deter-
mines which branch should be followed at the next step in
lines 6-9. If no match is found in current layer, the search
continues in the next layer.

3.3 LayeredTrees Insert
The LayeredTrees insertion algorithm is shown in Fig. 5. To
insert a prefix , the first layer (layer-0) is traversed first.
Consider the insertion in layer . If a prefix (say ) is
found to be covered by , the insertion process continues by
inserting in the next layer, as shown in line 6. If is enclosed
by the key (say , should be replaced by and
then the insertion process continues by inserting in
the next layer, as shown in lines 7-10. If no prefix covers or is

Fig. 3. The multi-layered 5-way B-trees from Fig. 2.

Fig. 4. LayeredTrees search.

Fig. 2. An example routing table and its binary trie.
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covered by , prefix must be disjoint fromall layer-i prefixes.
Thus is inserted into layer , as shown in line 11. This
insertion process is repeated by following the appropriate
branches until is inserted in any existing layer or a new layer
must be created to hold .

3.4 LayeredTrees Delete
The deletion algorithm is shown in Fig. 6. Deleting a prefix
must follow the layer grouping constraint. Assume the prefix
to be deleted, , is found in layer starting from layer 0. We
have tomake surewhether or not can be deleted from layer
directly by the following steps. First, layer is searched to
see if there is a prefix that covers . If does not exist (line 7)
or covers another prefix in layer (lines 8-13), then can be
deleted directly from layer and the deletion process is
finished. The process of finding if prefix in layer covers
not only but also another prefix in layer can be accom-
plished by simply determining if the left sibling ( ) or right
sibling ( ) of in layer is also covered by . If is the only
prefix in layer covered by , the layer grouping constraint
will be violated if is deleted directly. In this case, should be
lowered by one layer andput in layer (line 14). The process of
deleting in layer is then converted into that of deleting in
layer . If encloses anyprefix in layer , may exist in next
higher layers and thus the deletion process continues in layer

(line 16). Finally, the process of determining which
branch of the current B-tree node to follow is performed in
lines 18-21.

3.5 Controlled B-Tree Building Algorithm
To improve the utilization of B-tree nodes, an algorithm
named “Controlled B-tree Building Algorithm” (CBA) is
proposed to increase the utilization of B-tree nodes. CBA
inserts prefixes in an increasing order of their prefix values
and splits at the position of the last key, instead of the middle
key of the node when the B-tree node is full.

The prefixes of each layer are inserted into the correspond-
ing B-tree one by one in the increasing order of their prefix
values in lite prefix format.When a prefix is inserted into a full

-way B-tree node, the node is split at the position the last
key, i.e., one contains keys and the other contains only
one key. According to our analysis, CBA can improve the
utilization of B-tree node to 90 percent.

3.6 Aggregate Array and Segmentation Table
In order to store entire routing table in the on-chip memory,
the aggregate array of B-tree nodes is used to store all child
nodes of a B-tree node. Thus, only one pointer called base
address is needed in a B-tree node, instead of branch
pointers. When a B-tree node has children, it must have

valid prefixes whose values must not be based
the lite prefix format. The aggregate array of B-tree nodeswith
children is of size bytes, where is the node size. The
th branch pointer of the B-tree node with base address
points to the address of for to . The base
address of a leaf node is set to zero to indicate that no branch
exists.

Using a segmentation table [20] is always the simplest way
to partition a tree into several smaller ones without compli-
cating the search operations. Segmentation table reduces the
tree height. Consider the segmentation table of bits that
partitions the prefixes into segments. If the length of prefix

to be inserted is , will be duplicated into
segments. Since routing tables usually contain prefixes of
length larger than or equal to 8, an 8-bit segmentation table
that results no prefix duplication is used in our design.

Fig. 7 illustrates the B-trees in LayeredTrees using a 2-bit
segmentation table based on the one without segmentation
table in Fig. 3. All the segments record the default_NH as their
default next-hops except that segment 2 has as its default
next-hop because is of length 2. Segment 0 contains three
pointers pointing to the root nodes of the three B-trees corre-
sponding to layers 0, 1, and2. Thepointer of layer 0of segment 0
points to the node of the aggregate array. The layer 0 in
segment 0 isa two-levelB-treewhere the root is node in level 0

Fig. 5. LayeredTrees insert.

Fig. 6. LayeredTrees delete.
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containinga key and a base pointer pointing to node of the
aggregate array. Node and its succeeding node in the
aggregate array correspond to the two branches of node .
All other B-trees corresponding to layers 1 and 2 of segment 0
and layer 0 of segment 2 contain only root nodes.

3.7 Varying Segmentation Table and Node Sizes
The segmentation table size denoted by and B-tree node size
denoted by are two main factors effecting the memory
consumption of the proposed LayeredTrees. Subsequently,
we shall show the analysis results that can be used to select the
best combination of and in terms of memory consump-
tion, where in terms of number of bits and

in terms of orders in B-tree nodes. We use the
routing table AS6447 as an example. Fig. 8 shows that for the
same node size, LayeredTrees with 4-bit and 8-bit segmenta-
tion table performs better because the memory consumption
for both 12-bit and 16-bit segmentation tables increases as
increases. Fig. 9 shows the average node utilization, where
node utilization is defined to the ratio of the number of valid
keys stored in the node and .Aswe can see that 4-bit and
8-bit segmentation tables have higher utilization than 12-bit
and 16-bit segmentation tables. Average number of memory
accesses for each lookup is usually used to estimate the search
speed of a IP lookup scheme. As shown in Fig. 10, the average
number of memory accesses decreases when or increases.
According to the above analysis, is the best
combination for LayeredTrees.

To evaluate the memory consumption of LayeredTrees for
larger tables, we generate large synthesized tables that follow
the same prefix length distribution of AS6447. In Fig. 11,

LayeredTrees is scalable to a half million of prefixes with the
on-chip memory of 18 Mbits.

4 PROPOSED PIPELINED ARCHITECTURE

In this section, two pipelined architectures are proposed for
LayeredTrees to improve the system throughput. Firstly, a
5-stage pipeline called leveled search engine (LSE) is proposed
to perform the search operations in LayeredTrees, as shown in
Fig. 13. LSE searches the B-trees of LayeredTrees in a level-by-
level fashion from layer 0 to layer 6. LayeredTrees terminates
the search process as soon as a match is found in any level of

Fig. 7. A 5-Way B-tree built by CBA from Fig. 3.

Fig. 8. Memory consumption.

Fig. 9. Node utilization.

Fig. 10. Average number of memory Accesses.

Fig. 11. Memory consumption for large tables.
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any layer. In other words, all the levels of all layers in
LayeredTrees are searched one by one by using the 5-stage
search engine. To take advantage of the parallel nature of the
proposed LayeredTrees, a parallel architecture combined
with multiple modified LSE’s is then designed for further
improving the throughput. Basedon this parallel architecture,
the worst case search time is reduced to be the delay to search
the level with maximum amount of memory.

In order to describe the proposed architecture accurately
and concisely, some notations and definitions are needed as
follows.

: the size of the prefixes in bits.
: the order of the B-trees.
: the size of the IP address space in bits and is 32/128

for IPv4/IPv6.
: the number of bits used in the segmentation table, i.e.,

.
seg: the segment entry of the -bit segmentation table.

: the root node address of the layer of a
segment, where .
seg.NumLayers: the number of layers in the segment.
seg.Default_NH: the default next-hop in the segment.
node: the B-tree node.
node.base_addr: the base address of an aggregate array of
B-tree nodes pointed to by their parent node.

: the prefix in the node, where .
: the next-hop associated with .

We choose and because there is no prefix of
length less than 8 in the real-life IPv4 routing tables and

makes the height of B-trees in LayeredTrees no more
than three levels. The 8-bit segmentation table needs 256
131-bit segments shown in Fig. 12a and the 774-bit 24-way
B-tree node is also shown in Fig. 12b.

4.1 Leveled Search Engine (LSE)
LSE searches one B-tree node in a level at a time by going
through all five stages (called a round) of the proposed
pipelined architecture. Stage 1 determines the level and layer
numbers of the current round. Initially, start signal (also called
reset signal) is enabled to input a new IP address as the search
key and then the values of layer.no (current layer number) and
level.no (current level number) are reset. The finish signal
returned from stage 5 is also used to select a new IP address
as the search key for starting a new round. If neither start
signal nor finish signal is enabled, the returned values of

layer.no and level.no from previous round are used in the next
round. Normally, if the levels of the current layer are not
exhausted in a round, level.no is increased by one and layer.no
is not changed. Otherwise, if a leaf node of the current layer is
reached, layer.no is increased by 1 and level.no is reset to 0.

Stage 2 looks up the segmentation table by using the most
significant 8 bits of the IP address and the current 3-bit layer
number to retrieve the root node address of the B-tree in
current layer. Each segment of the 8-bit segmentation table is
131 bits as shown in Fig. 12a. The root node address of the
current layer is used as the address of the current node when
the level number is zero. Otherwise, the node address re-
turned from the previous round is used as the address of the
current node. The default next-hop number (seg.NH) and the
number of layers (seg.NumLayers) of the corresponding seg-
ment shown as seg[130:120] in stage 2 will be passed through
the pipeline to stage 5. The default next-hop (i.e., default_NH)
is needed when no match is found in all the layers.

All the B-tree nodes are stored in the memory of stage 3.
A 774-bit node is used in this paper because a 24-way B-tree
node needs 23 25-bit keys and 23 8-bit next-hops. Since an
aggregate array of nodes is used to avoid storing the branch
pointers physically, we need a base address of the aggregate
array in each node. The base addresses of the leaf nodes are set

to NULL which is defined to be in this paper. Thus, a
AND gate is sufficient to check whether a node is a leaf node.
The address of the current node is used to read the 774-bit
node to be processed in stage 4. For the largest routing table
used in our experiments, we need no more than 24-way
B-tree nodes. Therefore, the base pointer is set to 15 bits wide.
The address of the node to be processed in the next round is
calculated in stage 5, byusing the branch number and the base
address of the current node.

Themost complicatedpart of the proposedLSE is in stage 4
which contains two components, IP/Keys Matching unit and
Branch Detection unit. These two components are processed in
parallel. The IP/Keys Matching unit checks if the input IP
addressmatches one of the keys stored in the node. The result
returned from the Branch Detection unit is not needed in the
following two cases. First, when a matched key is found in
the current node by the IP/KeysMatching unit, the search for
the current input IP is completed in the current round and so
no next round is needed. Second,when the base address of the
current node is zero, i.e., the current node is the leaf node of
the current layer, the search will continue in the next layer or
the default NHwill be the final result if the current layer is the
last layer. If these two cases do not happen, the result returned
from the Branch Detection unit is used in stage 5 to compute
the address of the node in the next B-tree level. Notice that the
keys are theprefixes in the lite prefix format. For -bit prefixes,
each key in lite prefix format is of size bits. Although the
lite prefix has the advantage of low memory consumption
compared with other prefix formats, the match operation
between the input IP and the lite prefix can not be made
easily and efficiently. Therefore, we choose to use the mask
format to perform thematch operations.However,we have to
compute the subnet mask from the lite prefix first. Suppose
that a node only stores < keys in the increasing order
of their key values (i.e., ), where >

Fig. 12. Segment and 24-way B-tree node formats.
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for to . Each of the unused slots stores

the value which is defined to be ( ones) in
this paper. is the only ( )-bit number that is not
used by the lite prefix format. The detailed logic design of the
IP/Keys Matching unit is shown in the following five equa-
tions.

Equation (1) computes a flag called for the key

(i.e., the -bit vector ) in the lite prefix format. If the
key is NULL, is set to 1. Otherwise, is set to 0.

Themask of the th key is computed in equation (2). From

(2), the mask of the NULL key is . The input IP address

denoted by the -bit vector is matched against mask to
get thematching result in equation (3). The right-hand
side of the AND operation in equation (3) is the conventional
match operation between a IP address and aprefix,whichwill

be always true if themask is . Thus, to force thematching

result between an IP address and themask of a NULL
key to be always false, the left-hand side of the AND
operation in equation (3) is needed. Equation (4) computes the
next-hop number corresponding to the matched key and
equation (5) sets output signal node.match to one if when one
of keys matches input IP. Two results output from the
IP/KeysMatchingunit,node.match (1 bit) andnode.NH (8 bits),
are needed in the next stage.

The design of IP/Keys Matching unit in equations (1)–(5)
can be simplified as follows. As we know that is 32 for IPv4

and (i.e., 255.255.255.255) represents the limited broad-
cast address thatwill not be forwardedby the router. Thus,we

can assume that address does not appear in any unicast

packet.We canuse (i.e., the lite prefix of the IP address

255.255.255.255) as the NULL value. The mask of is

and thus no IP address is able tomatch the unused slots.
As a result, the flag in equations (1) and (3) can be
removed completely.

Whennomatch is found in anon-leaf node,we have tofind
a branch that we can traverse to reach a node in the next level
for continuing the search operation. Equations (6)–(10) show
the detailed design of the Branch Detection unit.

Fig. 13. The 5-Stage Leveled Search Engine.
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The first three equations (6)-(8) determine if is larger

than the input IP ( ) and stores the result in . All ’s for

to form an ( )-bit vector . Equation (9)

converts to an -bit vector such that only one bit in is
set andall other bits are unset. The last equation (10) computes

the branch number, i.e., the bit position of the only set bit in

and stores it in the -bit vector, .
Stage 5 decides whether the search operation for the

current IP address should be finished at the current level.
The finish signal is set when the node.match signal from the
IP/Keys Matching unit is true or no match is found after
searching all the layers in the corresponding segment. Com-
puting finish signal involves a 3-bit comparator, anANDgate,
and an OR gate. The comparator compares the number of
layers stored in the segment and the current layer number.
The output of the AND gate is used as the selector of a
multiplexor to select either node.NH or seg.NH (i.e., the default
port of the segment). Two adders are used to increment the
current level number (level.no) and current layer number
(layer.no) by one. The operations for computing these two
addresses are done by an AND gate, two adders, and two
multiplexors. A final adder is used to compute the node
address pointed to by the branch computed in stage 4.

One special case that must be considered is when a seg-
ment contains no layers. We call this kind of segments empty
segments. Since all the search operations must go through the
pipeline at least one round, we restructure the empty seg-
ments as the ones containingone layerwithonly one level (i.e.,
one root node). Thus, the number of layers in the empty
segment becomes one. Also, the only node in empty layers
contains all the NULL keys defined above and a NULL base
address. As a result, the proposed LSE works for empty
segments.

4.2 Multiple Parallel Leveled Search Engines
As per LSE described above, the search goes through the
5-stage pipeline at most times in -level B-tree of layer . In
the worst case, all the layers must be searched. Thus,

cycles are needed to complete a search for the
routing table that needs layers in the proposed Layered-
Trees. Take the real-life routing table AS6447 2009-7 as an
example. The proposed 24-way LayeredTrees with an 8-bit
segmentation table needs seven layers as shown in Table 1
and is 13. As we have shown in the proposed LSE, most
of the search operations will be completed as early as in the
first layer. Thus, in the best case, the search can be completed
in the first round, i.e., by going through the 5-stage pipeline
one to three times. As a result, the average number of cycles
( ) needed is much less than . From our experimental
results, is 3.02 for table AS6447 2009-7. Although
is small compared to , the proposed LSE exhibits two

disadvantages. The first disadvantage is the long worst-case
search delay which may not be acceptable for high-perfor-
mance routers. The second disadvantage is the large variation
of search delays for different packets that may result in the
out-of-order packet delivery. Therefore, we will propose a
parallel design that uses multiple LSE’s running in parallel to
solve these two disadvantages as follows.

The proposed parallel design trades the hardware cost in
terms of slices in FPGA devices for higher packet throughput
and a constant packet delivery time. For layer consisting of
levels, the proposed parallel design concatenates copies of a
new 3-stage pipeline modified according to stages 3-5 of the
proposed LSE. Themodified 3-stage pipeline shown in Fig. 14
is simpler because the signals layer.no and level.no are not
needed. For the routing table consisting of
levels, copies of the modified 3-stage pipelines are
required. In order to reduce the amount of memory required
and improve the search speed, four optimization techniques
are used: the simpleone-level prefix push scheme, routing table
split scheme, B-tree order varying scheme, and stage 4 clock rate
improving scheme.

The simple one-level prefix push scheme reduces the number
of layers required and thus the hardware cost. Similar to the
traditional prefix push algorithm in the binary trie, it only
pushes the prefixes down one level if at least one of their child
prefixes is valid prefix. For example, prefix in Fig. 2 can be
pushed to its right child without changing the search out-
comes of the routing table. However, prefixes , and
will not be pushed down because both of their child nodes are
not valid. Based on the proposed one-level push, the number
of prefixes in the routing table after push operations will not
be increased. The main advantage of this push scheme is that
the layer number assigned to some prefixes will be changed
from high numbers to lower ones. For example, the layer
number of will be changed from three to two after the
1-level push operations and the number of prefixes remains to
be 12. In fact, the number of prefixes may be reduced because
the prefixes whose both child nodes are valid can be deleted
directly without affecting the search results.

The routing table split scheme is proposed to reduce the
number of bits needed for the prefixes of lengths 9 to 24 stored
in B-tree nodes. The original routing table is split into two
groups: the large and small groups consisting of the prefixes of
lengths 9 to 24 and lengths 25 to 32, respectively. The large
group accounts for at least 98% of the prefixes in the routing

Fig. 14. The modified 3-stage search engine, , where signals #5, #6,
and #7 are defined in Fig. 13.
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table. For the large group, only 17-bit keys are needed, instead
of 25 bits. The memory consumption for prefixes in the small
group remains the same. The prefix enclosure analysis after
push operations is shown in Table 2. We can see that the total
number of layers for both large and small groups is 7while the
number of layers in the original table is 8 for table AS6447
2011-5.

The third B-tree order varying optimization scheme uses as
small a B-tree order as possible for the B-tree nodes in each
layer. As obtained by our experiments, the order of the 3-level
B-trees for layer 0 is 22. Since other layers contain much less
prefixes than layer 0, we can shrink the required memory by
reducing the B-tree order of these layers as long as the number
of levels in the B-trees is not greater than 3. Take table AS6447
2009-7 as an example. For the large group of prefixes of
lengths 8-24, five layers are needed and their B-tree orders
are 22, 10, 4, 2, and 2. Similarly, the B-tree orders of the two
layers required for the small group of prefixes of lengths 25-32
are 9 and 2.

The final stage 4 clock rate improving optimization scheme
focuses on increasing the clock rate of the bottleneck stage of
the proposed pipelines. As described above, the bottleneck of
the proposed pipelines is the IP/KeysMatching unit in stage 4.
Therefore, we break stage 4 (i.e., equations 1 to 5) into three
sub-stages computing equations 1-2, 3, and 4-5, respectively.
Since Branch Detection unit runs in parallel with the IP/Keys
Matching unit, it is also split into three sub-stages computing
equations 6-8, 9, and 10 respectively. Notice that the original
design of the proposed LSE is 5-stage pipeline architecture
and themodified LSE remains to be a 5-stage pipeline because
stages 1-2 of the original LES are removed and two additional
stages are introduced in stage 2 of the modified 3-stage
pipeline.

Fig. 15 illustrates the parallel design for table AS6447 2011-5
by using the proposed table split scheme. and
denote the modified 3-stage pipelines for level of layer in
the large and small group, respectively. In , IP [23, 8] is
the input in the 3-stage pipeline, instead of IP[23, 0] in the
original LSE. Because the maximum number of levels needed
among all layers is 3, the total number of pipeline stages
needed in the parallel designwith an 8-bit segmentation table
and 24-way nodes is 17 including the stage for input IP
address and 8-bit segmentation table and the stage for priority
encoder. Also, the default port of each segment denoted by
seg.NH is only input into the last pipeline, e.g., in
Fig. 15. So, at least onematch can be found in the last pipeline.
The priority encoder will output the first match from top to
bottom.

5 PERFORMANCE

To conduct the performance evaluation, the pipeline archi-
tecture of the proposed 24-way B-trees with an 8-bit segmen-
tation table is implemented by using Xilinx ISE 12.2 with
Virtex-6 XC6VSX315T FPGA chip [42] that contains 49,200
slices and a Block RAM of size 25,344 Kb. All packets are
assumed to be 40 bytes, the minimal Ethernet packet size. Let

denote the pipeline clock rate in nano-second ( ) and
denote the number of nodes accessed per search. For the
proposed LSE, the throughput in terms of million packets
per second (Mpps) is , and the throughput in
terms of billion bits per second (Gbps) is . For the
parallel LSE, the throughput is Mpps or Gbps.

The performance results are obtained from the simulations
on Xilinx ISE tool. The correctness of the proposed design is
verified by the test bench. The component tested in the
simulations is the forwarding engine of the router based on
the proposed LSE and parallel LSE. Other components re-
quired in the router are not considered in the simulations.
When the other components of the router are as fast as the
proposed design, we expect that an actual implementation
usingparallel LSE can achieve very highperformance for both
IPv4 and IPv6. Table 3 shows theperformance of theproposed
LSE and parallel LSE compared with other existing hardware
implementations, DMST [11], Ring [1], CAMP [23], OLP [20],
BiOLP [24], BPFL [13], POLP [13], [22], Bit-Shuffled Trie
(BSTrie) [34], prefix partitioning based on Binary Search Tree
(BST) and 2-3-Tree [28], and Distance Bounded Path Com-
pressed trie (DBPC) [27]. Since we are not able to implement
all these existing schemes based on the same routing tables
and FPGA devices, we list the reported results that use the
tables of various sizes published in their original papers.
FlashLook [3] and FlashTrie [4] that can also achieve a
throughput of 100 Gbps are not included in the comparisons
because they use DRAM instead of on-chip memory in their
main data structures of IP lookups. The endpoint-based
OnChip [40] design is also not included in the comparisons
because no results of FPGA implementation were reported in
the original paper.

LSE can achieve the throughputs of 33.6Gbps and 7.8Gbps
in the average case and the worst case, respectively. The
bottleneck of the LSE pipeline occurs in stage 2. Since the
parallel LSE simplifies stage 2, its pipeline bottleneckmoves to
the second sub-stage of stage 4. As a result, the clock rate of

TABLE 2
Prefix Enclosure Analysis After Push Operations

Fig. 15. Parallel Leveled Search Engines.
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parallel LSE is improved from 3.058 ns to 2.649 ns. The final
throughput that can be achieved by the proposed parallel LSE
is 120.8 Gbps. Other than the proposed designs, BiOLP [24]
performs the best.

The FPGA devices have a memory usage constraint: the
allocated memory unit is restricted to a block of
bits (i.e., 1024 s entries of bits wide), where and are
integers. For example, in Fig. 13, the stage 2’s 8-bit segmenta-
tion table whose detailed structure is shown in Fig. 12a needs
amemory block of bits and the 24-way node array
of nodes in stage 3 as shown in Fig. 12b takes a memory
block of bits. The memory utilization of
parallel LSE is lower than LSE because parallel LSE needs
many smaller memory blocks for parallel and pipelined
processing as shown in Fig. 15. However, our design that
divides prefixes into small and large groups amends this
memory usage inefficiency in parallel LSE and thus the
memory requirement of parallel LSE becomes very close to
that of LSE. Because the routing tables of various sizes are
used in the experiments of the existing designs, we use a
metric calledMEratio [40] to compare thememoryusages.ME
ratio is defined to be the average amount of memory in bits
needed per prefix. If is total amount of memory in bits
required to store the entire routing table in on-chip memory
for a design and is the number of prefixes of the routing
table, ME ratio is . BPFL, POLP, and BSTrie have lower
ME than the proposed schemes. One of the reasons is that all
these three designs do not store the next-hop numbers in their
data structure stored in on-chip memory. Therefore, an extra
step is needed to access the next-hop numbers after the search
is completed in the on-chipmemory. Notice that since we just
store each prefix once in LSE and Parallel LSE, the memory

requirement for the nexthops is
Mbits. Thus, if nexthops are not stored in LSE and Parallel
LSE, thememory requirement for LSE andParallel LSEwill be
reduced to 8.6 and 8.5 Mbits, respectively.

The performance of updates is shown in Table 4. The
10-minute real-life update trace files for routing tables with
the prefix “rrc” are retrieved from RIPE website [35]. Because
most update operations are to change the next-hop informa-
tion for a prefix merely, the average number of B-tree nodes
that node need to be modified per update is 1.02.

The update operations have minimal influences on
the search performance. The read operation of the on-chip
SRAM at the search engine is executed in every cycle. We use
the precedence model in our design. The write operation

TABLE 3
Performance Comparisons for IPv4 Tables

(a) The nexthops are not stored in on-chip memory.
(b) Instead of slices, Stratix LEs are used.
(c) It is the non-cache based BiOLP.
(d) dual-ported block RAM is used.

TABLE 4
The Update Performance for AS6447 2009-07
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has precedence over the read operation when a write opera-
tion is needed for an update with a read operation in some
cycle. Therefore, instead of retrieving correct data for the
requested search, the read operation obtains the data which
is written by the update. It makes retrieved next-hop infor-
mation incorrect and causes the packet to be dropped or
forwarded to a wrong destination. In TCP/IP protocol, the
problemofpacket lostwouldbedetected and the lost packet is
retransmitted again.

Consider the rate of 1000 updates per second. Therewill be
1,020 nodemodifications that will cause atmost 1,020 packets
being dropped or forwarded incorrectly in every second.
Compared to the 377.5 million packets being forwarded per
second by the proposed parallel LSE, 1,020 (the number of
packets being droppedor forwarded incorrectly) is very small
and can be ignored. Thus, the search speed remains the same
when updates are taken into consideration.

Notice that one way to avoid the small number of the
corrupted lookups stated above is to update the memory in
the pipeline by insertingwrite bubbles as proposed in [5]. The
B-tree nodes in all stages that need to be modified due to a
prefix update are computed offline. The change of a B-tree
node in a stage is enabled only after the corresponding write
bubble arrives at that specific stage. Since one route update
may cause multiple B-tree nodes in a level (stage) to be
modified, many write bubbles need to be inserted in a row.
One disadvantage of using write bubbles for updates is as
follows. The complexity of the pipeline architecture will
increase because many control lines need to be added into
the design and normal lookup operations and write bubbles
need to be differentiated in each stage. As a result, the overall
hardware cost will be increased and the clock rate will be
degraded. Therefore,wego for the simple approach instead of
using write bubbles to perform the update operations.

Wealsoperformthe implementation for IPv6 tables.Table5
shows the performance results for a real-world routing table
consisting of 7,049 entries which is the largest IPv6 table
currently available [7]. For LSE, the achieved throughputs are
34.5and11.6Gbpsfortheaverageandworstcases, respectively.
For the parallel LSE, the achieved throughput is 132.5 Gbps.
This throughput isa littlebetter thanthatof IPv4tablesbecause
the net delay for interconnecting various FPGAcomponents is
lighter for small routing tables than large routing tables. We
also analyze the memory usages for larger synthesized IPv6
tables generated by V6GEN [44]. The largest table that needs
the memory storage of 24,586 Kb affordable by Virtex-6
XC6VSX315T is the one consisting of 290,503 distinct entries.

6 CONCLUSION

In this paper, we proposed and implemented a pipeline
design called LayeredTrees for IP address lookups.

LayeredTrees consists of multi-layered multiway balanced
prefix trees. In order to store the entire routing table in the on-
chip memory, LayeredTrees is optimized by the lite prefix
representation, the segmentation tables, the concept of aggre-
gate array along with the base address, and four techniques.
The proposed Leveled Search Engine (LSE) is a 5-stage
pipeline and the parallel LSE uses 17-stage pipelines. The
performance experiments on the chip XC6VSX315T of Virtex-6
FPGA family show that achieved throughput by parallel
LSE is superior compared to the existing designs. Also, the
proposed LayeredTrees can support the IPv6 routing tables
of size as large as 290,503 distinct entries on the same FPGA
device.
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